179 research outputs found

    Overview of modern teaching equipment that supports distant learning

    Get PDF
    Laboratory is a key element of engineering and applied sciences educational systems. With the development of Internet and connecting IT technologies, the appearance of remote laboratories was inevitable. Virtual laboratories are also available; they place the experiment in a simulated environment. However, this writing focuses on remote experiments not virtual ones. From the students’ point of view, it is a great help not only for those enrolling in distant or online courses but also for those studying in a more traditional way. With the spread of smart, portable devices capable of connection to the internet, students can expand or restructure time spent on studying. This is a huge help to them and also allows them to individually divide their time up, to learn how to self-study. This independent approach can prepare them for working environments. It offers flexibility and convenience to the students. From the universities’ point of view, it helps reduce maintenance costs and universities can share experiments which also helps the not so well-resourced educational facilities

    NASA Tech Briefs, August 2000

    Get PDF
    Topics include: Simulation/Virtual Reality; Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Medical Design

    TRÓJWYMIAROWA WIZUALIZACJA STRUKTUR PRZEPŁYWÓW DWUFAZOWYCH PRZY UŻYCIU ELEKTRYCZNEJ TOMOGRAFII POJEMNOŚCIOWEJ – ALGORYTMY I OPROGRAMOWANIE

    Get PDF
    This paper presents the software for comprehensive processing and visualization of 2D and 3D electrical tomography data. The system name as TomoKIS Studio has been developed in the frame of DENIDIA international research project and has been improved in the frame of Polish Ministry of Science and Higher Education Project no 4664/B/T02/2010/38. This software is worldwide unique because it simultaneously integrates the process of tomographic data acquisition, numerical FEM modeling and tomographic images reconstruction. The software can be adapted to specific industrial applications, particularly to monitoring and diagnosis of two-phase flows. The software architecture is composed of independent modules. Their combination offers calibration, configuration and full-duplex communication with any tomographic acquisition system with known and open communication protocol. The other major features are: online data acquisition and processing, online and offline 2D/3D images linear and nonlinear reconstruction and visualization as well as raw data and tomograms processing. Another important ability is 2D/3D ECT sensor construction using FEM modeling. The presented software is supported with the multi-core GPU technology and parallel computing using Nvidia CUDA technology.W artykule autorzy przedstawiają środowisko komputerowe do kompleksowego przetwarzania i wizualizacji tomograficznych danych pomiarowych. Oprogramowanie  TomoKIS Studio powstało w Instytucie Informatyki Stosowanej PŁ w ramach projektu DENIDIA i zostało rozwinięte w ramach projektu MNiSW nr 4664/B/T02/2010/38. Zbudowane oprogramowanie jest unikalne w skali światowej, gdyż integruje w sobie proces pozyskiwania danych pomiarowych, modelowanie numeryczne oraz proces konstruowania obrazów tomograficznych, z możliwością adaptacji dla różnych aplikacji przemysłowych, w szczególności dla potrzeb monitorowania i diagnostyki przepływów dwufazowych gaz-ciecz. Architektura aplikacji oparta jest na zestawie niezależnych modułów, które pozwalają na w pełni dwukierunkową komunikacją, konfigurację oraz kalibrację dowolnego urządzenia tomografii elektrycznej z otwartym protokołem pomiarowym, akwizycję i przetwarzanie danych pomiarowych on-line, liniową oraz nieliniową rekonstrukcję obrazów 2D i 3D w czasie rzeczywistym, a także wizualizację surowych danych pomiarowych i tomogramów. Istotnym elementem systemu jest moduł numerycznego modelowania czujników pojemnościowych wykorzystujący metodę elementów skończonych, oparty na autorskich algorytmach generowania siatek MES komputerowych modeli czujników pojemnościowych. Architektura prezentowanego systemu została zaprojektowana przy użyciu obliczeń równoległych na procesorach graficznych, z wykorzystaniem technologii Nvidia CUDA

    Design and Implementation of Smart Sensors with Capabilities of Process Fault Detection and Variable Prediction

    Get PDF
    A typical sensor consists of a sensing element and a transmitter. The major functions of a transmitter are limited to data acquisition and communication. The recently developed transmitters with ‘smart’ functions have been focused on easy setup/maintenance of the transmitter itself such as self-calibration and self-configuration. Recognizing the growing computational capabilities of microcontroller units (MCUs) used in these transmitters and underutilized computational resources, this thesis investigates the feasibility of adding additional functionalities to a transmitter to make it ‘smart’ without modifying its foot-print, nor adding supplementary hardware. Hence, a smart sensor is defined as sensing elements combined with a smart transmitter. The added functionalities enhance a smart sensor with respect to performing process fault detection and variable prediction. This thesis starts with literature review to identify the state-of-the-arts in this field and also determine potential industry needs for the added functionalities. Particular attentions have been paid to an existing commercial temperature transmitter named NCS-TT105 from Microcyber Corporation. Detailed examination has been made in its internal hardware architecture, software execution environment, and additional computational resources available for accommodating additional functions. Furthermore, the schemes of the algorithms for realizing process fault detection and variable prediction have been examined from both theoretical and feasibility perspectives to incorporate onboard NCS-TT105. An important body of the thesis is to implement additional functions in the MCUs of NCS-TT105 by allocating real-time execution of different tasks with assigned priorities in the real-time operating system (RTOS). The enhanced NCS-TT105 has gone through extensive evaluation on a physical process control test facility under various normal/fault conditions. The test results are satisfactory and design specifications have been achieved. To the best knowledge of the author, this is the first time that process fault detection and variable prediction have been implemented right onboard of a commercial transmitter. The enhanced smart transmitter is capable of providing the information of incipient faults in the process and future changes of critical process variables. It is believed that this is an initial step towards the realization of distributed intelligence in process control, where important decisions regarding the process can be made at a sensor level

    Locomotion Optimization of Photoresponsive Small-scale Robot: A Deep Reinforcement Learning Approach

    Get PDF
    Soft robots comprise of elastic and flexible structures, and actuatable soft materials are often used to provide stimuli-responses, remotely controlled with different kinds of external stimuli, which is beneficial for designing small-scale devices. Among different stimuli-responsive materials, liquid crystal networks (LCNs) have gained a significant amount of attention for soft small-scale robots in the past decade being stimulated and actuated by light, which is clean energy, able to transduce energy remotely, easily available and accessible to sophisticated control. One of the persistent challenges in photoresponsive robotics is to produce controllable autonomous locomotion behavior. In this Thesis, different types of photoresponsive soft robots were used to realize light-powered locomotion, and an artificial intelligence-based approach was developed for controlling the movement. A robot tracking system, including an automatic laser steering function, was built for efficient robotic feature detection and steering the laser beam automatically to desired locations. Another robot prototype, a swimmer robot, driven by the automatically steered laser beam, showed directional movements including some degree of uncertainty and randomness in their locomotion behavior. A novel approach is developed to deal with the challenges related to the locomotion of photoresponsive swimmer robots. Machine learning, particularly deep reinforcement learning method, was applied to develop a control policy for autonomous locomotion behavior. This method can learn from its experiences by interacting with the robot and its environment without explicit knowledge of the robot structure, constituent material, and robotic mechanics. Due to the requirement of a large number of experiences to correlate the goodness of behavior control, a simulator was developed, which mimicked the uncertain and random movement behavior of the swimmer robots. This approach effectively adapted the random movement behaviors and developed an optimal control policy to reach different destination points autonomously within a simulated environment. This work has successfully taken a step towards the autonomous locomotion control of soft photoresponsive robots

    An integrated computer-aided modular fixture design system for machining semi-circular parts

    Get PDF
    Productivity is one of the most important factors in manufacturing processes because of the high level of market competition. In this regard, modular fixtures (MFs) play an important role in practically improving productivity in flexible manufacturing systems (FMSs) due to this technology using highly productive computer numerical control (CNC) machines. MFs consist of devices called jigs and fixtures for accurately holding the workpiece during different machining operations. The design process is complex, and traditional methods of MF design were not sufficiently productive. Computer-aided design (CAD) software has rapidly improved as a result of the development of computer technology, and has provided huge opportunities for modular fixture designers to use its 3D modelling capabilities to develop more automated systems. Computer-aided fixture design (CAFD) systems have become automated by the use of artificial intelligence (AI) technology. This study will investigate the further improvement of automated CAFD systems by using AI tools. In this research, an integrated CAFD is developed by considering four main requirements: · a 3D model of the workpiece, · an expert system, · assembly automation of MFs, · an efficient feature library. The 3D model is an important factor that can provide the appropriate specification of the workpiece; SolidWorks is used the CAD environment for undertaking the 3D modelling in this study. The expert system is applied as a tool to make right decisions about the CAFD planning process, including locating and clamping methods and their related element selection. This helps achieve a feasible fixture design layout. SolidWorks API and Visual Basic programming language are employed for the automating and simulation of the assembly process of MFs. A feature library of modular fixture elements is constructed as a means to simplify the fixture design process

    NASA Tech Briefs, April 2000

    Get PDF
    Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports

    Design of a Wearable Ultrasound System

    Get PDF
    Ultrasound imaging is a safe and powerful tool for providing detailed still and moving images of the human body. Most of today’s ultrasound systems are housed on a movable cart and designed for use within a clinical setting, such as in a hospital or doctor’s office. This configuration hinders its use in locations lacking controlled environments and stable power sources. Example locations include ambulances, disaster sights, war zones and rural medicine. A wearable ultrasound system, in the form of a vest worn by a sonographer, has been developed as a complete solution for performing untethered ultrasound examinations. The heart of the system is an enclosure containing an embedded computer running the Windows XP operating system, and a custom power supply. The power supply integrates a battery charger, a switching regulator, two linear regulators, a variable speed fan controller and a microcontroller providing an interface for monitoring and control to the embedded computer. Operation of the system is generally accomplished through the use of voice commands, but it may also be operated using a hand-held mouse. It is capable of operating for a full day, using two batteries contained in the vest. In addition, the system has the capability to wirelessly share live images with remote viewers in real-time, while also permitting full duplex voice communication. An integrated web-server also provides for the wireless retrieval of stored images, image loops and other information using a web-browser
    corecore