Muroran-IT Academic Resource Archive
Not a member yet
    5694 research outputs found

    On a Descriptive Study of a Word-stress System : From a Fieldworker\u27s Point of View

    Get PDF
    There have been much scholarly work on word-stress systems around the world, and many theoretical issues seem to have been solved. However, several questions will still soon arise once you conduct field researches on a stress accent language: How do we verify it\u27s accent system as word-stress system? What prosodic features does a stress accent language has to have? Is it always straightforward to elicit wordstress patterns in research interviews? Is a stress accent language which has another prosodically distinctive feature still diagnosed as a stress accent language? In the present paper, the author, who has been involved with descriptive investigation into the word-stress systems of the North Germanic languages, attempts to resolve these questions based on his experience and knowledge acquired through descriptive field researches.ๅญฆ่ก“่ซ–

    The Effect of Covid-19 pandemic in the aspects of Disaster Stress : Compare with the effect of 2018 Iburi East Area Earthquake

    Get PDF
    After Covid-19 pandemic , a questionnaire was conducted on the psychophysiological situation and the implementation level of preventive method and stress level toward the student who affected by Iburi East Earthquake. It is indicated that the effect of psychophysiological situation is almost same level with immediately after earthquake and prevention method,especially mask and behavior restriction, are serious stressor. Covid-19 pandemic strikes people multiple stress as disaster stress.ๅญฆ่ก“่ซ–

    ฮฑ-Sm2S3ใซใŠใ‘ใ‚‹็•ฐๅธธ็ฃๆฐ—ไผๅฐŽ

    Get PDF
    ๅธŒๅœŸ้กž็กซๅŒ–็‰ฉฮฑ-R2S3๏ผˆR = La-Dyใ€PmใจEuใ‚’้™คใ๏ผ‰ใฏใ€็ฉบ้–“็พคPnmaใฎ็›ดๆ–นๆ™ถ็ตๆ™ถๆง‹้€ ใ‚’ๆœ‰ใ—ใ€2ใคใฎ็‹ฌ็ซ‹ใ—ใŸๅธŒๅœŸ้กžใ‚ตใ‚คใƒˆR1, R2ใ‚’ๆŒใฃใฆใ„ใ‚‹ใ€‚ใ“ใฎไธ€้€ฃใฎฮฑ-R2S3ใงใฏใ€ใปใผๅ…จใฆใฎๅŒ–ๅˆ็‰ฉใŒ1ใคใพใŸใฏ2ใคใฎ้€ฃ็ถšใ—ใŸๅๅผท็ฃๆ€ง่ปข็งปใ‚’็คบใ™ใ€‚ใ—ใ‹ใ—ใ€ฮฑ-Sm2S3ใฎใฟใฏ10 Kไปฅไธ‹ใฎไฝŽๆธฉใง้€ฃ็ถšใ—ใŸๅผฑๅผท็ฃๆ€ง(WFM)่ปข็งปใ‚’็คบใ—ใ€ใใฎ็ฃๅŒ–ใฎ็‰นๅพด็š„ใชๆŒฏใ‚‹่ˆžใ„ใฏๅๅˆ†ใซ่งฃๆ˜Žใ•ใ‚Œใฆใ„ใชใ„ใ€‚ฮฑ-Sm2S3ใฎๆŠตๆŠ—็Ž‡ใฏ้ซ˜ๆธฉๅด่ปข็งปๆธฉๅบฆใฎ็›ดไธŠใงๅทจๅคงใชๅข—ๅคงใจๅ›žๅพฉใ‚’็คบใ—ใ€ใ“ใฎ100ๅ€ใ‚’่ถ…ใˆใ‚‹็•ฐๅธธใชๅข—ๅคงใฏ้žๅธธใซ้ญ…ๅŠ›็š„ใงใ‚ใ‚‹ใ€‚ใพใŸac้ขๅ†…ใซใŠใ‘ใ‚‹็ฃๅŒ–ๅฎนๆ˜“่ปธใซ้–ขใ™ใ‚‹ๅฅ‡ๅฆ™ใชไบค้ŒฏใŒ่ฆณๅฏŸใ•ใ‚ŒใฆใใŸใ€‚ฮฑ-Sm2S3ใฎ็‰นๅพด็š„ใช็ฃๆฐ—่ปข็งปใจๆ–ฐๅฅ‡ใช่ผธ้€็‰นๆ€งใฎๆฉŸๆง‹ใ‚’ๆ˜Žใ‚‰ใ‹ใซใ™ใ‚‹ใŸใ‚ใซใ€ๅ˜็ตๆ™ถใจ็„ผ็ตไฝ“่ฉฆๆ–™ใ‚’็”จใ„ใฆไฝŽๆธฉ็‰ฉๆ€งใ‚’ๆธฌๅฎšใ—ใŸใ€‚ๆฐ—็›ธๅŒ–ๅญฆ่ผธ้€ๆณ•ใซใ‚ˆใ‚Šใ€b่ปธๆ–นๅ‘ใซ้•ทใใฆ6ใคใฎๅด้ขใ‚’ๆŒใค้‡็Šถๅ˜็ตๆ™ถใŒ่‚ฒๆˆใ•ใ‚ŒใŸใ€‚ๆธฌๅฎšใซ็”จใ„ใŸๅ…จ่ฉฆๆ–™ใฏใ€ใŸใจใˆ11ๅ€‹ใฎๅด้ขใ‚’ๆŒใคใ‚‚ใฎใงใ‚ใฃใฆใ‚‚ใ€X็ทšๅ›žๆŠ˜ใฎๆ‰‹ๆณ•ใซใ‚ˆใ‚ŠๅŒๆ™ถใงใฏใชใๅ˜็ตๆ™ถใงใ‚ใ‚‹ใ“ใจใŒ็ขบ่ชใ•ใ‚ŒใŸใ€‚11ๅด้ขใ‚’ๆŒใค่ฉฆๆ–™ใฎ็ฃๅŒ–ใฏ้€šๅธธใฎ 6 ๅด้ขใฎ่ฉฆๆ–™ใจๆœฌ่ณช็š„ใซๅŒใ˜ใงใ‚ใฃใŸใ€‚ใพใŸใ€็ฃๅŒ–ๅฎนๆ˜“่ปธใŒa่ปธใจc่ปธใฎไธกๆ–นใฎ่ฉฆๆ–™ใŒๅญ˜ๅœจใ™ใ‚‹ใ“ใจใŒๆœฌ็ ”็ฉถใซใŠใ„ใฆใ‚‚็ขบ่ชใ•ใ‚ŒใŸใ€‚้€ๆฌก็š„ใชWFM่ปข็งปใ‚’็ขบ่ชใ—ใ€Curieๆธฉๅบฆใ‚’TC1๏ผ3.6 KใจTC2๏ผ1.8 Kใจๆฑบๅฎšใ—ใŸใ€‚ๅผฑๅผท็ฃๆ€ง่ปข็งปๅพŒใฎ็ฃๅ ดไธญๅ†ทๅด(FC)้Ž็จ‹ใซใŠใ‘ใ‚‹็ฃๅŒ–ใฏใ€็ฃๅŒ–ๅฎนๆ˜“ๆ–นๅ‘ใงใ‚ใฃใฆใ‚‚Sm3+ใฎ้ฃฝๅ’Œ็†่ซ–ๅ€คใฎ1/18ใจๅฐใ•ใใ€ๅ›ฐ้›ฃๆ–นๅ‘ใงใฏใ•ใ‚‰ใซๅฐใ•ใ„ใ€‚ใ“ใฎ็‰นๅพด็š„ใชWFM ็‰นๆ€งใฏใ€b่ปธๆ–นๅ‘ใซๅๅผท็ฃๆ€ง็š„ใซ็งฉๅบๅŒ–ใ—ใŸSm3+ใฎ็ฃๆฐ—ใƒขใƒผใƒกใƒณใƒˆใŒๅ‚พใใ“ใจใซใ‚ˆใฃใฆ็”Ÿใ˜ใ‚‹ๆญฃๅ‘ณใฎๅผท็ฃๆ€ง็š„ๅฏ„ไธŽใซใ‚ˆใ‚‹ใ‚‚ใฎใงใ‚ใ‚‹ใจ่€ƒใˆใ‚‰ใ‚Œใ‚‹ใ€‚ๅ˜็ตๆ™ถใฎ้›ถ็ฃๅ ดๅ†ทๅด(ZFC)็ฃๅŒ–ใฎTC1็›ดไธŠใฎใƒ”ใƒผใ‚ฏใฏ็ฃๅŒบใฎๅฝขๆˆใซใ‚ˆใฃใฆ่ตทใ“ใ‚Šใ€็„ผ็ต่ฉฆๆ–™ใฎFC/ZFC็ฃๅŒ–ใฎๅŒๆง˜ใฎใƒ”ใƒผใ‚ฏใฏๆญฃๅ‘ณใฎๅผท็ฃๆ€งๆˆๅˆ†ใฎๅผทใ„็•ฐๆ–นๆ€งใซ่ตทๅ› ใ™ใ‚‹ใจ็ต่ซ–ใ—ใŸใ€‚็ฃๆฐ—ๆฏ”็†ฑใจ็ฃๆฐ—ใ‚จใƒณใƒˆใƒญใƒ”ใƒผใฎ่งฃๆžใ‹ใ‚‰ใ€ๅ„่ปข็งปๆธฉๅบฆใซใŠใ„ใฆไธ€ใคใฎSmใ‚ตใ‚คใƒˆใฎใฟใฎ็ฃๆฐ—ใƒขใƒผใƒกใƒณใƒˆใŒ็งฉๅบๅŒ–ใ—ใ€ใใฎๅŸบๅบ•็Šถๆ…‹ใฏSm3+ใ‚ฏใƒฉใƒžใƒผใ‚นไบŒ้‡้ …ใงใ‚ใ‚‹ใจ็ต่ซ–ใ•ใ‚ŒใŸใ€‚็ฃๆฐ—ใ‚จใƒณใƒˆใƒญใƒ”ใƒผใฏ็ฃๅ ดๆ–นๅ‘ใซๅฏพใ—ใฆๆฅตใ‚ใฆ็•ฐๆ–น็š„ใงใ‚ใ‚Šใ€ใใฎๅ€คใฏๅฐใ•ใ„ใŒใ€็ฃๅ ดๆ–นๅ‘ใฎ้•ใ„ใซใ‚ˆใฃใฆ็•ฐใชใ‚‹็ฃๆฐ—็†ฑๅŠนๆžœใŒๆœŸๅพ…ใงใใ‚‹ใ€‚ๆœฌ็ ”็ฉถใซใŠใ„ใฆใฏใ€TC1็›ดไธŠใฎ็‹ญใ„ๆธฉๅบฆ็ฏ„ๅ›ฒใซใŠใ‘ใ‚‹้›ปๆฐ—ๆŠตๆŠ—็Ž‡ฯใฎ็•ฐๅธธใชๅข—ๅคงใฏใ€็ฃๅŒ–ๅฎนๆ˜“่ปธใฎ็•ฐใชใ‚‹ไธกๅ˜็ตๆ™ถใจใ‚‚ใซ5ๆกไปฅไธŠใซ้”ใ—ใŸใ€‚ไธกๅ˜็ตๆ™ถใซใŠใ„ใฆใ€็ฃๅ ดๅฐๅŠ ใซใ‚ˆใ‚Šใใฎๅทจๅคงใชๅข—ๅคงใฏๆ€ฅ้€ŸใซๆŠ‘ๅˆถใ•ใ‚Œใ‚‹ใŒใ€็„ก็ฃๅ ดไธ‹ใฎฯ(T)ๆ›ฒ็ทšใจ็ฃๅ ดใซใ‚ˆใ‚‹ๆŠ‘ๅˆถใฎใ•ใ‚Œๆ–นใฏ็ฃๅŒ–ๅฎนๆ˜“่ปธใซใ‚ˆใฃใฆ็•ฐใชใ‚‹็‰นๆ€งใ‚’็คบใ™ใ€‚ใ“ใฎTC1็›ดไธŠใฎ็พ่ฑกใฏใ€Sm3+ใƒขใƒผใƒกใƒณใƒˆใฎ็Ÿญ่ท้›ข็งฉๅบใฎๅฝขๆˆใจๆญฃๅ‘ณๅผท็ฃๆ€งๆˆๅˆ†ใฎ็ฃๅŒบๅฝขๆˆใซ่ตทๅ› ใ—ใ€ใพใŸ่ค‡ๆ•ฐใฎ็ฃๅŒ–ๅฎนๆ˜“่ปธใฎๅญ˜ๅœจใจใ‚‚ๅฏ†ๆŽฅใซ้–ข้€ฃใ—ใฆใ„ใ‚‹ใจ่€ƒใˆใ‚‰ใ‚Œใ‚‹ใ€‚็ฃๅŒ–ๅฎนๆ˜“่ปธใฎ่ฉฆๆ–™ไพๅญ˜ๆ€งใฏใ€Sm3+ใฎๅŸบๅบ•็Šถๆ…‹ใฎ้›ป่ทๅˆ†ๅธƒใซ่ค‡ๆ•ฐใฎๆบ–ๅฎ‰ๅฎš็Šถๆ…‹ใŒๅญ˜ๅœจใ™ใ‚‹ใ“ใจใซ่ตทๅ› ใ™ใ‚‹ใจ่€ƒใˆใ‚‰ใ‚Œใ‚‹ใ€‚Rare earth sesquisulfides ฮฑ-R2S3 (R = La-Dy, except Pm and Eu) possess an orthorhombic crystal structure with the space group Pnma, which has two inequivalent rare earth sites R1 and R2. In this series of ฮฑ-R2S3, almost all compounds exhibit one or two successive antiferromagnetic transitions. However, only ฮฑ-Sm2S3 shows successive weak-ferromagnetic (WFM) transitions at low temperatures below 10 K, and the characteristic behavior of the magnetization has not been fully elucidated. In addition, the resistivity of ฮฑ-Sm2S3 shows an enormous enhancement and restoration just above higher transition temperature and this anomalous enhancement by a factor of more than 100 is very attractive. Additionally, a strange crossing with respect to the easy-magnetization axis in the ac-plane had been observed. To clarify the mechanism of the characteristic magnetic transitions and the novel transport properties in ฮฑ-Sm2S3, low-temperature physical properties were investigated using single crystal and sintered samples.Needle-like single crystals having the longer direction along the b-axis and 6 side planes were grown by a chemical vapor transport method. All samples used for measurements, even it has 11 side planes, were confirmed by an XRD method to be single crystals but not twins. The magnetization of 11-planes sample was the same essentially as that of the normal 6-planes samples. In addition, the existence of both samples with a and c easy axes of magnetization was confirmed in this study as well. The successive WFM transitions were confirmed and the Curie temperatures are determined as TC1 = 3.6 K and TC2 = 1.8 K. The magnetization value in field cooling (FC) process after the weak ferromagnetic transitions is as small as 1/18 of the theoretical saturation value of Sm3+ even in the easy direction, and much smaller in the hard direction. The characteristic WFM properties are considered to be due to the net ferromagnetic contribution resulting from the canting of the antiferromagnetically ordered Sm3+ magnetic moment along the b-axis. It was concluded that the peak just above TC1 in the zero-field cooling (ZFC) magnetization of single crystals arises from the formation of magnetic domains, while a similar peak in the FC/ZFC magnetization of the sintered sample is due to the strong anisotropy of the net ferromagnetic component.From the analysis of the magnetic specific heat and entropy, it was concluded that the magnetic moments on only one Sm site is ordered at each transition temperature, and its ground state is a Sm3+ Kramers doublet. The magnetic entropy is extremely anisotropic with respect to the magnetic field direction, and although the values are small, different magneto-thermal effects can be expected for different magnetic field directions. The anomalous enhancement of electrical resistivity in the narrow temperature range just above TC1 in this study reached more than five orders of magnitude for both single crystals with different easy magnetization axis. In both single crystals, the huge enhancement is rapidly suppressed by the application of a magnetic field, but the ฯ(T) curves under no magnetic field and the way of suppression by magnetic fields show different characteristics depending on the easy magnetization axis. This phenomenon just above TC1 is considered to be caused by the formation of short-range order of Sm3+ moments and the formation of magnetic domains of the net ferromagnetic component, and also be closely related to the existence of multiple easy-magnetization axis. The sample dependence of the easy magnetization axis is considered to be due to the existence of multiple metastable states in the ground-state charge distribution of Sm3+.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ

    ใ‚จใƒณใƒ‰ใƒŸใƒซๅŠ ๅทฅใซใŠใ‘ใ‚‹็†ฑๅค‰ๅฝขใฎ็ตฑ่จˆ็š„ๆŽจๅฎšใซ้–ขใ™ใ‚‹็ ”็ฉถ

    Get PDF
    ใ‚จใƒณใƒ‰ใƒŸใƒซๅŠ ๅทฅใซใŠใ‘ใ‚‹ๅˆ‡ๅ‰Š็†ฑใซใ‚ˆใ‚‹ๅทฅไฝœ็‰ฉใฎๅค‰ๅฝขใฏใ€ๅŠ ๅทฅ็ฒพๅบฆใซๅคงใใชๅฝฑ้Ÿฟใ‚’ไธŽใˆใพใ™ใ€‚ๅทฅไฝœ็‰ฉใฎๅค‰ๅฝขใ‚’ๅŠ ๅทฅไธญใซ็›ดๆŽฅๆธฌๅฎšใ™ใ‚‹ใ“ใจใฏใ€ๅŠ ๅทฅใƒ—ใƒญใ‚ปใ‚นใฎๅค–ไนฑใฎใŸใ‚ใซๅ›ฐ้›ฃใงใ™ใ€‚ไธ€ๆ–นใ€ๅทฅไฝœ็‰ฉใฎๅฑ€ๆ‰€็š„ใชๆธฉๅบฆใฏใ€ไธ€่ˆฌ็š„ใชๆธฌๅฎšๆ–นๆณ•ใง็ฐกๅ˜ใ‹ใคๆญฃ็ขบใซๆธฌๅฎšใงใใพใ™ใ€‚ใ“ใฎ็ ”็ฉถใฎ็›ฎ็š„ใฏใ€ๅทฅไฝœ็‰ฉใฎๅค‰ๅฝขใ‚’็›ฃ่ฆ–ใ™ใ‚‹ๆ–นๆณ•ใ‚’้–‹็™บใ™ใ‚‹ใ“ใจใงใ™ใ€‚ๅฐ‘้‡็”Ÿ็”ฃใซใŠใ‘ใ‚‹ๅทฅไฝœ็‰ฉใฎ็†ฑ็Šถๆ…‹ใ‚’ๆŽจๅฎšใ™ใ‚‹ใŸใ‚ใซใ€ๅฑ€ๆ‰€ๆธฉๅบฆๆธฌๅฎšใจ็†ฑใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใ‚’็ต„ใฟๅˆใ‚ใ›ใŸใ‚ปใƒณใ‚ตใƒผ้…็ฝฎๅž‹็†ฑใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใŒๆๆกˆใ•ใ‚Œใฆใ„ใพใ™ใ€‚ๆœฌ็ ”็ฉถใงใฏใ€่จˆ็ฎ—ๆ™‚้–“ใ‚’็Ÿญ็ธฎใ™ใ‚‹ใŸใ‚ใซใ€ๆธฌๅฎšใ•ใ‚ŒใŸๆธฉๅบฆใ‹ใ‚‰ๅทฅไฝœ็‰ฉใฎๅค‰ๅฝขใ‚’ๆŽจๅฎšใ™ใ‚‹็ตŒ้จ“็š„ใƒขใƒ‡ใƒชใƒณใ‚ฐๆ‰‹ๆณ•ใ‚’ๅฐŽๅ…ฅใ—ใพใ™ใ€‚ไฟก้ ผๆ€งใฎ้ซ˜ใ„ๆŽจๅฎšใฎใŸใ‚ใซใฏใ€้ฉๅˆ‡ใชๆธฌๅฎšใƒใ‚คใƒณใƒˆใ‚’้ธๆŠžใ™ใ‚‹ใ“ใจใŒไธๅฏๆฌ ใงใ™ใ€‚ใ•ใพใ–ใพใชๆฉŸๆขฐๅŠ ๅทฅ็ŠถๆณใซใŠใ‘ใ‚‹็†ฑๅค‰ๅฝขใจๆธฌๅฎš็‚นใฎๆธฉๅบฆใจใฎ้–ขไฟ‚ใ‚’็ขบ็ซ‹ใ™ใ‚‹ใŸใ‚ใซใ€็ตฑ่จˆๆƒ…ๅ ฑใซๅŸบใฅใ่จˆๆธฌ็‚น้ธๆŠžๆ–นๆณ•ใ‚’ๅคš้‡็ทšๅฝขๅ›žๅธฐ (MLR) ๆณ•ใ‚’ไฝฟ็”จใ—ใฆๆๆกˆใ—ใพใ™ใ€‚ใ‚จใƒณใƒ‰ใƒŸใƒซๅŠ ๅทฅใƒ—ใƒญใ‚ปใ‚นใฎ FEM ใƒ™ใƒผใ‚นใฎ็†ฑๅค‰ๅฝขใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใ‚’ไฝฟ็”จใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Šใ€ๅŠ ๅทฅ็‚นใงไบˆๆธฌใ•ใ‚Œใ‚‹ๅค‰ๅฝขใฎๆ™‚็ณปๅˆ—ๆƒ…ๅ ฑใ‚’ๅ‡บๅŠ›ๅค‰ๆ•ฐใจใ—ใ€ๆธฌๅฎš็‚นใฎๆธฉๅบฆใฎๆ™‚็ณปๅˆ—ๆƒ…ๅ ฑใ‚’ๅ…ฅๅŠ›ๅค‰ๆ•ฐใจใ™ใ‚‹ใ“ใจใŒๅฏ่ƒฝใซใชใ‚Šใพใ™ใ€‚่ตคๆฑ ๆƒ…ๅ ฑ้‡ๅŸบๆบ–๏ผˆAIC๏ผ‰ใ‚’่ฉ•ไพกใ™ใ‚‹ใ“ใจใง็‹ฌ็ซ‹ใชๆธฌๅฎš็‚นๆ•ฐใ‚’ๆฑบๅฎšใ—ใ€pๅ€คๆŒ‡ๆ•ฐใ‚’็”จใ„ใฆๆœ‰ๅŠนใชๆธฌๅฎš็‚นใ‚’้ธๆŠžใ—ใพใ™ใ€‚ๆๆกˆใ•ใ‚ŒใŸไฝ“็ณป็š„ใชๆง‹็ฏ‰ๆ–นๆณ•ใฏใ€ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใƒ™ใƒผใ‚นใฎใ‚ฑใƒผใ‚นใ‚นใ‚ฟใƒ‡ใ‚ฃใซใ‚ˆใฃใฆ่ฉ•ไพกใ•ใ‚Œใพใ™ใ€‚FEM ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณใซใ‚ˆใฃใฆ่จˆ็ฎ—ใ•ใ‚ŒใŸๅค‰ๅฝขใจๅทฅไฝœ็‰ฉใฎๅค‰ๅฝข็”จใซๆง‹็ฏ‰ใ•ใ‚ŒใŸ็ตฑ่จˆใƒ™ใƒผใ‚นใฎใƒขใƒ‡ใƒซใฏใ‚ˆใไธ€่‡ดใ—ใพใ™ใ€‚ๆง‹็ฏ‰ใ—ใŸใƒขใƒ‡ใƒซใฏใ€ๆœ€ๅฐ้™ใฎๆธฌๅฎš็‚นๆ•ฐใงๅทฅไฝœ็‰ฉใฎๅค‰ๅฝขใ‚’่กจ็พใงใใพใ™ใ€‚ใ‚จใƒณใƒ‰ใƒŸใƒซๅŠ ๅทฅใƒ—ใƒญใ‚ปใ‚นไธญใฎใ•ใพใ–ใพใชๅขƒ็•Œๆกไปถใงใฎๆๆกˆใ•ใ‚ŒใŸ็ตฑ่จˆใƒขใƒ‡ใƒซใฎ็ฒพๅบฆใซใคใ„ใฆ่ญฐ่ซ–ใ—ใŸๅพŒใ€ไฟฎๆญฃไฟ‚ๆ•ฐ็ตฑ่จˆใƒขใƒ‡ใƒซ (MCSM) ใจ่ชฟๆ•ด็ตฑ่จˆใƒขใƒ‡ใƒซ (ASM) ใจใ„ใ† 2ใคใฎไฟฎๆญฃ็ตฑ่จˆใƒขใƒ‡ใƒซใŒใ€้–ขไฟ‚ใ‚’ใ‚ˆใ‚Š้ฉๅˆ‡ใซ่กจ็พใ™ใ‚‹ใŸใ‚ใซๆๆกˆใ•ใ‚Œใพใ—ใŸใ€‚2ใคใฎไฟฎๆญฃ็ตฑ่จˆใƒขใƒ‡ใƒซใฎ่ชคๅทฎๅˆ†ๆžใ‚’ใใ‚Œใžใ‚Œ่ญฐ่ซ–ใพใ—ใŸใ€‚ใใฎ็ตๆžœใ€MCSM ใจ ASM ใฏใฉใกใ‚‰ใ‚‚ใ€ๆธฌๅฎš็‚นใฎๆธฉๅบฆใจใ•ใพใ–ใพใชๅขƒ็•ŒๆกไปถใงใฎๅŠ ๅทฅ็‚นใงใฎ็†ฑๅค‰ๅฝขใจใฎ้–ขไฟ‚ใ‚’ใ‚ˆใ‚Šๆญฃ็ขบใซ่จ˜่ฟฐใงใใ‚‹ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใซใชใ‚Šใพใ—ใŸใ€‚The thermal workpieceโ€™s deformation in end-milling process has significant effect on accuracy of machining. In-process direct measurement of workpiece deformation is difficult because of machining process disturbance. On the other hand, local temperatures of workpiece can be easily and accurately measured by common measuring methods. The objective of this research is to develop a method to monitor the workpieceโ€™s deformations. In order to estimate workpieceโ€™s thermal states in small-lot production, a sensor-configured thermal simulation has been proposed by combining local temperature measurements and thermal simulation. To accelerate the process time, an empirical modeling method to estimate workpieceโ€™s deformation from measured temperatures is introduced. It is indispensable to select appropriate measuring points for reliable estimation. In order to establish a relationship between thermal deformation and temperatures of measuring points in various machining situation, a statistic-based selection method is proposed by using the Multiple Linear Regression (MLR) method. By using FEM-based thermal simulation during end-milling process, predicted time-series of deformation at the machining point are regarded as output variable while time-series of temperature of measuring points are regarded as input variables. The similarity of measuring points is evaluated by using Akaike\u27s Information Criterion (AIC), and effective measuring points are selected by using p-value index. Proposed systematic construction method is evaluated by simulation-based case studies. A constructed temperature-based model for workpieceโ€™s deformation shows good agreement to the deformation calculated by the FEM simulation. The constructed model can represent workpieceโ€™s deformation with the minimum number of measuring points. After discussing the accuracy of proposed statistic model in various boundary conditions which correspond to various end-milling situation, two modified statistic model, such as modified coefficient statistic model (MCSM) and the adjusted statistic-model (ASM), were proposed to achieve more suitable expression of the relationship between monitoring points temperature and thermal deformation at machining point of workpiece surface. The error analysis of two modified statistic model were respectively discussed. Consequently, MCSM and ASM are both more accuracy to describe the relationship between temperature of monitoring points and thermal deformation at machining point in various boundary condition.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ๏ผ‰ๅฝ“ใ‚ขใ‚คใƒ†ใƒ ใฏ่ฆๆ—จใฎใฟใฎๅ…ฌ้–‹ใซใชใฃใฆใ„ใพใ™(2024-03-23

    ใƒ•ใƒฉใ‚คใ‚ขใƒƒใ‚ทใƒฅใŠใ‚ˆใณ้ซ˜็‚‰ใ‚นใƒฉใ‚ฐๅพฎ็ฒ‰ๆœซใ‚’็”จใ„ใŸใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๅ‡ๅฎณใจใฎ่ค‡ๅˆๅŠฃๅŒ–ใซ้–ขใ™ใ‚‹็ ”็ฉถ

    Get PDF
    ไธ€่ˆฌ็š„ใซใ€ๆง‹้€ ็‰ฉใซ็”Ÿใ˜ใฆใ„ใ‚‹ๅŠฃๅŒ–ๅŽŸๅ› ใ‚’ไธ€ใคใซ็‰นๅฎšใงใใชใ„ใ€ใ™ใชใ‚ใก่ค‡ๅˆๅŠฃๅŒ–ใจๅ‘ผใฐใ‚Œใ‚‹ๅŠฃๅŒ–็พ่ฑกใŒๅคšใใฟใ‚‰ใ‚Œใ‚‹ใ‚ˆใ†ใซใชใฃใฆใ„ใ‚‹ใ€‚ใ“ใฎๅ ดๅˆใงใฏๅ„ๅŠฃๅŒ–็พ่ฑกใฎ็›ธไบ’ไฝœ็”จใซใ‚ˆใฃใฆใ€็™บ็”Ÿใ—ใŸๅŠฃๅŒ–ๅฝขๆ…‹ใŒ่ค‡้›‘ใงใ€ๅ˜ไธ€ใฎๅŠฃๅŒ–ใƒขใƒ‡ใƒซใ‚’่ถณใ—ๅˆใ‚ใ›ใฆใใฎ่ค‡้›‘ๅŠฃๅŒ–่ฉ•ไพกใ‚’่กŒใ†ใ“ใจใŒใงใใชใ„ใ€‚ไธ€ๆ–นใ€็’ฐๅขƒ่ฒ ่ทไฝŽๆธ›ใฎ่ฆณ็‚นใ‹ใ‚‰ใ‚ปใƒกใƒณใƒˆ็”Ÿ็”ฃๆ™‚ใซ็™บ็”Ÿใ™ใ‚‹CO2ใฎๅ‰Šๆธ›ใ‚„็”ฃๆฅญๅ‰ฏ็”ฃ็‰ฉใฎๆœ‰ๅŠนๅˆฉ็”จใŒๆฑ‚ใ‚ใ‚‰ใ‚Œใ€ใ‚ปใƒกใƒณใƒˆ็”ฑๆฅใฎCO2ใ‚’ๅ‰Šๆธ›ใ™ใ‚‹ใ“ใจใŒใงใใ‚‹้ซ˜็‚‰๏ผˆBFS๏ผ‰ใ‚ปใƒกใƒณใƒˆใŠใ‚ˆใณใƒ•ใƒฉใ‚คใ‚ขใƒƒใ‚ทใƒฅ๏ผˆFA๏ผ‰ใ‚ปใƒกใƒณใƒˆใฎ็ ”็ฉถใŒ้€ฒใ‚ใ‚‰ใ‚ŒใฆใใŸใ€‚ใ“ใฎ่ƒŒๆ™ฏใจใ—ใฆใ€ๅฏ’ๅ†ทๅœฐใซใŠใ„ใฆใ€ๅ‡ๅฎณใŒ็‰น่‰ฒใงใ€BFSใ‚„FAใ‚’็”จใ„ใŸใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๅ‡ๅฎณใฎ่ค‡ๅˆๅŠฃๅŒ–ใซๅฏพใ™ใ‚‹้–ขๅฟƒใŒ้ซ˜ใพใ‚Šใคใคใ‚ใ‚Šใ€ๆคœ่จŽใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใ€‚ๅ‡ๅฎณใจๅกฉๅฎณใฎ่ค‡ๅˆๅŠฃๅŒ–ใซใคใ„ใฆใฏๅคšใใฎๆ—ขๅพ€็ ”็ฉถใŒใ‚ใ‚‹ใŒใ€ไธญๆ€งๅŒ–ใจๅ‡ๅฎณใ‚„ใ‚ขใƒซใ‚ซใƒช้ชจๆๅๅฟœ๏ผˆASR๏ผ‰ใจๅ‡ๅฎณใฎ่ค‡ๅˆๅŠฃๅŒ–ใซ้–ขใ™ใ‚‹ๅ ฑๅ‘Šใฏๅฐ‘ใชใ„ใ€‚ใ“ใ“ใงใ€ๆœฌ็ ”็ฉถใงใฏใ€BFSใ‚„FAใ‚’็”จใ„ใŸใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๆ€งๅŒ–ใจๅ‡ๅฎณใ‚„ๅ‡ๅฎณใจASRใฎ่ค‡ๅˆๅŠฃๅŒ–ใฎๅŠฃๅŒ–ๆฉŸๆง‹ใ‚’ๆŠŠๆกใ—ใฆใ„ใใ€‚1.ใ€€NonAEใงใฏใ€ไธญๆ€งๅŒ–ใซใ‚ˆใ‚Šใ€OPCใจไฝŽ็ฝฎๆ›็Ž‡ใฎBFSใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎ่€ๅ‡ๅฎณๆ€งใŒไฝŽไธ‹ใ—ใฆใ„ใ‚‹ใŒใ€้ซ˜็ฝฎๆ›็Ž‡ใฎBFS็ฐฟ่€ๅ‡ๅฎณๆ€งใŒๅ‘ไธŠใ—ใฆใ„ใ‚‹ใ€‚BFSใฎๆทปๅŠ ใซใ‚ˆใ‚Šใ€Non-AEใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใงใ€ไธญๆ€งๅŒ–ๅพŒใฎ่€ๅ‡ๅฎณๆ€งใฏไฝŽไธ‹ใ—ใฆใ„ใ‚‹ใŒใ€AEใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใงใ€ไธญๆ€งๅŒ–ๅพŒใฎ่€ๅ‡ๅฎณๆ€งใฏไฝŽไธ‹ใ—ใฆใ„ใชใ„ใ€‚2๏ผŽ FAใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใซใคใ„ใฆใ€ไธญๆ€งๅŒ–ใซใ‚ˆใ‚‹่€ๅ‡ๅฎณๆ€งใŒๅค‰ๅŒ–ใ—ใฆใ„ใชใ„ใ€‚ๅธๆฐด็Ž‡ใซๆฏ”ในใ€ใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎ่€ๅ‡ๅฎณๆ€งใ‚„ใ‚นใ‚ฑใƒผใƒชใƒณใ‚ฐใŒ็ดฐๅญ”ๆง‹้€ ใจใฎใฎ้–ขไฟ‚ใฏ่ชใ‚ใ‚‰ใ‚Œใ‚‹ใ€‚FAใฎๆทปๅŠ ใซใ‚ˆใ‚Šใ€Non-AEใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใงใ€ไธญๆ€งๅŒ–ๅพŒใฎ่€ๅ‡ๅฎณๆ€งใฏไฝŽไธ‹ใ—ใฆใ„ใ‚‹ใŒใ€AEใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใงใ€ไธญๆ€งๅŒ–ๅพŒใฎ่€ๅ‡ๅฎณๆ€งใฏไฝŽไธ‹ใ—ใฆใ„ใชใ„ใ€‚3๏ผŽOPCใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใงใฏใ€ๅ…ˆ่กŒใฎASRใซใ‚ˆใ‚Šใ€ๅ‡ๅฎณใ‚’ไฟƒ้€ฒใ—ใŸใŒใ€ๅ…ˆ่กŒใฎๅ‡ๅฎณใซใ‚ˆใ‚Šใ€ASRใซใ‚ˆใ‚‹่†จๅผตใ‚’ไฟƒ้€ฒๆŠ‘ๅˆถใ•ใ‚ŒใŸใ€‚BFSใ‚„FAใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใงใ€ๅ‡ๅฎณใซ้–ขใ‚ใ‚‰ใšใ€ASRใฎ่†จๅผตใ‚’ๅคงๅน…ใซๆธ›ใ‚‰ใ•ใ‚ŒใŸใ€‚BFSใ‚„FAใฎๆททๅ…ฅใซใ‚ˆใ‚Šใ€ASRใ‚’ๆŠ‘ๅˆถใ™ใ‚‹ใ“ใจใงใ€ใฒใณๅ‰ฒใ‚Œใฎ็™บ็”Ÿใ‚‚ๅฐ‘ใชใใ€ASRๅพŒใฎ่€ๅ‡ๅฎณๆ€งใ‚’ๅ‘ไธŠใ—ใŸใ“ใจใŒ็ขบ่ชใงใใŸใ€‚ๅฎŸ็’ฐๅขƒไธ‹ใงใ€JIS่ฆๆ ผใซใ‚ˆใ‚Šใ€AEใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎไฝฟ็”จใฏๆ™ฎ้€šใจใ—ใฆใ„ใ‚‹ใ€‚CO2ใฎๅ‰Šๆธ›ใ™ใ‚‹ใŸใ‚ใซใ€็’ฐๅขƒ่ฒ ่ทไฝŽๆธ›ใƒชใ‚ตใ‚คใ‚ฏใƒซๆใจใ™ใ‚‹BFSใ‚„FAใฎๆŽจ้€ฒใ™ใ‚‹ใจใจใ‚‚ใซใ€ใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎ้•ทๆœŸๅผทๅบฆใชใฉๆ”นๅ–„ใ•ใ‚Œใ‚‰ใ‚Œใ‚‹ใ€‚ไธ€ๆ–นใ€BFSใ‚„FAใฎไฝฟ็”จใฏๅกฉๅฎณใ‚„ไธญๆ€งๅŒ–ใ—ใŸใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎ่€ๅ‡ๅฎณๆ€งใ‚’ๅค‰ๅŒ–ใ—ใฆใ„ใชใใฆใ€ใ•ใ‚‰ใซASRใ‚’ๅ—ใ‘ใŸใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎ่€ๅ‡ๅฎณๆ€งใ‚’ๅ‘ไธŠใงใใ‚‹ใ€‚่ค‡ๅˆๅŠฃๅŒ–ใฎ่ฆณ็‚นใ‹ใ‚‰ใ€ๅปบ็ฏ‰ๅˆ†้‡Žใงใ€BFSใ‚„FAใฎไฝฟ็”จใ‚’ๅบƒใๆ™ฎๅŠใ™ใ‚‹ใ“ใจใ‚’ๆๆกˆใ—ใŸใ€‚For concrete structures in cold regions, the frost damage often occurs in the winter construction of concrete, which seriously threatens the performance and structural safety of concrete. The other concrete deteriorations such as salt damage, carbonation, and alkali-silica reaction (ASR) are also related closely to the durability of concrete. So far, the single deterioration mechanism is mainly studied in almost previous studies and the results have been accumulated substantially. However, for the actual concrete structures, it is not possible to suffer a single deterioration only. On the hand, in recent years, in the trend of CO2 emission reduction, blast furnace slag (BFS) and fly ash (FA) are used more widely to reduce the cement consumption in the field of building materials.Therefore, this study will investigate the combined deterioration between carbonation and frost damage, and ASR and frost damage of concrete containing BFS and FA, the effect on the combined deterioration would be also made clear.1. For Non-AE BFS concrete, carbonation can reduce the frost resistance of OPC concrete and BFS concrete with a low replacement ratio but can improve the frost resistance of BFS concrete with a high replacement ratio. For AE BFS concrete, the frost and scaling resistance of all concrete is kept at a high level. The additive of BFS can reduce the frost resistance of Non-AE concrete subjected to carbonation, and has no effect on frost resistance of AE concrete.2. For FA concrete, carbonation has little effect on the frost resistance of concrete. Besides, the frost and scaling resistance are far more reliant on the changes in pore structure than they are on the water absorption. Due to additive of FA, the frost and scaling resistance of AE concrete subjected to carbonation is kept at a high level; while, for Non-AE concrete subjected to carbonation, the frost and scaling resistance tends to decrease.3. for OPC concrete, expansion due to ASR could be restrained when subjected to freeze-thaw, and frost resistance is reduced when subjected to ASR. For BFS and FA concrete, expansion due to ASR could be restrained regardless of being subjected to frost damage. The additive of BFS and FA can improve the frost resistance of concrete subjected to ASR. In real environment, AE concrete is used wildly for concrete construction. Therefore, in the study, it can be obtained that the use of BFS and FA donโ€™t reduce of frost resistance of concrete subjected to salt damage and carbonation and increase the frost resistance of concrete subjected to ASR. Overall evaluation, the use of BFS and FA are beneficial to the safety of concrete.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ

    ใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๅˆๆœŸๅ‡ๅฎณใฎ่จบๆ–ญๅŠใณ้˜ฒๆญขๆŠ€่ก“ใซ้–ขใ™ใ‚‹็ ”็ฉถ

    Get PDF
    ๅฏ’ไธญใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆๅทฅไบ‹ใงๆœ€ใ‚‚็•™ๆ„ใ™ในใใ“ใจใจใ—ใฆใ€ๅˆๆœŸๅ‡ๅฎณใฎ้˜ฒๆญขใจๅผทๅบฆๅข—้€ฒใฎ้…ใ‚Œใซๅฏพใ™ใ‚‹ๅฏพๅฟœใŒๆŒ™ใ’ใ‚‰ใ‚Œใ‚‹ใ€‚ๅˆๆœŸๅ‡ๅฎณใฏใ€ใƒ•ใƒฌใƒƒใ‚ทใƒฅๆ™‚ใ‹ใ‚‰็กฌๅŒ–ๅˆๆœŸใซใ‹ใ‘ใฆใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆไธญใฎๆฐดๅˆ†ใŒๅ‡็ตใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Šใ€ๅผทๅบฆ็™บ็พใฎๅœๆปžใชใฉใ‚’ๅผ•ใ่ตทใ“ใ™่ขซๅฎณใฎใ“ใจใงใ‚ใ‚‹ใ€‚ๆ—ฅๆœฌๅปบ็ฏ‰ๅญฆไผšใฎๅฏ’ไธญใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆๆ–ฝๅทฅๆŒ‡้‡ใƒปๅŒ่งฃ่ชฌใงใฏใ€ๅˆๆœŸๅ‡ๅฎณใซ่€ใˆใ‚‹ๅœง็ธฎๅผทๅบฆ5.0 MPaใ€้ฉๅˆ‡ใช็ฉบๆฐ—้‡ใชใฉใŒ่ฆๅฎšใ•ใ‚Œใฆใ„ใ‚‹ใ€‚ใ—ใ‹ใ—ใ€ๆ—ฅๆœฌๅœŸๆœจๅญฆไผšใฏใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๅˆๆœŸๅ‡ๅฎณใ‚’้˜ฒใใŸใ‚ใซใ€15.0 MPaใฎๅœง็ธฎๅผทๅบฆใŒๅฟ…่ฆใฎๅ ดๅˆใŒใ‚ใ‚‹ใ€‚ๆ—ฅๆœฌๅปบ็ฏ‰ๅญฆไผšใจๅœŸๆœจๅญฆไผšใฏ่ฆๅฎšใซใคใ„ใฆใฎ็›ธ้•็‚นใŒๅญ˜ๅœจใ™ใ‚‹็พ่ฑกใซใ‚ˆใ‚Šใ€็พๅœจใฎๅฏ’ไธญๆŒ‡้‡ใซ้–ขใ™ใ‚‹ๅ›ฝ้š›่ฆๆ ผใฎ็ตฑๅˆใ‚’่กŒใ„ใ€ไธ–็•Œ็š„็ฏ„ๅ›ฒๅ†…ใซใŠใ‘ใ‚‹ๅฏ’ไธญใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆๆ–ฝๅทฅ็พ็Šถใ‚’่ชฟๆŸปใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใ€‚ไธ€ๆ–นใงใ€็พๅ ดใงๆœ‰ๅŠนใชๅˆๆœŸๅ‡ๅฎณใฎ้žใƒปๅพฎ็ ดๅฃŠใฎ่จบๆ–ญๆ‰‹ๆณ•ใŒๆœ›ใพใ—ใ„ใฎใงใ€ๆ–ฐใ—ใ„่จบๆ–ญๆ‰‹ๆณ•ใ‚’้–‹็™บใ™ใ‚‹ใ“ใจใŒๆฑ‚ใ‚ใ‚‰ใ‚Œใ‚‹ใ€‚ๆœฌ็ ”็ฉถใงใฏๆ–ฐใ—ใ„ๅˆๆœŸๅ‡ๅฎณใฎ้˜ฒๆญขๆ‰‹ๆณ•ใ‚‚็›ฎๆŒ‡ใ™ใ€‚ใใฎใŸใ‚ใ€ไปฅไธŠใฎ่ƒŒๆ™ฏใ‚’่ธใพใˆใ€ๅฏ’ไธญใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๅ“่ณช็ขบไฟใฎใŸใ‚ใซใ€ใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆๅˆๆœŸๅ‡ๅฎณใฎ่จบๆ–ญใŠใ‚ˆใณ้˜ฒๆญขใฎๆŠ€่ก“ใฎ็ ”็ฉถใ‚’็›ฎ็š„ใจใ—ใŸใ€‚ๅ›ฝ้š›ๅฏ’ไธญๆŒ‡้‡ใฎ่ชฟๆŸปใซใ‚ˆใ‚Šใ€่ซธๅ›ฝใฎๅฏ’ไธญใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆๆ–ฝๅทฅใฎ็พ็ŠถใŒๆŠŠๆกใงใใ€ๅคง้ƒจๅˆ†ใฎๆ–ฝๅทฅไบ‹้ …ใฎๅ†…ๅฎนใŒๅŒใ˜ใงใ‚ใ‚‹ใŒใ€ใใฎไธญใงใฏๅˆๆœŸๅ‡ๅฎณใซ่€ใˆใ‚‹ๅผทๅบฆใฎ้•ใ„ใ€ๆœ‰ๅŠนใช่ขซๅฎณ่จบๆ–ญใƒป้˜ฒๆญขๆ‰‹ๆณ•ใฎไธ่ถณใฎๅ•้กŒ็‚นใŒ็™บ่ฆ‹ใ•ใ‚ŒใŸใ€‚ใใฎใŸใ‚ใ€ใพใšใ€ๅˆๆœŸๅ‡ๅฎณใซ่€ใˆใ‚‹ๅผทๅบฆใฎ้•ใ„ใซใ‚ˆใ‚Šใ€ๅ‡็ต่ž่งฃ้–‹ๅง‹ๅ‰ๅœง็ธฎๅผทๅบฆใŒใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎ่€ๅ‡ๅฎณๆ€งใซๅŠใผใ™ๅฝฑ้Ÿฟใ‚’ๆ˜Žใ‚‰ใ‹ใซใ—ใŸใ€‚ใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๅœง็ธฎๅผทๅบฆใŒๅคงใใ„็จ‹ใ€่€ๅ‡ๅฎณๆ€งใŒ่‰ฏใใชใ‚‹ใ€‚ๆ›ดใซใ€ๅ›ฝ้š›ๅฏ’ๅ†ทๅœฐใฎๆฐ—่ฑกๆกไปถใซใ‚ˆใ‚Šใ€ๅนด้–“ใฎๅ‡็ต่ž่งฃๅ›žๆ•ฐใงใ‚ใ‚‹ASTM็›ธๅฝ“ใ‚ตใ‚คใ‚ฏใƒซๆ•ฐใ‚’็”จใ„ใŸๅˆๆœŸๅ‡ๅฎณใซ่€ใˆใ‚‹ๅผทๅบฆ5.0 MPaใ‚’่ฉ•ไพกใ—ใŸใ€‚5.0 MPaใฏไธ–็•Œ็š„ใชๅ…ฑ้€šใฎๅผทๅบฆใจใ—ใฆๅˆๆœŸๅ‡ๅฎณใ‚’้˜ฒๆญขใ™ใ‚‹ใ“ใจใŒๅฎ‰ๅ…จใงใ‚ใ‚‹ใ€‚ไธ€ๆ–นใงใ€ๅพฎ็ ดๅฃŠใฎ่ฒซๅ…ฅ่ฉฆ้จ“ใฏๅˆๆœŸๅ‡ๅฎณใ‚’่จบๆ–ญใงใใ‚‹ใ‹ใ‚’ๆคœ่จŽใ—ใŸใ€‚้‡˜ใฎ่ฒซๅ…ฅ่ฉฆ้จ“ใฏๅŠนๆžœใŒ่‰ฏใใชใ„ใŒใ€็ฉบๆฐ—ๅœงใƒ”ใƒณ่ฒซๅ…ฅ่ฉฆ้จ“ๆฉŸใฎๅ ดๅˆใงใฏ่ฒซๅ…ฅ้‡ใจ่ขซๅฎณๆทฑใ•ใฎ้–ขไฟ‚ใซใ‚ˆใ‚Šใ€่ขซๅฎณ็จ‹ๅบฆใฎๆŽจๅฎšใŒใงใใ‚‹ใ€‚ใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใฎๅ‡็ตๆ™‚้–“่ชฟๆ•ดๆ๏ผˆACF๏ผ‰ใ‚’็”จใ„ใŸๅˆๆœŸๅ‡ๅฎณ้˜ฒๆญขใฎๅŠนๆžœใ‚’ๆคœ่จŽใ—ใŸใ€‚ACFๆใฎๆทปๅŠ ้‡ใฏ0๏ผŒ2๏ผŒ4๏ผŒ6kg /m3ใฎ4ๆฐดๆบ–ใ‚’่จญ็ฝฎใ—ใŸใ€‚ACFๆใฎๆทปๅŠ ้‡ใŒๅคšใ„็จ‹ใ€ๅ‡็ตๆ™‚้–“ใŒๆ—ฉใใชใ‚Šใ€ไฝŽๆธฉใงใ‚‚้ก•่‘—ใชๅŠนๆžœใŒใ‚ใ‚‹ใ€‚ๆทปๅŠ ้‡ใฎ2kg /m3ใฎๅ ดๅˆใงใฏใ€ๅˆๆœŸๅ‡ๅฎณใ‚’ๅ—ใ‘ใ‚‹็Šถๆณใฏ0kg /m3ใฎๅ ดๅˆใจๅŒใ˜ใ€‚ๆทปๅŠ ้‡ใŒ4๏ผŒ6kg /m3ใฎๅ ดๅˆใงใฏใ€ๅˆๆœŸๆ้ฝกใซๅ‡็ตใ‚’ๅ—ใ‘ใŸใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใŒๅˆๆœŸๅ‡ๅฎณใ‚’ๅ—ใ‘ใชใใ€ๅœง็ธฎๅผทๅบฆใฏๅ‡็ตใชใ—ใฎใ‚ณใƒณใ‚ฏใƒชใƒผใƒˆใจๅŒ็ญ‰ใซใชใ‚‹ใ€‚ACFๆๆทปๅŠ ้‡ใฎ4๏ผŒ6kg /m3ใ‚’ๅˆๆœŸๅ‡ๅฎณใฎ้˜ฒๆญขๆ‰‹ๆณ•ใจใ—ใฆๆๆกˆใ—ใŸใ€‚The most critical things in cold weather concreting are preventing early age frost damage and guaranteeing a normal strength development. Early age frost damage is a serious problem for concrete structures in cold regions, which is caused by freezing and cyclic freeze-thaw cycles during the initial hardening stage. The objective of this study was to (1) grasp the present situation of cold weather concreting in various countries and summarize the content from various guidelines by investigating Guides to Cold Weather Concreting of various countries, (2) propose effective diagnosis methods for early age frost damage, (3) investigate the effect of compressive strength development at early ages on frost resistance of concrete and (4) propose a prevention method of early age frost damage by using additive for setting time adjustment.Based on the literature review of Guides to Cold Weather Concreting of various countries, it is known that most of the regulations are relatively similar. However, the minimum required compressive strength is the main difference in various countries. Meanwhile, technological development is needed to improve the diagnosis and prevention of early age frost damage.The nail and pneumatic penetration test machine methods are discussed to develop accurate diagnostic methods for detecting the depth of early age frost damage. The penetration test by pneumatic penetration test machine effectively diagnoses the depth of early age frost damage in 7 days. It can roughly detect the damage depth with a micro-destructive degree.To investigate the effect of compressive strength development at early ages on the frost resistance of concrete, laboratory and outdoor exposure tests were conducted. Air-entrained concrete with a compressive strength of 5.0 MPa can withstand several freeze-thaw cycles and effectively prevent early age frost damage. Concrete that has finished its final setting can effectively resist early age frost damage in Air-entrained and Non-air-entrained conditions. To develop an effective prevention method for early age frost damage using additive for setting time adjustment, setting time test and compressive strength test are performed. Adding 4 and 6 kg/m3 of ACF additive effectively prevents early age frost damage, which can apply for cold weather concreting due to the outstanding prevention effectiveness of early age frost damage.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ

    ้€ฃ็ถšๅผทใญใ˜ใ‚ŠใฒใšใฟๅŠ ๅทฅๆณ•ใซใ‚ˆใ‚‹็ต„็น”ๅˆถๅพกใซ้–ขใ™ใ‚‹็ ”็ฉถ

    Get PDF
    1. ็ท’่จ€ใ€€้‡‘ๅฑžๆๆ–™ใฎ็‰นๆ€งๆ”นๅ–„ใฎๆ–นๆณ•ใจใ—ใฆๅผทใฒใšใฟ(SPD)ๅŠ ๅทฅใŒๆŒ™ใ’ใ‚‰ใ‚Œใ‚‹ใ€‚SPDๅŠ ๅทฅใฏใ€ๅทจๅคงใชๅก‘ๆ€งๅค‰ๅฝขใซใ‚ˆใฃใฆๅคš้‡ใฎใฒใšใฟใ‚’ไป˜ไธŽใ™ใ‚‹ๆ–นๆณ•ใงใ€ๆง˜ใ€…ใชๆ–นๆณ•ใŒ่€ƒๆกˆใ•ใ‚ŒใฆใŠใ‚Šใ€ๅˆ้‡‘ๅŒ–ใ€่ค‡ๅˆๅŒ–ใจ็ต„ใฟๅˆใ‚ใ›ใฆใ•ใ‚‰ใชใ‚‹็‰นๆ€งๅ‘ไธŠใŒๆœŸๅพ…ใงใใ‚‹ใ€‚้€ฃ็ถšๅผทใญใ˜ใ‚ŠใฒใšใฟๅŠ ๅทฅๆณ•(RMA-CREOๅ‡ฆ็†)1, 2)ใฏใ€้•ทๅฐบใชไธธๆฃ’ๆใซๅฏพใ—ๅ‡ไธ€ใ‹ใค้€ฃ็ถš็š„ใซSPDๅŠ ๅทฅใŒๅฏ่ƒฝใงใ‚ใ‚‹ใ€‚ๆœฌ็ ”็ฉถใงใฏใ€RMA-CREOๅ‡ฆ็†ใ‚’ๅก‘ๆ€งๅŠ ๅทฅๆ€งใฎไฝŽใ„HCP้‡‘ๅฑžใงใ‚ใ‚‹็ด”ใƒใ‚ฟใƒณใ€ใชใ‚‰ใณใซFCCๆžๅ‡บๅผทๅŒ–ๅž‹ๅˆ้‡‘ใงใ‚ใ‚‹Cu-Cr-Zr็ณปๅˆ้‡‘ใธ้ฉ็”จใ—ใ€ๆๆ–™็‰นๆ€งใธไธŽใˆใ‚‹ๅฝฑ้Ÿฟใ‚’่ชฟๆŸปใ—ใŸใ€‚ใพใŸ็ต„็น”ๅญฆ็š„่ชฟๆŸปใ‹ใ‚‰ใ€็ตๆ™ถ็ต„็น”ใฎๅฝขๆˆๆฉŸๆง‹ใ‚„ๅพฎ็ดฐ็ต„็น”ใฎๅ„ๆๆ–™็‰นๆ€งใซๅฏพใ™ใ‚‹ไฝœ็”จๆฉŸๅบใฎ่งฃๆ˜Žใ‚’็›ฎๆŒ‡ใ—ใŸใ€‚2. ็ด”ใƒใ‚ฟใƒณใฎๅก‘ๆ€งๅค‰ๅฝข่ƒฝใซๅŠใผใ™RMA-CREOๅ‡ฆ็†ใฎๅฝฑ้Ÿฟใ€€HCP้‡‘ๅฑžใงใ‚ใ‚‹ใƒใ‚ฟใƒณๅˆ้‡‘ใ‚„ใƒžใ‚ฐใƒใ‚ทใ‚ฆใƒ ๅˆ้‡‘ใฏ้ซ˜ๆฏ”ๅผทๅบฆใ‚’ๆœ‰ใ—ใฆใ„ใ‚‹ใ“ใจใ‹ใ‚‰ใ€ๆง‹้€ ๆๆ–™ใซๅบƒใๅˆฉ็”จใ•ใ‚Œใฆใ„ใ‚‹ใ€‚ไธ€ๆ–นใงHCPๆง‹้€ ็”ฑๆฅใฎๅก‘ๆ€งๅค‰ๅฝขๆ€งใฎไฝŽใ•ใŒ่ชฒ้กŒใจใชใฃใฆใ„ใ‚‹ใ€‚ใƒžใ‚ฐใƒใ‚ทใ‚ฆใƒ ๅˆ้‡‘ใธRMA-CREOๅ‡ฆ็†ใ‚’้ฉ็”จใ™ใ‚‹ใ“ใจใงใ€ๅก‘ๆ€งๅค‰ๅฝข่ƒฝใฎๅ‘ไธŠใŒๅ ฑๅ‘Šใ•ใ‚Œใฆใ„ใ‚‹3)ใ€‚ใใ“ใงใƒžใ‚ฐใƒใ‚ทใ‚ฆใƒ ๅŒๆง˜ใซHCPๆง‹้€ ใ‚’ๆœ‰ใ—ใ€ๅผทๅบฆ้ขใงๅ„ชใ‚Œใ‚‹็ด”ใƒใ‚ฟใƒณใธRMA-CREOๅ‡ฆ็†ใ‚’้ฉ็”จใ—ใ€ๅก‘ๆ€งๅค‰ๅฝข่ƒฝใซไธŽใˆใ‚‹ๅฝฑ้Ÿฟใ‚’่ชฟๆŸปใ—ใŸใ€‚็†ฑ้–“้›้€ ่ฉฆ้จ“ใ‚ˆใ‚Šใ€RMA-CREOๅ‡ฆ็†ใ‚’่กŒใฃใŸ่ฉฆๆ–™ใฎๆœ€ๅคงๅค‰ๅฝขๆŠตๆŠ—ใŒไฝŽไธ‹ใ—ใŸใ€‚็ตๆ™ถๆ–นไฝ่งฃๆžใ‚’็”จใ„ใŸ็ตๆ™ถ็ต„็น”่ชฟๆŸปใ‹ใ‚‰ใ€่ฉฆๆ–™ๅค–ๅ‘จ้ƒจใซRMA-CREOๅ‡ฆ็†ใซใ‚ˆใฃใฆ็ฒ—ๅคง็ตๆ™ถ็ฒ’ใ‚’ๅ–ใ‚Šๅ›ฒใ‚€ใ‚ˆใ†ใซๅพฎ็ดฐใช็ตๆ™ถ็ฒ’ใŒๅˆ†ๅธƒใ™ใ‚‹ใƒใ‚คใƒขใƒผใƒ€ใƒซ็ต„็น”ใŒๅฝขๆˆใ•ใ‚Œใฆใ„ใ‚‹ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใจใชใฃใŸใ€‚ใ“ใฎใƒใ‚คใƒขใƒผใƒ€ใƒซ็ต„็น”ใซใ‚ˆใ‚‹็ฒ—ๅคง็ฒ’ใฎๅŠ ๅทฅ็กฌๅŒ–ๆŠ‘ๅˆถใ‚„ใ€ๅพฎ็ดฐ็ฒ’ใฎ็ฒ’็•Œใ™ในใ‚ŠใŒๅค‰ๅฝขๆŠตๆŠ—ๆธ›ๅฐ‘ใซๅฏ„ไธŽใ—ใฆใ„ใ‚‹ใ“ใจใŒ็คบๅ”†ใ•ใ‚ŒใŸใ€‚3. Cu-Cr-Zr็ณปๅˆ้‡‘ใฎๆ™‚ๅŠน็‰นๆ€งใซไธŽใˆใ‚‹RMA-CREOๅ‡ฆ็†ใฎๅฝฑ้Ÿฟใ€€้ซ˜ๅผทๅบฆใ€้ซ˜ๅฐŽ้›ปๆ€งใ‚’ๆœ‰ใ™ใ‚‹ๆžๅ‡บๅผทๅŒ–ๅž‹ๅˆ้‡‘ใงใ‚ใ‚‹Cu-Cr-Zr็ณปๅˆ้‡‘ใซRMA-CREOๅ‡ฆ็†ใ‚’้ฉ็”จใ—ใ€ๆ™‚ๅŠน็‰นๆ€งใซไธŽใˆใ‚‹ๅฝฑ้Ÿฟใ‚’่ชฟๆŸปใ—ใŸใ€‚ๅ—ๅ…ฅๆใซๅฏพใ—RMA-CREOๅ‡ฆ็†ๅพŒใ€623 Kใฎๆ™‚ๅŠนๅ‡ฆ็†ใ‚’่กŒใ†ใ“ใจใงใ€ๅคงๆฐ—็‚‰ใ‚’็”จใ„ๆบถไฝ“ๅŒ–ๅ‡ฆ็†ใ‚’ๆ–ฝใ—ใŸๆฏ”่ผƒ่ฉฆๆ–™ใจๅŒ็ญ‰ใฎๆœ€ๅคงใƒ“ใƒƒใ‚ซใƒผใ‚น็กฌใ•122 HVใ‚’็ถญๆŒใ—ใชใŒใ‚‰ใ€ๆ™‚ๅŠนๆ™‚้–“ใฏๅŠๆธ›ใ—ใ€ๅฐŽ้›ป็Ž‡ใฎๅ‘ไธŠใŒ็ขบ่ชใ•ใ‚ŒใŸใ€‚็ตๆ™ถ็ต„็น”่ชฟๆŸปใฎ็ตๆžœใ€RMA-CREOๅ‡ฆ็†ใซใ‚ˆใ‚‹ๅคš้‡ใฎๆ ผๅญใฒใšใฟใฎๅฐŽๅ…ฅใŒ็ขบ่ชใ•ใ‚ŒใŸใ€‚ๆ ผๅญใฒใšใฟใŒๆžๅ‡บ็‰ฉใฎๅ„ชๅ…ˆ็š„ใชๆ ธ็”Ÿๆˆใ‚ตใ‚คใƒˆใจใชใ‚‹ใ“ใจใงใ€ๆ™‚ๅŠนๆ™‚้–“ใฎ็Ÿญ็ธฎใซๅฏ„ไธŽใ—ใŸใจ่€ƒใˆใŸใ€‚4. ็ทๆ‹ฌใ€€RMA-CREOๅ‡ฆ็†ใ‚’ๅก‘ๆ€งๅŠ ๅทฅๆ€งใฎไฝŽใ„HCP้‡‘ๅฑžใงใ‚ใ‚‹็ด”ใƒใ‚ฟใƒณใ€ใชใ‚‰ใณใซFCCๆžๅ‡บๅผทๅŒ–ๅž‹ๅˆ้‡‘ใงใ‚ใ‚‹Cu-Cr-Zr็ณปๅˆ้‡‘ใธ้ฉ็”จใ—ใ€ๆๆ–™็‰นๆ€งใธไธŽใˆใ‚‹ๅฝฑ้Ÿฟใ‚’่ชฟๆŸปใ—ใŸใ€‚ใ€€ใƒปRMA-CREOๅ‡ฆ็†ใ‚’้ฉ็”จใ—ใŸ็ด”ใƒใ‚ฟใƒณใ‚’็†ฑ้–“้›้€ ่ฉฆ้จ“ใซไพ›ใ—ใŸ็ตๆžœใ€ๅค‰ๅฝขๆŠตๆŠ—ใŒๆธ›ๅฐ‘ใ—ใ€ๅก‘ๆ€งๅค‰ๅฝข่ƒฝใฎๆ”นๅ–„ใŒ็ขบ่ชใ•ใ‚ŒใŸใ€‚ใ€€ใƒปRMA-CREOๅ‡ฆ็†ใ‚’้ฉ็”จใ—ใŸCu-Cr-Zr็ณปๅˆ้‡‘ใฏใ€ๆบถไฝ“ๅŒ–ๅ‡ฆ็†ใ‚’ๆ–ฝใ•ใ‚ŒใŸๆฏ”่ผƒ่ฉฆๆ–™ใจๅŒ็ญ‰ใฎๆœ€ๅคงใƒ“ใƒƒใ‚ซใƒผใ‚น็กฌใ•122 HVใ‚’็ถญๆŒใ—ใชใŒใ‚‰ใ€ๅฐŽ้›ป็Ž‡ใŒๅ‘ไธŠใ—ๆ™‚ๅŠนๆ™‚้–“ใŒๅŠๆธ›ใ—ใŸใ€‚ๅ‚่€ƒๆ–‡็Œฎ1) ไธญๆ‘ๅ…‹ๆ˜ญ, ๅ €็”ฐๅ–„ๆฒป, ไธญๅžฃ้“ๅฝฆ, ้‡‘ๅญ่ณขๆฒป, ๆ น็Ÿณๆตฉๅธ: ็‰น่จฑๅ…ฌๅ ฑ4777775ๅท, (2004).2) K. Nakamura, K. Neishi, K. Kaneko, M. Nakagaki, Z. Horita: Material Transactions, 45 (2004) 3338-3342.3) ไธญๆ‘ๅ…‹ๆ˜ญ, ้ˆดๆœจ่ฃ•, ๅž‹ๆŠ€่ก“, 25 (2010), 91-92.1. IntroductionSevere plastic deformation (SPD) processing apply a large amount of distortion through huge plastic deformation for improving the metal material properties. RMA-CREO processing 1, 2) enables uniform and continuous SPD processing for long round bars. In this study, RMA-CREO processing was applied to commercially purity titanium, which is HCP metal with low plastic workability, and Cu-Cr-Zr alloy, which is FCC precipitation-strengthened alloy, and its effect on their characteristics was investigated. In addition, from the microstructure investigation, we aimed to clear the formation mechanism of the micro structure and the effect of the micro structure on each material property.2. The effect of RMA-CREO processing on plastic deformability of pure titaniumDilute titanium alloys and magnesium alloys, which are HCP metals, are widely used as structural materials because of their high specific strength. On the other hand, the low plastic deformability derived from the HCP structure has shown. Application of RMA-CREO processing to magnesium alloys has been reported to improve the plastic deformability3). Therefore, RMA-CREO processing was applied to pure titanium, which has an HCP structure such the same as and has higher strength than magnesium alloy, and the effect on plastic deformability was investigated.The maximum deformation stress of RMA-CREO processed specimens decreased for the hot forging test. From the microstructure investigation using the crystal orientation analysis, it was clarified that the RMA-CREO processing formed a bimodal structure in which fine grains were distributed so as to surround the coarse grains at the edge of the specimen. It was suggested that this bimodal structure contributes to the suppression of work hardening of coarse grains and grain boundary sliding of fine grains to reduce deformation stress.3. The effect of RMA-CREO processing on aging property of Cu-Cr-Zr alloyRMA-CREO processing was applied to Cu-Cr-Zr alloys, which are precipitation-strengthened alloys with high strength and high electrical conductivity, and the effects on aging properties were investigated. RMA-CREO processed specimen aged at 623 K reduced the aging time to peak Vickers hardness by half while maintaining the maximum hardness of 122 HV which is equivalent to the comparative solution treated specimen. Furthermore, an improvement in electrical conductivity was confirmed. As a result of the microstructure investigation, it was confirmed that a large amount of distortion was introduced by the RMA-CREO processing. It was thought that the distortion serves as preferential nucleation sites for precipitates, which contributes to the shortening of the aging time to peak hardness.1) K. Nakamura et al.: Published unexamined patent application No. 4777775, (2004).2) K. Nakamura et al.: Materials Transactions, 45 (2004) 3338-3342.3) K. Nakamura et al.: Die and Mould Technology, 25 (2010), 91-92.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ

    ่ฟ‘่ท้›ข้Ÿณๅ ดใซใŠใ‘ใ‚‹็‰ฉไฝ“ใฎ่ทณ่บ็พ่ฑกใจๆตไฝ“ใฎๅ™ดๅ‡บ็พ่ฑกใซ้–ขใ™ใ‚‹็ ”็ฉถ

    Get PDF
    ็พๅœจใ€่ถ…้Ÿณๆณขใ‚’็”จใ„ใŸๆง˜ใ€…ใช็พ่ฑกใ‚’็”จใ„ใฆ็‰ฉไฝ“ใฎๆตฎๆšใ‚„ไฝ็ฝฎๅˆถๅพกใŒๅฎŸ็พใ•ใ‚Œใฆใ„ใ‚‹ใ€‚่ฟ‘่ท้›ขๅ ด้Ÿณๆณขๆตฎๆšใฏๆฟ็Šถ็‰ฉไฝ“ใŒๆŒฏๅ‹•้ขใ‹ใ‚‰้Ÿณ้Ÿฟๆ”พๅฐ„ๅŠ›ใ‚’ๅ—ใ‘ๆ•ฐ็™พยตm็จ‹ๅบฆใ€ๆตฎๆšใ—ไฟๆŒๅŠ›ใซใ‚ˆใฃใฆๆŒฏๅ‹•้ขไธŠใ‚’ไฟๆŒใ™ใ‚‹็พ่ฑกใงใ‚ใ‚‹ใ€‚ใ“ใฎไฟๆŒๅŠ›ใ‚’็”จใ„ใ‚‹ใ“ใจใซใ‚ˆใฃใฆใ€ๆฟ็Šถ็‰ฉไฝ“ใฎ้žๆŽฅ่งฆ2ๆฌกๅ…ƒใ‚นใƒ†ใƒƒใƒ”ใƒณใ‚ฐๆฌ้€ใŒๅฎŸ็พใ•ใ‚Œใฆใ„ใ‚‹ใ€‚ใ—ใ‹ใ—ใ€ๆŒฏๅ‹•้ขไธŠใซ็ชชใฟใ‚’ๆœ‰ใ—ใฆใŠใ‚Š้žๅนณ้ขใงใ‚ใ‚‹ๅ ดๅˆใฏๆŒฏๅน…ใ‚’ๅข—ๅŠ ใ•ใ›ใ‚‹ใ“ใจใงๆฟ็Šถ็‰ฉไฝ“ใŒ้žๅนณ้ขใฎๆŒฏๅ‹•้ขใ‹ใ‚‰่ทณ่บใ™ใ‚‹ใ“ใจใŒ็ขบ่ชใ•ใ‚ŒใŸใ€‚ใพใŸใ€ๅนณ้ขใฎๆŒฏๅ‹•้ขไธŠใซ่ฒซ้€š็ฉดใ‚’ๆœ‰ใ™ใ‚‹็‰ฉไฝ“ใ‚’่ฒซ้€š็ฉดใŒๆŒฏๅ‹•้ขใซ้‡ใชใ‚‹ใ‚ˆใ†ใซ้…็ฝฎใ™ใ‚‹ใจ็ฉดใ‹ใ‚‰็ฉบๆฐ—ใŒๅ™ดๅ‡บใ™ใ‚‹ใ“ใจใŒ็ขบ่ชใ•ใ‚ŒใŸใ€‚ใ“ใฎใ‚ˆใ†ใชๆŒฏๅ‹•้ขไธŠใ‹ใ‚‰ใฎ่ทณ่บ็พ่ฑกใŠใ‚ˆใณ็ฉดใ‹ใ‚‰ใฎๆตไฝ“ๅ™ดๅ‡บ็พ่ฑกใฏใ“ใ‚Œใพใงๅ ฑๅ‘Šใ•ใ‚ŒใฆใŠใ‚‰ใšใ€่ฉณ็ดฐใชๆคœ่จŽใซใ‚ˆใ‚Š่ถ…้Ÿณๆณขใฎๆ–ฐใŸใชๅˆ†้‡ŽใŒ้–‹ๆ‹“ใ•ใ‚Œใ‚‹ใ“ใจใŒๆœŸๅพ…ใงใใ‚‹ใ€‚ใ•ใ‚‰ใซใ€ใ“ใ‚Œใ‚‰ใฎ็พ่ฑกใ‚’ๅˆฉ็”จใ™ใ‚‹ใ“ใจใงๆ–ฐใ—ใ„่ถ…้Ÿณๆณขใƒ‡ใƒใ‚คใ‚นใฎ้–‹็™บใซๅฟœ็”จใงใใ‚‹ใจ่€ƒใˆใ‚‰ใ‚Œใ‚‹ใ€‚ไปฅไธŠใฎ็†็”ฑใ‹ใ‚‰ๆœฌ็ ”็ฉถใงใฏๅฎŸ้จ“ใจ่งฃๆžใ‹ใ‚‰่ทณ่บ็พ่ฑกใŠใ‚ˆใณๆตไฝ“ๅ™ดๅ‡บ็พ่ฑกใซใคใ„ใฆ่ฉณ็ดฐใซๆคœ่จŽใ—ใ€ๆ˜Žใ‚‰ใ‹ใซใ—ใŸใ€‚ใพใŸใ€ใใฎ็พ่ฑกใ‚’ๅˆฉ็”จใ—ใŸๅฟœ็”จๆ–นๆณ•ใ‚’ๆๆกˆใ—ใŸใ€‚่ทณ่บ็พ่ฑกใฏๆŒฏๅ‹•้ขใ‹ใ‚‰ใฎ่ท้›ขใซๅฏพใ™ใ‚‹้Ÿณ้Ÿฟๆ”พๅฐ„ๅŠ›ใฎๆฅตๅฐๅ€คใŒๆตฎๆš็‰ฉไฝ“้‡้‡ใ‚’ไธŠๅ›žใ‚‹ใ“ใจใง็™บ็”Ÿใ™ใ‚‹ใ“ใจใ‚’ๆ˜Žใ‚‰ใ‹ใซใ—ใŸใ€‚ใพใŸใ€ๆŒฏๅ‹•้ขไธŠใฎไธญๅฟƒใ‹ใ‚‰ใšใ‚ŒใŸไฝ็ฝฎใซๆบใ‚’่จญใ‘ใ‚‹ใ“ใจใซใ‚ˆใฃใฆๆฟ็Šถ็‰ฉไฝ“ใฎ้žๆŽฅ่งฆๅ่ปขๅ‹•ไฝœใŒๅฎŸ็พใงใใŸใ€‚ใ“ใฎ้žๆŽฅ่งฆๅ่ปขๅ‹•ไฝœใจ่ฟ‘่ท้›ขๅ ด้Ÿณๆณขๆตฎๆšใ‚’ๅˆฉ็”จใ—ใŸ้žๆŽฅ่งฆใ‚นใƒ†ใƒƒใƒ”ใƒณใ‚ฐๆฌ้€ใ‚’็ต„ใฟๅˆใ‚ใ›ใ‚‹ใ“ใจใซใ‚ˆใฃใฆใ€ๆฟ็Šถ็‰ฉไฝ“ใฎ้žๆŽฅ่งฆใฎๆฌ้€ใจๅ่ปขๅ‹•ไฝœๅฏ่ƒฝใซใชใ‚‹ใ“ใจใŒๆœŸๅพ…ใงใใ‚‹ใ€‚ๆŒฏๅ‹•้ข่ฟ‘ๅ‚ใซ้…็ฝฎใ•ใ‚ŒใŸ็ฉดใ‚’ๆŒใค็‰ฉไฝ“ใฎๆตไฝ“ๅ™ดๅ‡บ็พ่ฑกใซใ‚ˆใ‚‹ๆต้€Ÿๅˆ†ๅธƒใฏPIV่จˆๆธฌใซใ‚ˆใ‚Š่จˆๆธฌใ•ใ‚ŒใŸใ€‚PIV่จˆๆธฌ็ตๆžœใ‚ˆใ‚ŠๆŒฏๅ‹•้ขใจ็ฉดไป˜ใ็‰ฉไฝ“้–“ใซใฏ็ฉบๆฐ—ใŒๆตๅ…ฅใ›ใšใ€็ฉดใ‹ใ‚‰ใฎๅ™ดๅ‡บๆตใฏ็ฉด่ฟ‘ๅ‚ใฎ็ฉบๆฐ—ใ‚’ๅธๅผ•ใ—ใŸ็ฉด่ปธไธŠใซๆŽ’ๅ‡บใ™ใ‚‹็พ่ฑกใงใ‚ใ‚‹ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใจใชใฃใŸใ€‚ใ—ใŸใŒใฃใฆใ€็ฉดใ‹ใ‚‰ใฎๅ™ดๅ‡บๆตใฏๆตๅ…ฅ้ƒจใจๆตๅ‡บ้ƒจใŒ่ฟ‘ใใชใ‚‹ใŒใ€็ฉดใซๅฏพๅ‘ใ™ใ‚‹ไฝ็ฝฎใซๅˆ†้›ข็”จใฎ็ฉดใ‚’่จญใ‘ใ‚‹ใ“ใจใซใ‚ˆใฃใฆๆตๅ…ฅ้ƒจใจๆตๅ‡บ้ƒจใ‚’ๅˆ†้›ขใ™ใ‚‹ใ“ใจใŒใงใใŸใ€‚ใพใŸใ€ๅนณ้ขไธŠใซ็ฉดไป˜ใใฎๅ††็ญ’ใ‚’้…็ฝฎใ—ใ€ไธŠๅดใ‹ใ‚‰ๆŒฏๅ‹•้ขใ‚’่ฟ‘ใฅใ‘ใ‚‹ใจ็ฉดไป˜ใๅ††็ญ’ใŒๆตฎๆšใ—ใ€ใ•ใ‚‰ใซๆตฎๆšๅ††็ญ’ใซใฏ10mNใฎไฟๆŒๅŠ›ใŒไฝœ็”จใ—ใŸใ€‚10mNใฎไฟๆŒๅŠ›ใฏ่ฟ‘่ท้›ขๅ ด้ŸณๆณขๆตฎๆšใซใŠใ‘ใ‚‹ไฟๆŒๅŠ›ใ‚ˆใ‚Šใ‚‚็ด„10ๅ€ๅคงใใ„ไฟๆŒๅŠ›ใจใชใ‚Šใ€ใ“ใฎๆตฎๆšๆ–นๆณ•ใ‚’็”จใ„ใŸ็„ก้‡ๅŠ›็ฉบ้–“ใซใŠใ‘ใ‚‹ๆ–ฐใ—ใ„ๆตฎๆšไฟๆŒใธใฎๅฟœ็”จๆ–นๆณ•ใ‚’ๆๆกˆใ—ใŸใ€‚Currently, the levitation and position control of an object has been developed by some ultrasonic phenomena. A planar object is levitated several hundred ยตm from a vibrating surface by near-field acoustic levitation (NFAL) phenomenon. The object was held by the holding force above the vibrating surface. This holding force was applied to the non-contact stepping transportation. However, when the vibrating surface has a recess, the planar object above the surface is jumped from the surface. In addition, the jet generated from the hole when the object has a through hole. These phenomena have not been reported before. A detailed examination of these phenomena was expected to extend new ultrasonic fields. Novel ultrasonic devices will be able to be applied by these phenomena. Therefore, this thesis described these phenomena to clear and suggestions about ultrasonic devices using these phenomena.The jumping phenomenon of the levitated object happened when the minimum force of the acoustic radiation force was larger than the objectโ€™s weight. The flip motion was realized by the asymmetric vibrating surface by a groove of a deviation position from a vibrating surface center. This thesis suggested combining non-contact stepping transportation by NFAL and flip motion.The jet phenomenon by an object with a small hole near the vibrating surface was measured by particle image velocimetry (PIV). The air did not flow in the air gap between the vibrating surface and the small hole of the object. The air around the small hole was absorbed, and then it was emitted from the hole. The inflow part and the outflow part of the jet were generated near each. The jet flow was separated by the separation hole at the opposite small hole. In addition, a cylinder with a small hole is levitated above the vibrating surface. The holding force acted on the levitated cylinder. The holding force reached 10mN. This force value is more than about 10 times larger than the holding force by NFAL. This levitation method was suggested to apply in zero gravity space in this thesis.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ

    ใƒขใ‚ถใ‚คใ‚ฏๅž‹NRDๅฐŽๆณข่ทฏใƒ‡ใƒใ‚คใ‚นใฎๆœ€้ฉ่จญ่จˆ

    Get PDF
    ่ฟ‘ๅนดใฎ้€šไฟกใ‚ทใ‚นใƒ†ใƒ ใฎๅคงๅฎน้‡ๅŒ–ใซไผดใ„ใ€ใƒŸใƒชๆณขใŠใ‚ˆใณใƒ†ใƒฉใƒ˜ใƒซใƒ„ๆณขๅธฏๅŸŸใฎไฝฟ็”จใŒ็ฉๆฅต็š„ใซๆคœ่จŽใ•ใ‚Œใฆใ„ใ‚‹ใ€‚้žๆ”พๅฐ„ๆ€ง่ช˜้›ปไฝ“ๅฐŽๆณข่ทฏ(NRDใ‚ฌใ‚คใƒ‰)ใฏใ€้žๆ”พๅฐ„ๆ€งใซใ‚ˆใ‚ŠไฝŽๆๅคฑใชใŸใ‚ๅคšใใฎๆณจ็›ฎใ‚’้›†ใ‚ใฆใ„ใ‚‹ใ€‚ใ“ใ‚Œใพใงๆๆกˆใ•ใ‚Œใฆใ„ใ‚‹NRDใ‚ฌใ‚คใƒ‰ใƒ‡ใƒใ‚คใ‚นใฏใ€ๅŸบๆœฌ็š„ใชๆง‹้€ ใซใ‚ˆใ‚‹ใ‚‚ใฎใŒไธปใงใ‚ใ‚‹ใ€‚ใ•ใ‚‰ใซใ€NRDใ‚ฌใ‚คใƒ‰ใฏใใฎๆง‹้€ ใ‹ใ‚‰3ๆฌกๅ…ƒ่งฃๆžๆ‰‹ๆณ•ใŒใ—ใฐใ—ใฐไฝฟ็”จใ•ใ‚Œๅธ‚่ฒฉใฎใ‚ฝใƒ•ใƒˆใ‚ฆใ‚งใ‚ขใงใฏ่จˆ็ฎ—ใ‚ณใ‚นใƒˆใŒ้ซ˜ใใชใ‚‹ใ€‚ใ“ใฎ่ซ–ๆ–‡ใงใฏใ€ใƒขใ‚ถใ‚คใ‚ฏๅฝข็Šถใ‚’็”จใ„ใŸNRDใ‚ฌใ‚คใƒ‰ใฎๆœ€้ฉ่จญ่จˆใซใคใ„ใฆใ„ใใคใ‹ใฎๆœ€้ฉ่จญ่จˆใ‚ขใƒ—ใƒญใƒผใƒใ‚’ๆๆกˆใ™ใ‚‹ใ€‚่จˆ็ฎ—ใ‚ณใ‚นใƒˆใ‚’ๅ‰Šๆธ›ใ™ใ‚‹ใŸใ‚ใซใ€ๅŠน็Ž‡ใฎ้ซ˜ใ„ใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณๆ‰‹ๆณ•ใ‚‚้–‹็™บใ—ใŸใ€‚ใ€€ใฏใ˜ใ‚ใซใ€็›ดๆŽฅไบŒๅ€คๆŽข็ดขๆณ•(DBS)ใ‚’้–‹็™บใ—ใŸใ€‚่จญ่จˆๅŠน็Ž‡ใ‚’ๅ‘ไธŠใ•ใ›ใ‚‹ใŸใ‚ใ€ๆ•ฐๅ€คใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณๆ‰‹ๆณ•ใจใ—ใฆ็‹ฌ่‡ชใซ้–‹็™บใ—ใŸ2ๆฌกๅ…ƒใƒ•ใƒซใƒ™ใ‚ฏใƒˆใƒซๆœ‰้™่ฆ็ด ๆณ•(2D-FVFEM)ใ‚’ๆŽก็”จใ—ใฆใ„ใ‚‹ใ€‚ๆœ‰็”จๆ€งใ‚’็คบใ™ใŸใ‚ใซใ€NRDๅธ‚่ฒฉใฎไบคๅทฎๅฐŽๆณข่ทฏใจ90ยฐๆ›ฒใ‚ŠๅฐŽๆณข่ทฏใฎ่จญ่จˆใ‚’่กŒใ„ใ€ใ„ใšใ‚Œใ‚‚99%ใ‚’่ถ…ใˆใ‚‹้ซ˜ใ„ไผ้€ๅŠน็Ž‡ใŒๅพ—ใ‚‰ใ‚ŒใŸใ€‚ๆฌกใซใ€ใƒใ‚คใƒŠใƒชใƒ™ใƒผใ‚นใฎ้บไผ็š„ใ‚ขใƒซใ‚ดใƒชใ‚บใƒ ใ€ๅทฎๅˆ†้€ฒๅŒ–ใ‚ขใƒซใ‚ดใƒชใ‚บใƒ ใ€ใƒใƒผใƒขใƒ‹ใƒผใ‚ตใƒผใƒใ‚ขใƒซใ‚ดใƒชใ‚บใƒ ใ€่›ใ‚ขใƒซใ‚ดใƒชใ‚บใƒ ใ€็ฒ’ๅญ็พคๆœ€้ฉๅŒ–ใ‚ขใƒซใ‚ดใƒชใ‚บใƒ ใ‚’ๆๆกˆใ™ใ‚‹ใ€‚ๆœ‰็”จๆ€งใ‚’็คบใ™ใŸใ‚ใซใ€ไบคๅทฎๅฐŽๆณข่ทฏใ€Tๅˆ†ๅฒๅฐŽๆณข่ทฏใ€ๆ›ฒใ‚ŠๅฐŽๆณข่ทฏใ€ใŠใ‚ˆใณๅ‘จๆณขๆ•ฐๅˆ†้›ข็ด ๅญใฎ่จญ่จˆใ‚’่กŒใฃใŸใ€‚ใใ‚Œใžใ‚Œใฎ้€้Ž็Ž‡ใฏใ€ไบคๅทฎๅฐŽๆณข่ทฏใŒ99.9%ใ€Tๅˆ†ๅฒๅฐŽๆณข่ทฏใŒ49.9%:49.9%ใ€ๆ›ฒใ‚ŠๅฐŽๆณข่ทฏใงใฏ96.4 %ใ€ๅ‘จๆณขๆ•ฐๅˆ†้›ข็ด ๅญใงใฏ59 GHzใง96.4 %ใ€61 GHzใง98.5 %ใŒๅพ—ใ‚‰ใ‚Œใฆใ„ใ‚‹ใ€‚ใ€€ๆฌกใซใ€ใ“ใ‚Œใพใงใซ้–‹็™บใ—ใŸ2D-FVFEMใ‚’ใ€้ž็›ธๅๆ€งๆๆ–™ใ‚’ๅซใ‚“ใ NRDใ‚ฌใ‚คใƒ‰ใƒ‡ใƒใ‚คใ‚นใฎ่จญ่จˆใซ้ฉๅฟœใงใใ‚‹ใ‚ˆใ†ใซๆ‹กๅผตใ—ใ€ใ‚ตใƒผใ‚ญใƒฅใƒฌใƒผใ‚ฟใจใ‚ขใ‚คใ‚ฝใƒฌใƒผใ‚ฟใฎ่จญ่จˆใ‚’ใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Šๅฆฅๅฝ“ๆ€งใ‚’็ขบ่ชใ—ใŸใ€‚ๆ‰€ๆœ›ใฎ็‰นๆ€งใ‚’้”ๆˆใ™ใ‚‹ใŸใ‚ใซใ€ใƒใƒผใƒขใƒ‹ใƒผใ‚ตใƒผใƒใจๅทฎๅˆ†้€ฒๅŒ–ๆณ•ใ‚’้ฉ็”จใ—ใ€ๅ˜ไธ€ๅ‘จๆณขๆ•ฐใงใฎๅ‹•ไฝœใจๅบƒๅธฏๅŸŸๅŒ–ใ‚’ๅฎŸ็พใ—ใŸใ€‚ใ€€ๆฌกใซใ€NRDใ‚ฌใ‚คใƒ‰ใƒ‡ใƒใ‚คใ‚นใฎ่งฃๆžใฎใŸใ‚ใฎๅŽณๅฏ†ใช2ๆฌกๅ…ƒใƒ•ใƒซใƒ™ใ‚ฏใƒˆใƒซๆœ‰้™ๅทฎๅˆ†ๆ™‚้–“้ ˜ๅŸŸๆณ•(2DFDTD)ใ‚’ๆๆกˆใ™ใ‚‹ใ€‚ๅธๅŽๅขƒ็•Œๆกไปถใจใ—ใฆใ€็•ณใฟ่พผใฟๅฎŒๅ…จๆ•ดๅˆๅฑค(CPML)ใ‚’็”จใ„ใŸใ€‚ใ•ใ‚‰ใซใ€LSM01ใจLSE01ใฎๅ„ใƒขใƒผใƒ‰ใฎ้€้Ž็Ž‡ใ‚’ๆŽจๅฎšใ™ใ‚‹ใŸใ‚ใซๅŽณๅฏ†ใชๅฎšๅผๅŒ–ใ‚’็ขบ็ซ‹ใ—ใŸใ€‚NRDใ‚ฌใ‚คใƒ‰ไบคๅทฎๅฐŽๆณข่ทฏใ€Tๅˆ†ๅฒๅฐŽๆณข่ทฏใฎ่งฃๆžใ‚’้€šใ—ใฆใ“ใฎๆ‰‹ๆณ•ใฎๆœ‰ๅŠนๆ€งใ‚’็คบใ—ใŸใ€‚ใ“ใฎ็ ”็ฉถใงใฏใ€ใ„ใใคใ‹ใฎๆœ€้ฉ่จญ่จˆใ‚ขใƒ—ใƒญใƒผใƒใจใ‚ทใƒŸใƒฅใƒฌใƒผใ‚ทใƒงใƒณๆ‰‹ๆณ•ใ‚’้–‹็™บใ—ใฆใ„ใ‚‹ใ€‚็ง้”ใŒๆๆกˆใ™ใ‚‹่จญ่จˆใ‚ขใƒ—ใƒญใƒผใƒใฏใ€่ค‡้›‘ใชใƒ‡ใƒใ‚คใ‚นๆง‹้€ ใจๆฉŸ่ƒฝใ‚’ๅ‚™ใˆใŸๅคšใใฎNRDใ‚ฌใ‚คใƒ‰ใƒ‡ใƒใ‚คใ‚นใฎ่จญ่จˆใซใ‚‚้ฉ็”จใงใใ‚‹ใ€‚่จญ่จˆใ•ใ‚ŒใŸใƒ‡ใƒใ‚คใ‚นใฏๅฐๅž‹ใง้ซ˜ๆ€ง่ƒฝใชใƒŸใƒชๆณขๅ›ž่ทฏใ‚’ๅฎŸ็พใ™ใ‚‹ใŸใ‚ใซๅๅˆ†ใช่ƒฝๅŠ›ใจๅฏ่ƒฝๆ€งใ‚’ๆŒใฃใฆใ„ใ‚‹ใ€‚The use of millimeter- and terahertz-wave bands are being actively explored to increase communication system capacity and meet modern communication requirements. In recent years, non-radiative dielectric (NRD) waveguide device has received a lot of attention due to low loss nature. Several NRD guide components have been reported so far without employing any optimization approaches. On the other hands, those devices are simulated numerically using 3D simulation methods and commercially available softwares result in high computational time and simulation resources required. In this thesis, we propose several optimal design approaches based on mosaic optimization concept for the design of NRD guide. In order to reduce the computational cost, we also developed highly efficient simulation methods.First, we develop direct binary search (DBS) algorithm. In order to improve design efficiency, we employ the originally developed two-dimensional full vectorial finite element method (2D-FVFEM) as a numerical simulation method. To show the usefulness, NRD crossing and 900-bend waveguide are considered and high transmission efficiency greater than 99% is achieved at operating frequency 60 GHz. Then, we propose binary representation-based genetic algorithm, differential evolution algorithm, harmony search algorithm, firefly algorithm, and particle swarm optimization. To show the usefulness, four NRD circuit components are designed which include low crosstalk waveguide crossing, T-branch power splitter, bending waveguide, and frequency demultiplexer. The proposed optimal devices achieve high transmission efficiencies greater than 99.9%, 49.9%:49.9%, 99.9% at 60 GHz and 96.4%, 98.5% at 59 GHz and 61 GHz. In addition, the same NRD guide components except frequency demultiplexer are also designed at wideband operation and achieve broad bandwidth around 5 GHz, 4 GHz, and 3 GHz.We extend our previously developed 2D-FV-FEM to be applicable for design of non-reciprocal NRD guide devices. The accuracy is confirmed by designing NRD circulator and isolator. To achieve the desired properties, harmony search and differential evolution algorithm are employed for single frequency and broadband operation respectively.We propose rigorous two-dimensional full-vectorial finite difference time domain method for the analysis of NRD guide devices. Convolutional perfectly matched layer (CPML) is employed as an absorbing boundary condition. Furthermore, we have established a rigorous formulation for estimating the modal power of each LSM01 and LSE01 mode. We confirmed the validity of the proposed method through the analysis of NRD crossing and T-branch guide devices. Excellent accuracy is achieved by the cross comparison of 2D-FV-FDTD results with 2D-FV-FEM.In this research work, we develop several optimal design approaches and simulation methods. Our proposed design approaches are applicable to design a lot of NRD guide devices with complex device structures and functionalities as well. The designed devices have enough ability and potential to integrate in a circuit for the realization of complex, compact and high-performance millimeter- wave circuit.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ

    ๅ˜่ชฟใŠใ‚ˆใณ็นฐ่ฟ”ใ—่ผ‰่ทใ‚’ๅ—ใ‘ใ‚‹่ฃœๅผทๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฎๅŠ›ๅญฆ็š„ๆŒ™ๅ‹•ใซ้–ขใ™ใ‚‹ๅฎŸ้จ“็š„็ ”็ฉถ

    Get PDF
    ๆœฌ็ ”็ฉถใงใฏใ€98ใ‚ฑใƒผใ‚นใฎๅœงๅฏ†้žๆŽ’ๆฐดๅ˜่ชฟใƒป็นฐ่ฟ”ใ—ไธ‰่ปธ่ฉฆ้จ“็ตๆžœใซๅŸบใฅใ„ใฆใ€ๅ˜่ชฟใŠใ‚ˆใณ็นฐ่ฟ”ใ—่ผ‰่ทใซใ‚ˆใ‚‹ๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใŠใ‚ˆใณ่ฃœๅผทใ•ใ‚ŒใŸๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸ๏ผˆLSS๏ผ‰ใฎๅŠ›ๅญฆๆŒ™ๅ‹•ใซใคใ„ใฆ่ญฐ่ซ–ใ•ใ‚Œใฆใ„ใ‚‹ใ€‚ๅ˜่ชฟ่ผ‰่ท่ฉฆ้จ“ใงใฏใ€LSSใฎๅผทๅบฆใƒปๅค‰ๅฝข็‰นๆ€งใซๅŠใผใ™ๆณฅๆฐดๅฏ†ๅบฆใ€้คŠ็”Ÿๆ—ฅๆ•ฐใฎๅฝฑ้Ÿฟใ‚’ๆคœ่จŽใ™ใ‚‹ใจใจใ‚‚ใซใ€็ถฟ็Šถใซ็ฒ‰็ •ใ—ใŸๆ–ฐ่ž็ด™ใ‚’0, 10 kg/m3ใงๆททๅˆใ—ใŸๅฎคๅ†…ใŠใ‚ˆใณๅŽŸไฝ็ฝฎ้คŠ็”Ÿใฎ็นŠ็ถญๆๆททๅˆๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใŒๆฏ”่ผƒใƒปๆคœ่จŽใ•ใ‚ŒใŸใ€‚่ฉฆ้จ“็ตๆžœใซๅŸบใฅใ„ใฆใ€LSSใฎๅผทๅบฆ็‰นๆ€งใซๅŠใผใ™ๆณฅๆฐดๅฏ†ๅบฆใฎๅฝฑ้Ÿฟใฏใ€้คŠ็”Ÿๆ—ฅๆ•ฐใฎๅฝฑ้Ÿฟใ‚ˆใ‚Šใ‚‚ๅคงใใ„ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใซใ•ใ‚ŒใŸใ€‚ใพใŸใ€ใƒ”ใƒผใ‚ฏๅ‰ใฎq๏ฝža้–ขไฟ‚ใฎๆŒ™ๅ‹•ใฏใ€้คŠ็”Ÿๆ—ฅๆ•ฐใฎๅฝฑ้Ÿฟใจใฏๅฏพ็…ง็š„ใซๆณฅๆฐดๅฏ†ๅบฆใฎๅฝฑ้Ÿฟใงใ‚ˆใ‚Š้ž็ทšๅฝข็š„ใซใชใ‚‹ใ“ใจใ€LSSใฎใ›ใ‚“ๆ–ญใซใ‚ˆใ‚‹ๆๅ‚ท็จ‹ๅบฆใฏใ€้คŠ็”Ÿๆ—ฅๆ•ฐใฎๅข—ๅคงใจใจใ‚‚ใซๅฐใ•ใใชใ‚‹ใŒใ€ๆณฅๆฐดๅฏ†ๅบฆใซใฏใ‚ใพใ‚Šไพๅญ˜ใ—ใชใ„ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใจใชใฃใŸใ€‚็นฐ่ฟ”ใ—่ผ‰่ท่ฉฆ้จ“ใงใฏใ€ๅค‰ๅฝข็‰นๆ€งใซๅŠใผใ™็นฐ่ฟ”ใ—่ผ‰่ทใฎๅฝฑ้Ÿฟใ‚’ๆคœ่จŽใ™ใ‚‹็›ฎ็š„ใงใ€ๅฎคๅ†…ใง28ๆ—ฅ้–“้คŠ็”Ÿใ—ใŸๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใซๅฏพใ—ใฆใ€่ปธๅทฎๅฟœๅŠ›ๆŒฏๅน…ใ€ๅˆๆœŸๅฟœๅŠ›ใ€ๅœงๅฏ†ๅœงๅŠ›ใ€ใฒใšใฟ้€Ÿๅบฆใ€ๅˆถๅพกๆ–นๆณ•๏ผˆๅฟœๅŠ›-ใฒใšใฟใ‚ตใ‚คใ‚ฏใƒซ๏ผ‰ใชใฉใ‚’ๅค‰ๅŒ–ใ•ใ›ใ‚‹ใจใจใ‚‚ใซใ€ๆณฅๆฐดๅฏ†ๅบฆใ€็นŠ็ถญๆๆททๅˆ้‡ใ€ใ‚ปใƒกใƒณใƒˆๆทปๅŠ ้‡ใชใฉใฎๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸๆๆ–™ใ‚’ๅค‰ๅŒ–ใ•ใ›ใŸ๏ผŽใใฎ็ตๆžœใ€ๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใŠใ‚ˆใณ็นŠ็ถญๆใง่ฃœๅผทใ•ใ‚ŒใŸๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฏๆถฒ็ŠถๅŒ–ใ‚’็”Ÿใ˜ใชใ„ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใจใชใฃใŸใ€‚ใพใŸใ€็ ดๅฃŠใƒขใƒผใƒ‰ใฏใ€็นฐ่ฟ”ใ—่ปธๅทฎๅฟœๅŠ›ๆŒฏๅน…ใจๅˆๆœŸ่ปธๅทฎๅฟœๅŠ›ใซไพๅญ˜ใ™ใ‚‹ใ“ใจใ€็ญ‰ๆ–นๅฟœๅŠ›็Šถๆ…‹ใ‹ใ‚‰ไธ€ๅฎšใฎ่ปธๅทฎๅฟœๅŠ›ๆŒฏๅน…ใง่ผ‰่ทใ—ใŸๅ ดๅˆใ€้–“้š™ๆฐดๅœงใจไธกๆŒฏๅน…่ปธใฒใšใฟใฏ็นฐ่ฟ”ใ—่ผ‰่ทๅ›žๆ•ฐใฎๅข—ๅŠ ใจใจใ‚‚ใซๅข—ๅŠ ใ™ใ‚‹ใ“ใจใ€็นŠ็ถญๆๆททๅˆๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฏใ€ใ‹ใชใ‚ŠๅคงใใชใฒใšใฟๆŒฏๅน…ใซใ‚ˆใ‚Šใ€ๆœ€็ต‚็š„ใซ็ ดๅฃŠใซ่‡ณใ‚‹ใ“ใจใ€ๆœ€็ต‚ๆฎต้šŽใซใŠใ‘ใ‚‹ๆœ‰ๅŠนๅฟœๅŠ›ๅฑฅๆญดใƒซใƒผใƒ—ใฏใ€ใƒใ‚ฟใƒ•ใƒฉใ‚คๅฝข็ŠถใฎๅฟœๅŠ›็ตŒ่ทฏใจใชใ‚‹ใ“ใจใชใฉใŒๆ˜Žใ‚‰ใ‹ใซใ•ใ‚ŒใŸใ€ใพใŸใ€่ผ‰่ทไธญ็ซ‹่ปธใฎ่ปธๅทฎๅฟœๅŠ›ใ‚’ๆญฃใฎๅ€คใซใ—ใŸ็นฐ่ฟ”ใ—่ผ‰่ทใงใฏใ€ใใ‚Œใžใ‚Œใฎ็นฐ่ฟ”ใ—่ผ‰่ทใซไผดใฃใฆ่ปธใฒใšใฟใฎ่“„็ฉใŒ็”Ÿใ˜ใ€ๅ‹•ๅ“กใ•ใ‚Œใ‚‹ไธกๆŒฏๅน…่ปธใฒใšใฟใฏใปใจใ‚“ใฉไธ€ๅฎšใซไฟใŸใ‚Œใ‚‹ใ€‚ใ—ใŸใŒใฃใฆใ€ๆฐธไน…ใฒใšใฟใฎ้Žๅคงใช่“„็ฉใซใ‚ˆใ‚Š็ ดๅฃŠ่ฆๆบ–ใฏๆบ€ใŸใ•ใ‚Œใ‚‹ใ“ใจใซใชใ‚‹ใ€‚ๆœ€็ต‚ๆฎต้šŽใฎๅฟœๅŠ›ใƒซใƒผใƒ—ใฎๅฝข็Šถใฏใ€ใƒใ‚ฟใƒ•ใƒฉใ‚คๅž‹ใ‚„ใƒฌใƒณใ‚บๅž‹ใซใฏใชใ‚‰ใšใ€้™็•Œ็Šถๆ…‹็ทš(CSL)ใ‚’่ถŠใˆใŸๅพŒใ€ๅ†ใณๆˆปใฃใฆใใ‚‹็ตŒ่ทฏใจใชใฃใŸใ€‚ใ“ใ‚Œใฏใ€็นŠ็ถญๆๆททๅˆๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฏ็ ดๅฃŠ่ฆๆบ–็ทšใซๅˆฐ้”ใ™ใ‚‹ๅ‰ใซ่†จๅผตๅ‚พๅ‘ใซใชใ‚‹ใ“ใจใ‚’ๆ„ๅ‘ณใ™ใ‚‹ใ€‚ๅฟœๅŠ›ใƒฌใƒ™ใƒซใ‚’็คบใ™็นฐ่ฟ”ใ—ๅฟœๅŠ›ๆฏ”๏ผˆCSR๏ผ‰ใฎ็ฏ„ๅ›ฒใฏ0.275๏ฝž0.344ใงใ‚ใฃใŸใ€‚ๅฟœๅŠ›ใƒฌใƒ™ใƒซใŒใ“ใฎ็ฏ„ๅ›ฒใ‚ˆใ‚Šๅฐใ•ใ„ๅ ดๅˆใ€ๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฏ่“„็ฉใ•ใ‚Œใ‚‹ๆฐธไน…่ปธใฒใšใฟใซใ‚ˆใ‚Š่†จๅผตๅ‚พๅ‘ใ‚’็คบใ—็ ดๅฃŠใซใฏ่‡ณใ‚‰ใชใ„ใ€‚ๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฎ็นฐ่ฟ”ใ—ใ›ใ‚“ๆ–ญๆŠตๆŠ—ใฏใ€ๅˆๆœŸๅนณๅ‡ๆœ‰ๅŠนๅฟœๅŠ›ใจๅ›บๅŒ–ๆ้‡ใŒๆธ›ๅฐ‘ใ™ใ‚‹ใจๆธ›ๅฐ‘ใ—ใ€็นŠ็ถญๆๆททๅˆ้‡ใ‚„ๆณฅๆฐดๅฏ†ๅบฆใ‚’ๅข—ๅŠ ใ™ใ‚‹ใจๅข—ๅŠ ใ™ใ‚‹ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใซใชใฃใŸใ€‚ๆœ‰้™่ฆ็ด ๆณ•ใฏๅœฐ้œ‡ๆŒฏๅ‹•่งฃๆžใซๅบƒใ็”จใ„ใ‚‰ใ‚Œใฆใ„ใ‚‹ใŒใ€ใใฎ็ตๆžœใฏๆง‹ๆˆๅผใจๆ•ฐๅ€ค่งฃๆžใซ้ฉ็”จใ•ใ‚Œใ‚‹ใƒขใƒ‡ใƒซใƒ‘ใƒฉใƒกใƒผใ‚ฟใซๅคงใใไพๅญ˜ใ™ใ‚‹ใ€‚ๆœฌ็ ”็ฉถใงใฏๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฎๆŒ™ๅ‹•ใ‚’่งฃๆžใ™ใ‚‹ใŸใ‚ใฎ็‰นๅฎšใฎใƒขใƒ‡ใƒซใ€Ramberg-Osgoodใƒขใƒ‡ใƒซใฎDelphiใ‚ณใƒผใƒ‰ใธใฎๅฎŸ่ฃ…ใŒ่กŒใ‚ใ‚ŒใŸใ€‚่งฃๆžๅ€คใจๅฎŸ้จ“ๅ€คใฎๆฏ”่ผƒใ‹ใ‚‰ใ€ๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฎ็นฐ่ฟ”ใ—่ผ‰่ทๆŒ™ๅ‹•ใฎ่ฉ•ไพกใซRamberg-Osgoodใƒขใƒ‡ใƒซใŒ้ฉ็”จๅฏ่ƒฝใงใ‚ใ‚Šใ€ๅ‹•็š„ใƒ‘ใƒฉใƒกใƒผใ‚ฟใฏ้ฉๅˆ‡ใซๆ กๆญฃใ•ใ‚Œใ‚‹ๅฟ…่ฆใŒใ‚ใ‚‹ใ“ใจใŒๆ˜Žใ‚‰ใ‹ใจใชใฃใŸใ€‚ไปฅไธŠใ‚ˆใ‚Šใ€ๅ˜่ชฟใŠใ‚ˆใณ็นฐ่ฟ”ใ—่ผ‰่ทใ‚’ๅ—ใ‘ใ‚‹่ฃœๅผทใ•ใ‚ŒใŸๆตๅ‹•ๅŒ–ๅ‡ฆ็†ๅœŸใฎๅŠ›ๅญฆ็š„ๆŒ™ๅ‹•ใซ้–ขใ—ใฆใ€ๅคšใใฎๆ–ฐใŸใช็Ÿฅ่ฆ‹ใŒ็คบใ•ใ‚ŒใŸใ€‚In this study, the mechanical behavior of reinforced and unreinforced Liquefied Stabilized Soil (LSS) subjected to monotonic and cyclic loading is discussed based on a database with about Consolidated-Undrained monotonic and cyclic triaxial tests of 98 cases.In the monotonic tests, the influences of slurry density and curing time on the strength and deformation of LSS are investigated. Also, LSS mixed with the pulverized newspaper in the amount of 0 and 10 kg/m3 cured laboratory and in-situ are compared and investigated. Based on the test results, the effect of slurry density on the strength of LSS was found to be greater than the effect of curing time. The pre-peak behavior of the q~a curve became more non-linear under the effect of changing slurry density, in contrast to the effect of curing time. Moreover, the damage degree of LSS with shearing becomes small with curing time, while it seems to be rather independent of slurry density. With in-situ LSS, the influence of curing time on the initial Youngโ€™s modulus, E0, is lower than the effect of slurry density.In the cyclic tests, in order to investigate the effect of cyclic load on the deformation property, the deviator stress amplitude, the initial stress, consolidation pressure, strain rate, and the control method (stress vs. strain cycles) were changed and LSS material which includes slurry density, fiber material, and cement base agent on LSS cured 28 days at the laboratory have been also varied. Based on the test results, it is found that the true liquefaction (q = p = 0) did not reach reinforced and unreinforced LSS. The failure mode is highly dependent on the cyclic deviator stress amplitude (ฯƒ_d) and initial deviator stress (ฯƒ_s). For symmetrical loading (ฯƒ_(s )= 0), the pore water pressure and double amplitude axial strain grew with an increasing number of cycles. LSS mixed with fiber material finally collapsed due to too large strain amplitudes. In the final stage, the loops of effective stress indicate a โ€œButterflyโ€ stress path shape. For nonsymmetrical loading (ฯƒ_(s )> 0), an accumulation of compressional axial strain with each subsequent cycle occurred, while the mobilized double amplitude axial strain remained almost constant. Therefore, the failure criterion was fulfilled due to an excessive accumulation of permanent strains. The shape of the stress loop at the final stage did not pass the โ€œbutterflyโ€ shape or lens shape to migrate to pass over the Critical State Line (CSL), then return to the touch again of the failure envelope. It means the LSS mixed fiber material tends to dilate before reaching the failure criterion. The range of critical cyclic stress ratio (CSR), which indicates the limitation of stress level, was between 0.275 to 0.344. If the stress level is lower than that value, the LSS sample is more dilative by accumulating permanent axial strain and does not reach failure. The cyclic shear resistance of LSS decreases when reducing the initial mean effective principal stress and cement content. In contrast, the cyclic shear resistance increases when adding fiber and increasing slurry density.The Finite Element Method (FEM) is used widely in the analysis of seismic vibration. However, the results depend critically on the constitutive models used and the model parameters adopted in the numerical analyses. The implementation of a specific model to analyze the behavior of LSS mixed fiber material under cyclic loading, the Ramberg-Osgood model, in the Delphi code is performed. Based on the result of the comparison of model simulations with experimental data, the overall is able to apply the Ramberg-Osgood model to evaluate the cyclic loading behavior of LSS, and dynamic parameters should be calibrated properly. In summary, a number of new findings were presented regarding the mechanical behavior of reinforced, liquefied stabilized soils subjected to monotonic and cyclic loading.ๅฎค่˜ญๅทฅๆฅญๅคงๅญฆ (Muroran Institute of Technology)ๅšๅฃซ๏ผˆๅทฅๅญฆ

    5,682

    full texts

    5,694

    metadata records
    Updated in lastย 30ย days.
    Muroran-IT Academic Resource Archive is based in Japan
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! ๐Ÿ‘‡