4,645 research outputs found

    Analysis of Probabilistic News Recommender Systems

    Get PDF
    The focus of this research is the N “most popular” (Top-N) news recommender systems (NRS), widely used by media sites (e.g. New York Times, BBC, Wall Street Journal all prominently use this). This common recommendation process is known to have major limitations in terms of creating artificial amplification in the counts of recommended articles and that it is easily susceptible to manipulation. To address these issues, probabilistic NRS has been introduced. One drawback of the probabilistic recommendations is that it potentially chooses articles to recommend that might not be in the current “best” list. However, the probabilistic selection of news articles is highly robust towards common manipulation strategies. This paper compares the two variants of NRS (Top-N and probabilistic) based on (1) accuracy loss (2) distortion in counts of articles due to NRS and (3) comparison of probabilistic NRS with an adapted influence limiter heuristic

    A probabilistic model to resolve diversity-accuracy challenge of recommendation systems

    Full text link
    Recommendation systems have wide-spread applications in both academia and industry. Traditionally, performance of recommendation systems has been measured by their precision. By introducing novelty and diversity as key qualities in recommender systems, recently increasing attention has been focused on this topic. Precision and novelty of recommendation are not in the same direction, and practical systems should make a trade-off between these two quantities. Thus, it is an important feature of a recommender system to make it possible to adjust diversity and accuracy of the recommendations by tuning the model. In this paper, we introduce a probabilistic structure to resolve the diversity-accuracy dilemma in recommender systems. We propose a hybrid model with adjustable level of diversity and precision such that one can perform this by tuning a single parameter. The proposed recommendation model consists of two models: one for maximization of the accuracy and the other one for specification of the recommendation list to tastes of users. Our experiments on two real datasets show the functionality of the model in resolving accuracy-diversity dilemma and outperformance of the model over other classic models. The proposed method could be extensively applied to real commercial systems due to its low computational complexity and significant performance.Comment: 19 pages, 5 figure

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Regression and Learning to Rank Aggregation for User Engagement Evaluation

    Full text link
    User engagement refers to the amount of interaction an instance (e.g., tweet, news, and forum post) achieves. Ranking the items in social media websites based on the amount of user participation in them, can be used in different applications, such as recommender systems. In this paper, we consider a tweet containing a rating for a movie as an instance and focus on ranking the instances of each user based on their engagement, i.e., the total number of retweets and favorites it will gain. For this task, we define several features which can be extracted from the meta-data of each tweet. The features are partitioned into three categories: user-based, movie-based, and tweet-based. We show that in order to obtain good results, features from all categories should be considered. We exploit regression and learning to rank methods to rank the tweets and propose to aggregate the results of regression and learning to rank methods to achieve better performance. We have run our experiments on an extended version of MovieTweeting dataset provided by ACM RecSys Challenge 2014. The results show that learning to rank approach outperforms most of the regression models and the combination can improve the performance significantly.Comment: In Proceedings of the 2014 ACM Recommender Systems Challenge, RecSysChallenge '1
    • …
    corecore