10,302 research outputs found

    Hypothalamic arcuate nucleus glucokinase regulates insulin secretion and glucose homeostasis

    Get PDF
    Aims Glucokinase (GK) serves as a glucose sensor in several tissues including glucose‐sensitive neurons of the arcuate nucleus within the hypothalamus. We have previously demonstrated a role for arcuate GK in the regulation of food and glucose intake. However, its role in the regulation of glucose homeostasis is less clear. We therefore sought to investigate the role of arcuate GK in the regulation of glucose homeostasis. Materials and Methods Recombinant adeno‐associated virus expressing either GK or an antisense GK construct was used to alter GK activity specifically in the hypothalamic arcuate nucleus. GK activity in this nucleus was also increased by stereotactic injection of the GK activator, compound A. The effect of altered arcuate nucleus GK activity on glucose homeostasis was subsequently investigated using glucose and insulin tolerance tests. Results Increased GK activity specifically within the arcuate nucleus increased insulin secretion and improved glucose tolerance in rats during oral glucose tolerance tests. Decreased GK activity in this nucleus reduced insulin secretion and increased glucose levels during the same tests. Insulin sensitivity was not affected in either case. The effect of arcuate nucleus glucokinase was maintained in a model of type 2 diabetes. Conclusions These results demonstrate a role for arcuate nucleus GK in systemic glucose homeostasis

    Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances

    Get PDF
    The hypothalamic melanocortin system is crucial for the control of appetite and body weight. Two of the five melanocortin receptors, MC3R and MC4R are involved in hypothalamic control of energy homeostasis, with the MC4R having the major influence. It is generally thought that the main impact of the melanocortin system on hypothalamic circuits is external to the arcuate nucleus, and that any effect locally in the arcuate nucleus is inhibitory on proopiomelanocortin-expressing (POMC) neurons. In contrast, using current- and voltage-clamp recordings from identified neurons, we demonstrate that MC3R and MC4R agonists depolarize arcuate POMC neurons and a separate arcuate neuronal population identified by the rat insulin 2 promoter (RIPCre) transgene expression. Furthermore, the endogenous MC3R and MC4R antagonist, agouti-related protein (AgRP), hyperpolarizes POMC and RIPCre neurons in the absence of melanocortin agonist, consistent with inverse agonism at the MC4R. A decreased transient outward (I(A)) potassium conductance, and to a lesser extent the inward rectifier (K(IR)) conductance, underlies neuronal depolarization, whereas an increase in I(A) mediates AgRP-induced hyperpolarization. Accordingly, POMC and RIPCre neurons may be targets for peptide transmitters that are possibly released locally from AgRP-expressing and POMC neurons in the arcuate nucleus, adding further previously unappreciated complexity to the arcuate system

    Tyrosine Hydroxylase Expression in Differentiating Neurons of the Rat Arcuate Nucleus: Stimulatory Influence of Serotonin Afferents

    Get PDF
    The influence of serotonin afferents on tyrosine hydroxylase expression in differentiating neurons of the rat arcuate nucleus was studied in vivo and in vitro. In the in vivo study, pchlorophenylalanine inhibited serotonin synthesis in fetal brain from the 11th to the 20th embryonic day. We then used semiquantitative immunocytochemistry to evaluate tyrosine hydroxylase levels in neurons of the arcuate nucleus in fetuses at the 21st embryonic day or in offspring at the 35th postnatal day. Serotonin depltion significantly decreased the tyrosine hydroxylase content in neurons of males and females at the 21st embryonic day and in males at the 35st postnatal day. For the in vitro study, embryonic neurons of the arcuate nucleus were cocultured with embryonic neurons of the raphe nucleus, the main source of serotonin innervation of the brain, including the arcuate nucleus. Co-culture of the neurons resulted in a genderspecific increase of the tyrosine hydroxylase level in the neurons of the arcuate nucleus. In turn, the neurons of the raphe nucleus showed increased levels .of serotonin in both males and females, with no sexual dimorphism. Thus, our results suggest a stimulatory, long-lasting effect of serotonin afferents on tyrosine hydroxylase expression in the differentiating neurons of the rat arcuate nucleus during prenatal ontogenesis

    Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian Hamster

    Get PDF
    Nonhibernating seasonal mammals have adapted to temporal changes in food availability through behavioral and physiological mechanisms to store food and energy during times of predictable plenty and conserve energy during predicted shortage. Little is known, however, of the hypothalamic neuronal events that lead to a change in behavior or physiology. Here we show for the first time that a shift from long summer-like to short inter-like photoperiod, which induces physiological adaptation to winter in the Siberian hamster, including a body weight decrease of up to 30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC) assessed by electro physiological patch-clamping recording. Increased neuronal activity in short days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, clobenproprit. Short-day activation of dmpARC neurons results in increased c-Fos expression. Tract tracing with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation of the histamine H3 receptor, contributes to the physiological adaptation of body weight regulation in seasonal photoperiod

    5-ht inhibition of rat insulin 2 promoter cre recombinase transgene and proopiomelanocortin neuron excitability in the mouse arcuate nucleus

    Get PDF
    A number of anti-obesity agents have been developed that enhance hypothalamic 5-HT transmission. Various studies have demonstrated that arcuate neurons, which express proopiomelanocortin peptides (POMC neurons), and neuropeptide Y with agouti-related protein (NPY/AgRP) neurons, are components of the hypothalamic circuits responsible for energy homeostasis. An additional arcuate neuron population, rat insulin 2 promoter Cre recombinase transgene (RIPCre) neurons, has recently been implicated in hypothalamic melanocortin circuits involved in energy balance. It is currently unclear how 5-HT modifies neuron excitability in these local arcuate neuronal circuits. We show that 5-HT alters the excitability of the majority of mouse arcuate RIPCre neurons, by either hyperpolarization and inhibition or depolarization and excitation. RIPCre neurons sensitive to 5-HT, predominantly exhibit hyperpolarization and pharmacological studies indicate that inhibition of neuronal firing is likely to be through 5-HT1F receptors increasing current through a voltage-dependent potassium conductance. Indeed, 5-HT1F receptor immunoreactivity co-localizes with RIPCre green fluorescent protein expression. A minority population of POMC neurons also respond to 5-HT by hyperpolarization, and this appears to be mediated by the same receptor-channel mechanism. As neither POMC nor RIPCre neuronal populations display a common electrical response to 5-HT, this may indicate that sub-divisions of POMC and RIPCre neurons exist, perhaps serving different outputs

    Relative Number and Distribution of Murine Hypothalamic Proopiomelanocortin Neurons Innervating Distinct Target Sites

    Get PDF
    Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences

    Morphological evidence for enhanced kisspeptin and neurokinin B signaling in the infundibular nucleus of the aging man.

    Get PDF
    Peptidergic neurons synthesizing kisspeptin (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus have been implicated in negative sex steroid feedback to GnRH neurons. In laboratory rodents, testosterone decreases KP and NKB expression in this region. In the present study, we addressed the hypothesis that the weakening of this inhibitory testosterone feedback in elderly men coincides with enhanced KP and NKB signaling in the infundibular nucleus. This central hypothesis was tested in a series of immunohistochemical studies on hypothalamic sections of male human individuals that were divided into arbitrary "young" (21-49 yr, n = 11) and "aged" (50-67 yr, n = 9) groups. Quantitative immunohistochemical experiments established that the regional densities of NKB-immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed onto GnRH neurons, exceeded several times those of the KP-IR elements. Robust aging-dependent enhancements were identified in the regional densities of KP-IR perikarya and fibers and the incidence of afferent contacts they established onto GnRH neurons. The abundance of NKB-IR perikarya, fibers, and axonal appositions to GnRH neurons also increased with age, albeit to lower extents. In dual-immunofluorescent studies, the incidence of KP-IR NKB perikarya increased from 36% in young to 68% in aged men. Collectively, these immunohistochemical data suggest an aging-related robust enhancement in central KP signaling and a moderate enhancement in central NKB signaling. These changes are compatible with a reduced testosterone negative feedback to KP and NKB neurons. The heavier KP and NKB inputs to GnRH neurons in aged, compared with young, men may play a role in the enhanced central stimulation of the reproductive axis. It requires clarification to what extent the enhanced KP and NKB signaling upstream from GnRH neurons is an adaptive response to hypogonadism or, alternatively, a consequence of a decline in the androgen sensitivity of KP and NKB neurons
    corecore