
Towards Validating a Platoon of Cristal Vehicles using

CSP——B

Samuel Colin, Arnaud Lanoix, Olga Kouchnarenko, Jeanine Souquières

To cite this version:

Samuel Colin, Arnaud Lanoix, Olga Kouchnarenko, Jeanine Souquières. Towards Validating
a Platoon of Cristal Vehicles using CSP——B. Springer. 12th International Conference on
Algebraic Methodology and Software Technology (AMAST 2008), Jul 2008, France. 6 p., 2008,
LNCS. <hal-00261630>

HAL Id: hal-00261630

https://hal.archives-ouvertes.fr/hal-00261630

Submitted on 7 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53020934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00261630

Towards Validating a Platoon of Cristal Vehicles

using CSP‖B⋆

Samuel Colin1, Arnaud Lanoix1, Olga Kouchnarenko2, and Jeanine Souquières1

1 LORIA – DEDALE Team – Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy, France

{firstname.lastname}@loria.fr
2 LIFC – TFC Team – 16 route de Gray

F-25030 Besançon, France

{firstname.lastname}@lifc.univ-fcomte.fr

Abstract. The complexity of specification development and verification of large

systems has to be mastered. In this paper a specification of a real case study, a

platoon of Cristal vehicles is developed using the combination, named CSP‖B,

of two well-known formal methods. This large – both distributed and embedded

– system typically corresponds to a multi-level composition of components that

have to cooperate. We show how to develop and verify the specification and check

some properties in a compositional way. We make use of previous theoretical

results on CSP‖B to validate this complex multi-agent system.

1 Introduction

This paper is dedicated to the validation of land transportation systems taken as an ap-

plication domain. These systems, which are both distributed and embedded, require to

express functional as well as non functional-properties, for example time constrained

response and availability of required services. As with any distributed system, a compo-

nent assembly may appear obscure behaviours that are hard to understand and difficult

to debug. As with any embedded system, components and their composition should

satisfy safety/security/confidence requirements. As component-based systems are om-

nipresent, it is important to ensure their correct assembly.

Our goal is to apply the CSP‖B combination [1] of well-established formal methods,

CSP [2] and B [3], to a specific distributed and embedded system. This case study is

a convoy of so-called Cristal vehicles seen as a multi-agents system. We motivate the

use of this CSP‖B combination by the existence of pure B models describing the agents

and vehicles behaviours [4]. By using CSP for composing B machines we aim at giving

these B models the architectural, compositional description they lack.

As a comparison point, in [1] Schneider & Treharne illustrate their use of CSP‖B
with a multi-lift system that can be seen as a distributed system using several instances

of a lift, minus the fact that the interactions of the lifts are actually centralised in a

⋆ This work has been partially supported by the French National Research Agency (ANR)/ANR-

06-SETI-017 TACOS project, (http://tacos.loria.fr), and by the pôle de compétitivité

Alsace/Franche-Comté/CRISTAL project (http://www.projet-cristal.org).

2 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

dedicated dispatcher. Our goal is very similar, but in contrast to [1], we want to avoid

relying on a centralised, or orchestrating, controller.

Similar works exist on structured development with the B method using decompo-

sition, hence in a more “top-down” approach, and refinement. For instance, Bontron

& Potet [5] propose a methodology for extracting components out of the enrichments

brought by refinement. The extracted components can then be handled to reason about

them so as to validate new properties or to detail them more. The interesting point is

that their approach stays within the B method framework: this means that the modelling

of component communication and its properties has to be done by using the B notation,

which can quickly get more cumbersome than an ad-hoc formalism like CSP. Abrial [6]

introduces the notion of decomposition of an event system: components are obtained by

splitting the specification in the chain of refinements into several specifications express-

ing different views or concerns about the model. Attiogbé [7] presents an approach dual

to the one of Abrial: event systems can be composed with a new asynchronous paral-

lel composition operator, which corresponds to bringing “bottom-up” construction to

event systems. In [8], Bellegarde & al. [8] propose a “bottom-up” approach based on

synchronisation conditions expressed on the guards of the events. The spirit of the re-

sulting formalism is close to that of CSP‖B. Unfortunately it does not seem to support

message passing for communication modelling.

Our approach is rather “bottom-up” oriented: the B machines describe the various

components of a Cristal vehicle while CSP is used for expressing their assembly at the

level of a single vehicle and at the level of the whole convoy3. Our experience, reported

here, shows that writing and checking CSP‖B specifications can help eliminate errors

and ambiguities in an assembly and its communication protocols. We also believe that

writing formal specifications can aid in the process of designing autonomous vehicles.

This paper is organised as follows. Section 2 introduces the platooning case study

with the properties we will focus on. Section 3 briefly introduces the theoretical back-

ground on CSP‖B. Section 4 presents the specification and the verification process of a

single Cristal vehicle whereas Section 5 is dedicated to a platoon of vehicles. Section 6

ends with some perspectives of this development.

2 Case Study Presentation : a Platoon of Vehicles

The CRISTAL project aims at the development of a new type of urban vehicle with

new functionalities and services. One of its major cornerstones is the development,

certification and validation of a platoon of vehicles.

A platoon is a set of autonomous vehicles which have to move in a convoy, i.e.

following the path of the leader (possibly driven by a human being) in a row. Its control

concerns both a longitudinal control, i.e. maintaining an ideal distance between each

vehicle, and a lateral control, i.e. each vehicle should follow the track of its predecessor.

Both controls can be studied independently [9]. In the sequel, we will only focus on the

longitudinal one.

3 CSP‖B specifications discussed in this paper are available at

http://www.loria.fr/~lanoix/platoon.zip.

Validating a Platoon of Cristal Vehicles 3

Fig. 1. A platoon of Cristals

Through the projects’ collaborations, we have decided to consider each vehicle,

named Cristal in the following, as an agent of a Multi-Agent System (MAS). The

Cristal driving system perceives information about its environment before producing

an instantaneous acceleration passed to its engine. In this context, we consider the pla-

tooning problem as a situated MAS which evolves following the Influence/Reaction

model (I/R) [10] in which agents are described separately from the environment.

As we only focus on the longitudinal control of the platoon, the considered space is

one-dimensional. Hence the position of the ith Cristal is represented by a single variable

xposi, its velocity by speedi. The behaviour of the Cristal controllers can be summarised

as follows, see Fig. 1:

(i) perception step: each Cristal driving system receives its velocity p_speedi and its

position p_xposi, from the physical part of the Cristal. Furthermore, it receives by

network communication the velocity p_pre_speedi and the position p_pre_xposi

of its leading Cristal

(ii) decision step: each Cristal driving system can influence its speed and position

by computing and sending to its engine an instantaneous acceleration acceli. The

acceleration can be negative, corresponding to the braking of the Cristal

(iii) reaction step: xposi and speedi are updated, depending on the current speed

speedi of the Cristal and a decided instantaneous acceleration acceli of the en-

gine

Our goal is the expression of the model with a broader range of granularity than the

existing B model [4]. Our CSP‖B model should span more architectural levels (from

the component of a vehicle to the whole convoy) and explicitly model communications.

It is thus necessary to ensure that communications between components in the resulting

architecture do not suffer from design errors, e.g. a scheduling leading to deadlocks.

3 Theoretical Background on CSP‖B

The B machines specifying components are open modules which interact by the autho-

rised operation invocations. When developing distributed and concurrent systems, CSP

is used to describe an execution order for invoking the B machines operations. CSP de-

scribes processes – objects or entities which exist independently, but may communicate

4 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

with each other. There is a lot of works on CSP‖B. The reader interested by theoretical

results is referred to [1,11,12]; for case studies, see for example [13,14].

3.1 CSP Controllers

In the combined CSP‖B model, the B part is specified as a standard B machine4 without

any restriction on the language, while a controller for a B machine is a particular kind

of CSP process, called a CSP controller.

CSP controllers obey the following (subset of the) CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P |

b & P | P1 � P2 | S(p)

The process c ? x ! v → P can accept input x and output v along a communication

channel c. Having accepted x, it behaves as P. To interact with a B machine, a controller

makes use of machine channels which provide the means for controllers to synchronise

with the B machine. For each operation x ←− ope(v) of a controlled machine, there is

a channel ope ! v ? x in the controller corresponding to the operation call: the output

value v from the CSP description corresponds to input parameter of the B operation, and

the input value x corresponds to the output of the operation. A controlled B machine

can only communicate on the machine channels of its controller.

The behaviour of a guarded process b & P depends on the evaluation of the boolean

condition b: if true, it behaves as P, otherwise it is unable to perform any events. In

some works (e.g. [1]), the notion of blocking assertion is defined by using a guarded

process on the inputs of a channel to restrict these inputs: c ? x & E(x) → P. The exter-

nal choice P1 � P2 is initially prepared to behave either as P1 or as P2, with the choice

made on the occurrence of the first event. The expression S(p) is a recursive process

invocation.

In addition to the language for simple processes, CSP provides a number of opera-

tors to combine processes. In this paper the operators we are concerned with are P1 ‖E

P2, and 9i (P(i)).

– The sharing operator P1 ‖E P2 executes P1 and P2 concurrently, requiring that P1

and P2 synchronise on the events into the sharing alphabet E and allowing inde-

pendent executions for other events (not in E)5.

– The indexed form of the interleaving operator 9iP(i) executes the processes P(i) in

an independent manner without synchronisation. It is used to build up a collection

of similar processes independent from each other.

4 Because of lack of space, we only recall the idea behind consistency checking in the B method.

Roughly speaking, given a B machine and its invariant, the machine is said consistent if its

initialisation satisfies the invariant, and if, for each operation, assuming its precondition and

the invariant hold, the operation body satisfies the invariant.
5 Note that when combining a CSP controller P and a B machine M associated withP, the sharing

alphabet can be dropped: (P ‖α(M) M) ≡ P ‖ M.

Validating a Platoon of Cristal Vehicles 5

As for other process algebras, the denotational semantics of CSP is based on the

observation of process behaviours. In CSP, the three main semantic models use notions

of traces, stable failures, and failures/divergences (see [15]). In the trace semantics, a

process P is associated with the set of finite sequences of events that P can perform,

denoted traces(P). In the stable failures semantics, a process P is associated with the

set failure (P) of pairs of the form (tr , X), where tr is a finite trace in traces(P), and

X is the set of events that P cannot perform after the execution of the events of tr .

This model allows specifying the deadlocks of P. Finally, in the failures/divergences

semantics, a process P is associated with the set of its stable failures, and with the set

of its divergences. The process P is said divergent if it is in a divergent state where the

only possible events are internal (or invisible) events. The divergences set of P, denoted

divergences(P), is the set of traces tr such that P is in a divergent state after performing

events of tr .

The three most frequently used CSP refinement notions compute and compare the

semantic models of processes. Given two processes P and Q, we say

– P ⊑T Q, Q refines P in the trace semantics if all the possible communication se-

quences that Q may perform, are also possible sequences for P;

– P ⊑F Q, Q refines P in the stable failure semantics if failure (Q) ⊆ failures (P);

– P ⊑FD Q, Q refines P in the failures/divergences model if failures (Q)⊆ failures (P)

and divergences(Q) ⊆ divergences(P).

The FDR2 model checker [16] provides determining deadlock and divergence free-

dom of individual CSP processes, and implements verification for each kind of refine-

ment.

3.2 Useful Results on CSP‖B

The main problem with combined specifications is the model consistency, in other

words, CSP and B parts should not be contradictory. To ensure the consistency of a

controlled machine (P‖M) in CSP‖B, a verification technique has been proposed [12]

consisting in verifying the following sufficient conditions:

– the divergence-freedom of (P‖M);

– the deadlock-freedom of P.

This verification technique can be generalised to a set of controlled machines (Pi ‖Mi)

evolving in parallel:

– the divergence-freedom of each (Pi ‖Mi);

– the deadlock-freedom of (P1‖P2‖ ... ‖Pn).

The divergence-freedom of (P‖M) can be deduced by using a technique based on

Control Loop Invariants (CLI). This technique involves the verification that each path

a controlling process may take, does not end up in a diverging state (a violation of

the precondition of a controlled method, for instance). For verifying that we reuse the

methodology introduced in [11]. It involves the translation of the various paths of the

controlling process up to recursive calls to itself, into B operations in a machine. This

6 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

machine is then augmented with a CLI, and this machine consistency checking is per-

formed: it is thus akin to verify that no path in the controlling process ends up in a

diverging state.

Let S(p) be a family of processes in a controller P, p helping to identify which

process we are referencing to. S(p) is of the following general form:

S(p) = path_1→ S(q) � ... � path_n→ S(r)

Let BBODYS(p) be the rewriting of S(p) into B using the translation rules of [11].

The whole controlling process P is then translated into a B machine, whose methods

are the various BBODYS(p) and whose invariant constitutes the chosen CLI.

If the rewriting of P into a B machine is consistent, it means all the operations

preserve the invariant. This in turn means that each process of the controller forms a

sequence of operation calls that maintain the CLI. This entails that the controller never

diverges in calling its controlled B machine, hence that the couple controller/B machine

is divergence-free. This is the matter of the following theorem:

Theorem 1 ([12, Theorem 1]). If CLI is a predicate such that

CLI ∧ I ⇒ [BBODYS(p)] CLI

for each BBODYS(p) in P, then (P‖M) is divergence-free.

The following result is useful for establishing trace properties of controlled compo-

nents. It means that the trace refinement established purely for the CSP part (possibly

using hidden events) of a controlled component suffices to ensure the trace refinement

for the overall controlled component (possibly using hidden events).

Corollary 1 ([1, Corollary 7.2]). For any controller P and any B machine M with the

alphabet α(M) of events one has:

1. If S ⊑T P then S ⊑T (P‖M)

2. If S ⊑T P \ E and E⊆α(M), then S ⊑T (P‖M) \ E

The following theorem is a composition result for establishing the whole system

divergence-freedom from the divergence-freedom of its components.

Theorem 2 ([1, Theorem 8.1]). If (Pi ‖Mi) is divergence-free for each i , then ‖i (Pi ‖Mi)

is divergence-free.

The consistency of a single controlled machine is achieved by the following re-

sult stating that the deadlock-freedom of (P‖M) can be deduced by establishing the

deadlock-freedom of the P part.

Theorem 3 ([1, Theorem 5.9]). If P is a CSP controller for M with no blocking asser-

tion on any machine channels of M, and P is deadlock-free in the stable failures model,

then (P‖M) is deadlock-free in the stable failures model.

Finally, the deadlock-freedom of multiple controlled machines ‖i (Pi ‖Mi) follows

from deadlock-freedom of the combination of the CSP parts ‖iPi. It achieves the multi-

ple controlled machines consistency checking.

Theorem 4 ([1, Theorem 8.6]). Given a collection of CSP controllers Pi and corre-

sponding B machines Mi, such that no controller has any blocking assertions on the

control channels: then if ‖iPi is deadlock-free in the stable failures model, then so too

is ‖i (Pi ‖Mi).

Validating a Platoon of Cristal Vehicles 7

4 Specifying a Single Cristal

We consider a Cristal vehicle composed of two parts: its engine and a driving system,

as depicted Fig. 2. Each part is itself built upon a B machine controlled by an associated

CSP process.

Fig. 2. Architectural view of a Cristal

We must ensure steady communications between Cristal components. For instance,

communications are broken if two components expect input from each other: in that

case the components cause the deadlock of the whole vehicle. We therefore state that

the communications between Cristal components should never cause a deadlock.

In an automatic mode, a Cristal must get information about its position and its speed

as accurate as possible so that its resulting acceleration is as accurate as possible. Thus

we do not want the Cristal to stay in the “perception mode” for too long. To avoid that,

a solution is to force the Cristal to alternate between “perception mode” and “reaction

mode”. This is what we strive for as a safety property.

The engine is built upon a B machine that describes its inner workings, i.e. its

knowledge of speed and position as well as how it updates them w.r.t. a given ac-

celeration. The speed and the position are passed on to the controller through the

getSpeed and getXpos methods/events. The acceleration is passed on to the engine

through the setAccel method/event. The CtrlEngine CSP controller receives acceleration

orders through the channel associated with the engineAccel event and sends information

about speed and position through the engineInfo event.

In a similar way, the driving system is composed of the DrivingSystem B machine

and its CtrlDrivingSystem CSP controller. The machine and its controller share the

setPerceptions and getInfluences events. The controller (and thus the compound con-

struction) communicates with the engine through the engineInfo,engineAccel channels.

It also communicates with the Human Control Interface (HCI) of the Cristal by way of

the hciSpeed, hciAccel events. Finally, it is also able to receive information from or to

send information to other Cristals through the comIn and comOut events, respectively.

The models of the engine and the driving system assume a common set of constants.

The constants below are replicated in both CSP and B specifications:

– The functioning modes of the Cristals: as a leader (LEADER), as a single vehicle

(SOLO) or in a platoon (PLATOON);

– Maximal and minimal allowed accelerations (MAX_ACCEL,MIN_ACCEL);

8 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

– Maximal speed (MAX_SPEED), the minimal allowed speed being 0;

– A set of unique identifiers for the Cristals (Ids).

We will now detail each component and the performed verifications.

4.1 The Engine

MODEL Engine(Id)

VARIABLES

speed, xpos

OPERATIONS

speed0←− getSpeed = /∗...∗/

xpos0←− getXpos = /∗...∗/

setAccel(accel) =

PRE

accel ∈ MIN_ACCEL..MAX_ACCEL

THEN

ANY new_speed

WHERE new_speed = speed + accel

THEN

IF (new_speed > MAX_SPEED)

THEN

xpos := xpos + MAX_SPEED

‖ speed := MAX_SPEED

ELSE

IF (new_speed < 0)

THEN

xpos := xpos − (speed × speed) / (2 × accel)

‖ speed := 0

ELSE

xpos := xpos + speed + accel / 2

‖ speed := new_speed

END

END

END

END

Fig. 3. The Engine(Id) B model

As stated earlier, the engine is a behavioural

component reacting to a given acceleration

for speeding up or slowing down a Cristal

vehicle. This behaviour is described by a

Engine(Id) B machine illustrated in Fig. 3.

Id6 is a natural number that uniquely iden-

tifies a Cristal. It is used at the CSP level

in order to model interactions with other

Cristals.

The speed←− getSpeed() and xpos

←− getXpos() methods capture data from

the engine to pass them on to whomever

needs it (say, the HCI, for instance). The

setAccel(accel) method models how the

Cristal behaves when passed a new instan-

taneous acceleration.

The B machine is made able to com-

municate by adding a CSP model for con-

trolling it. This model, called CtrlEngine(id)

and depicted in Fig. 4, schedules the calls to

its various methods. The getSpeed ? speed

and getXpos ? xpos event calls the homony-

mous methods of the B machine to retrieve

the speed and the position of the Cristal. Similarly, the controller passes a new instan-

taneous acceleration on through setAccel ! accel to the B machine.

CtrlEngine_perceptions(id) =

getXpos ? xpos→ getSpeed ? speed→ engineInfo.id ! xpos ! speed→ CtrlEngine_actions(id)

�

getSpeed ? speed→ getXpos ? xpos→ engineInfo.id ! xpos ! speed→ CtrlEngine_actions(id)

CtrlEngine_actions(id) =

engineAccel.id ? accel → setAccel ! accel → CtrlEngine_perceptions(id)

CtrlEngine(id) = CtrlEngine_perceptions(id)

Fig. 4. The CtrlEngine(id) CSP controller

6 In the whole model we use id but as it is a reserved keyword in B we have to resort to denoting

it Id for the B machines.

Validating a Platoon of Cristal Vehicles 9

Communications are achieved with the engineInfo and engineAccel events. The for-

mer sends the current speed and position to requesting components. The latter sets a

new acceleration for the engine. The event engineInfo.id ! xpos ! speed has a Cristal

identifier as a synchronisation channel and the Cristal position and speed as output

channels. Similarly, the event engineAccel.id ? accel has also a Cristal identifier as a

synchronisation channel and an acceleration as an input channel.

The protocol defined by the controller is very simple: either it asks the machine

about the speed and the position (in any order) and passes it on the engineInfo event,

or sets a new acceleration passed on by the engineAccel event. Information request and

acceleration setting alternate: CtrlEngine_perceptions calls CtrlEngine_actions which in

turn calls CtrlEngine_perceptions again.

REFINEMENT CtrlEngine_ref(Id)

VARIABLES

xpos_csp, speed_csp, cb

INVARIANT

xpos_csp ∈ Positions_csp

∧ speed_csp ∈ Speeds_csp

∧ cb ∈ 0..2

OPERATIONS

CtrlEngine =

BEGIN

cb := 1

END;

CtrlEngine_perceptions =

BEGIN

CHOICE

BEGIN

xpos_csp←− getXpos ;

speed_csp←− getSpeed ;

cb := 2

END

OR

BEGIN

speed_csp←− getSpeed ;

xpos_csp←− getXpos;

cb := 2

END

END

END;

CtrlEngine_actions =

BEGIN

ANY accel_csp WHERE

accel_csp ∈ Accels_csp

THEN

setAccel(accel_csp);

cb := 1

END

END

Fig. 5. B rewriting of

CtrlEngine(id)

The whole engine component is then defined as the com-

position of the Engine(id) machine and its CtrlEngine(id) con-

troller for a given Cristal identifier id:

(CtrlEngine(id) ‖ Engine(id))

Verification. The Engine(Id) B machine consistency is

successfully checked using the B4Free proof tool. The

CtrlEngine(id) controller deadlock-freedom (in the stable fail-

ures model) and its divergence-freedom are successfully

checked. These verifications have been done with the FDR2

model-checking tool

The composition of the B machine and the controller is

verified for divergence-freedom. The verification is specific to

CSP‖B and is not supported by tools and is described in The-

orem 1. As the verification involves the translation of the CSP

process to B, we illustrate the translation of CtrlEngine(id) in

Fig.5. Its CLI is actually as simple as the⊤ predicate modulo

the mandatory typing predicates.

Once all these properties are established, we can use the

theorems of Sect. 3.2 for deducing results about the whole

component:

– By way of Theorem 3 and the fact that CtrlEngine(id)

is deadlock-free, we deduce the deadlock-freedom of

(Engine(id)‖CtrlEngine(id)) in the stable failures model.

– By way of Theorem 1 and the fact that the B rewrit-

ing of CtrlEngine(id) is consistent, we deduce that

(CtrlEngine(id) ‖Engine(id)) is divergence-free.

4.2 The Driving System

For the driving system whose CSP behaviour is given Fig. 6, there are three modes to

function: SOLO, LEADER or PLATOON. In the SOLO mode, it receives an acceleration

from the pilot via the HCI passed on through hciAccel. id ? accel and sends this desired

10 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

CtrlDrivingSystem(mode,id) =

((mode == SOLO) ∨ (mode == LEADER) &

hciAccel. id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == PLATOON) &

getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == SOLO) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == LEADER) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == PLATOON) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ comIn.id ? preSpeed ? preXpos→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ please_compress(CtrlDrivingSystem(mode,id)))

Fig. 6. The CtrlDrivingSystem(mode,id) CSP Controller

acceleration to the engine through engineAccel.id ! accel. It can also request Cristal

information from the engine via engine Info . id ? myXpos ? mySpeed so as to make

the HCI display it (hciSpeed.id ! mySpeed).

The LEADER mode is very similar to the SOLO mode. The only difference concerns

an additional sending of the Cristal information to another Cristal via comOut.id ! my

Speed ! myXpos.

The PLATOON mode is the mode that actually makes use of a DrivingSystem B

machine not given here: acceleration is obtained by a call to the getInfluences method

and the result is passed on the engine. The data required for the machine to compute

an accurate speed are obtained from the engine (engineInfo.id ? myXpos ? mySpeed)

and the leading Cristal comIn.id ? preSpeed ? preXpos. Once the data is obtained, it is

passed on to the B machine through the setPerceptions method.

The whole component parametrised by the Cristal identifier and its chosen mode is

defined as:

(CtrlDrivingSystem(mode,id) ‖ DrivingSystem(id))

Verification. For the driving system the properties to check are the same as for the

engine component:

– The DrivingSystem(id) B machine is consistent.

– For every possible mode, the CtrlDrivingSystem(mode,id) CSP controller is deadlock-

free in the stable failures model, and it is divergence-free.

– (CtrlDrivingSystem(mode,id)‖DrivingSystem(id)) is deadlock-free.

– (CtrlDrivingSystem(mode,id)‖DrivingSystem(id)) is divergence-free.

Note 1. At this point of the models development, verifications become time-consuming

for the CSP specifications. The way the processes were modelled (especially for the

driving system) made FDR2 take a long time to check deadlock-freedom, for instance.

We thus use the FDR2 “compression functions” feature which gives means to speedup

Validating a Platoon of Cristal Vehicles 11

the checking. These functions have no influence on the model itself, but on the way

FDR2 explores state space: FDR2 attempts to shrink the state space with specific tech-

niques which may be more or less fruitful depending on the nature of the model [16].

Using compression gives us interesting speedups in verifying the CSP models from

there.

4.3 The Assembly Cristal(mode,id)

As illustrated in Fig. 2, a Cristal is defined as the composition of the engine and the

driving system:

Cristal(mode,id) =

(CtrlEngine(id) ‖ Engine(id))
n

{|engineInfo,

engineAccel|}

(CtrlDrivingSystem(mode,id) ‖ DrivingSystem(id))

Verification. Divergence-freedom is obtained by applying Theorem 2 to the divergence-

freedom of both components (CtrlEngine(id) ‖Engine(id)) and (CtrlDrivingSystem(mode,

id) ‖DrivingSystem(id)).

Deadlock-freedom of the Cristal stems from deadlock-freedom of (CtrlEngine(id) ‖
CtrlDrivingSystem(mode,id)) (the controllers alone) and applying Theorem 4 to the con-

trollers accompanied by their B machines. Deadlock-freedom as verified by FDR2 is not

guaranteed for Cristal (mode,id). FDR2 gives some trace examples leading to a dead-

lock. For instance, a deadlock happens when the engine attempts to send information to

the driving system engineInfo.id ! xpos ! speed while the driving system attempts to

send an acceleration to the engine engineAccel.id ! accel.

More generally, deadlocks are due to differing expectations from the engine and the

driving system: the engine was attempting to send information while the driving system

was attempting to send an acceleration, or the engine was expecting an acceleration

while the driving system was expecting the Cristal information. This suggested the need

for a tighter scheduling of the communications between components.

CtrlDrivingSystem Revisited. To establish deadlock-freedom and fix the problem

above, the CSP controller of the driving system has been modified. In fact, the new

version of the driving system imposes a scheduling of the process. In the same way as

the engine alternates between sending information and receiving a new acceleration, the

driving system alternates between receiving information, for dispatching it to the HCI

or to the automated driving system, and sending new accelerations, obtained from the

HCI or from the automated driving system. The new CtrlDrivingSystem2(mode,id) CSP

controller is given Fig. 7.

As previously, the divergence-freedom is obtained through Theorem 2 and divergence-

freedom of both CSP‖B compounds. Moreover, the deadlock-freedom checking is suc-

cessful this time: CtrlEngine(id) ‖CtrlDrivingSystem2(mode,id) is deadlock-free, hence

by Theorem 4 Cristal2 (mode,id) is deadlock-free. This verification achieves the re-

quirement expressed at the beginning of Sect. 4 where we specified that the communi-

cations between components inside a vehicle should not deadlock. Cristal2 is the same

as Cristal but with the corrected driving system.

12 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

CtrlDrivingSystem_perceptions(mode,id) =

((mode == SOLO) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ please_compress(CtrlDrivingSystem_actions(mode,id)))

�

((mode == LEADER) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ please_compress(CtrlDrivingSystem_actions(mode,id)))

�

((mode == PLATOON) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ comIn.id ? preSpeed ? preXpos→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ please_compress(CtrlDrivingSystem_actions(mode,id)))

CtrlDrivingSystem_actions(mode,id) =

((mode == SOLO) ∨ (mode == LEADER) & −− new accel from user

hciAccel. id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))

�

((mode == PLATOON) & −− new accel from DECISION

getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))

CtrlDrivingSystem2(mode,id) = CtrlDrivingSystem_perceptions(mode,id)

Fig. 7. The CSPCtrlDrivingSystem controller revisited

Safety Property. The safety property we informally expressed at the beginning of

Sect. 4 stated that perception and reaction should alternate while the Cristal functions.

We can rephrase it here more precisely as the fact that the data – speed and position

– are always updated (engineInfo) before applying an instantaneous acceleration to the

engine (engineAccel). This ordering of events should constitute a cycle. This property

is captured as a CSP process:

Property(id) = engineInfo.id?xpos?speed→ engineAccel.id?accel→ Property(id)

We need to show that the Cristal meets this specification. For that, we successfully

check – using FDR2 – that there is a trace refinement between the CSP part of Cristal2

and Property, i.e. Property(id) ⊑T CtrlEngine(id) ‖CtrlDrivingSystem2(mode,id). Then

by Corollary 1 we obtain Property(id) ⊑T Cristal2 (mode,id), i.e. the property is satis-

fied.

5 Specifying a Platoon of Cristals

Once we dispose of a correct model for a single Cristal, we can focus on the specifi-

cation of a platoon, as shown Fig. 8. We want the various Cristals to avoid going stale

when they are in the PLATOON mode. This might happen because one Cristal waits for

information from its leading Cristal, for instance. In other words, we do not want the

communications in the convoy to deadlock. This is what we will strive for as a safety

property for the platoon.

5.1 A Communication Medium

Communications between two successive Cristals are managed at a new layer. Conse-

quently, a new component, called Net(id, id2), is added to each Cristal for managing

Validating a Platoon of Cristal Vehicles 13

Fig. 8. A Platoon of four Cristals

communication. This communication medium receives the speed and the position from

the Cristal identified by id before sending these data to the next Cristal identified by

id2. Net(id, id2) is defined by the CSP process given Fig. 9. When the Cristal has no

successor in the platoon, Net(id, id2) only consumes the data.

Net(id, id2) =

((id != id2) & comOut.id ? speed ? xpos→ comIn.id2 ! speed ! xpos→ Net(id,id2))

�

((id == id2) & comOut.id ? speed ? xpos→ Net(id,id2))

Fig. 9. CSP model Net(id, id2)

Using FDR2, we successfully check that Net(id, id2) is deterministic, deadlock-free

in the stable failures model and divergence-free.

5.2 A Platoon of Cristals

A platoon of n Cristals is defined as the parallel composition of n Cristals and n com-

munication mediums.

– The first Cristal of the platoon functions in the LEADER mode, while the others

function in the PLATOON mode. The Cristals are independent from each other,

consequently their composition is specified using the interleaving operator.

Cristals(n) = Cristal2(LEADER,1)9





o

id:{2..n}

Cristal2(PLATOON,id)





– In the platoon, a Net component is associated with each Cristal. Since these com-

ponents are independent from each other, their composition is specified by inter-

leaving.

Nets(n) =





o

id:{1..n-1}

Net(id,id+1)



9Net(n,n)

14 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

– Finally, the platoon is defined by the parallel composition of all the Cristals and all

the Nets, synchronised on {| comIn, comOut|}.

Platoon(n) = Cristals(n)
n

{|comIn,

comOut|}

Nets(n)

Verification. As each Cristal and each Net have been proved divergence-free, the pla-

toon is divergence-free by applying Theorem 2. To achieve consistency checking, the

parallel composition of the CSP parts of each Cristal and communication medium is

shown deadlock-free, thanks to FDR2. Consequently, by Theorem 4 the platoon is

deadlock-free too. This verification validates the safety property expressed at the be-

ginning of Sect. 5 saying that the communications (expressed through the Nets compo-

nents) should not deadlock.

6 Conclusion

The development of a new type of urban vehicle and the needs for its certification ne-

cessitate their formal specification and validation. We propose in this paper a formal

CSP‖B specification development of an autonomous vehicle components, and an archi-

tecture for assembling vehicles in a convoy to follow the path of the leader vehicle in

a row. Applying known results on the composition and the verification in the CSP‖B
framework and using existing tools, the FDR2 model-checking and the B4Free proof

tools, allow us to ensure the consistency of the whole multi-agent system, in a compo-

sitional manner.

Having formal CSP‖B specifications help – by establishing refinement relations –

to prevent incompatibility among various implementations. Moreover, writing formal

specifications help in designing a way to manage the multi-level assembly.

This work points out the main drawback of the CSP‖B approach: at the interface

between the two models, CLIs and augmented B machines corresponding to CSP con-

trollers are not automatically generated. But this task requires a high expertise level. In

our opinion, the user should be able to conduct all the verification steps automatically.

Automation of these verification steps could be a direction for future work.

On the case study side, to go further, we are currently studying new properties such

as the non-collision, the non-unhooking and the non-oscillation: which ones are ex-

pressible with CSP‖B, which ones are tractable and verifiable? This particular perspec-

tive is related to a similar work by the authors of CSP‖B who dealt with another kind of

multi-agent system in [14]. So far our use of CSP‖B for the platooning model reaches

similar conclusions. This nonetheless begs the question of which impact the expression

of more complex emerging properties does have on the model.

Further model development requires checking other refinement relations. It also in-

cludes evolutions in order to study what happens when a Cristal joins or leaves the

platoon, and which communication protocols must be obeyed to do so in a safe man-

ner. We also plan to take into account the lateral control and/or perturbations such as

pedestrians or other vehicles.

Validating a Platoon of Cristal Vehicles 15

Acknowledgement. We would like to thank Olivier Simonin, Alexis Scheuer and

François Charpillet from the LORIA/MAIA team for common efforts and fruitful dis-

cussions in the context of the TACOS and the CRISTAL projects.

References

1. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines. Formal

Aspects of Computing, Special issue of IFM’04 (2005)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)

3. Abrial, J.R.: The B Book. Cambridge University Press (1996)

4. Simonin, O., Lanoix, A., Colin, S., Scheuer, A., Charpillet, F.: Generic Expression in B

of the Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems.

INRIA Research Report 6304, INRIA (2007)

5. Bontron, P., Potet, M.L.: Automatic construction of validated B components from structured

developments. In: Proc. First Int. Conf. ZB’2000, York, Great Britain. Volume 1878 of

LNCS., Springer Verlag (2000) 127–147

6. Abrial, J.R.: Discrete system models. Version 1.1 (2002)

7. Attiogbé, J.: Communicating B abstract systems. Research Report RR-IRIN 02.08 (2002)

updated july 2003.

8. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized parallel composition of event

systems in B. In Bert, D., Bowen, J.P., Henson, M.C., Robinson, K., eds.: Formal speci-

fication and development in Z and B (ZB’2002). Volume 2272 of LNCS., Springer-Verlag

(2002) 436–457

9. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a platoon. In: Pro-

ceeding of the IEEE Intelligent Vehicles Symposium. (1996) 41–46

10. Ferber, J., Muller, J.P.: Influences and reaction : a model of situated multiagent systems. In:

2nd Int. Conf. on Multi-agent Systems. (1996) 72–79

11. Treharne, H., Schneider, S.: Using a process algebra to control B OPERATIONS. In: 1st

International Conference on Integrated Formal Methods (IFM’99), York, Springer Verlag

(1999) 437–457

12. Schneider, S., Treharne, H.: Communicating B machines. In Bert, D., Bowen, J.P., Henson,

M.C., Robinson, K., eds.: Formal specification and development in Z and B (ZB 2002).

Volume 2272 of LNCS., Springer Verlag (2002) 416–435

13. Evans, N., Treharne, H.E.: Investigating a file transfer protocol using CSP and B. Software

and Systems Modelling Journal 4 (2005) 258–276

14. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural model of

platelets. In: 11th IEEE International Conference on Engieerging of Complex Computer

Systems, ICECCS. (2006)

15. Roscoe, A.W.: The theory and Practice of Concurrency. Prentice Hall (1997)

16. Formal Systems (Europe) Ltd.: Failures-Divergence Refinement – FDR2 user manual. For-

mal systems (europe) ltd. edn. (1997) Available at http://www.formal.demon.co.uk/

fdr2manual/index.html.

16 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

A Specifications of a Single Cristal

A.1 Global definitions

MODEL

Constants

CONSTANTS

MAX_SPEED,

MIN_ACCEL,

MAX_ACCEL,

ALERT_DISTANCE,

IDEAL_DISTANCE

PROPERTIES

MAX_SPEED ∈ NAT1 ∧
MIN_ACCEL ∈ INT ∧
MIN_ACCEL < 0 ∧
MAX_ACCEL ∈ NAT1 ∧
ALERT_DISTANCE ∈ NAT ∧
IDEAL_DISTANCE ∈ NAT ∧
ALERT_DISTANCE < IDEAL_DISTANCE

ASSERTIONS

∀(i , j).((i ∈ Z ∧ j ∈ Z ∧ i ≤ j) ⇒
(∀k.((k ∈ Z)⇒ (min({ j ,max({i,k })}) ∈ i .. j))))

END

datatype Modes = PLATOON | LEADER | SOLO

datatype Params = TRANSMIT | LAST

MAX_ID = 10

nametype Ids = {1..MAX_ID}

MAX_SPEED = 1

MIN_ACCEL = −1

MAX_ACCEL = 1

MAX_POS = 1

UNHOOKING_DIST = 1

nametype Speeds = {0..MAX_SPEED}

nametype Accels = {MIN_ACCEL..MAX_ACCEL}

nametype Positions = {0..MAX_POS}

−− Common channels between CtrlEngine∧CtrlDrivingSystem

channel engineInfo: Ids. Positions . Speeds

channel engineAccel: Ids. Accels

−− B machine channels between Engine∧CtrlEngine

channel getSpeed: Speeds

channel getXpos: Positions

channel setAccel: Accels

−− B machine channels between DrivingSystem∧CtrlDrivingSystem

channel setPerceptions : Positions . Speeds . Positions . Speeds

channel getInfluences : Accels

−− Channels between an HCI∧CtrlDrivingSystem

channel hciAccel : Ids. Accels

channel hciSpeed : Ids. Speeds

−− Channels between other cristals∧CtrlDrivingSystem

channel comIn : Ids. Speeds . Positions

channel comOut : Ids. Speeds . Positions

InternalEngine = {| getSpeed, getXpos,setAccel|}

InternalDrivingSystem = {|setPerceptions, getInfluences|}

EngineDrivingSystem = {| engineInfo, engineAccel |}

Environment = {| hciAccel, hciSpeed, comIn, comOut |}

Cristal_NotEngine = union(InternalEngine, union(InternalDrivingSystem, Environment))

All_Channels = union(EngineDrivingSystem, Cristal_NotEngine)

Validating a Platoon of Cristal Vehicles 17

A.2 CtrlEngine(id)‖Engine(id)

MODEL Engine(Id)

CONSTRAINTS Id ∈ NAT1

SEES Constants

VARIABLES

speed, xpos

INVARIANT

speed ∈ 0..MAX_SPEED

∧ xpos ∈ N

INITIALISATION

speed := 0 ‖ xpos :∈ N

OPERATIONS

speed0←− getSpeed = /∗...∗/

BEGIN

speed0 := speed

END ;

xpos0←− getXpos = /∗...∗/

BEGIN

xpos0 := xpos

END ;

setAccel(accel) =

PRE

accel ∈ MIN_ACCEL..MAX_ACCEL

THEN

ANY new_speed

WHERE new_speed = speed + accel

THEN

IF (new_speed > MAX_SPEED)

THEN

xpos := xpos + MAX_SPEED

‖ speed := MAX_SPEED

ELSE

IF (new_speed < 0)

THEN

xpos := xpos − (speed × speed) / (2 × accel)

‖ speed := 0

ELSE

xpos := xpos + speed + accel / 2

‖ speed := new_speed

END

END

END

END

END

CtrlEngine_perceptions(id) =

getXpos ? xpos→ getSpeed ? speed→ engineInfo.id ! xpos ! speed→ CtrlEngine_actions(id)

�

getSpeed ? speed→ getXpos ? xpos→ engineInfo.id ! xpos ! speed→ CtrlEngine_actions(id)

CtrlEngine_actions(id) =

engineAccel.id ? accel → setAccel ! accel → CtrlEngine_perceptions(id)

CtrlEngine(id) = CtrlEngine_perceptions(id)

assert CtrlEngine(1) :[deadlock free [F]]

assert CtrlEngine(1) :[divergence free]

assert CtrlEngine(1) \ InternalEngine :[divergence free]

MACHINE CtrlEngine_abs(Id)

CONSTRAINTS

Id ∈ NAT1

VARIABLES

cb

18 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

INVARIANT

cb ∈ 0..2

INITIALISATION

cb := 0

OPERATIONS

CtrlEngine =

PRE cb = 0

THEN

cb :∈ 0..2

END;

CtrlEngine_perceptions =

PRE cb = 1

THEN

cb :∈ 0..2

END;

CtrlEngine_actions =

PRE cb = 2

THEN

cb :∈ 0..2

END

END

REFINEMENT CtrlEngine_ref(Id)

REFINES CtrlEngine_abs

INCLUDES Engine(Id)

SEES

Constants_csp, Constants

VARIABLES

xpos_csp, speed_csp, cb

INVARIANT

xpos_csp ∈ Positions_csp

∧ speed_csp ∈ Speeds_csp

∧ cb ∈ 0..2

INITIALISATION

xpos_csp :∈ Positions_csp

‖ speed_csp :∈ Speeds_csp

‖ cb := 0

OPERATIONS

CtrlEngine =

BEGIN

cb := 1

END;

CtrlEngine_perceptions =

BEGIN

CHOICE

BEGIN

xpos_csp←− getXpos ;

speed_csp←− getSpeed ;

cb := 2

END

OR

BEGIN

speed_csp←− getSpeed ;

xpos_csp←− getXpos;

cb := 2

END

END

END;

CtrlEngine_actions =

BEGIN

ANY accel_csp WHERE

accel_csp ∈ Accels_csp

THEN

setAccel(accel_csp);

cb := 1

END

END

Validating a Platoon of Cristal Vehicles 19

END

A.3 CtrlDrivingSystem(mode,id)‖DrivingSystem(id)

MODEL DrivingSystem(Id)

CONSTRAINTS Id ∈ NAT1

SEES Constants

VARIABLES

myXpos, mySpeed,

preXpos, preSpeed

INVARIANT

myXpos ∈ N

∧ mySpeed ∈ 0..MAX_SPEED

∧ preXpos ∈ N

∧ preSpeed ∈ 0..MAX_SPEED

INITIALISATION

myXpos :∈ N

‖ mySpeed := 0

‖ preXpos :∈ N

‖ preSpeed := 0

OPERATIONS

setPerceptions(myXpos0, mySpeed0, preXpos0, preSpeed0) =

PRE

myXpos0 ∈ N

∧ mySpeed0 ∈ 0..MAX_SPEED

∧ preXpos0 ∈ N

∧ preSpeed0 ∈ 0..MAX_SPEED

THEN

myXpos := myXpos0

‖ mySpeed := mySpeed0

‖ preXpos := preXpos0

‖ preSpeed := preSpeed0

END ;

accel ←− getInfluences =

IF (preXpos − myXpos < ALERT_DISTANCE)

THEN

accel := MIN_ACCEL

ELSE

ANY new_accel

WHERE

new_accel = 2 × (preXpos − myXpos) − IDEAL_DISTANCE + preSpeed − mySpeed

THEN

accel := min({MAX_ACCEL, max({MIN_ACCEL, new_accel}) })

END

END

END

CtrlDrivingSystem(mode,id) =

((mode == SOLO) ∨ (mode == LEADER) &

hciAccel. id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == PLATOON) &

getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == SOLO) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == LEADER) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ please_compress(CtrlDrivingSystem(mode,id)))

�

((mode == PLATOON) &

engineInfo.id ? myXpos ? mySpeed→

20 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ comIn.id ? preSpeed ? preXpos→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ please_compress(CtrlDrivingSystem(mode,id)))

assert CtrlDrivingSystem(SOLO,1) :[deadlock free [F]]

assert CtrlDrivingSystem(LEADER,1) :[deadlock free [F]]

assert CtrlDrivingSystem(PLATOON,1) :[deadlock free [F]]

assert CtrlDrivingSystem(SOLO,1) :[divergence free]

assert CtrlDrivingSystem(LEADER,1) :[divergence free]

assert CtrlDrivingSystem(PLATOON,1) :[divergence free]

assert CtrlDrivingSystem(SOLO,1) \ InternalDrivingSystem :[divergence free]

assert CtrlDrivingSystem(LEADER,1) \ InternalDrivingSystem :[divergence free]

assert CtrlDrivingSystem(PLATOON,1) \ InternalDrivingSystem :[divergence free]

MACHINE CtrlDrivingSystem_abs(Mode,Id)

CONSTRAINTS

Id ∈ NAT1 ∧ Mode ∈ 1..3

VARIABLES

cb

INVARIANT

cb ∈ 0..0

INITIALISATION

cb := 0

OPERATIONS

CtrlDrivingSystem =

PRE cb = 0

THEN cb :∈ 0..0

END

END

REFINEMENT CtrlDrivingSystem_ref(Mode,Id)

REFINES CtrlDrivingSystem_abs

SEES Constants_csp, Constants

INCLUDES DrivingSystem(Id)

VARIABLES

accel, cb

INVARIANT

accel ∈ Accels_csp

∧ cb ∈ 0..0

INITIALISATION

accel := 0

‖ cb := 0

OPERATIONS

CtrlDrivingSystem =

BEGIN

CHOICE

IF Modes_csp_of_nat(Mode) = SOLO ∨ Modes_csp_of_nat(Mode) = LEADER

THEN

ANY ihmAccel_accel

WHERE ihmAccel_accel ∈ Accels_csp

THEN cb := 0

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = PLATOON

THEN

accel ←− getInfluences;

cb := 0

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = SOLO

THEN

ANY motorInfo_myXpos, motorInfo_mySpeed

WHERE motorInfo_myXpos ∈ Positions_csp

∧ motorInfo_mySpeed ∈ Speeds_csp

Validating a Platoon of Cristal Vehicles 21

THEN cb := 0

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = LEADER

THEN

ANY motorInfo_myXpos, motorInfo_mySpeed

WHERE motorInfo_myXpos ∈ Positions_csp

∧ motorInfo_mySpeed ∈ Speeds_csp

THEN cb := 0

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = PLATOON

THEN

ANY motorInfo_myXpos, motorInfo_mySpeed

WHERE motorInfo_myXpos ∈ Positions_csp

∧ motorInfo_mySpeed ∈ Speeds_csp

THEN

ANY comIn_preSpeed, comIn_preXpos

WHERE comIn_preSpeed ∈ Speeds_csp

∧ comIn_preXpos ∈ Positions_csp

THEN

setPerceptions(motorInfo_myXpos, motorInfo_mySpeed,

comIn_preXpos, comIn_preSpeed);

cb := 0

END

END

ELSE SELECT TRUE = FALSE THEN skip END

END

END

END

END

A.4 Cristal(mode,id)

Cristal_verif (mode,id) = (CtrlDrivingSystem(mode,id) [| EngineDrivingSystem |] CtrlEngine(id))

assert Cristal_verif (SOLO,1) :[deadlock free [F]]

assert Cristal_verif (LEADER,1) :[deadlock free [F]]

assert Cristal_verif (PLATOON,1) :[deadlock free [F]]

A.5 CtrlDrivingSystem2(mode,id)‖DrivingSystem(id)

CtrlDrivingSystem_perceptions(mode,id) =

((mode == SOLO) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ please_compress(CtrlDrivingSystem_actions(mode,id)))

�

((mode == LEADER) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ please_compress(CtrlDrivingSystem_actions(mode,id)))

�

((mode == PLATOON) &

engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ comIn.id ? preSpeed ? preXpos→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ please_compress(CtrlDrivingSystem_actions(mode,id)))

22 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

CtrlDrivingSystem_actions(mode,id) =

((mode == SOLO) ∨ (mode == LEADER) & −− new accel from user

hciAccel. id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))

�

((mode == PLATOON) & −− new accel from DECISION

getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))

CtrlDrivingSystem2(mode,id) = CtrlDrivingSystem_perceptions(mode,id)

assert CtrlDrivingSystem2(SOLO,1) :[deadlock free [F]]

assert CtrlDrivingSystem2(LEADER,1) :[deadlock free [F]]

assert CtrlDrivingSystem2(PLATOON,1) :[deadlock free [F]]

assert CtrlDrivingSystem2(SOLO,1) :[divergence free]

assert CtrlDrivingSystem2(LEADER,1) :[divergence free]

assert CtrlDrivingSystem2(PLATOON,1) :[divergence free]

assert CtrlDrivingSystem2(SOLO,1) \ InternalDrivingSystem :[divergence free]

assert CtrlDrivingSystem2(LEADER,1) \ InternalDrivingSystem :[divergence free]

assert CtrlDrivingSystem2(PLATOON,1) \ InternalDrivingSystem :[divergence free]

MACHINE CtrlDrivingSystem2_abs(Mode,Id)

CONSTRAINTS

Id ∈ NAT1

∧ Mode ∈ 1..3

VARIABLES

cb

INVARIANT

cb ∈ 0..2

INITIALISATION

cb := 0

OPERATIONS

CtrlDrivingSystem2 =

PRE cb = 0

THEN cb :∈ 0..2

END;

CtrlDrivingSystem_perceptions =

PRE cb = 1

THEN cb :∈ 0..2

END;

CtrlDrivingSystem_actions =

PRE cb = 2

THEN cb :∈ 0..2

END

END

REFINEMENT CtrlDrivingSystem2_ref(Mode,Id)

REFINES CtrlDrivingSystem2_abs

SEES Constants_csp, Constants

INCLUDES DrivingSystem(Id)

VARIABLES

accel, cb

INVARIANT

accel ∈ Accels_csp

∧ cb ∈ 0..2

INITIALISATION

accel := 0

‖ cb := 0

OPERATIONS

CtrlDrivingSystem2 =

BEGIN

cb := 1

END;

CtrlDrivingSystem_perceptions =

BEGIN

CHOICE

IF Modes_csp_of_nat(Mode) = SOLO

THEN

Validating a Platoon of Cristal Vehicles 23

ANY motorInfo_myXpos, motorInfo_mySpeed

WHERE motorInfo_myXpos ∈ Positions_csp

∧ motorInfo_mySpeed ∈ Speeds_csp

THEN cb := 2

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = LEADER

THEN

ANY motorInfo_myXpos, motorInfo_mySpeed

WHERE motorInfo_myXpos ∈ Positions_csp

∧ motorInfo_mySpeed ∈ Speeds_csp

THEN cb := 2

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = PLATOON

THEN

ANY motorInfo_myXpos, motorInfo_mySpeed

WHERE motorInfo_myXpos ∈ Positions_csp

∧ motorInfo_mySpeed ∈ Speeds_csp

THEN

ANY comIn_preSpeed, comIn_preXpos

WHERE comIn_preSpeed ∈ Speeds_csp

∧ comIn_preXpos ∈ Positions_csp

THEN

setPerceptions(motorInfo_myXpos, motorInfo_mySpeed,

comIn_preXpos, comIn_preSpeed);

cb := 2

END

END

ELSE SELECT TRUE = FALSE THEN skip END

END

END

END;

CtrlDrivingSystem_actions =

BEGIN

CHOICE

IF Modes_csp_of_nat(Mode) = SOLO ∨ Modes_csp_of_nat(Mode) = LEADER

THEN

ANY ihmAccel_accel

WHERE ihmAccel_accel ∈ Accels_csp

THEN cb := 1

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = PLATOON

THEN

accel ←− getInfluences;

cb := 1

ELSE SELECT TRUE = FALSE THEN skip END

END

END

END

END

A.6 Cristal2(mode,id)

Cristal2_verif (mode,id) = (CtrlDrivingSystem2(mode,id) [| EngineDrivingSystem |] CtrlEngine(id))

24 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

assert Cristal2_verif (SOLO,1) :[deadlock free [F]]

assert Cristal2_verif (LEADER,1) :[deadlock free [F]]

assert Cristal2_verif (PLATOON,1) :[deadlock free [F]]

Property(id) = engineInfo.id?xpos?speed→ engineAccel.id?accel→ Property(id)

Cristal2_EDS(mode,id) = Cristal2_verif(mode,id) \ Cristal_NotEngine

assert Property(1) ⊑T Cristal2_EDS(SOLO,1)

assert Property(1) ⊑T Cristal2_EDS(LEADER,1)

assert Property(1) ⊑T Cristal2_EDS(PLATOON,1)

B Specifications of a Platoon of Cristals

B.1 Cristals

OnlyCom = {| engineInfo, engineAccel, setPerceptions, getInfluences, getSpeed, getXpos,setAccel, hciAccel, hciSpeed |}

Cristal_p(mode, id) = please_compress((CtrlEngine(id) [| {| engineInfo, engineAccel|} |] CtrlDrivingSystem2(mode,id)) \ OnlyCom)

Cristals (max) = Cristal_p(LEADER, 1) 9 (9 id :{2.. max} @ Cristal_p(PLATOON, id))

B.2 Net

Net(id, id2) =

((id != id2) & comOut.id ? speed ? xpos→ comIn.id2 ! speed ! xpos→ Net(id,id2))

�

((id == id2) & comOut.id ? speed ? xpos→ Net(id,id2))

assert Net(2,3) :[deadlock free [F]]

assert Net(2,3) :[divergence free]

assert Net(5,5) :[deadlock free [F]]

assert Net(5,5) :[divergence free]

B.3 Nets

Nets(max) = (9 id :{1.. max−1} @ Net(id,id+1)) 9 Net(max,max)

B.4 Platoon of Cristals

Platoon_verif(max) = Cristals(max) [|{| comIn, comOut|}|] Nets(max)

assert Platoon_verif(5) :[deadlock free [F]]

assert Platoon_verif(5) :[divergence free]

