6,194 research outputs found

    Motion-tracking skill assist and power assist for sinusoidal motions with a semi-active assist mechanism using energy control

    Get PDF
    This paper describes a skill assist method for sinusoidal motions using a semi-active assist mechanism through an energy control method. In a previous study, we had developed and verified the effectiveness of a power assist device with a semi-active assist mechanism and a control method for reducing loads during periodic motion. Here, we have developed a skill assist method as an extension of our power assist device for periodic motion. The skill of performing sinusoidal motions is defined in this study as an operator’s ability to track such motions. Therefore, our skill assist method attempts to improve the operator’s tracking ability. The proposed skill assist method is implemented using our previous power assist device; therefore, the device provides not only a power assist effect but also a skill assist effect to correct the motion. Hence, an operator obtains both the power and the skill assist effects simultaneously

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Analysis of power assist effect during skill assist for periodic motions under use of semi-active assist mechanisms

    No full text

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    Applications of EMG in Clinical and Sports Medicine

    Get PDF
    This second of two volumes on EMG (Electromyography) covers a wide range of clinical applications, as a complement to the methods discussed in volume 1. Topics range from gait and vibration analysis, through posture and falls prevention, to biofeedback in the treatment of neurologic swallowing impairment. The volume includes sections on back care, sports and performance medicine, gynecology/urology and orofacial function. Authors describe the procedures for their experimental studies with detailed and clear illustrations and references to the literature. The limitations of SEMG measures and methods for careful analysis are discussed. This broad compilation of articles discussing the use of EMG in both clinical and research applications demonstrates the utility of the method as a tool in a wide variety of disciplines and clinical fields

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Master of Science

    Get PDF
    thesisFor those who have suffered stroke or spinal cord injury, rehabilitation is often the answer for improving gait function. Rehabilitative exercises, which often focus on the legs and deemphasize the role of the upper limbs, are done to help stimulate muscles and exploit neuroplasticity for the diminished functions. However, it has been shown that upper limb muscle activity can induce lower limb muscle activity. It has also been shown that proper arm swing is necessary during gait for balance. This thesis presents the design concept and fabricated prototype of a device that swings the arms during gait rehabilitation. The device is low-powered, lightweight, wearable, and capable of assisting the user's arm swing in the sagittal plane and has unhindered kinematics in the remaining unactuated degrees of freedom. The design comprises three key subassemblies: a backpack frame, an underactuated arm-swing mechanism, and a power train to transfer and amplify motor torques to the arm-swing mechanism. Tests are performed to validate the shoulder-angle prediction equations based on the noncollocated motor-angle sensor measurements, to validate the device's ability to provide adequate torque to generate arm-swing in a passive user, and to investigate whether or not the user's active involvement can be observed by examining motor torque or shoulder angles. The results show that the device does provide sufficient torque to move the arms with a factor of safety, but that the model-based shoulder-angle estimates obtained from the motor measurements have nonnegligible error with the current prototype. It is recommended that a Proportional-Derivative (PD) controller with high PD gains be used with the device because of its low root mean square (RMS) tracking error, shoulder-angle amplitude creation, and ability to diagnose user-assistance level (i.e., is the user passive or actively assisting arm swing) online by observing shoulder-angle amplitudes and peak motor torques

    Home-based rehabilitation of the shoulder using auxiliary systems and artificial intelligence: an overview

    Get PDF
    Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.info:eu-repo/semantics/publishedVersio
    • …
    corecore