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Abstract 

 
The transportation industry has undergone a technological revolution. The necessity of 

traveling safely, staying informed, and being updated has multiplied. People may rely on 

modern vehicles with the newest technology for reliability and safety. However, a tense 

scenario is made worse by late rescue efforts at accident place, which also significantly 

raises the accident mortality rate in remote places. This thesis investigates the use of 

machine learning approaches to forecast the likelihood of accidents, with a particular 

emphasis on understanding the impact that weather and road conditions have in 

determining the severity of accidents. Specifically, this thesis investigates how weather 

and road conditions affect the likelihood of accidents occurring. The purpose of the 

study is to contribute to the development of accident prevention techniques that are more 

effective and data-driven by determining the most influential elements that lead to 

accidents and evaluating the effectiveness of various machine learning models in properly 

predicting accident likelihood. This will be accomplished by identifying the factors that 

are most likely to lead to accidents. An exhaustive examination of the relevant literature 

was carried to determine the current state of the art in accident prediction and to identify 

the primary factors related with the weather and the road conditions that have an effect 

on the severity of accidents. 

  

In order to determine whether or not machine learning is useful for predicting the chance 

of an accident, many models were trained and evaluated on a sizable dataset consisting 

of actual traffic collisions. Several different metrics, including accuracy, precision, recall, 

and F1-score, were used to evaluate the performance of the model. A comprehensive 

analysis of the models was carried out in order to highlight the benefits and drawbacks of 

each methodological approach. According to the findings of this research, machine 

learning models are able to accurately forecast the likelihood of accidents with a high 

level of accuracy when they are presented with an adequate amount of data and features 

that have been carefully selected. Additionally, the results offer valuable insights into the 

relationships between weather and road conditions and accident severity, which can 

inform future transportation planning, infrastructure development, and safety measures. 

 
Keywords: Machine learning, predictions, statistical analysis.   
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1 Introduction 
 

The transportation system is an important part of our lives in today's fast-paced world. 

Where it is serving the mankind, it also has some disadvantages. The number of accidents 

is rising as there are more cars on the road. According to the World Health Organization 

(WHO), traffic accidents are the ninth most common cause of death worldwide and the 

number one killer of people between the ages of 15 and 29. Road accidents often result 

in injuries, property damage, and financial losses in addition to fatalities (World Health 

Organization 2020).  

 

The first important field of research that can aim in lowering the number of accidents on 

the road is accident prediction using artificial intelligence (AI). Statistical techniques, 

which had a limited degree of accuracy and efficiency, were used in the conventional 

methods of accident prediction. Yet, new opportunities for accident prediction using 

machine learning methods have emerged as a result of recent developments in artificial 

intelligence (AI). The use of AI in accident prediction involves the development of 

predictive models that can analyze huge amounts of datasets to find out patterns and 

predict potential accidents. These models can take into account a range of factors such as 

weather conditions, location coordinates, accident severity, temperature, wind chill, 

humidity, air pressure, wind speed, precipitation, and visibility. By analyzing these 

factors, the models can provide insights into the likelihood of accidents occurring and 

suggest strategies to mitigate the risk. The goal of the thesis is to present a thorough 

analysis of AI accident prediction machine learning models and advanced statistical 

analysis techniques. The thesis will examine the literature that has already been written 

on the subject, study the various machine learning algorithms utilized for accident 

prediction, and assess each technique's efficacy. The thesis will also examine the 

difficulties and restrictions associated with utilizing AI to forecast accidents and make 

recommendations for solutions.  

 

The primary objective of this thesis is to predict accidents and answer the following 

research question: 

 

 RQ1: How do weather and road conditions affect severity of accident and what 
are the most important factors that contribute to the likelihood of accident? 

 RQ2: Can machine learning models be used to accurately predict the likelihood 

of accidents, and how do different models compare in terms of accuracy and 

reliability?  

To achieve these objectives, an open-source accident dataset will be used and pre-

processed using various techniques such as variable selection, missing data elimination, 

and data balancing through oversampling using the Synthetic Minority Over-sampling 

Technique (SMOTE). The pre-processed dataset will be used to train and test different 

machine learning models, including decision trees, random forests, naive bayes, extreme 

gradient boost, and neural networks. While a considerable amount of research has been 

conducted on accident prediction using machine learning, most of the literature has only 

considered the overall accuracy of these models to predict the accident. Likewise, in the 

statistical analysis, the existing body of work has primarily centered on different statistical 

analysis such as chi-square, correlation, or logistic regression. Therefore, this thesis will 

strive to fill these gaps by not only examining the overall accuracy of various machine 

learning models but also considering other performance metrics like precision, recall, and 

F1 score. Additionally, this thesis will also augment chi-square analysis with other 

statistical measures, such as p-value, degree of freedom, and Cramer's V to find out the 



7 
 

elements that contribute to the likelihood of accidents, and to determine how weather 

conditions affect the severity of accidents. 

 

The results of these analyses will provide insights into the factors that contribute to 

accidents, how different machine learning models perform in predicting accidents, and 

how weather and road conditions affect the severity of accidents. The significance of this 

research lies in its potential to contribute to the development of more accurate and 

efficient accident prediction systems that can enhance road safety and minimize the 

number of fatalities and injuries. The thesis will be valuable to researchers, decision-

makers, and stakeholders in transportation who are making efforts to increase traffic 

safety and minimize the number of accidents on the road. 
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2 Literature review 

Due to its ability to both avoid and lessen the effects of accidents, accident prediction and 

detection is a crucial undertaking in the field of safety engineering. It has become more 

popular in recent years to use artificial intelligence (AI) methods to anticipate accidents 

and increase traffic safety. AI-based accident prediction system uses machine learning 

algorithms to evaluate past data and find patterns that might forecast the likelihood of 

upcoming accidents. AI accident prediction has been the subject of numerous 

investigations, with encouraging outcomes.  In this thesis, the literature review will 

explore the different AI techniques used for accident prediction, detection, and their 

applications. Machine learning is one of the methods of AI that is most frequently used 

to anticipate accidents. Predictions can be made utilizing patterns and relationships that 

machine learning algorithms can identify in data. Various machine learning algorithms 

such as decision trees, neural networks, support vector machines, and random forests can 

be used for accident prediction.  

 

2.1 Comparative Analysis of ML Models For Accident 
Predictions 

In a study the researchers discussed the idea of ensemble learning, which entails creating 

numerous classifiers and combining their output for improved performance. Boosting and 

tagging are two common approaches to group learning. Boosting involves adding more 

weight to points that earlier predictors misclassified, whereas bagging builds each tree 

separately using a bootstrap sample of the data. After that, the article presents the concept 

of random forests, which Breiman introduced in 2001. When building classification or 

regression trees, random forests, an extension of bagging, introduce an additional level of 

randomness. In standard trees, the best split across all variables is used to divide each 

node, whereas in random forests, the best split among a subset of predictors that was 

arbitrarily selected at that node is used to divide each node. It has been demonstrated that 

this method outperforms other classifications, such as discriminant analysis, support 

vector machines, and neural networks, and that it is resistant to over fitting (Liaw et al., 

2002). 

In the next article authors proposed a deep-learning method using a traffic accident's 

severity prediction-convolutional neural network (TASP-CNN) model for traffic accident 

severity prediction. The suggested method effectively funds the latent traffic accident's 

severity feature representation, such as the feature combination and deeper feature 

correlations from traffic accident's data, in contrast to the prior methods that only take 

into account the shallow structure of traffic accidents. Using data from traffic accidents 

that occurred over an eight-year span (2009–2016) provided by Leeds City Council, the 

performance of the proposed TASP–CNN model was assessed.  With deep learning 

techniques, the authors hope to overcome the drawbacks of conventional approaches by 

autonomously learning high-level features from unprocessed input data. The dataset used 

for the researcher’s experiments is described by the authors and contains details about the 

weather, the type of road, and the number of vehicles that were engaged in the collision. 

Next, they describe the structure of their suggested CNN model, which is made up of a 

number of convolutional and pooling layers followed by fully linked layers. Using a 

variety of measures, including accuracy and F1 score, the model was assessed after being 

trained on the dataset. The experiment’s findings demonstrated that the proposed CNN 

model worked better than conventional approaches for estimating the severity of traffic 

accidents. Its performance was compared to that of the NBC, KNN, LR, DT, GB, SVC, 
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Conv1D, NN, and LSTM–RNN models. The writers contend that their method can 

increase traffic safety by accurately predicting accident severity and enabling emergency 

services to react more quickly and effectively (M. Zheng et al. 2019).  

Zong et al. (2013) compares the performance of Bayesian network models and regression 

models in predicting the severity of traffic accidents. The authors note that accurate 

prediction of accident severity is critical for emergency services to respond effectively 

and reduce the number of fatalities and injuries. The dataset used in the author’s 

experiments, which contains variables like the type of road, the type of weather, and the 

speed of the vehicle, is described by the authors. After that, they go over how to build and 

train Bayesian networks and regression models, as well as how to assess their success 

using a variety of metrics like accuracy and error rate. The experiment’s findings indicate 

that both the Bayesian network and regression models can be useful for foretelling the 

severity of traffic accidents, but that the Bayesian network model performs better in terms 

of precision than the regression model. According to the authors, the Bayesian network 

model can be a helpful tool for determining accident severity and enhancing traffic safety.  

Recurrent neural network is another machine learning model used for prediction purpose. 

That’s why Sameen and Pradhan (2017) developed a machine-learning model using a 

recurrent neural network (RNN) that can predict the severity of traffic accident based on 

1,130 accident records that have occurred on the North-South Expressway (NSE), 

Malaysia from 2009 to 2015. The multilayer perceptron (MLP) and Bayesian logistic 

regression (BLR) models were contrasted with the suggested RNN model to better 

understand its benefits and drawbacks. The research used a grid search to find the ideal 

network architecture, which consisted of a Long-Short Term Memory (LSTM) layer, two 

fully-connected layers, and a Softmax layer. The RNN model was chosen because of its 

efficiency in processing sequential data. Using a stochastic gradient descent algorithm 

and dropout approach, the model was trained. The RNN model was compared to Bayesian 

Logistic Regression and Multilayer Perceptron models, and a sensitivity analysis was also 

carried out. In comparison to the MLP and BLR models, the RNN model outperformed 

them, with a validation accuracy of 71.77%, according to the research. The findings of 

the comparison studies demonstrated that the RNN model performed better than the MLP 

and BLR models. The RNN model had a validation accuracy of 71.77%, while the MLP 

and BLR models only managed 65.48% and 58.30%, respectively.  The RNN model can 

be a useful tool for estimating the severity of traffic accidents, according to the study's 

findings, when deep learning frameworks are used. 

F. N. Ogwueleka et al. (2014) discussed the topic of road traffic accidents (RTAs) and 

their effects on human life, with a focus on emerging nations where the rate of RTAs is 

rising as a result of things like inefficient drivers and bad road conditions. The authors 

use Nigeria as an example to demonstrate how an Artificial Neural Network (ANN) 

model can be used to evaluate and forecast accident rates in developing nations. In 

addition to highlighting ANN's capacity to model complex, nonlinear relationships 

without making any assumptions beforehand, the research outlines the benefits of using 

ANN over conventional programming for solving complex and non-algorithmic 

problems. The paper is divided into sections that each address a case study, related 

research, and data analysis. The authors conclude that the ANN model they developed 

performs better than other statistical methods for predicting accident rates. 

Similarly, Chen et al. (2020) proposed machine learning techniques to forecast the risk of 

traffic accidents. According to the authors, Data collection and selection, preprocessing, 

and the application of mining algorithms are the three stages in the procedure. The study 

makes use of information from the Portuguese National Guard database as well as other 
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openly accessible databases to find trends related to the frequency of accidents. According 

to the study's findings, there are the most accidents happened between the hours of 17:00 

and 20:00, and they found that rain is the meteorological element that has the biggest 

impact on the likelihood of accidents. Additionally, it demonstrates that compared to 

other days of the week, Friday is the day with the highest number of incidents. The results 

of the research can be used to help those in charge of making decisions about how to 

allocate resources for traffic surveillance in the most efficient way. By combining 

information from the past with predictions for the future, the research creates a novel 

method for estimating the number of accidents that will probably happen in the future. 

This method helps to identify locations where there will be a more risk of traffic accidents 

happening. 

Since different variables can have varying degrees of impact on traffic accidents, the 

severity of accidents can be a key indicator of the damage they cause. Yang, j et al. (2023) 

uses data from vehicle traffic accidents from the Chinese National Automobile Accident 

In-Depth Investigation System to address the prediction of traffic accident severity. The 

author’s main goals were to develop new methods for predicting the seriousness of traffic 

incidents and to identify the key variables that have a significant impact on their 

seriousness. Using the random forest algorithm, the authors of the paper ranked the 

significance of 12 accident features, including engine size, engine age, vehicle age, month 

of the year, day of the week, age range of drivers, vehicle maneuver, speed limit, accident 

location, accident form, road information, and collision speed. Accident location, accident 

form, road information, and collision speed were also added as additional accident 

characteristics that were not included in the significance ranking. The goal of the article 

was to develop a prediction model of traffic accident severity with better accuracy by 

comparing various algorithms and optimizing the outcomes. The writers draw the 

conclusion that as society has developed quickly recently and as there have been more 

cars on the road, there have also been more traffic accidents, causing significant economic 

and human losses. As a result, traffic science and intelligent vehicle study are currently 

focused on preventing traffic accidents and determining their severity. Authors shows that 

random forest algorithm is best to predict the severity of traffic accidents based on its 

high performance in data classification compared with back propagation (BP) neural 

network, Support vector machines (SVM) and Radial Basis Function (RBF) Neural 

Network. 

Similarly, Al-Mistarehi et al. (2022) uses ML techniques to analyze the factors that 

significantly affect each level of crash severity, distribute hot spots, identify the causes 

and conditions of crashes, forecast the risk factors that affect these levels, and determine 

how these factors affect pedestrian safety. In light of the factors such as highway, vehicle, 

and environment, the findings demonstrated that the random forest model was the most 

appropriate technique to predict minor, medium, and severe injuries. There were 

significant factors that contributed to various injuries and fatalities, such as the type of 

crash (collision), the road's characteristics (flat straight), its type (flexible pavement), its 

surface (dry), its lane configuration (two ways with median), the weather (clear), the 

vehicle category (small passenger car), the driver error (failing to take the necessary safety 

precautions while driving), the time of day (Thursday), and the range of driver age (18–

36 years).  

Yan and Shen (2022) suggests a hybrid model, known as BO-RF, that combines Bayesian 

optimization (BO) with random forest (RF) to forecast the severity of traffic accidents on 

urban roadways. The fundamental predictive model is RF, and the parameters of RF are 

adjusted using BO to enhance the model's performance. The suggested model offers more 

accurate results than traditional algorithms and outcomes that may be understood through 

https://towardsdatascience.com/radial-basis-function-neural-network-simplified-6f26e3d5e04d
https://towardsdatascience.com/radial-basis-function-neural-network-simplified-6f26e3d5e04d
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relative importance and a partial dependence plot. The partial dependence plot aids in 

examining how various influences on traffic accident severity affect each other, while the 

relative importance enables for the identification of significant influencing elements for 

the severity of traffic accidents. The study emphasizes the significance of traffic accident 

severity prediction for managing and controlling traffic safety. Traffic accidents are a 

serious menace that have caused severe human suffering and significant financial losses. 

Emergency responders can estimate probable effects and quickly put accident 

management plans into place with the help of the forecast of traffic accident severity.  

Statistical models and artificial intelligence (AI) models both are discussed in this article 

which are the two main categories of models for determining the severity of traffic 

accidents. Statistical models strictly assume the explanatory and response variables, but 

AI models are devoid of assumptions and are capable of managing complicated nonlinear 

relationships. However, the bulk of AI models are opaque, and the results they produce 

are confusing. RF, on the other hand, is an ensemble model based on decision trees that 

provides relative importance and partial dependence plots, making the results easy to 

comprehend. The performance of RF is, however, significantly influenced by 

hyperparameter choices. In order to enhance RF performance, the study uses BO to 

determine the best parameter values. BO is a useful technique for selecting high-quality 

parameters for problems involving machine learning and is suitable for the optimization 

of objective functions that are characterized by either the absence of analytical 

expressions or the high cost of evaluation. 

Dias et al. (2023) demonstrates a method for estimating the likelihood of traffic accidents. 

The program employs data mining techniques and algorithms to extract knowledge from 

accident-related data housed in the Portuguese National Guard database as well as from 

other databases that are accessible to the general public, such as meteorological data 

sources and the annual calendar. Three components make up the system: pre-processing, 

the usage of mining techniques, and the selection and gathering of data. According to the 

research, accidents are most common between the hours of 17:00 and 20:00, and rain is 

the weather condition that has the biggest impact on the likelihood that an accident will 

occur. They also came to the conclusion that accidents happen more frequently on Fridays 

than any other day of the week. The study is unique since it attempts to forecast the 

amount of incidents that will probably happen in the future. A neural network was used 

to get the best outcome, with several models being created for each collection. The 

findings have consequences for those making decisions about how best to allocate 

resources for traffic surveillance. 

Going further, Ali et al. (2017) used data for single-vehicle accidents in Chicago from 

2004 to 2012 to apply a random parameters logit model (with heterogeneity in means) 

and investigate the effect(s) of passengers on driver-injury severity levels. Three separate 

sub-populations were taken into account in the analysis, including vehicles with one 

occupant (the driver), vehicles with two occupants (the driver and a passenger), and 

vehicles with three occupants, with potential driver-injury severity outcomes of no injury, 

minor injury, and serious injury (driver and two passengers). Additionally, the analysis 

took into account a broad range of additional potential variables that might influence the 

severity of driver-injury cases, including driver’s characteristics, weather, vehicle, and 

roadway characteristics. Statistically significant differences between subpopulations in 

the presence or lack of passenger data are revealed by the model estimation results. Result 

shows that, random parameter and significant heterogeneity in means for two-occupant 

vehicles , having a younger passenger ride with a younger driver (both less than 25 years 

old) has highly heterogeneous effects (with higher likelihoods of both no injuries and 

severe injuries), particularly if the driver is male. Authors also discovered that in the two-
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occupant vehicle case, having a younger driver (less than 25 years old) and a peer 

passenger (15–25 years old) together increased the likelihood of severe injury, 

highlighting a higher baseline risk with a younger driver and a younger passenger. The 

findings of our three-occupant model, however, indicate that the likelihood of a serious 

driver injury is significantly reduced when two of the passengers are younger than 15 

years old. They discover incredibly complicated relationships when they take the impact 

of passenger/driver gender interactions into account. However, a few things stick out very 

clearly. A female motorist traveling with two passengers and having only female 

passengers generally results in more serious driver injuries. Comparatively to having one 

male and one female passenger, having all male passengers increased the risk of both no 

injury and severe injury for male drivers with numerous passengers, while having all 

female passengers decreased the risk of both. 

In further studies on predicting injury severity level, a number of prediction models, 

including NN, SVM, and Decision Tree, have been widely used (DT). Iranitalab and 

Khattak (2017), describes a study that used statistical and machine learning techniques to 

predict crash severity. The goal of the study was to compare the performance of four 

prediction techniques, Multinomial Logit (MNL), Nearest Neighbor Classification 

(NNC), Support Vector Machines (SVM), and Random Forests (RF)—as well as look 

into how K-means Clustering (KC) and Latent Class Clustering (LCC) for data clustering 

affected the performance of crash severity prediction models. The research extracted two-

vehicle crashes as the analysis data from reported incident data from Nebraska, United 

States, from 2012 to 2015. Training/estimation (2012–2014) and validation (2015) 

sections of the dataset were created. The training/estimation dataset was used to 

train/estimate the four prediction methods, and the validation dataset was used to 

determine the correct prediction rates for each crash severity level, the overall correct 

prediction rate, and a suggested crash costs-based accuracy measure. According to the 

research, MNL was the least effective method, and NNC had the best prediction 

performance in both general and more serious crashes, followed by RF and SVM. MNL, 

NNC, and RF all performed better due to KC, and MNL and RF also did better due to 

LCC, but NNC perform worse because of LCC.  

The research also created a method for comparing crash severity prediction techniques 

based on crash costs. According to factors like crash severity, the method takes into 

account the costs of crashes imposed on a community, the severity of injuries sustained 

by crash victims, and the costs of potential crashes in which insurance companies may be 

involved. The application of the prediction in reality determines how the final comparison 

results should be interpreted. While a hospital or emergency department would prefer a 

model with the lowest SPE value, safety managers who need to forecast yearly crash costs 

would prefer the combination of NNC and KC as the method with the lowest value. 

Aldhari et al. (2022) talked on Saudi Arabia's issue of road safety, which has been cited 

as a key area of emphasis for the nation's Vision 2030 objectives. In order to build 

machine learning-based models to forecast the severity of accidents, the study analyzed 

data from the Qassim Province, which has one of the highest rates of traffic accidents in 

the nation. A resampling strategy was utilized to solve the problem of data imbalance, 

and three classifiers were deployed, including two ensemble machine learning techniques. 

To rank the elements influencing the severity of accident injuries, the SHapley Additive 

exPlanations (SHAP) analysis was performed. The findings demonstrated that the 

XGBoost classifier beat the other classifiers, with accuracy, precision, recall, F1-scores, 

and an area curve for multi-category classifications of 71%, 70%, and 0.87, respectively. 

With an accuracy of 94% and a binary classification area curve of 0.98, the same classifier 

fared better than the competition. The results of the study showed that the kind of road 
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and lighting conditions were two of the most important factors influencing injury severity 

outcomes, while the temporal parameters, such as the month and day of the week, as well 

as the road type, were associated with severe injuries. The study's conclusions should help 

policymakers in the Qassim Region and other Saudi Arabian regions establish safety 

mitigation initiatives. 

The effects of sample size on the multinomial logit, ordered probit, and mixed logit 

models of crash severity were discussed by Ye and Lord (2014). The connection between 

the severity of an accident and its contributing factors, such as the characteristics of the 

driver and the vehicle, the state of the road, and other elements of the road environment, 

is investigated using crash severity models. The research employs a Monte-Carlo analysis 

based on both simulated and observed data and examines samples with a range of 100–

10,000 observations. According to the research, regardless of the approach taken, using 

small sample sizes has a significant impact on the creation of crash severity models. In 

addition, the sample size requirements for the ordered probit model and the multinomial 

logit model are intermediate, with the mixed logit model requiring the highest sample size 

and the ordered probit model requiring the lowest sample size. According to the study's 

findings, given the data's size and characteristics, the information could aid transit safety 

analysts in selecting the right model.  

Three different machine learning models (logistic regression, decision tree, and random 

forest) are evaluated in terms of how well they perform at predicting the results of specific 

tasks. The study discovered that, in terms of accuracy and sensitivity, the random forest 

model outperformed the other two models, Chen M and Chen C (2020). As opposed to 

sensitivity, which assesses a model's capacity to correctly detect instances of success, 

accuracy refers to the model's capacity to predict an outcome of a task. (i.e., instances 

where the task outcome is positive). The accuracy rates for the decision tree and logistic 

regression models were 72.8% and 71.1%, respectively, while the random forest model 

had a success rate of 77.6%. In comparison to decision tree and logistic regression 

models, the paper contends that the random forest model may be a better option for tasks 

requiring precision and sensitivity. It's crucial to keep in mind that the effectiveness of 

these models might vary depending on the precise task and dataset employed, so it's 

always a good idea to try a few different models and evaluate their performance before 

deciding on one. 

Iranitalab and Khattak (2017) compared the effectiveness of four methods—MNL, 

Nearest Neighbor Classification (NNC), SVM, and RF—in predicting the severity levels 

of accidents in a dataset that contains 68,448 two-vehicle crashes from 2012 to 2015 in 

Nebraska, the United States. The original dataset's response variable, or the severity of 

the crashes, had five categories, with fewer observations in the categories for catastrophic 

injury and death collisions. The authors aggregated the observations in these two 

categories and used four categories as the four classes of the dependent variable in order 

to handle the imbalanced data. Each machine learning model also included the 

implementation of two clustering techniques, K-mean clustering (KC) and Latent class 

clustering (LCC), to address the occurrence of 19 unobserved heterogeneity in the dataset. 

MNL outperformed the other three models with an overall accuracy of 64.17%, SVM 

with a score of 61.52%, RF with a score of 59.43%, and NNC with a score of 54.74%. 

The approaches used for clustering did not increase accuracy in general. The authors also 

suggested a strategy based on crash costs to look into the models' overall prediction cost 

error (OPE). They discovered that, despite the fact that clustering had no effect on the 

machine learning models' accuracy, KC and LCC enhanced the OPE outcomes for MNL, 

NNC, and RF. The best OPE, 26.05%, was produced using NNC with KC clustering. 
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In 3,185 rollover crashes that occurred in New Mexico between 2010 and 2011, Chen et 

al. (2016) looked into trends of driver injury severity. Machine learning classification 

and regression trees (CART) was used to determine the important contributing. To assess 

the effectiveness in predicting the severity, factors and SVM were utilized. They divided 

the original five distinct severity levels into three 20-category subsets to address the 

impact of unbalanced data. The results of CART showed that driver seatbelt use was the 

most important factor influencing the outcome of injury severity in rollover collisions out 

of a total of 22 predictor variables in the dataset. The quality of the lighting and the slope 

of the road were judged to be unimportant. 18 relevant variables were later used as inputs 

for an SVM learning method. With an accuracy of 58.77% for the non-injury category 

and 50.46% for the non-incapacitating injury category, the SVM model fared best in these 

categories. With an accuracy of 22.67%, the model did the worst for incapacitating injury 

and mortality categories. 

In a study, Shi, X. et al. (2019) provides a structure for analyzing the behavior of drivers 

when operating motor vehicles and forecasting the degrees of risk. Feature extraction and 

selection, unsupervised risk rating, and imbalanced data resampling are all incorporated 

into the system. More than 1,300 driving behavior features are retrieved from the 

trajectory data for each vehicle. These driving behavior features provide in-depth and 

multi-view measurements on each behavior. Estimating the possible dangers posed by 

automobiles on the road is done through the use of unsupervised data labeling. In order 

to mitigate the disparity between the risky and safe classes, vehicles are categorized into 

a number of groups, each of which is given a risk rating, and under-sampling of the data 

pertaining to the safe group is carried out. Key characteristics are chosen based on feature 

importance ranking and recursive removal, and XGBoost is utilized to construct links 

between behavior features and the relevant risk levels. The levels of danger posed by 

automobiles when driving can be estimated based on a selection of their essential 

attributes. An overall accuracy of 89% is reached for behavior-based risk prediction by 

using NGSIM trajectory data as a case study. Fuzzy C-means is used to cluster four risk 

categories, 64 essential behavior traits are selected, and NGSIM trajectory data are used 

as the basis for the case study. This method delivers an accurate forecast of danger levels 

and is helpful in identifying relevant elements for driving assessments. 

In order to deal with the unbalanced data, two sampling techniques can be used, the 

synthetic minority over-sampling technique (SMOTE) and randomize class balancing 

(RCB). Zhang, J. et al. (2018) compare the accuracy of several statistical and machine 

learning models in predicting collision injury severity. The models were created utilizing 

crash data gathered at motorway diverging locations to forecast the severity of each 

crash's associated injuries. According to the study, machine learning models were 

generally more accurate at predicting collision injury severity than statistical models. 

Particularly, it was discovered that the RF and KNN models, with total forecasting 

accuracy of 53.9% and 52.9%, respectively, were the most accurate. These results were 

in line with earlier studies. The linear structure of utility functions and the distribution 

assumptions of error terms, which may not always hold for accident severity data, were 

blamed for the statistical models' poorer performance. On the other hand, no presumptions 

regarding the characteristics of the data's distribution or the relationship between the 

dependent and independent variables were necessary for machine learning models. As a 

result, they were able to learn functional forms from the training data and make data-

driven predictions. Sensitivity analysis was also used in the study to determine the 

significance of explanatory factors on crash severity. The four machine learning models 

demonstrated that they have taken the sequence of crash seriousness into account. In the 

dataset, the link between injury severities and explanatory variables was better captured 

by the MNL model than by the OP model. The study evaluated the variable importance 
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of statistical and machine learning models and discovered that, occasionally, they 

calculated the variable importance on explanatory factors substantially differently. This 

was likely caused by the diverse procedures used by various machine learning techniques 

to explore the built-in characteristics of the data, which produced varying estimates of 

parameter relevance. The study came to the conclusion that when using machine learning 

techniques for the inference of variable importance on accident injury severity, one should 

exercise caution. The evaluation of a variable's relevance may not always be more 

accurate if prediction accuracy is higher. In order to better comprehend the variations 

between machine learning models, the study intends to carry out a thorough evaluation of 

sensitivity analysis of variable relevance. 

In a different paper, writers discuss a study that used artificial intelligence to forecast the 

severity of traffic accidents. Four different models were created by the authors using four 

different types of input: feed-forward neural networks (FNN), support vector machines 

(SVM), fuzzy C-means clustering-based feed-forward neural network (FNN-FCM), and 

fuzzy c-means-based SVM. (SVM-FCM). The study was based on the Great Britain 

accident database from 2011 to 2016. In terms of accuracy and F1 score, the study found 

that the SVM-FCM model outperformed the other models in predicting the severity level 

of severe and non-severe collisions. The ability of the FNN and SVM models to forecast 

was reportedly enhanced by the FCM clustering method (Assi, K. et al. 2020). 

Mansoor, U. et al. (2020), Create machine learning models that accurately predict the 

severity of traffic collisions using information that is easily accessible and quick to gather 

from the scene of the collision, such as the local speed limit, the type of intersection 

control, the weather, and the types of vehicles involved. In the study, various machine 

learning models' abilities to forecast the severity of traffic crashes were compared. KNN, 

DT, AdaBoost, SVM, FNN, and a two-layer ensemble model were among the models 

used. In order to develop and evaluate these models, the researcher’s analyzed data on 

road traffic collisions collected over a six-year period, from 2011 to 2016, from the British 

Department of Transport. The dataset was divided into training and testing groups at 

random using a 7:3 ratio. Accuracy, precision, recall, and F1 score for each model were 

assessed in order to better understand how well it worked. In terms of accuracy and F1 

score, AdaBoost surpassed all other individual models in the study's results while not 

overfitting. The least trustworthy model was KNN, which had the lowest F1 ratings for 

both severity levels. The ability to forecast accident severity levels, however, was greatly 

enhanced by the proposed two-layer ensemble model. With testing accuracy of 76.7% 

and F1 scores of 0.75 and 0.77 for severe and non-severe crashes, respectively, the two-

layer ensemble model outperformed all basic models. Accuracy was greatly increased for 

both training and testing. The researchers then assessed the transferability of these models 

using a crash dataset they downloaded from the online National Collision Database 

(NCDB) in Canada. The models performed similarly to how they had done with Great 

Britain's dataset, with an accuracy of 79.3% and F1 scores of 0.78 for fatal collisions and 

0.80 for non-fatal crashes, respectively. All other models were inferior to the two-layer 

ensemble model in performance. The results of the study imply that if similar models are 

generally extended to other accident datasets, high accuracy of crash severity prediction 

can be anticipated. 
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2.2 Weather and its effects on road accidents 
 

Between 2005 and 2007, researchers conducted the National Motor Vehicle Crash 

Causation Survey (NMVCCS), which sought to gather data directly from the scene of 

light vehicle crashes. The study covered 5,470 collisions over a 2.5-year span, which is 

typical of 2,189,000 collisions across the country. 3,945,000 drivers, 4,031,000 vehicles, 

and 1,982,000 passengers are thought to have been involved in these collisions. 

 

In 94% of collisions, the driver was blamed for the crash, 2% of crashes involved a vehicle 

component failure or degradation, and 2% of crashes involved the environment (slippery 

roads, bad weather, etc.). The "critical reason" for the crash, or the final event in the causal 

chain, was ascribed to the driver in all three cases. Recognition mistakes (41% of crashes), 

judgment errors (33% of crashes), and performance errors (11% of crashes) were the 

"critical reason" categories that occurred most frequently when drivers were involved. 

 

The most prevalent "critical reason" for crashes involving automobiles was tire issues 

(35% of crashes), followed by brake issues (22% of crashes). Slick roads were the "critical 

reason" for the majority of environment-related crashes (50%) and were followed by glare 

(17% of environment-related crashes). The NMVCCS data has limitations, which should 

be noted. For example, it only includes collisions that take place between 6 a.m. 

Furthermore, the identification of a "critical reason" does not place the responsibility for 

the accident on the shoulders of the driver, the vehicle, or the surroundings (Singh, S. 

2015). 

 

Data gathered in US department of transportation under road weather management 

program from 2007 to 2016 reveals that each year, roughly 5,891,000 vehicle crashes 

occur. Of these, about 21% (or around 1,235,000) are caused by adverse weather 

conditions or hazardous road surfaces. These harsh conditions result in the loss of 

approximately 5,000 lives and injuries to over 418,000 individuals every year. A deeper 

dive into the data indicates that most weather-related accidents (70%) happen on wet 

roads and nearly half (46%) take place during rainfall. Conversely, winter conditions 

cause fewer accidents: snow or sleet (18%), icy pavement (13%), and snowy or slushy 

pavement (16%). Fog is the least contributing factor, causing only 3% of such incidents. 

Furthermore, adverse weather or slick roads are a factor in 15% of deadly crashes, 19% 

of crashes involving injury, and 22% of crashes that only cause property damage. In 

numbers, these conditions lead to almost 4,900 fatal crashes, over 301,100 crashes 

causing injury, and nearly 919,700 crashes with property damage alone every year. 

 

Using a negative binomial model and a log-change model, Zou et al. (2021) investigates 

how the influence of a variety of factors contributes to fatal car accidents in the states of 

California and Arizona. Indicators of social development and climate as well as the 

frequency of fatal traffic accidents are included in these categories. Both models 

accurately fit the data, with climate variables (average temperature, precipitation) and 

non-climate variables (beer consumption, rural vehicle miles travelled ratio, and vehicle 

performance) strongly increasing the incidence of fatal traffic accidents. The authors 

investigate that, the number of automobile collisions will rise by 4.0% in the state of 

California and by 3.6% in the state of Arizona if the annual mean temperature rises by 1 

degree Fahrenheit. The number of people who lose their lives in car accidents is expected 

to rise by 4.8% in California and 4.6% in Arizona if there is a 0.5 standard deviation 

increase in the amount of precipitation that falls over 24 months. Hail, wind, and other 

forms of inclement weather have less of an impact on the number of accidents that occur 
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on the roads. 

 

Moreover, a rise in the number of people killed in car accidents has been linked to a 

number of factors in the state of California, including a rise in the consumption of beer, a 

fall in the ratio of miles traveled by rural vehicles to total miles traveled, increases in 

temperature and precipitation, and hailstorms. There was a correlation between increased 

vehicle performance and a decrease in the frequency of these accidents. In the state of 

Arizona, a greater GDP, median income, gasoline prices, highway capital spending, 

temperature, precipitation, and wind conditions led to an increase in the number of fatal 

accidents. On the other hand, increased vehicle performance was associated to a drop in 

the number of these incidents. 

 

Bergel-Hayat et al. (2013) focused on examining the connection between different types of 

weather and the likelihood of accident. The research looked at data from France, 

Netherlands, and Athens, applying time series analytic methods to the information. The 

results showed that there were strong relationships between meteorological variables and 

the number of road injury accidents. 

 

According to the findings of the researchers, rainfall not only had a direct impact on the 

accident rates on highways, but also had an indirect impact on the accident rates on main 

roads due to changes in exposure, as was seen in France. In all of the cases that were 

analyzed, a positive correlation was found between temperature and the number of 

accidents; however, the importance of this correlation varied according to the time of year 

and the location. On the other hand, in Athens, an inverse association was found between 

the amount of rainfall and the number of accidents. This suggests that rainfall contributed 

to a reduction in the number of traffic accidents, most likely as a result of a decreased 

volume of traffic. It was discovered that extreme weather conditions, in particular 

extremely low temperatures and heavy amounts of precipitation, had a major impact on 

accident rates, notably in the city of Athens. 

 

The findings of the study indicate that additional research is required to fully comprehend 

the interplay between climate and vehicular traffic as it relates to the incidence and 

severity of accidents. In addition to this, it highlighted the potential advantages of 

combining average and extreme weather data into accident data models for the purpose 

of gaining a more in-depth comprehension of the ways in which the weather influences 

accident risk. The data can assist influence initiatives for prevention such as awareness 

campaigns, infrastructure improvements, and local warning systems. Additionally, they 

can help facilitate the examination of the impact that weather conditions have on road 

safety on a national level. 

The purpose of this study conducted by Finnish Meteorological Institute (2012) is to 

investigate the relationship between inclement weather, specifically snowfall and cold 

temperatures, and the incidence of car accidents in the county of Kymenlaakso, which is 

located in the southern part of Finland. It analyzes data collected throughout the winters 

beginning in 2002/2003 and continuing through 2007/2008 in an effort to determine 

whether or not there is a connection between particular weather patterns and the number 

of automobile accidents. An examination of the data gathered on the weather revealed 

that the incidence of accidents tended to rise if the temperature dropped to 0 degrees 

Celsius or below and whenever snowfall was observed. To be more specific, a snowfall 

of more than 10 centimeters virtually doubled the daily average number of accidents, 

which is a strong sign of the dangers posed by winter circumstances. Furthermore, an 

assessment of days with heavy snowfall, defined as roughly 5 centimeters or more, often 
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found increased accident rates. This was the case despite significant day-to-day variability 

in the accident rates. 

The researchers also brought up the difficulty of precisely predicting accident risks due 

to the many other factors that are at play in addition to the meteorological conditions. 

These include things like the road conditions, the behavior of drivers, the state of vehicles, 

and the local traffic regulations, all of which can have a substantial impact on the chance 

of accidents. Therefore, despite the fact that meteorological conditions can be a 

significant cause to traffic accidents, they are merely one aspect of the greater collection 

of elements that affect road safety. According to the findings of the study, traffic safety 

management systems that are not only adaptable and flexible but also take into account 

information about the current weather as well as any other relevant elements are 

extremely important. These findings could help improve traffic safety tactics, particularly 

in locations with climatic circumstances that are comparable to those in Kymenlaakso 

County. As a result, there is a possibility that the number of road traffic accidents that 

occur when weather conditions are unfavorable could be reduced. 

The research conducted by Islam et al. (2022) aimed to understand the effect of changing 

weather on road accidents leading to death in Saudi Arabia, a region experiencing a high 

frequency of climatic events and road accident-related fatalities. The study made use of 

annual data from 13 regions within the country, spanning from 2003 to 2013. The 

investigation discovered that factors impacting accidents during this time included 

temperature, rainfall, sandstorms, and the quantity of vehicles. According to the study, 

traffic accidents occur four times more frequently in urban areas than in rural areas, and 

the average number of injuries (2832) is four times higher than the average number of 

fatalities (696). Drivers and passengers of motor vehicles were most frequently killed, 

then pedestrians, motorcyclists, and cyclists. Climate factors like temperature, 

precipitation, and sandstorms have been found to be dangerous in urban environments. 

The findings of the regression analysis showed that the overall number of accidents was 

significantly positively impacted by average temperature, rainfall, sandstorms, and the 

number of cars. Only inside-city accidents considerably caused deaths, although both 

inside- and outside-city accidents significantly caused injuries. It's interesting to note that 

only motor vehicle accidents were shown to have a statistically significant accident death 

rate. According to the report, Saudi Arabia's roads are at risk from climate change because 

it would raise temperatures, increase the frequency of sandstorms, and disrupt rainfall 

patterns. Possible adaptation strategies, such as warning signs, road improvements, safety 

campaigns, and raised public knowledge, were suggested to lessen the negative effects of 

climate change on road safety. The study also stressed the need for enhanced cycling 

safety measures, better road infrastructure, and efficient traffic regulations in relation to 

climate-related extreme weather events. 

Zeng et al. (2020) uses a Bayesian spatial generalized ordered logit model to examine the 

effect of current weather conditions on the severity of motorway crashes. The model takes 

into account elements that have been observed, including wind speed, air temperature, 

precipitation, visibility, humidity, and other variables. The Kaiyang Freeway in China's 

2014 and 2015 crash data are examined. The suggested model takes into account the 

geographical correlation between nearby crashes and the ordered pattern of crash severity 

levels. In comparison to a generalized ordered logit model, it exhibits a strong 

geographical correlation, a better model fit, and more accurate estimation results. 
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The findings show that more precipitation decreases the likelihood of light and severe 

crashes while increasing the likelihood of medium crashes. The severity of crashes is also 

greatly influenced by a number of other variables, including roadway parameters 

(horizontal curvature and vertical grade), driver characteristics, vehicle attributes, car 

registered province, collision time, crash type, and emergency medical service response 

time. In addition to the strategies already in place, engineering countermeasures are 

recommended to lessen the severity of crashes on wet days. According to the results of 

estimate and evaluation, the spatial generalized ordered logit model performs better 

overall than the conventional model in terms of goodness-of-fit. The threshold between 

medium and severe crashes and the latent severity propensity are both significantly 

influenced favorably by precipitation. Reduced sliding resistance and more mental effort 

required of drivers can be linked to a lower chance of light collisions. The reduced 

likelihood of serious crashes in heavy rain is explained by the risk compensation theory 

(Zeng et al. 2020). 

Khodadadi-Hassankiadeh et al. (2020) conducted a study from 2014 to 2018 to ascertain 

accident trends in foggy conditions and the connection between the driver, the road, and 

accident severity in Guilan, Iran. With the use of STATA software and time-series 

estimators for multivariate regression analysis, it applied a retrospective descriptive-

analytical methodology. The findings revealed that compared to other meteorological 

conditions, foggy situations had a significantly higher death rate from traffic accidents. 

According to the study, the likelihood of a fatal accident in fog increases with female 

drivers but decreases with age. 

Moreover, the months of December, February, and November saw the greatest number 

of accidents brought on by fog. Interestingly, the rate of fatalities was much lower at 

specific times, including 2 AM, 9 AM, 11 AM, 13 PM, and 19 PM, and the number of 

connected injuries dramatically decreased at 2 AM, 3 AM, and 2 PM. Injury rates were 

much higher in the cities of Rasht and Anzali. The study indicated that accidents in foggy 

conditions caused significant damage and injuries in most cities, even if the injury rate 

was noticeably greater in Rasht and Anzali. It's possible that the installation of fog lights 

and other road amenities contributed to the association between the rate of fatal accidents 

and specific distances on particular highways. The study also showed a substantial age-

related decline in the death rate from road traffic accidents (RTAs), suggesting an age-

specific pattern in accident rates. 

Sangkharat, K. et al. (2021) investigate the effect of rainfall on road accidents in Thailand 

from 2012 to 2018 using emergency data from the National Institute for Emergency 

Medicine (NIEM. The data were analyzed using a generalized linear model (GLM) and a 

time-series approach. The results were reported using relative risk (RR) at 95% 

confidence intervals compared with dry days, with the study controlling for long-term 

trends, seasonality, days of the week, public holidays, and other meteorological 

characteristics. 

Their findings suggest that high rainfall levels were found to significantly increase the 

number of traffic accidents in both Thailand's northern and southern regions, with the 

southern provinces having a larger projected risk than the northern provinces. 

Surprisingly, however, really heavy rain (more than 20 mm/day) showed a decrease in 

risk. With an RR of 1.052 for the Northern provinces and 1.062 for the Southern 

provinces, rainfall amounts between 10 and 20 mm per day demonstrated the highest 

predicted risk, which was a significant discovery. 
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The study also looked at other climatic factors, such as temperature and relative humidity, 

and found that the Southern provinces had greater average temperatures, precipitation, 

and relative humidity than the Northern provinces. When examining the frequency of 

traffic accidents, it was found that weekdays experienced more accidents than weekends, 

with the highest incidences occurring from October to December. The study suggests that 

in order to solve this problem and enhance the effectiveness of service, ambulance 

forecast models and warning systems should incorporate rainfall. 

Basagaña et al. (2015) conducted a research is to investigate the effect that high ambient 

temperatures have on automobile collisions, with a particular emphasis on collisions that 

involve elements linked to driver performance, such as distractions, driver mistake, 

exhaustion, or sleepiness. Research conducted in Catalonia (Spain) over the warm period 

from 2000 to 2011 indicated that there was a considerable rise in the crash risk during 

heatwave days and with each 1°C increase in maximum temperature. This was discovered 

through the use of a time-series analysis for motor vehicle accidents. The likelihood of 

collisions increased by 2.9% during heat waves and by 1.1% for every 1°C increase in 

temperature. The link was greater (7.7%) for collisions that had driver performance 

difficulties. The findings shed light on how important it is for safety measures involving 

roads to take into account the prevailing weather, particularly in light of the effects of 

climate change. 

 

2.3 Statistical techniques  

To examine the factors that influence injury severity, regression models are frequently 

utilized. For example, Khattak et al. (2002) employed the ordered probit modeling 

technique to examine possible characteristics that affect the severity of injuries suffered 

by elderly drivers (65 years of age and older) engaged in traffic crashes that occurred in 

Iowa, United States, between 1990 and 1999. 
 

2.3.1 Logistic regression 

Al-Ghamdi, A.S. (2002) discussed the variables that affect how serious car accidents are 

in Riyadh. In order to assemble accident-related data from traffic police records, logistic 

regression analysis was used to determine the most significant factors associated with 

accident severity. The purpose of this study was to look into the elements that affect how 

serious car accidents are in Riyadh. The study employed logistic regression analysis to 

identify the most important factors connected to accident severity using accident-related 

data gathered from traffic police records. According to the study, the two criteria that had 

the greatest impact on accident severity were the event's location and its underlying cause. 

The model demonstrated that the probability of a fatal accident in a non-intersection 

accident was increased by stratifying location-related data into two classes. According to 

the findings, organizations should concentrate their efforts on traffic accident sites other 

than intersections in order to make safety improvements more cost-effectively. The 

research also implies that measures to decrease serious accidents can be prioritized using 

the chances described in the publication. The likelihood of being involved in a fatal 

accident at a site other than an intersection as a result of a wrong-way violation is 

relatively larger than that of any other violation, hence drivers should be cautioned about 

the potential lethality of wrong-way violations in a particular awareness campaign, for 

example. The study's conclusions indicate that logistic regression holds promise for 

producing informative interpretations that may be used to inform upcoming safety 

upgrades in Riyadh. The study does note that when calculating the possibilities described 

in the report, no consideration was made for traffic exposure or statistics that were 
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unavailable in Riyadh or difficult to collect. When such data is made available, the 

conclusions may serve as a guide for further investigation. 

 

2.3.2 Correlation 

In recent years, most of the researcher used statically analyzed techniques to anticipate or 

prediction. To keep this in mind Zhang, Z. et al. (2015) highlights the difficulties of 

evaluating multivariate data that has a large number of variables and the significance of 

correlation analysis in determining links between these variables. The authors present a 

method for arranging variables into a 2D layout that encodes their pairwise correlations 

and may be applied for interactive axes sorting in parallel coordinate displays. They then 

refine this method even further into a correlation map that employs geographical 

closeness to transmit correlations, making it simpler to understand and manage 

interactions between variables. The authors also discuss the need for efficient visual 

interfaces that enable analysts to quickly gain an overview of the overall correlation 

relationships in the data and easily manipulate the data to reveal hidden relationships via 

various modes of interactions, including filtering, selection, bracketing, and clustering. 

They contrast correlation analysis to regression analysis and point out that neither can 

prove cause-and-effect connections between the variables. The authors also offer novel 

mechanisms that handle categorical and numerical variables in a unified framework, 

scalability for large numbers of variables via a multi-scale semantic zooming approach, 

and visualization of data relations within the sub-spaces spanned by correlated variables 

by projecting the data into a corresponding tessellation of the map. 

There are a lot of factors that can cause the accident. Rodionova et al. (2022) Discusses a 

study carried out in Saint Petersburg, Russia, that sought to determine the variables 

influencing the severity of auto accidents that happened there between 2015 and 2021. 

The study looked at a number of variables, including as lighting and weather conditions, 

road infrastructure, human factors, accident kinds, and vehicle attributes like category and 

color, that could have an impact on crash severity. The objective was to comprehend the 

key causes of traffic accidents and to provide knowledge that might be applied to the 

creation of efficient road safety regulations. The essay emphasizes that because it directly 

affects both population expansion and economic growth, road safety is a critical 

component of sustainable development. In the past, a lot of research has been done with 

the goal of lowering fatal accidents and catastrophic injuries. However, because the 

distribution of severity levels vary, with slight severity being the most frequent and 

fatality being the least, it might be challenging to anticipate fatal results. The Russian 

government has started the "Safe Quality Roads" nationwide initiative for 2019–2030 

with the goal of reducing the number of traffic fatalities per 100,000 people from 13 in 

2017 to 8.4 by 2024 and 4 by 2030. However, attaining this goal necessitates a thorough 

comprehension of the most hazardous drawbacks of the current road system. The study 

investigated 37,585 observations of accidents that occurred in Saint Petersburg between 

2015 and 2021. The factors that affect crash severity were found by the researchers using 

ordered probit regressions to evaluate the data. The study discovered that a variety of 

elements, including illumination, weather, road infrastructure, human factors, vehicle 

type, and car color, have an impact on crash severity. However, run-off-road incidents 

were discovered to be the most significant accident category, contributing to an 11.2% 

rise in accidents that result in fatalities. It was discovered that deficiencies in road 

infrastructure, such as inadequate lighting and road barriers, significantly increased fatal 

outcomes by 12.6% and 2.8%, respectively. 
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2.3.3 Tobit regression 

Anastasopoulos et al. (2012), highlights the use of tobit regression as a statistical method 

to examine variables that affect the frequency of automobile accidents on particular 

stretches of road. Since the accident rates on these segments are continuous data with a 

zero censor, not all road segments may have seen accidents during the data collection 

period. The underreporting of less significant collisions, which would lessen the 

possibility that they would appear in crash databases, is one of several probable causes of 

this censorship. Regardless of the severity of the injury, traditional tobit-regression 

investigations have focused on the overall accident rate. The issue of censoring depending 

on the severity of crashes is not addressed by this strategy, either. The paper recommends 

a tobit-regression technique to account for accident rates by injury severity level, such as 

the rate of no-injury, probable injury, and injury accidents per distance traveled. The study 

uses five years' worth of data from Washington State roadways to estimate a multivariate 

tobit model of accident-injury-severity rates, which it then uses to analyze the likelihood 

of differential censoring across injury-severity levels. It also considers the possibility of 

contemporaneous error correlation caused by unobserved characteristics that are shared 

by many route segments. The empirical results show that the multivariate tobit model 

outperforms the univariate tobit model, is nearly identical to the multivariate negative 

binomial model, and has the potential to provide a more thorough understanding of the 

factors determining accident-injury-severity rates on specific roadway segments. The 

article also analyzes the drawbacks of conventional accident-frequency methodologies 

and emphasizes the possibility of tobit regression as a substitute strategy for examining 

accident-causing elements. The paper suggests that tobit regression be used in additional 

areas of transportation safety research in future studies. 

 

2.3.4 Chi-square 

The Chi-square test was employed in the study in Denizli, Turkey, to examine 1338 traffic 

incidents. It sought to explore the important elements influencing these mishaps and 

discovered that both the traits of the individuals and some environmental factors had a 

big impact. According to the research, people between the ages of 20 and 29 and 30-39 

had the highest probability of being in a car accident. It's interesting to note that between 

the ages of 40 and 69, accidents happen less frequently. According to reports, men are 

more likely than women to be involved in accidents. The study discovered that accidents 

tended to rise toward the weekend, peaking on Saturdays when days and hours were taken 

into account. The period between 16:00 to 19:59, which corresponds to the end of the 

workday, was the most accident-prone. The accident rates for various car kinds also 

varied. Motorcycles and bicycles were the two vehicles most frequently engaged in 

collisions. Due to their widespread use in public transit, buses and minibuses played a 

crucial role in the event. Contrary to popular opinion, cars were associated with the fewest 

accidents. The level of schooling was also found to have a substantial impact on accident 

rates. People who had only completed their primary education were more likely to be in 

accidents. The frequency of accidents reduced as education levels rose, suggesting that 

education may play a preventive role in traffic accidents. According to the study's 

findings, knowing these elements could aid in the creation of strategies for predicting and 

even preventing accidents as well as serving as a roadmap for initiatives to improve traffic 

safety (Sari and Zeytinoğlu 2009). 
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2.4 Handling of Imbalanced Data 

Many of the machine learning models do not works with imbalance data. That is why, 

Jeong, H. et al. (2018) balanced the data and conduct research that focus on accurately 

categorize the seriousness of injuries suffered in motor vehicle collisions. The Michigan 

Traffic Crash Facts (MTCF) dataset from 2016–2017 contained statistics on 297,113 

automobile accidents. However, there was an imbalance in the distribution of the various 

accident severity classes in the MTCF dataset, as is typical with many collision datasets. 

In order to account for this, the researchers balanced the classes using a variety of 

methods, including under- and over-sampling. The researchers used five various 

classification learning models to categorize the levels of injury severity, including logistic 

regression, decision trees, neural networks, gradient boosting models, and Naive Bayes 

classifiers. Then, the researchers used Bootstrap aggregation (or bagging) and majority 

voting, two distinct training-testing techniques, to try and enhance the classification 

performance of these models. The researchers used the geometric mean (G-mean), a 

statistical measure that considers both the sensitivity and specificity of the model's 

forecasts, to assess the performance of these models. When bagging was combined with 

decision trees and the over-sampling method for imbalanced data, they discovered that 

the classification performance was at its best. Additionally, by combining under-sampling 

and bagging, the impact of remedies for the unbalanced data was enhanced. The authors 

also took into account two additional classification problems, one with two classes and 

the other with three classes, in addition to the MTCF dataset's initial five injury severity 

classes. This gave them the opportunity to research the effects of the number of groups 

on the effectiveness of classification models and to compare their findings to previous 

research. 

A greater comprehension of the connection between crash risks-factors and the 

seriousness of injuries, according to the researchers, can improve driving safety, lower 

the number of fatal collisions, and lessen the economic toll of collisions. They also talked 

about the restrictions of using classification success rate as a performance indicator for 

models. They observed that datasets on accident severity are frequently unbalanced, with 

the non-fatal class usually containing disproportionately more data points than the fatal 

class. As a result, models with high accuracy rates may misclassify groups with greater 

severity. This was addressed by the researchers by using additional statistical measures 

to produce more insightful measurements, such as true positive, true negative, false 

positive, and false negative. To compare the overall effectiveness of various models, they 

finally used the geometric mean of sensitivity and specificity as a compact evaluation 

measure. 

Data imbalance is a critical issue nowadays. To deal with the data imbalance issue Jeong, 

H. et al. (2018) uses under- and over-sampling methods to account for unbalanced classes. 

The aim of this study is to accurately and sensitively categorize the degree of injury in 

motor vehicle incidents. The Michigan Traffic Crash Facts (MTCF) dataset from 2016–

2017 provided the 297,113 vehicle crashes used in the study.. To categorize the degrees 

of damage severity, five classification learning models—Naive Bayes classifier, Gradient 

Boosting Model, Decision Tree, Neural Network, and Logistic Regression—were 

employed. Bootstrap aggregation (also known as bagging) and majority voting are two 

training-testing techniques used in the study to try and enhance classification 

performance. When decision trees are used in conjunction with bagging and over-

sampling is applied to imbalanced data, the classification performance is at its best. 

Under-sampling in conjunction with bagging increases the impact of treatments for 

unbalanced data. The study takes into account two additional classification issues, one 
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with two classes and the other with three classes, to examine the effect of the number of 

classes on the effectiveness of classification models. The article also analyzes the 

limitations of classification accuracy rate in assessing model performance and 

recommends integrating additional statistical measures, such as true positive, true 

negative, false positive, and false negative, to produce more insightful metrics. At the end 

of the day, it is possible to assess the overall performance of several models by using the 

geometric mean (or G-mean) of sensitivity and specificity. The G-mean has high values 

when both sensitivity and specificity are high and the gap between the two measures is 

minimal. It is calculated as the square root of the product of sensitivity and specificity. 

The study's advantages include recommending extra statistical measures to provide 

metrics that are more informative and increasing the categorization performance of injury 

severity in motor vehicle incidents. The study's limitations in terms of how well models 

function when measured by classification accuracy rate and the requirement to balance 

the dataset prior to training are its drawbacks. 

 

2.5 Detecting the accidents 

On the other hand, the use of sensors technology in accident detection systems can 

become a popular approach to reduce the number of accidents and minimize their impact. 

This literature review also focuses on the use of sensors in accident detection systems and 

presents an overview of the current state-of-the-art. 

The accelerometer is one of the sensors that accident detection systems employ the most 

frequently. It can track variations in acceleration and can spot unexpected variations that 

might be signs of an accident. They are frequently employed in smartphones to detect 

screen rotation and have been proven to be successful in identifying car accidents. A 

system that employs a smartphone accelerometer to identify car accidents was suggested 

by the authors of a study by Dong et al. (2016) with a 92% accuracy rate and an 8% false 

positive rate, the system proved effective in detecting accidents. 

Another type of sensor commonly used in accident detection systems is the GPS receiver. 

GPS receivers can detect changes in vehicle speed and location and can be used to 

determine if a vehicle has been involved in an accident. In a study by Kumar et al. the 

authors proposed a system that uses GPS and accelerometer sensors to detect vehicle 

accidents. The system was able to detect accidents with an accuracy of 95.2% and a false 

positive rate of 4.8% (Wang et al. 2017). 

Several types of sensors can be utilized in accident detection systems in addition to 

accelerometers and GPS receivers. LiDAR sensors, for instance, are able to identify 

things in the surroundings and can be employed to ascertain whether a vehicle has collided 

with an object. The authors of a study (Shi et al., 2019) presented a system that uses 

LiDAR sensors to identify car accidents. With a 97% accuracy rate and a 3% false positive 

rate, the system was able to identify accidents. 

An Automated Accident Detection System: A Hybrid Solution was presented by M. S. 

Abbas. The proposed technology can swiftly alert the emergency services or a worried 

family member with the precise location of an accident by using the Short Messaging 

Service (SMS). Unfortunately, it only has a few limited capabilities, such as the inability 

to detect fire or any criminal action involving the car (M. S. Abbas et al. 2019).  

Using GPS and GSM, Sane et al. reported Real-Time Vehicle Accident Detection and 

Tracking system. This system is operated manually by pushing a button, and the contact 
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number to whom an alarm message must be delivered is hardcoded and will not be altered. 

The system will ask the motorist whether they want to send SMS or not after an accident. 

When the driver clicks the button, the microcontroller recognizes that the collision was 

not serious and decides not to send an SMS. Other times, if a collision has been detected 

and the button hasn't been depressed within the allotted time, the microcontroller will 

obtain the coordinates of the current location and will send an SMS alert to the driver's 

family using the GPS and GSM modules that have been installed (N. H. Sane et al. 2016). 

Balfaqih, M. et al. (2021) describe an Internet of Things (IoT)-based system for accident 

detection and classification that can identify and categorize vehicle accidents according 

to their level of severity and give emergency response providers with critical accident-

related information. In order to find the best accurate classifier for the system, many 

machine learning classifiers were tested. The system uses a microcontroller, GPS, and a 

number of sensors to identify various physical factors linked to vehicle movements. The 

system's implementation revealed that the models with the highest precision and recall 

were the Gaussian Mixture Model (GMM) and Classification and Regression Trees 

(CART). It was discovered that the g-force value and fire occurrence had a significant 

impact on how serious an accident was. The paper's main contribution is an efficient 

system for detecting and categorizing accidents that employs a powerful IoT platform to 

automatically record events and offer crucial details. The most precise model for 

classifying accident severity levels was determined through a comparison study of 

different machine learning classifiers. 

Another article analyzes the requirement for an autonomous accident detection system 

for powered two-wheelers (PTW), such as motorcycles, scooters, and mopeds, in light of 

the rise in collisions and fatalities involving PTW users. Using factors specific to the 

vehicle and rider physiological data, the suggested system can identify accidents in real 

time. There are three steps in it: a system for detecting crucial events, one for detecting 

accidents, and one for determining the severity of the occurrence. An improved decision 

tree technique and an adaptive sequence window approach are suggested in the article to 

validate the existence of accidents based on the sequence of states found. Within five 

minutes, the system recognizes the fall of the car and the rider, avoiding false positives. 

Using a combination of three parameters, the Decision Support System (DSS) operating 

on the On-Board Diagnostic (OBD) unit mounted on the PTW determines the accident's 

severity after it has been identified. The author draws the conclusion that the faster 

response time provided by an autonomous accident detection system for PTW can 

contribute to a decrease in the death rate in PTW accidents (Jackulin Mahariba, A. et al 

2022). 

Fernandes, B. et al. (2016) proposed intelligent transportation systems (ITS) to lessen 

traffic accidents, which are a major issue for public injury prevention. The paper 

introduces HDy Copilot, a program for automatically detecting accidents that is integrated 

with alert distribution by eCall and IEEE 802.11p. (ITS-G5). The application takes data 

from the smartphone's accelerometer, magnetometer, and gyroscope in addition to the 

ODB-II system in the car. The driver can customize the application, get alerts, and remove 

erroneous accident detections using an Android smartphone as a human-machine 

interface. Successful collision, rollover, eCall, and Decentralized Environmental 

Notification Message detection and transmission are all capabilities of the application. 

(DENM). In order to focus research efforts within the vehicular communications 

scientific community, the essay underlines the need for standardization. The article 

focuses on the increase in safety however there are three categories of ITS benefits: 

improved transportation efficiency and environmental protection. By utilizing 

smartphones, ODB-II data, and vehicular communications, the HDy Copilot program 
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offers a cheap and portable alternative to built-in systems. The article stresses the 

significance of effectively detecting and diagnosing crashes involving motor vehicles 

because failure to do so could result in the loss of emergency time and resources. This 

issue is addressed by the program by limiting false positives through a countdown 

sequence that is started by the accident detection algorithm. The report does not, however, 

discuss the shortcomings of the HDy Copilot software or the possible risks of relying on 

smartphones to identify crashes involving motor vehicles. The ODB-II system, which 

may not be available in all vehicles, and the sensors on the smartphone may have an 

impact on the application's accuracy. With the gathering and distribution of data via 

vehicle communications, there might also be privacy issues. 

Accidents in various industries can lead to injuries, fatalities, property damage, and 

economic losses, making it essential to implement measures to prevent them. While there 

have been significant improvements in safety measures, traditional reactive approaches 

to safety management are not entirely effective in reducing the frequency and severity of 

accidents. Hence, a proactive and predictive approach to safety management is necessary, 

which highlights the importance of developing accurate and reliable accident prediction 

and detection models. These models can identify potential safety hazards and prevent 

accidents before they occur. However, existing methods for accident prediction and 

detection face challenges, such as data quality and model accuracy. Therefore, there is a 

need to investigate the current state-of-the-art in accident prediction and detection, 

evaluate the effectiveness of existing methods, and propose novel techniques to improve 

safety management and prevent accidents (N. H. Sane et al., 2016). The overall objective 

of the study is to investigate the degree of influence of different variables that contribute 

to crash by identify the best model for accident prediction and accident detection.  

 

2.6 Open Data 
 
According to the “open knowledge foundation”, open data refers to any content, 

information, or data that anyone can freely use, re-use, and redistribute without any kind 

of restriction imposed by the law, technology, or society such as copyrights, patents, or 

other mechanisms of control. The key features of open data are: 

 

 Accessibility and availability: The data should be easy to find, download, and 

use, preferably at no cost. The format of the data should be easy to work with and 

adaptable to different purposes. Essentially, anyone should be able to access it 

without jumping through hoops or paying a fee, and it should be in a format that 

makes it easy to manipulate and analyze. 

 

 Reuse and redistribution: The data should come with permissions that allow 
people to use it again for different purposes and to share it with others. This 

includes combining it with other datasets. It should also be machine-readable, 

which means that computer programs can easily process it. The terms of use 

shouldn't restrict these activities. 

 

 Universal participation: The data should be free to be used, reused, and shared 
by anyone. There shouldn't be restrictions on its use based on who is using it or 

for what purpose. This means that whether you're a business, a student, or just an 

interested individual, you should be allowed to use the data. There shouldn't be 

limitations based on the nature of usage, such as only for educational purposes or 

barring its use for commercial activities. Essentially, no one should be excluded 
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or favored in the use of the data. 

 

Moreover, the movement towards open data is a response to the increasing importance of 

data in our society, with open data advocates arguing that limitations on access to data 

hinder innovation and public accountability. Open data practices often stem from public, 

academic, or non-profit entities, but can also be seen in private sectors with a growing 

emphasis on data sharing and collaboration. Data can be gathered through various means, 

such as surveys, experiments, administrative records, sensors, and more. Similarly, there 

are numerous benefits to open data practices. Not only does it promote transparency and 

collaboration, but it also has the potential to drive economic growth and innovation. It 

allows researchers, policymakers, businesses, and citizens to make informed decisions, 

solve problems, and develop new services and applications. 

 
2.6.1 Open Data in Traffic Management Systems 
 

Open data sets have become increasingly valuable in the field of traffic management 

systems. They provide useful, actionable information that can be leveraged to optimize 

traffic flow, enhance public transportation services, and improve the overall safety and 

efficiency of urban mobility. 

 

 Understanding Traffic Patterns: Open data sets can provide detailed insights 
into traffic patterns. For instance, data on vehicle counts, types, speeds, and 

directional flows can help traffic managers understand and predict typical traffic 

behavior, identify hotspots of congestion, and optimize traffic light sequences. 

Additionally, historical data can help predict future patterns and inform 

infrastructure planning (Lv et al. 2014). 

 

 Enhancing Public Transportation: Open data sets also play a vital role in 

enhancing public transportation systems. Real-time data about bus and train 

locations and delays can improve passenger information systems and contribute 

to more efficient route planning and scheduling (Monzon et al. 2012). Moreover, 

data on passenger numbers can help transit authorities to distribute resources more 

effectively and plan for future capacity needs. 

 

 Improving Road Safety: Open data can also contribute to road safety. Analysis 
of accident data can help identify dangerous intersections and road segments and 

guide interventions aimed at reducing accidents (Anderson, 2009). Similarly, data 

on driving behavior can inform the development of strategies for promoting safer 

driving habits. 

 

 Facilitating Research and Innovation: Finally, open data sets are a valuable 
resource for researchers and innovators. The availability of open traffic data can 

stimulate research into new traffic management approaches and technologies, 

contributing to the development of smart cities (Lv et al. 2014). It can also support 

the development of traffic-related applications and services by private sector 

companies, driving innovation and economic growth. However, it's important to 

consider the privacy implications of open data in traffic management. While open 

data can be anonymized and aggregated to protect individual privacy, there's still 

potential for misuse if not properly managed. 
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2.6.2 Other Datasets and Motivation for Chosen Dataset  
 
Several open datasets are available for traffic management. One example is the UCI Machine 

Learning Repository, which has several datasets related to traffic management. Similarly, the EU 

Open Data Portal, UK's Department for Transport, and various city or state-level open data portals 

offer relevant data. 

 

The choice of dataset often depends on the research question or application at hand. In comparing 

each source has its unique strengths and limitations in regards to their accident data offerings. 

However, for the purpose of comprehensive analysis and answering research questions efficiently 

and accurately, the US data on Kaggle is the preferred data source. Here are the reasons why: 

 

 Data Completeness: The US data on Kaggle presents a more comprehensive data set in 

terms of the breadth and depth of variables provided. As compared to the UCI repository's 

'UrbanGB' dataset which only has location coordinates of accidents, and the EU Open 

Data Portal's dataset which provides only a limited set of variables and requires tedious 

integration. This process can be time-consuming and increases the likelihood of data 

inconsistency and integrity issues. On the other hand, the US data on Kaggle offers a vast 

array of variables including those relevant to weather conditions, location, and time, as 

well as specific variables relating to traffic and road characteristics. 

 

 Data Accessibility: Unlike UK's Department for Transport, which only provides reports 

rather than the raw data. The major downside here is that the data has already been 

processed and presented in a specific way, limiting flexibility and personalization in the 

analysis. This could be a hindrance for those who wish to conduct novel, independent 

research or apply different data analysis methodologies. In contrary to that, the US data 

on Kaggle allows direct access to the data for personalized and detailed analysis. This 

increases the flexibility and possibilities for data exploration. 

 

 Data Continuity and Volume: The US data on Kaggle, being collected continuously 

since February 2016 and covering 49 states of the United States, boasts around 2.8 million 

accident records. This gives a rich, vast, and diverse data volume to work with. In 

contrast, the EU Open Data Portal only provides accident data for ten years from 2009-

2019, and each year's data needs to be downloaded and merged separately. Also, the 

number of accident cases in each dataset is relatively small, approximately 2500, which 

limits the statistical power and generalizability of the findings. 

 

 Data Variety and Detail: The US data on Kaggle provides a wealth of variables ranging 

from geographical, meteorological, and infrastructural to temporal factors. This allows 

for a more detailed and complex analysis of the accident data, including the interplay of 

multiple variables and the investigation of nuanced research questions. Therefore, taking 

into account all these factors, the US data on Kaggle is the most suitable choice for our 

analysis. These comprehensive attributes enhance the reliability and validity of the data 

and facilitate a thorough and precise examination of the research questions. 
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3 Research methodology 

 
The purpose of this thesis is to predict the road accidents using machine learning and also 

aims to answer to the following research questions: 

 
RQ1: How do weather and road conditions affect severity of accident and what are the 

most important factors that contribute to the likelihood of accident? 

RQ2: Can machine learning models be used to accurately predict the likelihood of 
accidents, and how do different models compare in terms of accuracy and reliability?  

 

3.1 Working of machine learning model 
 

Below is a detailed explanation of the working flow of a machine learning model for 

accident prediction: 

 

 Data selection and pre-processing: 
 

The first stage is to choose appropriate data for accident prediction, which may include 

elements like the type of route, the amount of traffic, and the time of day. After it has 

been gathered, the data needs to be pre-processed to make sure it is clean and in a format 

that is appropriate for machine learning. This could entail eliminating missing values, 

scalability of numerical features, encoding of categorical variables, and partitioning the 

data into training and testing sets. 

 

 Feature Selection: 

 

The next stage is to choose the features that will be utilized to train the machine learning 

model that are the most appropriate. This is significant because duplicated or unnecessary 

features may have a negative effect on the model's performance. 

 

 Model Selection: 
 

There are many machine learning algorithms that can be used for accident prediction, 

such as decision trees, random forests, SVMs, and neural networks. The type of problem 

and the qualities of the data will determine which algorithm is used. 

 

 Training the Model: 

 

After deciding on an algorithm, training data are used to build the model. In order to 

obtain the greatest performance, this involves feeding the algorithm with the data, 

modifying the model's parameters, and fine-tuning the model. 

 

 Model Evaluation: 

 

After the model has been trained, it must be tested to see how well it works with untested 

data. The testing data set is often utilized for this, and metrics like accuracy, precision, 

recall, and F1 score can be used to evaluate the model's performance. 
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 Deployment: 

 

Finally, the trained model can be used in a real-time environment to predict accidents in. 

This could involves integrating the model into a web application, mobile application, or 

other software system. Jupyter notebook is being used for accident prediction in this 

thesis. There are various benefits of utilizing Python and Jupyter Notebook for accident 

prediction such as: 

 

Jupyter Notebook provides an interactive environment that allows us to run code, display 

data, and quickly evaluate the results. It is ideal for exploratory data analysis due to the 

ease with which variables can be changed, graphs can be created, and different predictive 

models can be tested. While conducting the analysis, developing and documenting the 

code in Jupyter Notebook is simple. Code can offer comprehensive reasons, illustrations, 

and comments to make it simpler to understand and maintain. Similarly, utilizing well-

known frameworks for data visualization, such as Matplotlib and Seaborn. Jupyter 

Notebook seamlessly integrates. These packages allow us to create interesting 

visualizations that analyze connections, patterns, and trends in your accident data. For 

understanding the data and effectively communicating findings, visualizations are crucial. 

Jupyter It can also integrates Scikit-learn and TensorFlow, two well-known machine 

learning packages. These libraries include a wide range of pre-implemented tools and 

techniques for building predictive models. These libraries may be instantly loaded into 

Jupyter Notebook so we can test out different algorithms to predict accidents based on 

your data (Real Python, 2023).  

 

Following are some libraries used with ML models: 

 

 Pandas.  

 Numpy.  

 Sklearn.  

 sklearn.tree. 

 sklearn.neighbors. 

 sklearn.naive_bayes. 

 sklearn.ensemble. 

 sklearn.model_selection. 

 sklearn.metrics. 

 xgboost. 

 Imblearn.  

 Matplotlib. 
 

Following are some API’s used with ML models: 

 

 from sklearn.tree import DecisionTreeClassifier. 

 from sklearn.neighbors import KNeighborsClassifier.  

 from sklearn.naive_bayes. 

 import GaussianNB . 

 import xgboost as xgb. 

 from sklearn.ensemble import RandomForestClassifier. 

 from sklearn.model_selection import train_test_split. 

 From sklearn.metrics import classification_report, confusion_matrix, 
accuracy_score. 

 from imblearn.over_sampling import SMOTE. 
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Figure 1: Working flow of ML models 

 
 

3.2 Data selection and description 
 

To predict the accidents and find out the accuracy of different machine learning models, 

this research used the freely available data on kaggle website (Moosavi, S. 2022). The 

dataset includes details on almost 2.8 million car crashes that happened in the US between 

February 2016 and December 2020. Among 2.8 million accident cases only 1048575 are 

available in the form of CSV. Police records, traffic cameras, and other public data 

sources were some of the sources from which the data was gathered. The data includes 

various features such as the location and time of the accident, weather and road 

conditions, severity of the accident, and details about the vehicles involved (Moosavi et 

al., 2019).  

 

In an article, writers emphasize the significance of minimizing traffic accidents as well as 

the requirement for sizable datasets to forecast and evaluate them. In the past, most 

research have concentrated on small datasets with restricted coverage, whereas huge 

datasets have either been private or have excluded crucial contextual information. The 

authors developed US Accidents, a publicly accessible dataset of accident data. The 

authors also offer a fresh approach for compiling sizable databases of traffic accidents, 

and they report a variety of findings using the US Accidents dataset. The scientific 

US 

Database 

Data 

Preprocessing 

Feature 

Extraction 

Feature 

Selection 

Multi 

Classes 
Binary 

Classes 

Training  Testing 

Random Forest 

Decision Tree 

XGboost 

Naive Bayes 

KNN 

Model Training Model Testing 

Accurac

y 

Precision 

Recall 

F1-score 

Model 

evaluation 

Model 

Comparison 



32 
 

community can use this dataset, according to the authors, to enhance infrastructure for 

transportation and public transit, as well as to make roadways safer (Moosavi et al., 2019.  

Latitude, Longitude, Temperature, Wind chill, Humidity, Air pressure, Visibility, Wind 

speed, and Precipitation are some of the key variables that is used to predict the likelihood 

of accident based on severity of accidents in this thesis. Initially, data was imbalanced 

and values of each variables are given below: 

 
Table 1: Demonstrating the values of each variables in number 

 

Variables Values 

Latitude 1048575 

Longitude 1048575 

Temperature (F) 1026829 

Wind Chill 834453 

Humidity (%) 1025847 

Air Pressure 1029990 

Visibility (mi) 1026041 

Wind Speed (mph) 990888 

Precipitation (in) 816892 

Severity 1048575 

 

After removing null, unknown values, and cleaning the dataset it reduced to 785863 in 

total. According to (Moosavi, S. 2022), below is the explanation of each variable in the 

US-Accidents dataset: 

 

 Latitude: The latitude coordinate of the location where the accident occurred. 

 Longitude: The longitude coordinate of the location where the accident occurred. 

 Temperature (F): The temperature at the time of the accident, measured in 

Fahrenheit.  

 
Figure 2: Image shows the number of accidents happened on a particular temperature 

 

The temperature variable ranges from -89.0°F to 196.0°F. The distribution of 

temperature in the dataset is roughly normal, with a mean temperature of 61.6°F 

and a median temperature of 64°F. This suggests that most accidents occur under 

moderate temperature conditions with highest number of accidents occurred when 

the temperature was 70.60-76.30(F). 
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 Wind Chill: Wind chill is a weather variable that measures the perceived 

temperature on exposed skin due to the combined effect of wind and temperature.  

 

 
Figure 3: Image shows the number of accidents happened on a particular wind-chill 

 

Wind chill is usually expressed as a temperature equivalent, and it is an important 

variable to consider when analysing traffic accidents, as it can affect driving 

conditions and human comfort. It ranges between the -50 and 200 (F). Highest 

number of accidents occurred when wind chill was 70.60 – 76.30 (F). 

 

 Humidity (%): The relative humidity at the time of the accident, measured as a 

percentage.  

 
Figure 4: Image shows the number of accidents happened on a particular humidity level 

 

 

It variable ranges from 0 to 100. The distribution of humidity in the dataset is 

roughly normal, with a mean humidity of 61.5% and a median humidity of 64%. 

This suggests that highest number of accidents occur when humidity was between 

92.08-94.06. 
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 Air Pressure: The air pressure at the time of the accident, measured in inches of 

mercury (inHg).  

 
Figure 5: Image shows the number of accidents happened on a particular air pressure 

 

 

The air pressure variable is continuous and ranges from 0.0 - 60.0 in Hg. The 

distribution of air pressure in the dataset is normally distributed, with the majority 

of accidents occurring under moderate air pressure conditions between 29.45 and 

30.63 Hg. 

 

 Visibility (mi): The visibility at the time of the accident, measured in miles. 

 

 
Figure 6: Image shows the number of accidents happened on a particular visibility level 

 

 

It is continuous and ranges from 0.0 to 140.0 miles. The distribution of visibility 

in the dataset is skewed to the right, with a mean visibility of 9.19 miles and a 
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median visibility of 10.00 miles. This shows that most accidents occur in visibility 

ranges from 8.40 – 11.20 mi. 

 

 Wind Speed (mph): The wind speed at the time of the accident, measured in miles 

per hour (mph). 

 
Figure 7: Image shows the number of accidents happened on a particular wind speed 

 

It is also continuous and ranges from 0.0 mph to 1.09k mph. The distribution of 

wind speed in the dataset is highly skewed, with a majority of accidents occurring 

under calm wind conditions (i.e., wind speed between 0.0 – 21.76 mah). 

 

 Precipitation (in): Precipitation is a weather metric that gauges how much liquid 
or solid water falls from the sky and makes it to the earth. Rain, snow, ice, hail, 

and drizzle are just a few of the different types of precipitation. 

 
Figure 8: Image shows the number of accidents happened on a particular precipitation level 

 

 

 It is a crucial weather factor to take into account when examining traffic incidents 

because it can have an impact on traffic flow and driver behavior. The 
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precipitation variable is continuous and ranges from 0.00 inches to 25.25 inches. 

The distribution of precipitation in the dataset is highly skewed, with a majority 

of accidents occurring under dry conditions (i.e., no precipitation). Specifically, 

about accidents in the dataset occurred when there was no precipitation. 

 

 Severity: A measure of the severity of the accident, ranging from 1 to 4, where 1 

indicates a minor accident with short delay and 4 indicates a severe accident with 

long delay. Below is a brief description of what each severity level means:  

 

 Severity level 1: This indicates an accident with the least impact or 

damage. Typically, accidents in this category involve only 

property damage, such as a collision with a stationary object.  

 Severity level 2: This indicates an accident with a minor impact. 

Accidents in this category may result in some injuries, but they are 

not usually life-threatening.  

 Severity level 3: This indicates an accident with a significant 

impact. Accidents in this category may result in serious injuries 

and usually life-threatening. 

 Severity level 4: This indicates an accident with the most severe 

impact or damage. Accidents in this category usually involve 

multiple vehicles and fatalities. 

Below is the table that shows the accidents according to each severity levels: 

 
Table 2: Accidents according to the each severity levels. 

 

Severity levels Accidents 

1 0 

2 966042 

3 39989 

4 42544 

 

 

3.3 Categorized the weather variable 
 

 

Categorization is needed when working with features that represent different categories 

or groups. Categorization is performed on specific weather-related features such as 

temperature, wind chill, humidity, air pressure, visibility, wind speed, and precipitation. 

The goal of categorization is to turn numerical or continuous data into discrete groupings. 

This is done to make the data representation more straightforward and to identify any 

potential patterns or connections that may exist within each category. In dealing with non-

linear relationships, categorization is helpful. It can also make it simpler for machine 

learning algorithms to find patterns and make predictions (Brownlee, 2020). Below are 

some of the categories of weather variables found at (National Geographic Society, 2020). 

 

Temperature (F): 

 Hot: temperatures above 90°F.  

 Warm: temperatures between 70°F - 90°F.  

 Cool: temperatures between 50°F - 69°F.  

 Cold: temperatures below 50°F.  
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Wind Chill (F): 

 Low: wind chill below 32°F.  

 Moderate: wind chill between 32°F - 0°F.  

 High: wind chill below 0°F. 

Humidity (%): 

 Dry: humidity below 30%. 

 Comfortable: humidity between 30% and 60%. 

 Humid: humidity above 60%. 

Pressure (in): 

 High pressure: air pressure above 30.00 inHg.  

 Normal pressure: air pressure between 29.92 inHg and 30.00 inHg.  

 Low pressure: air pressure below 29.92 inHg.  

 

Visibility (mi): 

 Good: visibility above 5 mi.  

 Moderate: visibility between 2.5 mi and 5 mi.  

 Poor: visibility below 2.5 mi.  

Wind Speed (mph): 

 Light: wind speed below 10 mph.  

 Moderate: wind speed between 10 mph and 25 mph. 

 High: wind speed above 25 mph.  

Precipitation (in): 

 Light: precipitation below 0.1 in.  

 Moderate: precipitation between 0.1 in and 0.5 in.  

 Heavy: precipitation above 0.5 in. 
 

3.4 One-hot encoding 
 

One-hot encoding is the conversion of categorical data to numeric form so that machine 

learning algorithms can use it to make better predictions. One-hot assigns a binary value 

of 1 or 0 to each category value after converting it into a new categorical column. A binary 

vector is used to represent each integer value. Consider a dataset having a "temperature" 

characteristic that can be one of the following: hot, cool, or cold. We would add the three 

additional features “temperature _hot," “temperature _cool," and " temperature _cold" to 

one-hot encoding. If the temperature is hot, we would use the vector [1, 0, 0] to represent 

it. The values for cool and cold would be [0, 1, 0] and [0, 0, 1], respectively. 

 

One-hot encoding is employed in machine learning since deep learning neural networks 

and ML algorithms both require numerical input and output variables. We need a 

technique to convert categorical values from non-numeric formats, which are frequently 

used for categorical data, into numerical values without adding any extra or inaccurate 

information to the data. The algorithm might read this as an ordinal relationship (i.e., cold 

is "greater" than cool, and cool is "greater" than hot), which is not what we want. If we 

simply mapped the categories to a single numerical characteristic (hot to 1, cool to 2, cold 

to 3), this could happen. This issue is resolved by one-hot encoding (Brownlee, 2020). 
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3.5 Data balancing technique 
 

Data imbalance is a problem that can affect the performance of ML models when the 

number of elements in one class is significantly lower than the number of elements in 

another class. The problem of data imbalance has been addressed using a variety of 

strategies, including under sampling the majority class or oversampling (SMOTE) the 

minority class. These methods seek to optimize the machine learning models' 

functionality while balancing the distribution of classes in the data set. When tested the 

performance of decision tree model with under sampling, the model gave the worst 

performance as shown in figure 9 below: 

 

 
 

Figure 9: Shows the classification report of decision tree model with under sampling 

 

In contrary to that, most of the ML models performed well with SMOTE (Synthetic 

Minority Over-sampling Technique) as shown in figure 10. That is why SMOTE 

techniques is being used in this thesis. SMOTE addresses data imbalanced problem by 

generating synthetic minority class instances. In order to operate, it chooses one element 

from the minority class and locates its k nearest neighbors in the feature space. Next, it 

interpolates between the chosen instance and its k neighbors to produce synthetic 

instances. This results in a larger minority class that is balanced with the majority class. 

SMOTE is typically used when dealing with classification problems where there is a class 

imbalance. It can be used with any machine learning algorithm, but it is particularly useful 

for algorithms that are sensitive to class imbalance, such as decision trees and random 

forest model (Chawla et al., 2002). 
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Figure 10: Shows the classification report of decision tree model with SMOTE 

 

3.6 Machine learning (ML) models 
 

Five different machine learning (ML) models (Naive Bayes model, Random Forest, 

Extreme Gradient Boost, K-Neighbors Classifier, and Decision Tree) were used in our 

research to compare the performance of the five models based on Confusion Matrix, 

Precision, recall, and f1-score. Below is the detail of each model: 

 

3.6.1 Naive Bayes 
 

Naive Bayes Classifiers are one type of probabilistic classifier that uses the Bayes 

theorem to classify data in accordance with a specific set of observed evidence. The 

classification process is referred to as "naive" if the classifier makes the assumption that 

the presence or absence of one feature in a class is unrelated to the presence or absence 

of any other feature in that class. Several real-world applications of the naive Bayes 

classifier, such as text categorization, prediction, spam filtering, and sentiment analysis, 

have shown it to be effective despite this oversimplifying assumption (Berrar, D. 2019). 

 

The naive Bayes classifier is well renowned for its effectiveness in lowering 

misclassification error rates, but it makes the assumption that characteristics are 

independent, which isn't always true in classification situations that occur in the real 

world. Nevertheless, the naive Bayes classifier has proven to function superbly even with 

dependent features. The excellent parallelizability of the conditional probability 

calculation in the naive Bayes classifier makes it a powerful tool for big data analytics. 

The article claims that by eliminating strongly correlated features, the classifier's 

performance can be improved. 

 

Naive Bayes is like a detective. For example, it uses clues or features to make an educated 

guess about which category, or class, something belongs to. Let's imagine that we are 

engaged in accident prediction. We have information on things like the time of day, 

weather, and type of route. We wish to foretell whether or not an accident will result from 

these circumstances. 
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Here's how Naive Bayes can help: 

 

 Weather Conditions: If dataset indicate that 70% of accidents occur in rainy 

conditions. This becomes our prior knowledge. Naive Bayes uses this to predict 

the likelihood of an accident when it's raining. 

 

 Time of Day: If dataset indicate that 80% of accidents occur at night time. This is 
another clue for our "detective". 

 

A Naive Bayes classifier, by virtue of its "naive" nature, now presumes that these features 

(weather condition and day of time) are not correlated. This may not always be the case 

in real life. For instance, it's possible that roadways are more likely to be slippery when it 

rains or that there are more vehicles on the road at that time of day, both of which could 

have an impact on accident rates. Given these two features, if we want to predict the 

chance of an accident on a rainy night on a highway, Naive Bayes will simply multiply 

the probabilities together. This might give us a high likelihood of an accident. 

 

3.6.2 Random Forest 
 

Random Forest is among the most well-known and popular algorithms used by data 

scientists. "Random forest," a well-liked supervised machine learning technique for 

categorizing data and forecasting, is used frequently. Decision trees are built using 

different samples, and the decision trees' majority vote is used to determine the average 

classification and regression conclusion. Its better performance helps with regression and 

classification issues. (R, S.E. 2023). Both regression and classification issues are 

successfully handled by it. The number of trees to be grown and the quantity of randomly 

sampled candidate variables for each split are the tuning parameters for a random forest. 

Only a random subset of the predictors is taken into account by the algorithm while 

creating a random forest, resulting in a high degree of variety that prevents over-fitting 

(Liaw et al., 2002). 

 

Consider a teacher who must respond to a question that is incredibly challenging. What 

does the person do? He/she might solicit the opinions of their coworkers before deciding 

based on their comments. The Random Forest algorithm basically operates in this manner. 

A decision is made by a collection of decision trees working together. Comparable to 

asking a group of students in the class a question, each of whom brings a unique set of 

experiences and viewpoints to the discussion, he/she can frequently obtain a more 

thorough and accurate response from the group as a whole than from a single student. 

Let's bring this back to accident prediction. Suppose we have a dataset with various 

features like weather conditions, time of day, road type, and vehicle type. Each of these 

can help us predict whether an accident might happen. If we only utilized one decision 

tree, it might place too much emphasis on one element, such as the weather, while 

neglecting the others. This could result in overfitting, where the model performs 

admirably on the training set of data but falls short on the test set. We can prevent this 

using Random Forest. We guarantee that all features are taken into account by building a 

large number of decision trees (the "forest"), with each one looking at a random selection 

of features. The forest's trees each vote on whether an accident will occur, and the decision 

is made based on the results of the majority. 
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3.6.3 Extreme Gradient Boost (XGBoost) 
 

Extreme Gradient Boosting (XGBoost) is one of the most widely used machine learning 

algorithms for classification, predictions, ranking, and regression applications. It is an 

ensemble strategy that combines a number of ineffective prediction models, such decision 

trees, to build an effective prediction model (Chen & Guestrin, 2016). A few applications 

that have employed XGBoost include recommendation systems, computer vision, and 

natural language processing. 

 

The XGBoost method works by adjusting the weights of each observation in the training 

data and gradually adding additional decision trees to the ensemble. The overall 

prediction accuracy rises as a result. In each try, the method calculates the negative 

gradient of the loss function with respect to the ensemble predictions and then applies the 

results to build a new decision tree. The weights of the observations are then changed in 

light of the new hypotheses, and the ensemble is subsequently expanded to accommodate 

the new tree. The final prediction of XGBoost is the weighted average of all the ensemble 

forecasts of the decision tree. Each tree's weight is determined by how well it performs 

on a validation set, which prevents overfitting. (Brownlee, 2020). 

 

For example consider XGBoost as a bit like the captain of a ship, steering it through a 

storm. The ship is our prediction model, and the storm represents the complexity of our 

data. The captain doesn't make one big steering turn and then hope for the best. Instead, 

they make a series of smaller adjustments, continuously correcting the course based on 

the ship's current position and the state of the storm. This is the essence of gradient 

boosting, the technique at the core of XGBoost. Now, let's translate this to our accident 

prediction scenario. Suppose we have data on various factors like weather conditions, 

time of day, and road conditions, which we want to use to predict the likelihood of an 

accident. 

 

We start with a very simple model, like a decision tree. It's not perfect, but it gives us a 

starting point. Then we calculate how far off our predictions are from the real outcomes, 

which in machine learning lingo is referred to as the gradient of the loss function. This is 

where the 'boosting' part comes in. We train a new decision tree to predict not the actual 

outcome, but the error of our previous model. This new tree is like a second mate giving 

advice to our captain on how to correct the course. We keep adding new mates (or trees) 

to our ensemble, each one focusing on correcting the mistakes of the combined crew so 

far. The insight of each mate is weighted based on their accuracy, ensuring that the more 

accurate mates have more influence on the final decision. 

 

Finally, our prediction is the sum of the insights from the captain and all the mates, 

weighted by their accuracy. This incremental approach is what makes XGBoost powerful, 

allowing it to gradually improve its predictions and tackle complex, real-world problems 

like accident prediction. 

 

3.6.4 K-Neighbors Classifier 
 

Alpaydin (2010) discuss that KNN is a non-parametric technique that classifies incoming 

data points based on how similar their features are to the features of the closest K training 

samples. Choosing a value for K is a hyperparameter that can be changed to enhance 

performance. When K is reduced, the decision boundary becomes more flexible and 

responsive to local data variations, while overfitting is also a possibility. Data points along 

the border between classes may, however, end up being misclassified as a result. The 
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decision border is rounded off and strengthened against noisy data by a higher value of 

K. 

 

Going further, KNN is a straightforward, non-parametric algorithm for classification and 

predictions, according to Hastie, Tibshirani, and Friedman (2009). It locates the K nearest 

neighbors, finds the distance between the new data point and the training data point, then 

assigns the new data point's class label to the K nearest neighbors who have the highest 

proportion of that class label. We can understand the KNN with example given bellow. 

 

Imagine Mr 'X' moving to a new city and you're looking for a place to live. He know that 

he prefer neighborhoods that are quiet, safe, and have a park nearby. One way to find a 

suitable neighborhood could be to talk to locals and ask them about their neighborhoods. 

But he doesn't just ask one person, instead ask several people from different 

neighborhoods. Then, he choose the neighborhood that most of the people you asked 

recommend. This is essentially how K-Nearest Neighbors (KNN) works. In the context 

of accident prediction, suppose we're trying to predict the likelihood of an accident at a 

certain intersection based on features like traffic volume, visibility, and weather 

conditions. Each intersection in our data is like a person we're asking, and the 

"recommendation" they give is their accident rate. KNN starts by looking at the 'K' most 

similar intersections to the one we're interested in, based on their features. The 'K' is 

something we can adjust. If we set K=1, we're only asking the most similar intersection. 

If we set K=10, we're asking the 10 most similar intersections. 

 

There's a trade-off here. If K is too small, we're putting a lot of trust in a few intersections, 

which might mislead us if they're not representative or if the data contains some noise. 

This is like asking only one local about where to live and trusting their opinion 

completely, even though they might have peculiar tastes or had a bad day. On the other 

hand, if K is too large, we might dilute the information from the most similar intersections 

with less relevant ones. This would be like asking the whole city about where to live, even 

those living in areas completely different from what you're looking for. Once KNN has 

identified the 'K' nearest neighbors, it predicts the accident rate at the intersection of 

interest as the average accident rate of these neighbors. In other words, it "votes" the most 

common outcome from the K nearest neighbors. So, KNN is a simple but powerful 

method that can be effective for accident prediction. The key is to find the right balance 

for 'K', considering the specifics of your data. 

 

3.6.5 Decision Tree 
 

According to (Trevor Hastie et al., 2001) a common approach in deep learning for solving 

classification and regression problem is the decision tree. It is a hierarchical model that 

presents decisions and their potential outcomes in the form of tree, with each node or leaf 

signifying a decision and every branch mark a possible outcome of that decision. At each 

decision node/leaf, the algorithm selects the best feature to divide the data into groups 

based on some criterion, such as information gain or Gini index. Once a stopping 

condition has been met, such as reaching a maximum depth or having a minimal number 

of samples in a leaf node, the process is then restarted recursively for each subset. After 

that, the data is split into two or more subsets. The generated tree can be used to make 

predictions for additional data points by following the path from the root node to a leaf 

node that matches to the anticipated class or value. 

 

Decision trees handle both category and numerical data, and they are resistant to outliers 

and missing values. They are also simple to comprehend and visualize. In addition, they 
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could undergo overfitting, which causes low generalization performance on new data 

since the tree is very complex and captures noise from the training set. Random forests, 

gradient boosting trees, and adaptive boosting trees are a few decision tree variants that 

aim to improve performance and reduce overfitting. Let’s understand this by following 

example. 

 

Imagine someone planning a road trip. He got a list of decisions to make, like which route 

to take, when to leave, what to pack, etc. He might even draw a flowchart to help himself. 

That's basically what a Decision Tree is, but it's used for predicting stuff like accidents. 

Let's say we're trying to predict whether an accident is likely at a particular intersection. 

The Decision Tree might start by asking, "Is this a busy intersection?" If the answer is 

yes, it could then ask, "Are there traffic lights?" Depending on the answers, it will keep 

asking questions until it gets a clear picture of the situation, and then make a prediction - 

accident likely, or not. One of the great things about Decision Trees is that they're not 

picky about data. They can handle different types of data (like categories or numbers), 

and they're pretty robust when it comes to outliers or missing data points. Plus, they're 

pretty easy to understand because you can literally see the 'tree' of decisions that the model 

is making. 

 

But, they're not perfect. Sometimes a Decision Tree can get too focused on the details and 

lose sight of the bigger picture. It's like planning for every single rest stop on your road 

trip, but forgetting to check the weather forecast. This is called overfitting, and it's when 

the model performs well on the data it was trained on, but not so great on new data. 

Luckily, there are ways to deal with this. Methods like Random Forests, Gradient 

Boosting Trees, and Adaptive Boosting Trees are like having a team of decision-makers. 

Instead of relying on one flowchart (or tree), these methods use lots of them and then 

combine their predictions. This can lead to better, more reliable predictions. So, in a 

nutshell, Decision Trees are a handy tool for making predictions, as long as you're aware 

of their limitations and how to handle them. They're like your trusty road map - not always 

100% accurate, but definitely useful for navigating the data landscape. 

 

3.7 performance matrix 

 

To compare the performance of the each model the detail of performance matrix such as 

Confusion Matrix, Precision, recall, and f1-score is given below: 

 

3.7.1 Confusion Matrix 
 

A confusion matrix is a table that summarizes the performance of a classification model 

by comparing its predictions to the true labels of the data. It contains four terms: true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). TP and 

TN indicate correct predictions, while FP and FN indicate incorrect predictions (Powers, 

D. M. 2011). 

 

Here is an example of a confusion matrix for a binary classification problem: 

 
 Table 3: Confusion Matrix 
 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 
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The number of instances that are both genuinely positive and projected to be positive is 

known as True Positive (TP). The number of occasions where a result is projected to be 

negative but is really positive is known as a false positive (FP). The number of situations 

where a predicted negative outcome actually occurs is known as false negatives (FN). 

The number of instances that are both genuinely negative and projected to be negative is 

known as True Negative (TN). 

 

Imagine a model that's guessing whether an accident will happen at an intersection. There 

are four possibilities: 

 

 The model predicts an accident, and it's right. This is called a True Positive (TP). 

 The model predicts no accident, and it's right again. This is a True Negative (TN). 

 The model predicts an accident, but it's wrong. That's a False Positive (FP). 

 Lastly, the model predicts no accident, but it's wrong - an accident happens. This 

is a False Negative (FN). 

 

 

Precision, recall, and F1-score are just a few of the performance indicators for the 

classification model that can be computed using the confusion matrix. These metrics can 

be used to compare various models or algorithms and assess the model's overall 

performance. 

 

3.7.2 Precision 
 

Precision is a statistic used to assess a classification model's performance, primarily in 

binary classification issues. It is described as the percentage of accurate positive 

predictions among all the positive forecasts the model made. It is a measure we use to 

determine just how good our accident prediction model is at its job. Imagine it like a 

detective trying to solve a case. It's not enough for the detective to gather a massive 

amount of evidence. They also need to ensure that the evidence they've collected is 

relevant and points them in the right direction. If they're dealing with a lot of false leads, 

it's going to be a lot harder to solve the case. It can be calculated as: 

 

Precision = True Positives / (True Positives + False Positives)     (1) 

 

False Positives (FP) are instances that are genuinely negative but were predicted to be 

positive, whereas True Positives (TP) are cases that are actually positive and predicted to 

be positive. 

 

In other words, precision assesses the model's ability to distinguish true positives from all 

other occurrences that it correctly classifies as positive. A low false positive rate means 

that the model predicts few positive outcomes incorrectly, which is indicated by a high 

precision. A low precision, on the other hand, means that the model consistently predicts 

good outcomes. In fields like fraud detection or medical diagnosis, where a false positive 

can result in pointless treatments or investigations, precision is a valuable indicator when 

the cost of false positives is large. (Powers, D. M. 2011). 
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3.7.3 Recall 
 

Recall is a statistic used to assess a classification model's performance, notably in binary 

classification issues. It is described as the percentage of accurate positive predictions 

among all instances of real positive data, and can be calculated as: 

 

Recall = True Positives / (True Positives + False Negatives)   (1) 

 

Recall quantifies how well the model separates out the real positives from all other 

positive occurrences in the data, i.e., the examples that truly belong to the positive class. 

When a model has a high recall, it means that it properly recognizes the majority of 

positive cases and has a low incidence of false negatives. A low recall, on the other hand, 

suggests that the model is missing a lot of successful cases. When the cost of false 

negatives is large, like in medical diagnosis or fraud detection, when a false negative can 

result in missed diagnoses or fraudulent activity going unnoticed, recall is a useful 

indicator (Powers, D. M. 2011). 

 

For example, recall in the context of predicting accidents, is like a safety net for our 

model. It tells us how well the model catches all the actual accident cases from the dataset. 

To put it simply, it's all about the question: Out of all the actual accidents that occurred, 

how many did our model successfully predict? 

 

Consider the formula below: 

 

Recall = Correct Accident Predictions / (Correct Accident Predictions + Missed Accident 

Predictions)                                                                                                (2) 

 

Here, "Correct Accident Predictions" are the instances where our model predicted an 

accident and, unfortunately, an accident did happen. These are our True Positives (TP) 

means the model got it right. On the other hand, "Missed Accident Predictions" are the 

instances where our model didn't predict an accident, but an accident actually happened. 

These are our False Negatives (FN) means the model missed these. 

 

A high recall means that our model is good at catching accidents - it misses very few 

actual accident cases. This is crucial in scenarios like accident prediction where missing 

an actual accident can have serious consequences. However, a low recall means our model 

is frequently missing actual accident cases. This could lead to a lack of preventive 

measures when they're actually needed, which can be hazardous. 

 

Overall, recall helps us measure the completeness of our accident prediction model. A 

good model should have high recall, making sure it flags most, if not all, of the accidents 

that are about to happen. 

 

3.7.4 F1-score 
 

F1-score is a metric used to evaluate the performance of a classification model. It is the 

harmonic mean of precision and recall, and is calculated as: 

 

F1-score = 2 * (Precision * Recall) / (Precision + Recall)    (1) 
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The previously mentioned metrics, recall and precision, assess how successfully the 

model distinguishes genuine positives from false positives among all positive predictions 

and true positive cases, respectively. The balance between precision and recall is 

represented by the F1-score, which combines these two metrics into a single value. It has 

a value between 0 and 1, with a higher number denoting better performance. An F1-score 

of 0 implies that the model's predictions are wholly erroneous, whereas an F1-score of 1 

suggests flawless precision and recall. 

 

When the distribution of the classes is unbalanced. That is when one class has much more 

instances than the other. The F1-score is especially helpful. In these situations, accuracy 

might be a deceptive indicator because a model that merely predicts the majority class 

will be accurate to a high degree. The F1-score provides a more illuminating evaluation 

of the model's performance because it accounts for both recall and precision (Powers, D. 

M. 2011). 

 
3.8 Statistical techniques used to answer the first question 

 

3.8.1 Chi-square test  
 

According to (Gibbons & Chakraborti, 2021), the chi-square test is used to determine the 

independence of two categorical variables by calculating the chi-square statistic, which 

follows a chi-square distribution with degrees of freedom determined by the size of the 

contingency table. Chi-square value measures the statistical significance of the 

association between two categorical variables. The higher the chi-square value, the more 

significant the association. In order to perform the test, one must compute the chi-square 

statistic, which is the sum of the squared differences between the observed and predicted 

frequencies divided by the expected frequencies. This statistic has a chi-square 

distribution, which is dependent on the size of the contingency table (i.e., the number of 

rows and columns) in terms of the number of degrees of freedom.  

 

The chi-square test includes determining a test statistic, represented by the 𝑋2, that 

quantifies the discrepancy between the observed and expected frequencies. The chi-

square distribution that the test statistic follows has a shape that is dependent on the test's 

degrees of freedom. In the contingency table, the degrees of freedom are determined as 

the sum of the products of the number of rows minus one and the number of columns 

minus one. 

 

The alternative hypothesis in chi-square is that there is a substantial difference between 

the observed and anticipated frequencies, while there isn't one, which is the null 

hypothesis of the chi-square test. The null hypothesis is rejected if the test statistic is 

greater than the critical value, which is determined using a critical value from the chi-

square distribution and the relevant degrees of freedom.  

 

3.8.2 Cramer's V  
 

Cramer's V is a measure of association between two nominal categorical variables. It is a 

statistic that ranges from 0 to 1, with higher values indicating a stronger association 

between the two variables. Cramer's V is based on the chi-squared test statistic and takes 

into account the number of categories in each variable (Gibbons & Chakraborti, 2021).  

 

The formula for Cramer's V is:  
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V = √(𝜒2 / 𝑛 ∗  (𝑚𝑖𝑛(𝑟, 𝑐)  −  1))                           (1) 

 

Where 𝜒2 is the chi-squared test statistic, n is the total number of observations, r is the 
number of rows, and c is the number of columns in the contingency table of the two 

categorical variables. Cramer's V can be interpreted as follows:  

 

 0 indicates no association between the two variables.  

 0.1 to 0.3 indicates a weak association.  

 0.3 to 0.5 indicates a moderate association.  

 0.5 to 1 indicates a strong association.  
 

Cramer's V is commonly used in fields such as psychology, sociology, and market 

research to analyse the relationship between two categorical variables.  
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5 Results 

 
5.1 Statistical analysis 

 
To answer the third research question “How do weather and road conditions affect 

severity of accident and what are the most important factors that contribute to the 

likelihood of accident?”, different statistical techniques such as chi-square analysis with  

p-value, degree of freedom and cramer’s v is used. 

 
Table 4: Chi-square analysis with 10000 samples using natural categories 

 

Weather 

variables 

Chi-square 

values 

 

P-values 

 

Degree of 

freedom 

 

Cramer’s V 

Temperature 8973.703 0.000 6 0.452 

Visibility 11025.152 0.000 4 0.501 

Air Pressure  1772.067 0.000 4 0.201 

Wind Speed 4479.024 0.000 4 0.319 

Humidity 3306.284 0.000 4 0.274 

Precipitation 992.258 0.000 4 0.150 

Wind Chill 6732.137 0.000 4 0.391 

 
Above data provides the results of chi-square tests and Cramer's V for the association 

between each weather variable and the severity of accidents. Below are some conditions 

(mentioned in the previous section), should be considered while analyzing the results 

(Gibbons & Chakraborti, 2021).   

 

 Chi-square value measures the statistical significance of the association between 

two categorical variables. The higher the chi-square value, the more significant 

the association. 

 P-value measures the probability of observing a chi-square statistic as extreme or 

more extreme than the one observed, assuming the null hypothesis is true. A p-

value of less than 0.05 is generally considered statistically significant. 

 Degrees of freedom represent the number of categories that can vary in the 

contingency table without changing the chi-square value. 

 Cramer's V is a measure of association between two categorical variables, which 

takes into account both the chi-square value and the sample size. The range of 

Cramer's V is between 0 and 1, with values closer to 1 indicating a stronger 

association. 

Analyzing the given data, it is clear that all weather variables are associated with the 

severity of accidents, with p-values less than 0.05. 
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Below is the detail of each variable and how it is associated with the severity of accidents 

based on the given Chi-square statistics. 

 

Temperature: The Chi-square value for temperature is 8973.703, and p-value < 0.05, 

indicating a strong association between temperature and the severity of accidents. The 

Cramer's V value of 0.452 also indicates a moderate association. There is moderate 

association between temperature and severity of accidents which suggests that high or 

very low temperatures, can impact road conditions and driver behavior, leading to more 

severe accidents. This conclusion is in line with the outcomes of the research carried out 

by Basagaña et al. (2015) and Zou et al. (2021), confirming that temperature influences 

the occurrence of accidents. 

 

Visibility: The Chi-square value for visibility is the highest among all the weather-related 

variables, at 11025.152. The p-value is also indicating a strong association between 

visibility and accident severity. The high Cramer's V value of 0.501 indicates a strong 

association. Therefore, it is clear that poor visibility due to fog, rain, or other weather 

conditions can make it difficult for drivers to see, leading to more severe accidents. This 

finding aligns with the results from studies conducted by Khodadadi-Hassankiadeh et al. 

(2020) and Sangkharat et al. (2021), all of which found a highly increase in traffic accidents 

during foggy and rainy weather. 

 

Air Pressure: The Chi-square value for air pressure is low as compare to temperature and 

visibility and p-value is indicating a moderate association between air pressure and the 

severity of accidents. The Cramer's V value of 0.201 suggests a weak association means 

road accidents are barely connected with air pressure. 

 

Wind Speed: The Chi-square value for wind speed and the p-value, indicating a moderate 

association between wind speed and accident severity. The Cramer's V value of 0.319 

suggests a moderate association. High wind speeds can impact vehicle stability and 

control, leading to accidents. 

 

Humidity: The Chi-square and p-value for humidity also indicating a moderate 

association between humidity and accident severity. The Cramer's V value of 0.274 

suggests a week association. High humidity can lead to fog and reduced visibility, while 

low humidity can make the road surface dry and slippery, both of which can lead to more 

severe accidents. This conclusion coincides with the findings from research carried out 

by Singh, S. (2015), Zou et al. (2021), Khodadadi-Hassankiadeh et al. (2020), and 

Sangkharat et al. (2021). All these studies explored a substantial rise in traffic incidents 

under conditions of poor visibility and wet or slippery roads. 

 

Precipitation: The low Chi-square and p-value for precipitation, indicating a weak 

association between precipitation and the severity of accidents. Similarly, the Cramer's V 

value of 0.150 also suggests a weak association. In results rain, snow, and other forms of 

precipitation may make the road surface slippery, may become cause of accidents. These 

results are somehow aligned with the findings of Zeng et al. (2020). 

 

Wind Chill: The Chi-square and p-value for wind chill indicating a moderate association 

between wind chill and accident severity. The Cramer's V value of 0.391 suggests a 

moderate association. These findings are matches with the research carried out by Zou et 

al. (2021). 
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5.1.1 Conclusion 
 

Chi-square statistics suggest that all the weather-related variables are more or less 

associated with the severity of accidents, with visibility and temperature emerge as the 

most critical weather-related factors affecting the severity of road accidents. Therefore, 

efforts to mitigate the impact of these factors, such as implementing effective fog 

dispersal systems, heatwave alerts, or improved road maintenance during extreme 

temperatures, may help reduce the severity of accidents. The other factors, while less 

significant, should not be overlooked as they can still contribute to the likelihood and 

severity of accidents. Drivers should be educated about the potential risks associated with 

these weather conditions, and appropriate safety measures should be put in place. 

 

Going further, in this study, although the primary analytic method employed was the Chi-

square test, alternative statistical approaches were also explored, namely correlation and 

logistic regression. These methods were thoroughly investigated and analyzed, but they 

were not ultimately utilized in this thesis. Following is the result of correlation analysis 

that could be helpful for the future researchers: 

 

 
Figure 11: Shows the correlation coefficient of each variable 

 

The correlation matrix show information about the relationship between variables. The 

values range from -1 to 1, where -1 means a perfect negative correlation, 0 means no 

correlation, and 1 means a perfect positive correlation. The diagonal values are always 1 

because all variables are perfectly correlated with them self. 
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Table 5: P-values of each variable against severity of accident. 

 

Weather 

variables 

Severity 

Temperature 0.000000e+00 

Wind-chill 0.000000e+00 

Humidity 0.0 

Air Pressure 0.000000e+00 

Visibility 0.000000e+00 

Wind Speed 1.500377e-22 

Precipitation 7.324876e-06 

 

Temperature (F): The correlation coefficient between temperature and severity is 

negative, indicating that as the temperature decreases, the severity of accidents increases. 

This could be due to several factors, such as icy roads, reduced visibility due to fog, and 

increased risk of hypothermia or frostbite, which can lead to more severe accidents. The 

p-value is very low, which means that this correlation is statistically high and prove the 

indirect link between temperature and severity of accident. 

 

Wind-chill: The correlation coefficient between wind chill and severity is also negative, 

indicating that as the wind chill decreases, the severity of accidents increases. This makes 

sense because wind chill is the perceived temperature that takes into account the effect of 

wind on the body. Again, the p-value is very low between wind chill, indicating a 

statistically significant correlation. 

 

Humidity (%): The correlation coefficient between humidity and severity is positive, 

indicating that as humidity increases, the severity of accidents also increases. This could 

be because high humidity can reduce visibility due to fog, and also cause slippery roads 

due to moisture. The p-value is very low, indicating a statistically correlation between 

them. 

 

Air Pressure: The correlation coefficient between air pressure and severity is negative, 

indicating that as air pressure increases, the severity of accidents decreases. This is 

because high pressure generally leads to clear skies, which means better visibility and 

safer driving conditions. Similarly, the p-value is quite low, indicating the high 

correlation. 

 

Visibility (mi): The correlation coefficient between visibility and severity is negative, 

indicating that as visibility decreases, the severity of accidents increases. This is because 

low visibility can make it difficult for drivers to see and avoid obstacles or other vehicles. 

The p-value is very low, indicating a statistically high correlation. 

 

Wind Speed (mph): The correlation coefficient between wind speed and severity is very 

low, and the p-value is very low. This means that there is little to no correlation between 

wind speed and accident severity. 

 

Precipitation (in): The correlation coefficient between precipitation and severity is very 

low, and the p-value is very low. This means that there is little to no correlation between 

precipitation and accident severity. 

 

Finally, based on the correlation coefficients and p-values provided, it seems that 

temperature, wind chill, humidity, and visibility are the most important weather variables 

that are correlated with accident severity and affect severity of accident. 
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Coming to the logistic regression, of the output shows the classification report, which 

evaluates the performance of the logistic regression model on the test data. The report 

shows the precision, recall, and f1-score for each class (0 and 1) as well as the overall 

accuracy which is 92%. 

Table 6: Performance of logistic regression 

 

Classes Precision Recall F1-score 

0 0.92 1.00 0.96 

1 0.93 0.92 0.92 

 

The second part of the output shows the importance of each predictor variable in the 

logistic regression model. The coefficients of the logistic regression model represent the 

importance of each predictor variable in predicting the outcome variable (in this case, the 

severity of the accident). The larger the absolute value of the coefficient, the more 

important the corresponding predictor variable is in predicting the outcome. 

 

For example, the largest coefficient is associated with the "Precipitation (in)" variable, 

which suggests that this variable has the most influence on the severity of accidents. 

However, it's important to note that the coefficient of "Precipitation (in)" is positive, 

which means that as the amount of precipitation increases, the severity of the accidents 

also tends to increase. On the other hand, the coefficients for "Wind Chill" and "Humidity 

(%)" are negative, which means that as these variables increase, the severity of the 

accidents tends to decrease. Latitude and longitude are geographic coordinates that can 

help identify the location of the accident, which can be useful for emergency services and 

traffic management. However, their coefficients in the logistic regression model are 

relatively small, indicating that their influence on the severity of accidents is not as 

significant as other predictor variables. 

Table 7: Importance of each predictor variable 

Predictor variables Output 

Latitude 0.055312198479903756 

Longitude 0.017367972779213432 

Temperature(F) 0.04938336722084942 

Wind Chill -0.054267023704441815 

Humidity (%) -0.009621787826803252 

Air Pressure 0.03889089710162015 

Visibility(mi) 0.05394165881901363 

Wind Speed(mph) 0.026440797382297262 

Precipitation(in) 2.073401902914903 

 

Similarly, Temperature (F) and Air Pressure are environmental conditions that can also 

affect the severity of accidents. A higher temperature may lead to more driver fatigue or 

vehicle malfunctions, while lower air pressure may affect the vehicle's performance. The 

coefficients for these variables are positive, indicating that as these variables increase, the 

severity of accidents tends to increase. Visibility (mi) and Wind Speed (mph) are also 

important predictor variables that can affect the severity of accidents. Poor visibility due 

to fog, rain, or snow can increase the likelihood of accidents. Similarly, high wind speeds 

can cause vehicles to lose control and lead to accidents. The coefficients for these 

variables are also positive, indicating that as these variables increase, the severity of 

accidents tends to increase. 



53 
 

 

In conclusion, all the predictor variables listed in the table are important in predicting the 

severity of accidents to some degree but precipitation is the most important factor in 

predicting the severity of accidents. However, their influence and importance may vary 

depending on the specific conditions and circumstances of each accident. 
 

5.2 Comparing the Performance of Machine Learning Models 
in Predicting Accident Likelihood 

 
To answer the second research question “Can machine learning models be used to 

accurately predict the likelihood of accidents, and how do different models compare in 

terms of accuracy and reliability?” this section used the five machine learning (ML) 

models (Naive Bayes model, Random Forest, Extreme Gradient Boost, K-Neighbours 

Classifier, and Decision Tree) in our research to compare the performance of the five 

models based on Precision, recall, and f1-score. Before working with any ML model, 

over-sampling technique is used to deal with the data imbalance issue.  Below is the result 

of each model. 

 

5.2.1 Random forest 
 

Based on the calculations of random forest model the overall accuracy is 98.53%, which 

means that the models were able to correctly classify 98.53% of the accidents in the test 

set. The classification report provides precision, recall, and F1-score for each severity 

level. For severity level 2, the precision is 0.98, recall is 0.97, and F1-score is 0.98. For 

severity level 3, the precision, recall, and F1-score are all 1.00, indicating perfect 

classification. For severity level 4, the precision is 0.98, recall is 0.98, and F1-score is 

0.98. All three severity levels (2, 3, and 4) have high precision, recall, and f1-score values, 

indicating good model performance. In this case, the precision for all three classes is 

above 0.98, indicating that the model is correctly predicting a high proportion of positive 

instances. The recall for all three classes is also above 0.97, indicating that the model is 

correctly identifying a high proportion of actual positive instances. Additionally, the f1-

score for all three classes is above 0.98, indicating a good balance between precision and 

recall. 

 

Overall, the machine learning model performed very well in predicting the severity of 

accidents, achieving high accuracy and F1-scores with balanced dataset. Similarly, based 

on the performance of this model and the high overall accuracy and precision/recall scores 

for all classes, it is reasonable to say that random forest model can be used to accurately 

predict the likelihood of accidents, at least in this particular dataset and with the chosen 

features. In this research findings, the random forest model demonstrates a high degree 

of accuracy at 98.5%. This compares favorably to the accuracy of 77.6% reported in the 

research conducted by Chen M and Chen C (2020), suggesting that this model provides 

more precise predictions with dataset used in this research. 

 
Table 8: Classification report of random forest model with accuracy 

 

Severity 

Level 

Precision Recall F1-score 

2 0.98 0.97 0.98 

3 1.00 1.00 1.00 

4 0.98 0.98 0.98 

Overall accuracy= 98.52717570403603 % 
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5.2.2 Decision Tree 
 

Based on the performance metrics of decision tree the overall accuracy of the model is 

95.325%, which means that it is able to correctly predict the severity of accidents 

95.325% of the time. The classification report provides more detailed performance 

metrics for each severity class. In this case, the precision, recall, and f1-score for severity 

level 2 are 0.93, 0.93, and 0.93 respectively. For severity level 3, the precision, recall, and 

f1-score are 0.99, 1.00, and 0.99 respectively. Finally, for severity level 4, the precision, 

recall, and f1-score are 0.93, 0.93, and 0.93 respectively.  

 

Therefore, the high precision, recall, and f1-score for all classes indicate that the model 

has good performance and can be used to accurately predict the likelihood of accidents 

across all severity classes. The Random Forest model outperforms the Decision Tree 

model in terms of accuracy. Specifically, the Random Forest model boasts an accuracy 

rate of 98.5%, which is higher than the 95.3% accuracy rate exhibited by the Decision 

Tree model which is aligned with results of research conducted by Chen M and Chen C 

(2020). 

 
Table 9: Classification report of decision tree model with accuracy 

 

Severity 

Level 

Precision Recall F1-score 

2 0.93 0.93       0.93 

3 0.99       1.00 0.99     

4 0.93       0.93 0.93 

Overall accuracy= 95.32526435678483% 

 
5.2.3 K-Neighbours Classifier 
 

The K-Neighbor classifier model achieved an overall accuracy of 96.012% on the test 

data which also support the findings of Iranitalab and Khattak (2017). Looking at the 

classification report, it is clear that the model performed well on all three classes. For the 

severity level 2, the precision is 0.99, recall is 0.89, and f1-score is 0.94. This means that 

out of all the predicted accidents, 99% of them were actually from severity level 2, and 

out of all the actual severity level 2 accidents, 89% of them were correctly identified by 

the model. The f1-score is a harmonic mean of precision and recall, which gives an overall 

measure of the model's accuracy on this severity level. The f1-score of 0.94 indicates that 

the model performed well on severity level 2. 

 

For class 3, the precision is 0.99, recall is 1.00, and f1-score is 0.99. This means that out 

of all the predicted accidents, 99% of them were actually from severity level 3, and out 

of all the actual accidents, 100% of them were correctly identified by the model. The high 

f1-score of 0.99 indicates that the model performed very well on severity level 3. Going 

further, for severity level 4, the precision is 0.91, recall is 0.99, and f1-score is 0.95. This 

means that out of all the predicted accidents, 91% of them were actually from severity 

level 4, and out of all the actual accidents, 99% of them were correctly identified by the 

model. The f1-score of 0.95 indicates that the model performed well on this class, but not 

as well as on classes 2 and 3. 

 

Overall, the KNN classifier model performed well on all three classes, with high 

precision, recall, and f1-score. This suggests that it is a good candidate for predicting the 

likelihood of accidents. 
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Table 10: Classification report of K-Neighbours Classifier with accuracy 

 

Severity 

Level 

Precision Recall F1-score 

2 0.99 0.89      0.94 

3 0.99       1.00 0.99     

4 0.91      0.99 0.95 

Overall accuracy= 96.01210633804953 % 

 
 
 
5.2.4 Extreme Gradient Boost (XGBoost) 
 

In this case, the overall accuracy of the XGBoost is 92.645%. Looking at the classification 

report, the precision, recall, and f1-score are reported for three different severity levels: 

level 2, level 3, and level 4. For severity level 2, the precision is 0.92, which means that 

out of all the instances that the model predicted as severity level 2, 92% were actually 

severity level 2. The recall is 0.94, which means that out of all the instances that were 

actually severity level 2, the model correctly identified 94% of them. The f1-score is 0.93, 

which is a balanced measure of precision and recall. 

 

Similarly, for severity level 3, the precision is 0.95, which means that out of all the 

instances that the model predicted as severity level 3, 95% were actually severity level 3. 

The recall is 0.97, which means that out of all the instances that were actually severity 

level 3, the model correctly identified 97% of them. The f1-score is 0.96, which is high 

and indicates a well-balanced performance. 

 

Finally, for severity level 4, the precision is 0.92, which means that out of all the instances 

that the model predicted as severity level 4, 92% were actually severity level 4. The recall 

is 0.87, which means that out of all the instances that were actually severity level 4, the 

model correctly identified 87% of them. The f1-score is 0.89, which is lower than the 

other severity levels, indicating that the model has some difficulty in accurately 

identifying severity level 4 incidents. Overall, the performance of the model seems to be 

good, with high accuracy and good precision and recall scores for most severity levels 

and based on the given data and performance metrics, it seems that the XGBoost is able 

to accurately predict the likelihood of accidents with good precision, recall, and f1-score 

scores. 
Table 11: Classification report of Extreme Gradient Boost with accuracy 

 

Severity 

Level 

Precision Recall F1-score 

2 0.92 0.94     0.93 

3 0.95      0.97 0.96 

4 0.92     0.87 0.89 

Overall accuracy= 92.64512883960523 % 

 

5.2.5 Naive Bayes 
 

The overall accuracy of the Naive Bayes model is 63.31%, which is relatively lower 

compared to the other models I discussed earlier. This means that the model correctly 
predicted all the severity levels for about only 63% of the cases. 

 

Looking at the classification report, it is clear that the precision, recall, and f1-score for 
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severity level 2 are same 0.59, 0.59, and 0.59 respectively. For severity level 3, the 

precision, recall, and f1-score are 0.68, 0.78, and 0.73 respectively. Finally, for severity 

level 4, the precision, recall, and f1-score are 0.62, 0.53, and 0.57 respectively. Therefore, 

Naive Bayes model performs better for severity level 3 as compared to the other levels. 

This is because the precision, recall, and f1-score are higher for severity level 3 as 

compared to the other levels. The model has a high recall value for severity level 3, which 

means that it correctly identifies most of the actual severity level 3 cases. 

However, the model's performance is relatively poor for severity level 4, as the recall 

value is relatively low. This means that the model is not able to identify all the actual 

severity level 4 cases. Overall, this machine learning algorithm appears to be inaccurate 

in predicting accidents based on its performance measures. 

 
Table 12: Classification report of Naïve Bayes with accuracy 

 

Severity 

Level 

Precision Recall F1-score 

2 0.59 0.59 0.59 

3 0.68      0.78 0.73 

4 0.62 0.53 0.57 

Overall accuracy= 63.308174391646965% 

 
5.2.6 Conclusion  
 

Based on the classification reports and overall accuracy values for each model, it is clear 

that machine learning models can be used to predict the likelihood of accidents with 

varying degrees of accuracy and reliability. The Random Forest model has the highest 

overall accuracy of 98.53% and perfect precision, recall and F1-score for Severity Level 

3, indicating that it is a highly reliable and accurate model for predicting accidents. The 

Decision Tree model also has a high overall accuracy of 95.33% and good precision, 

recall and F1-score values for all severity levels, indicating that it is also a reliable and 

accurate model. 

 

On the other hand, the K-Neighbours Classifier has an overall accuracy of 96.01%, which 

is also quite high. However, its precision, recall and F1-score values are not as strong as 

the Random Forest or Decision Tree models for Severity Level 2 and Severity Level 4, 

which may indicate some limitations in its ability to accurately predict accidents for those 

severity levels. The Extreme Gradient Boost model has a lower overall accuracy of 

92.65%, which indicates that it is less reliable and accurate compared to the other models. 

However, it still has good precision, recall and F1-score values for Severity Level 2 and 

Severity Level 3, indicating that it may still be a useful model for predicting accidents 

within those severity levels. Finally, the Naive Bayes model has the lowest overall 

accuracy of 63.31% and its precision, recall and F1-score values are significantly lower 

than the other models across all severity levels. This suggests that it may not be a reliable 

or accurate model for predicting accidents in this context. 

 

Overall, the findings suggest that machine learning models can be used to accurately 

predict the likelihood of accidents, with Random Forest and Decision Tree models being 
the most reliable and accurate models in this context. However, it is important to note that 

the effectiveness of each model may vary depending on the specific dataset and context 

in which it is used, and further testing and validation may be required before these models 

can be implemented in real-world. 
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6 Discussion 
 

This research set out to investigate the impact of weather and road conditions on accident 

severity and the potential of machine learning models in predicting accident likelihood. 

Despite the significant research done on predicting accidents through machine learning, 

most existing studies have primarily only focused on the model's overall accuracy for 

predicting accidents. Furthermore, most of the statistical analyses conducted so far have 

mainly relied on techniques like chi-square, correlation, or logistic regression. This thesis, 

however, aims to bridge these gaps by not just scrutinizing the overall accuracy of 

multiple machine learning models, but also taking into account other crucial performance 

indicators like precision, recall, and the F1 score. In addition to that, this thesis will enrich 

the chi-square analysis with supplemental statistical metrics, including p-value, degree of 

freedom, and Cramer's V, to explore the factors influencing accident likelihood, and to 

understand how weather conditions affect accident severity. The research questions also 

have been addressed comprehensively, leading to several important findings. 

 

Regarding the first research question, the chi-square analysis with other statistical 

measures, such as p-value, degree of freedom, and Cramer's V confirmed that weather-

related variables influence the severity of road accidents. This echoes previous findings 

that weather conditions have a profound impact on accident occurrence and severity. 

Specifically, visibility and temperature were identified as the most crucial factors. Our 

findings indicate that strategies such as implementing fog dispersal systems, heatwave 

alerts, or improved road maintenance during extreme temperatures may significantly 

reduce the severity of accidents. However, it's also important to emphasize that other 

weather conditions, while less associated, can still contribute to accident likelihood and 

severity. This suggests that a comprehensive approach, which includes driver education 

about various weather risks and appropriate safety measures, would be beneficial. 

 

Turning to the second research question, our findings support the use of machine learning 

models to predict accident likelihood. This aligns with an increasing body of literature 

advocating the use of advanced computational methods in traffic safety analysis. The 

Random Forest model demonstrated the highest accuracy in our study, with an impressive 

overall accuracy of 98.53%, and excellent precision, recall, and F1-score for Severity 

Level 3. The Decision Tree model also performed well, confirming that these models are 

robust tools for predicting accidents. 

 

Conversely, the K-Neighbours Classifier, while having commendable overall accuracy, 

showed some limitations for certain severity levels. The Extreme Gradient Boost model 

showed some reliability but had a lower overall accuracy, indicating it may not be the 

best choice in this context. Finally, the Naive Bayes model exhibited the lowest overall 

accuracy and less satisfactory performance matrix values, indicating its limitations in this 

context. 

 

These findings underscore the potential of machine learning in traffic safety, but they also 

highlight the need for careful selection and validation of the model best suited for the 

specific context. The performance of machine learning models can vary based on the data 

and context, hence it would be beneficial to perform further testing before implementing 

these models in real-world scenarios. 

 

In conclusion, this study demonstrates the impact of weather and road conditions on 

accident severity and the potential of machine learning models in predicting accident 

likelihood. These findings can contribute to enhancing road safety measures and 
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developing more accurate predictive models, ultimately contributing to the reduction of 

road accidents. Future research should consider other potential contributing factors, and 

continue to evaluate and refine machine learning models to ensure their accuracy and 

reliability in diverse contexts. 

 

6.1 Limitation and area of improvement  
 

 

It is essential to recognize the limits of our study, despite the fact that it does yield helpful 

insights. In the first place, the weather was the primary focus of our investigation, to the 

exclusion of any other possible elements that could have contributed to the severity of the 

accident. In order to gain a more complete knowledge of the occurrence, it is 

recommended that future studies take into account additional aspects such as the road 

infrastructure, the driver’s behaviour, and the features of vehicles. The second limitation 

of our investigation is that it was based on a particular dataset, which restricts the 

applicability of our results. The relevance of our findings could be improved by 

conducting additional research using a variety of datasets originating from a variety of 

geographic regions. In conclusion, despite the fact that we investigated a number of 

machine learning models, it is possible that there are alternative models or approaches 

that could produce superior results when it comes to predicting the chance of an accident. 

Evaluating and contrasting the various alternative models would be an important focus 

for research in the future. 

 

6.2 Potential application areas and examples 
 
The insights that we gained from our research have practical applications that can be used 

to improve road safety measures and construct prediction models with a higher level of 

accuracy. The adoption of specialized driver education programs that place an emphasis 

on the dangers associated with driving in various weather conditions is one potential area 

for application. We can equip drivers to adjust their conduct appropriately in unfavorable 

weather conditions if we raise awareness of the issue and promote suitable safety 

measures. In addition, our findings imply that there is a requirement for the incorporation 

of meteorological information into intelligent transportation systems. Existing 

applications such as real-time navigation systems e.g. Google map, for instance, could be 

improved by adding meteorological conditions in order to deliver more precise and 

individualized routes while also taking into account the possibility of dangers and 

hazards. 

 
  



59 
 

7 Summary 

 
The primary focus of this study was to investigate the impact of weather and road conditions on 

the severity of accidents and to determine the feasibility of machine learning models in accurately 

predicting the likelihood of such incidents. The research was centered on two key research 

questions. 

 

Firstly, the study examined the influence of weather and road conditions on accident severity and 

identified the most related factors contributing to accidents. We utilized an open-source accident 

dataset, which was preprocessed using techniques like variable selection, missing data 

elimination, and data balancing through the Synthetic Minority Over-sampling Technique 

(SMOTE). Chi-square statistical analysis was performed, suggesting that all weather-related 

variables are more or less associated with the severity of accidents. Visibility and temperature 

were found to be the most critical factors affecting the severity of road accidents. Hence, 

appropriate measures such as implementing effective fog dispersal systems, heatwave alerts, or 

improved road maintenance during extreme temperatures could help reduce accident severity. 

 

Secondly, the research evaluated the ability of machine learning models including decision trees, 

random forests, naive bayes, extreme gradient boost, and neural networks to predict accident 

likelihood. The models' performance was gauged using metrics like accuracy, precision, recall, 

and F1 score. The Random Forest model emerged as the most reliable and accurate model for 

predicting accidents, with an overall accuracy of 98.53%. The Decision Tree model also showed 

high overall accuracy (95.33%), indicating its reliability. However, the Naive Bayes model 

showed the lowest accuracy (63.31%) and was deemed less reliable in this context. 

 

It is concluded that machine learning models can be effectively used to predict the likelihood of 

accidents, with models like Random Forest and Decision Tree proving the most effective. 

However, the effectiveness of each model may vary depending on the dataset and context, 

necessitating further testing and validation for real-world implementation. 

 

These findings not only provide insight into the factors affecting accident severity but also open 

a promising avenue in employing machine learning techniques for proactive accident prediction 

and mitigation. Future studies can aim to refine the models further and potentially integrate them 

into traffic management systems to enhance road safety. 
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