6 research outputs found

    Retinal Blood Vessel Extraction from Fundus Images Using Enhancement Filtering and Clustering

    Get PDF
    Screening of vision troubling eye diseases by segmenting fundus images eases the danger of loss of sight of people. Computer assisted analysis can play an important role in the forthcoming health care system universally. Therefore, this paper presents a clustering based method for extraction of retinal vasculature from ophthalmoscope images. The method starts with image enhancement by contrast limited adaptive histogram equalization (CLAHE) from which feature extraction is accomplished using Gabor filter followed by enhancement of extracted features with Hessian based enhancement filters. It then extracts the vessels using K-mean clustering technique. Finally, the method ends with the application of a morphological cleaning operation to get the ultimate vessel segmented image. The performance of the proposed method is evaluated by taking two different publicly available Digital retinal images for vessel extraction (DRIVE) and Child heart and health study in England (CHASE_DB1) databases using nine different performance matrices. It gives average accuracies of 0.952 and 0.951 for DRIVE and CHASE_DB1 databases, respectively.    

    An Image Quality Selection and Effective Denoising on Retinal Images Using Hybrid Approaches

    Get PDF
    Retinal image analysis has remained an essential topic of research in the last decades. Several algorithms and techniques have been developed for the analysis of retinal images. Most of these techniques use benchmark retinal image datasets to evaluate performance without first exploring the quality of the retinal image. Hence, the performance metrics evaluated by these approaches are uncertain. In this paper, the quality of the images is selected by utilizing the hybrid naturalness image quality evaluator and the perception-based image quality evaluator (hybrid NIQE-PIQE) approach. Here, the raw input image quality score is evaluated using the Hybrid NIQE-PIQE approach. Based on the quality score value, the deep learning convolutional neural network (DCNN) categorizes the images into low quality, medium quality and high quality images. Then the selected quality images are again pre-processed to remove the noise present in the images. The individual green channel (G-channel) is extracted from the selected quality RGB images for noise filtering. Moreover, hybrid modified histogram equalization and homomorphic filtering (Hybrid G-MHE-HF) are utilized for enhanced noise filtering. The implementation of proposed scheme is implemented on MATLAB 2021a. The performance of the implemented method is compared with the other approaches to the accuracy, sensitivity, specificity, precision and F-score on DRIMDB and DRIVE datasets. The proposed scheme’s accuracy is 0.9774, sensitivity is 0.9562, precision is 0.99, specificity is 0.99, and F-measure is 0.9776 on the DRIMDB dataset, respectively

    Analysis of Retinal Image Data to Support Glaucoma Diagnosis

    Get PDF
    Fundus kamera je široce dostupné zobrazovací zařízení, které umožňuje relativně rychlé a nenákladné vyšetření zadního segmentu oka – sítnice. Z těchto důvodů se mnoho výzkumných pracovišť zaměřuje právě na vývoj automatických metod diagnostiky nemocí sítnice s využitím fundus fotografií. Tato dizertační práce analyzuje současný stav vědeckého poznání v oblasti diagnostiky glaukomu s využitím fundus kamery a navrhuje novou metodiku hodnocení vrstvy nervových vláken (VNV) na sítnici pomocí texturní analýzy. Spolu s touto metodikou je navržena metoda segmentace cévního řečiště sítnice, jakožto další hodnotný příspěvek k současnému stavu řešené problematiky. Segmentace cévního řečiště rovněž slouží jako nezbytný krok předcházející analýzu VNV. Vedle toho práce publikuje novou volně dostupnou databázi snímků sítnice se zlatými standardy pro účely hodnocení automatických metod segmentace cévního řečiště.Fundus camera is widely available imaging device enabling fast and cheap examination of the human retina. Hence, many researchers focus on development of automatic methods towards assessment of various retinal diseases via fundus images. This dissertation summarizes recent state-of-the-art in the field of glaucoma diagnosis using fundus camera and proposes a novel methodology for assessment of the retinal nerve fiber layer (RNFL) via texture analysis. Along with it, a method for the retinal blood vessel segmentation is introduced as an additional valuable contribution to the recent state-of-the-art in the field of retinal image processing. Segmentation of the blood vessels also serves as a necessary step preceding evaluation of the RNFL via the proposed methodology. In addition, a new publicly available high-resolution retinal image database with gold standard data is introduced as a novel opportunity for other researches to evaluate their segmentation algorithms.

    Application of morphological bit planes in retinal blood vessel extraction

    No full text
    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree
    corecore