3,183 research outputs found

    Intelligent agent for formal modelling of temporal multi-agent systems

    Get PDF
    Software systems are becoming complex and dynamic with the passage of time, and to provide better fault tolerance and resource management they need to have the ability of self-adaptation. Multi-agent systems paradigm is an active area of research for modeling real-time systems. In this research, we have proposed a new agent named SA-ARTIS-agent, which is designed to work in hard real-time temporal constraints with the ability of self-adaptation. This agent can be used for the formal modeling of any self-adaptive real-time multi-agent system. Our agent integrates the MAPE-K feedback loop with ARTIS agent for the provision of self-adaptation. For an unambiguous description, we formally specify our SA-ARTIS-agent using Time-Communicating Object-Z (TCOZ) language. The objective of this research is to provide an intelligent agent with self-adaptive abilities for the execution of tasks with temporal constraints. Previous works in this domain have used Z language which is not expressive to model the distributed communication process of agents. The novelty of our work is that we specified the non-terminating behavior of agents using active class concept of TCOZ and expressed the distributed communication among agents. For communication between active entities, channel communication mechanism of TCOZ is utilized. We demonstrate the effectiveness of the proposed agent using a real-time case study of traffic monitoring system

    Issues of Architectural Description Languages for Handling Dynamic Reconfiguration

    Get PDF
    Dynamic reconfiguration is the action of modifying a software system at runtime. Several works have been using architectural specification as the basis for dynamic reconfiguration. Indeed ADLs (architecture description languages) let architects describe the elements that could be reconfigured as well as the set of constraints to which the system must conform during reconfiguration. In this work, we investigate the ADL literature in order to illustrate how reconfiguration is supported in four well-known ADLs: pi-ADL, ACME, C2SADL and Dynamic Wright. From this review, we conclude that none of these ADLs: (i) addresses the issue of consistently reconfiguring both instances and types; (ii) takes into account the behaviour of architectural elements during reconfiguration; and (iii) provides support for assessing reconfiguration, e.g., verifying the transition against properties.Comment: 6\`eme Conf\'erence francophone sur les architectures logicielles (CAL'2012), Montpellier : France (2012

    Enabling security checking of automotive ECUs with formal CSP models

    Get PDF

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Verification of Architectural Refactorings: Rule Extraction and Tool Support

    Get PDF
    Software in use needs to be adapted to changing requirements, otherwise it becomes obsolete. Often, this involves changing the architecture of the system. To avoid the introduction of unwanted or removal of desired behaviour, these changes need verification. While verifying large systems consumes considerable resources, the verification of only the changed parts can, under certain conditions, give the required assurance. This opens the possibility of creating formally verified, reusable refactoring patterns. However, a mechanism for extracting such patterns is needed. To address this problem, a theoretical framework is presented that allow to formally reason about the rule extraction process. In order to harness the theoretical results, a visual editor and tool chain are introduced to aid developers in extracting refactoring rules and prove their behavioural correctness

    Towards Validating a Platoon of Cristal Vehicles using CSP||B

    Get PDF
    24 pagesInternational audienceThe complexity of specification development and verification of large systems has to be mastered. In this paper a specification of a real case study, a platoon of Cristal vehicles is developed using the combination, named CSP||B, of two well-known formal methods. This large -- both distributed and embedded -- system typically corresponds to a multi-level composition of components that have to cooperate. We show how to develop and verify the specification and check some properties in a compositional way. We make use of previous theoretical results on CSP||B to validate this complex multi-agent system

    VLSI Architecture and Design

    Get PDF
    Integrated circuit technology is rapidly approaching a state where feature sizes of one micron or less are tractable. Chip sizes are increasing slowly. These two developments result in considerably increased complexity in chip design. The physical characteristics of integrated circuit technology are also changing. The cost of communication will be dominating making new architectures and algorithms both feasible and desirable. A large number of processors on a single chip will be possible. The cost of communication will make designs enforcing locality superior to other types of designs. Scaling down feature sizes results in increase of the delay that wires introduce. The delay even of metal wires will become significant. Time tends to be a local property which will make the design of globally synchronous systems more difficult. Self-timed systems will eventually become a necessity. With the chip complexity measured in terms of logic devices increasing by more than an order of magnitude over the next few years the importance of efficient design methodologies and tools become crucial. Hierarchical and structured design are ways of dealing with the complexity of chip design. Structered design focuses on the information flow and enforces a high degree of regularity. Both hierarchical and structured design encourage the use of cell libraries. The geometry of the cells in such libraries should be parameterized so that for instance cells can adjust there size to neighboring cells and make the proper interconnection. Cells with this quality can be used as a basis for "Silicon Compilers"

    Using CSP||B Components: Application to a Platoon of Vehicles

    Get PDF
    27 pagesInternational audienceThis paper presents an experience report on the specification and the validation of a real case study in the context of the industrial CRISTAL project. The case study concerns a platoon of a new type of urban vehicles with new functionalities and services. It is specified using the combination, named CSP\|B, of two well-known formal methods, and validated using the corresponding support tools. This large -- both distributed and embedded -- system typically corresponds to a multi-level composition of components that have to cooperate. We identify some lessons learned, showing how to develop and verify the specification and check some properties in a compositional way using theoretical results and support tools to validate this complex system
    corecore