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Abstract
A typical sensor consists of a sensing element and a transmitter. The major functions of a
transmitter are limited to data acquisition and communication. The recently developed
transmitters with ‘smart’ functions have been focused on easy setup/maintenance of the
transmitter itself such as self-calibration and self-configuration. Recognizing the growing
computational capabilities of microcontroller units (MCUs) used in these transmitters and
underutilized computational resources, this thesis investigates the feasibility of adding
additional functionalities to a transmitter to make it ‘smart’ without modifying its foot-
print, nor adding supplementary hardware. Hence, a smart sensor is defined as sensing
elements combined with a smart transmitter. The added functionalities enhance a smart
sensor with respect to performing process fault detection and variable prediction.

This thesis starts with literature review to identify the state-of-the-arts in this field and also
determine potential industry needs for the added functionalities. Particular attentions have
been paid to an existing commercial temperature transmitter named NCS-TT105 from
Microcyber Corporation. Detailed examination has been made in its internal hardware
architecture, software execution environment, and additional computational resources
available for accommodating additional functions. Furthermore, the schemes of the
algorithms for realizing process fault detection and variable prediction have been examined
from both theoretical and feasibility perspectives to incorporate onboard NCS-TT105.

An important body of the thesis is to implement additional functions in the MCUs of NCS-
TT105 by allocating real-time execution of different tasks with assigned priorities in the
real-time operating system (RTOS). The enhanced NCS-TT105 has gone through
extensive evaluation on a physical process control test facility under various normal/fault
conditions. The test results are satisfactory and design specifications have been achieved.

To the best knowledge of the author, this is the first time that process fault detection and
variable prediction have been implemented right onboard of a commercial transmitter. The
enhanced smart transmitter is capable of providing the information of incipient faults in the
process and future changes of critical process variables. It is believed that this is an initial
step towards the realization of distributed intelligence in process control, where important
decisions regarding the process can be made at a sensor level.

Keywords: Smart Sensor, Process Fault Detection, Variable Prediction, Real-time
Operating System (RTOS)
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Chapter 1  

1 Introduction 

It is well known that sensors are the essential devices in condition monitoring and control 

systems. A typical sensor consists of a sensing element and a transmitter. Nowadays, 

advanced functionalities are embedded into the transmitters which are combined with 

signal processing unit, data computing unit and communication unit, enabling the 

transmitters to be smart transmitters. Therefore, the sensing elements and a smart 

transmitter are combined as known a ‘smart sensor’ [1][2]. The major functions of 

mainstream smart sensors mostly focus on accurately measuring data and transmitting the 

measurement via network. 

In industrial applications, data analysis functions in condition monitoring systems are 

often performed and are in the form of central monitoring stations in large plants such as 

power plants, chemical plants, and petrol plants [3][4]. These functions can collect 

interactive data to provide valuable information of equipment health status [5]. However, 

many small to medium sized systems such as standalone machinery systems often lack of 

conditions and funds to apply such large and costly central monitoring systems [5]. 

Therefore, it is imperative that such useful functions to be decentralized into field devices 

to achieve cost-effective and easy-to-use data analysis functions for serving unit systems. 

To achieve cost-effective distributed intelligence in process control, numerous intelligent 

networked devices with ubiquitous networks are needed in industrial systems. Therefore, 

systems which combine network and intelligent devices so called Industrial Internet of 

Things (IIoT) emerge [6]. To enhance the capabilities of those field devices, the data 

analysis functions of condition monitoring can be the functionalities to be integrated. 

Hence, smart transmitters can be embedded with specific algorithms to flexibly achieve 

data analysis functions of condition monitoring. Meanwhile, since the integrations of 

these additional functions in smart transmitters do not need to modify the foot-print or 

add supplementary hardware, the decentralized condition monitor functions via smart 

sensors can be cost efficient. 



2 

1.1 Overview of Industrial Smart Sensors  

1.1.1 Brief Review of Industrial Sensors 

Sensor is an electronic device for resonding stimulus from physcial environment and 

transferring stimulus into signals or data [7][8]. A typical industrial sensor consisits of 

two parts: a sensing element and transmitter, which is shown in Figure 1.1 (a). The 

sensing element is used for sensing the physical enviroment, while the transmitter is used 

for signal conversion, filtering, and trasmitting the signals or data to orther systems. In 

comparison, a smart sensor is combined with sensing elements and a smart transmitter, 

which is shown in Figure 1.1 (b). 
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Figure 1.1: Overview of a Typical Industrial Sensor and Smart Sensor 

The first commercial smart sensor was produced by Honeywell company in 1983 [9]. 

More sensors that fell into the smart category also emerged in the mid-1980s [10][11]. 

Up to date, smart sensors have been used in a wide range of measurement and monitoring 

applications such as temperature, pressure, flow, level, weight, and so on. A typical 

industrial smart sensor and its internal diagram is shown in Figure 1.2 [11]. An industrial 

smart transmitter typically includes analog-to-digital converters (ADCs), CPU, EEPROM 

and Fieldbus communication functions.  
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Figure 1.2: Siemens SITRAN TF Functions Diagram [12] 

Mainstream smart transmitter in industrial verticals are mostly designed to focus on 

features including accurate measurement, self-diagnostic such as sensing elements break 

or short-circuit, self-calibration, self-configuration, and wired or wireless 

communications [13][14][15]. Some well-known brands are Rosemount, Siemens, 

Honeywell, Endress+Hauser, KROHN, and Yokogawa. For instance, Siemens SITRANS 

TF [12] series sensors offer high-accuracy measurement with less than 0.05 % absolute 

accuracy, as well as self-diagnostic, linearization, calibration functions, and Profibus-PA 

and Foundation Fieldbus communication. Honeywell SmartLine ST800 pressure sensors 

can provide up to 0.0375% accuracy for static pressure measurement through internal 

temperature compensation [16]. As shown above, the essential features of mainstream 

industrial smart transmitters are high-accuracy measurement, easy set-up and 

maintenance, and communication.   

With the technological advances and pull of application demands, innovative transmitters 

with on-board signal processing and data analysis functions have emerged in recent years 

[17]. One pioneer in this field is the OPTISWIRL 4070C flowmeter [18] offered by 

KROHN, which is integrated with the Intelligent Signal Processing (ISP) function. The 

ISP can eliminate unwanted noise and external perturbations for measurement via its 

signal processing unit, so that users can read the stable flow results of either liquids or 

vapors without any impacts from fluctuating pressures and temperatures. Another 

example of recent innovation in transmitter design is the Rosemount 3051S [19] pressure 

transmitter. Its deviation calculation algorithm, drawn from integrated Statistical Process 
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Monitoring (SPM) functions, can analysis data for indicating abnormal process status 

such as cavitation and flame instability.  

The above examples demonstrate signal processing and analysis functions which are 

integrated in smart transmitters. Even through there are only handful smart transmitters 

with built-in functions in market, they shows a trend that smart transmitters provide not 

only accurate measurement, but also signal processing and data analysis functions.  

1.1.2 Composition of Smart Transmitter 

To integrate data analysis functions into smart transmitter, two major components are 

required, which are the hardware and software system of smart transmitters, respectively. 

A. Hardware components in a smart transmitter 

The hardware components of a smart transmitter could be composed with three main 

parts, including signal processing unit (SPU), application processing unit (APU), and 

bidirectional communication unit (BCU), as shown in Figure 1.3. Benefiting from the 

development of embedded systems and integrated circuits technology, those three parts 

and sensing elements unit (SEU) can be integrated into one chip, or grouped into 

different components based on different application scenarios. In addition, some auxiliary 

parts such as power units, communication antenna, electric isolation circuits, and display 

units are also basic components in a smart transmitter.  

Sensing Elements

Unit

(SEU)

Signal Processing

Unit

(SPU)

Application 

Processing

Unit

(APU)

Bidirectional 

Communication

Unit

(BCU)

Network

Smart Sensor

Thesis focuses:

Algorithms  embedded

Smart Transmitter

 

Figure 1.3: Smart Transmitter Architecture 
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Signal Processing Unit: SPUs play the role of translating analog signals into digital 

signals. Components such as signal conditioners, analog-to-digital converters (ADCs), 

and sometimes signal processing processors are in this unit. SPUs connect with SEUs and 

transfer SEU signals into digital output. The digital output so called raw data are then 

used for further processing. Moreover, if signal processing processors are involved, the 

signal processing functions, such as signal compensation, calibration, digital filters, drift 

testing, and fast Fourier transform (FFT), can be integrated in this unit.  

Bidirectional Communication Unit: BCUs serve as bridges, exchanging data for smart 

sensors with outside network. BCUs allow the smart transmitters to exchange data with 

other systems or devices, such as upper lever controllers, actuators, or other sensors. 

Applying standard communication protocols in BCUs is an efficient approach to achieve 

unification on communication and accelerates the progress of smart sensors for various 

networking applications.  

Application Processing Units: APUs are the pools for organizing and running 

embedded algorithms for different applications. To execute complex algrithms, powerful 

MCUs need to be assigned to APUs. Furthermore, to achieve multiple tasks and real-time 

operation, RTOS needs to be applied for a microcontroller. An MCU with a RTOS is an 

excellent combination for APU. This allows APU to be integrated with algorithms to 

realize data analysis functions. Therefore, the algorithms and functions in this thesis are 

implemented in this unit. 

B. RTOS for smart transmitters 

To process various smart functions within a deterministic response time, RTOS is 

commonly involved in smart transmitters [20]. A task, which includes an application 

program code and works independently from other tasks, is dispatched by the RTOS 

kernel’s scheduler [20]. The preemptive kernel, which is the core of RTOS, is used for 

scheduling and dispatching multiple tasks in real-time. The preemptive kernel not only 

allows multiple independent tasks to share the processor resources but also guarantees 

that tasks with high priority are prioritized [21]. To realize different application 

algorithms, programs can be grouped and allocated to each of task. Each task can be 
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designated as an indenpendent loop, memory resources, and priority. The algorithms and 

functions in the tasks can be organized flexibly and scheduled in real-time. 

1.2 Shortcomings of Existing Smart Sensors and Potential 
Solutions 

Smart sensor has become a fashionable word in contemporary technological among 

industrial circles. However, there are still some shortcomings in the existing smart 

transmitters.  

1.2.1 Shortcomings of Existing Smart Transmitters 

A. Lack of data analysis functions 

So far, there are very few analysis functions in existing smart transmitters. The 

computing processors in the conventional smart transmitters are used to compute 

calibration and linearization for accurate measurement. Communication is responsible for 

transmitting measured data to other systems. Even though powerful computing 

processors are embedded, the main task of conventional smart transmitters mainly 

focuses on measurement and data transmission. By leveraging powerful computing 

capacity, smart transmitters can be integrated with data analysis functions beyond 

providing measurement.  

B. Lack of information extracted from data 

Another shortcoming of conventional smart transmitters is that, even though diagnostic 

functions are integrated, the efforts are focused on easy set-up or maintenance of sensor 

itself. However, the information which could have been extracted from measurement data 

is rarely extracted to provide further benefit [22]. For instance, the valuable information 

includes detected faults in process, foreseeing the abnormal process changes, and guiding 

preventive maintenance. Different from the conventional self-diagnostic capabilities, the 

information of the process system could support users to gain the insight on the process 

system, and take actions for avoiding severe accidents in process. 
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1.2.2 A New Generation of Smart Sensors 

As previously discussed, integrating functions to provide valuable information is the key 

feature to potentially enhance the existing smart transmitters. The smart sensors 

combined with smart transmitters can be described as following: 

A smart sensor is a multi-capabilities, algorithms embedded device in which measuring, 

analyzing, collaborating, and self-governing can be integrated to convert physical 

variables into accurate data, process data and extract valuable information, and utilize 

comprehensive information to provide decision-making suggestions.  

From above concepts, the embeded algorithms play key roles to allow smart transmitters 

to extract valuable information from collected data. Moreover, the platform of the 

embedded algorithms can be realized by embedded RTOS to enable customized functions 

to be integrated into smart transmitters.  

1.2.3 Potential Solutions through Integrating Data Analysis 

To overcome the shortcomings of conventional smart transmitters, smart transmitters can 

be embedded algorithms to realize data analysis functions. The improved smart 

transmitters should extract valuable information from the collected data instead of just 

sending measurement.  

A. Realizing data analysis for process condition monitoring 

The data analytical functions for analyzing the status of industrial process and facilities 

are commonly realized by condition monitoring systems. The typical form of condition 

monitoring system is a central management software system. For instance, Emerson 

AMS Suite provides a software solution named Essential Asset Monitoring [23] to 

analyze collected data to alert operators for any process faults, such as fouling and 

plugging problems in heat exchanger systems, or pump shutdown in cooling systems. 

Siemens Condition Monitoring Library [24] in its Distributed Control System (DCS) PCS 

7 systems can analyze the health status of centrifugal pump damage, valve wear, process 

steady state, and any pressure loss. Another example is Process and Equipment 

Monitoring [25] system named Uniformance Asset Sentinel offered by Honeywell. This 
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system is integrated with preprogrammed first-principles models, which include a pump, 

compressor, heat exchanger, and turbine models, can be used for predicting the status in 

either the process or the equipment.  

The widespread applications of these systems demonstrate the usefulness of the data 

analysis functions in condition monitoring systems are used for industrial process 

systems. However, to employ and operate such central monitoring systems, the users 

need to design the monitoring systems, prepare central rooms and computers for the 

software, and spend time to attend the professional trainings for learning the operations.  

Generally, small to medium sized systems are often lack of conditions and funds to apply 

such large and high-cost centralized monitoring systems [5]. Realizing data analysis 

functions at sensor level rather than employing centralized monitoring systems is cost-

effective way to equip analytical systems for small and medium sized systems. Since 

smart sensors are broadly used small and medium sized systems, integrating data analysis 

functions into existing smart transmitters without adding extra cost, allows the status of 

facilities monitored and the process data can be analyzed in a cost-effective way. 

B. Providing information of process fault detection and variable prediction 

Faults detection information and variable prediction information are two kinds of process 

information which are provided by process fault detection function and variable 

prediction functions respectively in condition monitoring systems. The process fault 

detection function can monitor the health of the process and alert faults. The detected 

faults information in incipient period means that the faults are detected before they 

developed into deterioration or failure. The incipient fault detection can be used to 

prevent serious failures in process or esstential equipment and to avoid deterioration. 

Equally important, the prediction function can predict process variables to foresee the 

future changes of the vital variables. The predicted information allows controllers and 

engineering teams to take early actions rather than simply passively waiting for 

something to go worse. Therefore, the information of process fault detection and variable 

prediction are valuable for industrial users.  
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The implementation of process fault detection and variable prediction functions in smart 

transmitters can enable smart sensors to provide information of process faults and 

variable prediction. Smart transmitters can be embedded with algorithms to achieve such 

functions to overcome the shortcomings of existing smart transmitters.  

1.3 Research Objectives, Methodologies, and Scope 

1.3.1 Objectives 

To enable smart transmitters to perform fault detection and variable prediction functions, 

the objectives of this thesis include the following two aspects: 

A. Investigating the feasibility of adding smart functions in smart transmitters 

The methods which can realize the smart functions of process fault detection and variable 

prediction and suitable to be applied into smart transmitters are investigated. 

Furthermore, the hardware capability of the MCU in the transmitter implementation 

platform and its RTOS software system are studied. Based on the investigated methods 

and studied capability of the transmitter, the specific algorithms for realized process fault 

detection and variable prediction are designed. 

B. Implementing the algorithms of the smart functions into a smart transmitter 

The algorithms which can realize fault detection and variable prediction are implemented 

in MCU of the transmitter. The added smart functions enable the implemented smart 

transmitter to extract the process information of fault detection and variable prediction 

from collected data, using its the underutilized computational resources without adding 

extra expense. 

1.3.2 Methodologies 

The core research tasks include three main steps: studying algorithms of process fault 

detection and variable prediction, implementing two group algorithms and designing 

RTOS multitasking configuration, and validating the enhanced smart sensor in a semi-

practical test facility.  
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1) The feasibility of integrated functions and embedded algorithms for realizing fault 

detection and variable prediction in smart transmitter are investigated. The capabilities 

and specifications of the implementation transmitter are studied. 

2) The algorithms for realizing fault detection and variable prediction are implemented in 

MCU of the transmitter. The algorithms are organized in independent tasks and 

scheduled in real-time by RTOS of the transmitter. The RTOS multitasking 

configuration, which includes the consideration of task priority, event response time, and 

processor workload, are discussed and implemented. 

3) The enhanced smart sensor are verified in a semi-practical test facility. The designed 

process fault detection and variable prediction functions are validated both in offline and 

online test. The multitasking design of three tasks in RTOS of smart transmitters are also 

validated. 

1.3.3 Scope 

The scope of this thesis mainly focuses on integrating fault detection and variable 

prediction functions into the smart transmitters of the smart sensors. The procedures of 

investigating feasible methods and algorithms for realizing the targeted functions, 

implementation of the algorithms, and V&V test, are three main tasks in this research, 

which provide a demonstration for further functions and algorithms to be integrated into 

transmitters. Therefore, not all the data analysis functions of condition monitoring 

systems are involved. The faults which are demonstrated in the test environment for the 

validation are only the typical faults, and will not cover all the faults in the test facility. 

Furthermore, the designed functions are realized in software layer, and the embedded 

algorithms only use the underutilized computational resources of MCU in the existing 

transmitters. Therefore, some technologies in the smart sensors, such as sensing elements 

technologies, digital signal processing, and communication protocols of the smart sensor, 

are not the main focuses in this research. 
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1.4 Contributions of the Thesis 

This thesis has made three major contributions: 

A. Investigating the feasible methods and algorithms to embed into smart transmitter 

Based on the capabilities and specification of the transmitters, the feasible methods and 

algorithms of process fault detection and variable prediction are investigated. The 

algorithms are embedded into a commercial transmitter and scheduled by its RTOS 

successfully. 

B. Improving capabilities of the existing sensors with data analysis capabilities 

The integrated smart functions improve the capabilities of the existing transmitter. The 

data analysis functions which include process fault detection and variable prediction 

enable smart sensors to analyze process data locally, allowing the small and middle sized 

system can be economically deployed with process fault detection and variable 

prediction. 

C. Demonstrating the feasibility of integrated smart functions into existing transmitter 

The successful implementation of the feasible methods and algorithms of fault detection 

and variable prediction functions demonstrates the procedures of the implementation of 

the smart functions in a transmitter hardware platform. The procedure such as methods 

survey, algorithms implementation, and V&V test can be referenced for further functions 

integration.  

1.5 Organization of the Thesis 

The thesis consists of seven chapters. The remainder six chapters are organized as 

follows: 

The progress of smart sensors are reviewed, while the existing methods for targeted smart 

functions including fault detection and prediction are surveyed in Chapter 2. The 

hardware structure, RTOS and corresponding standards of the implementation platform 

which is a commercial industrial transmitter NCS-TT105 are introduced in Chapter 3. In 
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Chapter 4, the specifications of the designed functions are proposed, and algorithms of 

process fault detection and variable prediction are investigated. Furthermore, 

implementation of algorithms and multitasking design are discussed in Chapter 5. In 

Chapter 6, the verification and validation of smart functions in smart transmitter are 

carried out on a physical test environment. Finally, summary, conclusions, and future 

work are presented in Chapter 7. 
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Chapter 2  

2 Literature Review 

The literature of smart sensors can be traced back to thirty years  [1][2]. The development 

of smart sensors over this time can be classified into following four phases, i.e. Data 

acquisition, integration of hardware and software, communication, and information. As 

the software system of the smart transmitters, RTOS is the important compositions in 

smart sensors for organization various programs. Furthermore, to extract information 

from measurement data in smart sensors, algorithms which is embedded in transmitters 

paly the key role. Therefore, it is necessary to review the appropriated algorithms to 

implement process fault detection and variable prediction functions. 

2.1 Review of Existing Smart Sensors 

A. Data acquisition from physical world 

In order to provide accurate measurement, the smart sensors are integrated with 

microprocessors in their transmitters to realize digital signal processing and data 

computing. According to Schödel [26], smart sensors are described as a microprocessor 

device with filtering and other signal processing and data computing functions. 

Comparing with the traditional analog circuit design, the digital microprocessors such as 

MCUs and Digital Signal Processors (DSP) are integrated into smart sensors [1]. MCUs 

are commonly used for data processing such as calibration, linearization, and 

compensation for accurate measurement [27]. The typical MCU chips are Texas 

Instruments MSP430 [28], and LPC4000 series from NXP [29]. DSP is ultilized for 

signal processing in smart sensors [30], such as FIR/IIR filtering, and Fourier transforms.  

B. Integration of hardware and software  

With the development of semiconductor technologies, the sensing elements and smart 

transmitters can be potentially integrated into one chip [31][32], which makes the smart 

sensor to become a system-in-package device [33]. Especially, the sensing elements for 

sensing thermal, gravity, acceleration and so on, can be combined with smart transmitter 
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and integrated into a single processor chip [11][34][35]. The high integration allows 

sensors to be more compact in size, multiple sensing integrations, and lower power 

consumption. 

Typical hardware and software integration technologies used in smart sensors are Micro-

Electro-Mechanical Systems (MEMS) and System-on-Chips (SoCs) [33][36]. MEMS 

uses microfabrication technology to make miniaturized mechanical and electro-

mechanical elements in electronics and microscopic devices [37]. Owing to its micro-

embodiment, MEMS technology can integrate a large number of sensing elements into 

one chip [33]. SoC enables signal conditioning parts and other circuits to be integrated 

together. SoC is integrated circuit (IC) system which is designed for integrating 

microsystems and multiple technologies, such as CMOS, MEMS, microprocessors, RT 

transceivers [36] that allow digital circuits, analog circuits, memories, ADCs, and 

microprocessors to be integrated into one chip and enable smart transmitter as a small 

foot-print[38][39]. 

C. Data transfer via communication 

Thanks to the digitization and integration development in phase 1 and phase 2, smart 

sensor have become powerful sensing and measurement devices. However, the 

conventional analog transmission such as 4-20mA or 0-10v remains as bottlenecks for 

allowing smart sensors to exchange more data with other systems. As sensors combining 

with bus interface [2] and communicating with host systems [40], network functions 

become the essential capabilities of smart sensors. With wired and wireless network 

technologies, transmission barriers of smart sensors have been broken through. 

There are many communication methods to achieve network functions. From wired 

network angle, Fieldbus which is followed by IEC 61158 specifications is particularly 

popular, such as PROFIBUS, PROFIBUS-PA, PROFINET, EtherCAT, Foundation 

Fieldbus [41]. From wireless network angle, Industrial Wireless Sensor Networks 

(IWSNs) and Wireless Sensor Networks (WSNs) provide many attractive features to the 

smart sensors [42][43][44][45]. To achieve transmission of large amounts of data, 

communication has been the necessary functions in smart sensors. 
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D. From data to information 

Benefited from the rapid development of sensing, microelectronics, and communication 

technologies, smart sensors have become essential devices for collecting rich data in 

various networks. However, a challenge of rich data but poor information has been found 

in many industries. The valuable information allows people, control systems to make 

effective decisions, and to be used as reference for preventing accidents, foreseeing the 

problem, improving productivity [46]. Therefore, extracting valuable information from 

the collected data in smart sensors is imperative.  

In order to extract valuable information from data, the embedded algorithms play the key 

roles. In early stages, smart sensors are incorporated with dedicated signal processing 

algorithms [47], such as power spectral density(PSD) and FFT, to provide frequency 

analysis information. Further progress on the development and implementation of fault 

detection and diagnosis [48], and artificial neural network functions [49] have allowed 

smart sensors to be information providers. For instance, leveraging image identification 

algorithms, smart cameras BOA [50] can identify the broken bottles in production line.  

In the industrial field, the process information of the process faults and the future changes 

of the essential variable is valuable for users. The detected faults information in the 

process systems can be used to guide the planned maintenance, prevent deterioration, and 

to avoid serious accidents and failure in the process system. The predicted information 

can be used to guide timely preventive actions rather than simply passively waiting for 

system to go worse. To realize fault detection and prediction information to be provided 

in field level, process fault detection and variable prediction functions can be integrated 

into smart transmitters as smart functions in smart sensors. Therefore, the appropriated 

methods and algorithms to implement fault detection and variable prediction functions in 

smart transmitters are reviewed in the later sections. 

2.2 Existing Fault Detection Techniques 

An abnormal status, or fault, is defined as an “unpermitted deviation of at least one 

characteristic property or parameter of the system from normal or acceptable condition” 
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[3]. Faults may cause a decline in or even total loss of the designed capability in process 

systems. Unmonitored faults pose a significant risk to the safety of a plant or a machine 

system, and can lead to serious consequences for industrial production. Fault detection 

methods which can be used to extract faults information from the collected data of 

sensors are reviewed. Moreover, as a smart functions which is integrated into smart 

transmitter, the selected fault detection method must be applicable for embedded system. 

The computational complexity and operability of the algorithms should be feasible to be 

used in smart transmitter. 

2.2.1 Classification of Fault Detection Methods 

Many different approaches to monitor and detect imminent faults have been developed 

and discussed over the last thirty years [51][52][53]. Fault detection methods can be 

classified into two main groups: model-free methods and model-based methods [54][55]. 

An overview table of different fault detection methods is shown in Table 2.1. 

Table 2.1: Classification of Fault Detection Methods [54][55] 

 

Model-free methods can be further broken down into signal-based methods and data-

driven methods [55]. Neither of these methods utilizes a mathematical model of the 

objects. Signal-based methods mostly use signal spectrum analysis tool and are normally 

applied for rotating machine fault detection via analysis of vibration and noise. This 

method requires analytical devices with high-frequency capabilities [3], which means that 

the transmitters are needed to be configured with high-frequency data acquisition 

Signal-based Data-driven

Parameter estimation Correlation
Artificial neural networks

(ANN)

Observers Time-Frequency analysis
Principal component analysis

(PCA)

Parity equations Spectrum analysis
Partial least squares

(PLS)

Kalman filter Wavelet analysis
Multivariate state estimate technique

(MSET)

Classification of Fault Detection Methods

Model-based

Model-free
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hardware. Data-driven methods use multivariate statistical methods via plenty of 

historical data and complex matrix computing. For instance, the typical data-driven 

methods are Principal component analysis (PCA) and Partial least squares (PLS) [56]. 

PCA and PLS methods are usually applied in central supervision systems [56][57]. 

Although model-free fault detection methods do not need the prior knowledge of 

mathematical model, due to the requirements of high computational complexity and large 

capacity storage space for the long-term data archiving, this kind of methods is hard to be 

broadly applied in transmitter devices. 

Model-based methods need to use explicit mathematical models of the monitored process 

to represent the relationship between manipulated variables and controlled variable [3]. 

model-based fault detection methods have been tested and verified in many industrial 

applications such as actuators, sensors, machines and plants [58][59]. A diagram of this 

framework is shown in Figure 2.1 [52]. The inputs and outputs of a system are the data 

source of Model-based methods, allowing model-based methods to be feasible for 

implementation in the devices [3].  
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Figure 2.1: Model-based Fault Detection Framework [52]  

Besides the models and their parameters, another two important steps in a model-based 

fault detection framework are residual generation and residual evaluation. 



18 

Residual generation is produced by the different model-based methods such as parameter 

estimation, observers, and parity equations [51][57], while residual evaluation involves 

making decisions on fault alarms using thresholds or statistical tools [60]. Based on the 

different application scenarios, the different combination of residual generation and 

residual evaluation methods could be applied. Since the model-based fault detection 

methods are suitable to be implemented in devices, therefore, the model-based methods 

are selected to be used in the smart transmitters. 

2.2.2 Residual Generation by Model-based Methods 

Residuals represent the deviation between the observed variables and the analytical 

output values of the mathematical model [60]. As illustrated in Figure 2.1, the residual is 

generated from a residual generation block. One straightforward method for calculating 

residuals is the difference between the measured output ( )y t from detected system output 

and an estimated output ˆ( )y t from the system model, as  

 ˆ( ) ( ) ( )r t y t y t    (2.1) 

The three major model based methods to generate residuals via estimating output ˆ( )y t  

are parameter estimation, observers, and parity equations [53][54][55][61]. Parameter 

estimation method is used to determine the unknown parameters of a process model, 

using dynamic excitation inputs and outputs of the process [51][53]. The structure of the 

model must be determined firstly, while the parameters can be estimated by this method. 

Through the model and its parameters, the output ( )y t can be estimated via exciting 

inputs. Typical observer methods are Luenberger observers and Kalman filters [51][54]. 

The observer methods are suitable for observing states in state space matrix model of 

machinery or process system. The estimated output ˆ( )y t  can be derived by observed 

states. Parity equation method is used for exploiting system measurements and comparing 

the consistency between the mathematical parity equations and the parallel system. The 

mathematical system model can be turned into different forms to generate output errors, 

equation errors, or input errors for detecting system additive faults, such as sensor bias or 

actuator sticking [51].  
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As shown above, both observer and parity equation methods rely on known mathematical 

matrix and equations. However, the prior matrix and equations are hard to derive in some 

systems and are scarcely possible to be preprogrammed with amount of models into 

smart sensors for various process systems, allowing the methods which require specific 

mathematical matrix and equations are hardly to be used in smart transmitter. Contrarily, 

parameter estimation methods can estimate the parameters of the model. Only structure 

of the models need to be determined. The determination of model structure is easier than 

the determination of both structure and parameters of model. Leveraging parameter 

estimation, the modeling system can learn the parameters of model with the determined 

structure of the model. This strategy without intervention allows parameters estimation 

methods to be broadly used, and enabling parameter estimation methods to be suitable for 

embedded devices integration. Therefore, parameter estimation methods are selected for 

integrating into smart transmitters. 

Among parameter estimation methods, the Least Squares (LS) and its recursive 

algorithms are commonly utilized [51]. The basic LS algorithms is batch processing 

algorithm, which need to be recomputed with all the data in matrix and matrix inverse 

computation [62]. Comparing with LS, Recursive Least Squares (RLS) reduces the 

computational effort. Leveraging recursive strategy, RLS has been widely used for 

system identification and adaptive filter domain [63][64]. With fast convergence 

performance and recursive as well as adaptive features, RLS is broadly used for online 

parameter estimation both in open-loop and closed-loop [63]. However, the original RLS 

is suitable for estimating the parameters which are stable or time invariant [51]. To 

estimate the parameters in a time-varying system, the alternative algorithms named 

Exponentially Weighted Recursive Least Squares (EWRLS) with a forgetting factor can 

be used [51]. Since the process system working around operating point can be described 

as linear dynamic models [3], this algorithm is suitable for identifying parameters in 

process system. 

Smart transmitters are the embedded system which is a system of unattended, and limited 

computation. The adaptive and recursive algorithms of parameter estimation can 

adaptively “learn” the parameters of linear process models and enable computational 
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efficiently. Therefore, to online estimate the parameters of process system working 

around operating point, EWRLS are suitable to be used in smart transmitters. The more 

details of algorithms to implement recursive parameters estimation are discussed in 

section 4.2. 

2.2.3 Residual Evaluation for Fault Detection 

After the residuals are generated, the residual evaluation is used to examine the faults 

occurrence. Residual evaluation is a procedure for using residual and validation 

technologies to make decisions about the faults detection [53]. The residual evaluation 

manners can be grouped into two paradigms which are threshold approaches and 

statistical tools, respectively [65][60]. 

The basic idea of threshold approaches is to validate residual deviation from normal 

values [66]. Once sensors, actuators, or equipment faults occur, residuals will deviate 

from zero. If the amplitude of residuals changes is larger than the threshold, the 

evaluation test will consider faults occurred. In practical applications, the residuals are 

corrupted by unknown disturbances, process noises, and uncertainties in the system 

model. Leveraging threshold method alone could miss the false or generate wrong fault 

alerts. Therefore, statistical tools methods of residuals evaluation could be involved to 

overcome the influences from disturbances and noises when evaluating residuals 

changes. 

Three well-known statistical tools for residuals change detection are Sequential 

Probability Ratio Test (SPRT), Generalized Likelihood Ratio (GLR) Test, and 

Cumulative Sum (CUSUM) test [60][66]. SPRT uses recursive method to compute the 

cumulate sum of the log-likelihood ratio can detect faults in short time[66]. GLR has 

good performance on detecting additive and component faults[60]. However, the original 

GLR cannot compute recursively [60][67]. Comparatively, Cumulative Sum (CUSUM) 

[66][67] which can be seen as repeated SPRT [60] uses recursive cumulative results to 

compare with decision bound. It has been broadly investigated for online and offline 

change detection [66][68]. Since recursive methods and repeated calculation are suitable 
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for online fault detection in devices, CUSUM is suitable to be used as statistical tool of 

residual changes evaluation for fault detection in smart transmitters.  

In summary, the parameter estimation and CUSUM methods can be considered to be 

combined as fault detection functions in smart sensors. In practice, the industrial process 

system model is often unknown or hard to be derived in most cases. The parameter 

estimation method is suitable for industrial users in such situations. Adaptive algorithms 

and recursive computing solutions are suitable for online parameter estimation in smart 

sensors. Moreover, considering the performance and computational complexity, the two-

side CUSUM as residual evaluation tool can be employed. A detailed algorithms and 

implementation for fault detection function are introduced in Chapter 4 and 5. 

2.3 Existing Techniques for Prediction of System 
Responses  

To predict the responses of a system, the system model play significantly roles [69][70]. 

Besides model, the responses of the system which are needed to be predicted should be 

measured or known, while the leading forces (inputs) of the system can be known or 

unknown [70]. Based on different scenarios of leading forces which are either known or 

unknown, the different prediction models and prediction methods can be applied. 

Moreover, as a smart functions which is integrated into smart transmitter, the selected 

prediction algorithms must be applicable for embedded system and should be feasible to 

be used in smart transmitter. 

2.3.1 Models with and without Exogenous Variables 

Industrial process systems can be classified as input-implicit systems and input-explicit 

systems. In an input-implicit system, the leading forces for the response of a system are 

either undetermined or unknown. Such systems commonly show as strong inertia 

characteristics, such as furnace temperature, reservoir level, and water quality. Since the 

exogenous variables cannot be determined or unknown in the input-implicit system, the 

models without exogenous variables can be used to describe the input-implicit systems. 

While in an input-explicit system, the leading forces for the response of a system are 

known. For instance, the heater is powered by the observed current, and the speed of the 
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motor is controlled by manipulated voltage. Involving exogenous inputs, prediction by 

the models with exogenous variables can be proactive and accurate. Therefore, the 

models with exogenous variables are suitable to describe the input-explicit system.  

The diagrams to illustrate the prediction system considering without known inputs and 

with known inputs are shown in Figure 2.2 and Figure 2.3, respectively.  
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Figure 2.2: Illustration of a Prediction with Known Inputs [70] 
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Figure 2.3: Illustration of a Prediction with Unknown Inputs [70] 
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A. Models without exogenous variables  

In models without exogenous variables, only observed response of the system is used. 

The common used models without exogenous variables are Auto Regressive (AR) model 

[71], Autoregressive moving average (ARMA) model [69], Autoregressive integrated 

moving average (ARIMA) model [69][72],  and grey model [73]. AR model is often used 

as linear prediction models for the stochastic process in statistical and signal processing 

field [71].  Although the AR is simple and widely used, if the noise and disturbances are 

unaccounted, the prediction derived from AR model may be less accurate [69][71]. 

ARMA and ARIMA shows better performance since the noise structure and integrated 

noise structure are considered in two models. However, the parameters estimation for 

high orders coefficient of these two models is high computational complexity [69][71]. 

The industrial process includes obvious disturbance, while huge computing tasks are not 

suitable to be embedded into smart transmitters. Therefore, the model which have robust 

performance and moderate computational complexity are suitable to be used in smart 

transmitters for implementing prediction function. 

Grey model shows good and robust performance in uncertainty and noise condition [74]. 

grey model are proposed from grey system theory [73]. This methodology focuses on 

modeling the system with small data samples, and extracting useful information from 

uncertain systems [75][76]. The typical popular GM(1,1) model which is used for 

modeling monotonic data series only needs two coefficients to be estimated, whereas 

GM(2,1) which is used for modeling none monotonic data series needs three coefficients 

to be estimated. Since the estimated coefficients only have two or three matrices, the 

straightforward Least Square (LS) parameter estimation can be involved [74]. Leveraging 

these two model and using n  length of data series, the data series can be modeled easily, 

and the further ahead steps of data can be predicted iteratively. Using grey model, the 

performance and computational complexity can be balanced. Therefore, GM(1,1) and 

GM(2,1) models can be the model without exogenous variables for implementing 

prediction in smart transmitters for the input-implicit process.  

B. Models with exogenous variables  
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Different from models without exogenous variables, the model with exogenous variables 

involved the leading forces (inputs) of system response. Considering the impacts of 

system inputs and known output response, the prediction can be proactive and accurate. 

According to [69][77][63], the Auto Regression with exogenous inputs (ARX) model and 

Auto Regressive Moving Average with exogenous inputs (ARMAX) are well-known 

models with exogenous variables. Involved with inputs ( )U k and system response ( )y k , 

ARX model can be described as equation (2.2) in which the parameters 
ma and 

mb with m 

order can be estimated via parameter estimation method, i.e., LS or RLS. Comparing with 

ARX, ARMAX which is shown in the equation (2.3) is added with moving average. The 

parameters 
ma ,

mb and 
mc with m order can be estimated via Extended Least Squares 

(ELS) method [63]. 
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where ( )n k is assumend to be white noise sequence. 

Even through ARMAX can be more precise to describe a dynamic system compared to 

ARX [78], the computation for parameters estimation are more complicated. On the 

contrary, because of the simplicity of the parameters estimation for ARX, this model is 

often used for industrial system identification [79]. Considering the performance and 

complexity of ARX and ARMAX, ARX can balance the precise and complexity for 

modeling a system, and suitable to be applied in embedded systems. Therefore, ARX is 

suitable to be used in smart transmitters to model the process system when exogenous 

variables should be considered in the process model. 

2.3.2 Model-based Prediction Methods  

Once model is determined, with the known system inputs and system response outputs, 

the response of the system can be predicted. Leveraging the grey model, the known 
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output response can be used to predict the response of the input-implicit process, while 

utilizing ARX model, the known inputs and output response of the system can be used 

together to predict the response of the input-explicit process.  

To achieve multi-step prediction, the one-step prediction and multi-step iterative 

computation are commonly combined together. During the multi-step iteration, if the 

prediction error exist in every prediction step, the error in multi-step prediction results is 

cumulated. This will result in lower prediction accuracy for further steps ahead 

prediction. To accurately predict variables for multi-step ahead, the effective solutions to 

reduce the effects of noise and disturbance in multi-step prediction need to be selected. 

Otherwise, the noise and error will be amplified via multi-step ahead iteration. 

Considering the robust performance of grey model in uncertainty and noise condition, 

GM(1,1) and GM(2,1) are used for the multi-step iterative prediction directly. 

Comparatively, since there is no disturbance term described in ARX model[77], the error 

in the initial iterative prediction step will be accumulated after multi-step iterative 

prediction if using ARX directly. To reduce the error in the initial iterative prediction, 

Kalman filter [80] is involved as an observer for one-step prediction. The states observed 

and predicted by Kalman filter will be used for multi-step ahead prediction. The further 

step prediction based on the predicted states from Kalman filter can be more accurate 

comparing with using ARX directly in a noisy process system. The diagram of two 

groups of prediction methods is shown in Figure 2.4. 
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Figure 2.4: Diagram of Grey Model and ARX Model for Prediction 

A. Kalman filter for ARX one-step prediction 

Kalman filter is a well-known estimator for solving linear-quadratic problem and has 

been extensively used in the engineering field [80]. The property of Kalman filter is a 

minimum mean-square estimator of the state of a determined linear state-space model in 

a Gaussian environment [62]. A set of recursive discrete-time equations enables this 

method to be computed very efficiently. The diagram of one-step states predictor [62] 

[81] derived from Kalman filter is shown in Figure 2.5. This one-step states predictor 

from Kalman filter is called Kalman one-step predictor in this thesis. 

To use Kalman one-step predictor, the state-space model must be determined firstly. 

After the parameters of ARX model are estimated, the ARX model can be transferred 

into the state-space model using multiple inputs companion-form [82] for Kalman 

predictor. Through this combination, states which represent the response of the system 

can be observed and predicted [80]. This Kalman predictor can be used for accurately 

predicting one-step states prediction for dynamic systems perturbed by white noise. 
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Leveraging the results from Kalman one-step predictor, the further steps prediction of 

states which represents the response of system can be achieved accurately. 

 

Figure 2.5: One-step Prediction Using Kalman Filter [51] 

B. Repeat iteration for multi-step ahead prediction 

To predict multi-step ahead response of the system, the one-step ahead prediction can be 

derived combined with the observed input and output variables of the system firstly. Then 

using predicted value from the last step, the multi-steps ahead prediction can be 

calculated iteratively. For instance, using ARX model and m numbers of past response 

variable, after p times of iteration, p-step ahead predicted response variable ( )py k p  

could be derived interactively using equation (2.4). 

 

1 +1

1 2

             ( ) ( 1) ... ( 1) ( )

                                            

( 1) ( ) ( 1) ... ( 1)

                                               

m m

p m

y k a y k a y k m a y k m

y k a y k a y k a y k m

         

         

b U

b U

1

       

( ) ( 1 ) ... ( )p p my k p a y k p a y k m p         b U

  (2.4) 



28 

In summary, to predict the response of an input-implicit process, grey model can be used 

to construct a model without exogenous variables, and repeat iteration method can be 

utilized for multi-step ahead prediction. To predict the response of an input-explicit 

process, ARX is suitable to describe a model with an exogenous variables, and Kalman 

predictor and repeat iteration method can be combined for multi-step ahead prediction. 

2.4 Real-time Operating Systems in Transmitters 

RTOS has been used as reliable software system for real-time processing multiple tasks 

in embedded systems [83][84]. RTOS is also broadly used in the transmitter of the 

sensors [2], such as wireless sensors [85], vibration sensors [86]. The mainstream RTOS 

includes VxWorks [87], Nucleus RTOS [88][89], ARM mbed [90], MicroC/OS [91], 

FreeRTOS [92] and so on. Leveraging RTOS, the multiple tasks can be scheduled by the 

kernel in real-time. This will enable users to focus on the development of function instead 

of multitasking scheduling. The RTOSs allow the development of functions in embedded 

system to be more efficient and reliable. 

To realize multitasks scheduling for achieving task period time and response deadlines, 

the preemptive schedulers are commonly employed in RTOS. The different preemptive 

scheduling policies can be realized in the RTOS by different parameters setting.  

The priority-based preemptive static scheduling policies are the main scheduling policies 

used in RTOS [87]. Using the preemptive static scheduling policies, the task which is 

assigned with highest static priority and positioned in the ready queue is to be prioritly 

executed. Therefore, the assignment of static priority for the tasks plays the key role in 

priority-based preemptive static scheduling policies. Some popular static priority 

assignment schemes under the umbrella of priority-based preemptive static scheduling 

policies including Rate Monotonic Scheduling (RMS), Shortest Job First (SJF) 

scheduling, Shortest Response Time (SRT) scheduling [87]. Considering RMS is 

optimum scheduling solutions among the others and is widely applied by RTOS 

designers [87], the RMS is selected as the scheduling policy to configure RTOS of smart 

transmitters. 
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2.5 Summary  

This chapter firstly reviews the progress of smart sensors. The current is information 

phase. The information which can be provided from smart sensors is highly demanded by 

industrial users. The information of process faults and essential variable approaching 

changes are valuable for industrial users. To extract faults and prediction information 

from measurement, the algorithms and models to implement process fault detection and 

variable prediction are reviewed. From the review, parameter estimation and CUSUM 

can be used together for fault detection, while grey model and ARX model combining 

with Kalman filter can be used for input-implicit system and input-explicit system 

prediction respectively. To serve these algorithms, the RTOSs of smart transmitters are 

important. The mainstream RTOSs using in smart transmitters are reviewed. 
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Chapter 3  

3 Introduction of a Platform for Smart Sensor 
Implementation  

An industrial networking temperature transmitter with PROFIBUS-PA Fieldbus network 

functions, named NCS-TT105, is used as implementation platform to be integrated with 

designed functions. The NCS-TT105 series transmitters are commercial products 

designed and manufactured by the Microcyber Corporation in Shenyang, China. In 2009, 

this series’ products passed the test of PROFIBUS Nutzerorganisation (PNO) 

certification [93]. Nowadays, NCS-TT105 have become high-quality temperature 

transmitters and boardly used in industrial system [94]. For the purpose of simplicity and 

alignment, the NCS-TT105 transmitter and its sensing elements are collectively called 

NCS-TT105 sensor. This chapter introduces the functions, hardware and its integrated 

RTOS software system. The product standard and specifications of this sensor are also 

summarized. 

3.1 Functionalities of NCS-TT105 

NCS-TT105 transmitter is an industrial standard designed temperature transmitter. It also 

combines PROFIBUS-PA Fieldbus technology as its network capabilities. As a 

commercial and industrial designed device, using its technical specifications and metallic 

housing assembly, NCS-TT105 can be deployed in the industrial environment. 

To measure temperature, NCS-TT105 has two sensing channels for connecting external 

sensing elements such as resistance temperature detectors (RTDs). The NCS-TT105 can 

measure two channels of temperature by two sensing channels independently and can 

provide accurate measurement via its internal program including linearization, 

calibration, and cold junction compensation functions. 

Through PROFIBUS-PA, NCS-TT105 can transmit temperature data of two channels to 

upper systems. Beside the measurement, the inner faults message such as communication 

failure, hardware failure, and cold reference junction failure can also sent to upper 
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systems for NCS-TT105 inner problem diagnosis. NCS-TT105 can also acquire power 

from Fieldbus and the current consumption of the transmitter is less than 14mA. 

From smart sensor angle, current NCS-TT105 sensors are designed mainly for providing 

accurate measurements and transmitting measurements via network. The current NCS-

TT105 exists obvious gaps with performance of expected smart sensor which can provide 

process information. With the capabilities of the hardware and RTOS in NCS-TT105, this 

transmitter can be further developed and improved.  

3.2 Hardware and Software 

3.2.1 Hardware 

As temperature transmitters, NCS-TT105 series transmitters need to be connected with 

external sensing elements. The entire assembly structure is shown in Figure 3.1. The 

electric diagram structure of an NCS-TT105 consists of five main components, as shown 

Figure 3.2. All the components are assembled in a metallic housing.  

 

Figure 3.1: Assembly Structure of NCS-TT105 with a Sensing Element [94] 
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Figure 3.2: Schematic Diagram of a NCS-TT105 Sensor [94] 

The five main components include [94]: 

Terminal board: The terminal board is designed for wiring the connection with 

PROFIBUS-PA cable. It has two channels for temperature sensing elements, such as 

RTDs. The whole transmitter is powered by PROFIBUS-PA Fieldbus cable. 

Acquisition board: The signal conditioners, amplifiers, a single 24bit high accuracy 

ADC, and one low-power consumption microcontroller typed MSP430, are designed as 

part of this acquisition board. The main function of this board is to convert the sensed 

analog signal to digital data. In addition, the signal compensation and calibration are 

processed in the microcontroller. The raw measurement data will be transferred via 
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Universal Asynchronous Receiver/Transmitter (UART) communication to the main 

processing board. Since ADC are controlled by MSP430, the acquired signals can be 

processed in acquisition board for higher sampling frequency comparing with 

transmitting data to processing board. Therefore the SPU of smart sensor which is shown 

in Figure 1.3 can be assigned in this board. 

Main processing board: This board is the core of the transmitters for data processing, 

Fieldbus communication, internal diagnosis, data storage, and data computing. The 

ARM7 microcontroller (MCU), with 40MHz processor speed, 32-bit RISC architecture 

and a 512KBytes flash, is the core of this board. The application functions and 

PROFIBUS-PA profile are processed in this MCU.  The other core chip is the PA 

Fieldbus interface chip, named FBC0409. This chip contains a Manchester data encoder, 

designed to comply with IEC 61158-2 and to act as the physical layer and link layer of 

PA communication. The programming software MULTI, provided by GreenHills 

Software Company is the development environment. 

The APU and BCU of smart sensor which is shown in Figure 1.3 are served by ARM7 

MCU in the main processing board. To describe this two unit briefly, the APU and BCU 

are grouped as the named networking and application unit (NAAU). The designed 

algorithms will be served by NAAU and processed in the ARM7 MCU. The program 

firmware needs to be downloaded into the ARM7 MCU through a JTAG port. 

Isolation board: This board is used for the isolation of physical and electric between the 

main processing board and the acquisition board, enabling the circuits in main processing 

board to be electromagnetically immune with acquisition board.  

Display component: The display component is an optional component used to display 

parameters or measurement. Using this component, users can check the parameters and 

inner fault codes from the transmitters. 
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3.2.2 Software 

The Mentor embedded Nucleus RTOS serves as the operating system platform in NCS-

TT105 transmitters. Nucleus RTOS is commercial RTOS for embedded system, and is 

designed for essential applications with deterministic performance demands [95]. 

Nucleus RTOS is typically written in ANSI C and implemented as a C library. In an 

embedded device, a Nucleus RTOS file requires about 20K bytes of ROM memory with 

all service use scenario, and can be tailored as small as 2K bytes. This operating system 

can therefore easily accommodate both low-end and high-end microprocessors. This 

system has been deployed in over 3 billion devices, and has been proven to be a quality 

commercial RTOS in embedded markets [96]. 

There are some highlights related to the use of this operating system as a platform for 

smart sensor implementation: 

Scalability: At the system level, the components of a Nucleus RTOS can be added or 

removed by sensor developers, providing flexibility for integration schemes for various 

kinds of sensors. The Nucleus RTOS supports a task integration tool known as a Nucleus 

Platform Solution [96]. Using this tool, multiple tasks can be integrated with both 

flexibility and scalability. 

Reliability: The Nucleus RTOS is a commercial RTOS widely used in industrial 

automation systems. Its technical communities and service support teams are mature, 

with users receiving strong support. Moreover, the Nucleus process model component 

can rapidly isolate software faults using its self-diagnostic function. In short, the Nucleus 

RTOS is a market-proven product.  

Portability: The Nucleus RTOS system can be integrated into a wide range of 

microprocessors. The tasks and programs inside the RTOS can be migrated easily among 

different hardware platform. The migration solution can save much time on the bottom of 

embedded system development.   
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From the investigation, the MCU workload for executing current programs in NCS-

TT105 is less than 15%. The RAM and ROM, and RTOS have enough resources for 

further program integration and execution. Moreover, the algorithms can be executed in 

real-time and the implementation can be efficient in Nucleus RTOS. Therefore, utilizing 

the computational and memory resources, and leveraging those commercial and mature 

hardware and software system, the designed algorithms and implemented functions can 

be integrated into NCS-TT105.   

3.3 Standards of Compliance and Specifications of the 
Platform 

The measurement from two channels sensing elements, and PROFIBUS-PA Fieldbus 

communication are the two main functions from NCS-TT105. The standards and 

specifications of these two parts are introduced in this section. 

3.3.1 Standards followed by NCS-TT105 

A. Sensing standards 

Resistance temperature detectors (RTDs) and thermocouples (TCs) are common used 

sensing elements in industrial systems for sensing temperature. IEC 60751, and IEC 

60584-1 are the two standards followed by NCS-TT105 developers. 

IEC 60751 [97]: This standard specifies the relationship between temperature and  

industrial platinum resistance. This relationship can be found from Appendix A. Using 

the principle in this standard, the temperature can be calculated by measuring RTD 

resistance. As many brands of smart transmitters, NCS-TT105 uses equation computing 

method to measure and transfer temperature value. Generally, if the temperature of the 

measured object is less than 850°C, the RTDs are preferred to be used as sensing 

elements. 

IEC 60584-1 [98]: This standard specifies the relationship between temperature and  

multiple types of TCs using polynomial equations and tables. This relationship can be 

found from Appendix A. Generally, the temperature range of TCs is large. Most of TC 
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types are higher than 1000°C. Therefore, if the temperature of the measured objects is 

higher than 850 °C, TCs are suitable to be utilized as sensing elements. 

As shown above, to convert signal raw data to temperature measurement, the 

computation of mathematical equations are required following these standards. In NCS-

TT105, the ARM 7 MCU in main processing board execute these computations. The 

measurement functions such as calibration, linearization, and scaling measured data are 

realized in Transducer Block of PA device profile, which are introduced in the following 

subsection. 

B. PROFIBUS-PA 

PROFIBUS-PA is an industrial leading Fieldbus technologies used for connecting field 

level sensors and actuators to automation control systems [99]. For instance, the field 

devices, such as temperature, pressure, and flow sensors, can all be integrated seamlessly 

into mainstream control systems such as the Siemens PCS 7, the Emerson Delta V, or the 

Honeywell C-300.  The typical architecture of PROFIBUS-PA Fieldbus is shown in 

Figure 3.3. With PROFIBUS-PA, NCS-TT105 can be widely used in mainstream control 

systems. 

 

Figure 3.3: A Typical PROFIBUS-PA Architecture [99] 

According to IEC 61158-2, Manchester Encoded and Bus Powered (MBP) technology is 

used for PROFIBUS-PA [100]. MBP provides a two-wire data and power combination 

technology, in which digital communication is represented as alternating current, while 
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the power is direct current. The minimum base current in the bus’ physical layer is 

10mA, and the current will be around 1 to 19 mA for data transmission over time. This 

enable NCS-TT105 to be powered and communicate via PROFIBUS-PA cable directly. 

To develop transmitters that fulfill PROFIBUS-PA standards, PA device profile must be 

implemented into transmitters [101]. A PA device profile complies with Fieldbus 

protocols and profile specifications, and defines all functions and parameters for different 

field devices. Sensor developers should ensure they are compliant with the PA devices 

profile standard to define Physical Block (PB), Transducer Block (TB), and Function 

Block (FB) in transmitters. These blocks, and the structure of a PA device profile, can be 

seen in Figure 3.4. The detail roles of these three types of blocks are summarized in 

Appendix B [101]. 
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Figure 3.4: Block Structure of a PA devices Profile [100]  

In NCS-TT105, FBs include several kinds of blocks such as Analog Input FB, and 

Analog Output FB. Using FBs, PROFIBUS-PA devices can exchange data and diagnosis 

status with controller in PROFIBUS-PA Fieldbus [101]. To identify the devices in 
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PROFIBUS-PA Fieldbus, the configuration of controller needs to import the 

corresponding GSD files [101]. The original PA devices profile in NCS-TT105 only has 

Analog Input FBs. Therefore, NCS-TT105 transmitters only have one-way direction 

communication function for transmitting measurements to upper lever systems. To 

achieve data exchanging function, the bidirectional communication needs to be 

implemented via adding Analog Output FBs. The GSD file is needed to be modified. The 

implementation of bidirectional communication is introduced in section 5.3. 

3.3.2 Specifications of NCS-TT105 

As a commercial industrial transmitter, the specifications of NCS-TT105 are beyond the 

average of the common temperature transmitters. The basic technical specifications of 

NCS-TT105 are shown in Table 3.1. The NCS-TT105 can connect many types of sensing 

elements for measuring temperature. Furthermore, the specifications of measuring 

temperature with different type of RTDs and TCs are summarized in Table 3.2 [94]. The 

typical configuration for practical application uses PT100 to connect with NCS-TT105. 

When the condition temperature of NCS-TT105 is 25 ℃, the accuracy of PT100 is          

±0.3℃ not subject to the working range. From the review of standards and specifications, 

it can be concluded that, NCS-TT105 is a standard followed and high accuracy industrial 

transmitter. It is a qualified transmitter platform for implementing algorithms to realize 

designed smart transmitter.  

Table 3.1: NCS-TT105 Basic Technical Specifications [94] 

  

Sensing Channels 2

Input Signal:

   - Resistance PT100, PT1000, CU50, CU100, 0~500Ω, 0~4000Ω

   - Thermocouple B, E, J, N, K, R, S, T

   - Voltage Signal: -100mV ~ 100mV

RTD connection 2, 3 wire

Update Time 200ms

Power Supply of Fieldbus PA: 9 ~ 32 VDC / Current: ≤ 14mA 

Operation Temperature - 30 ~ 70 ℃ (With display)

Protection Grade IP 65

EMC IEC 61000

Basic Technical Specifications
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Table 3.2: RTD and TC Specifications of NCS-TT105 [94] 

 

3.4 Summary 

This chapter introduces hardware compositions, embedded Nucleus RTOS, specifications 

as well as sensing and PROFIBUS-PA Fieldbus standard of NCS-TT105 transmitter. 

From the introduction of MCU, RTOS, and specifications, it can be seen that NCS-

TT105 is qualified industrial transmitter both in internal hardware architecture, software 

execution environment. This examines that NCS-TT105 has additional computational 

resources available for accommodating additional functionalities. It can be a competent 

platform for further integrated smart functions implementation and practical applications.  

Sensor Type Working Range (℃) Accuracy (℃) (25℃)

PT 100 -200 ~ 850 ± 0.3

PT 1000 -200 ~ 850 ± 0.3

Sensor Type Working Range (℃) Accuracy (℃) (25℃)

B   500 ~ 1810 ± 1.0

E -200 ~ 1000 ± 0.4

J -190 ~ 1200 ± 0.4

K -200 ~ 1372 ± 0.4

N -190 ~ 1300 ± 0.8

R       0 ~ 1768 ± 1.0

S       0 ~ 1768 ± 1.0

T -200 ~ 400 ± 0.4

RTD Specifications

TC Specifications
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Chapter 4  

4 Investigation of the Algorithms for Smart Functions 

The feasible algorithms to realize process fault detection and variable prediction 

functions in the NCS-TT105 transmitter are investigated in this chapter. 

4.1 Goals and Specifications   

4.1.1 Process Fault Detection Smart Function 

The fault detection information is valuable for the industrial users if the faults are 

detected in the incipient period which means that faults are detected before deterioration 

or failure occurs and within the conventional reaction time of the controller. In practical 

applications, the process system works around an operating point, which means the above 

equipment and entire system work under normal status. Once a fault occurs in the 

equipment or facilitates, the process system may work under abnormal status. More 

seriously, the fault in incipient period can potentially result in deterioration and severe 

accident if the fault cannot be detected and resolved in time. Especially, most of process 

systems have large inertia. The reaction time from fault occurrence till the effective 

actions taken by the controller may be a long time. Therefore, the incipient fault detection 

can be used to prevent serious failures in process or esstential equipment and to avoid 

deterioration. 

To exam if the process fault detection function can detect the faults in the process in the 

incipient period, the fault indication response time which is the interval time between 

faults occurrence and fault indication is important criteria. This fault indication response 

time must be less than the reaction time of the loop controller against the faults, allowing 

the provided fault information can be used to take early actions for the controller. 

Considering the typical reaction time of the of the loop controller in the test facility 

system which is used for validating the designed smart transmitter is 10s, the fault 

information needs to be provided by smart transmitters within 10s once faults occurred in 

the monitored test facility system. Therefore, 10s is selected as the specification of the 

fault indication response time of the integrated process fault detection function.  
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The specifications of the integrated process fault detection function is shown in Table 

4.1. The fault indication can be binary value which is from 0 to 1 as alarm signals. The 

response time of the fault indication need to be less than 10s after the faults occurs. 

Furthermore, to guarantee the integrated fault detection function workable in smart 

transmitters, the workload of MCU to execute process fault detection function should be 

less than 25%, which means the execution time of the algorithms should be less than 

100ms according with 400ms period time. This also means that the data sample time and 

execution period of the algorithms are 400ms. All those specifications are the targets for 

fault detection algorithms implementation and are validated in the validation chapter.  

Table 4.1: Specifications of Process Fault Detection Smart Function 

 

4.1.2 Variable Prediction Smart Function 

The predicted information allows plant operators to foresee the future changes of the 

process variables and take actions as early as possible. The target of integrated variable 

prediction function in smart transmitters is to predict the process essential variables after 

dead-time or further steps to foresee the process for preventive actions. The predicted 

results can be used for prediction alarms, preventive maintenance, or predictive control.  

The variable prediction function needs to predict the process variables under two 

scenarios; one is that the system works in normal status, and the other one is that the 

system is in abnormal status. In practical application, the normal status of the plant 

Faults in Process
Heater tripping, Chiller shut down, 

Pipeline leak, Pipeline plugged, etc

Faults in Sensing Elements
Sensing elements disconnection 

(RTD disconnected, Sensing signals loss)

Algorithms Output Alarm signals 0 ->1

Alerts Response Time < 10s Average

Algorithms Workload < 25%

Specifications of Smart Function: Fault Detection
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process systems is the system working around operating point. The system is in a stable 

status, and the variables are small fluctuated. The abnormal status of the process systems 

is the system working far away with the required working point caused by equipment 

faults, or essential equipment shut down. The prediction in system normal status can be 

used for optimizing control performance or preventing faults occurrence. The prediction 

should be more accurate. The prediction in system abnormal status can be used for 

indicating the trend of the essential variables to guide preventive actions or execute 

emergency protection when the variables of the process fluctuate dramatically. Therefore, 

the prediction accuracy in system abnormal status is different in system normal status. 

The steps of prediction is also essential criteria. The prediction function needs to foresee 

the process changes further than dead-time. For example, if the dead-time of a system is 

8s, the predicted results further 8s can support operators to foresee the process changes. 

The specific parameters of this steps value should be referred to application requirements 

and process behavior. 

According to the discussion from previous two paragraphs, the specifications of the 

integrated variable prediction function is shown in Table 4.2. Since the dead-time of the 

monitored variable in test facility system is 8s, the prediction steps is set as 10s which is 

further than the dead-time. Furthermore, to exam the error of the prediction according to 

the dynamic changed actual value, the prediction error rate which is an average value 

calculated using the MAPE (mean absolute percentage error) method [102] is used. The 

calculation of the prediction error rate is shown as in equation (4.1) 

( ) ( )
 [ ( )] 100%

( )

Prediction i Actual i p
Prediction error rate Avg Abs

Actual i p

 
 


            (4.1) 

where p is the prediction steps, ( )Prediction i is the p-step ahead prediction at ith step 

( )Actual i p is the actual process value after p steps from ith step. It should be noted that 

the ( )Actual i p must not equal to 0 when using equation (4.1), if the unit of the  

( )Actual i p is Celsius rather than Kelvins. The prediction error rate criteria for system 

around operating point is set as 1.2%, which means that the average error between the 

https://en.wikipedia.org/wiki/Celsius


43 

prediction and actual valuable after 10s needs within 0.3 ℃ if the actual process variable 

is 25℃. While if the process system has faults or series problems, the variables change 

dramatically under this condition. Therefore, the prediction error rate criteria for system 

abnormal are 6% which means the average error between the prediction and actual 

valuable after 10s needs within 1.5 ℃ if the actual process variable is 25℃.  

Table 4.2: Specifications of Variable Prediction Smart function 

 

Furthermore, to guarantee the integrated variable prediction function workable in the 

transmitter, the workload of MCU to execute variable prediction function needs to be less 

than 15%, which means the execution time of the algorithms should be less than 150ms 

according with 1000ms period time. All those specifications will be the targets for 

prediction algorithms implementation and are validated in the validation chapter.  

4.2 Algorithms for Process Fault Detection 

As discussed in section 2.2, the residual generation and residual evaluation are two main 

steps. The ARX model, and its online parameter estimation by EWRLS for residual 

generation, as well as CUSUM algorithms for residual evaluation are studied in the 

following subsections. Furthermore, to apply the fault detection methods to the NCS-

TT105 transmitter, the algorithms which are adaptive and recursive are investigated. 

4.2.1 ARX and EWRLS for Residual Generation 

The ARX model involving inputs of the system is used as model to describe process 

system. Considering the parameters of the process are not constant, the Exponential 

Prediction Steps 10s (> dead-time of the process)

< 1.2% (0.3℃/25℃) 

process works around operating point

< 6% (1.5℃/25℃) 

process works under abnormal status

Algorithms Workload < 15%

Specifications of Smart Function: Variable Prediction 

Prediction Accuracy

(Prediction Error Rate)
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Weighting Recursive Least Squares (EWRLS) algorithm, with an exponential forgetting 

memory, are used for parameter estimation and residual generation in smart transmitters. 

The diagram of residual generation using ARX and EWRLS is shown in Figure 4.1 [51]. 

 

Figure 4.1: Parameter Estimation using ARX Model and EWRLS [51]  

A. ARX Model 

In the engineering field, the process can be seen as a linearized and dynamic behavior 

around an operating point [63][103]. Therefore, linear model ARX model are employed 

to describe the relationship between input ( )u k and response ( )uy k of the process system. 

The discrete time model of ARX can be represented as (4.2) 

 
1 1( ) ( 1) ... ( ) ( 1) ... ( )u u m u my k a y k a y k m bu k d b u k d m              (4.2) 

where, 

 
( ) ( )

( ) ( )

op

u op

u k U k U

y k Y k Y

 

 
  (4.3) 

The dynamic inputs and outputs at the operating point of the process are ( )U k and ( )Y k .  

k is the discrete time / 0,1,2,...sk t T  . ST is the sampling period of the algorithm. 

/ 0,1,2,...d sd T T   represents the discrete dead-time of the process response [51]. opU  
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and
opY represent the inputs and outputs at the operating point. The 

opU  and
opY can either 

be recorded from the specific process technology or derived from the mean value. The 

equation (4.4) can be used to compute mean value as slow time-varying operating point 

of system [63].  

 ˆ ˆ( ) ( 1) (1 ) ( 1)op avg op avgY k Y k Y k        (4.4) 

where 
avg is exponential forgetting factor, Y  is process variable, and ˆ

opY is the mean 

value used as operating point of process system. 

Equation (4.4) corresponds to a first order discrete-time low pass filter 
1

1
(s)

1
f

st

G
T s




 for 

approaching operating point value. 
1stT is the time constant to decay to 37% from the 

initial value of a first order system [51]. avg is the forgetting factor. e.g. 

1/
0.98s stT T

avg e 
  .  

The corresponding transfer function (4.2) of the ARX model in the z-domain is   

 
11

1

1 1

1

( ) ...( )

( ) ( ) 1 ...

m
d du m

P m

m

y z b z b zB z
G z z

u z A z a z a z

 
 

  

 
  

  
  (4.5) 

where the parameter 
1 1,m ma a b b  will be estimated by EWRLS. 

From equation (4.5), using the estimated 1ˆ( )A z  and 1ˆ( )B z , the residual shown in Figure 

4.1 can be computed as equation (4.6) 

 1 1ˆ ˆ( ) ( ) ( ) ( ) ( )dA z y z B z z u z e z      (4.6) 

To represent unknown parameters ia  and ib  in equation (4.5), the estimated parameter 

vector ̂  can be written as  

 1 1
ˆ ˆˆ ˆ ˆ T

m ma a b b        (4.7) 
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The data vector ( )T k which represent for inputs ( )u k and response ( )uy k can be written 

as 

 ( ) [ ( 1)  ...  ( ) | ( 1)  ...  ( )]T

u uk y k y k m u k d u k d m            (4.8) 

B. Exponential Weighting Recursive Least Squares (EWRLS) 

In order to estimate the parameters of time-varying systems, EWRLS are used. The core 

idea of EWRLS can be described in equation (4.9) as 

 ˆ ˆ ˆ( 1) ( ) ( ) [ ( 1) ( 1) ( )]T

Old correctionNew new one step ahead
estimate factorestimate measurement prediction

k k k y k k k    

 

        (4.9) 

Using the data vector ( )T k  in (4.8), the parameter vector ̂ in (4.7) can be updated 

recursively by EWRLS [51]. ( )u k is the inputs of the EWRLS, ( )uy k is the reference 

value of EWRLS.  

The EWRLS algorithm can be presentated as [51]  

 
1

( ) ( ) ( 1)
( 1) ( ) ( 1)

w wT

w w

k P k k
k P k k


  

 
  

   (4.10) 

 ˆ( 1) ( 1) ( 1) ( )Te k y k k k        (4.11) 

 ˆ ˆ( 1) ( ) ( ) ( 1)wk k k e k       (4.12) 

 
1

( 1) ( ( ) ( ) ( 1) ( ))T

w w w w

w

P k P k k k P k


      (4.13) 

where ( )wP k  is referred to as the inverse correlation matrix, w  is the exponential 

forgetting factor. 

To run EWRLS, the ( )wP k  and ˆ(0)  of the first recursive loop should be set as the initial 

value. In [63], the initial value of (0)wP  and ˆ(0)  can be preconfigured as 
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(0) 100...1  0000

ˆ(0) 0

wP I  ,  



 



 
  (4.14) 

where   can be chosen as the smaller value if the signals in   vector become larger.  

For single input and single output parameter estimation, if the dimension of the parameter 

a or b  in (4.7) is m, then the dimension of estimated parameter vector ̂ is 2 1m ; the 

dimension of data vector ( )T k is 1 2m ; the correction factor ( )w k  is 2 1m ; and the 

dimension of the covariance matrix ( )P k  is 2 2m m . 

Through the above algorithms, the process parameters in ̂  are estimated recursively 

using EWRLS. If 
w is less than 1, it enables EWRLS to gradually reduce the impacts 

from the old data in vector ( )T k , and the latest data will be weighted strongly. This 

allows EWRLS algorithm to track the time variant parameters better than RLS. The 

forgetting factor 
w  should be set between 0.9 0.999w  . If 

w is close to 0.9, the 

EWRLS can better track time-varying systems, but the process noise should be small. If 

w is close to 0.999, the process noise can be larger, but the tracking performance will be 

decreased. The 
w  value should be set so as to trade off the tracking performance with 

disturbance suppression, based on the required practical application. Once the initial 

value and the forgetting factor are set, the algorithms can run recursively and adaptively. 

It should be mentioned that if the EWRLS needs to obtain unbiased parameter 

estimations, the system disturbances have to be generated from white noise, or the ( )e k

which is assued to be equal to disturbance is independent from the data vector ( )T k , if 

the parameter estimation is used in closed loop [63][77] . Also, the input vector   should 

be exciting sufficiently. Otherwise, ( 1)wP k  will increase continuously. This will cause 

data value in the correcting vector ( )w k to be increased continuously, and estimator 

becomes more sensitive, even unstable [51]. Therefore, disturbances in the estimated 

process should be investigated before the algorithm is applied, and the input excitation 
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should be monitored carefully. If the exciting of the inputs is not enough, 
w has to be 

time-variant and needs to be set as 1 under this scenario. 

C. Residual generation 

After the parameter vector ˆ( )k  is estimated, combining with data vector ( )T k  and 

according to the equation (4.6), the residual can be computed as the equation (4.15)  

 ˆ( ) ( ) ( )T

uy k k e k     (4.15) 

 The (4.15) can be used as a residual and can be updated for every sampling time. 

Further, ( )e k can be used for further residual evaluation for fault detection. 

4.2.2 CUSUM for Residual Evaluation  

As discussed in section 2.2.3, CUSUM test is one of the most commonly used statistical 

tools for detecting signal changes to make fault detection decisions. In this subsection, a 

specific CUSUM algorithms named two-sided CUSUM test [66] algorithms are studied. 

A. Two-sided CUSUM test  

Residual is the data source of residual evaluation. Two-sided CUSUM [66] test are 

suitable to be used as a statistical tool for residual evaluation when residual 
kr  is a 

fluctuated signal around zero. The residuals can be calculated through the subtraction of 

real measurements 
ky  and estimation ˆ

ky . From the residual generation procedure, the 

residual kr can be represented as  

 ˆ
k k k kr e y y     (4.16) 

where, the residual ke  can be calculated using equation (4.15)  
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A two-sided CUSUM test algorithm is presented as follows: 

 

(1)

(2)

k k

k k

s r

s r



 
  (4.17) 

 

(1) (1) (1)

1

(2) (2) (2)

1

max( ,0)

max( ,0)

k k k

k k k

g g s

g g s









  

  
  (4.18) 

 

(1) (2)

(1) (2)

     

     1 

     0,  0

k k

k k

if g h or g h

Alarm Indication

reset g g

 



 

  (4.19) 

where   is a small drift term to be set as a small threshold for cumulation in every 

recursive step, and h is the threshold for triggering the fault detection alarm.  and h  

could be set to a small value when the noise from residual 
kr  is low; then the faster 

detection can be sought. While if the noise of the residual is high,  and h  should be set 

to a larger value to avoid false detection. After an alarm indication is triggered from 0 to 

1, (1)

kg  positive cumulation and (2)

kg negative cumulation are reseted to 0, and the new 

recursive cumulation is continuous. The value of alarm indication can be used for faults 

detection alerts. 

The parameters drift   and threshold h  are two essential parameters for two-sided 

CUSUM test algorithm. The setting of threshold h and drift   will decide the sensitivity, 

delay, or falsity of alarms. In order to apply smart sensor for different practical 

application scenarios, h and   should be set accordingly. Therefore, a dynamic methods 

for solving threshold h and drift   are appropriate. 

B. Dynamic drift and alarm threshold  

To enable drift  and threshold h  to be adaptive with different applications, the dynamic 

reference value as well as two ratio parameters are proposed. The square root of residual 

variance and the average of the absolute value of the residual will be computed as 

dynamic reference value. The dynamic  and h  are shown as follows:  
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 ( ( ))k kK Sqrt Var e     (4.20) 

 ( ( ))k h kh K Avg Abs e    (4.21) 

where K  and 
hK  are the ratio parameters to be set. From practical test, the arrangement 

of K  and 
hK could be 0 1K   and 1hK  . The ( )Var is the function for calculating 

variance. The ( )Avg  is the function for calculating mean value. With the ( )kVar e and 

( )kAvg e , the reference value can computed dynamically, and the value of drift 
k  and 

threshold
kh  can be determined setting K  and 

hK . 

C. Estimation method for mean and variance 

The mean ( )Avg  and variance ( )Var can be calculated using the methods: 

The original method 

The mean estimation for the length N  of the discrete time signal ( )x i  is defined as [51]  

  
1

1
( )

N

x

i

x i
N




    (4.22) 

Moreover, the unbiased variance for sampled signals can be calculated as [51]  

 
2 2

1

1
( ( ) )

1

N

x x

i

x i
N

 


 

   (4.23) 

To calculate equations (4.22) and (4.23), the smart sensors need to storage and compute 

N length of data in every sampling time. To compute mean and variance more efficiently, 

the recursive method can be used. 

Recursive exponential forgetting method 

As an efficient online computing solution, recursive methods are suitable for either 

computers or embedded systems applications. Therefore, the recursive methods to 

calculate mean and variance are used. 
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For variance ( )Var computation, as shown in [51], the kth step of mean can be derived 

through the k-1th step, mean value ˆ ( )x k can be computed as the equation (4.24) 

 
1 1 1

ˆ ˆ ˆ ˆ( ) ( 1) ( ( ) ( 1)) 1 ( 1) ( )x x x xk k x k k k x k
k k k

   
 

         
 

  (4.24) 

Revisiting the low pass filter equation (4.4), if the number of samples 
1

1 e

k





 or 

1
1e

k
   , 1/

= s stT T

e e  . Then the equation (4.24) can be rewritten as 

 ˆ ˆ( ) ( 1) (1 ) ( )x e x ek k x k         (4.25) 

The parameter 
e  , the so-called exponential forgetting factor, produces a lower 

weighting for recent inputs. If the value of (1 )e is higher, it means that the recent 

inputs are higher weighted, and the past inputs will be forgotten soon. 

For variance ( )Var computation, as shown in [104], the definition of sample variance is 

described as the equation (4.26) 

 

2

2 1
ˆ[ ( ) ( )]

( )
1

k

xi
x

x i k
s k

k










  (4.26) 

Combining the equation (4.24), the recursive sample variance is represented as [104] 

 

2 2 2

2 2

2
ˆ ˆ( ) ( 1) [ ( ) ( 1)]

1

2 1
ˆ         = ( 1) [ ( ) ( 1)]

1

x x x x

x x

k
s k s k k k k

k

k
s k x k k

k k

 




    




   



  (4.27) 

Subtracting 
1

1 e

k





into the (4.27), the recursive sample variance will result in [51]  

 2 2 22 1
ˆ( ) ( 1) (1 )[ ( ) ( 1)]e

x x e x

e

s k s k x k k


 



        (4.28) 
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Equations (4.25) and (4.28) can be used as recursive methods to calculate the estimated 

mean and sample variance. The exponential for forgetting
1

1e
k

    , where k 

corresponds to the number of samples. 

4.3 Algorithms for Variable Prediction  

To enable the NCS-TT105 transmitter to predict the variable both for system with known 

inputs and unknown inputs, the algorithms of prediction functions for those two kinds of 

systems are investigated. To implement prediction in system with known inputs, the 

prediction algorithms named Kalman predictor prediction including ARX model, Kalman 

predictor algorithms, and multi-step iteration are combined. To implement prediction in 

system with unknown inputs, the prediction algorithms named grey model prediction 

including GM(1,1) and GM(2,1) as well as weighted decisions tool are grouped to predict 

the response of the system without considering the inputs of the system. 

4.3.1 Kalman Predictor Prediction 

Leveraging Kalman predictor, and using the determined state-space model and system 

inputs, the states of state-space model can be one-step predicted accurately through the 

Kalman predictor. The predicted states can be derived to the predicted response of the 

system and can be used for further steps iterative prediction. 

A linear process system with discrete time input and output signals and stochastic noise 

can be represented using state space equations, as in [62] and [80]: 

 
( 1) ( ) ( ) ( )

( ) ( ) ( )

x k Ax k Bu k w k

z k Cx k v k

   

 
  (4.29) 

where the process state-space matrices A,B,C are assumed to be known.  

( )u k : are the control inputs of the process, which come from controller. 

( )x k : are the internal state variables of state-space equation.  

( )z k : are sensor measurements. 

( )w k : represents process noise. 

( )v k : represents measurement noise. 
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( )w k and ( )v k are stochastic variables, and are assumed to follow an independent, zero-

mean normal gaussian distribution. The mean values of two kinds of noise signal can be 

represented as 

    ( ) 0,    ( ) 0E w k E v k    (4.30) 

The covariance matrices 

    ( ) ( ) ,    ( ) ( ) ,T TE w k w k Q E v k v k R    (4.31) 

where Q is the process noise covariance and R is the measurement noise covariance.  

The optimal estimated states are represented as 

    ˆ( | ) ( ) | ,    (0), (1), ( )j jx k j E x k Z Z z z z j     (4.32) 

If k j , equation (4.32) will solve a prediction problem, which means that the estimated 

states in present time k, are predicted through the measurements in the j time instance.  

To solve one-step ahead prediction ˆ( 1| )x k k , the ( )z k and ˆ( | 1)x k k  are recursively 

computed by Kalman predictor [51][62][80][81]. The algorithms are introduced as 

follows: 

 1( ) ( ) [ ( ) ] ,   ( ) ( | 1)T TK k P k C CP k C R where P k P k k         (4.33) 

 
 

ˆ ˆ ˆ( 1| ) ( | 1) ( ) ( )[ ( ) ( | 1)]

ˆ ˆ                ( | 1) ( )[ ( ) ( | 1)] ( )

x k k Ax k k Bu k AK k z k Cx k k

A x k k K k z k Cx k k Bu k

      

     
  (4.34) 

 
 

1

( 1) ( 1| ) [ ( ) ] ( )

  ( 1) ( ) ( ) [ ( ) ] ( )

T

T T T T

P k P k k A I K k C P k A Q

or P k AP k A AP k C CP k C R CP k A Q

 

     

     

    
  (4.35) 

The dimension of the matrices and vectors in equations (4.33) (4.34) and (4.35) are 

shown in Table 4.3. 
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Table 4.3: Matrix Dimension List of Kalman Predictor 

 

The calculation includes two main steps: 

Prediction： 

 
ˆ ˆ( 1| ) ( | ) ( )

( 1) ( ) T

x k k Ax k k Bu k

P k AP k A Q

  

  
  (4.36) 

Correction： 

 
ˆ ˆ ˆ( | ) ( | 1) ( )[ ( ) ( | 1)]

( ) [I ( ) ] ( )

x k k x k k K k z k Cx k k

P k K k C P k

    

 
  (4.37) 

The initial step for running (4.33) to (4.35) recursively should be set with 

 ˆ ˆ ˆ(0) [ (0)],     (0) [( (0) (0))( (0) (0)) ]Tx E x P E x x x x      (4.38) 

The covariance matrices of the estimation error are [51]: 

 
 

 

( 1) ( 1| ) ( 1| ) ( 1| )

ˆ ˆ   ( 1| ) ( 1| ) ( 1| )

TP k P k k E x k k x k k

prediction error x k k x k k E x k k

      

    
  (4.39) 

Equation (4.35) can be recognized as Riccati Difference Equation (RDE) [81], which is 

for solving infinite-horizon optimal state control problems. The ( 1)P k  which means 

Variable Definition Dimension

x(k) States m × 1

y(k) Measurement q × 1

u(k) Control inputs p × 1

A Process matrix m × m

B Control matrix m × p

C Measurement matrix q × m

Q(k) Process noise covariance matrix m × m

R(k) Measurement noise covariance matrix q × q

K(k) Kalman Filter gain m × q

P(k) Correlation Matrix of the error m × m
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the variance of estimation error can result in an asymptotic result with a steady state 

matrix. Since the RDE is independent of ( )u k and ( )z k , it could be offline computed 

when A, B, C, Q, and R are fixed. 

Once the one-step-ahead states prediction ˆ( +1| )x k k  is solved, the multi-steps prediction 

can be computed cyclically using multi-step iteration prediction from equation (2.4) or 

the equation (4.40) . 

 ˆ ˆ( 1) ( ) ( )x k Ax k Bu k     (4.40) 

Therefore, the final p-steps prediction of process response that considers inputs effects 

are derived by equation (4.41) 

 ˆˆ( ) ( )z k p Cx k p     (4.41) 

where p  is the p-steps for furhter ahead prediction. 

4.3.2 Grey Model Prediction 

In this subsection, two grey models, named first order GM(1,1) and second order 

GM(2,1) will be presented. These two models are widely applied in various areas. The 

core concepts of these two models both use a grey differential equation as their model 

structure, and LS as parameters estimation method. A small sets of sampled data are used 

as data source for determining a grey model and calculating for accumulating generator 

sequences. Once its parameters are determined, the grey model can be used to predict the 

process variables. A more detailed procedure of modeling and iterative variables 

prediction are shown in the follows. 

A sequence of the raw data (0) ( )x k with length n which is acquired from (0) ( 1)x k n   to 

(0) ( )x k is denoted as (0) (0) (0) (0)( (1), (2), ( ))X x x x n . (0)( )x k  could be used to represent 

the response of the system in kth step of algorithm sampling and the response of the 

system is need to be predicted. The accumulation of
(0)X  is generated as a new sequence 



56 

and denoted as (1) (1) (1) (1)( (1), (2), ( ))X x x x n . The (1)X  is called the first-order 

accumulating generator (1-AGO) of sequence (0)X  [105], where  

 (1) (0)

1

( ) ( )    1,2, ,
k n i

k n

x i x i i n
 

 

  ，   (4.42) 

Correspondingly, the (1) (0)X  is called the first-order inverse accumulating generator   

(1-IAGO) of sequence (0)X [105], where 

 
 (1) (0) (1) (0) (1) (0)

(1) (0) (0) (0)

(2), , ( )

( ) ( ) ( 1)    2, ,

X x x n

x i x i x i i n

  





   ，
  (4.43) 

Let (1) (1) (1) (1)(z (2),z (3), z ( ))Z n  be the adjacent neighbor means of the sequence 
(1)X  , 

where 

 (1) (1) (1)1
( ) ( ( ) ( 1))    2,3, ,

2
z i x i x i i n   ，   (4.44) 

It can be seen that the length of 
(1)Z  is 1n . 

A. GM(1,1) Model 

A so-called basic form of a GM(1,1) model, which refers to a “first order grey model in 

one variable” [74], can be written as  

 (0) (1)( ) ( )x i az i b    (4.45) 

The GM(1,1) model is used to describe a sequence of data in which 
(0)X is monotonic 

change, and the corresponding
(1)X  satisfies the law of exponentiality [105]. 

To solve the parameters of equation (4.45), it can be rewritten as  

 (0) (1)( ) ( ( )) 1x i a z i b      (4.46) 
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Using the LS method to estimate the parameters vector 
11

ˆˆ ˆ( , )T

GM a b    with the 1n  

dimension, and  

 
1

11

ˆ
ˆ

ˆ
T T

GM

a
B B B Y

b


 
     

 
  (4.47) 

where 

 

(0) (1)

(0) (1)

(0) (1)

(2) (2)    1

(3) (3)    1
,B

                  

( ) ( )    1

x z

x z
Y

x n z n

   
   

    
   
   
      

  (4.48) 

Then if (0)X  is a non-negative sequence, the whitenization equation of the GM(1,1) 

model (4.45) is derived as [105] 

 
(1)

(1) ˆˆ
dx

ax b
di

    (4.49) 

The solution of the differential equation (4.49) is given by 

 

ˆ(1) (1) ( 1)

ˆ(1) (1) ( )

ˆ ˆ
ˆ ( ) ( ( ) ) , 1,2,    or

ˆ ˆ

ˆ ˆ
ˆ ( ) ( ( ) ) , 1,2,

ˆ ˆ

a i

a i n

b b
x i x i e i n

a a

b b
x i x n e i n

a a

 

 

   

   

  (4.50) 

The estimated (0)ˆ ( )x i can be restored by the calculation from (1)ˆ ( )x i via equation (4.51) 

 

(0) (1) (1)

(0) (1)

ˆ ˆ ˆ( ) ( ) ( 1),     2,

ˆ ˆ(1) (1)

x i x i x i i n

x x

   


  (4.51) 

From equation (4.50), it can be seen that the calculation of (1)ˆ ( )x i should involve high 

order exponent computation by differential equations. It leads complex computation in 

smart transmitters.  
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To derive (1)ˆ ( )x i and (0)ˆ ( )x i via iterative equations (4.45), an alternative method to solve 

(0) ( )x i  are derived and are shown in (4.52) and (4.53) as 

 

(0) (1)

(1) (1)

(0) (1) (1)

(0) (1)

( ) ( ( )) 1

           [ 0.5 ( ) 0.5 ( 1)]

            = [ 0.5( ( ) ( 1)) 0.5 ( 1)]

           0.5 ( ) ( 1)

x i a z i b

a x i x i b

a x i x i x i b

a x i a x i b

   

    

     

      

  (4.52) 

Then from (4.52), the restored (0)ˆ ( )x i  can be iteratively estimated through 
(1)X  and 11

ˆ
GM  

as 

 
(0) (1)

(1) (0) (1)

ˆˆ
ˆ ˆ( ) ( 1) , 2,3

ˆ ˆ1 0.5 1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

a b
x i x i i n

a a

x i x i x i


    

 

  

  (4.53) 

If assuming (0) (0)ˆ ( ) ( ),   (1,2, )x i x i i n    , the (1)ˆ ( 1)x i   can be estimated via (0) ( )x i

using equation (4.54) which is derived from equation (4.53) 

 (1) (0)
ˆˆ(1 0.5 )

ˆ ( 1) ( ) , (1,2, )
ˆ ˆ

a b
x i x i i n

a a

 
       (4.54) 

Then, using (1)ˆ ( 1)x i   and (0) ( )x i as an initial value and utilizing equation (4.53) , the 

restored value (0)ˆ ( )x i  can be estimated iteratively. 

B. GM(2,1) Model 

If
(0)X is a non-monotonic wavelike sequence and the corresponding

(1)X  satisfies the law 

of second-order differential equation, GM(1,1) which is used to describe monotonic 

changes is not appropriate to describe non-monotonic wavelike sequence. Instead of the 

first order grey model, a so-called GM(2,1) model, which means second order grey model 

in one variable [74], can be written as  

 (1) (0) (0) (1)

1 2( ) ( ) ( )x i a x i a z i b      (4.55) 
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To solve the parameters of the equation, (4.55) can be rewritten as  

 (1) (0) (0) (1)

1 2( ) ( ( )) ( ( )) 1x i a x i a z i b         (4.56) 

Using a least squares method to estimate the parameter matrix 
21 1 2

ˆˆ ˆ ˆ( , , )T

GM a a b    with 

the 1n  dimension, and  

 

1
1

21 2

ˆ

ˆ ˆ

ˆ

T T

GM

a

a B B B Y

b




 
 

     
 
 

  (4.57) 

where 

 

(0) (0) (0) (1)

(0) (0) (0) (1)

(0) (0) (0) (1)

(2)    (1) (2)    (2)      1

(3)    (2) (3)    (3)      1
,B

                                    

( ) ( 1) ( )    ( )      1

x x x z

x x x z
Y

x n x n x n z n

    
  

     
  
 
       






 
 

  (4.58) 

Then the whitenization equation of the GM(2,1) model (4.55) is derived as [105] 

 
2 (1) (1)

(1)

1 22
ˆˆ ˆ

d x dx
a a x b

di di
     (4.59) 

As shown in the second order differential equation (4.59),  (1) ( )x i  is the solution. The 

(0) ( )x i  can be calculated by (1) (1)( ) ( 1)x i x i  . As discussed in GM(1,1), solving (1) ( )x i

from second order differential equation (4.59) is high computational complexity in smart 

transmitter. Therefore, the iterative method for solving (0) ( )x i and (1) ( )x i  are derived as 

follows. 

From the equation (4.55), the (0) ( )x i can be derived as shown in the equation (4.60)  
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(1) (0) (0) (1)

1 2

(0) (0) (0) (1) (1)

1 2

(0) (0) (0) (0) (1) (1)

1 2

(0) (0) (0)

1 2

( ) ( ( )) ( ( )) 1

( ) ( 1) ( ) [0.5 ( ) 0.5 ( 1)]

( ) ( 1) ( ) [0.5( ( ) ( 1)) 0.5 ( 1)]

( ) ( ) 0.5 ( )

x i a x i a z i b

x i x i a x i a x i x i b

x i x i a x i a x i x i x i b

x i a x i a x i

      

       

         

   (0) (1)

2( 1) ( 1)x i a x i b   

  (4.60) 

From (4.60), the restored value (0)ˆ ( )x i  can be estimated through (0)X , (1)X  and 
21

ˆ
GM  as 

 

(0) (0) (1)

2

1 2

(1) (0) (1)

1 ˆˆ ˆ ˆ ˆ( ) [ ( 1) ( 1) ], 2,3
ˆ ˆ1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

x i x i a x i b i n
a a

x i x i x i

     
 

  

  (4.61) 

Assuming (0) (0) (0) (0)ˆ ˆ( ) ( )and ( 1) ( 1),   (2,3, )x i x i x i x i i n       , the (1)ˆ ( 1)x i   could 

be estimated via (0) ( )x i and (0) ( 1)x i  using equation (4.62) which is derived from 

equation (4.61) 

 (1) (0) (0)1 2

2 2 2

ˆˆ ˆ1 0.5 1
ˆ ˆ ˆ( 1) ( ) ( 1) , (1,2, )

ˆ ˆ ˆ

a a b
x i x i x i i n

a a a

 
          (4.62) 

Then, using (1)ˆ ( 1)x i   and (0) ( 1)x i  as the initial values and utilizing equation (4.61), the 

restored value (0)ˆ ( )x i  can be estimated iteratively. 

C. Prediction with grey model 

As shown above, if changes in 
(0)X are shown as a monotonic trend, then GM(1,1) can be 

used for modeling the data sequence, whereas if the trend of 
(0)X is shown as non-

monotonic and wavelike, then the GM(2,1) can better model the data sequence. 

Once the parameters of the two models are estimated, the predicted value can be 

calculated iteratively through GM(1,1) and GM(2,1). If the length of 

(0) (0) (0) (0)( (1), (2), ( ))X x x x n is n, (0) (0)( ) ( ),x n x k where the prediction sequence can 

be denoted as 
(0) (0) (0) (0)ˆ ˆ( (1), (2), ( ))p p p pX x x x P , where 

(0) ( )px P  means the P-step 

ahead predicted value corresponding with the original 
(0)X . 
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Assuming (0) (0)ˆ ( ) ( )x n x n , using an estimated (1)ˆ ( 1)x n as the initial value, then the 

prediction (0)ˆ ( ), 2px p p P   using GM(1,1) can be computed as  

 

(0) (1)

(1) (0) (1)

(1) (1)

(1) (0)

ˆˆ
ˆ ˆ( ) ( 1) , 2 2

ˆ ˆ1 0.5 1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

ˆ ˆ: (1) ( 1)

ˆˆ(1 0.5 )
ˆ ( 1) ( )

ˆ ˆ

p p

p p p

p

a b
x p x p p P

a a

x p x p x p

initial x x n

a b
where x n x n

a a

     
 

  

 


   

  (4.63) 

Assuming (0) (0) (0) (0)ˆ ˆ( ) ( )and ( 1) ( 1)x n x n x n x n     , the (1)ˆ ( 1)x n  can be estimated via 

(0) ( )x n and (0) ( 1)x n . Then using (1)ˆ ( 1)x n  and (0) ( 1)x n as the initial values, the 

prediction 
(0)ˆ ( ), 2px p p P  using GM(2,1) can be calculated as  

 

(0) (0) (1)

2

1 2

(1) (0) (1)

(0) (0) (1) (1)

(1) (0) (1 2

2 2

1 ˆˆ ˆ ˆ ˆ( ) [ ( 1) ( 1) ], 2,3 2
ˆ ˆ1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

ˆ ˆ ˆ: (1) ( 1)   (1) ( 1)  

ˆ ˆ(1 0.5 ) 1
ˆ ( 1) ( )

ˆ ˆ

p p p

p p p

p p

x p x p a x p b p P
a a

x p x p x p

initial x x n and x x n

a a
where x n x n x

a a

      
 

  

   

 
   



0)

2

ˆ
( 1)

ˆ

b
n

a
 

  (4.64) 

The P-step ahead prediction 
(0) (0) (0)ˆ( ) ( ) ( 2)p px k P x P x p    . The relationship of 

(0) ( )px P and 
(0) ( )px p is shown in Figure 4.2. 
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Figure 4.2: Relationship of Raw Data and Prediction in Grey Model 

D. Weighted Decisions of Grey Model Prediction 

The GM(1,1) is suitable for modeling and predicting the data sequence which shown as 

monotonic trend. GM(1,1) shows robust performance in noise environment, but it is low 

accurate for modeling non-monotonic data sequence. While the GM(2,1) which is 

considered with second order structure is suitable for modeling and predicting the data 

which shown as non-monotonic trend. GM(2,1) can be used in process with wavelike 

trend, but it is sensitive for the noise in the data sequence. To combine the advantages of 

the GM(1,1) and GM(2,1), the decision making tool for weighting prediction calculation 

is proposed. The combined grey model prediction can be more accurate and more 

adaptable for process variable prediction. 

In grey model theory, 11
ˆ ˆ( )GM a  called development coefficient is produced from 

GM(1,1). If process variables show large fluctuations or non-monotonic, the development 

coefficient will have obvious changes. To describe easily, the development coefficient

11
ˆ ˆ( )GM a is represented as ( )dco k . Leveraging ( )dco k , the trend of the collected data 

can be indicated, and GM(1,1) and GM(2,1) can be selected based on different trend. 

To balance and combine the advantages of the GM(1,1) and GM(2,1), the weighting 

algorithms utilizing ( )dco k  are developed in this thesis as grey model prediction decision 

making tool. A computed weight GMW  is used for weighting the prediction value between 

the prediction from GM(1,1) and GM(2,1). The weight (0 1)GM GMW W  represents 
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change amplitude of the development coefficient ( )dco k , which is calculated in equation 

(4.65)  

 

( ) [ ( ) ( )]

( ) ( ( ))

( ) ( )

    ( ( ) ( )) / ( )

   

    0;

diff dco avg dco

dev var-dco

diff dev

GM diff dev diff

GM

k abs k k

k sqrt k

if k k

W k k k

else

W

  

 

 

  

 





 



  (4.65) 

where the mean value of ( )dco k is ( )avg dco k 
 calculated via (4.25), the variance of 

( )dco k  is ( )var-dco k  calculated via (4.28). 

From equation (4.65), 
GMW will increase if ( )dco k  is changed dramatically when the 

process values fluctuate dramatically and show non-monotonic. Contrarily, 
GMW will 

decrease even to 0 if ( )dco k  is changed small when the process values show monotonic.  

The proposed grey model prediction decision making tool for final prediction value are 

weighted from GM(1,1) and GM(2,1) by 
GMW . The final P-step ahead prediction is 

calculated via equation (4.66) 

 
(0) (0) (0)

11 21
ˆ ˆ ˆ( ) (1 ) ( ) ( )GMComp GM GM p GM GM px P W x P W x P       (4.66) 

In default status, the combined prediction is equal to the predicted value from GM(1,1). 

GM(1,1) can overcome the noise in the process value. If process values fluctuate 

dramatically and show non-monotonic, the predicted value from GM(2,1) will be more 

weighted in combined prediction. While the system variables are monotonic changes, the 

weight 
GMW may equal to 0, and GM(1,1) will be more weighted. Therefore, the 

advantages of the GM(1,1) and GM(2,1) can be balanced and the more accurate 

prediction value can be provided.  
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4.4 Summary  

 

This chapter presents the specifications of integrated process fault detection and variable 

prediction functions. To achieve the two functions, the algorithms for process fault 

detection and variable prediction functions which are investigated and summarized in 

Table 4.4. To detect faults in process system, ARX model and EWRLS parameter 

estimation are combined to generate residuals. Two-sided CUSUM is utilized to evaluate 

residuals for fault detection. Prediction has two methods. If external inputs of the monitored 

system are unknown, the grey models, least squares parameters estimation as well as multi-

step iteration are used for further step prediction of system response. If external inputs of 

the monitored system are known, ARX model and EWRLS are used for determining the 

model of the system, and Kalman predictor as well as multi-step iteration are combined for 

further steps prediction of system response. Both groups of algorithms needs to be 

implemented into NCS-TT105.  

Table 4.4: Algorithms Summary of Process Fault Detection and Variable Prediction 

 

Process 

Fault Detection

Variable Prediction

without 

Exogenous Variables

Variable Prediction

with 

Exogenous Variables

Model ARX GM(1,1) and GM(1,2) ARX

Parameter 

Estimation

EWRLS

(residual generation)

Least Squate

(LS)
EWRLS

Algorithms

Functions
Two-sided CUSUM

(residual evaluation)

Multi-step iteration

for further steps prediction

Kalman predictor 

for one-step prediction &

Multi-step iteration for 

further steps prediction
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Chapter 5  

5 Implementation of Smart Functions in Real-time 
Operating System 

To implement process fault detection and variable prediction functions in the smart 

transmitter, the algorithms are grouped into process fault detection task and variable 

prediction task and embedded into the Nucleus RTOS of NCS-TT105. Specific 

parameters, procedures, and equations are summarized and collated to better clarify the 

two groups of algorithms. These summaries offer clear guidance for programming the 

code of the algorithms using either Matlab or C programming. Furthermore, to organize 

and schedule those algorithms in RTOS, the design of parameters for scheduling three 

tasks which are bidirectional communication task, process fault detection task, and 

variable prediction task in Nucleus RTOS is discussed. 

5.1 The Process Fault Detection Task 

Heaters, chillers, and pipeline are widely used equipment in industrial plants and factory 

production lines. The faults in such equipment may result in the production line shutdown 

or decrease productivity. The targets of the fault detection task in the smart transmitter 

are to detect faults in the plant process system which is shown in Figure 5.1. Such faults 

may be heater tripping, chiller shut down, pipeline leak, pipeline plugged, or sensing 

elements unplugged.   

To implement the algorihtms in fault detection task and scheduled by Nucleus RTOS in 

NCS-TT105 transmitter, design and configutration of the fault detection task are 

disscussed in details. The overview diagram of the algorithms, including EWRLS and 

CUSUM for process fault detection functions, is shown in Figure 5.1. 
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Fault detection algorithms are in

Process fault detection task - Task 12 

of RTOS

Controller
Reference Input

Control 
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Figure 5.1: Implementation of Process Fault Detection in RTOS on NCS-TT105 

5.1.1 EWRLS for Residual Generation 

The ARX model and EWRLS algorithm involve three data sources. 
1( )U k and 

2 ( )U k are 

the input data sources of the ARX model and EWRLS and the inputs of the process 

system, respectively. ( )Y k which is the response of the process system is also the input 

source of the EWRLS.  

Because many algorithms use recursive methods, the initial value and parameters of the 

algorithms are essential. The delay parameters of two inputs for ARX model are denoted 

as 1d  and 2d . These two parameters need to be set based on the dead-time of the process 

response corresponding to the two respective inputs. The dead-time of the process 

response can be tested using the step response from each input, and 1d  and 2d  can be 

calculated via each dead-time divided by sample time of the algorithms. The m dimension 



67 

is set as 5, which means that the orders of the model to describe the system is 5. The 

model with 5 orders can describe vast majority of systems. Furthermore, the forgetting 

factor 
avg  of a recursive exponential forgetting mean value equation (4.25) for an online 

computing operating point is set as 0.99, which means that it is used for an on-line 

computing operating point that is changing slowly. The forgetting factor in variance 

equation (4.28) is set to 0.98. To balance the tracking speed of the parameter changes and 

overcome the disturbance from system noise, the EWRLS’s forgetting factor 
w  is set as 

0.98. Moreover, the initial value of the inverse correlation matrix of EWRLS can be set 

as 
3(0) 10000w mP I ,    , while the initial parameter vector of EWRLS is preset as 

ˆ(0) 0  .These parameters are estimated through EWRLS equations from (4.10) to 

(4.13). Finally, the parameter vector ˆ( )k and residual ( )e k  are the EWRLS’s outputs. 

Those outputs are computed in every recursive step. Furthermore, the parameters in ˆ( )k

and ARX models represent the model of the estimated process, and can be transferred 

into state-spaces model for the Kalman predictor being used. The generated residual ( )e k

is evaluated using a two-sided CUSUM for fault detection. 

To further analyze execution time, the computational complexity of the core procedure is 

shown on the right-hand side. The computational complexity can be used for estimating 

execution time in the corresponding microprocessor, as well as for comparing it with 

further optimal algorithms. Moreover, the inputs need to be monitored to prevent 

EWRLS from becoming sensitive or even unstable when the inputs are not exciting 

enough. In cases where the excitation of the inputs is very small, the forgetting factor 
w  

needs to be time-variant and adjusted to a value close to 1. 

The implementation procedures for EWRLS parameters estimation algorithms which are 

used for residuals generation are shown in Table 5.1.  

 

 

 



68 

Table 5.1: The procedure of EWRLS Parameter Estimation for Residual Generation 

 Residual generation method 

ARX with two inputs  

EWRLS methods for parameter estimation 

×&÷ +&− 

 Basic: 

 

ARX model with 2 inputs and m dimension with each input 

1

1 1 1 1 1

1 2 2 2 2

( ) ( 1) ... ( )

        ( 1) ... ( )

         ( 1) ... ( )

u u m u

m

m

y k a y k a y k m

b u k d b u k d m

c u k d c u k d m

    

      

      

 

The noise in the monitored systems is assumed as white noise. 

 

1 1 1 1

2 2 2 2

( ) [ ( 1)     ,...,  ( ),

               ( 1),..., ( ),

               ( 1),..., ( )]

T

u uk y k y k m

u k d u k d m

u k d u k d m

     

   

   

  

 

1 1 1
ˆ ˆˆ ˆ ˆ ˆ ˆ T

m m ma a b b c c          

 

Dimension: 

Vector ̂ is 3 1m ; Vector ( )T k is 1 3m ;  

Vector ( )w k is 3 1m ;  

Matrix ( )wP k is 3 3m m . 

3 15RM m    

  

 Inputs: 

 

1( ) :U k  The input 1 of the system 

2 ( ) :U k  The input 2 of the system  

( ) :Y k  The response of the system  

  

 Initialization: 

 

0.99avg  , 0.98var   

 

3
ˆ(0) 10000,        (0) 0w mP I     ,  

0.98w   

 

1 28 /  ,   4 /  d s sample time d s sample time   
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1 1 2 2
ˆ ˆ(0) (0),    (0) (0) (0)= (0) op op opU U U U Y Y  ，  

 

 Main program: 

For k=1,2… 

1 1 1

2 2 2

ˆ ˆ( ) ( 1) (1 ) ( )

ˆ ˆ( ) ( 1) (1 ) ( )

( )   ( 1) (1 ) ( )

op avg op avg

op avg op avg

op avg op avg

U k U k U k

U k U k U k

Y k Y k Y k

 

 

 

   

   

   

 

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

op

op

u op

u k U k U k

u k U k U k

y k Y k Y k

 

 

 

 

1 1 1 1

2 2 2 2

( ) [ ( 1)    ,...,  ( ),

               ( 1),..., ( ),

               ( 1),..., ( )]

T

u uk y k y k m

u k d u k d m

u k d u k d m

     

   

   

 

( 1) ( )wP k k  

1
( ) ( 1) ( )

( ) ( 1) ( )
w wT

w w

k P k k
k P k k


  

 
 

  

ˆ( ) ( ) ( ) ( 1)T

ue k y k k k     

ˆ ˆ( ) ( 1) ( ) ( )wk k k e k      

 
1

( ) ( ( 1) ( ) ( ) ( 1))T

w w w w

w

P k P k k k P k 


     

 

 

 

 

 

 

 

 

 

 

2

R
M   

 

2
R

M  

R
M  

R
M  

2
R

M  

 

 

 

 

 

 

 

 

 

 

2

R
M  

 

1
R

M   

1
R

M   

R
M  

2

R
M  

 
Output: 

ˆ( )k , ( )e k     

 Computational Complexity 
2

2

: 3 4

 : 2 3 2

R R

R R

M M

M M

  

   
  

  

5.1.2 CUSUM for Residual Evaluation 

Residual ( )e k , which is generated from EWRLS is the input of the two-sided CUSUM 

algorithm. The dynamic reference values of drift and threshold, taken from equations 
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(4.20) and (4.21), are automatically adjusted using online calculating ( ( ))kAvg Abs e and

( ( ))kSqrt Var e via equation (4.25) and (4.28) respectively. The output of the two-sided 

CUSUM is the alarm signal ( )CUAlarm k . Once the cumulative values 
1 2( )or ( )g k g k  are 

greater than the alarm threshold, the ( )CUAlarm k  is set to 1, which means the process 

fault is detected. After the alarm indication is generated, the cumulative values 

1 2( ), ( )g k g k and ( )CUAlarm k are reset to 0 for continuous accumulative calculation.  

The initial cumulative values are set as 
1 2(0) 0, (0) 0g g  . The mean value is calculated 

via the recursive exponential forgetting method from equation (4.25). The mean 

forgetting factor 
avg is set as 0.99avg  , which is suitable for checking variation from 

the slowly changing residual 
ke . The variance value is calculated using equation (4.28) 

with a recursive exponential forgetting method. The variance forgetting factor 
var is set 

as 0.98var  . The drift threshold ratio K  is set at 0.5, while the alarm threshold ratio

hK  is set at 4.0. These two value are determined by the online testing to avoid the false 

indications or missing indications. 

The procedures for residual evaluation by CUSUM algorithms are presented in Table 5.2. 

Table 5.2: The Procedure of Two-sided CUSUM for Residual Evaluation 

 Residual evaluation method 

Two-sided CUSUM test  

for fault detection alarm indication 

×&÷ +&− 

 
Basic: 

 
(1) (2),   k k k ks e s e    

(1) (1) (1)

1

(2) (2) (2)

1

max( ,0)

max( ,0)

k k k k

k k k k

g g s

g g s









  

  
 

(1) (2)

(1) (2)

     

     1 

     0,  0

k k

k k

if g h or g h

Alarm Indication

reset g g

 



 

 

  



71 

( ( ))

( ( ))

k k

k h k

K Sqrt Var e

h K Avg Abs e

  

 
 

 Inputs:  

            ( )e k  

  

 
Initialization: 

1 2(0) 0; (0) 0g g    

0.99avg  , 0.98var   

K =0.5 for drift; 4hK  for alarm  

(0) ( )avge e k ; (0) 0vare   

( ) 0CUAlarm k   

  

 Main program: 

For k=1,2…. 

1 2( ) ( ); ( ) ( )s k e k s k e k    

2

( ) ( 1) (1 ) ( )

2 1
( ) ( 1) (1 )[ ( ) ( 1)]

( ) ( ( ))

avg avg avg avg

var
var var var avg

var

var

e k e k e k

e k e k e k e k

k K Sqrt e k

 








   


     

 

 

1 1 1

2 2 2

( ) max( ( 1) ( ) ( ),0)

( ) max( ( 1) ( ) ( ),0)

g k g k s k k

g k g k s k k





   

   
 

1 2( ) ( ) ( ( ))h avgh k h k K Abs e k    

1 1 2 2

1 2

 ( ) ( )   ( ) ( )

   ( ) 1;     

    ( ) 0, ( ) 0

   ( ) 0

if g k h k or g k h k

CUAlarm k Alarm for fault dection

reset g k g k

else

CUAlarm k

 



 



 

 

 

 

2 

3 

1 

 

 

 

1 

 

 

 

 

1 

1 

 

 

6 

 

 

2 

 Output: 

   ( )CUAlarm k    1:    Alarm for fault dection  

  

 Computational Complexity 

: 7

 :10


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Referencing the implementation procedures shown in Table 5.1 and Table 5.2, the 

algorithms are programmed in Matlab and C code. The embedded C code of fault 

detection is programmed the fault detection task in Nucleus RTOS. The inputs of the 

fault detection task have three channels including
1( )U k ,

2 ( )U k , and ( )Y k . The time 

period for the fault detection task can be set at 400ms, which not only produces a fast 

sample time for data acquisition, but a balanced workload for microprocessor running as 

well. Furthermore, based on the computational complexity in Table 5.1 and Table 5.2, the 

estimated execution time of the 40MHz ARM7 MCU in NCS-TT105 transmitter for 

executing the fault detection algorithms is estimated as 70ms. 

5.2 The Variable Prediction Task 

The variable prediction information which can forsee the variable changes further than 

the dead-time of the process system is the valuable informaiton which is extracted from 

the collected data by variable prediction task in NCS-TT105 transmitter. For instance, the 

dead-time of the system response according to the inputs of the system is 8s, the 10s 

system response prediction results can forsee the system response after 10s later, enabling 

impacts of the dead-time can be eleminated or reduced. The protection actions against to 

system abnormal changes can be taken timely. 

The overview diagram of the algorithms including the Kalman predictor and grey models 

are shown in Figure 5.2.The initial values, inputs, outputs, and detailed equations of the 

prediction task are summarized in this section. 
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Figure 5.2: Implementation of Variable Prediction in RTOS on NCS-TT105 

5.2.1 Kalman Predictor 

The main procedures used to implement prediction via Kalman predictor include four 

steps. Firstly, the structure of the system models ( ), ( )A k B k  are described by the ARX 

model. As shown in Figure 5.2, the inputs of the ARX model are 
1( )U k 2 ( )U k and ( )Y k . 

Next, the parameters of the ARX model are estimated using EWRLS. The procedure of 

EWRLS for parameter estimation can be the same or similar as in section 5.1.1. 

However, the parameters and initial value of the ARX and EWRLS are not the same as 

the setting in section 5.1.1. For instance, the w is 0.92 to enhance the tracking 

performance of the EWRLS parameter estimation, while the dimension m is set to 3 to 

use model with 3 orders for the prediction. Secondly, Kalman predictor computes one-
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step states prediction using the multiple inputs Companion-form of the state-space 

matrix, which is transferred from ARX mode and combined with the system input data 

and output response. Thirdly, system model and the one-step predicted states are used to 

iteratively compute predictions for further steps. To predict the 
KPP -step of the process 

variables, the one-step states prediction is used for the ( 1)KPP  -step further states 

prediction via iterative computation. Finally, the ( 1)KPP  -step ahead system response 

prediction can be obtained by ( )p KPCx P , where ( )p KPx P is the 
KPP -step predicted states. 

As an adaptive algorithms, the initial value and parameters of the Kalman Predictor are 

essential. The initial value of the states ˆ(0)x is set as 0. The initial value of the correlation 

matrix is set as the identity matrix with the dimension
KF KFM M . Regarding the two 

noise correlation matrices, the correlation matrix of measurement noise R is set to 20.3 , 

while the correlation matrix of process noise Q  is set to 
20.2

KFMI with 
KF KFM M

dimension. R is referred from the specification of NCS-TT105 using RTD PT100, which 

is shown in Table 3.2.  Q can be determined using various statistical methods according 

to different scenarios.  The prediction step is set as 10KPP  , which can also be adjusted 

for different prediction requirements. 

The implementation procedure of Kalman predictor algorithm is shown in Table 5.3.The 

computational complexity of core procedures is shown on the right-hand side of Table 

5.3. Since the matrix calculations involved in the Kalman predictor procedure, the 

computational complexity needs to be carefully considered. Given the characteristic of 

the Companion-form of ( )A k , the matrix calculation can be optimized and simplified.  
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Table 5.3: The Procedure of the Kalman Predictor and Multistep Iteration 

 
One-step Kalman Predictor 

Variable prediction with inputs of the system  

×&÷ +&− 

 Basic: 

Using m dimension ARX and EWRLS to estimate ̂  

1 1 1
ˆ ˆˆ ˆ ˆ ˆ ˆ T

m m ma a b b c c         

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

op

op

u op

u k U k U k

u k U k U k

y k Y k Y k

 

 

 

 

1 1 1 1

2 2 2 2

( ) [ ( 1)... ( )

             | ( 1)... ( )]T

u k u k d u k d m

u k d u k d m

    

   
 

ARX model: 

 

1

1 1 1 1 1

1 2 2 2 2

( ) ( 1) ... ( )

          + ( 1) ... ( )

         ( 1) ... ( )

u u m u

m

m

y k a y k a y k m

b u k d b u k d m

c u k d c u k d m

     

     

      

 

The noise in the monitored systems is assumed as white noise. 

 

Matrix: 

1 2 3 1        

  1        0       0         0       0

  0        1       0         0       0
( )

  0        0       1         0       0

                                      

  0      

m ma a a a a

A k

    

        

  0       0         1       0   

m m

 
 
 
 

 
 
 
 
  

      

1 2 1 2            

0     0   0    0    0    0
( )=        2

                              

0     0   0    0    0    0 

m mb b b c c c

B k m m

 
 
  
 
 
 

  

    [1    0      0]     1C m    

 1 2 3 1( )                         
T

m mx k x x x x x  
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( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x k A k x k B k u k w k

z k Cx k v k

   

 
 

 

Dimension: 

Vector ( )x k    : 1 1KFM m    

Vector ( )u k    : 1 2 1KFpM m    

Matrix ( )A k   :
KF KFM M m m    

Matrix ( )B k   : 2KF KFpM M m m    

Matrix   C      :1  1KFM m    

Vector ( )K k   : 1 1KFM m    

Matrix ( )P k  :
KF KFM M m m    

 

Correlation matrix: 

   ( ) ( ) ,    ( ) ( ) ,T TE w k w k Q E v k v k R   

Correlation matrix of measurement noise R  is 1 1  

Correlation matrix of process noise Q  is 
KF KFM M m m    

 

,   2 ,  3KF KFpM m M m m    

 

 
Inputs:  

1( ) :U k  The input 1 of the system 

2 ( ) :U k  The input 2 of the system  

( ) :Y k  The response of the system  

  

 
Initialization: 

 

0.92w  for EWRLS parameter estimation  

1 1 1
ˆ ˆˆ ˆ ˆ ˆ ˆ T

m m ma a b b c c        has been determined   

 

ˆ(0) 0,     (0)
KFMx P I   

2 20.2 , 0.3
KFMQ I R    

 

The steps of prediction 10KPP    

  

 Main program: 

For k=1,2…. 

 

Kalman Predictor: 
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1( ) ( ) [ ( ) ]T TK k P k C CP k C R     

ˆ( )[ ( ) ( | 1)]uAK k y k Cx k k   

ˆ ˆ( 1| ) ( | 1) ( )

ˆ                   ( )[ ( ) ( | 1)]u

x k k Ax k k Bu k

AK k y k Cx k k

   

  
 

1

( 1) ( )

                   ( ) [ ( ) ] ( )

               = ( ) ( ) ( )

               = [ ( ) ] ( )  

T

T T T

T T

T

P k AP k A

AP k C CP k C R CP k A Q

AP k A AK k CP k A Q

A I K k C P k A Q

 

   

 



  

 

 

 

 

ˆ( 1| )KP1stx x k k  is the one-step states prediction 

KF
M  

2

KF

KF

M

M
 

 

2

2

KF

KF

M

M
 

 

 

3
3

KF
M  

 

1  

2 1
KF

M 

 

 

2

4

KF

KF

M

M
 

 

 

3
3

2

KF

KF

M

M
  

 

 Further prediction for 1KPP   steps 

     initialization: (1)p KP1stx x  

     For k=1: ( 1)KPP   

     ( 1) ( ) ( ) ( ) ( )p px k A k x k B k u k    

     end 

The prediction pY  after 
KPP steps is 

( ) ( ) ( )KPp KP op p KPY P Y k Cx P   

 

 

3

( 1)
kp

KF

P

M





 

 

 

3

( 1)
kp

KF

P

M





 

1 

 
Output: 

    ( )KPp kpY P  

  

 
The optimized computational complexity  

3 2

3 2

: 3M 2M 3 M M

 : 3M 2M 3 M 3M 2

KF KF kp KF KF

KF KF kp KF KF

P

P

    

     
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5.2.2 Grey Model 

The main procedures used to implement grey model prediction include three steps. 

Firstly, the parameters of the GM(1,1) and GM(2,1) are estimated using the LS method in 

every sampling step. Secondly, the multiple steps of predictions are calculated iteratively 

using the GM(1,1) and GM(2,1) models. Thirdly, the decision-making tool is used for 

weighting the prediction GM(1,1) and GM(2,1), used for the final combined prediction 

value.  

The length of the data sequence is set at 20, which can be adjusted corresponding with 

different practical applications. The parameters vector of GM(1,1) is a 2×2 dimension, 

while the parameters vector of GM(2,1) is a 3×3 dimension. The steps of the prediction 

are set as 10GMP  . 
psft  is set to 2, which means that the initial values for further 

prediction are selected from the last two data from the data sequence. Moreover, the

0.99avg  and 0.98var   are used as forgetting factors for online mean and variance 

calculation in decision-making tool. The implementation procedures of the GM(1,1) and 

GM(2,1) prediction is shown in Table 5.4. 

Table 5.4: The Procedure of Grey Model Prediction 

 
Grey Model for Prediction 

Variable prediction without inputs of the system 

×&÷ +&− 

 Basic 

(1) (1) (1) (1)( (1), (2), ( ))X x x x n  

 (1) (0) (1) (0) (1) (0)(2), , ( )X x x n    

(1) (1) (1) (1)(z (2),z (3), z ( ))Z n  

(0) (0) (0) (0)

1 1 1 1 21
ˆ ˆ( (1), (2), ( ))p p p p GM psftX x x x P    

(0) (0) (0) (0)

2 2 2 2 21
ˆ ˆ( (1), (2), ( ))p p p p GMX x x x P  

 

(1) (0)

1

( ) ( )    1,2, ,
k n i

k n

x i x i i n
 

 

  ，  

(1) (0) (0) (0)( ) ( ) ( 1)    2, ,x i x i x i i n    ，  
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(1) (1) (1)1
( ) ( ( ) ( 1))    2,3, ,

2
z i x i x i i n   ，  

 

GM(1,1) Model: 
(0) (1)( ) ( )x i az i b   

 

GM(2,1) Model: 
(1) (0) (0) (1)

1 2( ) ( ) ( )x i a x i a z i b     

 

Dimension: 

Vector (1)X             :1 n   

Vector (1) (0)X        :1 1n           

Vector (1)Z               :1 1n   

 

Vector 11
ˆ
GM            : 2 1  

Vector 
11GMY            : 1 1n   

Vector
11GMB             : 1 2n   

Vector 
(0)

11 1GM pX     :1 ( )GM psftP    

Vector 
(0)

11 2GM pX     :1 GMP  

 

Vector 21
ˆ
GM            :3 1  

Vector 
21GMY            : 1 1n   

Vector
21GMB            : 1 3n   

Vector 
(0)

21 1GM pX     :1 ( )GM psftP    

Vector 
(0)

21 2GM pX    :1 GMP  

 

11 21G G
M M n  

 
Inputs:  

( ) :Measurem t ken  The predicted response of the system 

e.g The water temperature of system. 

  

 
Initialization: 

 

n=20  

 

The steps of prediction 10GMP   , 2psft   

0.99avg  ; 0.98var   

  

 Main program:   
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For k=n, n +1, n +2…. 

      Acquiring data into data sequence 

      For i=1:n 

        (0) ( )x k n i  =Measurement( k n i  ) 

      end  

 

(1) (0)

1

( ) ( )    1,2, ,
k n i

k n

x i x i i n
 

 

  ，  

(1) (1) (1)1
( ) ( ( ) ( 1))    2,3, ,

2
z i x i x i i n   ，  

GM(1,1) parameters estimation: 

(0) (1)

(0) (1)

11 11

(0) (1)

(2) (2)    1

(3) (3)    1
,B

                  

( ) ( )    1

GM GM

x z

x z
Y

x n z n

   
   

    
   
   
      

 

 

1

11 11 11 11 11

ˆ
ˆ

ˆ
T T

GM GM GM GM GM

a
B B B Y

b


 
     

 
 

 

GM(2,1) parameters estimation: 

(0) (0)

(0) (0)

21

(0) (0)

(0) (1)

(0) (1)

21

(0) (1)

(2)    (1)

(3)    (2)
,

    

( ) ( 1)

(2)    (2)      1

(3)    (3)      1
B

                                

( )    ( )    

GM

GM

x x

x x
Y

x n x n

x z

x z

x n z n

 
 

 
 
 
    

 

 


    1

 
 
 
 
 
  

 

1
1

21 2 21 21 21 21

ˆ

ˆ ˆ

ˆ

T T

GM GM GM GM GM

a

a B B B Y

b




 
 

     
 
 

 

 

 

 

 

 

 

11
1

G
M   

 

6  

11
( 1)

3

G
M 



 

 

 

 

 

 

9  

21
( 1)

99

G
M 



 

 

 

11G
M    

11
1

G
M   

        

6  

11
( 1)

8

G
M 



 

 

 

 

 

 

10  

21
( 1)

36

G
M 


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 The prediction of
GMP steps by GM(1,1) model: 

The GM(1,1) Model (0) (1)( ) ( ( )) 1x i a z i b     

can be rewritten as 

(0) (1)

(1) (0) (1)

ˆˆ
ˆ ˆ( ) ( 1) , 2,3

ˆ ˆ1 0.5 1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

a b
x i x i i n

a a

x i x i x i


    

 

  

 

     initialization: 

     using  (0) ( 2)psftx n   to estimate (1)ˆ ( 1)psftx n    

(1) (0)
ˆˆ(1 0.5 )

ˆ ( 1) ( 2)
ˆ ˆ

psft psft

a b
x n v x n v

a a


      


 

(0) (0)

11 1

(1) (1)

11 1

ˆ (1) ( 2)  

ˆ ˆ(1) ( 1)  

GM p psft

GM p psft

x x n and

x x n





  

  
 

are used as initial value for GM(1,1) prediction 

    Main program for prediction iteration: 

 

For p= psft :
GMP + psft  

  

(0) (1)

11 1 11 1

(1) (0) (1)

11 1 11 1 11 1

(1) (1)

11 1

ˆˆ
ˆ ˆ( ) ( 1)

ˆ ˆ1 0.5 1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

ˆ ˆ(1) ( 1)  

GM p GM p

GM p GM p GM p

GM p psft

a b
x p x p

a a

x p x p x p

x x n 


   

 

  

  

 

end 

 

For p=1:
GMP  

 
(0) (0)

11 2 11 1
ˆ ˆ( ) ( )GM p GM p psftx p x p    

    end 

    
(0)

11 2
ˆ ( )GM p GMx P is the prediction from GM(1,1) 

 

 

 

 

 

 

 

 

 

 

 

 

GM
P  

 

 

 

 

 

 

 

 

 

 

 

 

2
GM

P  

 The prediction of GMP steps by GM(2,1) model: 

The GM(2,1) Model (1) (0) (0) (1)

1 2( ) ( ) ( )x i a x i a z i b     

can be rewritten as 
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(0)

(0) (1)

2

1 2

(1) (0) (1)

ˆ ( )

1 ˆˆ ˆ ˆ     [ ( 1) ( 1) ], 2,3
ˆ ˆ1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

x i

x i a x i b i n
a a

x i x i x i



    
 

  

 

     initialization: 

     using  (0) (0)( 1), ( 2)psft psftx n x n      to estimate 

(1)ˆ ( 1)psftx n       

(1)

(0) (0)1 2

2 2 2

ˆ ( 1)

ˆˆ ˆ(1 0.5 ) 1
    ( 2) ( 1)

ˆ ˆ ˆ

psft

psft psft

x n

a a b
x n x n

a a a



 

  

 
      



(0) (0)

21 1

(1) (1)

21 1

ˆ (1) ( 1)   

ˆ ˆ(1) ( 1)  

GM p psft

GM p psft

x x n and

x x n





  

  
 

are used as initial value for GM(2,1) prediction 

Start: 

For p= : ( )psft GM psftP   

 

(0)

21 1

(0) (1)

21 1 2 21 1

1 2

(1) (0) (1)

21 1 21 1 21 1

ˆ ( )

1 ˆˆ ˆ ˆ      [ ( 1) ( 1) ]
ˆ ˆ1 0.5

ˆ ˆ ˆ( ) ( ) ( 1)

GM p

GM p GM p

GM p GM p GM p

x p

x p a x p b
a a

x p x p x p



   
 

  

 

end 

 

For p=1:
GMP  

  
(0) (0)

21 2 21 1
ˆ ˆ( ) ( )GM p GM p psftx p x p    

End 

 
(0)

21 2
ˆ ( )GM p GMx P  is the prediction from GM(2,1) 

 

 

 

 

 

 

 

 

 

 

 

 

GM
P  

 

 

 

 

 

 

 

 

 

 

 

 

3
GM

P  

 Decision-making tool to weight prediction between GM(1,1) 

and GM(2,1) 

Basic: 

11
ˆ ˆ( ) ( )dco GMk a   ,  development coefficient 

 

 

2 

 

 

1 
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2

( ) ( 1) (1 ) ( )

2 1
( ) ( 1) (1 )[ ( ) ( )]

avg dco avg avg dco avg dco

var
var-dco var-dco var dev avg dco

var

k k k

k k k k

    


    



 



   


    

 

 
( ) [ ( ) ( )]

( ) ( ( ))

diff dco avg dco

dev var-dco

k abs k k

k sqrt k

  

 

 


  

 

Start: 

0;

  ( ) ( )

    ( ( ) ( )) / ( )

GM

diff dev

GM diff dev diff

W

if k k

W k k k

end

 

  





 
  

 
(0)

(0) (0)

11 2 21 2

ˆ ( )

ˆ ˆ             (1 ) ( ) ( )

GMComp GM

GM GM p GM GM GM p GM

x P

W x P W x P



   
 

 

3 

 

1 

 

 

1 

 

2 

2 

 

1 

 

 

2 

 

2 

 
Output:  

GMP steps ahead prediction based on every sampling step k:   

 is 
(0)ˆ ( )GMComp GMx P  

 

  

 
Computational Complexity  

11

21

11

11

: (1,1)   7 4

      (2,1)   10 90

 : (1,1)   8 2 1

      (2,1)   12 3 25

G

G

G

G

GM

GM

GM

GM

M

M

M

M

GM P

GM P

GM P

GM P

   

  

   

  

 

  

Following the implementation procedures shown in Table 5.3 and Table 5.4, the 

embedded algorithms can be programmed and embedded into the prediction task 

program. The inputs of the prediction task have four channels; three channels, including

1( )U k ,
2 ( )U k , and ( )Y k , are used for Kalman predictor algorithms, one channel of 

Measurement( k ) is used for the input for grey model prediction. The outputs of the 

prediction task are predicted variables from two groups of prediction algorithms. The 

period time for the prediction task can be set to 1000ms, allowing the number of 

prediction steps can be the same as the proceeding seconds of prediction. Furthermore, 

based on the computational complexity in Table 5.3 and Table 5.4, the estimated 
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execution time of the 40MHz ARM7 MCU in NCS-TT105 transmitter for executing the 

prediciton algorithms is estimated as 90ms. 

5.3 The Bidirectional Communication Task 

It can be seen from the previous sections that 
1( )U k  and 

2 ( )U k , which are the inputs of 

the observed system, are needed for the tasks of both fault detection and prediction. This 

means that besides measuring system response, the designed smart sensor also needs to 

acquire external data from other sources. The smart transmitter therefore needs to be 

equipped with bidirectional communication function in order to realize exchanging data 

and information. 

The original PROFIBUS-PA Fieldbus communication function in NCS-TT105 

transmitter only transmits two channel measurements to upper layer systems. 

Implementing bidirectional communication in this smart transmitter requires modifying 

its inside PROFIBUS-PA profile and the GSD file used in upper layer controllers. The 

modified communication profile programs are grouped in the bidirectional 

communication task. 

As introduced in section 3.3.1, Function Blocks (FBs) of the PA device profile in a NCS-

TT105 are the interface blocks for exchanging data with the network [101]. Analog Input 

FBs, and Analog Output FBs, shown in Figure 3.4, are commonly used FBs for this 

purpose. Each communication data channel corresponds to a particular FB. The original 

NCS-TT105 only transmits two channels of measured data using two Analog Input FBs. 

To transmitter more data and information from NCS-TT105 to upper-level systems, 

Analog Input FBs need to be added to transfer the outputs of algorithms such as alarm 

indication and prediction results. While, in order to collect data from other devices and 

systems, Analog Output FBs must be established in PA devices for receiving data from 

the Fieldbus. The received data can be the initial parameters and the input data sources of 

the embedded algorithms.  

These modifications of the PA devices profile are implemented in the bidirectional 

communication task. The increased Analog Input FBs and Analog Output FBs are 
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programmed in this task, with the communication interface including 16 × AI and 8 × 

AO channels (a list of these communication channels is shown in Table 5.5). Because the 

communication task is the foundational task for the NCS-TT105, it should have the 

highest priority, with a period time of 200ms, which is the shortest of all the tasks. Since 

modification of the communication task is not the core of this research, this thesis will 

not show the details of the implementation procedures, though a more detailed 

introduction of the PROFIBUS-PA profile is summarized in the Appendix B.  

Table 5.5: List of Communication Interface of PROFIBUS-PA in NCS-TT105  

 

To allow the upper layer controller to identify the modified NCS-TT105, the GSD file 

must also be modified corresponding with the increased input and output channels. Once 

the updated file is configured into the Fieldbus controller, the controller can identify and 

communicate with the NCS-TT105 via 16 × AI channels and 8 × AO channels.  

Data 

Direction

Channel

Number
Name Format Comments Unit

0 Channels 1 measurement Float The 1st channel of sensor measurement ℃

1 Channels 2 measurement Float The 2nd channel of sensor measurement ℃

2 EWRLS_u1 Float 1st input of EWRLS %

3 EWRLS_u2 Float 2nd input of EWRLS L/min

4 EWRLS_y Float Reference value of EWRLS ℃

5 EWRLS_FD_Residuals Float Residuals generation from EWRLS ℃

6 CUSUM_G1 Float CUSUM positive cumulation

7 CUSUM_G2 Float CUSUM nagative cumulation

8 CUSUM_Threshold_h Float CUSUM dynamic threshold

9 Fault Indication Float Fault detection indication 0/1

10 EWRLS_KF_Residuals Float Residuals from ARX model for Kalman predictor ℃

11 GM_Prediction Float Prediction of combined GM(1,1) and GM(2,1) ℃

12 KF_Prediction Float Prediction of Kalman predictor and multi-steps iteration ℃

13 Combined_Prediction Float Combined Prediction from Kalman predictor and Grey model ℃

14 Prediction_Validation Float Validation(%) of combined prediction %

15 GM_Prediction_Allocation Float Weight WGM  (%) of Grey model prediction %

0 External Inputs 1 Float 1st input of obserered system %

1 External Inputs 2 Float 2nd input of obserered system L/min

2 Delay_In1 Integer Delay parameter of Input1 Number

3 Delay_In2 Integer Delay parameter of Input2 Number

4 CUSUM_Kh Float CUSUM threshold ratio Number

5 ForgettingFactor_EWRLS Float Forgetting Factor of EWRLS Number

6 Prediction Steps Integer The steps of number for prediction Number

7 GM_N Integer The data length of Grey model sequence Number

Smart Sensor 

-> DCS

Analog Inputs 

FBs' channels

 DCS -> 

Smart Sensor

Analog Outputs 

FBs' channels
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As shown above, the bidirectional communication task is implemented via the 

modification of the PROFIBUS-PA profile and GSD file. The original interface of two-

channels PROFIBUS-PA communication in NCS-TT105 is extended to include both 

16×AI and 8×AO channels, enabling the embedded algorithms in NCS-TT105 can 

exchange data and information with other systems. 

5.4 Implementation of Multitasking in the Real-time 
Operating System 

To execute fault detection, prediction, and bidirectional communication all in real-time, 

the embedded Nucleus RTOS in an NCS-TT105 plays the key role of guaranteeing the 

event response time and period time of the tasks. To achieve the requirements of the 

period time for the three tasks which are 200ms for bidirectional communication task, 

400ms for process fault detection task, and 1000ms for variable prediction task (as shown 

in Figure 5.3), the priority, period time, and quantity of the tasks, as well as an RTOS 

kernel tick, must be designed carefully (some terminologies related to Nucleus RTOS, 

including kernel tick, task state machine, preemptive scheduling, and task priority are 

explained in Appendix C). All the algorithms are scheduled in the Nucleus RTOS, which 

is assigned in the networking and application unit (NAAU) and processed by the ARM7 

MCU in NCS-TT105 transmitter. 
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Bidirectional

Communication

Task

Taks11

Priority 11

Tp-200ms

Process

Fault Detection

Task

Taks12

Priority 12

Tp-400ms

Variable

Prediction

Task

Taks13

Priority 13

Tp-1000ms

Internal Memory Area 

Nucleus RTOS 

Profibus PA Fieldbus Network

Profibus-PA

Profile
Fault Detection

Algorithms

Prediction

Algorithms

16xAI channels - NCS-TT105 -> Controller

8xAO channels - NCS-TT105 <- Controller

Networking and Application Unit 

(NAAU)

MCU of SMART NCS-TT015

Software

Hardware

 

Figure 5.3: Multitasking Implementation of Three Tasks in Nucleus RTOS 

5.4.1 Configuration of Multitasking Scheduling with RMS Rules 

According to the review in section 2.4, RMS offers optimum scheduling solutions among 

other priority-based preemptive static scheduling policies. RMS policies for scheduling 

multitasks are followed in configuring the parameters of the Nucleus RTOS.  

The RMS, which is known as the rate-monotonic priority assignment, indicates that the 

tasks with shorter period time are assigned higher priorities [87]. The relationship 

between the task period time and the priorities in RMS can be expressed as equation(5.1). 

 
1

Periority
PeriodTime

   (5.1) 

Moreover, all the assumptions mentioned in [87] for using the RMS rules can be 

guaranteed during the implementation of NCS-TT105. The cost in time of RTOS kernel 

switching and hardware interruption are ignored. 
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Some timing terminologies and key words should be clarified.  

The terminologies of timing and key words [20] 

eT  : Execution time of a task 

pT : Period time of a task 

rT  : Response time of a task 

dT : Deadline of a task 

intT : Serving interrupts time of a task 

everT : Event response time of a task 

TickT : Kernel tick time of RTOS 

TickN : Numbers of kernel tick 

WL :  Microprocessor workload for running tasks 

 

The execution time 
eT  , which is a dynamic time for online running, can either be 

obtained from a load-test or estimated from computational analysis. The period constant 

time pT  refers to the request rate or invocation interval of a task. The response time 
rT  of 

a task is the time between the starting point of the current task period and the starting 

point of the task execution. The event response time 
everT is the time between the 

occurrence of an event and the response time of the task. The deadline 
dT  is the time 

from a task’s ending point to the end of the current period. The relationship of all these 

timings is shown in equation (5.2), while Figure 5.4 shows more clearly the timing 

terminologies.  

 p r e int dT T T T T      (5.2) 
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Figure 5.4: Timing Terminologies of a Task in an RTOS System 

Three essential rules using RMS are discussed as follows: 

Task event response time: The event response time 
everT  of a task is an important 

criterion for analyzing whether a task can achieve the application requirements. Because 

the starting point of a task may be delayed by an interruption from higher priority 

executing tasks, the response time of a task is dynamic variable. Therefore, the worst 
everT

is commonly used in evaluation criterion. If the worst 
everT can be accepted, then the 

design of multitasking can achieve the requirements of the application.  

The worst event response time 
everT of the task is combined with both the worst task 

response time 
rT  of a task and the period time pT  of a task. Thus the worst event 

response time 
everT of the nth task is expressed as (5.3) 

 

  

1

  

 

  = [ ]

n ever n ever

i n

n ever np nr np ie i i

i

nt

T worst T

where worst T T T T TT
 



   
  (5.3) 

where the worst task response time
nrT  of nth task is the sum of the execution time and 

interruption time from the numbers of i higher priority executing tasks.  

If the event response time everT  of a task is longer than the requirement, the priority, 

execution time and the period time of the task have to be reconsidered and optimized, 

sometimes resulting in a redesign of the parameters of the RTOS or even an upgrade of 
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the microprocessors. The event response time 
everT of the three implemented tasks are 

analyzed in the next subsection. 

RTOS kernel tick setting: The kernel tick 
TickT  is the heartbeat of an RTOS kernel 

which is introduced in Appendix C. The parameter of the kernel tick has a close 

relationship with the switch period of the task state machine, task period time, and RTOS 

kernel workload. Following the rules of RMS, there are two configuration scenarios of 

kernel tick setting. 

A. Scenario-1: [ ]ne npT GCD T  

If the greatest common divisor (GCD) of all the tasks’ period time is greater than the sum 

of the execution time of all tasks, the kernel tick can be configured in between these two 

values[20]. The rule for kernel tick in scenario-1 is shown in (5.4).  

 
1 2 1 2

1 2 1 2

  [ , , , ] [ , , , ]

[ , , , ] [ , , , ]

e e ne p p np

e e ne Tick p p np

if T T T GCD T T T

T T T T GCD T T T



 




  (5.4) 

In kernel tick scenario-1, all tasks are executed completely in a single kernel tick, and the 

executing task with lower priority will not be interrupted by the task with higher priority. 

This result in 
 i intT  of the low priority task is 0. The worst event response time 

 n everT  can 

be determined from equation (5.3), since it is only with the execution time 
ieT and period 

time npT . Moreover, since 
 i intT  of the task with the lower priority is 0, the worst event 

response time 
 n everT of the task in this scenario is the minimum. 

The kernel tick rules in scenario-1 are recommended due to their shorter and more 

accurately determined worst event response time, which enable the  n everT of a task to 

achieve the application requirements probably. Therefore, the kernel tick rules in 

scenario-1 is the suggested. Moreover, it should be also noted that drawback of these 

rules is that the condition from equation (5.4) cannot be met in some applications. The 

designers must either optimize the program to shorten the execution time of the tasks, or 

reorganize the time period of the tasks. 
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B. Scenario-2 - [ ]ne npT GCD T  

In some case, the conditions in scenario-1 can not be met. This allows the designer to 

select these configuration rules in which the kernel tick time 
TickT  is less than the 

minimum of the execution time 
eT of all tasks, and the remainder from the division of the 

greatest common divisor (GCD) of all the tasks’ period time by kernel tick time needs to 

be zero. These rules for the kernel tick in scenario-2 are shown in (5.5) and (5.6)

.   

  
1 2[ , , , ]Tick e e neT Min T T T   (5.5) 

 
1 2( [ , , , ], ) 0p p np TickMod GCD T T T T    (5.6) 

In this scenario, with the small value setting of the kernel tick, the kernel of RTOS will 

frequently interrupt lower priority tasks to respond to REDAY tasks with higher priority. 

This is suitable for the scenario the task is required for, with a short time period and the 

need for a prompt response by the kernel timely. The conditions in (5.5) and (5.6) can 

also be met at the same time in most of cases. However, because of the tasks with low 

priority are frequently interrupted by higher priority tasks, the 
 i intT  of the task with low 

priority is not zero. Therefore, the worst task response time 
rT  and the worst event 

response time 
 n everT of the task with the lower priority may be expended longer. As shown 

in Figure 5.4, the 
dT  of the interrupted tasks may overflow in worst case scenario. 

Meanwhile, since interrupt service routine (ISR) interrupts tasks for switching to kernel 

scheduling every tick, the workload of the RTOS kernel increases dramatically.  

As shown above, the kernel tick needs to be configured, considering the 
eT and pT of the 

all the tasks in RTOS, as well as the event response time from the application 

requirements. The different kernel tick parameters have obvious influence on both event 

response performance and RTOS kernel workload. In order to describe and analyze this 

more clearly, two examples based on these scenarios are discussed in the Appendix C. 

Processor utilization and workload: To guarantee the designed tasks are workable in 

RTOS and the microprocessor, the upper bound of processor utilization and current task 
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workload need to be evaluated. From [87], processor utilization must be less than an 

upper bound for scheduling the m numbers of tasks with RMS, as expressed in (5.7)  

 1/(2 1)m

processor processorWL U m     (5.7) 

where the workload of the processor is caculated using equation (5.8) 

 1 2

1 2

e e me
processor

p p mp

T T T
WL

T T T
      (5.8) 

From (5.7), it can be seen that as the number of tasks, m, increases, utilization of 

processor 
processorU  approaches 70% if RMS is employed. It is therefore recommended 

that the workload processorWL of the MCU in NCS-TT105 transmitter for running all tasks 

with the RMS in RTOS should be less than 70%. The execution time 
eT  and period time 

pT  of all the tasks need to be designed carefully. 

In summary, the design rules for multitasking scheduling in RTOS have been studied in 

detail. Within RMS rules, the task priority, event response time, kernel tick, and 

processor workload all require careful analysis and design.  

5.4.2 Implementation of Three Tasks in Nucleus RTOS 

All the tasks discussed in previous sections are scheduled by the Nucleus RTOS. The 

name, functions, priority, estimated execution time, and period time of the tasks are all 

assigned, as shown in Table 5.6. The communication task with a period time of 200ms is 

named Task11 and assigned with the highest priority 11; the fault detection task, with a 

period time of 400ms is named Task12 and assigned priority 12; the prediction task has a  

period time of 1000ms is named Task13, assigned the lowest priority of 13. According to 

the analysis of computational complexity from section 5.1 and 5.2, the estimated 

execution time of Task12 and Task13 for ARM7 MCU in NCS-TT105 are 70ms and 

90ms, respectively. Moreover, since the programs involved in the communication task 

are not added too much with the original programs of the ARM7 MCU, the estimated 

execution time of Task11 is referenced from Microcyber, at about 30ms. 
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Table 5.6: Three Tasks for Integration in RTOS 

 

From the estimated execution time shown above, the sum of the execution time of the 

three tasks is 190ms. The total execution time is less than the GCD of all three tasks’ 

period time, as shown in equation (5.9). According to the equation (5.4) in scenario-1 of 

the kernel tick setting rules, the kernel tick of Nucleus RTOS is set as 200ms.  

 
11 12 13 11 12 13
ˆ ˆ ˆ[ , , ] 190 [ , , ] 200e e e Tick p p pT T T T GCD T T T ms      (5.9) 

The task flow of multitasking scheduling with a 200ms kernel tick is shown in Figure 5.5. 

After the RTOS starts up, the three tasks run independently according to their assigned 

time periods. Every 200ms, the RTOS kernel executes ISR, and the highest priority 

READY task is executed (the five task states of Nucleus RTOS, including EXECUTING, 

READY, SUSPENDED, TERMINATED and FINISHED are introduced in Appendix C). 

Every 1000ms, the three tasks gather together due to the requirement that period time and 

needs be processed within a single kernel tick interval. As shown in Figure 5.5, according 

to the rules of the kernel tick established in scenario-1, the three tasks are scheduled in 

priority sequence within one kernel tick interval. 

 

Figure 5.5: Task Flow of Multitasking Scheduling in RTOS 

Task11 Task12 Task13

Functions
Bidirectional

communication

Process

fault detection

Variable

prediction

Priority 11 12 13

Estimated Execution Time 

(ms)
30 70 90

Period Time 

(ms)
200 400 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Task11

Task12

Task13

Kernel Tick = 200ms, Every slot = 10ms
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According to equation (5.7), the upper bound of processor utilization is 77.98%. From 

(5.8), the workload of the microprocessor is 41.5%, which is calculated from (5.10).  

 
30 70 90

41.5%
200 400 1000

processorWL       (5.10) 

According to equation (5.3), the worst event response time for each of the three tasks is 

230ms, 500ms, and 1140ms respectively, which are calculated in (5.11). The event 

response time of all tasks can clearly be determined.  

 

1 1 1

2 2 2

3 3

1 

2 

3 3

200 0 0 230

400 30 0 430

1000 (30 70) 0 1100

int

int

ever p r

ever p r

ever p r int

T T T T

T

T

T T T

T T T

    

  

 



   

    

  (5.11) 

To implement period time for three tasks, the NU_Sleep() [95] function in Nucleus 

RTOS is used at the end of each task. The effects of NU_Sleep() for realizing period time 

of the task is shown in Figure 5.6. The NU_Sleep(
TickN ) is used for suspending the 

calling task for the number of kernel ticks. Each task’s period time is configured by the 

numbers of ticks. When NU_Sleep() is called, the kernel will transfer the task to a 

SUSPENDED state. After the numbers of the set kernel tick, the task will be transferred 

to the READY state. Leveraging NU_Sleep(), the accurate period time of a given task 

can be determined by kernel tick and 
TickN .  
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Figure 5.6: Program Context Refer to NU_Sleep() and Kernel Tick 

Finally, as shown in Figure 5.3 and Figure 5.6, the multitasking of the three tasks is 

implemented in the Nucleus RTOS. The summary of this implementation is shown in 

Table 5.7. The kernel tick is set to 200ms. NU_Sleep(1) is called at the end of task 11 to 

implement the 200ms period time. NU_Sleep(2) is called at the end of task 12 to 

implement the 400ms period time, and NU_Sleep(5) is called at the end of task 13 to 

implement the 1000ms period time. The program code is programmed in MULTI 

programming software, and is compiled as a firmware file. To embed the code into NCS-

TT105, the firmware is downloaded into the ARM7 MCU in the NCS-TT105. Finally all 

the algorithms are embedded into the RTOS of the NCS-TT105, allowing NCS-TT105 to 

realize smart functions in practical industrial systems. 

To clarify the different name between the new NCS-TT105 and conventional NCS-

TT105, the enhanced NCS-TT105 which is integrated with smart functions is named 

SMART NCS-TT105. The name SMART NCS-TT105 which means smart algorithms 

embedded and smart functions integrated is used in the following chapter. 
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Table 5.7: Implementation Summary of Three Tasks 

 

5.5 Instructions of using the Designed Smart Sensor 

Considering the conditions of the embedded algorithms, to apply the designed SMART 

NCS-TT105 into practical applications, some instructions of using the designed functions 

in practical process are summarized as following: 

Inputs, outputs and initial parameters of two smart functions: Table 5.8 and Table 

5.9 are reference lists which could be used to set the data interfaces and parameters of the 

internal functions in SMART NCS-TT105 for various process system applications. 

Especially the initial parameters of the algorithms which can be modified by the specific 

monitored process system are summarized in these two tables.  

The discrete dead-time parameters 
1d  and 

2d  can be obtained via the inputs step-

response test into the system. If the 
1d  and 

2d are dynamic parameters, the advanced 

methods for determining the dead-time parameters should be utilized and bumpless 

transfer process of the parameter estimation should be considered. 

The correlation matrix of measurement noise R can be referenced from the technical 

specification in the documents of the applied sensor. Regarding the correlation matrix of 

Task11 Task12 Task13

Functions
Bidirectional

communication

Process

fault detection

Variable

prediction

Priority 11 12 13

Estimated Execution Time 

(ms)
30 70 90

Period Time 

(ms)
200 400 1000

Worst Event Response Time

(ms)  
230 430 1100

Workload

(%)
15.0 17.5 9.0

NU_Sleep(N)

kernel tick = 200ms 
1 2 5
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process noise Q, the higher parameters in Q comparing with R, more weight to the 

measurements and the estimation accuracy is compromised. 

Table 5.8 The Summary of Setting for Process Fault Detection Function 

The Smart Function of Process Fault Detection in Task12 

 

Inputs: 

1( ) :U k  The input 1 of the system 

2 ( ) :U k  The input 2 of the system 

( ) :Y k  The response of the system 

 

 

 

 

 

 

 

Initialization: 

dimension of ARX 

m=5 

  the order of the process system 

1 8 /  d s sample time  

2 4 /  d s sample time  

The dead-time for input 1 

The dead-time for input 2 

Sample time = 400ms (period time of the task) 

0.99avg   Forgetting factor of online computing for 

average value (0.9−1.0) 

0.98var   Forgetting factor of online computing for 

variance value (0.9−1.0) 

0.98w   Forgetting factor of EWRLS (0.9−1.0) 

K = 0.5 Drift threshold ratio (0.1−1.0) 

4.0hK   Alarm threshold ratio (  1.0) 

Output: ( )CUAlarm k  1: Alarm indication, faults are detected  
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0: No fault is detected 

Table 5.9 The Summary of Setting for Variable Prediction Function 

The Smart Function of Variable Prediction in Task13 

 

 

Inputs: 

1( ) :U k  The input 1 of the system 

2 ( ) :U k  The input 2 of the system 

( ) :Y k  The predicted response of the system in 

Kalman predictor 

( ) :Measurem t ken  The predicted response of the system in     grey 

model 

 

 

 

 

Initialization: 

dimension of  

ARX KFM  =3 

  the order of the process system 

1 8 /  d s sample time  

2 4 /  d s sample time  

The dead-time for input 1 

The dead-time for input 2 

Sample time = 1000ms (period time of the 

task) 

10KPP   The steps of prediction 

0.99avg   Forgetting factor of online computing for 

average value (0.9−1.0) 

0.98var   Forgetting factor of online computing for 

variance value (0.9−1.0) 
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0.92w   Forgetting factor of EWRLS (0.9−1.0) 

20.3R   Correlation matrix of measurement noise, 0.3 

is referred from the specification of NCS-

TT105  

20.2
KFMQ I  Correlation matrix of process noise, 0.2 is 

determined by statistical methods. 

11 21
20

G G
M M n   The length of the input data sequence for 

GM(1,1) and GM(2,1) 

2psft   The shifted position of the initial values for 

further prediction from the original data 

sequence ( 1psftn    ) 

Output: ( )KPp kpY P  
GMP steps ahead prediction of Kalman predictor 

(0)ˆ ( )GMComp GMx P  GMP steps ahead prediction of grey model 



100 

Convergence of the parameter estimation: Because of the model-based parameters 

estimation and the model which is used by Kalman predictor all rely on the parameter 

estimation, the identifiability conditions [63] should be guaranteed. Firstly, the system 

should be excited by the inputs sufficiently. Secondly, the two inputs signals are 

uncorrelated with the disturbance of the system. Especially, if the parameter estimation is 

used to estimate the process system in a closed-loop system, the controller order should 

be large than 
1m d  and 

2m d , where m is the order of the estimated parameters of the 

process system, and 
1d  and 

2d are the discrete dead-time parameters of the system 

corresponding to the two respective inputs [63]. Thirdly, the expectation of the system 

disturbance should be equal to 0. 

Normal status of the system: The normal status of the process system should work 

around operating point, because only the process system works around operating point is 

suitable to be described by the linear model. Therefore, ARX linear model can be used by 

parameter estimation and Kalman predictor as system model, if the process works around 

operating point. 

5.6 Summary 

This chapter implements three tasks, including fault detection, prediction, and 

bidirectional communication. Multitasking scheduling designs are presented and 

implemented following RMS rules. The three tasks are scheduled following their 

respective time periods and priorities, as shown in Figure 5.7. The SMART NCS-TT105 

is to be verified and validated in the next chapter. 
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Figure 5.7: Overview of the Multitasking Implementation in Nucleus RTOS 
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Chapter 6  

6 Verification and Validation of the Smart Sensor 

To validate the designed smart functions and exam if the implemented smart sensor can 

provide the information of process faults and variable predicted changes, the enhanced 

SMART NCS-TT105 is tested in a physical bed in real-time. The implemented three 

tasks including bidirectional communication, fault detection, and variable prediction have 

been verified. The functionalities of integrated process fault detection and variable 

prediction are validated.  

6.1 Introduction to the Test Environment 

To verify and validate if the SMART NCS-TT105 can achieve the designed 

specifications which are discussed in section 4.1, a test facility and two DCS control 

systems are used to construct a test environment.  

6.1.1 Introduction to the Test Facility 

The typical equipment of industrial process system includes pumps, valves, pipelines, 

chillers, and heaters. To test the SMART NCS-TT105 in a practical process system, a 

system named the Nuclear Power Control Test Facility (NPCTF) [105] which can 

demonstrate the practical process systems, is used as evaluation process system. The 

NPCTF is a simplified process system designed for verification and validation (V&V) 

test of the research in instrumentation and control field. In this study, the primary water 

loop subsystem of the NPCTF is used as the evaluation process system. The noise in this 

evaluation process system is assumed as white noise. Utilizing this system, typical 

industrial application scenarios can be carried out in the research lab.  

The complete schematic diagram of the primary water loop is shown in Figure 6.1. The 

essential equipment in the primary water loop subsystem of the NPCTF includes pumps, 

valves, actuators, sensors, heater and cooling system. Various combination of the 

equipment can emulate typical industrial process systems such as furnaces, cooling 

towers, steam boilers, and heat exchangers. Therefore, this primary water loop subsystem 

is qualified as an evaluation process system comparable to a real industrial system.  
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Figure 6.1: Primary Water Loop Subsystem of the NPCTF 

The essential equipment in the primary water loop subsystem of the NPCTF is listed in 

Table 6.1. They include pumps, valves, actuators, sensors, a heater, and a cooling system. 

In the initial stage of the process system’s evaluation, pump2 supplies water from the 

lower tank to the water loop through servo valve CV-16. In normal status, pump1 

circulates the water loop with constant-velocity. Valves CV-11, CV-14, FV-2 and FV-3 

are opened, while valves CV-3, CV-20, FV-1 are closed. The flow rate sensor F1 is used 

for measuring the water flow rate in the water loop. Valves CV-1 and CV-2 are regulated 

by proportional integral derivative (PID) controls from a Freelance DCS to control the 

water flow rate and ensure it stays around the operating point. The heater is controlled by 

signals from the Freelance DCS PID control via regulating C2. T1 and T2 are water 

temperature which is measured by RTD sensing element at inlet and outlet of the heater 

respectively. This two RTDs are connected to the NCS-TT105 smart transmitter. Valve 

CV-34 is regulating by the PID to control the chilled water used for cooling down the 

heated water via a heat exchanger. The heating and cooling systems can also be switched 

to manual mode for shutdown operations. Furthermore, the FV-1 manual valve can be 

used for operating pipeline leak fault, while the FV-2 and FV-3 manual valves can also 

be used for operating pipeline plugged faults.  
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Table 6.1: Essential Equipment in Primary Water Loop Subsystem of the NPCTF 

 

6.1.2 Introduction to the DCS Systems 

Besides the test facilities, ABB Freelance DCS [106] and Siemens PCS 7 DCS [107] also 

play important roles in this test environment. The ABB Freelance DCS and NPCTF 

process systems are typical of plant control systems. A Siemens PCS 7 DCS system is 

used to monitor and archive the online data from smart sensors.  

ABB Freelance DCS is used to control and monitor the evaluation process system. The 

AC700F controller and the S700 I/O are the hardware of the Freelance system, while 

DigiVis is the operation software system (OS) of the Freelance. The DigiVis OS contains 

display picture graphics, faceplates operation, report, and alarm functions. The DigiVis 

OS graphic of NPCTF system is shown in Figure 6.2. Both the control logic program and 

the OS configuration program have been preconfigured and preprogrammed. This ABB 

Freelance DCS system runs as an established control system in practical plants.  

Equipment Components Signals/Data Functions Unit

Pump1 C1 Circulate primary water flow %

Pump2 C5 Supply water in primary loop %

F1 F1 Flow rate of the primary water loop L/m

T1 T1 Water temperature at the heater inlet ℃

T2 T2 Water temperature at the heater outlet ℃

CV-1 CV-1 Control flow rate F1 %

CV-2 CV-2 Control flow rate F1 %

CV-14 CV-14 Circulate primary water flow %

CV-16 CV-16 Control water supply for primary loop %

C2 C2 Control signal of the heater power %

- - Mannual control for stop/start -

CV-34 CV-34 Control chilled water to cool heated water %

- - Mannual control for stop/start -

FV-1 - Simulate pipeline leak -

FV-2 - Simulate pipeline plug -

FV-2 - Simulate pipeline plug -

Mannual

 Valve

Pump

Sensor

Valve

  Heater

Cooling 

System
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Figure 6.2: DigiVis HMI Graphic of NPCTF system 

A Siemens PCS 7 DCS system is used for connecting and monitoring the SMART NCS-

TT105 via a PROFIBUS-PA Fieldbus, as well as for exchanging the data between the 

Freelance DCS and the SMART NCS-TT105. The S7-400 controller and its integrated 

PROFIBUS-DP Fieldbus port are the typical compositional configuration of the PCS 7 

DCS hardware system. Through this port, the S7-400 controller can connect remote 

stations and PROFIBUS-PA devices through a DP/PA Link, which is the gateway for 

transmitting PROFIBUS-PA to the PROFIBUS-DP master system. The SMART NCS-

TT105 can therefore be connected with a S7-400 controller using a PROFIBUS-PA 

Fieldbus. From a software angle, WinCC is used as the OS of the PCS 7 for collecting 

data, showing graphics and faceplates, archiving data, generating alarms, illustrating 

trends, and exporting reports  [108]. WinCC is a high-performance archiving database 

system for both short-term and long-term data archiving. The archiving functions and the 

trend ActiveX tools are the most efficient tools for recording the experimental data and 

visualizing the change in values. Leveraging the PROFIBUS-DP, PROFIBUS-PA 

Fieldbus, and trend and data archiving, the Siemens DCS system is utilized as part of the 

V&V system. 
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The schematic diagram of the whole V&V system is shown in Figure 6.3. ABB Freelance 

DCS takes charge of the NPCTF system, running just as a real plant system would. The 

sensor and control data can be transferred through ABB S700 analog output I/O models 

as 4-20mA signals, connected to a PROFIBUS DP slave I/O station named DC 705F. The 

S7-400 controller connects this DC 705F PROFIBUS DP station and communicates with 

the SMART NCS-TT105 through a DP/PA Link. Through this architecture, the sensor 

and control data of the evaluation process system can be transferred to the SMART NCS-

TT105 via a PROFIBUS PA. The data which is used for the embedded algorithms is both 

from external data from PROFIBUS-PA and two sensing channels of SMART NCS-

TT105. 

 

Figure 6.3: Schematic Diagram of Validation System for SMART NCS-TT105 

To validate the test results, the data exported from the WinCC archiving system by the 

trend ActiveX tool are used for both offline and online validation tests. All the exchanged 

data from the PROFIBUS-PA interface of the NCS-TT105 is collected into the WinCC 

archiving database system. The WinCC trend ActiveX tools are used for displaying 
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various trends in the variables, and for exporting data as Excel files. The variable table 

can be used for viewing the data values in the trend ActiveX tools. Using all of these 

tools allows us to efficiently test the designed SMART NCS-TT105.  

6.2 Verification of Communication Channels in Smart 
Sensors 

The bidirectional communication task of the SMART NCS-TT105 is evaluated in the test 

environment. The systems, including SMART NCS-TT105, PCS7 DCS system, 

Freelance DCS system, and NPCTF primary water loop evaluation process system, all 

run together. The data exchanged between the SMART NCS-TT105 and the DCSs is 

shown in a WinCC graphic. 

Among the exchanged data, the C2, F1, T1 and T2 which are listed in Table 6.2 are the 

four essential variables for the embedded algorithms in SMART NCS-TT105, and as 

such are the focused channels of the bidirectional communication for verification. Other 

channels among 16 × AI and 8 × AO channels are the same implementation methods as 

these four channels. 

Table 6.2: Four Essential Variables for the Algorithms in SMART NCS-TT105 

 

C2: control signals for the heater current C2 is the control signal used to regulate the 

current powering the heater, with a range of 0.0%-100.0%. It is the exogenous input 

signal that affects the difference in water temperature between the heater inlet and outlet. 

Through the DC 705F PROFIBUS-DP Slave station, C2 is acquired by a S7-400 

controller, and is transferred to the SMART NCS-TT105 via a PROFIBUS-PA Fieldbus. 

Name Signal Function Path Scale Unit

Heater Current C2
Control signal 

of the heater power

AC 700F -> DC 705F 

-> S7-400 -> NCS-TT105
0 - 100 %

F1 Sensor F1
Flow rate 

of primary water loop

AC 700F -> DC 705F 

-> S7-400 -> NCS-TT105
0 - 9.5 L/m

NCS-TT105 - T1 T1
Water temperature 

of heater inlet 

Sensing elements T1 

-> NCS-TT105-> S7-400
0  - 50 ℃

NCS-TT105 - T2 T2
Water temperature 

of heater outlet 

Sensing elements T2 

-> NCS-TT105-> S7-400
0  - 50 ℃
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F1: flow rate of the primary water loop F1 is the signal of the F1 flow sensor. The 

range of signal F1 is 0.0 L/min - 9.5 L/min. The water flow rate is controlled by servo 

valves CV-1, CV-2 and manual valves CV-2 and CV-3. The water flow rate also affects 

the difference in water temperature between the heater inlet and outlet. The signal F1 is 

also therefore the exogenous input signal of the heater system. Signal F1 is connected to a 

current splitter in order to retransmit the measurement signal 4-20mA to both the 

AC700F controller and the DC 705F PROFIBUS-DP slave station, after which the signal 

F1 can be transferred to the SMART NCS-TT105 via a PROFIBUS-PA Fieldbus. 

T1: water temperature at the heater inlet The range of the T1 temperature 

measurement is 0.0℃-50.0℃. Since water goes through the whole loop, T1 is affected by 

many factors, such as the cooling system, water flow rate, pipe length, and heater power. 

Temperature T1 can therefore be deemed as the response of an input-implicit system. 

T2: water temperature at the heater outlet The range of the T2 temperature 

measurement is 0.0℃-50.0℃. It is the product of the heater, and is the essential variable 

of the primary water loop system. Moreover, the difference in temperature between T2 

and T1 can be described as 
2 1( )T T T T    . T temperature is affected both by the 

power of the heater and flow rate . Since the control signal C2 and flow rate signal F1 are 

observed, T can be seen as the response of an input-explicit system. 

The flow chart of the exchanged data and WinCC graphic with I/O monitoring block 

icons are shown in Figure 6.4. In Figure 6.4, the four square I/O fields in WinCC graphic 

show the values of C2, F1, T1, and T2, which are exchanged with the SMART NCS-

TT105. This verifies that bidirectional communication between the SMART NCS-TT105 

and V&V systems has been achieved. The multiple data channels shown in Table 5.5 can 

be realized. Meanwhile, the collected data from the evaluation process can be used for the 

validation of both process fault detection and variable prediction functions.  
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Figure 6.4: Verification of Communication Channels of SMART NCS-TT105  

6.3 Offline Validation of Smart Functions in MATLAB  

The previous verification section paves the way for acquiring proper data from the 

evaluation process system. To guarantee the functionalities and specifications of the 

designed smart functions are qualified before download them into the NCS-TT105, the 

algorithms are programmed in the MATLAB and are validated using acquired process 

data. This so-called offline validation means that the algorithms are in MATLAB rather 

than running in the NCS-TT105, as shown in Figure 6.5. The data archived and exported 

from WinCC is imported into MATLAB as the data source for algorithm validation. The 

data from C2, F1, T1, and T2 are imported as a “.txt” file, with a sample time of the data 

of 1000ms. The cycle time of the algorithms in MATLAB for each step is 1000ms. Other 

parameters and initial values are set directly in MATLAB. The graphics of all the test 
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results from MATLAB can intuitively display the fault detection alarms and the effects of 

the prediction. The procedure and results of validation for the two functions are shown in 

the next two subsections. 
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Figure 6.5: Diagram of Smart Functions Offline Validation 

6.3.1 Process Fault Detection 

The fault detection algorithms, including EWRLS for parameter estimation and residual 

generation, and CUSUM for residual evaluation, are programmed in MATLAB. To 

validate the functionalities of the algorithms, typical faults which frequently occur in 

practice are considered. These faults, including heater power tripping, abnormal heater 

operation, chiller shut down, pipeline plug, pipeline leak, flow rate signal loss, and T1 

sensing line break, are demonstrated in this primary water loop process system. Those 

faults and their time stamps are listed in Table 6.3.  
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Table 6.3: Simulated Faults in Primary Water Loop System for Offline Validation 

 

The initial status of the water loop system is running around its normal operating point. 

At the stable operation point, water temperature T1 at inlet of heater is cooled around 

22℃, and water temperature T2 at outlet of heater is controlled by the heater around 

28℃. The heater current control signal C2 is regulated around 68% and flow rate F1 is 

around 8.8 L/min. The archived data is selected from 02:30 PM to 04:05 PM, and the 

data length of every variable is 5700, which means the duration time of the test is 5700s. 

The whole process of the variables changes is shown in Figure 6.6. 

Faults Time
Horizontal 

Axis
Events Operation Objects

2:30 PM 0 Normal operation

A 2:45 PM 908 Heater power tripping Heater is stopped (C2 is supplied continously) Heater

B 3:00 PM 1816 Control malfunctioned C2 is manipulated 69.3% -> 50% Heater

C 3:15 PM 2705 Chiller shut down Cooling system is shut down Cooling system

D 3:31 PM 3660 Pipeline plugged FV-2 and FV-3 are closed and opened again Pipeline

E 3:40 PM 4186 F1 signal loss Sensor F1 is powered off F1 Sensor

F 3:50 PM 4800 T1 signal loss T1 sensing elements is unplugged NCS-TT105

G 4:00 PM 5440 Pipeline leak FV-1 is opened and closed again Pipeline
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Figure 6.6: Overview of Variables in MATLAB for Fault Detection Validation 

Fault A:  This fault simulates the tripping occurrence in the current power cable of the 

heater. To demonstrate this fault, the heater is stopped and the control signal C2 is sent to 

the SMART NCS-TT105 continuously. Figure 6.6 shows that measurement T2 and T1 

decrease because of the heater power loss, and are cooled by the chiller in the water loop 

after tripping fault occurs. Since C2 is held and the water flow rate is not influenced, the 

inputs signals of EWRLS are unchanged. After a moment, the power of heater is 

switched back to auto mode, and T1 and T2 rise back to their normal operation points. 
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Fault B: This fault simulates abnormal operation of the heater current control, which can 

be caused by the operator misusing the controller. To demonstrate this fault, the control 

mode of the heater is switched from auto to manual mode, and the C2 is changed from 

69.3% to 50% to reduce the current supply to the heater. T1 and T2 drop after this fault 

occurs and rise again after the heater recovers into auto-control mode. 

Fault C: This fault simulates cooling system shut down. To demonstrate this fault, the 

chiller is manually stopped, resulting in T2 increasing 3℃ before controllers return it 

back to its operating point after 2705 of the horizontal axis in Figure 6.6. The changes of 

T1, T2, and C2 can be seen in Figure 6.6. The chiller is also promptly restarted. 

Fault D: This fault simulates a pipeline plug caused by impurities or dirt. To demonstrate 

this fault, the manual valve FV-2 and FV-3 are turned down and reopened within 3 s. 

Since the water pipe is suddenly blocked, the flow rate decrease from 8.8 to 4.2 L/min 

but recovers instantaneously. Since the water flow fluctuates, small changes in T1 and T2 

also influenced. 

Fault E: This fault simulates a scenario in which the sensor which communicates with 

SMART NCS-TT105 loses power or loses sensing signals. The F1 flow rate sensor is 

powered off to demonstrate this fault. The F1 signal changes caused by this fault can be 

seen from 4186 of the horizontal axis in Figure 6.6. 

Fault F: This fault simulates a sensing element loss or sensing line break of the SMART 

NCS-TT105. To demonstrate this fault, the T1 RTD sensing line is plugged out. The 

measurement of T1 jumps to 0 at 4800 of the horizontal axis in Figure 6.6. After 5s, the 

T1 sensing line has recovered. Moreover, since T1 is not involved in closed-loop control, 

neither the heater nor the T2 outlet temperature are not affected. 

Fault G: This fault simulates a water leak caused by pipeline rupture. To demonstrate 

this fault, the manual valve FV-1 is opened and reclosed within 5s. Since the water run 

out, the flow rate F1 signal decreases dramatically which can be seen around 5440 of the 

horizontal axis in Figure 6.6. Since the water loss is in closed water loop, the water 

temperature arises obviously after this fault occurs. 
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To show the internal effects of CUSUM, the fault residual generation and residual 

evaluation are shown in Figure 6.7. In normal status, the changes in residuals are within 

about 0.02 ℃, which means that the estimated parameters can track the actual 

parameters of the system well. Once faults occur in the process, the residual changes 

dramatically, which can clearly be seen in Fault A to G occurrence in the top plot of 

Figure 6.7. In the middle plot of Figure 6.7, the evaluation results (1)

kg  and (2)

kg  from 

(4.18) are red and green respectively. The dynamic threshold h  in (4.19) is the blue line. 

It can be seen that after the faults occur, once either the (1)

kg or (2)

kg  grows greater than h , 

it can be seen that the fault alarm indications are generated promptly. Finally, fault 

detection alarms with value 1 are indicated in the bottom plot of Figure 6.7. The black 

lines which refers to faults detection are located in 910, 1820, 2708, 3668, 4190, 4801, 

and 5455 of the horizontal axis.  

Furthermore, since the mean of the residual is almost zero and the variance of the residual 

is still small value in normal status, therefore if the residual is assumed to be equal to the 

noise of the system, the assumption of the white noise in the test system can be accepted. 
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Figure 6.7: Residual Generation and Evaluation for Fault Alarm 

Revisiting the faults occurrence record in Table 6.3, the response interval between each 

fault and its corresponding fault indication are listed in Table 6.4. It can be seen that 

process faults can be detected within 25 steps. If every step corresponds with 400ms, the 

response time of fault alerts are all within 10s.  

This offline validation shows that fault detection function can detect process faults and 

generate alerts signals in time, enabling the system to achieve the specifications of fault 

detection functions can be achieved. The fault detection algorithms can be embedded into 

the SMART NCS-TT105 for online process fault detection tests. 
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Table 6.4: Result of Offline Validation of Fault Detection Test 

 

6.3.2 Variable Prediction 

The variable prediction algorithms including GM(1,1), GM(2,1) grey model prediction 

and Kalman predictor as well as multi-step iteration, are all programmed in MATLAB. 

To validate the functionalities of the code, the 10-step ahead predicted values of heater 

outlet water temperature T2 are compared with actual variable. Revisiting the 

specifications of variable prediction in section 4.1.2, prediction accuracy has two criteria, 

which are around the normal operating point and abnormal status. Therefore, as shown in 

Table 6.5, the variable prediction validation is tested under these two scenarios. 

Table 6.5: Scenarios of Offline Variable Prediction Test 

 

In the initial stage of the test, the process system is running normally. At the stable 

operation point, temperature T1 is cooled around 17℃, and temperature T2 is controlled 

by the heater is around 26℃, while the control signals C2 is regulated around 65% and 

the flow rate F1 is around 6.4 L/min. To test the prediction results, the archived process 

values which include both process changes around the normal operating point and 

changes related to abnormal status are selected between 6:40 PM to 6:44 PM, 

Faults Events Time
Fault 

Occur

Fault 

Detection

Response 

Steps

Response 

Time(s)

Sepcifi-

cation(s) 

Validation 

Result

A Heater power tripping 2:45 PM 908 910 2 < 1 < 10 Pass

B Control abnormal 3:00 PM 1816 1820 4 < 2 < 10 Pass

C Chiller shut down 3:15 PM 2705 2708 3 < 2 < 10 Pass

D Pipeline plugged 3:31 PM 3660 3668 8 < 4 < 10 Pass

E F1 signal loss 3:40 PM 4186 4190 4 < 2 < 10 Pass

F T1 signal loss 3:50 PM 4800 4801 1 < 1 < 10 Pass

G Pipeline leak 4:00 PM 5440 5455 15 < 8 < 10 Pass

Scenarios Status
Start

Time

End

Time

Start

Horizontal 

Axis

End

Horizontal 

Axis

Events

A
System is around 

operating point 
6:40:01 PM 6:41:00 PM 2401 2460 C2 is regulated

B
System is in 

abnormal status
6:41:01 PM 6:44:00 PM 2461 2640

Heater is shut down

and started again
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corresponding to the horizontal axis 2400 to 2640. The process changes associated with 

Scenarios A and B are shown in Figure 6.8.  

Under Scenario A, the current power of the heater control signal C2 is regulated, result in 

the T2 decrease from 28℃ to 25℃. Since the reduce of T2 temperature, the cooling 

system decreases the speed of its internal pump. This leads the water flow rate has a little 

decrease, and F1 flow rate signal changes from 6.4 L/m to 6.2 L/m. Since every 

equipment in system is normal and the T2 fluctuate around the operating point 26 ℃, 

therefore, the Scenario A is the system works under normal status. 

Under Scenario B, the heater is shutdown to demonsrate the system works under 

abnormal status. To show the influence by the heater only, the flow rate is controlled to 

be kept stable. Since the heater is shutdown, both the temperature value of T1 and T2 

drop dramatically. After about 80s, the heater is started again, and T2 increase gradually 

following the C2 is increased by the controlller. 

Under these two scenario, the T2 variable is predicted by the variable prediction 

algorithms. To predict T2, T1 and 
2 1( )T T T T    are predicted respectively, and the 

final prediction of T2 is combined from these two parts.  
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Figure 6.8: Overview of the Process Changes for Prediction Validation 

The grey model prediction function is used for predicting heater inlet temperature T1. 

Figure 6.9 shows the prediction effects of the heater inlet water temperature T1 from 

three grey model prediction methods which are prediction from GM(1,1), GM(2,1), and 

combined method with 
GMW . The actual T1 variable is represented as a dark green line; 

the 10-step prediction of GM(1,1) is a red line; the 10-step prediction of GM(2,1) is blue 

line; and the final combined prediction is black line. Since the black line is ahead of the 

green line, this indicates that the combined grey model prediction accurately foresees the 

process variables.  

To validate the effects of GMW , the percentage value of the GMW  is shown as bold red line 

in the bottom of Figure 6.9. From 2480 to 2530 of the horizontal axis, the value of T1 
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changes from a flat line to a decline. Because of this non-monotonic change, 
GMW is 

greater than 0 from 2497 to 2530 of the horizontal axis. As discussed in equation (4.66), 

if 
GMW is greater than 0, the combined prediction is balanced between the prediction from  

GM(1,1) and GM(2,1). From the zoomed graphic, it can be seen that the black line 

located between the red line and blue line when 
GMW is greater than 0. To validate that the 

combined method’s prediction is better than the prediction from GM(1,1) and GM(2,1), 

the average error rate of the prediction is used for validation. Using equation (6.1) and 

selecting 2507 2540k  ,  the average error rate of the 10-step prediction from 

GM(1,1), GM(2,1) are calculated by the equation (6.1), and the combined method are 

compared in Figure 6.9  

( 10) ( )
  [ ( )] 100%

( )

Prediction k Actual k
Prediction error rate Avg Abs

Actual k

 
    (6.1) 

where the prediction steps is 10, ( 10)Prediction k  is the p-step ahead prediction at 

( 10)k  th step. ( )Actual k is the actual process response at kth step. It should be noted 

that the ( )Actual k  must not equal to 0 when using equation (6.1). 

As shown in Table 6.6, the average error rate of the prediction from combined method is 

less than the prediction from GM(1,1) and GM(2,1). This means that the proposed 

combined methods can provide better prediction than the independently using GM(1,1) 

and GM(2,1).  
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Figure 6.9: Offline T1 Prediction by the Grey Model Prediction 

Table 6.6: Comparison of Prediction by Grey Model and Combined Method 

 

  

Curve
Prediction 

Method

Prediction

Start

Prediction

End

Actual Value

Start

Actual Value

End

Prediction 

error rate 

Red GM(1,1) 2497 2530 2507 2540 0.86%

Blue GM(2,1) 2497 2530 2507 2540 0.87%

Black
Weighted from

GM(1,1) and GM(2,1)
2497 2530 2507 2540 0.73%
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Kalman one-step prediction and multi-step iteration prediction are used for predicting the

2 1( )T T T T    . In contrast to prediction using the Grey model, the impact of inputs 

have been considered in the Kalman one-step predictor and multi-step iteration 

prediction. Since T is affected by both heater power and flow rate, C2 and F1 are 

considered as inputs of the ARX model in the Kalman predictor and multi-step iteration 

for T prediction. 

The prediction effects of the Kalman predictor are shown in Figure 6.10. In Figure 6.10, 

the brown line is the 10-step ahead prediction; the orange line is actual T ; the dark blue 

line is the value of C2; and the light blue line is the value of F1. The three stages 

including heater working around operating point, heater shutdown, and heater restart are 

shown. It can be seen that the brown line is ahead of the orange line, indicating that the 

T  prediction foresees the T  variables. It needs to be noted that the T prediction 

effects between 2480 and 2560 of the horizontal axis are not good, because the C2 is 0, 

the water temperature in this interval is far from the normal operating point, and the 

online estimated parameters of ARX have not tracked the actual parameters of the system 

in this interval. After 2560 on the horizontal axis, the C2 is increased and the exciting 

input is increased. After that, the parameters can be estimated well, and the prediction 

shows normally. 
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Figure 6.10: Offline (T2-T1) Prediction by Kalman Predictor and Multi-step Iteration  

The effects of combined T2 prediction are shown in Figure 6.11. The actual value of T2 

is shown as a black line and the 10-step prediction value is shown as a red line. Among 

the intervals in scenario A, the prediction value of T2 at 2410 of the horizontal axis is 

25.70℃. The actual value of T2 after 10s is 25.48℃, and the prediction error is 0.22℃. 

Among the intervals in scenario B, the prediction value of T2 at 2475 of the axis which is 

in the right hand zoomed figure is 22.89℃. The actual value of T2 after 10s is 23.01℃. 

The prediction error is 0.12℃. The actual value of T2 after 10s is 23.01℃, while the 

prediction error is 0.12℃. These two examples show the prediction errors are small in 

both scenario A and scenario B of system working conditions. To display the comparison 

between the prediction value and actual value of T2 more intuitively, the prediction value 



123 

of T2 is shifted by 10 steps to the right and shown in Figure 6.12. This plot presents an 

overview of the effects of the T2 prediction. The red line of prediction and black line of 

actual T2 is basically matched in the duration of test. The absolute errors between the 

prediction and actual value on every sampled point between 2401 and 2640 are less than 

1.0 ℃, although ARX did not track the actual parameters of the system very well between 

2480 and 2560 of the horizontal axis, which is discussed about T prediction in previous 

paragraph.  

 

Figure 6.11: Offline T2 Prediction Validation for Combined Prediction 
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Figure 6.12: Offline T2 Prediction Validation for Combined Shifted Prediction 

Using equation (6.1), and selecting 2390 2450k  , the predicted value of T2  from 

2390 to 2450, and the actual value of T2 from 2400 to 2460 of the horizontal axis are 

compared. Finally, the validation results of the average errors of the T2 10-step 

prediction in scenario A and B are shown in Table 6.7. The prediction error rate in 

scenario A is 0.92%, while the prediction error rate in scenario B is 2.18%. Both 

prediction error rates are less than the specification. The grey model and Kalman 

predictor can both be implemented into the NCS-TT105 for online prediction tests. 

Table 6.7: Validation Results of Offline Prediction Test 

 

Furthermore, because of the EWRLS parameter estimation for identifying the parameters 

of ARX models which are used both in fault detection and prediction, the condition of the 

EWRLS parameter estimation using in the closed loop should be investigated. As 

Scenarios Status
Start

Time

End

Time

Start

Horizontal 

Axis

End

Horizontal 

Axis

Length of 

Sampled

Data

Prediction 

Error Rate 
Specification

Validation 

Results

A

C2 is regulated

System is around 

operating point 

6:40:01 PM 6:41:00 PM 2401 2460 60 0.92%
< 1.2% = 0.3/25℃ 

(Around O.P.)
Pass

B

Heater is shut down

and started again

System is in 

abnormal status

6:41:01 PM 6:44:00 PM 2461 2640 180 2.18%
< 6% =  1.5/25℃ 

(Abnormal)
Pass
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discussed in section 5.5 about the convergence of the parameter estimation, since the 

orders of PID closed loop controller is 2, the delay parameters
1 28 / ,   4 /s sd s T d s T  , 

and the orders of the ARX 5m  , these meet the identifiability conditions [63] which are 

the controller order large than 
1m d  and 

2m d . The convergence criteria of parameter 

estimation using in this test closed loop system can be achieved. Therefore, the EWRLS 

parameter estimation can be used to identify the ARX model in this closed loop systems. 

The EWRLS parameter estimation can be used in smart sensor for on-line identifying the 

primary water loop system. 

6.4 Online Validation 

Based on the successful offline validation of algorithms in MATLAB, the functionalities 

of the implemented algorithms can be guaranteed. To implement the process fault 

detection and variable prediction functions into NCS-TT105, two groups of algorithms 

are programmed as embedded C code and organized as embedded tasks in the RTOS of 

the SMART NCS-TT105. This so-called online validation means that the algorithms are 

scheduled by Nucleus RTOS and embedded in SMART NCS-TT105, as shown in Figure 

6.13. 

To validate the internal algorithms of the SMART NCS-TT105, all the data exchange in 

the PROFIBUS-PA interface are archived and monitored in the trend ActiveX in WinCC 

OS. Among the exchanged data, four channels of data are the inputs of the embedded 

algorithms. Heater control signal C2 and flow rate F1 are exogenous inputs of the ARX 

models in the algorithms. Water temperature T1 and temperature T2 are the known 

responses of the process system. Regarding the output of the internal functions, alarm 

indication, which is from 0 and 1, is produced by a fault detection algorithm. The 10s 

prediction of T2 is provided by an embedded variable prediction algorithm. The sample 

time of WinCC for data archiving and trend drawing is 1000ms. Furthermore, since three 

tasks which are bidirectional communication Task11, process fault detection Task12, and 

variable prediction Task13 are scheduled in the Nucleus RTOS of SMART NCS-TT105, 

to test the multitasking scheduling of these three tasks, the execution time and period 

time of the tasks are needed to be validated. 
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Figure 6.13: Diagram of Smart Functions Online Validation 

6.4.1 Multitasking in RTOS  

In this section, the execution time and period time of three tasks in Nuclues RTOS are 

tested. To test the execution time of a task, the service NU_Retrieve_Clock() is used at 

both the beginning and the end of a task. The result of NU_Retrieve_Clock() is the kernel 

time. Execution time is computed using a counter to calculate kernel time. The method is 

shown in Figure 6.14. The counter result “ulExecutionTime” can be the execution time of 

the task if the kernel tick is set as 1ms. 
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Figure 6.14: The Method of Computing Execution Time of a Task 

Counters are used in all three trasks to test their time period. The time period is calculated 

by equation (6.2), while online test method is shown in Figure 6.15. Combining the test 

duration time and the counter results of each task, the period time of each task can be 

calculated. 

 
 

 P

Test duration
Tested T

Counter
   (6.2) 

 

Figure 6.15: The Method of Computing Period Time of Three Tasks 

The validation results of execution time and period time are shown in Table 6.8 and 

Table 6.9 respectively. The execution time of the Task11, Task12, and Task13 are 27ms, 
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70ms, and 80ms respectively. To avoid counter error, the period time is tested for six 

times. The averaging period time of the Task11, Task12 and Task13 are 200ms, 400ms, 

and 1000ms respectively. The processor workload is 39.5% which is analyzed in (6.3). 

Since the workload sum of the three tasks is less than 70%, the integrated tasks are 

suitable for running in NCS-TT105. 

 
27 70 85

39.5%
200 400 1000

processorWL       (6.3) 

From the test results, we can conclude that the execution time and period time of three 

task achieve the application requirement, and the designed parameters of Nucleus RTOS 

are correct. The real-time multitasking design and the period time of three tasks achieve 

the required specifications. 

Table 6.8: Validation Results of Execution Time of Three Tasks 

 

Table 6.9: Validation Results of Period Time of Three Tasks 

 

  

Task Number Tasks Functions

Designed 

Execution 

Time

Tested

Execution 

Time

Validation

Result

Task 11 PA bidirectional communication <30ms 27ms Pass

Task 12 Process fault detection <100ms 70ms Pass

Task 13 Variable prediction <150ms 85ms Pass

Test1

(Counter)

Test2

(Counter)

Test3

(Counter)

Test4

(Counter)

Test5

(Counter)

Test6

(Counter)

Task 11 200 200 200 200ms 400 400 400 200ms Pass

Task 12 100 100 100 400ms 200 200 200 400ms Pass

Task 13 40 40 40 1000ms 80 80 80 1000ms Pass

Validation

 Results

Multitasking 

Validation 

Test

Group1 Execution Time Validation

Test Duration 40s
Group1 

Execution 

Time

Group2 Execution Time Validation

Test Duration 80s
Group2 

Execution 

Time
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6.4.2 Process Fault Detection 

In online validation, the simulated faults emulating the faults occurring in real systems 

are demonstrated in the evaluation process system. These faults include heater power 

tripping, chiller shut down, pipeline plug and leak, and sensor signal loss. The 

architecture of process fault detection for online test is shown in Figure 6.16. The 

exchanged data and alarm indication of the SMART NCS-TT105 is shown in the trend 

ActiveX tool of WinCC.  

ABB Freelance

Actuators
NPCTF

Main water loop

Conventional

Sensors

Faults

Testing Environment

Reference Input

ARX-2u

EWRLS

Residual 

Generation

CUSUM

Residual

Evaluation

T1-Inlet & T2-Outlet Temperature

F1-Flow rate

Faults 

Indication

0->1

∆T

∆T

F1

C2

SMART NCS-TT105
 

Figure 6.16: Validation of Process Fault Detection in SMART NCS-TT105 

The overview of the fault detection graphic is shown in Figure 6.17. The light blue line is 

the trend of value F1, the dark blue line is the trend of value C2, the green line is the 

trend of value T1, and the red line is the trend of value T2. The black line, which 

represents the alarm alert, is changed from 0 to 1 when the NCS-TT105 generates an 

alarm indication. According to the specification designed in section 4.1, the process fault 

detection validation test can pass if the time interval between process fault occurrence 

and black alert is less than 10s.    
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Figure 6.17: Validation Picture of Fault Detection Graphic in WinCC 

Before the online process fault detection test, the primary water loop system of evaluation 

process system needs to run around its normal operating point. Under normal operation, 

water temperature T1 is cooled to around 20℃, water temperature T2 is heated to around 

30℃, while the control signal C2 is regulated around 70%, and the flow rate F1 is around 

6.5 L/min. The online test is from 02:00 PM to 17:30 PM.  During this online test, the 

demonstrated six types of faults are shown in Table 6.10. 

Table 6.10: Simulated Faults in Primary Water Loop System for Online Validation 

 

  

Faults Events Fault Occurs Operation Object

A Heater tripping 2:19:12 PM Heater is stoped (C2 is supplied continously) Heater

B Chiller shut down 2:37:40 PM Cooling system is shut down Cooling system

C Pipeline plugged 3:07:29 PM FV-2 and FV-3 are closed and opened again Pipeline

D F1 signal loss 4:11:06 PM Sensor F1 is powered off  Sensor F1

E T1 signal loss 4:15:34 PM T1 sensing element is plugged out NCS-TT105

F Pipeline leak 5:19:48 PM FV-1 is opened and closed again Pipeline
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Fault A:  This fault simulates the tripping occurrence in the heater’s power cable. To 

demonstrate this fault, the heater is stopped manually, and the control signal C2 is sent to 

SMART NCS-TT105 continuously. In Figure 6.18, it shows that the fault occurs at 

02:19:12 PM. After the heater losses power, water temperatures T2 and T1 decrease due 

to water being cooled by the cooling system. It can be seen that fault alert shown in 

position@ is archived at 02:19:16 PM. The response time of fault detection for the fault 

of heater tripping is 4s, which is less than 10s. 

 

Figure 6.18: Fault Detection Validation of Heater Tripping Fault 
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Fault B: This fault simulates cooling system shut down, demonstrated by manually 

stopping the chiller. In Figure 6.19, it shows that the cooling system is shut down at 

02:37:40PM. After this fault occurs, water temperature T1 and T2 both increase. Because 

of the loop control, control signal C2 is also decreased to reduce the heater power. The 

fault alert shown in the position@ is archived at 02:37:46PM. The response time of fault 

detection for the fault of cooling system shut down is 6s, which is less than 10s. 

Furthermore, T1 and T2 increases dramatically even though the loop controller takes 

actions for regulating C2. After 2:37:50 PM, The system approaches the deteriorated 

status and C2 is regulated distinctly, therefore, the fault is detected in second twice 

because of this serious faults occur.  

 

Figure 6.19: Fault Detection Validation of Cooling System Fault 
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Fault C: This fault simulates pipe plug by either impurities or dirt. To demonstrate this 

fault, the manual valve FV-2 and FV-3 are turned down and reopened within 10s. As 

shown in Figure 6.20, after the pipeline is plugged at 03:07:29 PM, the flow rate 

disturbances range from 6.3 to 4.4 L/min. The water temperature of T1 and T2 also 

undergo small changes due to this fault. It can be seen that the fault alert shown in the 

position@ is achieved at 03:07:36 PM. The response time of the fault detection for the 

fault of pipeline plug is 7s, which is less than 10s. 

 

Figure 6.20: Fault Detection Validation of Pipeline Plug Fault 
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Fault D: This fault simulates a scenario involving either a power loss to the sensor which 

communicates with the SMART NCS-TT105 or a loss of sensing signals. To demonstrate 

this fault, the F1 flow rate sensor is powered off. In Figure 6.21, the signal F1 is 0 after 

the F1 sensor was powered off at 04:11:06 PM. The alarm alert shown in the position@ is 

archived at 04:11:11 PM. The response time of fault detection for the fault for F1 signal 

loss is 5s, which is less than 10s. Furthermore, because of the F1 changes dramatically, 

the SMART NCS-TT105 indicates consecutive fault alarm with 3 times, allowing the 

black line to keep in the state of value 1 for 3s. 

 

Figure 6.21: Fault Detection Validation of F1 Loss Fault 
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Fault E: This fault simulates a sensing element loss or break. To demonstrate this fault, 

the T1 RTD sensing line is plugged out. In Figure 6.22, it shows that the value of T1 

jumps from 20.18℃ to 0℃ at 04:15:34 PM. Because of the T1 value is not involved in 

closed-loop control, control signal C2 and temperature T2 are not affected. The alarm 

alert shown in the position@ is achieved at 04:15:36 PM. The response time of fault 

detection for T1 signal loss is 2s, which is less than 10s. Furthermore, because of the T1 

changes dramatically, the SMART NCS-TT105 indicates consecutive fault alarm with 2 

times, allowing the black line to keep in the state of value 1 for 2s. 

 

Figure 6.22: Fault Detection Validation of T1 Loss Fault 
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Fault F: This fault simulates the pipeline leak caused by pipeline rupture. To 

demonstrate this fault, the manual valve FV-1 is opened and reclosed within 10s. Figure 

6.23 shows the fault occurring at 05:19:48 PM, at which point the flow rate changes from 

6.87 to 6.65 L/min and then decreases dramatically due to the manipulation of manual 

valve FV-1. The alarm alert shown in the position@ is archived at 05:19:52 PM. The 

response time of process fault detection for the fault of pipeline leak is 4s, which is less 

than 10s. 

 

Figure 6.23: Fault Detection Validation of Pipeline Leak Fault 
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CUSUM Residual Evaluation: The internal effects of two-sided CUSUM residual 

evaluation is shown in Figure 6.24. The yellow line shows the changes in residuals 

generated from EWRLS. The evaluation results (1)

kg  and (2)

kg  from equation (4.18) are 

red and green trends, respectively. Threshold h  in equation (4.19) is the blue line. Since 

h  is changed dynamically, the blue line fluctuates rather remaining constant. Under 

normal operation, the red and green lines are under the blue line. Once the fault occurs, 

the black line representing the alarm indication changes from 0 to 1 if either the (1)

kg or 

(2)

kg is greater than h . Figure 6.24 shows the alarm indication is 1, because the green line

(2)

kg is 0.0341, which is higher than the blue line threshold 0.0248 at 2:37:46PM. This 

means that these faults can be effectively evaluated using the two-sided CUSUM 

algorithm. 

 

Figure 6.24: Effects of Alarm Indication by CUSUM 

As shown above, the faults including heater tripping, chiller shut down, pipeline plug and 

leak, F1 signal loss, and T1 signal loss are all demonstrated for fault detection validation. 

The validation results are summarized in Table 6.11. Those online validation tests show 

that the embedded fault detection algorithms can detect the process faults and generate 
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fault indications in time. The response times of fault alerts are all within 10s. Thus, the 

designed fault detection function in SMART NCS-TT105 achieves the desired 

specifications, and the process faults can be detected in incipient period. 

Table 6.11: Online Validation Results of Fault Detection Test 

 

6.4.3 Variable Prediction 

To validate the integrated variable prediction functions with an online test, the actual T2 

and the predicted T2 are compared, and the average error between the predicted and 

actual T2 is validated. Since the periodic time of task13 is 1s, the 10-step ahead 

prediction represents a 10s prediction. 

To predict the T2 value, the prediction of T1 computed using the grey model, and 

prediction 
2 1( )T T T T     computed using the Kalman predictor and repeated iteration 

are combined. The organization of two parts of prediction and corresponding inputs and 

outputs are shown in Figure 6.25. The combined prediction of T2 values and the actual 

T2 value are compared to validate preidction accuracy. The trend and variable table are 

used as tools for examining the prediction results in the WinCC. Equation (6.1) is used 

for computing error as prediction error rate validation approach. 

Faults Events
Fault 

Occurs 

Fault 

is Detected

Response time

(s)

Specification 

(s)

Validation 

Result

A Heater tripping 2:19:12 PM 2:19:16 PM 4 < 10 Pass

B Chiller shut down 2:37:40 PM 2:37:46 PM 6 < 10 Pass

C Pipeline plugged 3:07:29 PM 3:07:36 PM 7 < 10 Pass

D F1 signal loss 4:11:06 PM 4:11:11 PM 5 < 10 Pass

E T1 signal loss 4:15:34 PM 4:15:36 PM 2 < 10 Pass

F Pipeline leak 5:19:48 PM 5:19:52 PM 4 < 10 Pass
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Figure 6.25: Validation of Variable Prediction in SMART NCS-TT105 

The overview of the prediction graphic is shown in Figure 6.26. The dark blue line is the 

trend of the C2 value, and pink line is the trend of F1 value. The dark green line is the 

trend of the T1 value, while the light green line is the trend of the 10s prediction of the T1 

value. The dark red line is the trend of the T2 value, whereas the light red line is the trend 

of 10s prediction of the T2 value. To better demonstrate the prediction results, the 

variables table is used and shown at the bottom of every figure. According to the 

specifications designed in section 4.1, the variable prediction validation test can pass if 

the prediction error rate is less than 1.2% around a normal operating point, and 6% under 

an abnormal system status.   
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Figure 6.26: Validation Picture of Prediction Graphic in WinCC 

Before the online variable prediction test, the primary water loop system in the evaluation 

process system runs around the normal operating point. Under the normal operation of 

the water loop system, water temperature T1 is cooled around 17℃, water temperature T2 

is controlled by a heater around 26℃, while the heater control signal C2 is regulated 

around 65%, and flow rate F1 is around 6.5 L/min. The duration time of this online test is 

from 05:00 PM to 07:30 PM. The prediction performance in four scenarios of process 

changes are listed in Table 6.12. 

Table 6.12: Scenarios of Online Variable Prediction Test 

 

  

Scenarios Operation
Start

Time 

End

Time
Status

A
F1 changes

(Flow changes)
5:13:05 PM 5:14:05 PM System works around operating point

B
C2 changes

(Power of heater changes)
6:07:45 PM 6:08:45 PM System works around operating point

C Heater shutdown 6:45:00 PM 6:48:00 PM System is in abnormal status

D Chiller shutdown 7:10:10 PM 7:13:10 PM System is in abnormal status
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Scenario A:  This scenario demonstrates the system changes around the operating point 

due to water flow rate changes. Figure 6.27 shows that the all the variable trends changes 

after the flow rate F1 changes from 7.5 to 6.5 L/min at 05:13:10 PM. Using the variable 

table, variables at 05:13:30 PM and 05:13:30 PM are shown in detail. The T2 prediction 

at 05:13:30 PM is 25.31℃, and the actual value of T2 after 10s is 25.46℃. The error 

between the prediction and actual value is 0.15. To validate the prediction error rate 

under this scenario, the actual values of T2 from 05:13:05 PM to 05:14:05 PM, which is 

the main parts of the T2 value fluctuation are selected and compared with the 

corresponding prediction results. The average error rate of prediction calculated by the 

equation (6.1) is 0.43%. This average error rate is also shown in a validation summary in 

Table 6.13. 

In Figure 6.27, it also shows that the response of T2 actual value can be described 

approximately as a second orders underdamped systems corresponding with the water 

flow rate changes. Therefore the m dimension of the ARX model which is set 3 for 

variable prediction function and 5 for process fault detection function can be used to 

describe this primary water loop system which works around 25℃ and 26℃. 

 

Figure 6.27: T2 Prediction Validation with the Changes of Flow Rate F1  
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Scenario B: This scenario demonstrates the system changes around the operating point 

due to power of heater changes. In Figure 6.28, it shows that the all variables trends 

changing after control signal C2 changes from 65% to 85% and fluctuates after 06:07:46 

PM. Using the variable table and selecting the variables at 06:07:52 PM and 06:08:00 PM 

are shown in the details. It can be seen that the prediction of T2 at 06:07:52 PM is 

26.60℃, and the actual value of T2 after 10s is 26.73℃. The error between the prediction 

and actual value of this example point is 0.13. To validate the prediction error rate under 

this scenario, the actual values of T2 from 06:07:45 PM to 06:08:45 PM, which form the 

main parts of the T2 value fluctuation, are selected and compared with the corresponding 

prediction results. The average error rate of prediction calculated by the equation (6.1) is 

0.41%. This average error rate is also shown in the validation summary in Table 6.13. 

 

Figure 6.28: T2 Prediction Validation with the Changes of Heater Control Signal C2  
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Scenario C:  This scenario demonstrates the system changes when the fault being 

considered heat shutdown. In Figure 6.29, it shows that the all the variables trends change 

due to this abnormality, which occurs after 06:45:00 PM. Differing from the system 

changes around the operating point, the heater shutdown causes obvious changes in 

temperatures T1 and T2, and results in the T2 value moving far away from its normal 

operating point of 26 ℃. The light red line, which is the prediction of T2, undergoes 

abrupt changes after the heater shuts down near 06:45:10 PM, because the model of the 

system has an abrupt change in abnormal status. Using the variable table, the variables at 

06:45:16 PM and 06:45:26 PM are shown in detail. It can be seen that the T2 prediction 

at 06:45:16 PM is 19.20℃, and the T2 actual value after 10s is 19.98℃. The error 

between the prediction and actual value is 0.78℃. To validate the prediction error rate in 

this scenario, the actual values of T2 from 06:45:00 PM to 06:48:00 PM, which are the 

main parts of the T2 value fluctuation are selected and compared with the corresponding 

prediction results. The average error rate of prediction calculated by the equation (6.1) is 

3.64%. This average error rate is also shown in the validation summary in Table 6.13. 

 

Figure 6.29: T2 Prediction Validation with Heater Shutdown 
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Scenario D:  This scenario demonstrates the system changes when the fault under 

consideration is a cooling system shut down. In Figure 6.30, it shows that the all the 

trends in variables changes due to this abnormal situation after 07:10:10 PM. This 

abnormality causes temperatures T1 and T2 to increase from 07:10:15 PM onwards. The 

heater power control signal C2, which is controlled by a loop controller, is decreased. 

Since the forgetting factor of the EWRLS is set at 0.98, which is suitable for tracking the 

slowly changing parameters of the system model, these abrupt changes in system 

parameters are not tracked particularly well by EWRLS from 07:10:15 PM to 07:10:25 

PM. Therefore, the light red line of T2 prediction firstly drops from 27.5℃ to 22.5℃ due 

to a decrease in C2. From 07:10:25 PM on the prediction become more reasonable, 

because the changed parameters of the system model in the cooling system shutdown 

scenario are updated by EWRLS after 15s from the initial occurrence of the abnormality. 

To overcome this prediction problem, the speed of the parameter estimation needs to be 

faster. Therefore, the forgetting factor of the EWRLS can be smaller in this particular 

situation. 

Using the variable table and selecting variables at 07:10:27 PM and 07:10:37 PM, the 

predicted and actual values of T2 are shown in details. The prediction of T2 at 07:10:27 

PM is 31.31℃, while the actual value of T2 after 10s is 32.20℃. The error between the 

prediction and actual value is 0.89℃. To validate the average prediction error rate in this 

scenario, the actual T2 values from 07:10:10 PM to 07:13:10 PM, which are the main 

parts of the T2 value fluctuation, are selected and compared with the corresponding 

prediction. The average error rate of prediction calculated by equation (6.1) is 3.66%. 

This average error rate is also shown in the validation summary in Table 6.13. 
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Figure 6.30: T2 Prediction Validation with Chiller Shutdown 

As shown above, prediction performance under the four scenarios including flow rate 

changes, heater power changes, heater shut down and chiller shut down are demonstrated 

and validated. The validation results are summarized in Table 6.13. It can be seen that the 

prediction error rates in these four scenarios are all less than the specifications; thus the 

variable prediction function can predict the process variables successfully when the 

systems are operating in either normal or abnormal conditions.  

Table 6.13: Online Validation Results of Prediction Test 

  

Scenarios Operation
Start

Time 

End

Time

Length of 

Sampled

Data

Prediction 

Error Rate 
Specification

Validation 

Result

A
F1 changes

(Flow changes)
5:13:05 PM 5:14:05 PM 60 0.43%

< 1.2% = 0.3/25℃ 

(system is normal)
Pass

B
C2 changes

(Power of heater changes)
6:07:45 PM 6:08:45 PM 60 0.41%

< 1.2% = 0.3/25℃ 

(system is normal)
Pass

C Heater shutdown 6:45:00 PM 6:48:00 PM 180 3.64%
< 6% =  1.5/25℃ 

(system is abnormal)
Pass

D Chiller shutdown 7:10:10 PM 7:13:10 PM 180 3.66%
< 6% =  1.5/25℃ 

(system is abnormal)
Pass
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6.5 Summary of the Designed Smart Sensor 

From the V&V test in this chapter, the data analysis functions of process fault detection 

function and variable prediction function are integrated into smart sensors successfully. 

The summary of the performance of designed smart functions can be seen in Table 6.14. 

Table 6.14: Performance of Designed Smart Functions in the Smart Sensor 

 

Based on the V&V test in this chapter, the data analysis functions of process fault 

detection and variable prediction can successfully be integrated into smart transmitters. 

Revisiting the limitations of existing smart sensors, and the solutions of the improvement 

discussed in chapter 1, the main highlights of the designed smart sensors can be 

summarized as: 

Data analysis integration: The functions of conventional smart sensors are 

manufactured to measure precision value, and transmit measurements. There are few 

integrated functions in smart transmitters for analyzing equipment health and process 

conditions. The successful implementation of process fault detection and variable 

prediction functions in the SMART NCS-TT105 shows that data analysis functions 

which focus on equipment and process conditions can be integrated into smart 

transmitters. The integrated data analysis functions extend the capabilities of smart 

sensors compared with the more conventional measurement function.  

Information provision: Up to now, the role of the existing smart sensors are still 

designed to provide measurement data. Through this thesis, the embedded algorithms 

Smart Function Function Specification Performance

Fault Detection Response Time

Heater tripping < 10s Detect fault of heater tripping

Chiller shut down < 10s Detect fault of  cooling system

Pipeline plugged < 10s Detect fault of pipleline plugged

F1 signal loss < 10s Detect fault of external sensor signal loss

T1 signal loss < 10s Detect fault of sensing elements loss

Pipeline leak < 10s Detect fualt of pipleline leak fault

10s ahead Prediction Prediction Error Rate

System works 

around operating point
< 1.2% = 0.3/25℃ Predict 10s ahead of system response

System is 

in abnormal status
< 6% =  1.5/25℃ Predict 10s ahead of system response

Variable 

Prediction

Process 

Fault 

Detection
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enable the smart sensor to detect process incipient faults and predict the approaching 

process variable changes. The process information of fault detection and prediction can 

be used for guiding preventive maintenance and taking early actions when abnormal 

process status occurs. The embedded algorithms evolve the role of the smart sensors to be 

valuable information provider.  

In summary, the successful implementation of these two functions demonstrates that 

smart sensors can serve as integrated data analysis and information provider devices. The 

implementation procedures can used to integrate further data analysis functions and 

algorithms into smart transmitters to further enrich their functionalities. 

6.6 Summary 

In this chapter, the SMART NCS-TT105 which is used in a practical test environment is 

verified and validated. The V&V tests which is summarized in Table 6.15 show that the 

implemented functions and multitasking design achieving the designed specifications. 

The designed smart sensor can provide information of process faults and critical process 

variables’ prediction. 

Table 6.15: Summary of V&V Test 

 

Tasks in RTOS of

Smart Sensor
Function Specification V&V Result

Cycle Time

200ms Pass

Fault Detection Response Time

Heater tripping < 10s Pass

Chiller shut down < 10s Pass

Pipeline plugged < 10s Pass

F1 signal loss < 10s Pass

T1 signal loss < 10s Pass

Pipeline leak < 10s Pass

10s ahead Prediction Prediction Error Rate

System works 

around operating point
< 1.2% = 0.3/25℃ Pass

System is 

in abnormal status
< 6% =  1.5/25℃ Pass

Process 

Fault 

Detection

Variable 

Prediction

Bidirectional

Communication

Exchange data between 

smart sensor 

and other systems
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Chapter 7  

7 Summary and Conclusions 

In this thesis, design, implementation, verification, and validation of the smart sensors 

with the process fault detection and variable prediction function are performed. The 

process information of process faults and future changes of variable can be extracted by 

SMART NCS-TT105 from the collected data. 

7.1 Summary 

In this research, the process fault detection and variable prediction are selected as smart 

functions to enhance the data analysis capabilities of the existing industrial transmitter 

only using its underutilized computational resources without modifying its footprint nor 

adding extra hardware. The designed embedded algorithms enable the smart transmitter 

to provide process information beyond the measurement and communication and allow 

the data analysis functions to be processed at sensor level. The main research tasks in this 

thesis are summarized as follows:  

A. Through the literature review, the state of the art smart sensors are designed mainly to 

provide measurement and transmitting measurement via communication functions. 

To enhance the capabilities of the existing smart sensors, the desirable functions of 

process fault detection and variable prediction are selected as smart functions to be 

integrated into an existing transmitter. 

B. To use the underutilized computational resources of the MCU in the NCS-TT105, the 

feasible algorithms for extracting the information of fault detection and prediction 

from collected data are investigated. To realize process fault detection, ARX model is 

used as model structure, EWRLS is used as parameters estimation and residual 

generation method, and two-side CUSUM test is used as residual evaluation method. 

While, to realize variable prediction, Kalman predictor, grey models and multi-step 

iteration methods are utilized.  
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C.  The designed parameters and algorithms are programmed and implemented into a 

transmitter hardware platform. To schedule algorithms with the designed period time, 

the parameters of RTOS in the implementation platform are discussed and designed. 

Finally, the three tasks in the Nucleus RTOS of the SMART NCS-TT105 including 

bi-directional communication task, process fault detection task, and variable 

prediction task are scheduled in real-time execution. 

D. The verification test shows that the designed smart sensor can be workable in a 

practical process facility. The offline validation tests the functionalities of the 

algorithms for realizing process fault detection and variable prediction functions. The 

online test validates that the designed smart sensor with the embedded algorithms can 

detect the process faults and predict 10s ahead variable prediction. 

The procedure of the investigating suitable functions, studying the algorithms base on the 

computational resources of the implementation platform, implementing the feasible 

algorithms, and verification and validation in the test facility can be used as a 

demonstration for further desirable functions to be integrated into smart transmitters to 

enhance the existing smart sensor. 

7.2 Conclusions 

According to verification and validation results of the SMART NCS-TT105, conclusions 

are summarized as follows:   

A. The data analysis functions which are process fault detection and variable prediction 

functions can be realized in the smart sensors. The capabilities of the designed smart 

transmitter can be enhanced by embedding desirable functions without modifying its 

footprint nor adding external hardware. 

B. The information of faults in the process system and variable prediction can be 

extracted from the collected data by the smart sensors locally. 

C. The process fault detection and variable prediction functions of condition monitoring 

systems can be realized in the device layers.  
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7.3 Future Works 

Based on the research achievements in this thesis, subsequent implementation and 

development work can be performed to further expand the capabilities of smart sensors. 

The future direction of research can be sketched out as follows: 

A. Varying forgetting factor of EWRLS  

As discussed in the section 6.4.3, the EWRLS with constant forgetting factor is suited for 

estimating the system with small changed parameters. To timely track the parameters of 

the system in fault condition when the model is used for prediction, the varying forgetting 

factor can be applied and can be changed smaller for forgetting the past error quickly. 

Therefore, with the varying forgetting factor, the EWRLS method can be used flexibly 

for different applications. 

B. Convergence criteria of parameter estimation in closed loop 

If the smart sensors are used in closed loop system to identify the parameters of the 

system, the identifiability conditions should be validated. In this thesis, the test 

environment achieve the conditions. However, some practical systems may not meet the 

identifiability conditions. In [63], some solutions are discussed to overcome this problem. 

To improve the applicability of the smart sensors, those enhanced solutions can be 

implemented into smart sensors for estimating parameters in closed loop system. 

C. Integration of performance analysis functions  

Performance analysis functions can provide information on aging and wear and tear of 

system components. Integrating such functions into smart sensors enables the smart 

sensor to analyze such process information for preventive maintenance. 

D. Implementation of efficient algorithms  

With the growth of embedded algorithms, smart sensor processor workload, power 

consumption, and functional performance must be balanced. More computationally 

efficient algorithms need to be developed and implemented in smart sensors. 
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E. Implementation of wireless communication  

Wireless communication technologies, such as Low-Power Wide-Area Network 

(LPWAN) and wireless personal area networks (WPANs), can also be implemented in 

smart sensors. Wireless functions enable smart sensors to collaborate with other systems 

and devices. The data collected by smart sensors could thus be more comprehensive, 

providing a smart edge in the global network. 

In summary, based on current technical strength and forward-looking design, smart 

sensors can contribute even greater value for industrial production and thus further 

improve human lives.  
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Appendices 

Appendix A: Standards for Sensing in NCS-TT105 

A. IEC 60751  

IEC 60751 [97] standard specifies the relationship between temperature and  industrial 

platinum resistance. RTD is used base on a phenomenon known as thermal resistivity, 

which shows a principle that metal resistance increases if its temperature increases. Using 

this principle, the temperature can be calculated by measuring RTD resistance. The 

following equations show this relationship [97], 
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PT100 and PT 1000 The RTDs are two common used RTDs. They have a range of −200 

to 850 °C. To convert resistance measurement into temperature value, the transfer 

calculation methods can use tables of resistance values to find correspondence or 

computation equations. 

B. IEC 60584-1 

IEC 60584-1 [98] standard specifies the relationship between temperature and  multiple 

types of thermocouples using polynomial equations and tables. TC is used base on an 

effect known as Electromotive Force (EMF) in hot junction refer to cold junction. 

Generally, the cold junction is on sensors or control cabinet side, while the hot junction is 

the sensing probe with measuring object. Once the temperature applied in hot junction, 

the millivolt which refer to the dissimilar of two junctions will be generated. Measuring 
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this millivolt, the temperature difference between hot junction and cold junction can be 

derived. 

The typically used TCs include types E, J, K, T, R, S, B and N. The reference 

polynomials, which express the relationship between temperature and measured 

thermocouple EMF corresponding with different types of TCs, are different. The smart 

sensor can decide to use related equations refer to the TC type configuration. The 

temperature range of TCs is large. Most of these types are higher than 1000°C. Therefore, 

if the temperature of the measured objects is higher than 850 °C, TCs are suitable to be 

used. 
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Appendix B: Introduction of PROFIBUS-PA  

A. General Introduction of PROFIBUS-PA Fieldbus 

PROFIBUS-PA is an industrial Fieldbus used for connecting field level sensors and 

actuators. It is one of the leading Fieldbus technologies, widely used in automation 

systems, especially in harsh and potentially explosive environments in the process 

industries [99]. The physical layer of PROFIBUS-PA is designed according to IEC 

61158-2, while its profile uses IEC 61784-1 [100].  

The key features of PROFIBUS-PA on the physical layer are a digital communication 

bus with powering and hazardous environment deployment. According to IEC 61158-2, 

Manchester Encoded and Bus Powered (MBP) technology is used with PROFIBUS-PA 

[100]. This technology allows the PROFIBUS-PA to be 31.25 Kbit/s as data transmission 

rate and a maximum main cable length of 1900m. According to the PROFIBUS-PA 

standard [101], the numbers of inputs and output bytes must not exceed 244 bytes. Each 

channel employs 5 bytes, in which sensor measurement uses 4 bytes with float data 

format, while related channel diagnostic messages use 1 byte. PROFIBUS-PA has been 

verified by the Fieldbus Intrinsically Safe Concept (FISCO) [110] and IEC 60079-11. 

The FISCO model validates and standardizes the application of communication networks 

used in potentially explosive environments. This enables devices which are employed in 

hazardous areas to communicate with a control system via PROFIBUS-PA Fieldbus. For 

such hazardous environment scenarios, the maximum length of the PROFIBUS-PA 

should be less than 1000m, and the numbers of devices on the bus must be decreased 

with respect to power supply limitations. More detailed specifications of a PROFIBUS-

PA can be found in Table B.1. 
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Table B.1: The Specifications of PROFIBUS-PA [99] 

 

B. Introduction of the PA devices Profile 

The device profile which is designed to fulfill PROFIBUS-PA standards and functions is 

called PA devices in [101]. A PA device profile complies with Fieldbus protocols and 

profile specifications, and defines all functions and parameters for different devices. The 

internal structure of a PA devices profile is shown in Figure B.1. The current PA device 

profile released by PROFIBUS & PROFINET International (PI) group is version 3.02 

[101]. Function blocks, including the Physical Block (PB), Transducer Block (TB), and 

Function Block (FB), are described in this profile according to IEC 61804.  
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Figure B.1: Block Structure of a PA devices Profile [100]  

The roles of these three types of blocks are summarized as follows [101][100]: 

Physical Block (PB): A PB specifies a group of parameters that describe the 

characteristic of a particular device. FB is used as an ID card for identification by the 

upper layer Fieldbus controllers. For instance, the device name, hardware version, 

software version, manufacturer name, and identification number are all stored in the 

block. Only one PB needs to be used per device profile.  

Transducer Block (TB): A TB contains the measurement data and channel parameters. 

It transfers ADC raw data to measurement data and provides access from the sensing 

elements to the corresponding function blocks. Different types of sensing elements, such 

as temperature, pressure, or level, have their specific TB. For instance, as shown in 

Figure B.2, a temperature sensor is configured one temperature TB for transferring two 

channels measurement data. The parameters of the sensing elements such as a 2, 3, and 4 

wire connection, and input range for linearization, are configured in TB. 

Function Block (FB): A FB is used for setting the parameters of measurement data and 

exchanging data with Fieldbus controllers. Therefore, FBs are the interface blocks for 

exchanging the internal data with fieldbus network. There are four types of FBs, such as 

Analog Input FB, Analog Output FB, Digital Input FB, and Digital Output FB. The 
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internal diagram of an Analog Input FB for transferring internal data to fieldbus is shown 

in Figure B.3. 

 

Figure B.2: Internal Diagram of a Temperature Transducer Block [101] 

 

Figure B.3: Internal Diagram of an Analog Input Function Block [101] 
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Appendix C: Introduction of Nucleus RTOS 

A. Terminologies of Nucleus RTOS 

To understand the task scheduling and program running context, some important 

theorems of Nucleus RTOS are need to be introduced. They are shown as follows: 

Kernel tick: Nucleus RTOS uses a periodic timer service – a so-called kernel tick. Once 

the system is compiled and started up, kernel tick will work as the heartbeat of the RTOS. 

The smaller the value of this timer, the higher resolution of the timing and faster the 

response of the highest task can be. However, a small value of the kernel tick can results 

in less efficient of RTOS by frequent interruption in its kernel.  

Task state machine: The Nucleus RTOS defines five task states, including 

EXECUTING, READY, SUSPENDED, TERMINATED and FINISHED. When multiple 

tasks are scheduled by the preemptive kernel of the RTOS, the tasks are transferred 

among three typical states, which are EXECUTING, READY, and SUSPENDED. 

Through those states transferring, the system can take advantage of the time spent waiting 

in one task to execute another task, allowing multitask processing. 

Preemptive scheduling: Preemption is the action of suspending a task with lower 

priority when a higher priority task is ready. Once kernel tick occurs, RTOS kernel calls 

interrupt service routine (ISR) to find the highest priority task in the READY queue. 

Then the highest priority task is executed promptly. Other lower priority READY tasks 

need to wait and the preempted task are transferred to SUSPENDED status. Through 

preemptive scheduling in Nucleus RTOS, the response time of higher priority tasks can 

be guaranteed. 

Task priority: Based on RMS rules, the task with shorter period time is assigned higher 

priorities. In Nucleus RTOS, the service named NU_Create_Task() is used for creating a 

task and assigning priority for a task. The task with higher priority is assigned with lower 

numeric priority integer value in NU_Create_Task(). It is suggested that the priority 

value of user tasks in Nucleus RTOS are set from 10 to 255. 
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B. Configuration of Kernel tick in RTOS  

To demonstrate the configuration of kernel tick, three tasks named Task11, Task12 and 

Task13 are used as examples and need to be scheduled by Nucleus RTOS systems. 

Following the rules of RMS, the setting of kernel tick is need to be discussed based on 

different scenarios of 
eT and 

pT of three tasks. Two examples based on two kernel tick 

scenarios are discussed. They can be a good guidance for designing kernel tick in RTOS. 

1)  Scenario-1 - [ ]ne npT GCD T  

In the first scenario, the GCD of all three tasks period time are larger than the sum of all 

three tasks execution time. The execution time and period time of three tasks are shown 

in Table C.1. The assumptions of execution time of three tasks are 30ms, 70ms, and 40ms 

respectively. The corresponding period time, which comes from application 

requirements, are 200ms, 400ms, and 1000ms. The kernel tick time, event response time, 

utilization and workload of the processor are analyzed and calculated at bellowing. 

Table C.1: Execution Time and Period Time of Tasks in Scenario-1 

 

Following RMS rules, the Task11 which is shorter period time is assigned with the 

highest priority11. The second highest priority is the Task12 with the priority 12. The 

lowest priority is Task13 with priority 13. From the equation (5.4), the kernel tick can 

meet the first kernel tick scenario. Therefore, from calculation in the equation (C.1), the 

kernel tick can be set as 200ms. 

 1 2 1 2[ , , , ] 140 [ , , , ] 200e e ne Tick p p npT T T T GCD T T T      (C.1) 

The task flow of multitasking scheduling in the first scenario is shown Figure C.1: Task 

Flow of Multitasking Scheduling in Scenario-1. Every 200ms, the system kernel executes 

ISR and the highest priority READY task is executed. The three tasks are executed in the 

Tasks Execution time(ms) Period time(ms)

11 30 200

12 70 400

13 40 1000
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sequence of priority and completed within one kernel tick interval. Every 1000ms, the 

three tasks gather together due to the requirement of period time and needs to be 

processed within one kernel tick interval. As shown in Figure C.1, three tasks are 

scheduled in the sequence of priority within one kernel tick interval every 1000ms. 

 

Figure C.1: Task Flow of Multitasking Scheduling in Scenario-1 

According to equation (5.7), the upper bound of processor utilization is 77.98%. From 

(5.8), the workload of microprocessor is 36.5%, which is calculated from (5.10).  

 
30 70 40

36.5%
200 400 1000

processorWL       (C.2) 

According to equation (5.3), the worst event response time for each three task is 230ms, 

500ms, and 1140ms respectively, which are calculated in (5.11). The event response time 

of all tasks can be determined clearly. 
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In summary, kernel tick is set as 200ms in scenario-1.With this configuration, all the 

parameters of the three tasks are summarized in Table C.2.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Task11

Task12

Task13

Kernel Tick = 200ms, Every slot = 10ms
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Table C.2: Analysis of Three Tasks in Scenario-1 

 

2)  Scenario 2 - [ ]ne npT GCD T  

In the second scenario, the GCD of all three tasks period time are small than the sum of 

all three tasks execution time. The execution time and period time of three tasks are 

shown in Table C.3. The assumptions of execution time of three tasks are 40ms, 80ms, 

and 120ms respectively. The corresponding period times of three task, which are same as 

previous scenario, are 200ms, 400ms, and 1000ms.  

Table C.3: Execution Time and Period Time of Tasks in Scenario-2 

 

Because of the period times of the three tasks are not changed, following RMS rules, the 

priority of Task11, Task12 and Task13 are the same as previous scenario, which are 11, 

12, and 13 respectively. Since the sum of the execution time of three tasks is increased, as 

shown in (C.4), the kernel tick cannot meet the kernel tick scenario-1. Therefore, the 

kernel tick have to be set following the rule from kernel tick scenario-2 which are 

discussed in (5.5) and (5.6). The kernel tick is set as 20ms, which is shown in (C.6). 
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Tasks
Execution time

(ms)

Period time

(ms)
 Priority

Worst event 

response time(ms)  
Workload

11 30 200 11 230 15.0%

12 70 400 12 430 17.5%

13 40 1000 13 1100 4.0%

Tasks Execution time(ms) Period time(ms)

11 40 200

12 80 400

13 120 1000
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The task flow of multitasking scheduling for the second scenario is shown in Figure C.2. 

Every 20ms, the system kernel executes ISR. At that time the highest priority READY 

task is executed and the lower tasks are preempted or interrupted. It needs to be care 

about that the Task13 is interrupted by Task11 at slot 11 and 12. This means that the low 

priority tasks could be interrupted by higher priority task several times if the period time 

of higher priority task is short. Therefore, the worst event response time is extended in 

some special case in which lower priority tasks are interrupted and preempted frequently.  

 

Figure C.2: Task Flow of Multitasking Scheduling in Scenario-2 

According to equation (5.7), the upper bound of processor utilization is 77.98%. From 

(5.8), the workload of the processor is 52.0%, which is calculated from equation (C.7).  

 
40 80 120

52.0%
200 400 1000

processorWL       (C.7) 

According to equation (5.3), the worst event response time for each three task is 200ms, 

440ms, and 1160ms respectively, which are calculated in (C.8): 
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It can be seen that the obvious difference of event response time between the two 

scenarios is cause by the interrupted time of lower priority task by higher priority tasks. 

As shown in equation (C.8),  the 1eT  is added twice when calculating 3 everT , because the 

Task13 are interrupted twice by Task11.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Task11

Task12

Task13

Kernel Tick = 20ms, Every slot = 20ms
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As shown above, kernel tick is set as 20ms in scenario-2.With this configuration, all the 

parameters of the three tasks are summarized in Table C.4. In this scenario, the execution 

time of tasks is almost no restrictions for setting kernel tick if kernel tick is a small value. 

The tasks with short period time and higher priority can be guaranteed to be executed by 

kernel. However, the drawbacks of this scenario show that the event response time of low 

priority tasks is extended dynamically by interruptions from higher priority tasks. If the 

higher priority tasks have shorter period time while lower priority tasks have longer of 

the execution time, the worst event response time of the task with lower priority tasks 

will be enlarged. 

Table C.4: Analysis of Three Tasks in Scenario-2 

 

  

Tasks
Execution time

(ms)

Period time

(ms)
 Priority

Worst event 

response time(ms)  
Workload

11 40 200 11 230 20.0%

12 80 400 12 440 20.0%

13 120 1000 13 1160 12.0%
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