372 research outputs found

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    Get PDF
    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, but both belong to the category of felines. In other words, tigers and leopards are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in the computational neurosciences. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the approach successully establishes category and subcategory representations

    3D Maps Representation Using GNG

    Get PDF
    Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.This work was partially funded by the Spanish Government DPI2013-40534-R grant

    An incremental clustering and associative learning architecture for intelligent robotics

    Get PDF
    The ability to learn from the environment and memorise the acquired knowledge is essential for robots to become autonomous and versatile artificial companions. This thesis proposes a novel learning and memory architecture for robots, which performs associative learning and recall of sensory and actuator patterns. The approach avoids the inclusion of task-specific expert knowledge and can deal with any kind of multi-dimensional real-valued data, apart from being tolerant to noise and supporting incremental learning. The proposed architecture integrates two machine learning methods: a topology learning algorithm that performs incremental clustering, and an associative memory model that learns relationship information based on the co-occurrence of inputs. The evaluations of both the topology learning algorithm and the associative memory model involved the memorisation of high-dimensional visual data as well as the association of symbolic data, presented simultaneously and sequentially. Moreover, the document analyses the results of two experiments in which the entire architecture was evaluated regarding its associative and incremental learning capabilities. One experiment comprised an incremental learning task with visual patterns and text labels, which was performed both in a simulated scenario and with a real robot. In a second experiment a robot learned to recognise visual patterns in the form of road signs and associated them with di erent con gurations of its arm joints. The thesis also discusses several learning-related aspects of the architecture and highlights strengths and weaknesses of the proposed approach. The developed architecture and corresponding ndings contribute to the domains of machine learning and intelligent robotics
    corecore