

Enabling security checking of
automotive ECUs with formal CSP
models

Heneghan, J, Shaikh, SA, Bryans, J, Cheah, M & Wooderson, P

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Heneghan, J, Shaikh, SA, Bryans, J, Cheah, M & Wooderson, P 2019, Enabling security
checking of automotive ECUs with formal CSP models. in Proceedings - 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks Workshop,
DSN-W 2019., 8805994, Proceedings - 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop, DSN-W 2019, Institute
of Electrical and Electronics Engineers Inc., pp. 90-97, 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshop, DSN-W
2019, Portland, United States, 24/06/19.
https://dx.doi.org/10.1109/DSN-W.2019.00025

DOI 10.1109/DSN-W.2019.00025

Publisher: IEEE

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228158105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1109/DSN-W.2019.00025

Enabling Security Checking of Automotive ECUs
with Formal CSP Models

John Heneghan∗, Siraj Ahmed Shaikh†, Jeremy Bryans†, Madeline Cheah‡ and Paul Wooderson‡
∗†Systems Security Group, Institute of Future Transport and Cities (FTC), Coventry University, United Kingdom

‡Horiba MIRA Ltd., Nuneaton, United Kingdom
∗Email: henegha3@coventry.ac.uk

Abstract—This paper presents an approach, using the process-
algebra CSP, that aims to support systematic security testing of
ECU components. An example use case regarding Over-The-Air
software updates demonstrates the potential of our approach.
Initial results confirm application code implemented in a typical
automotive development environment can be translated into
machine-readable format for the FDR refinement checker to for-
mally verify security functions and identify any existing security
flaws. Although still early stage work, the potential contribution
towards automatically model-checking ECU components and, by
composing several CSP models, larger systems is encouraging.

Index Terms—Software engineering; Automotive; embedded
software; concurrent computing; cyber security; system verifica-
tion; formal verification; model checking

I. INTRODUCTION

Intelligent vehicles promise dramatic changes for future
ground transportation, potentially heralding more streamlined
journeys, reduced pollution and novel transport services. Such
automotive innovation relies on evermore sophisticated soft-
ware embedded within the now ubiquitous electronic control
units (ECUs) in modern automobiles.

However, intelligent vehicles offer would-be cyber attackers
a tempting target, which raises security concerns with poten-
tial implications for safety, financial loss and privacy. These
threaten realisation of potential benefits, and are prompting
regulators and OEMs to re-focus efforts to verify automotive
security. Yet, testing real-time, distributed vehicle networks
is a significant challenge due to heterogeneous and opaque
implementations, inaccessible specifications and difficulties
associated with long development life cycles. The verification
challenge is further complicated by the specialist knowledge
needed to both model security and analyse security flaws.

The contribution of this paper is an approach to auto-
matically translate an already implemented ECU application
(designed in a typical automotive development environment)
into a formal language. Here we use the process algebra
Communicating Sequential Processes (CSP) [1] as the accom-
panying techniques and toolset (see Section IV), are mature
enough for formal verification, indicating such an approach is
feasible. Our aim is to enable systematic security testing of
ECU components, allowing automotive software engineers to
continue using familiar modelling and simulation tools, whilst
also facilitating automatic verification of security properties.

The rest of this paper starts by presenting the background
cybersecurity and software verification challenges facing the
automotive industry (Section II). We then introduce our ap-
proach and prospective workflow for formally verifying secu-
rity properties, at component-level, with real ECU applications
(Section III). Following this, we provide an overview of tech-
niques and tools underpinning our framework (Section IV).
A simple example, based on Over-the-Air (OTA) software
update, helps illustrate the overall workflow (Section V).
Finally, we consider some limitations of our methods and
outline future work (Sections VII and VIII).

II. BACKGROUND

Automotive software engineering (ASE) is now an integral
vehicle engineering activity as motor manufacturers deploy
software-enabled features that address more stringent vehicle
emission and safety standards, but also differentiate their prod-
ucts in highly competitive markets. Increasingly, embedded
software allows vehicles to interact with Intelligent Transport
Systems, whilst Advanced Driver Assistance Systems (ADAS)
are steadily evolving through automation levels towards the
ultimate goal of fully autonomous vehicles. However, this in-
creasingly sophisticated transportation landscape implies more
complex vehicle systems that begin to pose problems for all
involved in the design, testing and deployment of vehicles, at
the same time attracting potential cyber attackers.

A. Automotive Cybersecurity Challenges

Security is not necessarily built into automotive systems,
due to cost constraints and a traditional focus on functional
safety, which deals with random internal hazards, not deliber-
ate malicious threats. Meanwhile, security testing methodolo-
gies in the automotive domain are immature and, seemingly,
applied inconsistently [2] [3].

Enterprise IT security practices that could be ported to
automotive (embedded) systems are not necessarily appropri-
ate, since vehicle architectures and communication protocols
are sufficiently different. Current automotive systems tend to
comprise multiple ECUs with computing power that, although
increasing, is constrained. More sophisticated ECUs (as used
in infotainment units) may use microprocessors with up to 32-
bit architectures, but others make do with 16- or even 8-bit pro-
cessors. Since security processing is typically computationally

heavy, fundamental architectural changes would be required to
incorporate security. Likewise, communication protocols, such
as CAN bus, traditionally lacked security mechanisms, further
limiting the ability to incorporate security functions.

Security researchers have already demonstrated practical
cyber-attacks on various makes and models of cars, exposing
potential safety implications [4]–[7]. These triggered further
research examining privacy breaches and potential financial
losses where consumer services, such as payment systems,
inter-operate with vehicles. Whilst the variety and depth of
experimentation have been both eye-opening and informative,
formal engineering processes have garnered less attention (see
Section II-C).

Maintaining vehicle security is also challenging, in that
patches or other fixes for vulnerabilities must be disseminated
widely, and in a timely manner. Yet, update mechanisms in
vehicles vary greatly, ranging from manual procedures (i.e.
bringing the car into a dealership) to self-updating systems,
either via peripheral devices like USB sticks, or over-the-air.
With vehicles now typically averaging 15 years on the road
before decommissioning [8], multiple vehicle configurations
must be updated, creating a significant management overhead.
Maintenance is further exacerbated by the delay necessary
to re-assure that security fixes do not inadvertently cause a
safety problem. Automating the verification process would
effectively reduce this lag.

B. ECU Security Validation and Verification

Automotive network architectures are increasingly complex,
supporting distributed concurrent processes that may be im-
plemented as multi-function components or multi-component
functions. In-vehicle networks comprise ECU components
most likely sourced from multiple suppliers, often without
detailed documentation. These factors hamper the ability to
integrate and test automotive systems [9].

Generally, concurrent systems are seen as notoriously dif-
ficult to verify. For instance, race conditions are difficult to
find, whilst any bugs discovered can be tricky to localise, and
attempts to better observe a system or component under test
may induce a ”probe effect” [10]. Concurrency issues may
not be reproducible due to timing of events in the wider en-
vironment (e.g. other network traffic, competing applications,
operating system scheduling, etc.) [11].

In recent years, the automotive industry has made progress
towards improving its assurance of automotive safety proper-
ties, with compliance to standards such as ISO 26262 now
commonplace [12]. Whilst analogous (i.e. safety assurance
typically asserts that certain behaviours should or should not
happen), methods for assuring security properties have lagged.

Security weaknesses tend to result from subtle, unexpected
interactions, as well as lateral or additional functionality that
should not exist [6]. These would, therefore, require additional
considerations, such as formal verification to expose latent
flaws. For example, the Needham-Schroeder authentication
protocol, first proposed in 1978 [13], was widely used to
secure network communications despite an inherent flaw. The

security weakness was only exposed 18 years later through
formal analysis using CSP to highlight a successful attack
mechanism [14].

C. Formal Methods in the Automotive Domain

Despite showing much early promise for designing and
verifying software, formal methods seem to have gained
little traction within the automotive domain [2]. Broadly, this
shortfall may be potentially attributable to accessibility issues
and technical challenges.

1) Accessibility: Transforming legacy code-based system
development life cycles to a model-based design approach
imposes costs for developing skills, designing processes and
deploying new tooling. Perceived difficulties arise from busi-
ness domain experts and software engineers having to master
the necessary formal verification techniques and cyber security
knowledge, prior to being able to specify expected ECU
behaviour and implement the necessary code. Likewise, any
new processes must co-exist with existing legacy vehicle pro-
grammes, imposing further overheads. In a notoriously cost-
driven industry [15], unsurprisingly, other priorities override
new ASE approaches.

2) Technical challenges: Implementing the tool support
necessary for formal methods suffers from the two-pronged
problem of scalability and complexity in real world systems.
With a modern vehicle now comprising an average of about
30,000 parts, a significant percentage of which are electronic,
the number of interacting components leads to a combinatorial
explosion in the number of test cases to consider. Many tools
proposed for formal verification are not production-ready in
terms of processing power [16] or having suitable support for
industrial settings. Moreover, tools are often standalone, and
do not readily integrate or inter-operate with existing ASE tool
suites. The above is exacerbated by the black box nature of
the systems in the vehicle, leading to many unknowns when
creating models.

III. APPROACH

Our model-based approach ultimately aims to automate, at
least partially, the security verification process. A key enabling
capability for this is programmatically transforming ECU ap-
plication code into a formal, machine-readable representation
for our target model checker.

The concept of operations, outlined in Figure 1, envisages an
ECU application created in a typical Integrated Development
Environment (IDE). On export from the IDE, possibly with
an associated network model, a model extractor application
translates the application source code into an ECU component
(implementation) model, defined as a CSP process. As such,
it can be combined with other CSP models to compose an
overall system model. Additional models may be specification
models or other ECU implementation models. For instance,
specification models may represent intended functional be-
haviour, define security properties or describe potential threats.
Indeed, attacker models (describing attacks from threats) can
be modelled as CSP processes [17]. Next, using a refinement

Fig. 1. A workflow and toolchain to enable automated component-level security analysis of automotive ECU components using CSP-based refinement checking
with FDR. An innovative model transformation component bridges the automation gap between a CANoe Integated Development Environment (IDE) and the
automation-ready FDR model (refinement) checker for CSP models.

checker, the composite system model can be verified to de-
termine if any insecure traces (message sequences) can occur.
These counterexamples represent failure traces corresponding
to failed functionality, unsatisfied security properties or con-
ditions for a successful attack (security vulnerability). Finally,
these can then be fed back to software designers to review and
rectify faults.

IV. TOOLS AND TECHNIQUES

Implementing our concept requires a selection of tools and
techniques that support formal systems modeling, automotive
ECU software development, code transformation, and refine-
ment checking for CSP. Additionally, we apply earlier security
research techniques developed to model intruder capabilities
and to define attacks.

A. Formal System Modelling

As our approach is firmly based on CSP, we provide below
a brief overview of the CSP language, its notations and some
relevant formal semantics.

1) CSP Overview: CSP emerged in the 1980s in response
to the need for a language to describe concurrent systems.
Essentially, CSP treats a system as a set of independent
processes communicating over channels and, where necessary,
synchronising on certain events. Individual process compo-
nents are sequential programs that interact with other net-
worked components by participating in events. However, since
services offered by (or properties of) a network are represented
purely in terms of interactions between network components,
we avoid having to know too much about their inner workings.

A central tenet of CSP is that systems can be decomposed
into subsystems, each interacting with others and the wider
environment [18]. This compositional aspect permits succes-
sively refining more detailed CSP models as the development
lifecycle progresses. Furthermore, external users (both benign
and malevolent) who similarly communicate through messages
can also be modelled as CSP processes, allowing system
models to consider user behaviours.

Importantly, CSP has a sound mathematical basis, thus
enabling formal reasoning about system descriptions using al-
gebraic laws, a process easily automated and vital for handling
the size of real systems. In fact, CSP now benefits from mature,
scalable tools that can automate a wide range of checks,
including refinement, deadlock, liveness and termination.

Over three decades, CSP has been applied to a wide range
of safety-critical systems, including medical devices, rail sig-
nalling systems, and flight control systems [19]. Additionally,
security researchers have devised proven methods for verifying
various security properties, such as availability (liveness),
authentication, confidentiality [20], and anonymity [21].

Overall, CSP is well-suited for modelling and analysing
functional and security properties of vehicle networks and
other real-time embedded distributed systems.

2) CSP Notation: This section summarises the notation and
semantic models for the subset of CSP relevant to our work.
A more complete introduction may be found in [22].

Process Definition. Given a set of events Σ, a CSP process
P is defined by the following syntax:

P ::= Stop | e→ P | P1 2 P2 | P1; P2 | P1 ‖
A

P2 | P1 ||| P2

where e ∈ Σ, and A ⊆ events. In the above definition, we
have:
• The process Stop is the most basic; it does not engage in

any event and represents deadlock.
• The prefix operator e→ P specifies a process that is only

willing to engage in the event e, then behaves as P.
• External choice P1 2 P2 behaves either as P1 or as P2.
• The sequential composition P1; P2 initially behaves as

P1 until P1 terminates, then continues as P2.
• The generalised parallel operator P1 ‖

A
P2 requires P1

and P2 to synchronise on events in A ∪ {X}, (X is a
special event that represents successful termination). All
other events execute independently.

• Finally, the interleaving operator P1 ||| P2 allows both P1

and P2 to execute concurrently and independently, except
for X.

CSPm Language CSPm is the machine-readable variant
of CSP that allows describing concurrent systems in an exe-
cutable manner. It combines the process algebra of CSP with
an expression language based loosely on the functional pro-
gramming language Haskell [23]. Table I summarises CSPm
notation corresponding to the blackboard notation above.

TABLE I
CSPM NOTATION

Basic operator Notation

Prefix P1→P2.
Input ?x
Output !x
Sequential composition P1;P2
External Choice P1 [] P2
Internal Choice P1 [] P2
Alphabetised parallel P [A] Q
Interleaving P1 |||P2

Semantic Models. Whilst there are several different seman-
tic models for CSP processes [22], our work focuses only on
the simplest, finite trace semantics.

A trace is defined as a, possibly empty, sequence of events
from Σ that may terminate with X.

Formally, let Σ∗ denote the set of all finite sequences of
events from Σ, 〈〉 the empty sequence, and tr1a tr2 two traces
tr1 and tr2 concatenated. The set of all traces is then defined
as: Σ∗X = {tr a en | tr ∈ Σ∗ ∧ en ∈ {〈〉, 〈X〉}}.

The trace tr1 is a prefix of a trace tr2, written as tr1 ≤ tr2,
iff ∃ tr′ : tr1 a tr′ = tr2.

Events in A ⊆ Σ ∪ {X} may be abstracted away from a
trace tr by a hiding operator, written as tr \ A and defined as:

tr \ A =

〈〉 if tr = 〈〉
〈a〉a (tr′ \ A) if tr = 〈a〉a tr′ ∧ a /∈ A
tr′ \ A if tr = 〈a〉a tr′ ∧ a ∈ A.

For convenience, when A = {a}, we shall simply write tr \ a.
In general, the trace semantics of a process P is a subset

traces(P) of Σ∗X consisting of all traces that the process may
exhibit.

Formally, traces for operators listed above are defined
recursively as follows:
• traces(Stop) = {〈〉};
• traces(e→ P) = {〈〉} ∪ {〈e〉a tr | tr ∈ traces(P)};
• traces(P1 2 P2) = traces(P1) ∪ traces(P2);
• traces(P1; P2) = traces(P1) ∩ Σ∗

∪ {tr1 a tr2 | tr1 a 〈X〉 ∈ traces(P1) ∧ tr2 ∈
traces(P2)};

• traces(P1 ‖
A

P2) = {tr ∈ tr1 ‖
A

tr2 | tr1 ∈ traces(P1) ∧

tr2 ∈ traces(P2)} where tr1 ‖
A

tr2 = tr2 ‖
A

tr1 is defined

as follows with a, a′ ∈ A ∪ {X} and b, b′ /∈ A:
〈〉 ‖

A
〈〉 = {〈〉};

〈a〉 a tr1 ‖
A
〈b〉 a tr2 = {〈b〉 a tr | tr ∈ 〈a〉 a tr1 ‖

A
tr2};

〈a〉 a tr1 ‖
A
〈a〉 a tr2 = {〈a〉 a tr | tr ∈ tr1 ‖

A
tr2}

〈a〉 a tr1 ‖
A
〈a′〉 a tr2 = ∅ where a 6= a′;

〈b〉 a tr1 ‖
A
〈b′〉 a tr2 = {〈b〉 a tr | tr ∈ tr1 ‖

A
〈b′〉 a tr2}

∪{〈b′〉 a tr |∈ 〈b〉 a tr1 ‖
A

tr2}

• traces(P \ A) = {tr \ A | tr ∈ traces(P)};
Trace interleaving is defined as parallel composition with an
empty synchronisation set.
• traces(P1 ||| P2) = P1 ‖

∅
P2

Trace Refinement. A usual way to analyse CSP processes
is via trace-refinement. A process P is said to trace-refine a
process Q (written Q vT P) if traces(P) ⊆ traces(Q). There
are other flavors of refinement, but we restrict ourselves to
trace refinement below.

B. ECU Software Development

With its significant automotive user base, the CANoe IDE,
from Vector Informatik GmbH, serves as a realistic ECU
software development tool. CANoe covers the entire ASE
lifecycle for coding, testing, and simulating individual ECUs
or entire in-vehicle networks, with support for most common
automotive network protocols (i.e. LIN, CAN, FlexRay, and
MOST). Although our initial work relates to CAN-based
networks, as techniques in this paper mature, there is scope
to explore other networking protocols with the same environ-
ment.

1) Programming ECU Software: Developers may simulate
network nodes by developing ECU functions in CANoe with
typical imperative programming languages used for automo-
tive systems, namely C, C++ and .NET [2]. Alternatively,
software designers can use the in-built, albeit proprietary,
Communication Programming Access Language (CAPL) from
Vector.

CAPL is based on the C language, but adds a superset
of pre-defined functions for networking and controlling the
IDE [24]. Like C, CAPL programs are compiled using the
bundled compiler. However, unlike C, CAPL programs are
event-driven, responding to system-generated events like timer
expiry or received messages; as such, no main() routine is

needed [25]. A CAPL program comprises four types of code
block: optional includes and variables sections, one or more
event procedures or (user-defined) functions.

2) CANoe Network Database: CANoe may use underlying
database(s) to define ECU transmission behaviour and signals
exchanged by actuators, sensors and ECUs. These so-called
CAN databases are textual files (*.dbc extension) holding all
necessary information about message formats, data payloads
and relationships of data packets to network components.
Despite message semantics for particular automobiles tending
to be proprietary, CAN messaging and the CANdb format
itself have become a de facto standard within the automotive
industry. CAPL links seamlessly with any associated CANdb
databases to access message formats and signal fields.

C. Code Translation

To extract an implementation model, we apply parsing
techniques using the open source ANTLR (ANother Tool for
Language Recognition) tool. ANTLR is a parser generator
that processes an input grammar file, automatically generating
a lexer and a parser [26] in the target language defined at
runtime, in our case, we specify Java classes.

Additionally, ANTLR automatically creates an empty pro-
gram containing skeletal methods, each corresponding to
nodes of an Abstract Syntax Tree (AST) representation of
the source language. Parser rules defined in the grammar
file determine which nodes populate the AST. The outline
implementation programm can then be extended to create
application(s) for reading, processing and translating text or
even binary files.

ANTLR also includes a template engine, called StringTem-
plate (ST), that aims to separate application logic from display
format definitions [27]. By defining a series of templates, into
which variable text is inserted, developers have greater control
over the order and appearance of textual output, particularly
useful feature when translating programming languages with
different symbol sets.

D. CSP Refinement Checking

FDR (Failures-Divergences-Refinement) is a refinement
checker developed specifically for use with CSP [28]. It uses
model-checking techniques and also incorporates visualisation
tools to display process transition models and traces. Typical
usage of FDR compares two process models, normally a
specification (intended behaviour) and an implementation. It
is possible to compose quite complex process models using
the composition operators described earlier. More detailed
information is available regarding tool documentation [29],
usage of FDR [22] and latest developments [28].

E. Attack Models

Attack models capture malicious behaviour against a sys-
tem. With CSP, a common approach is to define an additional
intruder process in CSP, based on the Dolev-Yao model.
This provides a general, formally-defined model based on a
worst-case security threat scenario, defining what the intruder

knows and can learn, and capabilities in terms of manipulating
messages transmitted over the network. This intruder (attacker)
model is then added, in parallel, to existing process models for
various network components [30].

Allied to this, attack trees are now gaining acceptance
as a graphical way to define step-by-step particular attacks.
Recent work confirms that an individual attack tree can be
translated into a semantically equivalent CSP process [17].
This equivalence is based on an observation that a series-
parallel (SP) graph represents a set of action sequences, each
action corresponding to a traverse from a source node to a sink
node of the graph. Formally, the set of sequences of actions
of an SP graph can be defined recursively as follows:

(
a−→) = {〈a〉};

(G1 ‖ G2) = {s ∈ s1 ||| s2 | s1 ∈ (G1) ∧ s2 ∈ (G2)};
(G1 · G2) = {s1 a s2 | s1 ∈ (G1) ∧ s2 ∈ (G2)}.

The function (·) is also generalised to the case of sets of
graphs as follows:

({G1, . . . ,Gn}) =
⋃

i∈{1,...,n}

(Gi)

V. CASE STUDY: VEHICLE ECU SOFTWARE UPDATES

Our case study considers updates to ECU firmware within
a road vehicle and draws on United Nations Economic Com-
mission for Europe (UNECE) efforts to harmonise vehicle reg-
ulations worldwide, which recently addressed cyber security
and Over-the-Air (OTA) issues. The International Telecom-
munication Union (ITU) supports this work with technical
guidance for OEMs, issued as recommendation ITU-T X.1373
[31]. Additionally, new international standard ISO/SAE 21434
”Road vehicles - Cybersecurity engineering”, is under devel-
opment and will specify requirements for updates to vehicles,
covering development, delivery and application of updates,
whether OTA or by other methods. In the meantime, we use
X.1373 to inform our case study.

A. Basic Model of Software Update

X.1373 sets out a basic secure architecture for remote
software updates, comprising the following components [31]:
• Update Server: An update server may be located at

OEM sites, supplier sites or dealer garages, and usually
includes a logging database to store status information
about software components in each vehicle.

• Vehicle Mobile Gateway (VMG): A conceptual entity
acting as an intermediary between the OEM (or supplier)
and the vehicle. Its role is to provide communication
services to the update server and to manage the update
process. Typically, the VMG may be embedded in a
vehicle gateway or ”Head unit” and uses cellular (mobile
phone) network or fixed local wireless network.

• Target ECU(s): One or more ECUs on board the ve-
hicle requiring updated software. Vendors are expected
to provide an accessible update module within the core
functional services of each ECU.

Fig. 2. Scope of Software Update Case Study Demonstration System.

1) Scope: As our initial aim was to demonstrate the fea-
sibility of the approach, the demonstration scope includes
only the VMG and ECU components, as shown in Figure
2. This restricts the associated message types to those listed
in Table II; future work will expand the scope to include
the update server and other message types defined in [31],
namely, diagnose, update check, update, and update report
(see Section VIII-A).

TABLE II
MESSAGE TYPES AND MESSAGE USED [31]

Type Id From To Description

Diagnose reqSw VMG ECU Request diagnose software
status

rptSW ECU VMG Result of software diagnosis

Update reqApp VMG ECU Request apply update mod-
ule

rptUpd VMG ECU Result of applying update
module

2) Requirements and Assumptions: Consider the high-level
requirements, derived from [31], listed in Table III).

TABLE III
SECURE UPDATE SYSTEM REQUIREMENTS

ID Requirement Text

R01 At start of update process, the VMG shall send a software
inventory request message to all ECUs.

R02 On receipt of software inventory request, the ECU shall send
a software list response message.

R03 On receipt of apply update message from the VMG, the ECU
shall check the package contents and apply the update.

R04 On completion of update module installation, the ECU shall
send software update result message to the VMG.

R05 It is assumed the system uses shared keys (see below).

To accommodate a variety of vehicle makes, model types,
and model years, X.1373 acknowledges that different cryp-
tographic capabilities for securing messages between compo-
nents may be installed [31]. It offers use of either digital signa-
tures, where asymmetric cryptography is available, or Message
Authentication Code (MAC), where symmetric cryptography
based on shared keys is applicable. Initially, to simplify our
demonstration by avoiding the need to include a Certification
Authority, we assume use of shared keys; further work will
expand this to include asymmetric cryptography.

B. ECU Specification Model
In our case, the ECU specification model needs to addresses

security properties. Strictly speaking, the FDR model checker

is actually a refinement checker, so we must capture security
properties as abstract CSP models, then use FDR to check that
these security property models are refined by a CSP model
extracted from CAPL code.

Suppose that we wish to check the integrity of a transmis-
sion from the VMG to the ECU (as per requirement R02 in
Table III). Considering integrity in the context of OTA soft-
ware updates means avoiding receipt of unauthorised software
update messages, in other words the message exchange must
progress, as specified, in the correct sequence.

A simple implementation of R02 would be a security
process SP02 that ensures that every time a software inventory
request (denoted by reqSw) is received, a software list response
message (denoted by rptSw) is returned.

If we define the channels transmitting messages as channel
send, rec: msgs, then we can define SP02 as

SP02 = rec?reqSw -> send!rptSw -> SP02

We then would expect that process SP02 is refined by the
system composed of VMG and ECU processes, (SYSTEM =
VMG ‖ ECU), which we could check within FDR.

More sophisticated models, to be developed, would allow
other messages to be received on a different channel (other)
provided a rptSw message was sent as soon as a request is
received. Similarly, our definition of datatype msgs can be
extended with additional fields needed in message formats to
implement correct security protocols, (e.g. nonces, source and
destination identifiers). A detailed description of CSP models
used to analyse security protocols in available at [30].

VI. RESULTS

The focus of work to date has been the core element,
translating ECU application code into a machine language
representation (CSPm) for FDR. In preparation, a simulated
CANbus network was implemented in CANoe, with compo-
nents (per Figure 2) programmed to exchange simple mes-
sages as defined in our requirements. Also, a CAPL-specific,
ANTLR grammar was created to parse CAPL constructs
specific to CANbus messages, namely on message event pro-
cedures and output statements. Our parse rules also recognise
message declarations, which are then output as CSPm channel
type declarations. We also developed several ST templates to
correctly place chunks of source code, like message identifiers
and event procedure names, into the target code.

By first running ANTLR with the CAPL grammar, we
successfully generated Java classes for both a CAPL lexer and
a parser, plus an outline listener application, which was mod-
ified with overridden methods that write CSPm statements,
as required. The final model extractor application combines
these classes to process source files through successive lexing,
parsing, template generating stages before finally writing a
target file. Essentially, this creates a pipeline processor to
automate extracting a CSP model from CANoe for FDR to
process. An example output is shown Figure 3.

Fig. 3. Example of ECU Implementation Model (CSPm script) automatically
generated from the application code for simulated CAN bus network in a
CANoe environment.

VII. DISCUSSION

For acceptance by OEMs and their component vendors, our
security verification methods must function properly, but also
scale for real-world systems, be accessible for business and
engineering users, and be compatible with existing processes.

A. Advantages

Our CSP-centric approach builds on a mature and effective
formal language for modeling the type of distributed, embed-
ded system used in modern vehicles. It is proven for verifying
properties of wide ranging safety-critical systems, whilst CSP-
based analysis is known to successfully verify, or identify flaws
with, diverse security properties.

Moreover, powerful, complementary tools now exist in the
guise of the FDR refinement checker. Recent FDR develop-
ment work has introduced support for large-scale verifica-
tion using either grid-based or cloud-based computing. This
now opens the door for automating component-level security
checks at the scale needed for the sophisticated ECUs now
seen in vehicles. Yet the gap between the typical automotive
software programming languages and the machine-readable
language of the tools has been an obstacle.

To help address this, our translation approach is entirely
model-driven, with models for ECU source code (the CAPL
grammar), an intermediate model (the parser-generated AST),
and a target language model (CSPm templates). By working
with models, we hope the method is more accessible to
business domain experts and software engineers; this hides
the underlying formalism allowing conversations at the right
level using familiar terms.

A model-based approach should also be compatible with
existing processes, where organisations already have adopted
such model-based design and testing practices. The capability
to work at different abstraction levels enables this method to be
used directly in the design stage, helping to identify potential
vulnerabilities earlier.

Using a grammar, plus output templates, creates an op-
portunity for re-purposing our techniques to translate ECU
source code written in other programming languages, or even
producing output code that is consumable by alternate process
algebra tools.

B. Limitations

Despite the clear advantages, some limitations are also
evident. Firstly, for simplicity, we have confined our initial
use of CSP to its basic, untimed version. Whilst this appears
to limit the utility of our approach for analysing time-triggered
tasks in ECUs, two proven approaches can potentially address
this situation; either using the Timed CSP variant [32], which
provides a continuous time model, or by simply extending the
alphabet of our models to include a specific tock event [19].
The latter, more practical approach would be appropriate for
extending our work to modeling time-dependent features.

Secondly, we are constrained by the need to access related
design and implementation artifacts (such as requirement
specification, source code) to help develop specification and
implementation models. These may be unavailable where
OEMs and ECU vendors seek to protect their intellectual
property. Here, we assume that external, independent testing
organisations (or internal testing teams) would have access
to necessary specifications or high-level designs, and source
code.

At this stage, our implementation is simply a proof-of-
concept, with an incomplete CAPL grammar. Further work is
needed to extend the model extractor application and evaluate
it, using real code, to confirm correctly handling of real world
ECU implementations.

From a software development lifecycle perspective, our
focus thus far is on the implementation phase, whereby ECU
code has already been produced. It would be useful to also
consider models in work products from earlier phases, such
as requirements specifications.

In terms of development tools, we have only worked with
Vector tools, using CAPL and CANdb files. Many real-world
ECUs instead are developed using C or C++, while some auto-
moitve application domains rely on MATLAB programming.
Although our model-based approach seems adaptable to other
programming language sources, further evaluation with other
programming languages is worthwhile.

We also have concerns about potential limitations in fully
capturing the semantics of imperative program, like CAPL,
and faithfully embedding that into the functional programming
paradigm used by CSPm. CSPm is limited as a functional lan-
guage, deliberately so, as its primary purpose was describing
concurrent processes rather than full implementations [18].
Faithfully reproducing CAPL-based (or other) applications
may be further complicated by diverse programming styles
and coding standards used in different development teams.
However, we note industry efforts to promote common coding
standards, such as MISRA and AUTOSAR, may mitigate this.

VIII. CONCLUSIONS AND FUTURE WORK

Our paper establishes a cornerstone on which to build
further work. The concept demonstrated can be generalised to
accommodate other input languages or formats and different
translations (e.g. other process algebras). CSP is suited to
different abstraction levels, so feasibly may be applied earlier
in the ASE lifecycle. This benefits industry since there is no

need to produce real-world prototypes (thereby reducing cost),
but also allows for quicker engineering lifecycle phases.

Our approach also allows existing development processes
to remain in place, since we provide a parallel formalised
modeling structure (based on CSPm); this structure should
also be flexible enough to accommodate future work practices.
Automotive business analysts and software engineers can also
be shielded from mastering formal methods, therefore helping
bridge the gap between application domain experts and those
within the security or mathematics domains.

Finally, our work, which utilises a common automotive in-
dustry development environment, coupled with mature, public
domain tools, may offer a cost-effective, pragmatic way to im-
prove software security verification for real ECU components.

A. Future Work

Next steps would follow two routes. Firstly, improve our
model extraction capability, for example, by extending the
CAPL grammar and the translator to parse functions and data
structures into corresponding CSPm elements. Additionally,
identifying and writing CSP parallel operation constructs,
including external choice and sequential composition, would
allow building composite ECU models. Possibly, a second
parser and model generator is warranted to handle CAN
database files, extracting message formats as CSPm declara-
tions for data types, name types, and data ranges.

Secondly, extending the breadth of our formal models.
These could include more automotive subsystem models,
whilst also looking to develop CSP models for other security
property types and compose them with realistic attack(er)
models. These could then be used to evaluate representative
real-world components. Finally, exploring CSP model extrac-
tion at higher levels (e.g. from requirements) may enable
automatic generation of ECU specification models from work
products developed in early phases of an ASE lifecycle.

REFERENCES

[1] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 26, no. 1, pp. 100–106, Jan 1983.

[2] H. Altinger, F. Wotawa, and M. Schurius, “Testing methods used in
the automotive industry: results from a survey,” in Proc. of the 2014
Workshop on Joining AcadeMiA and Industry Contributions to Test
Automation and Model-Based Testing (JAMAICA). California, USA:
ACM Press, 2014, pp. 1–6.

[3] A. Haghighatkhah, A. Banijamali, O. P. Pakanen, M. Oivo, and P. Ku-
vaja, “Automotive software engineering: A systematic mapping study,”
Journal of Systems and Software, vol. 128, pp. 25–55, 2017.

[4] A. Greenberg, “Hackers Remotely Kill a Jeep on the HighwayWith
Me in It,” 2015. [Online]. Available: http://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/

[5] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN
networks - Practical examples and selected short-term countermeasures,”
Reliability Eng. & System Safety, vol. 96, no. 1, pp. 11–25, Jan 2011.

[6] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
Experimental Analyses of Automotive Attack Surfaces.” in Proceedings
of 20th USENIX Security Symposium. San Francisco, CA: USENIX
Association, Aug 2011, pp. 77–92.

[7] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Snachám, and S. Savage, “Ex-
perimental security analysis of a modern automobile,” in Proceedings -
IEEE Symposium on Security and Privacy, 2010, pp. 447–462.

[8] A. Bento, K. Roth, and Y. Zuo, “Vehicle lifetime and scrappage behavior:
Trends in the US used car market,” Energy Journal, vol. 39, no. 1, pp.
159–183, 2018.

[9] D. S. Fowler, J. W. Bryans, S. A. Shaikh, and P. Wooderson, “Fuzz
testing for automotive cyber-security,” in 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshops,
Luxembourg, Jun 2018, pp. 239–246.

[10] W. Schutz, “Fundamental issues in testing distributed real-time
systems,” Real-Time Systems, vol. 7, no. 2, pp. 129–157, sep 1994.
[Online]. Available: http://link.springer.com/10.1007/BF01088802

[11] H. Thane and H. Hansson, “Towards systematic testing of distributed
real-time systems,” in Proc. of 20th IEEE Real-Time Systems Symposium.
IEEE Comput. Soc, 2003, pp. 360–369.

[12] ISO, “ISO26262-1:2011 Road vehicles - Functional Safety - Part 1:
Vocabulary,” 2011.

[13] R. M. Needham and M. D. Schroeder, “Using Encryption for Authenti-
cation in Large Networks of Computers,” Communications of the ACM,
vol. 21, no. 12, pp. 993–999, 1978.

[14] G. Lowe, “An attack on the Needham-Schroeder public-key authen-
tication protocol,” Information Processing Letters, vol. 56, no. 3, pp.
131–133, Nov 1995.

[15] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner, “Software
engineering for automotive systems: A roadmap,” in FoSE 2007: Future
of Software Engineering. IEEE, may 2007, pp. 55–71.

[16] M. Cheah, S. A. Shaikh, J. W. Bryans, and H. N. Nguyen, “Combining
third party components securely in automotive systems,” in Proc. 10th
Int. Conf. for Information Security Theory and Practice, Crete, Greece,
Sep 2016, pp. 262–269.

[17] M. Cheah, H. N. Nguyen, J. Bryans, and S. A. Shaikh, “Formalising
Systematic Security Evaluations using Attack Trees for Automotive
Applications,” in 11th WISTP International Conference on Information
Security Theory and Practice, 2017.

[18] C. A. R. Hoare, Communication Sequential Processes (electronic
version). International Association for Energy Economics, 2015.
[Online]. Available: http://www.usingcsp.com/cspbook.pdf

[19] A. W. Roscoe, Communicating Sequential Processes. The First 25 Years,
A. E. Abdallah, C. B. Jones, and J. W. Sanders, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, vol. 3525.

[20] S. Schneider, Concurrent and Real-time Systems - The CSP Approach,
1st ed. Chichester: John Wiley & Sons Ltd., 2000.

[21] M. Moran, J. Heather, and S. Schneider, “Verifying anonymity in voting
systems using CSP,” Formal Aspects of Computing, vol. 26, no. 1, pp.
63–98, Jan 2014.

[22] A. W. Roscoe, Understanding concurrent systems. Springer, 2010.
[23] B. Scattergood and P. Armstrong, “CSPm: A Reference Manual,”

Oxford University, Oxford, Tech. Rep., Jan 2011. [Online]. Available:
http://www.cs.ox.ac.uk/ucs/cspm.pdf

[24] Vector Informatik GmbH, “CANoe: ECU and Network Testing on
Highest Level.” [Online]. Available: https://www.vector.com/gb/en-gb/
products/products-a-z/software/canoe/

[25] M. Lobmeyer and R. Marktl, “Tips and tricks for the use of CAPL
(part 2),” CAN Newsletter, pp. 10–12, 2014. [Online]. Available:
www.vector.com

[26] T. J. Parr and R. W. Quong, “ANTLR: A predicatedLL(k) parser
generator,” Software: Practice and Experience, 1995.

[27] T. J. Parr, “Enforcing strict model-view separation in template engines,”
in Proc. of the 13th Int. Conf. on World Wide Web, 2004, pp. 224–233.

[28] P. Armstrong, M. Goldsmith, G. Lowe, J. Ouaknine, H. Palikareva,
A. W. Roscoe, and J. Worrell, “Recent Developments in FDR,” in Proc.
of 2012 International Conference on Computer Aided Verification, vol.
7358 LNCS. Springer, Berlin, Heidelberg, 2012, pp. 699–704.

[29] U. of Oxford, “FDR Manual Release 4.2.3,” University of Oxford,
Tech. Rep., 2017. [Online]. Available: https://www.cs.ox.ac.uk/projects/
fdr/downloads/fdr-manual.pdf

[30] P. Ryan and S. Schneider, Modeling and Analysis of Security Protocols:
The CSP approach. Addison-Wesley, 2001.

[31] International Telecommunications Union (ITU), “X.1373 : Secure soft-
ware update capability for intelligent transportation system communica-
tion devices,” ITU, Tech. Rep., 2017.

[32] G. Reed and A. Roscoe, “A timed model for communicating sequential
processes,” Theoretical Computer Science, vol. 58, no. 1-3, pp. 249–261,
Jun 1988.

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://link.springer.com/10.1007/BF01088802
http://www.usingcsp.com/cspbook.pdf
http://www.cs.ox.ac.uk/ucs/cspm.pdf
https://www.vector.com/gb/en-gb/products/products-a-z/software/canoe/
https://www.vector.com/gb/en-gb/products/products-a-z/software/canoe/
www.vector.com
https://www.cs.ox.ac.uk/projects/fdr/downloads/fdr-manual.pdf
https://www.cs.ox.ac.uk/projects/fdr/downloads/fdr-manual.pdf

	IEEE
	Enabling_Security_Checking_of_Automotive_ECUs_with_Formal_CSP_Models

