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Abstract 

Retinal vessels are easily and non-invasively imaged using fundus cameras.  Growing evidence 

including longitudinal evidence, suggests morphological changes in retinal vessels are early physio-

markers of cardio-metabolic risk and outcome (as well as other disease processes).  However, data 

from large population based studies are needed to examine the nature of these morphological 

associations.  Several retinal image analysis (RIA) systems have been developed.  While these 

provide a number of retinal vessel indices, they are often restricted in the area of analysis, and have 

limited automation, including the ability to distinguish between arterioles and venules.  With the aim 

of developing reliable, automated, efficient retinal image analysis (RIA) software, generating a rich 

quantification of retinal vasculature in large volumes of fundus images, we present QUARTZ 

(Quantitative Analysis of Retinal Vessel Topology and size), a novel automated system for processing 

and analysing retinal images.  QUARTZ consists of modules for vessel segmentation, width 

measurement and angular change at each vessel centreline pixel with sub-pixel accuracy, computing 

local vessel orientation, optic disc localization, arteriole/venule classification, tortuosity 

measurement, and exporting the quantitative measurements in various output file formats. The 

performance metrics of the algorithms incorporated in QUARTZ are validated on a number of 

publically available retinal databases (including DRIVE, STARE, CHASE_DB1, INSPIRE-AVR, and 

DIARETDB1).  QUARTZ performs well in terms of segmentation accuracy, calibre measurement, optic 

disc and arteriole/venule recognition. The system provides a rich quantification of retinal vessel 



  

morphology, which has potential medical applications in identifying those at high risk, so that 

prophylactic measure can be initiated before onset of overt disease. 

Keywords: Retinal Image Processing; Automated Analysis; Retinal Vessel Morphology; Vessel 

Quantification; Feature Extraction; Epidemiological studies; Screening programs; Large population 

studies 

1 Introduction 

Medical imaging has revolutionized healthcare procedures, allowing professionals to detect and 

diagnose disease at the earliest and most treatable stages, thus improving patient outcomes with 

appropriate and effective care. An accurate diagnosis in medical imaging depends on the successful 

acquisition of the image as well as on the successful interpretation of the image. The advances in 

image capture hardware and the unrelenting development in computational efficiency, coupled with 

increasingly sophisticated image analysis and machine learning techniques, have provided the 

platform for acquiring minute details of biological tissues in regions such as the retina, and 

interpretation of the image to aid a physician in detecting possibly subtle abnormalities. With the 

development of digital imaging and computational efficiency, medical image processing, analysis and 

modelling techniques are increasingly used in all fields of medical sciences, particularly in 

ophthalmology and retinal image analysis. 

The blood vessel structure in retinal images is unique in the sense that it is the only part of the blood 

circulation system that can be directly observed non-invasively and can be easily imaged using 

Fundus cameras. The morphological characteristics of retinal vessels are associated with 

cardiovascular and systemic disease. Cardiovascular disease (CVD) accounts for almost a third of 

deaths in both men and women, responsible for nearly 200,000 deaths in the UK per year (Statistics, 

2012).  Coronary heart disease (CHD), stroke and heart failure account for most of these deaths with 

CHD making the largest contribution. CVD is responsible for a substantial burden of morbidity and 

disability, accentuated by an ageing population and rising survival rates following myocardial 



  

infarction.  Diabetes is a strong risk factor for CVD both in middle and later life (SR, S, & A, 2011). The 

UK prevalence of diabetes, particularly type 2 diabetes (T2D) has more than doubled over 30 years 

(González, Johansson, Wallander, & Rodríguez, 2009; Thomas, et al., 2009).  Diabetic precursors 

(particularly insulin resistance), as well as other blood markers, are important determinants of 

cardiovascular and metabolic risk (SR, et al., 2011). These precursors, along with other patient 

characteristics / phenotypes, are used in primary prevention to estimate future risk of cardiovascular 

disease, providing indications for medical / lifestyle interventions to alter disease trajectory (Collins 

& Altman, 2010) . Early detection and prevention of disease outcome is key, especially as morbidity 

and mortality are so much higher in those with CVD compared to those without. In addition to vessel 

features pathognomonic of overt disease (e.g., micro-aneurysms and diabetes, artery-vein nicking 

and hypertension), accurate measurement / monitoring of vascular morphology may be an 

important marker of early vascular disease, which may be important in risk prediction.  

Abnormalities of retinal vessels have been prospectively associated with CVD outcomes in adult life, 

including coronary heart disease (CHD), stroke and cardiovascular mortality (Wong, et al., 2002). In 

particular, narrowing of retinal arterioles has been related to CHD, and cardiovascular mortality 

(Wong, et al., 2002). Changes in retinal vessel calibre in later life have also been associated with 

established risk factors for cardiovascular disease. Narrow arterioles have been linked with the 

presence of hypertension and raised blood pressure (Ikram, et al., 2006; Leung, et al., 2003). 

Changes in retinal vessel calibre in later life have also been associated with other established risk 

factors for cardiovascular disease; narrow arterioles being linked to obesity and higher HDL 

cholesterol (Cheung, et al., 2007; Ikram, et al., 2004). Wider arterioles have been associated with 

higher levels of blood glucose, total cholesterol, triglycerides and inflammatory markers (Wong, et 

al., 2006). Associations of venular width with blood pressure have been less conclusive. Wider 

venules seem to be associated with diabetes, elevated glycosylated haemoglobin, lower levels of 

high density lipoprotein, inflammatory markers, smoking and obesity (Wang, et al., 2006; Wong, et 

al., 2006). 



  

Some of these associations with vessel morphology (particularly with obesity and blood pressure) 

have been observed in childhood, and retinal vessel tortuosity has been associated with a number of 

established cardiovascular risk markers in the first decade of life (Owen, et al., 2011). This suggests 

life course patterning of vascular development and that retinal vessel morphology may be an 

important early marker of vascular health. Hence, accurate assessment of retinal vessel morphology 

(in both arterioles and venules) may be an important physio-marker of vascular health, which might 

predict those at high risk of disease in middle and later life (Abràmoff, Garvin, & Sonka, 2010).   

Screening programs and large population based studies produce a large number of images to deal 

with, which brings specific challenges. The inter-expert variability which in-turn is the repeatability 

between the experts is a desirable feature. Different conclusions could be reached by two experts 

when they are provided with the same set of images. This may be due to the varying image 

conditions, difficulty related to the data analysed, observer training for this particular task or even 

the subjective difference in perception. Moreover, the manual segmentation, Arteriole/Venule (A/V) 

labelling, width marking and optic disc localization is a tedious and slow task. This inevitably results 

in performance decline over time for the human grader that is the challenge of intra-expert 

variability. Finally, with the objective of finding epidemiological associations in the images acquired 

from the large screening programs and population based studies, it is impossible to derive the 

quantitative measures of vessel morphology for each of the vessel segments in all of the retinal 

images. These quantitative measures may include the width measurement and the local orientation 

angle at each centreline pixel, the tortuosity of the vessel segment, A/V classification, the branching 

index of the vessel and many more. 

1.1 Motivation 

Epidemiological objective of retinal imaging include the following:-. 



  

 To deliver automatic and semi-automatic image analysis for generating quantitative 

measures from retinal vessel morphology by establishing a common repeatable procedure, 

therefore increasing the reliability and performance of the analysis. 

 Help to extract the quantitative measures from a large number of images acquired which 

can be used to find epidemiological associations.  

Therefore an automated system is required which can process and analyze the large amount of data; 

and extract useful quantitative information from vessel morphology which helps epidemiologists and 

other medical experts in identifying those at high risk of disease (Trucco, et al., 2013).  

There are some software systems that have been released recently for automatic and semi-

automatic analysis for retinal images. This includes Retinopathy Image Search and Analysis 

(RISA) (Mirsharif, Tajeripour, & Pourreza) system that uses a content-based image retrieval method 

to perform rapid analysis and diagnosis of diabetic retinopathy from digital retinal imagery through a 

telemedicine model. The RoPtool (Rothaus, Jiang, & Rhiem, 2009) and RoPnet (Dashtbozorg, 

Mendonca, & Campilho, 2013) which are designed for the evaluation and analysis of retinopathy of 

prematurity in infancy. ROPnet (Dashtbozorg, et al., 2013) is an interactive tool for semi-automatic 

tracking of retinal vessels and computation of tortuosity index in narrow-field images, whereas 

RoPtool (Rothaus, et al., 2009)  traces retinal blood vessels and calculates width (expressed as 

dilation index) and tortuosity (expressed as tortuosity index). CAIAR program (Owen, et al., 2009) 

developed in python and Pearl, is designed for measuring retinal vessel width and has been used to 

calculate tortuosity in the retinal images of school children. 

Several software packages to analyse adult retinal images have been developed, including the 

System for the Integration of Retinal Image Understanding Services (SIRUS), Interactive Vessel 

Analysis (IVAN), the Vascular Assessment and Measurement Platform for Images of the Retina 

system (VAMPIRE), and the Singapore ‘I’ Vessel Assessment program (SIVA). SIVA(Vázquez, et al., 

2013) developed by the Singapore Eye Research Institute is designed for extraction of the retinal 

vascular structure and derives quantitative measures from retinal images to describe the retinal 



  

vessels' characteristics. IVAN (Grisan & Ruggeri, 2003) is another software tool used for obtaining 

clinical indexes of AVR, but the time for the analysis of a single image is approximately 20 minutes, 

too long to allow its use in screening studies or to become a standard in clinical practice (Huang, 

Zhang, & Huang, 2012). SIRIUS (Ortega, et al., 2010) is a web-based system for retinal image analysis 

which provides a collaborative framework for experts. SIRIUS consists of a web based client user 

interface, a web application server for service delivery and the service module for the analysis of 

retinal microcirculation using a semi-automatic methodology for the computation of the arteriolar-

to-venular ratio (AVR). The RIVERS (Retinal Image Vessel Extraction and Registration System) project 

(Stewart & Roysam) (Tsai, et al., 2008) can also be considered as an initiative in this direction. 

Automated Retinal Image Analyser (ARIA) software is designed to facilitate fast, accurate and 

repeatable measurements of retinal vessel diameters in a variety of retinal image types. VAMPIRE 

(Perez-Rovira, et al., 2011) (Vascular Assessment and Measurement Platform for Images of the 

REtina) is a software application for semi-automatic quantification of retinal vessel properties. The 

system aims to provide efficient and reliable detection of retinal landmarks (optic disc, retinal zones, 

main vasculature), and quantify key parameters used frequently in investigative studies which 

includes vessel width, vessel branching coefficients and tortuosity measures. The creation of ground 

truths for vessel segmentation is a crucial task which entails training and skill. Live-Vessel (Kelvin, 

Ghassan, & Rafeef, 2007) is a semi-automatic and interactive medical image segmentation software 

tool for locating vessels and vascular trees in 2D color medical images.  

The above discussed software packages provide a number of indices for describing the morphology 

of retinal vessels, they have several important limitations.  In particular, they are restricted to 

analysis of limited areas around the optic disc, have limited automated ability to discriminate retinal 

arterioles from venules and provide evidence on a limited number of parameters; mainly vessel 

width with limited information on vessel tortuosity.  Typically central retinal artery / or vein 

equivalent vessel widths are computed and these two summary measures do not capture variance in 

measures across an image, are highly dependent on the number of vessels measured and the 



  

method of obtaining the real size. Many involve extended processing times for a single image (e.g., 

IVAN takes 20 minutes per image), and some charge for their use.  

The rationale behind most of these systems is to focus on research and advancement of image 

analysis techniques and methodologies. They are not developed to run automatically on large image 

sets. Moreover, for retinal image analysis, there is no solution which allows epidemiologists to 

extract the quantitative measures from retinal vessel morphology in very large image sets 

automatically. In this environment, an automated computer system fulfilling the previously 

described features is needed. We present QUARTZ, a software system that provides epidemiologists 

with a framework for extracting quantitative measures of retinal vessel morphology from the images 

obtained from large population based studies.  

Our goal is to provide fully automated software which will include:- (i) segmentation of retinal 

vessels, (ii) measurement of retinal vessels (including sub-pixel measures of width and tortuosity), (ii) 

recognition of arteriole and venule status, (iii) identification of right and left eye (by automated 

identification of the optic disc), (iv) derivation of information from the whole retina, not simply 

concentric areas centred on the optic disc. 

The rest of the paper is structured as follows: Section 2 introduces the architecture and 

implementation of the framework. Section 3 introduces a case study for the framework, integrating 

the AVR computation service into it. Section 4 validates the AVR service and the framework by 

evaluating its performance and functionality in several real case scenarios where the application has 

been used. Section 5 contains some discussion about the obtained results. Section 6 offers final 

conclusions and future work on the web-based tool. 

2 QUARTZ Overview 

QUARTZ (QUantitative Analysis of Retinal vessel Topology and size) is developed to provide a tool for 

automated processing of large numbers of retinal images and obtain quantitative measures from 

vessel morphology, which will be used in epidemiological studies. It is developed with the aim to 



  

allow multilevel data analyses allowing for multiple measures in the same individual, with right and 

left eye measures correlated.  

 

Figure 1: Quantitative measures of retinal vessel morphology 

 

The quantitative measures derived from vessel morphology which are illustrated in Figure 1 are 

summarized as; 

 Person / Image Identifier 

 Left or right eye, which can be identified with the position of the optic disc in the macula 

centred retinal images. 

 Classification of vessels into arterioles and venules. 

 Vessel segments identification 

 The centreline coordinates of vessel segments [(X1,Y1) , (X2,Y2) ,…., (Xn,Yn) ] 

 Local orientation angle at each centreline coordinate. [ Ɵ as shown in Figure 1] 

 Angular change at each vessel segment centreline coordinate, ΔƟ 

 Width of vessel segment at each centreline coordinate. 

 Tortuosity of vessel segment 

 Therefore, in order to obtain the quantitative measures mentioned above, the QUARTZ software 

has incorporated the following modules 

 Retinal blood vessel tree segmentation 

 Vessel segments extraction 



  

 Vessel width measurement 

 Local angle computation 

 Arteriole / Venule classification  

 Optic disc localization 

3 QUARTZ Algorithms 

The QUARTZ software is developed in Matlab R2014a using object oriented programming (OOP). 

This allows the software to be structured into modules which includes blood vessel segmentation, 

vessel analysis module, optic disc (OD) localization module and arteriole/venule (a/v) classification 

component.  The algorithm details of these modules are presented in this section. 

3.1 Vessel Segmentation 

Automated segmentation of retinal vasculature is considered as the first step in the development of 

computer assisted diagnostic system for eye related disease. A comprehensive review of blood 

vessel segmentation methodologies is available in literature (M. M. Fraz, Remagnino, et al., 2012a). 

Recently, a trainable COSFIRE filters is presented for retinal vessel segmentation (Azzopardi, 

Strisciuglio, Vento, & Petkov, 2015) and localization of bifurcations and crossovers (Azzopardi & 

Petkov, 2013).  

The retinal vasculature is composed of arterioles and venules, appearing as piecewise linear 

features, with variation in width and their branches visible within the retinal image. Automatic 

segmentation of retinal vessels is the first step in the development of a computer aided / assisted 

diagnostic system for ophthalmologic studies (M.M. Fraz & Sarah A Barman, 2014; M. M. Fraz, 

Remagnino, et al., 2012a). There is an array of supervised and unsupervised retinal vessel 

segmentation algorithms developed within the research group (M. M. Fraz & Sarah A Barman, 2014; 

M. M. Fraz, Barman, et al., 2012; M. M. Fraz, Basit, & Barman, 2012; M. M. Fraz, Remagnino, et al., 

2012b; M. M. Fraz, Rudnicka, Owen, & Barman, 2013). Supervised methods exploit some prior 



  

labelling information to decide whether a pixel belongs to a vessel or not, while unsupervised 

methods perform the vessel segmentation without any prior labelling knowledge. The performance 

of supervised methods is better in general (M.M. Fraz & Sarah A Barman, 2014) but their 

prerequisite is the availability of the already classified ground truth data, which may not be available 

in real life applications. The ability to quantify the morphological features of the retinal vasculature 

for large population based studies is one of the design features of the QUARTZ software. Therefore 

the supervised method is not an optimal choice due to its inherent difficulties. Therefore in QUARTZ, 

we have implemented an unsupervised vessel segmentation algorithm based on multi-scale line 

detector and hysteresis morphological reconstruction. 

 A measure of vessel-ness for each pixel in the retinal image is computed by combining multi-scale 

line detection. In this procedure, the average pixel intensity is measured along lines of a particular 

length passing through the pixel under consideration at 12 different orientations spaced by 15 

degrees each. The line with the highest average pixel intensity is selected. The line strength of a pixel 

is calculated by computing the difference in the average grey values of a square sub-window centred 

at the target pixel with the average intensity of the selected line. This concept was first introduced 

by (Ricci & Perfetti, 2007) and has also been employed elsewhere (M. M. Fraz, Remagnino, et al., 

2012b). We have used a generalized multi-scale line detector (Nguyen, Bhuiyan, Park, & 

Ramamohanarao, 2012) (MLD), which uses a variable length “Ln” of aligned lines in a fixed square 

sub-window “W”, for calculating the line strength measures for the pixels in the images containing a 

central vessel reflex. Figure 2 illustrates the application of the MLD on a portion of vessel exhibiting 

the central reflex. It can be observed in Figure 2(c) that the MLD with longer lengths “Ln” in the fixed 

square sub-window W (where n <= W) performs better in computing the vessel-ness measure of the 

pixels belonging to the central reflex but it generates false responses for background pixels which 

are in close vicinity to each other. The MLD with shorter lines is effective in highlighting the vessel 

structure but it contributes to the background noise and it does not perform well with the central 

reflex; as illustrated in Figure 2(b). The final measure of vessel-ness for each pixel is computed by a 



  

linear combination of responses obtained with the MLD at different scales i.e. different line lengths, 

thus exploiting the strength and eliminating the limitation of each individual line detector. The size 

of fixed sub-window W is selected to be twice the size of a typical vessel width in the image 

database. We have experimentally chosen W = 25 and n = [11,15,19,23] (M. M. Fraz, Remagnino, et 

al., 2012b) i.e. the MLD is used at four scales Ln. In the line strength image (LSI), each value 

corresponds to the confidence measure of each pixel to be a part of the vessel or not. The LSI, as 

illustrated in Figure 3(b), is often considered as a greyscale image, where bright pixels indicate a 

higher probability of being a vessel pixel.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Line strength image; (a) Retinal image part; (b-d) Vessel-ness images; (b) MLD response with Ln ,n= 11, 

and (c)  MLD response with Ln ,n= 23; (d) Linear combination of all MLD responses 

 

A hysteresis thresholding based morphological reconstruction is applied to the line strength image. 

The details of this procedure were reported by the authors elsewhere (M. M. Fraz, Rudnicka, Owen, 

Strachan, & Barman, 2014). This procedure employs a bi-threshold procedure such that the LSI 

which is considered as an intensity image, is thresholded for two ranges of grey values, one being 

included in the other. The image is first segmented by a narrow threshold range which concedes 



  

only high confidence object pixels and thus also contains many false negatives. This image is termed 

a marker image. The mask image is generated by applying a wide threshold range to the greyscale 

image. These threshold values are derived from the intensity histogram of the non-null pixels; each 

one of these thresholds; T1 for the marker image and T2 for the mask image, is defined as the 

highest intensity value such that the number of pixels with intensities above this limit is greater or 

equal to a predefined percentage. This percentage value is empirically selected for T1 and T2 as 90% 

and 95% respectively. The marker image is used as a seed for the morphological reconstruction using 

the mask image. Figure 3(c-e) shows the marker, mask and segmented vessels image respectively.  

     
(a) (b) (c) (d) (e) 

Figure 3: (a) Coloured retinal image, (b) Line strength image, (c) Marker Image, (d) Mask Image, (e) segmented 

vasculature 

3.2 Width Measurement and Quantitative Analysis 

The centrelines of the blood vessel are found by applying a morphological thinning operation to the 

segmented vascular tree, which iteratively removes the exterior pixels from the detected vessel thus 

resulting in the vessel centreline image.  

The centreline image is analysed for the bifurcations and crossovers. At a bifurcation point, the 

blood vessel splits in to two smaller vessels. The centreline pixel at this point has three 8-connected 

neighbours. At a crossover point, two different blood vessels which are in general one arteriole and 

one venule coincide with each other at different depth levels. The centreline pixel at this point has 

four or more 8-connected neighbours. The bifurcations and crossovers are then removed from the 

centreline image thus dividing the vascular tree in to different vessel segments for further analysis. 

This step is necessary for two reasons. The vessels’ widths are not well-defined at the branching 

points. Moreover, there is less amount of blood flow through the vessel after bifurcations due to a 



  

change in vessel diameter. The vessel width measured before a significant branch point cannot be 

directly compared with the one measured afterwards. 

The centreline image is cleaned in order to remove the centreline segments with very short (<15 

pixels) length and spurs. Furthermore the distance transform of the binary vascular tree image is 

calculated in order to find the coarse estimate of vessel width. The distance transform gives the 

Euclidean distance of each vessel pixel from its closest non-vessel pixel. The estimate of vessel 

diameter at the widest point of the vessel segment can be found by doubling the maximum value of 

the distance transform along the centreline pixels. The centreline segment which is shorter in length 

than its estimated width will also be cleaned from the centreline image. 

The local orientation of a vessel is estimated by fitting a least square cubic spline in piecewise 

polynomial form to the centrelines. The centripetal scheme (Lee, 1989) of defining a parametric 

spline curve for obtaining smooth centrelines with appropriate parameterization is utilized. The 

derivatives of the spline curve are evaluated to compute the vessel orientation (local angle with 

respect to x-axis) at centreline pixels. This scheme has also been utilized by (Bankhead, Scholfield, 

McGeown, & Curtis, 2012) for estimation of local vessel angles. Diameter of the vessel segment is 

the distance between the locations of edge points of the vessel segment orthogonal to the vessel 

centreline orientation, calculated at each centreline pixel.  

The vessel profiles in retinal images resemble Gaussian functions. The profile of a normal blood 

vessel is modelled with a 2-D Gaussian function whereas the Dual-Gaussian function is used to 

model the profile of a vessel with a central reflex (M. M. Fraz, Remagnino, et al., 2013; M. M. Fraz, 

Rudnicka, et al., 2013). The 2-D model is fitted to a local section of vessel segment within a 

rectangular region of interest (ROI) using BFGS Quasi-Newton. The ROI along the centreline is 

extracted as twice the coarse estimate of vessel diameter obtained through the distance transform 

previously. The inflection points of the optimized Gaussian curve are calculated which corresponds 

with the vessel edges. The distance between the inflection points is the vessel diameter. The 

detailed description of the width estimation procedure is given by the authors elsewhere (M. M. 



  

Fraz, Remagnino, et al., 2013). The vessel diameter, the local orientation angle, the vessel 

centrelines and the vessel edges are marked on the normal vessel segments as well as on the 

segments with central reflex in Figure 4. 

   

   

   

(a) (b) (c) 

Figure 4: Demonstration of vessel diameters; (a – 1
st
 column) magnified snippet of retinal image, (b – 2

nd
 column) 

Vessel edges and centreline marking overlaid on the magnified retinal image, (c-3
rd

 column) Vessel width and local 

orientation angle marking in the vessel of interest. 

3.3 Arteriole/Venule Classification 

The classification of the retinal vessel is a two class classification problem where each pixel in the 

image either belongs to an arteriole (A) or to a venule (V).  Our research group  has presented an 



  

automated method for classification of a vessel segment in to arterioles and venules based on colour 

features using the ensemble classifier of bagged decision trees (M. M. Fraz, et al., 2014).  

For each centreline pixel in the vessel segment, the feature vector is computed using pixel based 

features, profile based features and vessel segment based features of the RGB and HSI colour 

spaces, and finally each centreline pixel is assigned an artery or vein label by a decision tree based 

ensemble classifier. 

The pixel based features are the centreline pixel intensity values taken from the respective RGB and 

HSI colour channels. The profile based features are the mean and variance of the intensity values 

across a vessel profile for each centreline. The vessel segment based features are the mean and 

variance of the pixel intensities calculated for the entire vessel segment. The feature importance 

index and out-of-bag classification error computed during training of the classifier is helpful in 

determining the optimal number of features as well as the number of decision trees used to 

construct the ensemble classifier. 

 Let us consider a set of observations “xn” from the feature vector with a known class label “y” as a 

training set, where y  [A, V]. The objective is to predict the class label “y” for the given 

observations. The classifier assigns soft labels to the centreline pixel labels, which can be regarded as 

a vote for the label of the complete vessel segment, and the mean of these votes is assigned as the 

label for the entire vessel segment. The classification of vessel segments into arterioles and venules 

is shown in Figure 6(a) and (b) for DRIVE and INSPIRE-AVR database images respectively, where red 

coloured segments are arterioles and blue coloured segments are venules. 



  
 

(a) 
 

(b) 

Figure 5: Classification of arterioles and venules; (a) DRIVE database Image; (b) INSPIRE-AVR database image 

3.4 Optic Disc localization 

The Optic Disc (OD) localization and boundary extraction method (Basit & Fraz, 2015) recently 

published by the authors, is based on morphological operations, regional properties and the marker 

controlled watershed transform. After the segmentation of the main blood vessels, the green 

channel of the RGB image is used for OD localization. The green channel is smoothed with a median 

filter and a location of maximum intensity value in this smoothed image is found. This maximum 

intensity value location is checked for two properties that it should not be near the boundary of the 

image and it must be in the neighbourhood of an extracted main blood vessel. These conditions are 

applied to ensure that the OD is not centred at the boundary (within 50 pixels) of the image and 

blood vessels enter through it. A candidate location fulfilling these conditions is regarded as a point 

within the OD. In case of failure, the process is repeated iteratively for the next maximum intensity 

value from the smoothed image until the condition is satisfied and OD location is obtained. This 

algorithm overcomes the problem of false OD detection and makes the method robust and efficient. 

The initial maxima, not satisfying the above conditions, is not within the desired location so these 

are eliminated repeatedly and maxima is shifts towards the OD. The location of this point is used in 

the subsequent boundary detection and plays an important role in the modification of the gradient 

image which is to be used in a watershed transformation (Gonzalez & Woods, 2002). 



  

After the detection algorithm, the OD boundary extraction is carried out by the marker controlled 

watershed transformation. Two types of markers are used for modification of the gradient image: an 

internal marker and an external marker. The detected OD point is used as an internal marker and a 

circle of a predefined size is used as an external marker. The red channel of the original RGB image is 

more suitable for OD boundary extraction because the blood vessel effect is not so severe in this 

channel. Morphological operations are performed on the red channel to remove the vessel effect 

and large peaks. The red channel is first closed with an octagonal structuring element to further 

reduce the effect of vessels on the OD. Then an opening is performed with the octagonal structuring 

element to remove large peaks. The opened image is reconstructed to recover boundary shape and 

obtain the morphological gradient image of the reconstructed image. Coordinates of the detected 

OD point and a circle of predefined size are utilized to make a marker image. The image is 

reconstructed by taking the marker image and the morphological gradient as the mask. Next, the  

minimum imposition method modifies the gradient image which is further applied with the 

watershed transformation (Gonzalez & Woods, 2002) to estimate the boundary of the OD. The optic 

disc localization and boundary identification is illustrated in Figure 6(a) and Figure 6(b) respectively 

on the retinal images from DIARETDB1database. 

 
(a) 

 
(b) 

Figure 6: (a) Optic disc localization; (b) Optic Disc boundary extraction 



  

4 QUARTZ User Interface 

The QUARTZ software is developed with the aim to extract quantifiable measures from retinal vessel 

morphology in larger population based epidemiological studies. Most of the functionality of the 

QUARTZ software can be accessed through the main screen. This section explains the interface and 

usability of QUARTZ. 

4.1 QUARTZ Main Screen 

The main screen of QUARTZ is illustrated in Figure 7. The processing options are grouped into two 

categories; vessel segmentation and vessel analysis. As the name indicates, the blood vessel tree is 

extracted in the vessel segmentation task. The vessel analysis consists of calculation of the 

quantifiable measures of vessel morphology, which includes vessel segment generation, 

measurement of diameters in the vessel segments, computing local orientation of vessel segments, 

optic disc localization, a/v classification and tortuosity measurement.   

There is an option available to select the working directory for the images to be processed. All the 

images in the working directory are loaded in the software and the names of the images are shown 

in a selectable tabular view. This tabular view has four columns. The first column shows the index 

count of the retinal image, the name is shown in the second column. The last two columns named as 

“S” for segmentation and “W” for Analysis; depicts the processing progress of the particular retinal 

image in check boxes. The “S” column is checked if the segmentation result is available and the “W” 

column is shown checked when the vessel analysis of the image is completed. The selected retinal 

image can be previewed in the Image-Preview area.  



  

 

Figure 7: QUARTZ main screen 

The software is designed to run in two processing modes, the batch processing mode and the 

interactive processing mode. In the batch processing, the selected processing option is applied to all 

of the images in the working directory in an automated way. The segmented vascular tree is stored 

as a binary image and the vessel quantification measures which are defined in section 2 are stored in 

a binary file. The range of retinal images can also be specified for batch processing. In the interactive 

mode, the chosen processing option (vessel segmentation, vessel analysis or both) is applied to the 

image which is selected in the selectable tabular view. 

4.2 QUARTZ Configuration. 

The configuration module provides the users with the functionality to specify the general working 

parameters for the software. The users can specify the directories for storing the extracted vascular 

tree, the binary file resulting after vessel analysis, and the CSV or Excel files which contain the data 

exported from the binary vessel analysis file.  The file format for storing these files can also be 

specified. The region of interest in the retinal images is circular or spherical in shape therefore Field 

of View (FOV) masks for the retinal images are generated. These masks are generated only for the 

first time an image is processed and are stored in the default directory for subsequent use. The 

directory can be specified in the configuration module. Also there is an option available for generate 



  

the FOV mask each time the image is processed. The quantitative measures can be exported as a 

CSV or Excel file, there is an option available for writing all the quantitative data in one file or 

generate separate files for each image under consideration. The configuration module screenshot is 

illustrated in Figure 8. 

 

Figure 8: QUARTZ Configuration Module 

4.3 Segmented Vasculature Visualization 

The segmented vascular tree and the vessel analysis for the selected retinal image can also be 

visualized. The vessel segmentation visualization is shown in Figure 9. The segmented vascular tree 

can be shown as overlaid on the original RGB coloured image (Figure 9-a) or on the green channel of 

RGB (Figure 9-b). The segmentation overlay colour as well as the overlay opacity can also be 

customized for better visibility. The z-ordering of the retinal image and vascular tree can also be 

changed. The functionality of zoom-in, zoom-out and pan is also provided for segmentation 

visualization.  



  
 

(a)  (b) 

Figure 9 : Vessel segmentation visualization; (a) RGB retinal image, (b) Green Channel of RGB image 

4.4 Vessel Analysis Visualization 

The visualization of vessel analysis is shown in Figure 10. The marking of vessel segment edges, 

centrelines, diameters, labels and optic disc location can be viewed as overlaid on either the 

coloured RGB image or on the green channel of RGB. The visualization options are shown as 

highlighted in Figure 10(b), which also shows the zoomed-in view of the retinal image marked with 

centrelines and vessel edges. 

 
(a) 

 
(b) 

Figure 10: Vessel Analysis Visualization; (a) complete retinal image marked with centrelines and the vessel edges; (b) 

Magnified view of retinal image with vessel edges shown in yellow colour. 

 



  

In Figure 11, the vessel segment labels, the edges, the centrelines and the diameters of a selected 

vessel segment are shown in the colour white. The selected diameters are shown in yellow. A list of 

centreline coordinates and the diameter at respective coordinates of the selected vessel is shown as 

highlighted in Figure 11(a).  

The vessel segments can be clicked and selected in the preview area. The following properties of the 

selected vessel segment are shown in a table, highlighted in Figure 11(b). 

 No of diameters 

 Mean diameter 

 Standard Deviation (SD) of diameters 

 Min diameter 

 Max diameter 

 Segment length (in pixels) 

 Diameter/Length ratio 

 Vessel segment tortuosity 

 
(a) 

 
(b) 

Figure 11: Vessel segment labels, diameters, edges, centrelines and selected diameters 

 



  

The graph of vessel segment diameter across its length is shown in Figure 12. The vessel diameters 

are shown in red colour and the selected diameters in the list are visible in yellow colour. 

 
(a) 

 
(b) 

Figure 12: The plot of vessel diameter across its length; (a) selected vessel segment 

 

The QUARTZ software system is aimed at the analysis of large data sets containing thousands of 

images; therefore the manual interaction with individual images is not feasible. However, the 

software also provides manual intervention for correction of vessel segmentation as well as for the 

correction of misclassified vessel segments as artery or veins. 

4.5 Export of Quantitative Data 

The quantification of vessel analysis can be exported as Comma Separated Values (CSV) or as a 

Microsoft excel sheet.  

The properties related to individual vessel segments are shown in the snapshot of the CSV file in 

Figure 13. The vessel segment No 60 is emphasized, which is also shown as the selected vessel in 

Figure 12(a). The vessel segment properties include; 

 Person Identifier: the Image Name 

 Position of OD which in turn indicates the right/left eye 

 Segment ID 



  

 ProbA: probability that the vessel segment is an arteriole 

 ProbV: probability that the vessel segment is a venule 

 Number of width measures in the vessel segment 

 Mean diameter of the vessel segment 

 Standard deviation of vessel segment diameters 

 Min diameter of vessel segment 

 Max diameter of vessel segment 

 Length of vessel segment measured as Euclidean distance between vessel segment end 

points 

 Vessel segment diameter to length ratio 

 Tortuosity of vessel segment 

 

Figure 13 : Vessel segment properties 

Figure 14 shows the snapshot of the CSV file that contains the person identifier, segment ID, 

centreline coordinates, diameters and local orientation angle. The first 15 diameters of vessel 

segment no 60 are highlighted, which is shown in Figure 12(a). The local angle, as shown in the last 

column of Figure 14  is the measure of orientation of a perpendicular line passing through the vessel 

centreline pixel and joining two vessel edges from the x-axis. The –ve sign indicates that it is 30.06 

degrees (last measure of segment 59) counter clockwise. 



  

 

Figure 14: Vessel segment centreline coordinate diameters and local orientation angles 

5 Quantitative Analysis of Results 

The results obtained evaluating the usability of QUARTZ software and validation of the algorithms 

are summarized in this section.  

The QUARTZ software incorporates some of the retinal image processing and quantification 

algorithms that were previously described by our group (M.M. Fraz & Sarah A Barman, 2014; M. M. 

Fraz & Sarah A Barman, 2014; M. M. Fraz, Barman, et al., 2012; M. M. Fraz, Remagnino, et al., 2013; 

M. M. Fraz, Remagnino, et al., 2012a, 2012b; M. M. Fraz, et al., 2014). Each module and algorithm 

has been carefully evaluated and the validation results are presented. The performance metrics of 

the incorporated algorithms are evaluated and analysed on different retinal image databases 

available in the public domain, which includes DRIVE ("DRIVE: Digital Retinal Images for Vessel 

Extraction," 2004), STARE ("STARE: STructured Analysis of the Retina," 2000), CHASE_DB1  (M.M. 

Fraz & Barman, 2013), INSPIRE-AVR(Niemeijer, et al., 2011), and DIARETDB1(Kauppi, et al., 2007).  

The accuracy of the vessel segmentation algorithm on DRIVE ("DRIVE: Digital Retinal Images for 

Vessel Extraction," 2004), STARE ("STARE: STructured Analysis of the Retina," 2000) and CHASE_DB1 

(M.M. Fraz & Barman, 2013) is found to be 0.948, 0.953 and 0.946 respectively. The sensitivity 



  

(detection rate) and specificity are found to be 0.740, 07554 and 0.722; and 0.980, 0.976 and 0.741 

respectively. The details of the evaluation methodology are illustrated in (M. M. Fraz & Sarah A 

Barman, 2014; M. M. Fraz, Remagnino, et al., 2012b; M. M. Fraz, Rudnicka, et al., 2013). The average 

accuracy values and precision rates obtained by the algorithm are more than the 2nd human 

observers for the DRIVE and STARE databases. The specificity values for the algorithm are also higher 

than the 2nd human observer for each of the three image databases that indicates the low false 

positive rate of the methodology as compared with the 2nd human observer. This, in turn indicates 

that the algorithm has identified less numbers of background pixels or pathological area pixels as 

part of a vessel than the 2nd human observer. 

The diameter measurement algorithm is evaluated on 1605 vessel profiles from different kinds of 

vessel segments in the CHASE_DB1 database (M. M. Fraz, Remagnino, et al., 2013). It includes 544 

profiles from vessel segments without a central reflex, 488 profiles are from vessel segments with a 

central vessel reflex, 264 profiles are from the vessels with normal as well as a central reflex along 

their length, 309 profiles are from low contrast vessel segments with uneven background 

illumination. The diameters measured by the automated system are compared with the manually 

marked vessel widths by two human observers. The mean vessel segment diameter observed by 

both of the expert observers is 10.10 and 8.9 pixels respectively. The mean width computed by the 

methodology is approximately 7.91 pixels which align more closely with the second observer. The 

variance in width measured by both of the observers and estimated by the algorithm is 

approximately 2.0. We consider the reference standard as the average of the measures marked by 

two expert human observers. The mean and standard deviation of the difference in width measured 

by the algorithm and the reference standard is 1.62 and 1.51 respectively. It should be noted that 

precision in measures of width, i.e., low variance, might be more important, than absolute measures 

of width. Any systematic bias in measures of width may be less important, as long as clinicians 

measure widths consistently well, especially if detecting change in width along a vessel segment is 

considered important. In contrast, if measures of width fluctuate considerably due to measurement 



  

error then changes in width along a vessel length are unlikely to be detected. The detailed 

evaluation of the quantification methodology is presented by the authors in (M. M. Fraz, Remagnino, 

et al., 2013). 

The a/v classification methodology is tested on DRIVE, INSPIRE-AVR, and images from the EPIC 

Norfolk study (EPIC-Norfolk, 2014). The authors have reported the detailed evaluation of a/v 

classification on EPIC Norfolk images elsewhere (M. M. Fraz, et al., 2014). The a/v classification on 

the images from DRIVE and INSPIRE-AVR database are illustrated in Figure 6. The test dataset 

contains 2500 vessel segments from 40 colour fundus images available in the DRIVE database. The 

vessel segments are classified as arteriole or venule manually by expert observers. The algorithm is 

evaluated by using a two-fold validation methodology. The first twenty images are assigned to set S1 

and rest of the twenty images are allocated to set S2. The classifier is then trained on S1 and tested 

on S2, followed by training on S2 and testing on S1. The algorithm is evaluated in terms of Detection 

Rate / Sensitivity (SNa|v), Specificity (SPa|v), Classification Accuracy (ACCa|v), Classification Error Rate 

(CERa|v), Positive Predictive Value (PPVa|v), Negative Predictive Value (NPVa|v) and the Positive and 

Negative Likelihood Ratios (PLRa|v and NLRa|v). The ACCa|v is measured by the ratio of the total 

number of correctly classified pixels (sum of true positives and true negatives) by the number of 

pixels under consideration in the image. SNa|v reflects the ability of an algorithm to detect the true 

positives. SPa|v measures the proportion of negatives that are correctly identified. PPVa|v or the 

precession rate gives the proportion of vessel pixels with correctly identified positive test results and 

NPVa|v is the proportion of vessel pixels with negative test results that are correctly identified. The 

predictive values depends on the percentage of a/v in the retina (prevalence), therefore the 

likelihood ratios (PLRa|v and NLRa|v) are also computed which are not dependent on prevalence. The 

performance metrics are computed separately for arterioles and venules and presented in Table 1. 

 

 

 



  

Table 1: Vessel classification performance metrics on DRIVE database 

Measure Arterioles Venules 
 Tested on S1 Tested on S2 Tested on S1 Tested on S2 

SNa|v 0.9123 0.8815 0.7838 0.7652 

SPa|v 0.7758 0.7829 0.9127 0.8804 

ACCa|v 0.8487 0.8344 0.8369 0.8261 
CERa|v 0.1512 0.1682 0.1634 0.1742 

PPVa|v 0.8462 0.8342 0.8789 0.8621 

NPVa|v 0.8773 0.8542 0.8234 0.8340 

PLRa|v 3.7481 4.8341 5.5685 6.3718 

NLRa|v 0.1135 0.1403 0.2515 0.2416 

 

The similarity in the performance metrics obtained for the sets S1 and S2 indicates the repeatability 

of the methodology in classification of vessels.  

The working of software can be subdivided in to four modules. (1): Vessel segmentation, (2): Vessel 

Analysis, which further includes computation of width measurement and angular change at each 

vessel centreline pixel with sub-pixel accuracy, calculating local vessel orientation and tortuosity 

measurement, (3): optic disc localization, and (4): arteriole/venule classification. The average 

processing time for each module is computed on a set of 20 images randomly picked from the image 

dataset. The QUARTZ is evaluated for the processing time on Dell XPS 13 laptop with Corei7 

processor and 8GB RAM. The measures are reported in Table 2. However, it should also be noted 

that the QUARTZ system is aimed at the analysis of large dataset in batch processing mode, 

therefore the processing time is not of very much significance. 

Table 2: Average processing time for each Module is QUARTZ 

S.No Module 
Average Processing Time 

In seconds 
1 Vessel Segmentation 16.57 
2 Quantitative Analysis of Segmented Vasculature 

 Vessel Segments Labeling 

 Vessel Edges and Centreline pixels 
identification  

 Vessel Width computation at each 
centreline pixel with sub-pixel accuracy 

 Tortuosity Measurement of Vessel 
Segment 

 Local angle computation at each 
centreline pixel 

10.12 

3 OD Localization 0.48 

4 AV Classification 26.40 

 



  

The optic disc location is used to identify the right/left eye in the macula centred retinal images. The 

OD localization and boundary extraction is illustrated in Figure 6. The algorithm achieves a success 

rate of 100% and 98.9% for DRIVE and DIARETDB1 databases respectively. The algorithm achieves an 

overlap of 61.88% and 54.69% for DRIVE and DIARETDB1 databases respectively. The detailed 

evaluation procedure for OD localization is reported by the authors elsewhere (Basit & Fraz, 2015). 

The quantitative comparison shows a close correlation between the automatic and manual location 

as well as a high spatial overlap between the OD generated by the manual method, other OD 

localization methodologies available in literature (Hsiao, Liu, Yu, Kuo, & Yu, 2012) and the proposed 

method. 

6 Discussion and Conclusion 

The retinal vasculature is the only part of the blood circulation system that can be directly observed 

non-invasively and can be easily imaged using fundus cameras. Abnormalities in morphological 

characteristics of arterioles and venules have been prospectively associated with a number of 

disease outcomes which includes hypertension, coronary heart disease, diabetes, elevated 

glycosylated haemoglobin, lower levels of high density lipoprotein. The assessment of the 

characteristics of the retinal vascular network may provide important information about early 

diagnosis of many systemic and vascular diseases. Epidemiologists and other medical / statistical 

experts study the association of retinal vessel abnormalities with other disease by examining the 

data gathered in the large population based studies and screening programs. The analysis of the 

vessel morphology and extraction of quantifiable measures from large number of images is a tedious 

task if performed manually. 

With the aim of developing reliable, automated, efficient retinal image analysis software which can 

generate a rich quantification of retinal vasculature in large volumes of fundus images, we present 

QUARTZ (Quantitative Analysis of Retinal Vessel Topology and size), a novel automated system for 

processing and analysing bulk of retinal images. Several software packages to analyse adult retinal 



  

images have been developed. While these provide several indices of retinal vessel morphology, they 

have several important limitations. In particular, they are restricted to analysis of limited areas 

around the optic disc, have limited automated ability to discriminate retinal arterioles from venules 

and provide evidence on a limited number of parameters; mainly vessel width with limited 

information on vessel tortuosity. Moreover, these packages are often semi-automated and some 

include extended processing times for a single image. 

 QUARTZ is fully automated software system that has been developed to localize and quantify the 

morphological characteristics of blood vessels in the retinal images, including (i) measurement of 

retinal vessels (including sub-pixel measures of width and tortuosity), and (ii) recognition of arteriole 

and venule status, (iii) automated identification of the optic disc). These measures will derive 

information from the whole retina, not simply concentric areas centred on the optic disc. 

The automated methods for quantification of retinal vessel morphology and width may be used as 

an alternative to the time consuming subjective clinical evaluation for monitoring the progression of 

retinopathies and their association with normal and abnormal vascular patterns. This may enable 

early diagnosis and treatment, improving prognosis by rapid introduction of clinical health-care. 

QUARTZ provides quantifiable measures of retinal vessel morphology, which may enable 

epidemiologists / clinicians to detect the likelihood or presence of a disease by observing specific 

signs in combination with other external factors e.g. age symptoms and certain clinical features. 

The retinal images are placed in a directory and the folder path is specified in the QUARTZ system. 

The system automatically loads the images from the specified directory, extract vasculature, convert 

it into vessel segments, classify into arteries\veins, compute local angle and tortuosity and localize 

optic disc. The quantitative measures can be exported as CSV files or Microsoft Excel Workbooks. 

The software is designed to run in two processing modes, the batch processing mode and the 

interactive processing mode. In the batch processing, the selected processing option is applied to all 

of the images in the working directory in an automated way. The number of retinal images to be 

processed in the working directory can also be specified. In the interactive processing mode, the 



  

selected retinal image from the selectable tabular view can be processed according to the chosen 

processing option (vessel segmentation, vessel analysis or both). 

QUARTZ can be used to identify early retinal vessel changes that may be physiological biomarkers of 

disease of cardio-metabolic risk and outcome, such coronary heart disease and stroke. Another 

application area is to study the effect of new therapies and drugs on disease e.g. alteration in retinal 

vessel measurements with a new treatments for hypertension. The quantifiable measures extracted 

from QUARTZ can also be used for examining the association of novel pathways in the natural 

history of specific disease e.g. microvascular disease pathways in stroke. It can be used to study the 

association between retinal vessel abnormalities and cognitive performance based on gene 

expression (Ding, et al., 2008). QUARTZ can assist in longitudinal studies i.e. quantitative study of the 

evolution and characterization of a disease, which will assist in treatment planning or investigating 

the response of a patient to certain treatments. The performance of the software is demonstrated to 

be state-of-the art in terms of segmentation accuracy, calibre measurement, optic disc and 

arteriole/venule recognition. In terms of automation with respect to specific large datasets, it is 

shown to be leading in the field.  

At present, clinical detection and grading of diabetic retinopathy is largely evaluated manually by a 

grader who compares the patient’s retinal image with a set of standard photographs and accesses 

the severity of retinal pathologies (abnormal blood vessel width, venous beading etc) before 

assigning an overall grade. An application of image processing algorithms for computer assisted 

analysis of digital fundus images offers a number of advantages over a manual system, including fast, 

timely and reliable quantification of abnormalities with a reduction of subjective human error. 

Regarding future work, we aim to extend the functionality of this tool in multiple directions. The 

quality assessment of retinal image is an important pre-processing step for identifying those images 

in large datasets for which the automated analysis procedures may fail. An image is considered as 

inadequate when it is difficult or impossible to make a reliable clinical judgment regarding the 

presence or absence of disease. In the screening programs, studies (Teng, Lefley, & Claremont, 2002) 



  

have shown that approximately 10% of the mydriatic (pupil dilation) images and 20.8% of non-

mydriatic (no pupil dilation) are of inadequate quality. The major reasons for low quality images 

include illumination variability due to small pupil size; lack of contrast and blurriness due to poor 

focus, eye movement and imaging of part of the eyelid and eyelash due to blinking.  Sufficient image 

quality is essential to ensure a reliable extraction of quantitative measures from retinal vessel 

morphology. 

From usability point of view, an informal feedback has been gathered on the use of the QUARTZ 

system by epidemiologists at St. Georges University of London. The QUARTZ system has been 

applied to over 16000 retinal images and a more complete evaluation of the user experience of the 

software is planned for future work. An algorithm for change detection in OD cup-to-disc diameter 

ratio will be incorporated which enables this software to be used in large population based studies 

for glaucoma detection. Moreover, the A/V classification module will be extended towards 

automatic computation of Arterio-Venous Ratio. The width measurement component together with 

the A/V classification will be extended for automatic detection of venous beading and a/v nicking. 

Most importantly, the vessel segmentation algorithm will be extended such that it can detect 

neovascularization in the retina. This detection of formation of new vessels in the retina is a strong 

indicator of proliferative diabetic retinopathy (Ramlugun, Nagarajan, & Chakraborty, 2012). This 

enhancement will enable QUARTZ to be utilized for studying the association and linkage of different 

phenotypes with proliferative diabetic retinopathy in large population studies.  Our research group is 

also working in multi-modal and hybrid registration of retinal images and more methodologies for 

retinal image analysis are being developed such as quantification of retinal pathologies and drusen 

localization, etc. These methodologies have proven very useful for clinicians and epidemiologists, 

thus it would be valuable to integrate them into the QUARTZ software. 
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Highlights 

Automated system for interactive / batch processing of large number of retinal images 

Extract useful quantifiable measurements of retinal vessel morphology 

Modules for vessel segmentation, width, tortuosity measurement at sub-pixel accuracy 

Components for Artery / Vein classification, OD localization, tortuosity measurement 

Epidemiological study of association of vessel morphology with disease precursor 

 


