
HAL Id: hal-00286431
https://hal.archives-ouvertes.fr/hal-00286431

Submitted on 9 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using CSP||B Components: Application to a Platoon of
Vehicles

Samuel Colin, Arnaud Lanoix, Olga Kouchnarenko, Jeanine Souquières

To cite this version:
Samuel Colin, Arnaud Lanoix, Olga Kouchnarenko, Jeanine Souquières. Using CSP||B Components:
Application to a Platoon of Vehicles. 13th International ERCIM Wokshop on Formal Methods for
Industrial Critical Systems (FMICS 2008), Sep 2008, Italy. 16 p. �hal-00286431�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50257751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00286431
https://hal.archives-ouvertes.fr

Using CSP||B Components:

Application to a Platoon of Vehicles ⋆

Samuel Colin1, Arnaud Lanoix1, Olga Kouchnarenko2, and Jeanine Souquières1

1 LORIA – DEDALE Team – Nancy Université

Campus scientifique

F-54506 Vandoeuvre-Lès-Nancy, France

{firstname.lastname}@loria.fr
2 LIFC – TFC Team – University of Franche-Comté

16 route de Gray

F-25030 Besançon, France

{firstname.lastname}@lifc.univ-fcomte.fr

Abstract. This paper presents an experience report on the specification and the

validation of a real case study in the context of the industrial CRISTAL project.

The case study concerns a platoon of a new type of urban vehicles with new func-

tionalities and services. It is specified using the combination, named CSP‖B, of

two well-known formal methods, and validated using the corresponding support

tools. This large – both distributed and embedded – system typically corresponds

to a multi-level composition of components that have to cooperate. We identify

some lessons learned, showing how to develop and verify the specification and

check some properties in a compositional way using theoretical results and sup-

port tools to validate this complex system.

Keywords: formal methods, CSP||B, compositional modelling, specification, ver-

ification, case study

1 Introduction

This paper is dedicated to an experience report on the specification and the validation

of a real case study in the land transportation domain. It takes place in the context of

the industrial CRISTAL project which concerns the developpement of a new type of

urban vehicles with new functionalities and services. One of its major cornerstones is

the development, the validation and the certification of platoon of vehicles. A platoon is

a set of autonomous vehicles which have to move in a convoy – i.e. following the path

of the leader – through an intangible hooking.

Through the CRISTAL project’s collaboration, we have decided to consider each

vehicle, named Cristal in the following, as an agent of a Multi-Agent System (MAS).

The Cristal driving system perceives information about its environment before produc-

ing an instantaneous acceleration passed to its engine. In this context, we consider the

platooning problem as a situated MAS which evolves following the Influence/Reaction

⋆ This work has been partially supported by the French National Research Agency TACOS

project, ANR-06-SETI-017 (http://tacos.loria.fr) and by the pôle de compétitivité

Alsace/Franche-Comté CRISTAL project (http://www.projet-cristal.net).

2 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

Fig. 1. A platoon of Cristals

model (I/R) [1] in which agents are described separately from the environment. The

driving control concerns both a longitudinal control, i.e. maintaining an ideal distance

between each vehicle, and a lateral control, i.e. each vehicle should follow the track of

its predecessor, see Fig. 1. Both controls can be studied independently [2]. At this time,

we focus solely on the longitudinal control.

The platoon of Cristal vehicles is a mix of distributed and embedded systems. The

former are usually hard to understand and to debug as they can exhibit obscure be-

haviours. The latter require the satisfaction of safety/security/confidence requirements,

alone and when composed together. To address these problems, we reuse the CSP‖B
framework proposed by Schneider and Treharne [3] of well-established formal meth-

ods, B, an environment for the development of provably correct software [4], and CSP

(for Communicating Sequential Processes), a process algebra introduced by Hoare [5]

for modelling patterns of interactions. We motivate the use of CSP‖B by the existence

of pure B models describing the agents and vehicles behaviours [6]. By using CSP for

coordinating B machines, we aim at giving these B models the architectural, composi-

tional description they lack.

Our approach can be described as a mix between a “bottom-up” and a component-

based development. On the one hand, B machines are seen as the smallest abstract

components representing various parts of a Cristal vehicle. On the other hand, CSP is

used to put these components together, to describe higher-level compounds such as a

vehicle or a whole convoy and to make them communicate.

Our first experience with the CSP‖B platoon model is presented in a short paper [7].

Here the description of the case study involves detailing two architectural levels. We

first consider a single Cristal, then we show how to reuse it to constitute a platoon.

Later on we make the model evolve by replacing one component with several others to

separate functionalities and refine them3. This can be achieved for instance by adapters

to connect these new components within the initial architecture [8]. We follow a similar

approach, only CSP-oriented. Moreover we use previous theoretical results on CSP‖B
in an unintended way in this context.

On both the model description and its evolution, we illustrate the relevance of

CSP‖B for eliminating errors and ambiguities in an assembly and its communication

3 CSP‖B specifications discussed in this paper are available at

http://tacos.loria.fr/platoon-fmics08.zip

Specifying and Validating a Platoon of Cristal Vehicles 3

protocols. We are convinced that writing formal specifications can aid in the process of

designing autonomous vehicles.

This paper is organised as follows. Section 2 briefly introduces the basic concepts

and existing tools on CSP‖B. Section 3 presents the specification and the verification

process of a single Cristal vehicle whereas Sect. 4 is dedicated to a platoon of vehicles.

Section 5 details a vehicle introducing new components, the engine and the location

ones. Section 6 presents related works, and Sect. 7 ends with lessons learned from this

industrial experience and some perspectives of this development.

2 Basic concepts and tools on CSP‖B

The B machines specifying components are open modules which interact by the au-

thorised operation invocations. CSP describes processes, i.e. objects or entities which

exist independently, but may communicate with each other. When combining CSP and

B to develop distributed and concurrent systems, CSP is used to describe execution

orders for invoking the B machines operations and communications between the CSP

processes.

2.1 B Machines

B is a formal software development method used to model and reason about systems [4].

The B method has proved its strength in industry with the development of complex

real-life applications such as the Roissy VAL [9]. The principle behind building a B

model is the expression of system properties which are always true after each evolution

step of the model. The verification of a model correctness is thus akin to verifying the

preservation of these properties, no matter which step of evolution the system takes.

The B method is based on first-order logic, set theory and relations. Properties are

specified in the INVARIANT clause of the model, and its evolution is specified by the

operations in the OPERATIONS clause (see Fig. 3 for an example). The verification of

a B model consists in verifying that each operation – assuming its precondition and

the invariant hold – satisfies the INVARIANT, i.e. the model is consistent. Support tools

such as B4free (http://www.b4free.com) or AtelierB (http://www.atelierb.eu)

automatically generate proof obligations to ensure the consistency.

A strength of the B method is its stepwise refinement feature: the REFINEMENT of

a model makes it less indeterministic and more precise with the introduction of more

programming language-like features. Refinement can be done until the code of the op-

erations can actually be implemented in a programming language. The consistency of

a refinement must also be checked, this time by ensuring that the newly introduced

behaviour and/or data do not contradict the model they refine.

2.2 Communicating Sequential Processes (CSP)

CSP allows the description of entities, called processes, which exist independently but

may communicate with each other. Thanks to dedicated operators it is possible to de-

scribe a set of processes as a single process, making CSP an ideal formalism for build-

4 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

ing a hierarchical composition of components. CSP is supported by the FDR2 model

checker (http://www.fsel.com).

Its denotational semantics is based on the observation of process behaviours. Three

kinds of behaviours [10] are observed and well suited for the expression of properties:

– traces, i.e. finite sequences of events, for safety properties;

– stable failures, i.e. traces augmented with a set of unperformable events at the end

thereof, for liveness properties and deadlock-freedom;

– failures/divergences, i.e. stable failures augmented with traces ending in an infinite

loop of internal events, for livelock-freedom.

Each semantics is associated with a notion of process refinement denoted:

– ⊑T for traces refinement;

– ⊑SF for stable failures refinement and

– ⊑FD for failures/divergences refinement.

2.3 CSP‖B components

In this section, we sum up the works by Schneider and Treharne on CSP‖B. The reader

interested in theoretical results is referred to [3,11,12]; for case studies, see for exam-

ple [13,14].

Specifying CSP controllers. In CSP‖B, the B part is specified as a standard B machine

without any restriction, while a controller for a B machine is a particular kind of CSP

process, called a CSP controller, defined by the following (subset of the) CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P | b & P

| P1 � P2 | if b then P1 else P2 | S(p)

The process c ? x ! v → P can accept input x and output v along a communication

channel c. Having accepted x, it behaves as P.

A controller makes use of machine channels which provide the means for con-

trollers to synchronise with the B machine. For each operation x ← ope(v) of a con-

trolled machine, there is a channel ope ! v ? x in the controller corresponding to the

operation call: the output value v from the CSP description corresponds to the input

parameter of the B operation, and the input value x corresponds to the output of the

operation. A controlled B machine can only communicate on the machine channels of

its controller.

The behaviour of a guarded process b & P depends on the evaluation of the boolean

condition b: if it is true, it behaves as P, otherwise it is unable to perform any events.

In some works (e.g. [3]), the notion of blocking assertion is defined by using a guarded

process on the inputs of a channel to restrict these inputs: c ? x & E(x) → P.

The external choice P1 � P2 is initially prepared to behave either as P1 or as P2,

with the choice made on the occurrence of the first event. The conditional choice

if b then P1 else P2 behaves as P1 or P2 depending on b. Finally, S(p) expresses a

recursive call.

Specifying and Validating a Platoon of Cristal Vehicles 5

Assembling CSP‖B components. In addition to the expression of simple processes,

CSP provides operators to combine them. The sharing operator P1 ‖E P2 executes P1

and P2 concurrently, requiring that P1 and P2 synchronise on the events into the sharing

alphabet E and allowing independent executions for other events. When combining a

CSP controller P and a B machine M associated with P, the sharing alphabet can be

dropped ((P ‖α(M) M) ≡ P ‖ M) as there is no ambiguity.

We also consider an indexed form of the sharing operator ‖i
Ei

P(i) which executes

the processes P(i) in a sharing manner. It is used to build up a collection of similar

controlled machines which exchange together.

Verifying CSP‖B components. The verification process to ensure the consistency of

a controlled machine (P‖M) in CSP‖B consists in verifying the following conditions:

1. the M machine consistency is checked using the B4Free proof tool;

2. the P controller deadlock-freedom in the stable-failures model is checked with the

FDR2 model-checking tool;

3. the P controller divergence-freedom is checked with FDR2;

4. the divergence-freedom of (P‖M) can be deduced by using a technique based on

Control Loop Invariants (CLI):

– P is translated into a B machine BBODYP using the rewriting rules of [11];

– a CLI is added to BBODYP;

– the BBODYP machine consistency checking is performed with B4Free;

– by way of [12, Theorem 1], we deduce the divergence-freedom of (P‖M);

5. by way of [3, Theorem 5.9] and the fact that P is deadlock-free, we deduce the

deadlock-freedom of (P‖M) in the stable failures model.

This verification process can be generalised to achieve the consistency checking of

a collection of controlled machines ‖i
Ei

(Pi ‖Mi):

1. we check the divergence-freedom of each (Pi ‖Mi) as previously;

2. by way of [3, Theorem 8.1], we deduce the divergence-freedom of ‖i
Ei

(Pi ‖Mi);

3. we check the deadlock-freedom of ‖i
Ei

(Pi) with FDR2;

4. by way of [3, Theorem 8.6], we deduce the deadlock-freedom of ‖i
Ei

(Pi ‖Mi).

3 Specifying a Single Cristal

As depicted in Fig. 2, in a first approximation, a Cristal vehicle is composed of two

parts: the vehicle and its driving system which controls the vehicle. Each part is itself

built upon a B machine controlled by an associated CSP process.

3.1 The Vehicle

Specifying the vehicle. The vehicle is a behavioural component reacting to a given ac-

celeration for speeding up or slowing down. It is built upon a Vehicle B machine that de-

scribes its inner workings, i.e. its knowledge of speed and location as well as how it up-

dates them w.r.t. a given acceleration, as illustrated in Fig. 3. The speed← getSpeed()

6 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

Fig. 2. Architectural view of a Cristal

MODEL Vehicle

VARIABLES

speed, xpos

OPERATIONS

speed0← getSpeed = BEGIN speed0 := speed END ;

xpos0← getXpos = BEGIN xpos0 := xpos END ;

setAccel(accel) =

PRE accel ∈ MIN_ACCEL..MAX_ACCEL

THEN

ANY new_speed

WHERE new_speed = speed + accel

THEN

IF (new_speed > MAX_SPEED)

THEN

xpos := xpos + MAX_SPEED ‖ speed := MAX_SPEED

ELSE

IF (new_speed < 0)

THEN

xpos := xpos − (speed × speed) / (2 × accel)

‖ speed := 0

ELSE

xpos := xpos + speed + accel / 2 ‖ speed := new_speed

END

END

END

END

END

Fig. 3. The Vehicle B model

REFINEMENT CtrlVehicle_ref

VARIABLES

xpos_csp, speed_csp, cb

INVARIANT

xpos_csp ∈ Positions_csp

∧ speed_csp ∈ Speeds_csp

∧ cb = 0

OPERATIONS

CtrlVehicle =

BEGIN

CHOICE

BEGIN

xpos_csp← getXpos ;

speed_csp← getSpeed ;

ANY accel_csp WHERE

accel_csp ∈ Accels_csp

THEN

setAccel(accel_csp); cb := 0

END

END

OR

BEGIN

speed_csp← getSpeed ;

xpos_csp← getXpos;

ANY accel_csp WHERE

accel_csp ∈ Accels_csp

THEN

setAccel(accel_csp); cb := 0

END

END

END

END

END

Fig. 4. B rewriting of

CtrlVehicle

CtrlVehicle =

(getXpos ? xpos→ getSpeed ? speed→ vehicleInfo ! xpos ! speed→
vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)

�

(getSpeed ? speed→ getXpos ? xpos→ vehicleInfo ! xpos ! speed→
vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)

Fig. 5. The CtrlVehicle CSP controller

Specifying and Validating a Platoon of Cristal Vehicles 7

and xpos ← getXpos() methods capture data from the vehicle. The setAccel(accel)

method models how the vehicle behaves when passed on a new instantaneous accel-

eration.

The B machine is made able to communicate by adding a CSP controller, CtrlVehicle ,

depicted in Fig. 5. It schedules the calls to its various methods. The speed and the lo-

cation are passed on to the controller through getSpeed ? speed and getXpos ? xpos

channels corresponding to invocations of the homonymous methods of the B machine to

retrieve the speed and the location of the vehicle. Then, information about speed and lo-

cation is sent to requesting components through vehicleInfo ! xpos ! speed. Similarly,

the controller receives new instantaneous acceleration orders through vehicleAccel ?

accel and passes them on through setAccel ! accel to the B machine.

The whole vehicle component with communication facilities is then defined as a

parallel composition of the Vehicle machine and its CtrlVehicle controller.

Verifying the vehicle. We follow the verification process given Sect. 2.3 to ensure the

consistency of (CtrlVehicle ‖Vehicle):

– the Vehicle B machine consistency is successfully checked using B4Free;

– the CtrlVehicle controller deadlock-freedom and its divergence-freedom are suc-

cessfully checked with FDR2;

– Figure 4 illustrates the B rewriting of CtrlVehicle . Its CLI is actually as simple as

the ⊤ predicate modulo the typing predicates. This rewriting is shown consistent

with B4Free, then (CtrlVehicle ‖Vehicle) is divergence-free;

– we automatically deduce the deadlock-freedom of (CtrlVehicle ‖Vehicle).

3.2 The Driving System

Specifying the driving system. The driving system (CtrlDrivingSystem(mode)‖Driving

System) is built up in a similar way. A DrivingSystem B machine models the decision

system: it updates its perceptions and decides for an acceleration passed on to the phys-

ical vehicle later on.

Communications are managed by a CtrlDrivingSystem CSP controller shown Fig. 6.

It has four running modes corresponding to different uses of a Cristal: SOLO, LEADER

of a platoon of Cristals, FOLLOWER of another Cristal into a platoon, and LAST vehicle

of a platoon.

In the SOLO mode, the controller requests Cristal speed from the vehicle via vehicle

Info ? myXpos ? mySpeed so as to make the HCI displays it (hciSpeed ! mySpeed). It

also receives an acceleration from the human driver passed on through hciAccel ? accel

and sends this desired acceleration to the vehicle through vehicleAccel ! accel.

The LEADER mode is very similar to the SOLO mode. The only difference consists

in additional sending of the Cristal information to the following Cristal via comOut !

mySpeed ! myXpos.

The FOLLOWER mode uses the DrivingSystem B machine: information required by

the machine to compute an accurate speed are obtained from the vehicle (vehicleInfo ?

myXpos ? mySpeed) and from the leading Cristal (comIn ? preSpeed ? preXpos). Once

data are obtained, they are passed on to the B machine through the setPerceptions()

8 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

DrivingSys_percept(mode) =

((mode == SOLO) &

vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed→ DrivingSys_act(mode))

�

((mode == LEADER) &

vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed → comOut ! mySpeed ! myXpos→
DrivingSys_act(mode))

�

((mode == FOLLOWER) &

vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ comOut ! mySpeed ! myXpos→
DrivingSys_act(mode))

�

((mode == LAST) &

vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ DrivingSys_act(mode))

DrivingSys_act(mode) =

((mode == SOLO) ∨ (mode == LEADER) &

hciAccel ? accel → vehicleAccel ! accel → DrivingSys_percept(mode))

�

((mode == FOLLOWER) ∨ (mode == LAST) &

getInfluences ? accel → vehicleAccel ! accel → DrivingSys_percept(mode))

CtrlDrivingSystem(mode) = DrivingSys_percept(mode)

Fig. 6. The CtrlDrivingSystem(mode) CSP Controller

method and sent to the following Cristal via comOut ! mySpeed ! myXpos. Otherwise,

the acceleration is obtained by a call to the getInfluences() method, and the result is

passed on to the vehicle via vehicleAccel ! accel.

The LAST mode is very similar to the FOLLOWER mode. The only difference is

that the last vehicle does not send its data to another one.

Verifying the driving system. Using the verification process given Sect. 2.3, the driv-

ing system is shown divergence-free and deadlock-free:

– the DrivingSystem B machine is consistent;

– for each mode, the CtrlDrivingSystem(mode) CSP controller is deadlock-free and

divergence-free;

– the B rewriting of CtrlDrivingSystem(mode) is consistent.

3.3 The Cristal(mode) Assembly

Specifying the assembly. As illustrated Fig. 2, a Cristal is defined as the parallel com-

position of a vehicle and its associated driving system, expressed in CSP by:

Cristal(mode) =(CtrlVehicle ‖ Vehicle)
n

{∣

∣

∣

vehicleInfo,

vehicleAccel

∣

∣

∣

}

(CtrlDrivingSystem(mode) ‖ DrivingSystem)

Specifying and Validating a Platoon of Cristal Vehicles 9

Verifying the assembly. Cristal (mode) is shown consistent following the verification

process given in Sect. 2.3:

– (CtrlVehicle ‖Vehicle) and (CtrlDrivingSystem(mode)‖DrivingSystem) are divergence-

free, hence Cristal (mode) is also divergence-free;

– (CtrlVehicle ‖CtrlDrivingSystem(mode)) is shown deadlock-free with FDR2, then

Cristal (mode) is deadlock-free.

Checking a safety property. A safety property we are interested in, states that percep-

tion and reaction should alternate while the Cristal runs, i.e. the data are always updated

(vehicleInfo) before applying an instantaneous acceleration to the vehicle (vehicleAccel).

This property is captured by the following CSP process:

Property = vehicleInfo ? xpos ? speed→ vehicleAccel ? accel→ Property

We need to show that the Cristal meets this property. For that, we first successfully

check with FDR2 that there is a trace refinement between the CSP part of Cristal (mode)

and Property, i.e. Property ⊑T CtrlVehicle ‖CtrlDrivingSystem(mode). Then, by apply-

ing [3, Corollary 7.2], we obtain that Property ⊑T Cristal (mode), i.e. the property is

satisfied by the Cristal (mode).

4 Specifying a Platoon of Cristals

Fig. 7. A Platoon of four Cristals

Once we dispose of a correct model for a single Cristal (mode), we can focus on

the specification of a platoon as presented Fig.7. We want the various Cristals to avoid

going stale when they move in a platoon. This might happen because a Cristal waits for

information from its leading one, i.e. we do not want the communications in the convoy

to deadlock.

Specifying the assembly. From the CSP||B specification of a generic Cristal (mode)

given in the previous section, we first define a Cristal occupying the position pos into

a platoon of max vehicles, as presented Fig. 8: if the Cristal is at the first position,

it runs on the LEADER mode, if it is at the last position, it runs on the LAST mode,

otherwise, it runs on the FOLLOWER mode. The communication channels are renamed

by com.pos/com.pos−1, so that the comOut channel of one Cristal matches with the

comIn channel of the following Cristal.

10 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

Cristal_p(pos,max) =

if (pos == 1)

then (Cristal (LEADER) [[comOut← com.pos]])

else if (pos == max)

then (Cristal (LAST) [[comIn← com.(pos−1)]])

else (Cristal (FOLLOWER) [[comIn← com.(pos−1), comOut← com.pos]])

Fig. 8. Cristal_p(pos,max)

A platoon of max Cristals is defined as an assembly of max Cristal_p(pos,max)

synchronised on {| com.pos|}, as illustrated Fig. 7 for four vehicles:

Platoon(max) =

pos∈{1..max}n

{|com.pos|}

(Cristal_p(pos,max))

Verifying the assembly. To check the consistency of Platoon(max), we follow the

verification process presented in Sect. 2.3:

– since each Cristal is proved divergence-free, Platoon(max) is divergence-free;

– we have to consider the parallel composition of the CSP parts of all the Cristals.

For instance, with four Cristals:

((CtrlVehicle||CtrlDrivingSystem(LEADER))[[comOut← com.1]])

n

{|com.1|}

((CtrlVehicle||CtrlDrivingSystem(FOLLOWER))[[comIn← com.1, comOut← com.2]])

n

{|com.2|}

((CtrlVehicle||CtrlDrivingSystem(FOLLOWER))[[comIn← com.2, comOut← com.3]])

n

{|com.3|}

((CtrlVehicle||CtrlDrivingSystem(LAST))[[comIn← com.3]])

FDR2 checks that this assembly is deadlock-free, hence Platoon(max) is deadlock-

free. Consequently, this verification process validates the safety property introduced

at the beginning of Sect. 4 saying that the communications, expressed through re-

naming, should not deadlock.

5 Detailing (CtrlVehicle(mode)‖Vehicle)

The definition of the vehicle part presented in Sect. 3.1 is very general. In order to detail

information about the vehicle engine and its location, reflecting separation of concerns

inside the (CtrlVehicle (mode)‖Vehicle) component, we evolve the model presented in

Fig. 2 evolve. This evolution introduces new components as illustrated in Fig. 9. They

correspond to the following design choices:

1. Now the Vehicle B machine represents the “real” physical vehicle.

2. For compatibility purpose with the rest of the system, the CtrlVehicle is preserved

without any modifications.

3. Two new B components are added, modelling two sensors and an actuator, intro-

ducing a loss of precision to represent the sensor and actuator effects:

Specifying and Validating a Platoon of Cristal Vehicles 11

Fig. 9. The Vehicle2 component

MODEL Location(er)

OPERATIONS

p_xpos← xposSensor(xpos) =

PRE xpos ∈ N

THEN

ANY xx WHERE xx ∈ N

∧ xpos − xpos × er / 100 ≤ xx

∧ xx ≤ xpos + xpos × er / 100

THEN

p_xpos := xx

END

END

END

Fig. 10. The Location B

model

– The B Location machine show Fig. 10 represents an abstract location system

able to determine the geographic location of the physical vehicle. It perceives

the “real” location and returns an approximated value through

p_xpos← xposSensor(xpos) (with an error of er%). It might be implemented

later on by a GPS system, for instance.

– The B Engine machine is introduced to model a speed sensor on the phys-

ical vehicle and an acceleration actuator. It senses the “real” speed, returns

an approximated value through p_speed← speedSensor(speed) and applies a

decided acceleration order through accel ← accelActuator(d_accel).

4. Three new CSP controllers must be introduced to control the new B machines and

to manage communications, i.e. perceptions on the physical world and exchanges

between the machines.

5.1 Three New CSP controllers

Specifying CtrlPhysical (Fig. 11). This controller manages the perceptions on the

real vehicle. It calls the speed← getSpeed() and xpos← getXpos() B methods – to

accurate the “real” speed and xpos – and sends these data on phyXpos ! xpos and

phySpeed ! speed. It receives a decided acceleration through phyAccel ? accel, then it

calls the method setAccel(accel) .

Specifying CtrlLocation (Fig. 12). This controller manages the B Location machine. It

perceives the “real” location on phyXpos ? xpos and calls p_xpos← xposSensor(xpos)

to pass them on to the Location component. It sends the perceived location through

xposOut ! p_xpos.

Specifying CtrlEngine (Fig. 13). This controller is in charge of the Engine B ma-

chine, i.e. the speed sensor and the acceleration actuator. A speed perception consists

in receiving the “real” speed on phySpeed, passing it on to the B machine by calling

the p_speed← speedSensor(speed) method, and sending the perceived speed through

12 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

CtrlPhysical =

(getSpeed ? speed→ phySpeed ! speed→ getXpos ? xpos→
phyXpos ! xpos → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)

�

(getXpos ? xpos→ phyXpos ! xpos→ getSpeed ? speed→
phySpeed ! speed → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)

Fig. 11. The CtrlPhysical CSP controller

CtrlLocation =

phyXpos ? xpos→ xposSensor ! xpos ? p_xpos→ xposOut ! p_xpos→ phyAck→ phyAck→ CtrlLocation

Fig. 12. The CtrlLocation CSP controller

CtrlEngine =

phySpeed ? speed→ speedSensor ! speed ? p_speed→ speedOut ! p_speed→ phyAck→
accelIn ? d_accel→ accelActuator ! d_accel ? accel → phyAccel ! accel→ phyAck→ CtrlEngine

Fig. 13. The CtrlEngine CSP controller

spe edOut ! p_speed. An acceleration setting consists in receiving the decided accelera-

tion on accelIn ? d_accel, passing them on to Engine by calling accel ← accelActuator

(d_accel) and sending it to the real vehicle through phyAccel ! accel.

In our first model, speed and location perceptions are done before acceleration is

applied. Now, with the separation of concerns introduced by the two components Lo-

cation and Engine, it would be possible for location perception to be realised after an

acceleration setting, for instance. In order to ensure this, CtrlEngine and CtrlLocation

are synchronised through phyAck.

Verifying the new components. We successfully establish the consistency of (CtrlPhy

sical ‖Vehicle), (CtrlEngine‖Engine) and (CtrlLocation ‖ Location) using B4Free and

FDR2 by following the verification process presented in Sect. 2.3.

5.2 The Vehicle2 Assembly

Vehicle2 is defined as an assembly of the previously detailed components, synchronised

on their common channels:

Vehicle2 =

n
{∣

∣

∣

∣

phyAccel,

phySpeed,

phyXpos

∣

∣

∣

∣

}

(CtrlEngine ‖ Engine)
n

{|phyAck|}

(CtrlLocation ‖ Location)

(

CtrlPhysical
n

Vehicle

)

[[

accelIn← setAccel,

xposOut← getXpos,

speedOut← getSpeed

]]

Some channels have to be renamed to match those of the CtrlVehicle controller.

Specifying and Validating a Platoon of Cristal Vehicles 13

Verifying that Vehicle2 refines Vehicle. The goal of the Vehicle component evolution

is to retain the initial architecture, i.e. we want to replace Vehicle into Cristal (mode) by

Vehicle2 and prove that the already established properties are still valid, among which:

– the deadlock-freedom of the whole vehicle (Sect. 3.1);

– the fact that perceptions and actions alternate (Sect. 3.3);

– the deadlock-freedom of the whole convoy (Sect. 4).

Hence Vehicle2 must externally show the same traces as Vehicle and should not

introduce new deadlocks. Proving that Vehicle2 refines Vehicle in the stable failures

semantics suffices for ensuring that. Indeed, the stable failures refinement preserves

safety properties (because it implies trace refinement), liveness properties and deadlock-

freedom [10].

We unfortunately face a problem. Vehicle is a B model and Vehicle2 is an assembly

of CSP controllers and B machines: there is no manner to check this kind of refinement.

To solve this problem, our proposal consists in lifting the refinement checking to an up-

per level, where refinement is well-defined. In a nutshell, we thus have to prove that the

(CtrlVehicle ‖Vehicle) component is refined by the (CtrlVehicle ‖Vehicle2) component

in the stable failures model which is denoted by:

(CtrlVehicle||Vehicle)\α(Vehicle)⊑SF (CtrlVehicle||Vehicle2)\α(Vehicle)

where α(Vehicle) ≡ {|getXpos,getSpeed,setAccel|}.

PROOF:

ASSUME:

CtrlVehicle2 =

n

∣

∣

∣

∣

∣

∣

phyAccel,

phySpeed,

phyXpos

∣

∣

∣

∣

∣

∣

CtrlEngine
n

{|phyAck|}

CtrlLocation

CtrlPhysical

[[

accelIn← setAccel,

xposOut← getXpos,

speedOut← getSpeed

]]

(CtrlVehicle2 is the CSP part of Vehicle2)

1. (CtrlVehicle ‖Vehicle) \ α(Vehicle) ⊑SF (CtrlVehicle‖CtrlVehicle2)\ α(Vehicle)

PROOF:

1.1. CtrlVehicle \ α(Vehicle) ⊑SF (CtrlVehicle‖CtrlVehicle2) \ α(Vehicle)

(verification carried out by FDR2)

1.2. (CtrlVehicle ‖Vehicle) \ α(Vehicle) ⊑SF CtrlVehicle \ α(Vehicle)

PROOF:

1.2.1. traces(((CtrlVehicle ‖Vehicle) \ α(Vehicle) = traces(CtrlVehicle \ α(Vehicle))

(definition of traces, hiding of internal channels)

1.2.2. failures((CtrlVehicle ‖Vehicle) \ α(Vehicle)) = failures(CtrlVehicle \ α(Vehicle)) = /0

(deadlock-freedom verified by FDR2, [3, theorem 5.9])

1.2.3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) ⊑SF CtrlVehicle \ α(Vehicle)

(1.2.1, 1.2.2, definition of ⊑SF)

1.3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) ⊑SF (CtrlVehicle‖CtrlVehicle2)\ α(Vehicle)

(1.1, 1.2, transitivity of ⊑SF)

2. (CtrlVehicle ‖CtrlVehicle2) \ α(Vehicle) ⊑SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)

PROOF:

2.1. CtrlVehicle2 \ α(Vehicle) ⊑SF Vehicle2 \ α(Vehicle)

([3, corollary 8.7] applied to controllers of Vehicle2)

2.2. (CtrlVehicle ‖CtrlVehicle2) \ α(Vehicle) ⊑SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)

(2.1, monotonicity of ⊑SF w.r.t. ‖ and hiding)

3. (CtrlVehicle ‖Vehicle) \ α(Vehicle) ⊑SF (CtrlVehicle‖Vehicle2) \ α(Vehicle)

(1, 2, transitivity of ⊑SF)

14 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

As (CtrlVehicle ‖Vehicle) \ α(Vehicle) ⊑SF (CtrlVehicle‖Vehicle2) \ α(Vehicle) is

true, all the properties we wanted to preserve from Vehicle to Vehicle2 are still true:

the deadlock-freedom of a vehicle, the deadlock-freedom of the whole convoy as well

as the alternation of perceptions and actions. In conclusion, we can replace Vehicle by

Vehicle2 without having to check the properties again.

6 Related Works

In addition to works on CSP‖B mentioned in Sect. 2, we would like to cite [15], where

the authors present a formal framework for verifying distributed embedded systems.

An embedded system is described as a set of concurrent real time functions which

communicate through a network of interconnected switches involving messages queues

and routing services. It presents an abstraction-based verification method which consists

in abstracting the communication network by end-to-end timed channels. Proving a

given safety property “requires then (1) to prove a set of proof obligations ensuring

the correctness of the abstraction step (i.e. the end-to-end channels correctly abstract

the network), and (2) to prove ” at the abstract level. The expected advantage of such

a method lies on the ability to overcome the combinatorial explosion frequently met

when verifying complex systems. This method is illustrated by an avionic case study.

As a comparison point, in [3] Schneider & Treharne illustrate their use of CSP‖B
with a multi-lift system that can be seen as a distributed system using several instances

of a lift, minus the fact that the interactions of the lifts are actually centralised in a

dedicated dispatcher. Our goal is very similar, but in contrast to [3], we want to avoid

relying on a centralised, or orchestrating, controller.

Similar works exist on structured development with the B method using decompo-

sition, hence in a more “top-down” approach, and refinement. For instance, Bontron

& Potet [16] propose a methodology for extracting components out of the enrichments

brought by refinement. The extracted components can then be handled to reason about

them so as to validate new properties or to detail them more. The interesting point is

that their approach stays within the B method framework: this means that the mod-

elling of component communication and its properties has to be done by using the B

notation, which can quickly get more cumbersome than an ad-hoc formalism like CSP.

Abrial [17] introduces the notion of decomposition of an event system: components are

obtained by splitting the specification in the chain of refinements into several specifi-

cations expressing different views or concerns about the model. Attiogbé [18] presents

an approach dual to the one of Abrial: event systems can be composed with a new

asynchronous parallel composition operator, which corresponds to bringing “bottom-

up” construction to event systems. In [19], Bellegarde & al. [19] propose a “bottom-up”

approach based on synchronisation conditions expressed on the guards of the events.

The spirit of the resulting formalism is close to that of CSP‖B. Unfortunately, it does

not seem to support message passing for communication modelling.

As stated in the introduction, this paper is an evolution of [7]. More precisely, in ad-

dition to a more detailed explanation of the specification process we followed with our

model, we exploited the renamings of channels so as to give a fitter way for instanciating

and assembling several Cristals. We also illustrated a novel use of CSP‖B theoretical

Specifying and Validating a Platoon of Cristal Vehicles 15

results: Indeed, theorems about refinement or equivalences of CSP‖B components are

usually used for easing verification by allowing one to re-express a CSP controller into

a simpler one. We used these results to show how to insert new behaviours by splitting

up a controller/machine compound without breaking previously verified properties.

7 Conclusion

With the development of a real case study, a platoon of a new type of urban vehicles

in the context of the industrial CRISTAL project, we address the importance of for-

mal methods and their utility for highly practical applications. Our contribution mainly

concerns methodological aspects for applying known results and tool supports (FDR2

and B4Free). We show how to use the CSP‖B framework to compositionally validate

the specifications and prove properties of component-based systems, with a precise

verification process to ensure the consistency of a controlled machine (P‖M) and its

generalisation to a collection of controlled machines ‖i
Ei

(Pi ‖Mi).

These formal specifications form another contribution of this work. Indeed, having

formal CSP‖B specifications help – by establishing refinement relations – to prevent in-

compatibility among various implementations. Moreover, writing formal specifications

help in designing a way to manage the multi-level assembly.

This work points out the main drawback of the CSP‖B approach: at the interface

between the both models, CLIs and augmented B machines corresponding to CSP con-

trollers are not automatically generated. However, this task requires a high expertise

level. In our opinion, the user should be able to conduct all the verification steps auto-

matically. Automation of these verification steps could be a direction for future work.

On the case-study side, to go further, we are currently studying new properties such

as the non-collision, the non-unhooking and the non-oscillation: which ones are ex-

pressible with CSP‖B, which ones are tractable and verifiable? This particular perspec-

tive is related to a similar work by the authors of CSP‖B dealing with another kind of

multi-agent system in [14]. So far our use of CSP‖B for the platooning model reaches

similar conclusions. This nonetheless raises the question of which impact the expression

of more complex emerging properties does have on the model.

Further model development requires checking other refinement relations. It also in-

cludes evolutions in order to study what happens when a Cristal joins or leaves the

platoon, and which communication protocols must be obeyed to do so in a safe man-

ner. We also plan to take into account the lateral control and/or perturbations such as

pedestrians or other vehicles.

References

1. Ferber, J., Muller, J.P.: Influences and reaction : a model of situated multiagent systems. In:

2nd Int. Conf. on Multi-agent Systems. (1996) 72–79

2. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a platoon. In: Pro-

ceeding of the IEEE Intelligent Vehicles Symposium. (1996) 41–46

3. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines. Formal

Aspects of Computing, Special issue of IFM’04 (2005)

16 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

4. Abrial, J.R.: The B Book. Cambridge University Press (1996)

5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)

6. Simonin, O., Lanoix, A., Colin, S., Scheuer, A., Charpillet, F.: Generic Expression in B

of the Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems.

INRIA Research Report 6304, INRIA (2007)

7. Colin, S., Lanoix, A., Kouchnarenko, O., Souquières, J.: Towards Validating a Platoon of

Cristal Vehicles using CSP||B. In: 12th International Conference on Algebraic Methodology

and Software Technology (AMAST 2008). LNCS, Springer-Verlag (2008)

8. Lanoix, A., Hatebur, D., Heisel, M., Souquières, J.: Enhancing dependability of component-

based systems. In Verlag, S., ed.: Reliable Software Technologies Ada-Europe 2007. Number

4498 in LNCS, Springer Verlag (2007) 41–54

9. Badeau, F., Amelot, A.: Using B as a high level programming language in an industrial

project: Roissy VAL. In: ZB 2005: Formal Specification and Development in Z and B, 4th

International Conference of B and Z Users. Volume 3455 of LNCS., Springer-Verlag (2005)

334–354

10. Roscoe, A.W.: The theory and Practice of Concurrency. Prentice Hall (1997)

11. Treharne, H., Schneider, S.: Using a process algebra to control B OPERATIONS. In: 1st

International Conference on Integrated Formal Methods (IFM’99), York, Springer Verlag

(1999) 437–457

12. Schneider, S., Treharne, H.: Communicating B machines. In Bert, D., Bowen, J.P., Henson,

M.C., Robinson, K., eds.: Formal specification and development in Z and B (ZB 2002).

Volume 2272 of LNCS., Springer Verlag (2002) 416–435

13. Evans, N., Treharne, H.E.: Investigating a file transfer protocol using CSP and B. Software

and Systems Modelling Journal 4 (2005) 258–276

14. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural model of

platelets. In: 11th IEEE International Conference on Engieerging of Complex Computer

Systems, ICECCS. (2006)

15. Carcenac, F., Boniol, F.: A formal framework for verifying distributed embedded systems-

Frederic based on abstraction methods. Int. J. Softw. Tools Technol. Transf. 8(6) (2006)

471–484

16. Bontron, P., Potet, M.L.: Automatic construction of validated B components from structured

developments. In: Proc. First Int. Conf. ZB’2000, York, Great Britain. Volume 1878 of

LNCS., Springer Verlag (2000) 127–147

17. Abrial, J.R.: Discrete system models. Version 1.1 (2002)

18. Attiogbé, C.: Communicating B abstract systems. Research Report RR-IRIN 02.08 (2002)

updated july 2003.

19. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized parallel composition of event

systems in B. In Bert, D., Bowen, J.P., Henson, M.C., Robinson, K., eds.: Formal speci-

fication and development in Z and B (ZB’2002). Volume 2272 of LNCS., Springer-Verlag

(2002) 436–457

Specifying and Validating a Platoon of Cristal Vehicles 17

A Specifying a Single Cristal

B constants

MODEL

Constants

CONSTANTS

MAX_SPEED,

MIN_ACCEL,

MAX_ACCEL,

ALERT_DISTANCE,

IDEAL_DISTANCE

PROPERTIES

MAX_SPEED ∈ NAT1 ∧
MIN_ACCEL ∈ INT ∧
MIN_ACCEL < 0 ∧
MAX_ACCEL ∈ NAT1 ∧
ALERT_DISTANCE ∈ NAT ∧
IDEAL_DISTANCE ∈ NAT ∧
ALERT_DISTANCE < IDEAL_DISTANCE

ASSERTIONS

∀(i , j).((i ∈ Z ∧ j ∈ Z ∧ i ≤ j) ⇒
(∀k.((k ∈ Z)⇒ (min({ j ,max({i,k })}) ∈ i .. j))))

END

CSP constants

datatype Modes = SOLO | LEADER | FOLLOWER | LAST

MAX_ID = 10

nametype Ids = {1..MAX_ID}

MAX_SPEED = 0

MIN_ACCEL = 1

MAX_ACCEL = 1

MAX_POS = 0

UNHOOKING_DIST = 1

nametype Speeds = {0..MAX_SPEED}

nametype Accels = {MIN_ACCEL..MAX_ACCEL}

nametype Positions = {0..MAX_POS}

please_compress(p) =

let

transparent normalise

within normalise(p)

CSP channels

−− B machine channels between Vehicle∧CtrlVehicle

channel getSpeed∈ Speeds

channel setAccel∈ Accels

channel getXpos∈ Positions

−− B machine channels between DrivingSystem∧CtrlDrivingSystem

channel setPerceptions ∈ Positions . Speeds . Positions . Speeds

channel getInfluences ∈ Accels

−− Common channels between CtrlVehicle∧CtrlDrivingSystem

channel vehicleInfo∈ Positions . Speeds

channel vehicleAccel∈ Accels

−− Channels between an HCI∧CtrlDrivingSystem

channel hciAccel ∈ Accels

channel hciSpeed ∈ Speeds

−− Channels between other cristals∧CtrlDrivingSystem

channel comIn ∈ Speeds . Positions

channel comOut ∈ Speeds . Positions

18 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

A.1 Specifying (CtrlVehicle‖Vehicle)

Vehicle

MODEL Vehicle

SEES Constants

VARIABLES

speed, xpos

INVARIANT

speed ∈ 0..MAX_SPEED ∧ xpos ∈ N

INITIALISATION

speed := 0 ‖ xpos :∈ N

OPERATIONS

speed0← getSpeed = BEGIN speed0 := speed END ;

xpos0← getXpos = BEGIN xpos0 := xpos END ;

setAccel(accel) =

PRE accel ∈ MIN_ACCEL..MAX_ACCEL

THEN

ANY new_speed

WHERE new_speed = speed + accel

THEN

IF (new_speed > MAX_SPEED)

THEN

xpos := xpos + MAX_SPEED ‖ speed := MAX_SPEED

ELSE

IF (new_speed < 0)

THEN

xpos := xpos − (speed × speed) / (2 × accel)

‖ speed := 0

ELSE

xpos := xpos + speed + accel / 2 ‖ speed := new_speed

END

END

END

END

END

CtrlVehicle

CtrlVehicle =

(getXpos ? xpos→ getSpeed ? speed→ vehicleInfo ! xpos ! speed→
vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)

�

(getSpeed ? speed→ getXpos ? xpos→ vehicleInfo ! xpos ! speed→
vehicleAccel ? accel → setAccel ! accel → CtrlVehicle)

Abstract B model for CtrlVehicle rewriting

MACHINE CtrlVehicle_abs

VARIABLES

cb

INVARIANT

cb = 0

INITIALISATION

cb := 0

OPERATIONS

CtrlVehicle =

PRE cb = 0

THEN

cb := 0

END

END

B CtrlVehicle rewriting

REFINEMENT CtrlVehicle_ref

REFINES CtrlVehicle_abs

Specifying and Validating a Platoon of Cristal Vehicles 19

INCLUDES Vehicle

SEES

Constants_csp, Constants

VARIABLES

xpos_csp, speed_csp, cb

INVARIANT

xpos_csp ∈ Positions_csp

∧ speed_csp ∈ Speeds_csp

∧ cb = 0

INITIALISATION

xpos_csp :∈ Positions_csp

‖ speed_csp :∈ Speeds_csp

‖ cb := 0

OPERATIONS

CtrlVehicle =

BEGIN

CHOICE

BEGIN

xpos_csp← getXpos ;

speed_csp← getSpeed ;

ANY accel_csp WHERE

accel_csp ∈ Accels_csp

THEN

setAccel(accel_csp); cb := 0

END

END

OR

BEGIN

speed_csp← getSpeed ;

xpos_csp← getXpos;

ANY accel_csp WHERE

accel_csp ∈ Accels_csp

THEN

setAccel(accel_csp); cb := 0

END

END

END

END

END

A.2 Specifying (CtrlDrivingSystem(mode)‖DrivingSystem)

DrivingSystem

MODEL DrivingSystem

SEES Constants

VARIABLES

myXpos, mySpeed,

preXpos, preSpeed

INVARIANT

myXpos ∈ N

∧ mySpeed ∈ 0..MAX_SPEED

∧ preXpos ∈ N

∧ preSpeed ∈ 0..MAX_SPEED

INITIALISATION

myXpos :∈ N

‖ mySpeed := 0

‖ preXpos :∈ N

‖ preSpeed := 0

OPERATIONS

setPerceptions(myXpos0, mySpeed0, preXpos0, preSpeed0) =

PRE

myXpos0 ∈ N

∧ mySpeed0 ∈ 0..MAX_SPEED

∧ preXpos0 ∈ N

20 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

∧ preSpeed0 ∈ 0..MAX_SPEED

THEN

myXpos := myXpos0

‖ mySpeed := mySpeed0

‖ preXpos := preXpos0

‖ preSpeed := preSpeed0

END ;

accel ← getInfluences =

IF (preXpos − myXpos < ALERT_DISTANCE)

THEN

accel := MIN_ACCEL

ELSE

ANY new_accel

WHERE

new_accel = 2 × (preXpos − myXpos) − IDEAL_DISTANCE + preSpeed − mySpeed

THEN

accel := min({MAX_ACCEL, max({MIN_ACCEL, new_accel}) })

END

END

END

CtrlDrivingSystem

DrivingSys_percept(mode) =

((mode == SOLO) &

vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed → please_compress(DrivingSys_act(mode)))

�

((mode == LEADER) &

vehicleInfo ? myXpos ? mySpeed→ hciSpeed ! mySpeed→ comOut ! mySpeed ! myXpos→
please_compress(DrivingSys_act(mode)))

�

((mode == FOLLOWER) &

vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→ setPerceptions! myXpos

! mySpeed ! preXpos ! preSpeed→ comOut ! mySpeed ! myXpos→ please_compress(DrivingSys_act(mode)))

�

((mode == LAST) &

vehicleInfo ? myXpos ? mySpeed→ comIn ? preSpeed ? preXpos→ hciSpeed ! mySpeed→ setPerceptions! myXpos

! mySpeed ! preXpos ! preSpeed→ please_compress(DrivingSys_act(mode)))

DrivingSys_act(mode) =

((mode == SOLO) ∨ (mode == LEADER) &

hciAccel ? accel → vehicleAccel ! accel → please_compress(DrivingSys_percept(mode)))

�

((mode == FOLLOWER) ∨ (mode == LAST) &

getInfluences ? accel → vehicleAccel ! accel → please_compress(DrivingSys_percept(mode)))

CtrlDrivingSystem(mode) = DrivingSys_percept(mode)

Abstract B model for CtrlDrivingSystem rewriting

MACHINE CtrlDrivingSystem_abs(Mode)

CONSTRAINTS

Mode ∈ 1..4

VARIABLES

cb

INVARIANT

cb ∈ 0..2

INITIALISATION

cb := 0

OPERATIONS

DrivingSys_percept =

PRE cb = 1

THEN cb :∈ 0..2

END;

DrivingSys_act =

PRE cb = 2

THEN cb :∈ 0..2

END;

CtrlDrivingSystem =

Specifying and Validating a Platoon of Cristal Vehicles 21

PRE cb = 0

THEN cb :∈ 0..2

END

END

B CtrlDrivingSystem rewriting

REFINEMENT CtrlDrivingSystem_ref(Mode)

REFINES CtrlDrivingSystem_abs

SEES Constants_csp, Constants

INCLUDES DrivingSystem

VARIABLES

accel, cb

INVARIANT

accel ∈ Accels_csp

∧ cb ∈ 0..2

INITIALISATION

accel := 0

‖ cb := 0

OPERATIONS

DrivingSys_percept =

BEGIN

CHOICE

IF Modes_csp_of_nat(Mode) = SOLO

THEN

ANY vehicleInfo_myXpos, vehicleInfo_mySpeed

WHERE vehicleInfo_myXpos ∈ Positions_csp

∧ vehicleInfo_mySpeed ∈ Speeds_csp

THEN cb := 1

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = LEADER

THEN

ANY vehicleInfo_myXpos, vehicleInfo_mySpeed

WHERE vehicleInfo_myXpos ∈ Positions_csp

∧ vehicleInfo_mySpeed ∈ Speeds_csp

THEN cb := 1

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = FOLLOWER

THEN

ANY vehicleInfo_myXpos, vehicleInfo_mySpeed

WHERE vehicleInfo_myXpos ∈ Positions_csp

∧ vehicleInfo_mySpeed ∈ Speeds_csp

THEN

ANY comIn_preSpeed, comIn_preXpos

WHERE comIn_preSpeed ∈ Speeds_csp

∧ comIn_preXpos ∈ Positions_csp

THEN

setPerceptions(vehicleInfo_myXpos, vehicleInfo_mySpeed,

comIn_preXpos, comIn_preSpeed);

cb := 1

END

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = LAST

THEN

ANY vehicleInfo_myXpos, vehicleInfo_mySpeed

WHERE vehicleInfo_myXpos ∈ Positions_csp

∧ vehicleInfo_mySpeed ∈ Speeds_csp

THEN

ANY comIn_preSpeed, comIn_preXpos

22 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

WHERE comIn_preSpeed ∈ Speeds_csp

∧ comIn_preXpos ∈ Positions_csp

THEN

setPerceptions(vehicleInfo_myXpos, vehicleInfo_mySpeed,

comIn_preXpos, comIn_preSpeed);

cb := 1

END

END

ELSE SELECT TRUE = FALSE THEN skip END

END

END

END;

DrivingSys_act =

BEGIN

CHOICE

IF Modes_csp_of_nat(Mode) = SOLO ∨ Modes_csp_of_nat(Mode) = LEADER

THEN

ANY hciAccel_accel

WHERE hciAccel_accel ∈ Accels_csp

THEN cb := 0

END

ELSE SELECT TRUE = FALSE THEN skip END

END

OR

IF Modes_csp_of_nat(Mode) = FOLLOWER ∨ Modes_csp_of_nat(Mode) = LAST

THEN

accel ← getInfluences;

cb := 0

ELSE SELECT TRUE = FALSE THEN skip END

END

END

END;

CtrlDrivingSystem =

BEGIN

cb := 0

END

END

A.3 Specifying the assembly Cristal(mode)

CSP part of Cristal (mode)

Cristal (mode) =

(CtrlVehicle [| {| vehicleInfo , vehicleAccel |} |] CtrlDrivingSystem(mode))

Safety property

Property = vehicleInfo ? xpos ? speed→ vehicleAccel ? accel→ Property

B Specifying a Platoon of Cristals

CSP part of Cristal_p(pos,max)

channel com ∈ Ids . Speeds . Positions

Cristal_x (mode) = Cristal (mode)

\ {| vehicleInfo , vehicleAccel, setPerceptions, getInfluences,

getSpeed, getXpos,setAccel, hciSpeed, hciAccel |}

Cristal_p(pos,max) =

if (pos == 1)

Specifying and Validating a Platoon of Cristal Vehicles 23

then (Cristal_x (LEADER) [[comOut← com.1]])

else if (pos == max)

then (Cristal_x (LAST) [[comIn← com.(max−1)]])

else (Cristal_x (FOLLOWER) [[comIn← com.(pos−1), comOut← com.pos]])

CSP part of Platoon(max)

Platoon(max) = (‖ pos∈{1..max} @ [{|com.pos|}] Cristal_p(pos,max))

C Detailing (CtrlVehicle(mode)‖Vehicle)

CSP channels

−− channels between CtrlVehicle∧CtrlEngine/CtrlLocation

channel accelIn ∈ Accels

channel speedOut ∈ Speeds

channel xposOut ∈ Positions

−− B machine channels between Engine∧CtrlEngine

channel speedSensor ∈ Speeds . Speeds

channel accelActuator ∈ Accels . Accels

−− B machine channel between Location∧CtrlLocation

channel xposSensor ∈ Positions . Positions

−− channels between CtrlEngine∧CtrlPhysical

channel phyAccel ∈ Accels

channel phySpeed ∈ Speeds

−− channel between CtrlLocation∧CtrlPhysical

channel phyXpos ∈ Positions

−− channel between CtrlEngine∧CtrlLocation

channel phyAck

C.1 Specifying (CtrlPhysical‖Vehicle)

CtrlPhysical

CtrlPhysical =

(getSpeed ? speed→ phySpeed ! speed→ getXpos ? xpos→
phyXpos ! xpos → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)

�

(getXpos ? xpos→ phyXpos ! xpos→ getSpeed ? speed→
phySpeed ! speed → phyAccel ? accel→ setAccel ! accel→ CtrlPhysical)

Abstract B model for CtrlPhysical rewriting

MACHINE CtrlPhysical_abs

VARIABLES

cb

INVARIANT

cb ∈ 0..0

INITIALISATION

cb := 0

OPERATIONS

CtrlPhysical =

PRE cb = 0

THEN cb :∈ 0..0

END

END

24 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

B CtrlPhysical rewriting

REFINEMENT CtrlPhysical_ref

REFINES CtrlPhysical_abs

SEES Constants_csp, Constants

INCLUDES Vehicle

VARIABLES

p_xpos,p_speed, cb

INVARIANT

p_xpos ∈ Positions_csp

∧ p_speed ∈ Speeds_csp

∧ cb ∈ 0..0

INITIALISATION

p_xpos := 0

‖ p_speed := 0

‖ cb := 0

OPERATIONS

CtrlPhysical =

BEGIN

CHOICE

BEGIN

p_speed← getSpeed;

p_xpos← getXpos;

ANY accel

WHERE accel ∈ Accels_csp

THEN

setAccel(accel);

cb:=0

END

END

OR

BEGIN

p_xpos← getXpos;

p_speed← getSpeed;

ANY accel

WHERE accel ∈ Accels_csp

THEN

setAccel(accel);

cb:=0

END

END

END

END

END

C.2 Specifying (CtrlEngine‖Engine)

Engine

MODEL Engine(ac_er,sp_er)

CONSTRAINTS ac_er ∈ 0..100 ∧ sp_er ∈ 0..100

SEES Constants

OPERATIONS

p_speed← speedSensor(speed) =

PRE speed ∈ 0..MAX_SPEED

THEN

ANY sp WHERE sp ∈ 0..MAX_SPEED

∧ speed − speed × sp_er / 100 ≤ sp

∧ sp ≤ speed + speed × sp_er / 100

THEN

p_speed := sp

END

Specifying and Validating a Platoon of Cristal Vehicles 25

END;

accel ← accelActuator(d_accel) =

PRE d_accel ∈ MIN_ACCEL..MAX_ACCEL

THEN

ANY ac WHERE ac ∈ MIN_ACCEL..MAX_ACCEL

∧ d_accel − d_accel × ac_er / 100 ≤ ac

∧ ac ≤ d_accel + d_accel × ac_er / 100

THEN

accel := ac

END

END

END

CtrlEngine

CtrlEngine =

phySpeed ? speed→ speedSensor ! speed ? p_speed→ speedOut ! p_speed→ phyAck→
accelIn ? d_accel→ accelActuator ! d_accel ? accel → phyAccel ! accel→ phyAck→ CtrlEngine

Abstract B model for CtrlEngine rewriting

MACHINE CtrlEngine_abs

VARIABLES

cb

INVARIANT

cb ∈ 0..0

INITIALISATION

cb := 0

OPERATIONS

CtrlEngine =

PRE cb = 0

THEN cb :∈ 0..0

END

END

B CtrlEngine rewriting

REFINEMENT CtrlEngine_ref

REFINES CtrlEngine_abs

SEES Constants_csp, Constants

INCLUDES Engine(1,2)

VARIABLES

speed0, accel0, cb

INVARIANT

speed0 ∈ Speeds_csp

∧ accel0 ∈ Accels_csp

∧ cb ∈ 0..0

INITIALISATION

speed0 := 0

‖ accel0 := 0

‖ cb := 0

OPERATIONS

CtrlEngine =

BEGIN

ANY speed

WHERE speed ∈ Speeds_csp

THEN

speed0← speedSensor(speed);

ANY accel

WHERE accel ∈ Accels_csp

THEN

accel0← accelActuator(accel);

cb := 0

END

END

26 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

END

END

C.3 Specifying (CtrlLocation‖Location)

Location

MODEL Location(er)

CONSTRAINTS er ∈ 0..100

SEES Constants

OPERATIONS

p_xpos← xposSensor(xpos) =

PRE xpos ∈ N

THEN

ANY xx WHERE xx ∈ N

∧ xpos − xpos × er / 100 ≤ xx

∧ xx ≤ xpos + xpos × er / 100

THEN

p_xpos := xx

END

END

END

CtrlLocation

CtrlLocation =

phyXpos ? xpos→ xposSensor ! xpos ? p_xpos→ xposOut ! p_xpos→ phyAck→ phyAck→ CtrlLocation

Abstract B model for CtrlLocation rewriting

MACHINE CtrlLocation_abs

VARIABLES

cb

INVARIANT

cb ∈ 0..0

INITIALISATION

cb := 0

OPERATIONS

CtrlLocation =

PRE cb = 0

THEN cb :∈ 0..0

END

END

B CtrlLocation rewriting

REFINEMENT CtrlLocation_ref

REFINES CtrlLocation_abs

SEES Constants_csp, Constants

INCLUDES Location(3)

VARIABLES

xpos0, cb

INVARIANT

xpos0 ∈ Positions_csp

∧ cb ∈ 0..0

INITIALISATION

xpos0 := 0

‖ cb := 0

OPERATIONS

CtrlLocation =

BEGIN

ANY xpos

WHERE xpos ∈ Positions_csp

THEN

Specifying and Validating a Platoon of Cristal Vehicles 27

xpos0← xposSensor(xpos);

cb := 0

END

END

END

C.4 Specifying the assembly Vehicle2

CSP part of Vehicle2

CtrlVehicle2 = ((CtrlEngine [| {| phyAck |} |] CtrlLocation)

[| {| phyAccel, phySpeed, phyXpos |} |] CtrlPhysical)

\ {| phySpeed, phyAccel, phyXpos, phyAck,

speedSensor, accelActuator, xposSensor,

getSpeed, getXpos, setAccel |}

CtrlVehicle2_x = please_compress(

CtrlVehicle2 [[accelIn ← setAccel, speedOut← getSpeed, xposOut← getXpos]]

)

Vehicle2 = CtrlVehicle [| {| setAccel, getSpeed, getXpos |} |] CtrlVehicle2_x

