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Soft robots comprise of elastic and flexible structures, and actuatable soft materials are often 

used to provide stimuli-responses, remotely controlled with different kinds of external stimuli, 
which is beneficial for designing small-scale devices. Among different stimuli-responsive materi-
als, liquid crystal networks (LCNs) have gained a significant amount of attention for soft small-
scale robots in the past decade being stimulated and actuated by light, which is clean energy, 
able to transduce energy remotely, easily available and accessible to sophisticated control. 

One of the persistent challenges in photoresponsive robotics is to produce controllable auton-
omous locomotion behavior. In this Thesis, different types of photoresponsive soft robots were 
used to realize light-powered locomotion, and an artificial intelligence-based approach was de-
veloped for controlling the movement. A robot tracking system, including an automatic laser steer-
ing function, was built for efficient robotic feature detection and steering the laser beam automat-
ically to desired locations. Another robot prototype, a swimmer robot, driven by the automatically 
steered laser beam, showed directional movements including some degree of uncertainty and 
randomness in their locomotion behavior.  

A novel approach is developed to deal with the challenges related to the locomotion of pho-
toresponsive swimmer robots. Machine learning, particularly deep reinforcement learning 
method, was applied to develop a control policy for autonomous locomotion behavior. This 
method can learn from its experiences by interacting with the robot and its environment without 
explicit knowledge of the robot structure, constituent material, and robotic mechanics. Due to the 
requirement of a large number of experiences to correlate the goodness of behavior control, a 
simulator was developed, which mimicked the uncertain and random movement behavior of the 
swimmer robots. This approach effectively adapted the random movement behaviors and devel-
oped an optimal control policy to reach different destination points autonomously within a simu-
lated environment. This work has successfully taken a step towards the autonomous locomotion 
control of soft photoresponsive robots. 

 
Keywords: Soft robot, photoresponsive robot, liquid crystal network, deep reinforcement 

learning, deep q learning, autonomous locomotion control. 
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1. INTRODUCTION 

Robot is a device or machine that can carry out a series of pre-designed tasks, whose 

actions often mimic the movement of living beings, performing motions such as walking, 

swimming, grasping, rolling, etc. Traditionally, engineers utilize rigid materials to realize 

sophisticated controlled robotic systems consisting of different discrete joints and links 

for locomotion or manipulation. For developing more human-friendly and safe robots, 

scientists and engineers are exploring the capability of soft, smart and stimuli-responsive 

materials for designing soft-bodied machines to achieve specific robotic control [1].  

Stimuli-responsive materials have the ability to react to different external stimuli, convert-

ing the input (stimulus) energy into the change of their physical and chemical properties 

[2]. The stimuli can be in diverse forms, such as chemicals [3], electrical or magnetic field 

[4], mechanical stress [5], temperature [6], humidity [7], light [8] and so on, the stimuli-

responsive-materials often being called as smart or intelligent materials [9]. A wide range 

of stimuli-responsive materials are available in the literature for soft robotic realization, 

such as liquid crystal networks, shape memory polymers, hydrogels, electro- and mag-

netorheological fluids, and many more [6]. Among those, liquid crystal networks (LCNs) 

have gained an increasing amount of attention in the past decade. These soft and smart 

materials can utilize different stimuli such as light [10], humidity [7], electric field, heat 

and chemical reaction [6], to create deformation or locomotion. Particularly, LCN mate-

rials have become attractive because of the possibility of being stimulated and actuated 

by light, ability to transduce energy remotely as well as light is easily available and pro-

vides sophisticated control. 

Depending on the rigidity of constituent materials, robots can be divided into hard-bodied 

robots and soft-bodied ones. A hard-bodied robot has rigid components with a limited 

number of links and joints. Usually, it has a very limited degree of freedom (DOF) and 

degree of movement. Conversely, soft robots comprise of soft actuable materials, with  

Young’s modulus up to several gigapascals (Figure 1) [6], flexible joints and links and 

can provide much more degrees of freedom for movement. Besides, the links and joints 

of a soft robot can have different stiffness and can be arranged in a serial or parallel 

fashion for creating complex movement.  
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         a                                               b                                                      c 

 a. Traditional rigid-bodied robot. b. Soft-robotic gripper being driven by 
pneumatic actuation. c. Photoresponsive small-scale robotic gripper. b. 

Adapted with permission from Ref. [11], c. Adapted with permission from Ref. 
[12] 

Soft robots have several advantages over hard-bodied robots, such as adaptation to 

unpredictable obstacles, continuous actuation and shape change, etc. Typical examples 

are shown in Figure 2, where a silicon-based soft pneumatic hand can grip an egg by 

adapting its shape and curvature, which enables an easy handle of fragile objects without 

precise machine programming (Figure 2b). In contrast, rigid gripper needs explicit pro-

gramming in each moving step to reach the target and accurate control of the force for a 

precise grasping (Figure 2a) [13]. Nowadays, most of the soft robots use pneumatic ac-

tuation based on air or liquid tube powering. Designing small-scale robots for accom-

plishing different tasks at small length scales is extremely difficult using pneumatic tube 

connection. For harnessing full potential and achieving practical applications, small-scale 

soft robots need actuation, control, and power storage systems embedded into one soft 

body, which raises the importance of stimuli-responsive smart materials

Many reports have shown that soft smart materials are becoming a great candidate for 

small-scale robotics, one pioneering example being shown in Figure 2c, where a pho-

toresponsive gripper can grab a falling object based on the light reflectance from the 

object [12]. Smart materials can be actuated remotely with different stimuli. In this sense, 

the power source can be separated from the robot body and deliver remotely the neces-

sary energy [10]. As demonstrated by the example shown in Figure 2, photoresponsive 

 

 Comparison of Young's moduli for different materials. Adapted with per-
mission from Ref. [6] 

Light 

and smart 

Rigid 

to soft 
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materials can perform shape changes, and generally this kind of actuation can be ver-

satile due to the alignment control technique. To obtain the actuation, photo-sensitive 

elements like photoswitches (molecular motors) are often used, in which the cooperative 

movements can bring up deformation from a molecular scale to a macroscopic level [14]. 

Traditional hard-bodied robot subsystems consist of, for example, actuation system, 

sensing elements, controller, computational system and power [1]. The photoresponsive 

soft robot can have most of these subsystems into one monolithic sample: photoactua-

tion serves as an actuation plus a power delivery system, pre-programmed actuator (e.g. 

through photopatterning) serves as a control/sensing system. In this aspect, photore-

sponsive materials can enable not only the miniaturization, but also advantageous ro-

botic functions based on specific material response design. 

One of the persistent challenges in soft robotics is to design controllable bodies for de-

livering desirable behaviors. The traditional strategy for controlling a hard-bodied robot 

is based on manipulating a series of rigid joints, each representing six degrees of free-

dom of movement. This strategy is not suitable for soft robots because of the fact that 

soft materials are flexible and often exhibit high degrees of freedom, such as twisting, 

bending, wrinkling, etc., thus presenting a large number of DOF. Some theoretical mod-

els have been developed to describe bending in soft matter [1][15]. It remains a great 

challenge to develop an accurate model for predicting machine performance or efficient 

strategy to execute tasks due to soft material properties [15]–[17]. Still, there is no well-

developed model or reliable algorithm for soft robotic movement. Thus, new strategies 

and approaches are needed for the control of soft robots. 

In this thesis, a novel machine-learning-based approach is developed to tackle the chal-

lenges related to the locomotion behavior of photoresponsive robots. A robotic function 

can be split into perception task which is related to acquiring essential information from 

the environment and control task which is related to achieve a goal based on that infor-

mation [18].  

Machine vision system offers an efficient way of detecting small scale robots, including 

information about their different parts and surrounding environment. Besides these pho-

toresponsive robots are driven by light, and each part of the robot can be actuated upon 

a laser or an LED light field for creating robotic movement. The laser is preferable for 

pin-point excitation of different robot section. A control system allows steering the laser 

beam to desired locations automatically. A robot tracking system is developed for effi-

cient detection of photoresponsive robots, meanwhile synchronized with the control sys-
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tem to drive the laser beam to the desired parts, according to developed algorithm. Dif-

ferent types of small-scale robots, such as a bending cantilever arm, walking robot and 

floating swimmer, are tested under these robot vision/control/tracking systems. 

Currently, reinforcement learning is used in different applications offering excellent deci-

sion-making capabilities [19]. In soft robot control, reinforcement learning can play a sig-

nificant role because it can produce an optimized control policy from its experiences that 

obtained by interaction between robot and the environment, without any explicit 

knowledge of the material, robot structure or robotic mechanism [20][21]. DeepMind 

team of Google successfully utilized a conventional reinforcement learning called Q-

learning with deep neural networks to play computer games like Atari [22]. After that, this 

method is adopted in many applications such as in mobile robot path planning and au-

tonomous navigation [23]–[26], autonomous driving [19][27], robot motion control[28][29] 

and many more. 

To develop an effective and optimal control policy for locomotion behavior of photore-

sponsive robots, a deep reinforcement learning method is applied. This technique re-

quires a large amount of experience to correlate the goodness of control of the robot. 

Thus, the methods are only applied in a computer simulation environment for this Thesis 

study. The simulated model contains specific operations, which mimic the uncertainty 

and random movement behavior of a photoresponsive swimmer robot. This study serves 

as a primary trial to develop effective adaptation in control of soft robotic movement and 

optimal control policy for future robots.  

1.1 Thesis structure 

The thesis is divided into 7 chapters. After the Introduction, Chapter 2 introduces a con-

cise concept of liquid crystals (LCs) and liquid crystal networks (LCNs), photoactuation, 

and effects of different forces on small scale robot as well as reported LCN robots. Chap-

ter 3 presents an overview of machine vision system and relevant concepts of reinforce-

ment learning, which are used in this thesis study. Chapter 4 describes the experimental 

workspace setup and the implementation of robot tracking system. Chapter 5 highlights 

the experimental results with different types of light-driven robots. Chapter 6 proceeds 

with describing the RL environment, including the developed simulator, agent and train-

ing parameters, and the training results along with the robot’s autonomous movement to 

evaluate the learned control policy. Finally, Chapter 7 summarizes the overall outcomes, 

in addition to providing future perspectives and outlining the potential of this research. 
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2. MATERIALS AND DEVICES 

Smart stimuli-responsive materials are capable of being actuated remotely by using dif-

ferent kinds of stimuli, which is beneficial for designing small scale robots. liquid crystal 

networks (LCNs) are soft, smart, and stimuli-responsive material. LCNs have the ability 

to transduce light energy into mechanical work output, which is one of most attractive 

features for devising small wireless devices. In this chapter, firstly the concise concepts 

of liquid crystals and liquid crystal networks are presented. Then photomechanics in 

LCNs, including photothermal and photochemical actuation modes are described. Fi-

nally, effects of different forces on small scale LCN robots and various kinds of LCN 

robots and their locomotion capabilities are briefly discussed. 

2.1 Liquid crystals and liquid crystal networks 

Liquid crystals (LCs) are special state of matter [30][31]. This state is an intermediary 

between crystalline solids and isotropic liquids, also known as mesophase. LCs can re-

tain anisotropy (positional and orientational) characteristic of crystalline solids, along with 

the fluidic property of liquids [7][31][32]. LCs undergo transition from anisotropic LC 

phase (order) to isotropic phase (disorder) upon heating (Figure 3a) [10]. 

LCs are divided into thermotropic and lyotropic categories. LCs phase occurs for the 

former type at a particular range of temperature, whereas the latter one requires a par-

ticular concentration in solution besides temperature for achieving the LC phase. Ther-

motropic LCs have different subphases based on positional and orientational alignment, 

such as nematic, smectic and cholesteric phases (Figure 3b). In nematic phase, the mol-

ecules have an average direction (represented by a vector called director) in their orien-

tational order but no positional order. Smectic phase has positional and orientational 

molecular order. Cholesteric phase is like nematic phase though the molecules are ar-

ranged in helical orientation along the director [7].  

Liquid crystal networks are crosslinked synthetic polymer systems [15][16]. This unique 

solid and can be fabricated in different ways, allowing to retain the molecular alignment 

order of LCs even in the solid state [34]. They combine the liquid crystals’ anisotropy 

properties and the mechanical properties of polymers. LCNs can be classified into two 

types depending on the crosslinking, namely liquid crystal elastomers (LCEs) (weakly 

crosslinked), whose glass-transition temperature, Tg, is below room temperature and 

modulus is approximately between 0.1 to 5 MPa, and glassy liquid crystal Networks 
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(GLCNs) (moderate or densely crosslinked) whose Tg is approximately  between 40°C 

to 120°C and modulus is approximately between 0.8 to 2 GPa [15][16]. 

 

a 

 

b 

 a. LC phase to isotropic phase transition. b. Common LC phases  

2.2 LCN photomechanical actuation 

Actuators are devices that transduce other forms of energy into mechanical work. LCNs 

are stimuli-responsive materials [35]. LCNs hold the anisotropy properties of LCs, and 

the response of the material system is amplified from molecular level to macroscopic 

scale by collective interaction between LC molecules and polymer networks. Hence, 

LCNs serve a good basis for macroscopic actuation. LCNs can, in principle, respond to 

thermal, electrical, and optical stimuli, hence transducing these forms of energy into me-

chanical motion such as deflection, deformation, or other types of motion [35]. Among 

these stimuli, light is more feasible because of being clean, remotely and precisely con-

trollable. Azobenzene derivatives are used as photoswitch to design photoresponsive 

macroscopic actuator. Photoswitches construct the molecular level deformable sys-

tem(molecular-scale motion) and their cooperative motion through the network can be 

Order Disorder 

Nematic Cholesteric Smectic 

Director  Helix axis Director  
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amplified to create macroscopic shape-change in LCNs, which results in photomechan-

ical actuation [7][31]. This actuation in LCNs incorporates two mechanisms: photother-

mal and photochemical actuation [7].  

2.2.1 Photochemical actuation in LCNs 

Photochemical actuation is driven by the reversible photoisomerization between two iso-

meric states in photoswitchable molecules [7]. For LCNs, azobenzene derivatives are 

the most popular photoswitches [7][36]. Azobenzene is an aromatic molecule composed 

of two phenyl rings linked by an azo group (N=N). Unsubstituted azobenzene and its 

derivatives go through reversible photoisomerization, which occurs around the double 

bond of an azo functional group (N=N) by switching between two states, i.e. a stable 

trans-from (E isomeric state) and metastable cis-from (Z isomeric state) (Figure 4a) [37]. 

Priimagi and coworkers highlighted some attractive features of azobenzene derivatives 

as photoswitches in LCNs: comparatively easy synthesis of a wide range of azobenzene 

derivatives with different activation wavelengths and photochemical properties, the mis-

cible property of trans-azobenzene with multiple LCs and destabilization of LC phase 

due to angular shape of cis-azobenzene [13]. 

b c 

 a. Photoisomerization of azobenzene and changes in molecular geom-
etry. b, c. Different photoinduced bending with different LC alignment, b. Ho-

mogeneously aligned, c. Homeotropically aliened. a. Adapted with permission 
from Ref. [37]. b, c. Adapted with permission from Ref. [38] 

Trans-to-cis isomerization occurs when trans isomer of azobenzene (unsubstituted azo-

benzene and its derivatives) is irradiated with UV light (typically 320-380 nm). The isom-

erization is a reversible reaction, and cis-to-trans isomerization occurs thermally or upon 

a 
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visible-light irradiation. Trans-to-cis and cis-to-trans isomerization of azobenzene exhibit 

different changes in physical properties such as molecular geometry, dipole moment or 

absorption spectrum [37][39]. Molecular geometry of trans-azobenzene is planar with 9.0 

Å distance between the 4 and 4’ positions of the phenyl rings. On the other hand, cis-

azobenzene is more globular, particularly phenyl rings of cis-azobenzene are twisted at 

90º relative to the C–N=N–C plane, which reduces the distance between the 4 and 4’ 

positions of phenyl rings to 5.5 Å. The geometric changes also lead to a change in the 

dipole moment, i.e., no dipole moment in trans-form of parent azobenzene and 3.1 D 

dipole moment in cis-form [7][37][40]. Molecular-level photoisomerization efficiently mod-

ulates molecular order within the LCN polymer network, inducing LC-to-isotropic phase 

transition, and triggering photomechanical actuation in macroscopic free-standing sam-

ples [13][36][41]. 

The lifetime of cis-azobenzene is an important factor, since it determines the stability of 

the photodeformed state [13]. Chemical substitution plays a significant role in the control 

of the cis-lifetime and tuning the wavelength for activating trans-to-cis reaction [13]. For 

example, the cis-lifetime of tautomerizable push-pull azo derivatives can be less than a 

millisecond [42], whereas the ones in heterocyclic or ortho‐substituted azobenzenes can 

last for months or years [43][44]. Supitchaya and coworkers present bi-stable photoac-

tuators containing fluorinated azobenzenes, which can preserve the photochemically de-

formed shape for several days [45]. Regarding the activation wavelength, some concep-

tual strategies have been proposed to induce trans-to-cis reaction upon visible illumina-

tion, aiming for a more efficient solar energy harvesting and human-friendly interaction 

[13][45][46]. 

Photochemical actuators often create photoinduced bending whose direction depends 

on the specific molecular alignment. LCN actuators with homogeneous alignment exhibit 

bending towards the light source due to contraction of the LCN surface along the director 

(Figure 4b). On the contrary, LCN actuators with homeotropic alignment exhibit bending 

in the opposite direction because of the expansion of the light exposed surface (Figure 

4c) [38].  LCN actuator with splayed alignment across thickness can produce different 

strain within a single monolithic layer through forming expansion and contraction on op-

posite sides [12]. This alignment pattern yields efficient and noticeable bending defor-

mation. Also this alignment pattern defines the bending direction and axis of the actuator 

irrespective of incident light [47]. These features are attractive for devising robots [12]. 

Azobenzene moieties have strong absorption properties that restrict light penetration into 

the bulk. As a result, photoisomerization is limited to the LCN surface [13][19]. Upon 
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illumination, the concentration of cis-azobenzene varies with the distance from the sur-

face, which generates a non-uniform stress distribution across the thickness and pro-

duces bending in the LCN sample. 

2.2.2 Photothermal actuation in LCNs 

Photoactuation in LCNs can also be triggered through photothermal mechanism. For this 

mechanism, photosensitive moieties, e.g. organic dyes or nanoparticles are introduced 

in LCN as nanoscopic heat generators that absorb photons. Non-radiative thermal pro-

cesses convert the energy from the absorbed photons into heat, triggers order-disorder 

transition of the LCNs and yielding macroscopic deformation of the entire network (Figure 

5) [5][15][30]. Azobenzenes, which have short cis-lifetime or concurrent trans-cis and cis-

trans activation, are efficient photothermal heat generators. Thus, several sophisticated 

photoactuator demonstrations achieved recently are designed by utilizing this actuation 

mechanism [11][22][50]. Interestingly, photostabilizers and organic dyes, which are not 

even photoisomerizable, can be used to induce photothermal heating in LCNs [51]. 

Though the key issue is the solubility of dopants into LC mixture, most of the time a small 

amount of dopants (ca. 1 %) is sufficient for a significant photothermal heat generation 

[51]. By using a suitable dye, photothermal actuation can be triggered by a large range 

in spectrum, such as visible-near infrared wavelengths [52].   

Nanoparticles of inorganic carbon or metals also can be doped into LCNs for photother-

mal actuation [54]. Carbon nanotubes able to align along the LC mesogen direction. Gold 

nanoparticles of different sizes and shapes, e.g., rod, stars, govern the plasmon reso-

nance wavelength which determines the photothermal absorption. Like organic dyes, a 

small amount of inorganic nanoparticles is needed for photothermal actuation, however 

the major problem is the poor miscibility, which causes inferior mechanical properties, 

enhanced light scattering and deficient performance of photothermal actuation [11][26]. 

Though suitable surface functionalization of these particles can be adopted to minimize 

these problems [25], organic dyes are more appropriate for diverse applications. 

 

 Photothermal mechanism. Adapted with permission from Ref. [53] 
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2.2.3 Comparison between photochemical and photothermal ac-

tuators 

For devising actuators and small-scale robots, both photochemical and photothermal 

mechanisms are significant. Depending upon the chemical characteristics and the phys-

ical features of these mechanisms, different distinct use cases for light-responsive robots 

can be figured out [13]. The differences between these mechanisms are discussed be-

low. 

Based on chemical characteristics, the critical difference between photochemical and 

photothermal actuators is the position of active units within the LCN. Azobenzenes are 

the active units in photochemically activated LCN within the LCN polymer to yield efficient 

actuation. Whereas, dyes or nanoparticle are the active units in photothermally activated 

LCN which are doped into the system, without any need to be crosslinked with the poly-

mer chains [10]. Another difference is the activation wavelength. For photochemical ac-

tuator, typically trans-to-cis isomerization is triggered by UV or deep blue light, and re-

verse isomerization is occurred by irradiating with 450-550 nm. Researchers are trying 

to shift the activation wavelength towards green or near-infrared wavelength (using na-

noparticles) [55]–[57]. On the other side, photothermal actuation is at the best at the 

wavelength the dyes absorb, leading human-friendly visible or near-infrared light activa-

tion [10]. Finally, changing the photoactive unit concentration may lead to different re-

sults. Increasing the concentration of azobenzene in photochemical LCN assists the ac-

tuation due to the enhanced absorption gradient [10], as presented by the group of Ikeda 

[58][59]. On the contrary, a photothermal actuator with a small amount of dye can absorb 

the major portion of incoming photons, and produce rapid actuation in a reversible way 

[60]. 

Also, different physical features can be distinguished between photochemical and pho-

tothermal actuators, such as actuation speed, suitable environment to actuate, absorp-

tion gradient. In photochemical actuation, the molecular level photoisomerization hap-

pened immediately upon irradiation, but the macroscopic deformation of LCN requires 

seconds or minutes [36], i.e. slow response. On the other side, long cis-lifetime gives the 

actuator a bi-stable feature [61]; in other words, the deformed shape can be retained 

after ceasing the excitation. Photothermal actuators show rapid deformation which can 

take only milliseconds or seconds [10]. Also, fast recovery of original shape occurs when 

ceasing excitation, and cooling down the actuator. Photochemical actuators have a dis-

tinct advantage of functioning in different environments including in aqueous medium 

[62][63]. Whereas photothermal mechanism is hindered in an aqueous medium because 

it relies on heat conduction by raising the temperature within the actuator. But the higher 



11 

 

heat conductivity of a liquid (e.g. water is 20 times of the one in air), reduces the actuator 

temperature, or a higher order of magnitude light intensity is required to induce the equiv-

alent amount of deformation in water compared to the one operated in the air [10]. Be-

sides, as the photochemical mechanism depends on absorption gradient, it can yield 

bending, but in-plane actuation is challenging. Unlike photochemical actuator, photother-

mal actuation in LCN can yield both in-plane actuation and out-of-plane bending [7] [10]. 

2.3 Scaling effect on LCN robots 

From big-sized machines to microrobots, it requires geometric change in the material 

driven by through actuation. For designing a photoresponsive robot or device and yield-

ing controlled locomotion or function, the interaction between the robot and its working 

environment is essential to investigate [13][64].  

Though the physics for all objects, either at the microscopic or macroscopic scale, is the 

same, different forces and their contributions change depending on the scale of the ob-

ject. In other words, the ratio between forces as well as related physical phenomena may 

change with the dimension of the device. Therefore, different forces may start dominating 

the object motion depending on the object characteristic length (L), known as scaling 

effect [65]. Here, Ls notation is used to represent the dimension influences where s is the 

scaling factor. For instance, the gravitational force, FG and inertia are both related to the 

volume of the object, which scales as L3. In LCN robot, the photo-induced elastic force 

is the active force Fa, related to the cross-section of the material, thus scaling as L2 . The 

overall force ratio (Fa : FG) scales as L-1, representing a strong size dependency. The 

ratio between Fa and FG is comparatively high for a small LCN micro-robot compared to 

ones with bigger size. This kind of difference at different scales implies the requirement 

of different design concepts and strategies to achieve efficient locomotion. Interestingly, 

hints are given by nature already: big mammals have strong skeletons for supporting 

their weight, meanwhile they run using two or four legs when inertia plays a significant 

role. However, for small insects, gravitation plays a minor role and they can easily jump 

a long distance. In many cases, the insects grow specific hairy architecture on their skins 

to prevent adhesion, whose effect is typically enhanced at microscale [66].  

The locomotion of a microrobot at an interface contemplates as walking where adhesion 

and friction forces arise mostly. This adhesion is the combination of van der Waals, ca-

pillary, and other forces. Van der Waals forces appear within a few nanometres due to 

the fluctuating dipole in the material, which strongly depends on the contact area and 

surface roughness. Capillary forces are enhanced in the presence of liquid in between 

two solid surfaces, where the liquid tends to reduce the surface energy by minimization 
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of the surface area, thus posing an attracting force [67]. The classical equation for friction 

is: 

f =μ X N  

where μ = friction coefficient and N = normal force [68]. This equation does not properly 

describe soft materials experiencing adhesion. Particularly, in micro-world, gravitation is 

negligible and friction/adhesion dominate, which is more unpredictable and depends on 

the material softness and surface conditions [68]. When LCN robot is photo-heated, it 

decreases the rigidity which results in a more dynamic adhesion/friction force. Due to 

this reason, the precise control of LCN locomotion is challenging even though the cyclic 

shape changes are predictable. Different methods have been introduced for LCN walking 

robot to reduce the overall friction forces and set up reasonable amount of friction bias 

to promote the directional walking tendency, such as adding an extra leg of rigid materi-

als, using the conical tip to minimize the effect contact area [67] [68]. 

The locomotion of a microrobot in a homogeneous liquid medium contemplates as swim-

ming. The interaction between microrobot and the medium is related to Reynold number, 

which is the ratio of the internal forces and viscous forces [69]:  

Re = ρvd/μ; 

where, ρ = density of the liquid, μ = viscosity of the liquid, ν = velocity of the object, and 

d = characteristic size of the object. It is easy to notice that the Reynold number scales 

as L2. Typical example in nature are: a gigantic whale can have Re of 107, fish about 1-

10, and bacteria of 10-4 [70]. For large Re, swimming locomotion is dominated by inertia 

forces whereas for small Re, locomotion is dominated by viscous forces. If a microrobot 

has low Re (<< 1), the Stokes equation shows that a perfect time reciprocal motion is 

unable to produce net motion [69]. Therefore, such swimmer requires a specific actuation 

sequence to yield effective locomotion.  

LCN robots are light actuated i.e. powered and controlled by light energy, which ranges 

from tens of milliwatts per square centimetre (led source) to a hundred watts per centi-

metres (focused laser beam), depending on their scales. Photothermal heating speed of 

an LCN robot is based on the heat capacity (scales as L3). In this sense, decrease of 

size results in rapidly increase in photothermal actuation speed [13]. 

2.4 LCN soft robots 

Photoresponsive LCN robot only utilizes light energy to produce elastic forces inside the 

material that enables the robot to overcome the resistance of the surrounding medium 
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[10][71]. This kind of dynamics can be found in nature, which serves as a source of 

inspiration in designing and devising LCN robots. From the past decades, substantial 

achievements have been done in devising LCN robots such as walkers, swimmers ro-

bots, etc., but still, the example of multidirectional locomotion is rear and no autonomous 

locomotion control policy has been reported. 

The first photoresponsive robotic function was introduced by Ikeda and coworkers in 

2008 [13]. They present a plastic motor consisting of a pulley system where an LCN strip 

is used as a belt. It can produce rotation upon UV and visible light radiation in a se-

quence, hence the light is able to be transduced into mechanical energy [72]. After that 

year, they introduced the first LCN based walker (like an inchworm) and a flexible robotic 

arm showing multi-degree of movement [73]. The inchworm like walker was able to walk 

only in one direction under alternative UV and visible light illumination [73]. Another inch-

worm like robot is presented by Kohlmeyer et al. which can be actuated by infrared light 

and is able to crawl up a 50° inclined ratcheted substrate [74]. Zeng et al. report a micro-

scopic walker that is able to rotate, walk and jump depending on the surface condition 

[75]. These robotic motions rely on spatial and temporal control of light, i.e. switching (on 

or off) of the light source and scanning of a light beam. This control of light pattern in-

duces cyclic shape changes in the pre-patterned LCN, together with the interaction be-

tween robot and contact surface (accounting the friction bias, etc.), which is essential for 

locomotion [13]. Utilizing the spatial modulation of light, Wasylczyk and coworkers 

showed a caterpillar-like walking robot capable of moving forward and backward [76]. 

Gelebart et al.  demonstrated an LCN film that also moved forward by wave generation 

under constant light field [55]. White and coworkers presented a spiral ribbon of LCN, 

which was able to roll over a long distance in a particular direction without the use or 

either temporal or spatial control of a static illumination [54]. 

Huang et al. designed a robot equipped with an LCN strip and confined inside a glass 

tube, which swam using temporal control of light [77]. The glass tube worked as a guide 

to move in one direction. In 2016, Palagi et al. presented a back and forth swimming 

locomotion of a cylindrical microrobot by creating traveling waves in the material with 

structured light [78]. For the first time, they presented in plane-controlled swimming 

movement using a disk-shaped microrobot by producing traveling wave [78]. Zeng et al. 

realized an LCN walker robot mimicking caterpillar larva on paper surface and blazed 

grating [79].   

LCNs robots have advantages over traditional rigid bodied robots at small-scale and in 

the aspect of human-friendly applications. In the last two decades, extensive research is 

going on LCNs and LCN robots, and the field of LCN robot research is are evolving 
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rapidly. Different robotic functions are already demonstrated in different environments 

and upon different illumination conditions. However, the control of locomotion in existing 

robots still lacks reliable strategy, and it remains a great challenge to fully understand 

the locomotive mechanism in soft matters. Though, pre-programmable and reversible 

shape change and photoresponsive features of LCNs pave the way to a new class of 

soft robotics, optimization of the locomotion in all these LCN based devices play signifi-

cant role in further research. 
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3. MACHINE VISION AND MACHINE LEARNING  

The specific tasks to deliver robotic functions can be divided into perception and control 

tasks. Perception task is related to acquiring required information from the environment 

through sensors. Control task is to accomplish a goal based on the acquired information 

[18]. While dealing with perception task, machine vision is often used as an efficient 

system that gathers required information [80],  and control task requires a control strat-

egy to utilize the information received from the machine vision system to achieve robotic 

function. 

Soft robotics is becoming a fast-developing research field in the past few years, crossing 

different disciplines such as robotics, materials science, biotechnology, optics and ma-

chine learning [16]. Soft robots have impressive features like large degree of freedom in 

actuation enabling bending, coiling or twisting, etc., possibility of grabbing objects of ir-

regular shapes and potential to use in human-friendly applications [16][81]. However, it 

remains a great challenge to develop an accurate model for predicting machine perfor-

mance or efficient strategy to execute tasks due to soft material properties [15][16][17]. 

Currently, no general model can provide a compressive analysis of the dynamics and 

kinematics of soft robots. 

Extensive research has been done on systematic automation, particularly in vehicles, 

drones, i.e., rigid machines in tough environments [24]. For autonomous operation in a 

complex and dynamic environment, the robot requires a rational decision-making pro-

cess to take a suitable reaction based on the available information. In most cases, robotic 

system has very limited information accessible from the environment, and the uncertainty 

of the environment condition further increases the level of difficulty [25]. Soft robots pos-

sess multiple degrees of freedom, dynamic mechanical properties, thus special automa-

tion strategy must be developed to fit the situation in soft robotics. Reinforcement learn-

ing, a subdivision of machine learning, has an excellent decision-making ability without 

requiring knowledge of robot inside structure or constituted material [18][19][21]. By us-

ing this method, an optimized control policy can be expected for the use in controlling 

the soft robot locomotion. 

This chapter firstly presents a brief overview of machine vision and its subsystems. Then, 

artificial intelligence, machine learning, deep learning, and their mutual relationships are 

introduced. Specific attention will be focused on reinforcement learning, its elements, 

and different related methods. Finally, deep reinforcement learning will be discussed.  
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3.1 Machine vision 

Machine vision (MV) is a branch of systems engineered with mechanical, optical, elec-

tronic, and software systems, which try to encompass the science and engineering of 

vision studies [80][82]. MV extracts useful information by efficient detection and verifica-

tion [80], thus has become popular in industrial manufacturing, and the extended appli-

cations in fields such as robotics, face recognition systems (or fingerprint), etc. [80]. A 

typical MV system consists of Illumination, optical components, camera sensor, image 

processing and software. 

3.1.1 Illumination 

Illumination is an integral part of a machine vision system. The objective of illumination 

is to generate a vision through machine’s “eyes” – make desirable features from the 

target visible and unwanted features being suppressed. Different illumination methods 

can be used to interact with the object and receiving the feedback information to achieve 

such the objective [80][83][84]. For instance, depending on the directional properties of 

light source illumination, one can use: (i) diffuse illumination, where the light is emitted 

by a source in all directions evenly or (ii) directional illumination, where the light source 

emits light in specific directions. For a special case, when the source emits light rays 

parallelly along one single direction, it is called telecentric illumination[85]. 

Depending on the relative position of light source and camera, illumination can be con-

sidered as: (i) front light illumination – light source and camera are kept on the same side 

with respect to the object, and (ii) back light illumination – light source and camera are 

placed on the opposite side. Depending on the incident angle of the light source, front 

light illumination can be divided into (i) bright field and (ii) dark field. In dark field illumi-

nation, light source is mounted at a small angle to the surface of the object, whereas the 

opposite for bright field illumination [80][83]. Table 1. shows some of the most popular 

methods combining these categories and their advantages for machine vision [85],  

Methods Potentials 

Diffuse bright field front light illumination Prevent shadows and reduce re-

flections 

Directed bright field front light illumination Create shadows in cavities 

Directed dark field front light illumination Enhance indentation and protru-

sion features, visibility for texture, and 

engrave patterns. 

Diffuse dark field backlight illumination Detect contours 

Table 1. Most popular methods and their advantages for machine vision  
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3.1.2 Optical components 

Optical components are a subsystem dealing with image acquisition, by which useful 

optical signal is collected and noise reduced before being detected by the camera sen-

sor. The optics is crucial for an efficient repetitive task, and it assists to produce good 

quality image and reduces the effort in digital image processing. As a result, the whole 

vision system can become faster and more reliable. Depending on the system require-

ments, optical subsystem consists of different components such as filters, lenses, ab-

sorbing background, etc. [80].  

A filter may enhance image contrast by blocking undesirable wavelengths. Coated inter-

ference filters and colored glass filters are the two most often used filters. Coated inter-

ference filter has a particular blocking and transmittance range, i.e. well-defined spectral 

band. They can be bandpass, bandstop, shortpass, longpass and notch filters. Colored 

glass filters are manufactured by adding a dopant element in the glass, which is respon-

sible for altering the absorption and transmission spectra. Comparatively, colored filter 

is most prevalent in vision system application because of low cost. Moreover, colored 

filter does not shift the wavelength transmission and makes no change in the spectral 

properties despite a change in angle with respect to the optical axis [80][86].  

Different types of lenses can be used to acquire the image, such as fixed focal lens, 

zoom lens, and telecentric lens. Selecting a suitable lens involves consideration of the 

factors of field of view, focal length, depth of view, camera sensor size, etc. Fixed focal 

lens has a fixed angular field of view. It is ideal when the distance from the target does 

not change. Zoom lens operates over a wide range of focal lengths and is suitable when 

a change of field of view becomes necessary during the operation. Unlike the other two, 

telecentric lens has no angular component to the field of view, and a constant field of 

view at any distance from the object, thus its magnification remains unchanged [87]. 

3.1.3 Camera sensor 

The core objective of a camera is to create images when the camera sensor is illumi-

nated by light that is collected by the lens. Camera sensors are solid-state electronic 

devices consisting of photodetecting pixels. The sensor size and electronic readout for-

mat are essential properties of a camera. Typically, digital camera sensor technology 

can be categorized into Charge-Coupled Device (CCD) and Complementary Metal Oxide 

Semiconductor (CMOS) [88][89]. CCD sensor is a silicon chip with an array of photore-

sponsive sites that convert light into charges. The charges are moved into a serial 

readout resistor through transfer gates and converted into voltages. After amplifying 
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those voltages, analog to digital converter is used to produce digital pixel information 

[89]. On the other hand, serial readout register is not required in a CMOS sensor. The 

photodetector sites convert charges into voltages directly, i.e. the analog to digital pro-

cessing is done in pixel level, and a row-column select circuit is used for readout [88][89]. 

CMOS has become a more popular sensor over CCD because of many advantages such 

as smaller pixel size, better low-light performance, lower dark noise, higher fidelity image 

and dynamic range, lower power consumption and lower cost in manufacture [2][14]–

[16]. 

3.1.4 Image processing 

After capturing an image, the next step is to analyze it, which includes preprocessing to 

enhance the image quality, camera calibration for accurate measurement, and different 

algorithms for extracting desirable features of the targeted object. Image smoothing tech-

niques are used for reducing the noise in order to enhance the image quality by the 

application of Gaussian filter, mean filter, linear filter, etc., algorithmically [80][91][92]. 

For detecting a particular type of object, algorithms can be developed by incorporating 

many basic techniques such as geometric transformations, image segmentation, feature 

extraction, edge extraction, fitting geometric primitives, etc. [80][91]. However, these 

methods are not robust because different algorithms are required for finding different 

types of objects. For a practical application, template matching methods are widely used 

since they can detect objects by using a prototype, yielding easiness of finding different 

objects. Besides, standard software packages are available for utilizing template match-

ing methods’ functionalities. Different types of template matching methods have been 

developed, such as gray value-based matching, matching using image pyramids, robust 

template matching, matching geometric primitives and shape-based matching [80][85].  

3.2 Artificial intelligence and machine learning  

Artificial intelligence (AI) is a general term to indicate the utilization of computers to model 

intelligent behaviors without any help, or with minimum help, from humans, thus artifi-

cially mimicking human intelligence [93]. AI is successfully implemented in different dis-

ciplines such as speech recognition, image recognition, cancer cell detection, etc. [94]. 

The relation between artificial intelligence, machine learning, and deep learning can be 

seen from the subset structure shown in Figure 6 [95].  
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 Relation between Artificial Intelligence, Machine Learning and Deep 

Learning  

 

Machine learning is a type of algorithm that enables a computer to learn without explicit 

programming [96]. According to Dr. Tom M. Mitchell, “A computer program is said to 

learn from experience E with respect to some class of tasks T and performance measure 

P if its performance at tasks in T, as measured by P, improves with experience E” [97]. 

In other words, it is a program that can automatically learn from its experience, i.e. from 

the input data [95][97]. Machine learning algorithms can be divided into three broad cat-

egories (Figure 7) based on the data receiving method and the manner of giving feed-

back on the learning process. They are supervised learning, unsupervised learning and 

reinforcement learning.  

 

  Machine learning categories 

Supervised learning is nowadays the most common used method in machine learning. 

Supervised learning algorithms use training data sets, which are correctly labeled be-
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forehand, i.e. the correct answer is already known during the training sessions. In train-

ing, the algorithm predicts the results and tries to find the correlation between the data 

and the results. The aim is to develop the mapping function at an optimum level of per-

formance that can correctly predict the response of a new unseen instance [98]. Super-

vised learning is successfully used for solving real-world problems, such as recognition 

of speech, handwriting, face patterns, natural language processing, bank credit scoring, 

medical imaging, etc. [99]. 

Unsupervised learning algorithms discover a structure or pattern through common ele-

ments of an unlabeled data set. Thus, these algorithms do not require a training dataset. 

As the data is not sorted or classified beforehand, these algorithms are more complex 

and processing-time intensive than supervised learning [98][100]. Credit card fraud de-

tection, market analysis, fault detection, cancer cell detection, gene sequence study, 

anomaly detection in a long series of data are among the various applications of unsu-

pervised learning [99]. 

Reinforcement learning (RL) algorithms are real-time learning algorithms. Different from 

supervised and unsupervised learning which are based on datasets acquired before-

hand, RL is an online and real-time learning control system [101]. Reinforcement learning 

is an algorithm where machines learn to utilize experiences gained through varying the 

parameters and improve the desirable behavior of the system by receiving rewards (by 

feedback technique). This algorithm has been used in various applications to achieve 

human-level control, such as enabling autonomous robot and vehicle control, playing 

computer games, etc. [20][23][28][101][102].   

Reinforcement learning aims to find a suitable sequence of action by which maximum 

reward can be achieved, leading towards an optimum outcome. Thus, it should be the 

right approach to soft robot automation. Conversely, the main objective of supervised 

learning is to extrapolate or generalize the response through training and produce correct 

responses for new data. This feature is not applicable for a system that needs to learn 

from its interaction with the dynamic environment – after changing the environment, an 

agent still shows adaptive performance, if it learns from its experience. On the other 

hand, unsupervised learning only discovers correlation within data, which cannot be a 

tool to maximize the reward signal, the key to generate self-learn performance [20].  

Deep learning, a subcategory of machine learning, was introduced in 2006 [104]. In com-

parison with contemporary machine learning, deep learning eliminates the requirement 

of manual feature extraction; instead, it generates these features automatically. ”Deep 

learning is about learning multiple levels of representation and abstraction that help to 
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make sense of data such as images, sound, and text”, said by R. Buyya et al. [105]. In 

the next sections, the thesis will discuss about deep learning and its coordination of re-

inforcement learning.  

3.3 Reinforcement learning 

Reinforcement learning is a process in which an agent learns to adjust to actions for 

receiving maximum rewards. The agent has no predefined knowledge of choosing an 

action, but it needs to figure out the suitable action which can bring out the highest reward 

by trying [20]. Reinforcement learning works in a dynamic environment and tries to find 

out the most suitable sequence of actions. In many cases, actions may affect the current 

rewards and, eventually, all subsequent rewards, leading to a “delayed reward”. Interac-

tions with the environment through “trial and error” and “delayed reward” are two distinct 

features of RL [20].  

 
 RL in control system perspective 

In Figures 8 and 9, RL is compared to the classical control system. In a closed-loop 

classical control system, the controller gets feedback to correct the random disturbance 

and errors, thus improving and stabilizing the system. Whereas, RL system gets state 

observations and rewards as feedback because of the action it has taken and updates 

the agent according to the feedback to achieve maximum rewards. Sometimes the de-

sign of a traditional control system may become tough due to the nonlinearity or large 
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state and action space. In this kind of situation, RL is the best alternative. Because tra-

ditional control systems and RL have one common target to generate desirable system 

response [106].  

3.3.1 Elements of reinforcement learning 

RL environment refers to every component in the system except the agent. The agent is 

a piece of software that is responsible for generating action commands and sends it as 

an input to the environment, updating the policy through receiving observations and re-

wards from the environment. RL framework (Figure 10) has four basic elements con-

necting the agent and the environment. They are a policy, a reward signal, a value func-

tion, and a model of an environment (optional part) [20][106]. 

 

 RL framework and sub-elements 

Policy: Agent has a function that receives observational states, maps these states with 

actions, and decides the suitable actions to be taken.  This function is referred as a 

policy. Policy is the core element of RL and solely responsible for determining the be-

havior of the system. A policy can be a lookup table of a simple function or a function 

incorporating extensive and complex computations. For generating optimal policy, RL 

algorithm is used. The RL algorithm can alter the policy depending on the actions, ob-

servational states and the amount of reward [20][106]. 

• Reward: On every time step, an action may change the observational states, 

after which the environment assigns a number by evaluating the performance 

quality or goodness of the behavior. This number is called reward signal. A re-

ward function defines the aim of an RL problem, which is the central bias for 
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changing the policy. An agent has a crucial intention to collect the maximum total 

reward points over the long run. If a particular action chosen by the policy pro-

duces a lower reward, the policy will be altered by the RL algorithm in a way that 

it will take another action when a similar situation is met [20][106]. 

• Value function: Value function estimates the total future reward available for a 

sequence of actions from the current state and can bring the largest number of 

reward points in the long run. Actions are chosen depending on value judgment. 

Reward is related to the immediate result, whereas value function is related to 

the long-term results. For example, A particular state may produce a smaller im-

mediate reward but can have high value because the state is a part of a sequence 

of actions that produce largest amount of reward and vice versa [20][106].  

• Model of an environment: Model is an optional element and helps in planning, 

i.e., it serves a way of deciding the future effect of taking action. RL problems 

which use model and planning is known as model-based methods. On the other 

hand, RL problems which use trial and error methods instead of model or plan-

ning is known as model-free method [18][20][106]. 

By using RL algorithm, the agent eventually learns the best policy, which is able to take 

optimal action sequences to generate maximum rewards [20][102].  RL tasks can be 

continuous or episodic. In continuous tasks, the interaction between agent and environ-

ment does not break down. Conversely in episodic tasks, the interaction breaks down 

into several separate episodes where episodes end after finite time steps regardless of 

achieving the goal or not. This one is mathematically efficient because the effect of a 

particular action on subsequent finite reward can be determined in every episode 

[18][20]. 

3.3.2 Markov decision process (MDP) 

Robotic function, which is a sequential task through interaction with the environment to 

achieve an objective, can be represented as Markov Decision Process (MDP). MDP in-

cludes a tuple {A,S,R,P}; where A is a set of actions, S is a set of observational states, 

P is a state transition probability function, and R is a reward function. Sometimes, a dis-

count factor, γ, is used [18][20]. In RL, the interaction between agent and environment 

happens in discrete time steps, t = 0,1,2… At any t, agent receives observational states, 

st ∈ S, and sends an action, at ∈ A. At t+1, because of the at, agent gets a reward, rt+1∈ 

R as well as a new state st+1.At every step, policy πt is updated. At a time step t, πt (s, a) 

is the probability of at=a when st=s. Also the reward function and state transition function 
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can be denoted as R(s,a) and P(st+1, at+1) accordingly. In an episodic task, one episode 

of MDP can be represented as {(s0,a0,r1) , (s1,a1,r2), (s2,a2,r3), ... , (st−1,at−1,rt)} where the 

episode terminates with terminal state st. According to MDP, the probability of any state 

st+1 depends only on the previous state st and action at [22][107][108]. A typical require-

ment for MDP is that the robot should fully understand the entire observational states, 

which is in practice difficult. However, RL can deal with model-free and partially observ-

able MDP [20][108].  

3.3.3 Reinforcement learning algorithms 

RL framework has mainly two classes of algorithms for solving problems, which are 

value-based methods and policy-based methods. There is also a third kind of hybrid 

approach, Actor critic methods. These techniques can also extend with deep learning 

[109]. 

• Value-based methods estimate the expected return value of taking an action in 

a given state. For instance, Bellman’s equations are used to estimate the se-

quential states. These methods incorporate with Q-learning and SARSA (State-

Action-Reward-State-Action), though they may differ in target values. In Q-learn-

ing, the target value, i.e. Q-values are recursively updated at each time step. Q-

learning is an off-policy method. On the contrary, SARSA updates the value es-

timation using a policy and is an on-policy method[18][109]. 

• Policy-based methods do not use value estimation, but policy can be updated 

directly through evaluation and improvement. These methods can be gradient-

based or gradient-free depending on parameter estimation. They have some ad-

vantages over value-based methods, such as convergence, less computational 

time, dealing with continuous high-dimensional data, and solving deterministic 

policies effectively. However, these methods are not suitable for a dynamic envi-

ronment where the agent needs to adapt [18].  

• Actor critic methods can carry out a distinct representation of policy and state 

estimation, and combine the iterative techniques of value function and policy-

based methods [18]. The actor, i.e. policy, learns by getting feedback from the 

critic, i.e., the value function. Mainly, these methods utilize the value function as 

a baseline for policy gradients. Hence, an actor-critic method uses learned value 

function which is the main difference comparing with other two methods 

[109][110]. 
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3.3.4 Value function 

Agent aims to maximize future rewards by selecting suitable actions wherein a dis-

counted factor γ is applied to rewards [20][111].The future discounted return at time t is  

𝑅𝑡 = ∑ 𝛾𝑡′−𝑡 𝑟𝑡

𝑇

𝑡′=𝑡

 

where rt is the reward at time step t received after taking an action and T is the terminal 

time step of the episode. After some sequence of action, a, and state, s the optimal 

action-value function is defined as  

Q* (s, a) = maxπ E [Rt | st=s, at=a, π] 

where π is the policy. Here Q* (s, a) obeys the Bellman equation, an essential property 

of dynamic programming. If the optimal value of the sequence s’ at the next step is known 

for all possible actions a’, then the optimal strategy is to choose the action from all the 

possible actions which will maximize the expected value of r + γQ* (s’, a’),  

Q* (s, a) = E [r +γ maxa’ Q* (s’, a’), | s, a] 

The action-value function is the foundation of many RL algorithms. The function utilizes 

Bellman equation for iterative updating of  

Qi+1 (s, a) = E [r +γ maxa’ Qi (s’, a’), | s, a] 

And when i→∞ then Qi→ Q*, i.e., the value function iteration converse to the optimal 

action-value function [20][111]. For every sequence, a separate action-value function is 

estimated, which is not practical for applications. So a typical approach is to utilize a 

function approximator for general estimation of action-value function [20][22][103][111]. 

Linear function approximator and nonlinear function approximator such as neural net-

work can be used in RL, though the nonlinear function approximator has been most 

commonly used [22]. In the next sections, Q-learning is introduced, followed with incor-

poration with deep neural networks for developing more efficient learning method. 

3.3.5 Q-learning 

The core in reinforcement learning is temporal difference (TD) [112] and learning action-

value function from direct experience with TD error using the following update 

rule[107][111]: 

Q(st,at) ← Q(st,at)+ α [r + γmaxat+1Q(st+1,at+1) −Q(st,at)] 
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Where α refer to learning rate. Here, the learned action-value function, Q directly approx-

imate the optimal action-value function, Q*. So it is not dependent on any policy i.e. off-

policy control, which enables early convergence [20][112]. 

3.4 Deep reinforcement learning 

Usually, a robotic system has a large number of DOF, large dimension of continuous 

observational states and action space, and sometimes accompanied with high noise. A 

similar challenge was faced by Mnih et al., in which they tried to play a computer game 

called Atari through reinforcement learning [22]. The game has 1067970 possible game 

states, which is a significantly large number [111]. The challenge was to scale up the 

dimension of action and observational space as traditional RL based on MDP [113]. For 

solving this kind of challenge, deep learning plays an important role where the neural 

network is used to extract features from highly structured data.   

Reinforcement learning can use deep neural networks for approximating different com-

ponents, such as value function V(s, θ) or q(s,a; θ). Policy π(a |s; θ) and model, i.e., state 

transition and reward. Here θ  is the weight parameter of the neural network [111]. How-

ever, RL with neural network used to approximate the action-value function is not very 

stable. Significant changes occur in the policy due to the small shift in action-value func-

tion(Q), and this leads to changes in the data distributions and the correlations of Q value 

and also target value [114]. For tackling these problems, the most common strategy is 

experience replay where all experiences are stored in a replay memory. During training, 

random mini-batches of replay memory replace the most recent transition which removes 

the correlation in the observation sequence and changes the subsequent training sample 

to avoid the local minimum [111]. 

In RL, the agent needs to find a policy through trial and error method to fetch more re-

wards, which raise the idea of exploration and exploitation. Exploration is related to try 

new strategies, i.e. try a few new choices on top of existing information to explore further 

information about the environment; Exploitation is associated with maximizing the reward 

using known information. Meanwhile, typically epsilon-greedy strategy is used to ensure 

feasibility between both [103][107]. 

3.4.1 Deep Q-learning 

A Q-network can be designed using neural networks with weights θ. For applying expe-

rience replay, experiences of the agent at each time step, et=(st,at,rt,st+1) is stored into a 



27 

 

data set Dt={e1, ··· ,eN} [22][103][107].The deep Q-learning update iteration, i, using fol-

lowing loss function, 

Li(θi) = E(s,a,r,s’) [(yi −Q(s, a; θi))2] 

Where yi = r +γ maxa’ Q(s’, a’; θi
-) and weights,θi

- are used to calculate the target at i. To 

estimate the action-value function without any generalization, 

Q(s, a; θ) ≈ Q* (s, a) 

The gradient of the loss function (differentiating with respect to θi) is, 

∇θi L (θi) = Es,a,r,s’ [(r + γmaxa’Q( s’,a’,θi
-) −Q(s, a; θi)) ∇θi Q(s, a; θi)] 

Though the full expectation can be computed from the above equation, optimization of 

the loss function using stochastic gradient descent is more convenient. Therefore, a sim-

ilar approach as Q-learning can be used for DQN framework, where the weight is up-

dated after each time step, and the expectation is replaced by a single sample by setting 

θi
-= θi-1 [103][107]. The deep Q-learning algorithm with experience replay is shown in 

Figure 11. 

 The deep Q-learning algorithm with experience reply. Adapted with per-
mission from Ref. [103] 

DRL approach combines RL and deep learning to tackle different challenges of tradi-

tional RL approach like dependency on handcrafted features, discretized input and out-

put spaces, and the lack of scaling up the dimensionality of input and output states 
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[25][113]. Decision-making performance is enhanced by incorporating deep neural net-

works. In 2013, DeepMind Team of Google successfully utilized Q-learning with deep 

neural networks i.e., deep Q learning to tackle the low dimensionality of input and output 

states problem [22]. They utilized deep Q learning to play computer games like Atari [22]. 

Following the milestone of the DeepMind team, many successful experiments have been 

conducted by developing an optimized control policy in an uncertain environment, which 

is suitable for autonomous systems [23]. For instance, mobile robot path planning and 

autonomous navigation [23]–[26], autonomous driving [19][27], robot motion con-

trol[28][29], just to list a few. Deep Q learning approach can be applied in controlling 

locomotion and navigation for different soft robotic systems that integrate the path finding 

capability as well as their mechanical properties [18]. In deep Q learning approach, the 

controller directly learns from the raw data while interacting them in a dynamic environ-

ment and provides an end-to-end solution [11][13]. As deep Q learning approach does 

not consider structure and material of the robot [3], a light responsive LCN robot can be 

considered as a good platform to test deep Q learning. For autonomous control of loco-

motion in a dynamic environment, a reward system and optimal control policy are devel-

oped, as will be discussed in the next chapters of the thesis.  
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4. IMPLEMENTATION 

As illustrated before, LCN robots can be driven by light, and each part of the robot can 

be actuated/controlled upon a laser or an LED light field, for creating robotic movement. 

For precise control, in general a laser beam is suitable for pin-pointing controlling of ro-

botic segments, such as robot’s walking legs or deforming body. For utilizing this photo-

actuation feature, a workspace is set up to steer the laser beam within two-dimensional 

plane. This workspace is beneficial for conducting different kinds of experiments to ex-

plore the different robotic capabilities. In this chapter, the laser steering workspace setup 

and its components will be firstly presented, followed with robot tracking system. 

4.1 Laser steering workspace setup 

The laser steering workspace configuration is divided into two parts: machine vision, and 

laser steering subsystem. The workspace setup and its different components are shown 

in Figure 12.  

4.1.1 Machine vision subsystem 

In this workspace, a Zeiss Cold light source (CL 4500 LED CRI90) is used as an illumi-

nation source that can serve up to 450 lm light flux with a continuous dimming option 

[115]. A monochrome camera sensor (DCC1545M, Thorlabs [116]) equipped with a 

zoom lens (Zoom 7000, Navitar [117]) is used to capture images. This camera has a 

CMOS sensor of 1.3 Megapixels resolution with an electronic rolling shutter (see tech-

nical details in Table 2). The zoom lens is a close-focusing macro lens with a minimum 

working distance of 13 cm, and can be manually controlled to adjust the zoom-in factor 

and tune the focus. The objective of the camera is to capture live images of the working 

platform while the laser beam is steering on the robot. However, the brightness of the 

laser beam hinders the structural information of the robot (Figure 13b). In order to solve 

this problem, a colored glass filter is used in front of the lens to block the laser wavelength 

(532 nm), yielding a good-quality image suitable for further data analysis (Figure 13c). 
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 Laser steering workspace setup (front, side and rear view) and different 
components of the workspace 
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Servo motors 

Rear view 

Adjustable mirror 

Mirror 

Camera sensor 

Lens 

 

Optical Filter 

Mirror 

Illumination 

Workspace 

Illumination 

Front closer view 

 

Front closer view 

 

Rear closer view 

Servo motor 

controllers 



31 

 

Parameter Value 

Model DCC1545M 

Sensor CMOS, Monochrome 

Resolution 1.3 Megapixels (1280 x 1024) 

Exposure Mode Rolling Shutter 

Optical Sensor Format 1/2" 

Read Out Mode Progressive Scan 

Frame Rate 25 fps 

Dynamic range 68.2 dB 

SNR(MAX) 45 dB 

Trigger Input: No, Output: Yes 

Lens Mounting Thread CS-Mount  

Interface  USB 2.0 

Supply voltage 3.0 V−3.6 V, 3.3 V nominal 

Dimensions 48.6 mm x 44 mm x 25.7 mm 

Weight 32 g 

 

 

 a. An LCN robot and the robot’s leg illuminated with a green laser beam 
(captured using a regular camera). b. Image from the machine vision system 
without an optical filter. c. Image from the vision system’s camera with a col-

ored glass filter 

4.1.2 Laser steering subsystem 

For the actuation of an LCN robot, a solid-state, continuous-wave green laser (532 nm) 

is used, and the power of the laser can be controlled manually, see technical specifica-

tions in Table 3. The laser beam is guided to an adjustable mirror mounted on top of the 

workstation by using several mirrors. The adjusted mirror (SM05, Thorlabs[118]) is driven 

by two DC servo motors and can continuously change/monitor its angular displacement 

via computer control. The servo motor actuators can travel up to 12 mm, and the step 

resolution is in a submicron level which allows a continuous angular displacement of the 

mirror, see details in Table 4. Eventually, the laser beam is reflected down to the work-

space, and steered on the 2D plane along vertical and the horizontal direction, allowing 

precise robotic actuation (Figure 12).  

             
a b c 

Table 2. Camera specifications[116] 
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Parameter Value 

Model MGL-F-532 

Wavelength (nm) 532±1 

Output power (mW) 2500 

Transverse mode TEM00 

Operating mode CW 

Power supply (90-264VAC) PSU-H-LED 

 

Parameter Value 

Model Z812 

Travel Range 12.0 mm 

Motor Type 6 VDC Servo 

Micro steps per Revolution 34304 

Backlash <8 µm 

Bidirectional Repeatability <1.5 µm 

Home Location Accuracy <2 µm 

Velocity 2.6 mm/s (Max) 

Acceleration 4 mm/s2 (Max) 

Weight 0.134 kg 

Note that the controller of the servo motor provides a differential encoder feedback to 

ensure accurate positioning operation. Compatibility with the ActiveX® programming en-

vironment makes this controller suitable for developing custom applications. The details 

of the servo motor controller can be found in Table 5. 

Parameter Value 

Model KDC101 

Drive Voltage ±12 to ±15 V 

Drive Type 8-bit Sign/Magnitude PWM 

Control Algorithm Digital PID Filter 

Feedback Differential Encoder Feedback (QEP 

Inputs) for Closed-Loop Positioning 

Velocity Profile  Trapezoidal 

Software Control Kinesis® or APT™ 

Output 15 V/ 2.5 W 

Interface USB 3.0 

Dimensions (H x W x D) 60.0 mm x 60.0 mm x 49.2 mm 

Table 3. Solid-state green laser [119] 

Table 4. DC servo motor actuators (Z812 from Thorlabs)[120] 

Table 5. Servo motor controller (KDC101 from Thorlabs) [121] 
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4.2 Robot tracking system 

The robot tracking is a synergistic system between machine vision and servo motor con-

trol subsystem. The integration is achieved through a communication server, as shown 

in the schematic drawing in Figure 14. The machine vision is responsible for spotting the 

robot location as well as extracting feature information of the robots, such as the location 

of the legs, body orientation, the destination location, etc. The servo motor control sub-

system receives information from the machine vision and automatically steers the laser 

beam to the desired location according to some pre-designed algorithm. The following 

sections will describe all these systems in detail.  

 Robot tracking system 

4.2.1 Machine vision for robot tracking 

For tracking the robot position, a dimensional calibration step is taken before using the 

vision function in robotic applications [122]. After that, all images captured by the camera 

contain dimensional information in real space. The captured images are further pro-

cessed with digital image processing and feature extraction technique, in order to en-

hance different structural features. For this, NI Vision Builder for Automated Inspection 

(Vision Builder AI), an application from National Instruments is used in calibration includ-

ing programming and configuring vision algorithms for image analysis and processing.  

Machine vision 

Image 
acquisition 

Image 
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Robot and legs 
detection 

Communication 

server 

Servo motor control 

Check  
received 

data 

Different 
algorithms 

Connect 
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Camera calibration is essential for precise detection and high accuracy in measurement. 

It establishes a relation between the image and the actual scene for real-world measure-

ments. For instance, distortion due to perspective errors and lens aberrations affects 

image coordinate and thus the related geometrical measurements [123][124]. Camera 

calibration helps to correct these errors and to provide accurate dimensional data.  

Vision Builder AI application is used for camera calibration by utilizing a dot grid pattern. 

The grid has circular dots with equal spacing in both horizontal(x-axis) and vertical(y-

axis) directions. By default, this application provides measurements in pixel units. Spatial 

calibration, i.e. mapping pixel into real-world units is also included in this calibration. A 

distortion model (grid) was used in the calibration process. The dot grid pattern was cap-

tured (Figure 15a) using the machine vision setup. The center to center distance between 

dots was provided including a user-defined reference coordinate to transform the pixel 

coordinate to real-world coordinate (Figure 15b). The center to center distance between 

dots was 9.3053 mm in both direction x and y. 

 

 a. The dot grid pattern for camera calibration b. Image after calibration, 
including the tangential distortion correction 

After this initial calibration process, the system is ready to capture inspection images for 

further image processing. Vision Builder AI uses a state diagram to model the image 

analysis and feature extraction process, and every state can have several steps and 

transitions. The developed state diagram is presented in Figure 16a. 

The inspection starts with the Start state and immediately makes a transition into the 

Inspect state. The Inspect state has several steps (Figure 16b). The first step is Acquisi-

tion, in which an image is captured from the camera. The second step, Vision Assistance, 

processes the image to enhance the desired feature by using Color Threshold, Lookup 

Table, Smoothing and Diate technique (Figure 16c).  

      
a b 
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a 

 

b 

 

c  

 

 
 

 a. State diagram for the vision system. b. Steps in the Inspect state. c. 
Steps under the Vision Assistant step and changes of the original image along 

with these steps 
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After that, the robot is detected (Detect Objects 1 step, Figure 16b) within a predefined 

region of interest (ROI1 step) and then creates another region of interest (ROI2 step) 

around the robot body (Figure 17). Match feature 1, Match feature 2 and Match feature 

3 steps extract distinct and desired features from ROI2. The last step of the Inspect state 

is Overlay, which is responsible for presenting information about the detected features 

for the user (Figure 16b). 

 

 Output of the Inspect state and rectangular boxes indicate some steps 
(i.e. green: ROI1, purple: ROI2 and red: matched feature) 

After completing these steps, the Inspect state makes a transition depending upon the 

‘PASS’ value of all previous steps. If every step of the Inspect state is executed success-

fully (pass), then the current state will take the Wait_Transition to the Waiting state; oth-

erwise, the inspection will end by taking the default transition (Figure 16a). 

In the Waiting state, a communication block waits for a fixed period to receive a specific 

string from the communication server. Within this time window, if the communication 

block has not received the specific string, the Waiting state transits to the End state. 

Otherwise, it transits to the Data sending state where another communication block 

sends the information about extracted features and parameters to the communication 

server. Extracted features and parameters can be the locations of the matched features, 

i.e. that x and y coordinate values of robot legs and target, scores of matched patterns 

(not for every case), also a check string to notify the ending of the massage. After send-

ing the message, the Data sending state transits to the End state. When the execution 

reaches the End state, the inspection starts again from the Start state. 

Figure 16 represents a basic state diagram used in this thesis. For implementing several 

case studies with different types of robots, some modifications are adopted in the state 

diagram, especially in the Inspect state and the Data sending state (inspection programs 

are available at this link: https://github.com/amankhan47/Aman_SPM_TUNI.git). 

https://github.com/amankhan47/Aman_SPM_TUNI.git
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4.2.2 Communication server 

The machine vision and servo motor control subsystems are connected through a TCP 

IP communication server. After feature extraction, the developed inspection program of 

the vision system waits for a fixed period. Within this period, upon receiving a string from 

the servo motor control subsystem, a message is sent to the servo motor control sub-

system. The servo motor control subsystem does not assign a sending string until the 

previous operation of laser steering being finished.  

4.2.3 Servo motor control subsystem 

The servo motor control subsystem essentially deals with the control of two servo motors, 

to steer the reflected laser spot to the designed positioning according to the messages 

from the communication server. Particularly, one servo motor creates steering movement 

along the x-axis, and the other along the y-axis. Hence, the motor-driven spot motion 

requires another calibration process to connect the distance information (from machine 

vision) with the laser position (driven by DV servo motor current) in the workspace. The 

servo motor control subsystem is designed as an object utilizing MATLAB application. 

The object contains methods for every component of this subsystem (Figure 18 and Ap-

pendix A). 

 A sequence diagram of the servo motor control subsystem 

The ActiveX® environment compatibility makes the servo motor controller suitable for 

developing applications in MATLAB. The servo_interface_loading() method establish 

connection to the controllers through ATP server by loading a servo control interface, 
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sending initiating commands, setting the serial numbers of the controllers, and finally 

moving the motors to home positions. After this method, the initiate_server_connection() 

method establishes a TCP IP connection with the communication server. The data_rec() 

method requests for the extracted feature massage by sending a string to the communi-

cation server. After receiving the message, the position_control() method is responsible 

for selecting suitable leg locations and pass the information to the calibra-

tion_and_move_servo() method. This method starts steering the laser beam to the de-

sired location. In this method, calibration requires some dimensional parameters of work-

space and servo motors. They are the moving distance of the steered spot in both x and 

y directions (x_in_mm, y_in_mm) and the motor positions at starting and finishing points 

(x0,xf,y0,yf) of that trajectory. For reaching a specific location (x_move, y_move) moni-

tored by the vision system, servo motors need to reach the following positions, 

x_axis = (xo-((xo-xf)*x_move)/x_in_mm) and 

y_axis = (yo-((yo-yf)*y_move)/y_in_mm), 

here, x_axis and y_axis are the motor positions of x-axis and y-axis motors respectively. 

Using these values, the laser beam is steered to a specific location. After reaching the 

location, this program again starts executing from data_rec() method to calibra-

tion_and_move_servo() method in a loop that ensures continuous operation in the ex-

periment (Figure 18).  

An optional method, set_k() is also developed, which allows manual selection of the leg 

locations and assistance in evaluating the locomotion potential of an LCN robot before 

developing a control strategy for continuous operation. Besides, the position_control() 

method can be altered to develop other control strategies, depending on different geom-

etries in the robot design. 

The machine vision subsystem assists in deploying different vision algorithms to extract 

message about robot’s structure, which contains shape or configuration information. The 

servo motor control subsystem utilizes this information to steer the beam and actuate 

the robot, depending on the adopted locomotion control strategies. We believe the robot 

tracking system has the potential to be utilized in many micro-robotic applications. Fur-

thermore, this system is capable of being integrated with reinforcement learning for au-

tomatic locomotion control, which will be discussed later.  
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5. EXPERIMENTAL RESULTS  

Different soft robotic structures can be realized by using photomechanical LCN actuators 

to achieve versatile robotic functions, such as shape-change, walking, and swimming. 

Basically, these robots are often constructed by cutting actuator strips from an LCN film 

and pasting them into designed configurations. The movement is then created by the 

out-of-plane deformation of a bending strip. In this chapter, I will first characterize the 

deformation properties of a splayed bending LCN strip. Then, I will introduce a failed trial 

of my study in investigating locomotion of an LCN walking device, and a successful one 

in realizing swimming locomotion on the water surface. 

5.1 Light actuation in an LCN bending strip 

In most cases, LCN strip is the basic building block of LCN robots, providing reversible 

shape-change by bending actuation. Here, an experiment was conducted to examine 

the bending deformation of an LCN strip.  An LCN strip was prepared with splayed align-

ment [53], and attached to a base (Figure 19). The whole strip was irradiated with a 

white-light illumination source (from a projector with lenses, about 1 W/cm2). A video 

analysis tool was developed and used to measure the deformation angle and capture 

the frames of the bending deformation (Appendix B). The measured angle is indicated in 

Figure 19b and c. Figure 19a shows the images of deformed strip when light is switched 

on and when ceasing the light, while Figure 20 plots the measured deformation angles, 

automatically collected by the analysis program.  

The LCN strip is heated up upon irradiation, and the deformation is driven by anisotropic 

thermal expansion between the two surfaces of the splayed film. At 1.4 s (Figures 19a 

and 20) the strip was irradiated with light, and immediately it started to bend. At 3.2 s, 

the strip touched the substrate, which blocked further deformation. In this situation, the 

portions close to the base and the strip-tip were fixed, bringing out no change in the 

measured angle, however, other sections of the strip still deformed until 5.0 s, where the 

light-induced heating was saturated. In total, the LCN strip bent 242o within 1.7 s. After 

ceasing the light, the strip relaxed back to its original shape after about 30 s.  
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c 

 a. Timeline of LCN strip deformation dynamics during (light on at 1.5 s) 
and after (light off at 5.1 s) light exposure. b, c. Angle measurement, the vertical 

blue line is the fixed axis and the other axis follow the tip of the strip  

 LCN strip bending deformation 

The average angular velocity of bending was 137o/s upon illumination (actuation speed) 

and 8o/s after ceasing the light (relaxation speed). This experiment presents the impact 

of light on/off operation on an LCN strip, which is advantageous for devising soft robots, 

as illustrated in the following sections. 

Angle: 80o Angle: 150o 
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5.2 Optical control in three legs walking robot 

The robot was built utilizing three pieces of LCN strips (2.5 mm x 1 mm x 50 micron) 

being UV glued into a central symmetric configuration (see the photograph in the insert 

of Figure 21). We have implemented machine vision and tracking system, as discussed 

in Chapter 4. To obtain walking locomotion, the robot was placed on a paper surface, 

while the machine vision subsystem could automatically detect the robot’s legs, central 

position, and orientation (Figure 21). Particularly, the machine vision could also capture 

images from the top of the robot, measuring the length change of the legs. The decrease 

of leg length upon illumination indicates bending of the strip towards the ground, which 

is the key indication of leg actuation. In this experiment, the template matching technique 

was utilized for the detection of legs. The image processing tool was provided with the 

straight leg templates of the robot. Depending on the matches with the template in the 

inspections, image processing tools provided score values that were used as a measure 

of bending. All this information of detected features was sent to the servo motor control 

subsystem.  

 

 Features detection of three legs walking robot’s through machine vi-
sion, photograph of the robot in the insert 

Then, the servo motor control subsystem started processing the received information. 

For steering the laser beam, the set_k() method of servo motor control subsystem se-

lected one specific leg to be irradiated by calling the method with 1, 2 or 3 as an input 

parameter (Appendix A). The subsystem re-tracked the robot position/orientation after 

finishing one steering step and continued with next steering operation. After several op-

erations, the robot was expected to produce a significant translation through a sequence 
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of leg bending. However, unexpected hurdles have raised up during the experiments, 

such as strong adhesion between the soft material and the ground interface, and unpre-

dictable randomness of friction. The robot has been tested on several substrates includ-

ing paper, plastic, and glass; however, no controlled locomotion was achieved. Since 

dealing with kinetics of soft material is not the main objective of this thesis, in order to 

complete the study of machine learning, an alternative plan was chosen based on an-

other type of locomotion, in order to produce more reliable light-controlled function.  

5.3 Light propelled robotic swimmer 

LCN strip can be used to build swimmer robots. A floating square film (2.5 mm x2.5 mm) 

was placed on the water surface for exploring the capability of light-propelled swimming. 

The mechanism is based on the fact that light illuminates on one or few edges of the film, 

thus heating up the structure asymmetrically. Raising the temperature decreases the 

force of surface tension on that edge, thus dragging the film towards the direction of the 

opposite edge. Eventually, the film is always floating away from the laser spot. To 

achieve automation in light steering of swimming towards the preselected destination, 

machine vision was used. More specifically, the machine vision subsystem was used to 

detect the location of two opposite edges of the square film as well as the destination 

information (a marked line). This information was sent to the servo motor control subsys-

tem. The data_rec() method and the position_control() method of servo motor control 

subsystem were changed to match each specific situation. To deploy automatic control 

of laser steering, the position_control() method used following algorithm (Algorithm 1, 

code is available at this link: https://github.com/amankhan47/Aman_SPM_TUNI.git): 

Algorithm 1: 

[1] Collect the edge location information  

[2] Calculate the distance between the destination and the edge location 

[3] Select the edge location which is farther away from the destination 

[4] Call calibration_and_move_servo() method with selected edge location 

Using this algorithm, the laser beam always irradiated the edge of the film with longest 

distance to the destination (Figure 22). Meanwhile, machine vision subsystem detected 

the new location and steered the laser beam to the new location automatically. Eventu-

ally, the system was able to propel the film towards the destination line, with an average 

speed of around 0.66 mm/s and entire period of 15 s. 
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 Locomotion timeline of a light propelled robotic swimmer 

Though locomotion of the film encompasses some degree of random rotation, it reached 

to the destination line. The film can be propelled forward or backward by selecting edges 

of the film. This on-demand directional movement of this experiment intrigues further 

investigation of robots with better designed geometric patterns, which may lead to a 

higher-level control of swimming property. 

5.4 Light controlled swimming 

Here, a swimmer robot was made by using a black-colored plastic film, with a specific 

designed pattern, in order to achieve more control over the directional movement (Figure 

23). The robot is composed of three edges/legs; all can be recognized by machine vision 

and selected to be exposed with laser beam irradiation. During the experiment, machine 
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vision subsystem tracked the robot and servo motor control subsystem was used to se-

lect the legs to be excited. When one side-leg of the robot was irradiated with laser beam, 

the whole body rotated clockwise or anti-clockwise (Table 6a,b). In case of the middle 

leg, the robot moved forward (Table 6c). Note that the locomotion was not entirely 

straight due to the fact that it is almost impossible to pin-point the laser beam exactly in 

the middle of the structure. This randomness in orientation during light-driven motion 

poses a hurdle in controlling robotic motion. 

 Structure of a light controlled swimming robot  

 

No Initial stage 
Locomotion due to the 

laser irradiation 
Movement description 

a 

  

One side leg was irradiated 
with a laser beam which 

produced a clockwise rotation 

b 

  

Another side leg was 
irradiated with a laser beam 

which produced an 
anticlockwise rotation 

c 

  

Middle leg was irradiated with 
a laser beam which produced 

forward movement with a 
slight rotation 

Randomness also appears when illuminating the side edge of the robot to create rotating 

motion. Table 7 shows the experiment of a floating robot being excited on the side leg 

Table 6. Directional movements of a swimming robot. 

 

Left leg   Middle leg       Right leg 
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with laser power of 700 mW. The robot rotated to clockwise directions with different an-

gles (Table 7). 

Initial stage 
Locomotion due to the laser 

irradiation 

Approximate 

rotation 

angle(in degree) 

  

95 

  

90 

  

35 

  

100 

Though the laser power was fixed and continuous in that experiment, the rotational angle 

of this robot differs a lot. The randomness in light-driven rotation (excitation on the side-

legs) and orientation during forward moving (excitation on the middle-leg) both affect the 

precision of light control in robotic motion. To solve this, reinforcement learning technique 

is developed to optimize the locomotive controllability, which will be introduced in the 

next Chapter.  

 

Table 7. Rotational angle variations of a swimming robot. 
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6. REINFORCEMENT LEARNING IN LIGHT DRIVEN 

SWIMMING ROBOT (SIMULATIONS) 

This chapter will focus on a light-driven floating robot’s locomotion optimization by taking 

the randomness factor of movement into account. The aim is to develop an optimal con-

trol strategy to drive the robot to swim to a pre-selected location. To achieve this, rein-

forcement learning has been implemented because of its remarkable advantages in con-

trolling robotic motion by learning from experiences without prior knowledge of the robot’s 

performance. A variant of reinforcement learning, deep Q learning, is used to build a 

mapping from abstract observational data to actions for achieving optimal locomotion of 

the robot. Usually, reinforcement learning needs to deal with a large amount of training 

data before achieving optimal behaviors. However, collecting such amount of data is 

practically very challenging [23]. Thus, a simulator based on computer program is devel-

oped to train the deep Q network (DQN), before executing experiments on hardware. 

The simulator is tuned and trained with different randomness factors related to the float-

ing robots to match the real-world scenario. The chapter will present the results of this 

simulation. Firstly, the RL environment and its components are described, then the agent 

and training parameters will be discussed. Finally, the simulation results will be pre-

sented. 

6.1 Simulation environment 

6.1.1 Action space and observational space 

A swimming robot can exhibit three types of light-driven locomotion behaviors depending 

on which leg is subjected to laser irradiation. Figure 24a represents these movements: 

excitation on left/right leg yielding clockwise/anticlockwise rotation, and forward move-

ment while pin-pointed the spot at the middle of the robot. Herein, the RL agent needs 

to train the object with three discrete actions, corresponding to the robot’s clockwise ro-

tation, forward movement and anticlockwise rotation, which are represented by numeri-

cal values 1, 2 and 3 in RL system. At each time, the agent selects an action among 

these three candidates, and selecting an action is referred to as one step in the simula-

tion process. 

After every action, the agent receives a set of data about observational states, which are 

associated with the information delivered by the simulator or the vision system. This data 
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includes the x- and y-axis values of robot position, target location, the distance between 

the robot and the target location, angle between the target and the robot as well as the 

orientation of the robot body (Figure 24b). 

 

a 

 

b 

 LCN robot. a. Action states. b.Observational states   

6.1.2 Simulator 

The swimming robot exhibits certain degrees of orientation with uncertainty and random-

ness in light-driven motion speed, as discussed in Chapter 5. Due to this reason, a sim-

ulator is modeled as a stochastic environment for learning the optimal policy using Deep 

Q learning. The simulator interface is illustrated in Figure 25 where the light blue color 

object represents the robot body, and the red dot indicates the targeted position where 

the robot is trained to approach. The whole area inside the red boundary is a workspace 

of the simulation serving as an effective region to execute robotic actions. 

The simulator is associated with two methods: position_control() method and measure-

ment() method. The position_control() method is responsible for determining the position 

and orientation of the robot after an action being taken by the agent and eventually up-

dating the simulator. This method is controlled by assigning control strings 1, 2 or 3, 

which correspond to the robot’s clockwise rotation, forward movement, anticlockwise ro-

tation.  

 

1 
2 3 

Robot location Target location  

Distance between 

robot and target 

Angle between robot 

and target 
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 LCN robot position simulator and visualizer 

After taking an action, the measurement() method returns the observational data. Be-

sides, it also checks whether the robot has reached the target or not and the current 

position of the robot remains being inside the boundary circle or not. Initially, Deep Q 

learning was implemented on the simulator with simple case to get a simple solution. 

After that, the simulator is configured to mimic more complex situations by adding more 

parameters describing the randomness. These randomness effectors are tuned in the 

position_control() method. Finally, this simulator can provide an option for illustrating the 

whole trajectory of the robot, see details in Appendix C. 

The simulator is designed in a way that it can still receive information from the vision 

system when being implemented in the real world. It plots the robot position, orientation 

and the target position in real-time, together with the trajectory of the robot. During the 

simulation, the simulator itself does not serve any observation data, as the data is directly 

fetched from the vision system. Besides the control strings used in the position_control() 

method also fully supports the previously developed servo motor control subsystem to 

steer the laser beam to the legs of the robot. Therefore, the training model in the simu-

lator is effortlessly deployable in the real workspace (Appendix D, codes are available at 

this link: https://github.com/amankhan47/Aman_SPM_TUNI.git). 

6.1.3 Reward function 

The agent gets a reward for every action, which is calculated by a reward function. The 

reward function is defined by using distance and angle between the robot and the target 

location. The rewarding system is divided into two categories: (ii) reward at the end of 

the episode (Algorithm 2) and (ii) reward for each action (Algorithm 3). When the robot 

reaches the target, touches the boundary, or reaches the maximum step, the episode 

ends. Based on each specific situation the agent gets a reward value. If the episode is 
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not a terminal episode then the reward function returns a reward value based on how 

good the action was, in terms of going towards or away from the target and maintaining 

small angle. The reward function inspires the agent to avoid the boundary and to take 

the forward steps to reach the target location by assigning higher rewards. Also, it moti-

vates to maintain lower angular division during the locomotion with respect to the target. 

Besides, a constant negative reward is assigned after taking every single step, and this 

encourages the agent to reach the target by taking as little steps as possible. The aim of 

the agent is to accumulate maximum reward and reach the target, thus proper action 

knowledge is gained utilizing the developed reward function.  

Algorithm 2: 

IF episode is not in a terminal state 

Calculate the reward for the action has been taken (Algorithm 3) 

ELSE IF robot is not inside the boundary 

Penalty, -100  

ELSE 

Reward for reaching target, 100 

Return reward 

 

Algorithm 3: 

IF robot going towards the target 

Positive reward, 5 

ELSE IF going away from the target 

Penalty, -2 

ELSE not moved 

No reward, 0 

 

IF low angle maintained between target and robot 

Reward for maintaining a low angle,2 

ELSE  

Penalty for not maintaining a low angle, -10 

 

Penalty for taking more step, -1 

RETURN total reward  

 

6.2 Setting up the agent and training 

The agent utilizes deep Q-learning with experience reply algorithm. A critic network is 

built up to estimate the value function by conducting training. This network correlates 

rewards and delay rewards by receiving the observational states and action states. The 

critic network is configured with two input paths, the observational state path and action 

state path, and one output path named as common path (Figure 26). The observational 
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state path consists of an input layer and two fully connected convolution layer with an 

activation layer in between. The action state path has an input layer and a fully connected 

convolution layer. The common path combines the other two paths using an addition 

layer and connects to a fully connected convolution layer through an activation layer (see 

details in Table 8). 

Name Description 

Observational state path 

observational_state input layer, input size:7x1x1 

Critic_State_FC1 fully connected convolution layer, size:12 

Critic_Relu1 activation layer, rectified linear unit 

Critic_State_FC2 fully connected convolution layer, size:12 

Action path 

Action_state input layer, input size: 1x1x1 

Critic_Action_FC1 fully connected convolution layer, size:12 

Common path 

addition element-wise addition of 2 inputs 

Critic_Common_Relu activation layer, rectified linear unit 

output fully connected convolution layer, size:1 

The RL system becomes ready for training after setting up the agent and training param-

eters. Every training session is divided into episodes, and in every episode the robot can 

take a maximum number of actions, i.e. steps. The maximum number of steps to reach 

the target is set to 20. The episode can end (a terminal state) when the robot touches 

the boundary line or the target location. After termination of an episode, the simulator 

restarts from the initial location to begin a new episode. The critic network employs gra-

dient descent utilizing Adam optimizer with a learning rate of 0.01. The agent uses epsi-

 

 Architecture of the applied deep neural network 

Table 8. Deep network layer description 
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lon greedy strategy to ensure a balance between exploration and exploitation. Depend-

ing on the value of epsilon, the agent decides which action should be taken, which may 

be a random one or the action with highest Q value. Initially, the agent collects experi-

ence data for later use in experience replay. The size of the replay memory is 10000, 

with a minibatch size of 32. Table 9 lists the used parameters for executing the training 

process. The best sequences of actions are saved for further use. Several training ses-

sions were performed for achieving stable performance by utilizing the previous experi-

ence. Besides the simulator parameters were tuned to adapt the locomotion behavior of 

the swimming robot. 

Parameters Value 

Learning rate  0.01 

Epsilon minimum 0.01 

Epsilon decay 0.005 

Discount factor 0.9 

Experience buffer length 10000 

Minimum batch size 32 

Num steps to look ahead 1 

Sample time 1 

Target update method periodic 

Target update frequency 4 

Target smooth factor 1.0000e-03 

6.3 Training without associating randomness in locomotion 

The simulator was initialized with a fixed target location and simple movement behavior 

according to Table 10, without associating randomness by setting the position_control() 

method. 

Selected action  Movement 

Actions 1 Generate clockwise rotational movement, -25o 

Actions 2 Generate forward movement 

Actions 3 Generate anticlockwise rotational movement, 25o 

Figure 27 shows the training results of 500 episodes with about 5000 steps. The blue 

dots indicate the total reward for that particular episode, the red dots indicate average 

reward of the last five episodes and the green dots indicate the long term reward esti-

mation(Q0), whose value is given by the calculation based on the initial simulator states 

and agent current condition.  

Table 9. Agent parameters for the Deep Q learning 

Table 10. Effect of selecting an action 
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According to the developed reward function, as shown in Figure 27, rewards of 100 or 

more were received by reaching the target position, but, a penalty of 100 or more was 

given if it passes the boundary. At the beginning of the training, the robot often crossed 

the boundary thus yielding low rewards. After one hundred episodes, it learned to reach 

the target and tried to achieve more rewards by spending fewer steps. After two hundred 

episodes the critic was able to correlate the estimated long-term reward(Q0) and the 

actual total reward with most of the episodes. In this case, the Q0 values conversed with 

the average reward values because there was no randomness factor included in the 

robot locomotion. After every training session, the episodes with reward values above 

100 were saved for further training purposes. 

 

 Training results without associating randomness in locomotion behavior 
with a fixed destination point 

 
a 

 

b 

 Evaluation of learned policy. a. Robot trajectory with the same target lo-
cation used during training b. Robot trajectory with a different target location 
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The learned policy was evaluated with the simulator, by observing the robot trajectory 

for the fixed target location (used during the training session) (Figure 28a), and later on 

by changing to a different target location (Figure 28b). For the first case, the robot 

reached the target by spending eight steps and collected total rewards of 130. For a 

different target, the robot spent 25 steps and went outside the boundary. Importantly, the 

agent can move towards the target based on its learned skill.  

6.4 Training approaching the real situation  

The swimming robot always exhibits some degree of randomness in locomotion. To de-

velop an optimal locomotion policy matching with the real scenario, different randomness 

factors were introduced in the simulator. The agent thus learned to adapt this random-

ness factors through different training sessions.  

Introducing randomness factors into locomotion was done in three parts. The first part 

introduces the randomness factors in rotating movements. The robot rotates randomly 

in between 0 and 90o when the side legs are irradiated with a laser. Thus, a specific 

randomness factor has been added to the simulator to describe this random re-orienta-

tion, as shown in Table 11.  

Selected action  Movement 

Actions 1 generate random clockwise rotational movement which is 

calculated by -90o X random number in the interval of (0,1)  

Actions 2 generate forward movement 

Actions 3 generate random anticlockwise rotational movement 

which is calculated by 90o X random number in the interval of 

(0,1) 

Then, the agent was trained with a fixed target location, and the training was conducted 

for 1200 episodes, together with about 13000 steps. The estimation value Q0 correlated 

with most of the episode rewards, and most of the episodes got more than 100 rewards, 

i.e. the robot successfully reached the target (Figure 29). Then the effectiveness of the 

learned policy was accessed for two target points. The robot reached the fixed target 

(used in the training session) in eight steps and collected a total reward of 130 (Figure 

30a). After learning, the robot is given a different target (other than the fixed target), and 

it was able to reach the target, by taking more steps and reaching a less reward (Figure 

30b). 

Table 11. Effect of selecting an action for the first part 
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For the second part, the training was progressed with six different target locations for 

2000 episodes with total step number of about 23000. The simulator changed the loca-

tion every 99 episodes randomly which is also reflecting the training result (Figure 31). 

The evaluation of learned policy at different locations is shown in Figure 32 where the 

robot reaches the targets successfully. 

 

 Training results with randomness in the rotational movement with a 
fixed destination point 

a 
b 

 Evaluation of learned policy with randomness in the rotational move-
ment. a. Robot trajectory with the same target location used during training b. 

Robot trajectory with a different target location 

 

  

                     

              

    

   

 

  

   

   

                                                

             

             

         

   1  1        3  3  4  4     
 

  

1  

1  

   

   

3  

3  

4  

4  

   



55 

 

 

 Training results with randomness in the rotational movement with differ-
ent destination points 

a b c 

d e f 

 Evaluation of learned policy with different target locations and random-
ness in the rotational movement. a,b,c,d,e,f. Robot trajectory at different target 

location and robot successfully reaches the targets 
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For the third part, some random rotations were included in the robot’s forward move-

ments. This specific inclusion is due to the experimental observation that the forward 

movement of the robot is not entirely straight. Thus, randomness in actions given by 

using Table 12. Figure 33 shows the training results conducted in two sessions consist-

ing 4500 episodes (70000 steps). After these training sessions, the robot can reach dif-

ferent targets successfully (Figure 34). As all the actions include randomness factor, the 

robot adapts suitable actions to reach the target point and may result in different trajec-

tories for the same destination point. 

Selected action  Movement 

Actions 1 Generate random clockwise rotational movement which is 

calculated by -90o X random number in the interval of (0,1)  

Actions 2 Generate forward movement with random clockwise or 

anticlockwise rotational movement, which is calculated by (-

45 X random number +45 X random number). The random 

number has an interval of (0,1). 

Actions 3 Generate random anticlockwise rotational movement 

which is calculated by 90o X random number in the interval of 

(0,1) 

 

a b 

 Training results with randomness in every action with different random 
destination points (changing the points in every 50 episodes). a, b. Conducted 

training in two sessions 

 

                        

              

    

    

    

    

    

   

 

  

   

   

   
                                                

             

             

         

Table 12. Effect of selecting an action for the third part 
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a b 

c d 

e f 

g h 

 Evaluation of learned policy with different target locations and random-
ness factors included in all actions. At the same target, robot successfully 

reached using different trajectories. The same target pairs are 
(a,b);(c,d),(e,f);(g,h) 
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Gradually all the randomness factors were introduced in these training processes. In the 

last part of the training, all the actions include randomness factors in order to resemble 

the swimming robot locomotion. Due to the randomness in every action, the robot 

chooses the best action (possibly) depending on the latest situation of the robot. The aim 

is to promote the directional movement of the swimmer with orientation towards the tar-

get point. Overall, the agent attempts to move the robot towards different destination 

points while maintaining small angle with respect to the destination point and spending 

fewer steps. After all these training sessions (approximately 120 000 steps), the trajec-

tory results confirm that the deep Q learning agent is successful, and an optimal control 

strategy to reach different target locations is developed.  
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7. CONCLUSIONS AND OUTLOOK  

This Thesis study tried to develop an optical control method to enable directional loco-

motion of small-scale photoresponsive robots as well as an optimal control strategy for 

locomotion possibly that can be used in future soft robotics. 

The developed robot tracking system provided an efficient detection and analysis plat-

form for the small-scale photoresponsive robots through laser steering to the detected 

features. The system was able to move laser efficiently by changing some commands, 

as shown in Chapters 4 and 5. This system assisted in realizing different factors related 

to LCN robots’ locomotion (walking and swimming). Among different types of photore-

sponsive robots, the swimmer robot exhibited potential directional movement, albeit with 

some degree of uncertainty and randomness in their locomotion.  

This Thesis presented a new approach for controlling locomotion of photoresponsive 

swimmer robots by using deep Q learning, in order to optimize the moving efficiency to 

reach a target. A simulator was developed to mimic the uncertain and random behavior 

of those robots and used to collect a large number of training samples. The simulator 

allowed to choose the way of exploring the environment and enabled the RL agent to 

better understand the environment and decide the best actions. Gradual progress had 

been made in the simulator where the agent learned from the fundamental to complex 

movement behavior. Thousands of episodes had been conducted to develop an optimal 

control policy where the robot spent fewer steps and took the possible shortest path 

(considering all the randomness in every movement) to reach different target destina-

tions.  

This work has successfully taken a step towards controlling the autonomous locomotion 

of light-responsive soft robots. Furthermore, the agent can be trained as well as the 

learned policy can be applied in the real environment because the entire system is de-

veloped in a way that it fully supports and correlates the robot tracking system. Thus, the 

future step will be to deploy the learned optimal control policy with actual swimmer robots 

in the real environment. 

The developed robot tracking system can be used in different experiments to recognize 

the different features of photoresponsive materials and robots. The machine vision pro-

gram uses a template matching technique, which enables affluent detection of desired 

features. Besides laser steering system gives sequential options to steer the laser beam 
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automatically to detected features. This system already has been used for conducting 

several experiments related to light-responsive materials and robots. 

Application of deep reinforcement learning in soft photoresponsive robotics has many 

potentials because of dynamic adaptation to the environment without the information of 

structural configuration and constituent material properties as well as robotic mechanics. 

This work can be extended to a real environment for locomotion control, obstacle avoid-

ance, micro-object delivery, and multiple robot control to accomplish collaborative tasks. 

Also, the whole system can be used for photoresponsive robots of different types and 

designs with minor modifications because of straightforward feature detection, efficient 

laser steering, and facile insertion of different movement patterns in the simulator to train 

the reinforcement learning agent. This approach of controlling robot locomotion can 

bridge and make the path to locomotion control of different light-driven robots. 
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APPENDIX A: SERVO MOTOR CONTROL SUB-

SYSTEM OBJECT 

Codes are also available at: https://github.com/amankhan47/Aman_SPM_TUNI.git 

Program 1. Laser steering system 
 

%% This program can be used for steering a laser beam to photorespon-

sive robot’s parts detected by a machine vision system. 
%A machine vision system serves the location information of the robot 

legs and other features. Different control algorithm can be added to 

the position_control()function. 

  
classdef laser_steering_system<handle 
    properties 
        %tcp ip connection variable 
        tcp_connection; 
        recv_data_size = 8; 
        data_receive; 

         
        %servo conrtoller 
        fig_servo_ctrl; 
        x_axis_controller=[]; 
        y_axis_controller=[]; 

         
        %robot legs; x,y:location; l:left leg; r:right leg 
        xl,yl,x,y,xr,yr, 
        rob_rot_ang; % rotation angle of the robot with the target 
        k; %leg selection action 
    end 

     
    %% Initialize system 
    methods 
        function this = laser_steering_system1(this) 
            %servo interface loading 
            if isempty(this.fig_servo_ctrl) || ~is-

valid(this.fig_servo_ctrl) 
                servo_interface_loading(this) 
            end 

             
            %connection to the machine vision server 
            if isempty(this.tcp_connection) 
                initiate_server_connection(this); 
            end 

             

            %iteration of steering operation 
            i=1; 
            while i<100 
                %receive data from the machine vision server 
                data_rec(this) 
                %calibration and send comment to servo motor control-

ler 
                position_control(this) 
                i=i+1; 
            end 

https://github.com/amankhan47/Aman_SPM_TUNI.git
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        end 
    end 

     
    methods 
        %% servo interface loading 
        function servo_interface_loading(this) 
            %initialization of servo controller serial numbers 
            serial_number_1 =27253885; 
            serial_number_2 =27501118; 

             
            waitbar_h=waitbar(.1,'Please wait, Loading ActiveX Con-

troller'); 

             

             
            f=.7; %megnification factor of the fig_servo_ctrl con-ten-

ier 
            fpos(1) = 100; 
            fpos(2) = 100; 
            fpos(3) = f*480; % window width 
            fpos(4) = f*2*300; % window height 
            this.fig_servo_ctrl = figure('Position', 

fpos,'Menu','None','Name','Controller Interface'); 

             
            % activeX controller 
            this.x_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*295 f*450 f*300 ], this.fig_servo_ctrl); 
            this.y_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*1 f*450 f*300 ], this.fig_servo_ctrl); 

             
            % initialize and start control 
            this.x_axis_controller.StartCtrl; 
            this.y_axis_controller.StartCtrl; 

             
            % set the serial number 
            waitbar(.2,waitbar_h,'Seting the serial number') 
            set(this.x_axis_controller,'HWSerialNum', serial_num-

ber_1); 
            pause(1) 
            set(this.y_axis_controller,'HWSerialNum', serial_num-

ber_2); 

             
            % identify the device serial number 
            waitbar(.5,waitbar_h,'Indentifing the devices') 
            this.x_axis_controller.Identify; 
            pause(.5) 
            this.y_axis_controller.Identify; 
            % waiting for the GUI loading; 
            pause(5);  

             

             
            % Moving to home position 
            waitbar(.7,waitbar_h,'Moving to home position') 
            this.x_axis_controller.MoveHome(0,0); 
            pause(1) 
            this.y_axis_controller.MoveHome(0,0); 
            waitbar(1,waitbar_h,'Done!') 
            delete(waitbar_h); 
        end 
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        %% vision server connection 
        function initiate_server_connection(this) 
            % establish connection with machine vision server 
            % Connection data 
            host = '127.0.0.1'; 
            port = 4000; 
            timeout = 60; 

             
            % Configuration and connection 
            this.tcp_connection=tcpip(host,port,'NetworkRole','serv-

er'); 
            this.tcp_connection.timeout = timeout; 
            this.tcp_connection; 
            % Wait for connection 
            disp('Waiting for connection'); 
        end 

         
        %% data receive 
        function data_rec(this) 
            fopen(this.tcp_connection); 
            fwrite(this.tcp_connection,'send'); 
            disp('data sent to vision soft') 
            disp('Connection OK'); 

             
            this.data_receive =fread(this.tcp_connec-

tion,this.recv_data_size,'double'); 
            disp(this.data_receive) 

             
            % check data integrity 
            [row,~]=size(this.data_receive); 
            if row==this.recv_data_size && (this.data_receive(8)==99) 
                %leg positions: l: left leg R:right leg 
                this.xl=this.data_receive(1); 
                this.yl=this.data_receive(2); 

                 
                this.x=this.data_receive(3); 
                this.y=this.data_receive(4); 

                 

                 
                this.xr=this.data_receive(5); 
                this.yr=this.data_receive(6); 

                 

                %rotation angle of the robot 
                this.rob_rot_ang=this.data_receive(7); 

                 
            end 
            fclose(this.tcp_connection); 
        end 
        %% selection of leg manually 
        function set_k(this) 
            val=(input('select an action for the robot: 1,2,3 \n>>')); 
            this.k = val; 
        end 
        %% select the leg location (Different control algorithm can be 

added) 
        function position_control(this) 

             

            if this.k==1 
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                calibration_and_move_servo(this,this.xl,this.yl); 
            elseif this.k==2 
                calibration_and_move_servo(this,this.x,this.y); 
            elseif this.k==3 
                calibration_and_move_servo(this,this.xr,this.yr); 
            end 
        end 
        %% steer laser beam to the desired location 
        function calibration_and_move_servo(this,x_move,y_move) 
            %% calibration data 
            xo = 7.40389; 
            xf = 5.34398; 
            x_in_mm = 10*9.305264; 

             
            yo =9.42645; 
            yf =6.99811; 
            y_in_mm = 8*9.305264; 

             

             
            x_axis = (xo-((xo-xf)*x_move)/x_in_mm)+.0534+.0029; 
            y_axis = (yo-((yo-yf)*y_move)/y_in_mm)-.0670; 

             
            %% move servo motor 
            if x_axis>0 
                this.x_axis_controller.SetAbsMovePos(0,x_axis); 
                this.x_axis_controller.MoveAbsolute(0,1==0); 
            end 

             

             
            if y_axis>0 
                this.y_axis_controller.SetAbsMovePos(0,y_axis); 
                this.y_axis_controller.MoveAbsolute(0,1==1); 
            end 
            pause(.01) 
        end 
    end 
end 
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APPENDIX B: VEDIO ANALYSIS TOOL FOR AN-

GLE MEASURMENT (USER INTERFACE) 

 

Figure (i): Measuring bending deformation of an LCN strip

 

Figure (ii): Measuring bending deformation of an LCN strip 

Code is available at: https://github.com/amankhan47/Aman_SPM_TUNI.git 

https://github.com/amankhan47/Aman_SPM_TUNI.git
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APPENDIX C: DEVELOPED DEEP Q LEARNING 

PROGRAM 

Codes are also available at: https://github.com/amankhan47/Aman_SPM_TUNI.git 

Program 2. Environment 
%% This program is used for creating RL environment and simulator 

 
classdef robotenvironment< rl.env.MATLABEnvironment 
    %% robot_environment: Defining environment for the photoresponsive 

robot.     
    properties 
        %x,y-axis location of the destination target 
        xt=300; 
        yt=300; 

         
        %boundary circle 
        Lx=500; %x limit of boundary circle 
        Ly=500; %y limit of boundary circle 
        xc; % center location,x 
        yc; % center location,y 
        r;  %redius 

         
        %robot properties 
        k; %current robot leg 
        rob_rot_ang=-45; %orientation of the robot body 
        angle_btn_rob_trget; % angle between robot and target 
        w; %robot width in the simulator 
        h; %robot hight in the simulator 
        V1=[]; %translation matrix of the robot body  
        % current position of the robot 
        x=150; 
        y=200;         
        % distence between robot and target 
        d; 
        pre_d=1; %previous distance 

         
        % Reward 
        Reward; %total reward for an action 
        at_destination=false; %initializing flag for checking robot at 

destination or not 
        is_in_circle=true; %initializing flag for checking robot is 

indide the circle or not 
        penalty_not_in_circle= -100;% setting penalty for not in the 

circle 

         
        %simulator figure container handler 
        handel; 

         
        %plot robot trajectory; most useful for checking learned pol-

icy 
        trace=true; 
        %trace figure container handler 
        ax; 

https://github.com/amankhan47/Aman_SPM_TUNI.git
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        %(optional)counter for changing target location at regular in-

terval 
        count=0; 
    end 

     
    properties 
        %initializing observational states: [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt] 
        State = zeros(7,1) 
    end 

     

    properties(Access = protected) 
        %initializing flag for indicating episode ends 
        IsDone = false         
    end 

  
%% required methods for reinforcement learning 
    methods               
        %% creating environment instance 
        function this = robotenvironment() 
            %initializing observation states 
            ObservationInfo = rlNumericSpec([7 1]); 
            ObservationInfo.Name = 'Robot states'; 
            ObservationInfo.Description = 'd,an-

gle_btn_rob_trget,x,y,rob_rot_ang'; 

             
            %initializing Action states settings   
            ActionInfo = rlFiniteSetSpec([1 2 3]); 
            ActionInfo.Name = 'Movement Action'; 

             
            % implementing reinforcement learning environment 
            this = this@rl.env.MATLABEnvironment(ObservationInfo,Ac-

tionInfo); 

             

            % initializing property values 
            updateActionInfo(this); 
        end 

         
        %% simulating environment with one action  
        function [Observation,Reward,IsDone,LoggedSignals] = 

step(this,Action) 
            LoggedSignals = []; 
            % initalize the robot body and boundary parameters 
            robot(this); 
            %set action 
            this.k=Action; 
            %emulate and calculate the effect of the action 
            position_control(this,Action);             
            %update observation states 
            this.State = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt]; 
            Observation = this.State;             
            %check terminal conditions 
            IsDone=(~this.is_in_circle)||this.at_destination; 
            this.IsDone = IsDone;             
            %calculate rewards 
            Reward = getReward(this); 
            %notify the change 
            notifyEnvUpdated(this); 
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        end 

         
        %% set initial condition after every terminal episode 
        function InitialObservation = reset(this) 
            this.k=2; 
            Action=this.k; 
            this.x=150; 
            this.y=200; 
            this.rob_rot_ang=-45; 
            this.xt=150; 
            this.yt=400; 
            this.pre_d=this.d; 
            robot(this); 
            position_control(this,Action); 
            InitialObservation = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt]; 
            this.State = InitialObservation; 
            notifyEnvUpdated(this); 
        end 
    end 
    %% methods related to action effect measurement and validate val-

ues 
    methods                
        % robot and boundary parameter 
        function robot(this) 
            %robot body size 
            this.w = this.Lx/40; 
            this.h = this.Ly/60; 
            % circle center and the radius from the center 
            this.xc=this.Lx/2; 
            this.yc=this.Ly/2; 
            this.r=min(this.Lx/2,this.Ly/2);         
        end 

         
        %% emulate and calculate the effect of the action 
        function position_control(this,Action) 
            envUpdatedCallback(this) 
            if ~ismember(Action,this.ActionInfo.Elements) 
                error('Action must be 1,2,3 but %g is occurred.',Ac-

tion); 
            end            
            this.k=Action; 
            if this.k==1 
                % set clockwise angle 
                this.rob_rot_ang=this.rob_rot_ang-25; 
                % calculate the effect of the action 
                measurment(this); 
            elseif this.k==2 
                if this.rob_rot_ang<0 
                    % move forward                    

this.x=this.x+20*(cos(deg2rad(this.rob_rot_ang+90)));                    

this.y=this.y+20*(sin(deg2rad(this.rob_rot_ang+90))); 
                    measurment(this); 
                else 
                    this.x=this.x-

20*(cos(deg2rad(this.rob_rot_ang+180+90))); 
                    this.y=this.y-

20*(sin(deg2rad(this.rob_rot_ang+180+90))); 
                    measurment(this); 
                end 
            elseif this.k==3 
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                % set anticlockwise angle 
                this.rob_rot_ang=this.rob_rot_ang+25; 
                measurment(this); 
            end         
        end         
        %%  calculate the effect of the action       
        function measurment(this)             
            %distance between target and robot 
            this.pre_d=this.d; 
            this.d=sqrt(abs((this.xt-this.x)^2+(this.yt-this.y)^2));  

             
            %rotation and translation matrix computation 
            c = cos(deg2rad(this.rob_rot_ang)); 
            s = sin(deg2rad(this.rob_rot_ang)); 
            R = [c -s;s c]; %rotation matrix 
            T = [R [this.x this.y]';zeros(1,3)];  %translation matrix 

             
            %robot structure matrix 
            V0 = [  -this.w  this.w  this.w  0            -this.w ; 
                    -this.h -this.h  this.h  this.h*2.5   this.h ; 
                ones(1,5)   ]; 
            this.V1 = T*V0; %translation matrix of the robot body             

             
            %creating vector to find angle 
            x2=this.V1(1,4); 
            y2=this.V1(2,4); 
            v1 = [x2-this.x y2-this.y]; 
            v2 = [this.xt-this.x this.yt-this.y]; 

             
            % find angle between robot and target 
            angle_btn_rob_trget_in_red = 

acos(dot(v1,v2)/(norm(v1)*norm(v2))); 
            %conversion to degrees 
            if isfinite(angle_btn_rob_trget_in_red) 
                if det([v1;v2])<=0 
                    this.angle_btn_rob_trget = (an-

gle_btn_rob_trget_in_red * (180/pi)); 
                else 
                    this.angle_btn_rob_trget =-(an-

gle_btn_rob_trget_in_red * (180/pi)); 
                end 
            else 
                this.angle_btn_rob_trget=0; 
            end 

             
            %check the destination reached or not 
            this.at_destination=(this.d<30); 

  
            %checking current position inside the circle 
            this.is_in_circle=((this.x-this.xc).^2+(this.y-

this.yc).^2<=this.r^2);            
        end    

         
        %% update action states 
        function updateActionInfo(this) 
            this.ActionInfo.Elements = [1 2 3]; 
        end         

         

        %% Reward function 
        function Reward = getReward(this) 
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            if ~this.IsDone 
                Reward = reward(this); 
            elseif ~this.is_in_circle 
                Reward = this.penalty_not_in_circle; 
            else 
                Reward = 100; %positive reward for achieving the tar-

get 
            end 
        end 

         
        function rwd = reward(this)             

             
            if (this.d)<(this.pre_d) 
                r1=5; %positive reward for going towards the target 
            elseif (this.d)>(this.pre_d) 
                r1=-2; %negative reward for going away from the target 
            else 
                r1=0; 
            end 

                         

            % reward for maintaining low angle 
            if abs(this.angle_btn_rob_trget)<25 
                r2=1; 
            else 
                r2=-5; 
            end 

             
            % penalty for taking more step            
            r3=-1;   

             
            %total reward for the action 
            rwd=r1+r2+r3; 
           % disp(rwd)             
        end 

   

        %% visualization 
        function plot(this)           
            envUpdatedCallback(this) 
        end 

         
        %% properties validation 
        function set.State(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','vector','numel',7},'','State'); 
            this.State = double(value(:)); 
            notifyEnvUpdated(this); 
        end 
        function set.k(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','k'); 
            this.k = value; 
            notifyEnvUpdated(this); 
        end 
        function set.x(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','x'); 
            this.x = value; 
        end 
        function set.y(this,value) 
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            validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','y'); 
            this.y = value; 
        end 
        function set.xt(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','xt'); 
            this.xt = value; 
        end 
        function set.yt(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','yt'); 
            this.yt = value;             
        end         
        function set.penalty_not_in_circle(this,value) 
            validateattributes(value,{'numeric'},{'real','fi-

nite','scalar'},'','PenaltyorFalling'); 
            this.penalty_not_in_circle = value; 
        end 
    end 
 %%   simulator visualization 
    methods (Access = protected) 
        %update visualization every time the environment is updated 
        function envUpdatedCallback(this)            
           simulator(this)             
        end 

         
        %% simulator 
        function simulator(this) 
            % create a simulator container if not available 
            if isempty(this.handel) || ~isvalid(this.handel) 
                this.handel = figure(... 
                    'Toolbar','none',... 
                    'NumberTitle','off',... 
                    'Name','LCN Robot Position Simulator and Visualiz-

er',... 
                    'Visible','on',... 
                    'MenuBar','none');                 
                figure(this.handel); 
                f=clf; 
                ha = gca(f); 
                ha.XLim=[0 this.Lx]; 
                ha.YLim=[0 this.Ly]; 
                grid(ha,'off'); 
                hold(ha,'on'); 
            else 
                figure(this.handel); 
                f=clf; 
                ha = gca(f); 
                ha.XLim=[0 this.Lx]; 
                ha.YLim=[0 this.Ly]; 
                grid(ha,'off'); 
                hold(ha,'on'); 
            end 

             
            %if robot body is not initiated before e.g. before taking 
            %first step 
            if isempty(this.V1) 
                c = cos(deg2rad(this.rob_rot_ang)); 
                s = sin(deg2rad(this.rob_rot_ang)); 
                R = [c -s;s c]; %rotation matrix 
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                T = [R [this.x this.y]';zeros(1,3)]; %translation ma-

trix 
                robot(this); 
                %robot structure matrix 
                V0 = [  -this.w     this.w     this.w     0             

-this.w ; 
                    -this.h     -this.h    this.h    this.h*2.5     

this.h ; 
                    ones(1,5)   ]; 
                this.V1 = T*V0; %translation matrix of the robot body 
            end 

             
            %robot-body location 
            vx = this.V1(1,1:5); 
            vy = this.V1(2,1:5); 

             
            %find the body, boundary circle and target point 
            body = findobj(ha,'Tag','body'); 
            boundary_circle = findobj(ha,'Tag','boundary_circle'); 
            target_point = findobj(ha,'Tag','target_point'); 

  
            if isempty(body) 
                patch(vx,vy,[0.3010 0.7450 0.9330],'Tag','body'); 
            else 
                body.XData = vx; 
                body.YData = vy; 
            end    

  

            if isempty(boundary_circle) 
                this.xc=this.Lx/2; 
                this.yc=this.Ly/2; 
                this.r=min(this.Lx/2,this.Ly/2); 
                boundary_circle=viscircles([this.xc,this.yc],this.r); 
                boundary_circle.Tag='boundary_circle'; 
            end 

             

            if isempty(target_point) 
                target_point= viscircles([this.xt,this.yt],this.h/5); 
                target_point.Tag='target_point'; 
            end 

             
            %% plot robot trajectory; most useful for checking learned 

policy 
            if this.trace==true 
                if isempty(this.ax) || ~isvalid(this.ax) 
                    figure(); 
                    this.ax = axes; 
                else 
                    copyobj(findobj(ha,'Tag','body'),this.ax); 
                    copyobj(findobj(ha,'Tag','target_point'),this.ax); 
                    copyobj(findobj(ha,'Tag','boundary_cir-

cle'),this.ax); 
                    hold(this.ax,'on') 
                end 
            end 
            drawnow(); 
            hold(ha,'off') 
        end 
    end 
end 
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Program 3. DQN and agent training 
  
%% This program is used for creating DQN and agent training 

  
%% creating environment instance 
rob_env = robotenvironment; 
%validate Environment 
validateEnvironment(rob_env) 

  
%random number seed 
rng(0); 

  

% deep neural network 
state_path = [ 
    imageInputLayer([7 1 1], 'Normalization', 'none', 'Name', 'obser-

vational_state') 
    fullyConnectedLayer(12, 'Name', 'Critic_State_FC1') 
    reluLayer('Name', 'Critic_Relu1') 
    fullyConnectedLayer(12, 'Name', 'Critic_State_FC2')]; 

  

action_path = [ 
    imageInputLayer([1 1 1], 'Normalization', 'none', 'Name', 'ac-

tion_state') 
    fullyConnectedLayer(12, 'Name', 'Critic_Action_FC1')]; 

  
common_path = [ 
    additionLayer(2,'Name', 'addition') 
    reluLayer('Name','Critic_Common_Relu') 
    fullyConnectedLayer(1, 'Name', 'output')]; 

  
critic_network = layerGraph(state_path); 
critic_network = addLayers(critic_network, action_path); 
critic_network = addLayers(critic_network, common_path); 
critic_network = connectLayers(critic_network,'Critic_State_FC2','ad-

dition/in1'); 
critic_network = connectLayers(critic_network,'Critic_Action_FC1','ad-

dition/in2'); 

  
%plot network 
figure 
plot(critic_network) 

  
% critic parameters 
critic_opts = rlRepresentationOptions('LearnRate',0.01,'Gradi-

entThreshold',1); 

  
% get observation and action states info 
obs_info = getObservationInfo(rob_env); 
act_info = getActionInfo(rob_env); 

  

% setting RL agent 
critic = rlRepresentation(critic_network,obs_info,act_info,'Observa-

tion',{'observational_state'},'Action',{'action_state'},critic_opts); 

  
% setting up DQN agent parameters 
agent_Opts = rlDQNAgentOptions(... 
    'UseDoubleDQN',false, ... 
    'TargetUpdateMethod',"periodic", ... 
    'TargetUpdateFrequency',4, ... 
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    'NumStepsToLookAhead',1,... 
    'ExperienceBufferLength',10000, ... 
    'DiscountFactor',0.9, ... 
    'MiniBatchSize',32,... 
    'SampleTime',.00001,... 
    'ResetExperienceBufferBeforeTraining',0,... 
    'SaveExperienceBufferWithAgent',1); 

  
%create DQL agent 
agent = rlDQNAgent(critic,agent_Opts); 

  
% tanning parameters 
train_Opts = rlTrainingOptions(... 
    'MaxEpisodes', 3000, ... 
    'MaxStepsPerEpisode', 20, ... 
    'Verbose', false, ... 
    'Plots','training-progress',... 
    'StopTrainingCriteria','AverageReward',... 
    'StopTrainingValue',300,... 
    'SaveAgentCriteria',"EpisodeReward",... 
    'SaveAgentValue', 100); 

  

  
%% initiate tanning 
%use previously saved agent 
%load('savedAgents/ran_ang_1_3.mat','agent'); 
training = train(agent,rob_env,train_Opts); 

  

% save the trained agent 
save(train_Opts.SaveAgentDirectory + "/diff_tar_ran_all_ac-

tion.mat",'agent') 
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Program 4. Run_Simulaton 
 

%% This program is used for evaluating the learned polices 

 
%% creating environment instance 
rob_env = robotenvironment; 
%validate Environment 
validateEnvironment(rob_env) 

  
% set target location 
rob_env.xt=250; 
rob_env.yt=450; 

  
%load trained agent 
load('savedAgents/diff_tar_ran_all_action.mat','agent'); 

  
%set simulation option 
sim_options = rlSimulationOptions('MaxSteps',50, 'NumSimulations',1); 
experience = sim(rob_env,agent,sim_options); 
totalReward = sum(experience.Reward) 
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APPENDIX D: DEVELOPED DEEP Q LEARNING 

PROGRAM FOR IMPLEMENTATION WITH MV 

AND LASER STEERING SYSTEM 

Program 5. Environment 
%% This program is used for creating RL environment implementing with 

mv and laser steering system 
classdef robotenvironment_MV< rl.env.MATLABEnvironment 
    %% robotenvironment_MV: Defining environment for the photorespon-

sive robot. 

     
    %% Properties (set properties' attributes accordingly) 
    properties 
        %x,y-axis location of the destination target 
        xt=300; 
        yt=300; 

         
        %boundary circle 
        Lx=500; %x limit of boundary circle 
        Ly=500; %y limit of boundary circle 
        xc; % center location,x 
        yc; % center location,y 
        r;  %radius 

         
        %robot properties 
        k; %current robot leg 
        rob_rot_ang=-45; %orientation of the robot body 
        angle_btn_rob_trget; % angle between robot and target 
        proximity_to_terget=30; % minimum distance between robot and 

target 
        w; %robot width in the simulator 
        h; %robot hight in the simulator 
        V1=[]; %translation matrix of the robot body 
        % current position and robot legs: x,y:location; l:left leg; 

r:right leg 
        xr; 
        yr; 
        x; 
        y; 
        xl; 
        yl; 
        % distance between robot and target 
        d; 
        pre_d=1; %previous distance 

         

        % Reward 
        Reward; %total reward for a action 
        at_destination=false; %initializing flag for checking robot at 

destination or not 
        is_in_circle=true; %initializing flag for checking robot is 

inside the circle or not 
        penalty_not_in_circle= -100;% setting penalty for not in the 

circle 
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        %simulator figure container handler 
        handel; 

         
        %plot robot trajectory; most useful for checking learned pol-

icy 
        trace=true; 
        %trace figure container handler 
        ax; 

         
        %tcp ip connection variable 
        tcp_connection; 
        recv_data_size = 8; 
        data_receive; 

         
        %servo conrtoller 
        fig_servo_ctrl; 
        x_axis_controller=[]; 
        y_axis_controller=[]; 
    end 

     

    properties 
        %initializing observational states: [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt] 
        State = zeros(7,1) 
    end 

     
    properties(Access = protected) 
        %initializing flag for indicating episode ends 
        IsDone = false 
    end 

     
    %% required methods for reinforcement learning 
    methods 
        %% creating environment instance 
        function this = robotenvironment_MV() 
            %initializing observation states 
            ObservationInfo = rlNumericSpec([7 1]); 
            ObservationInfo.Name = 'Robot states'; 
            ObservationInfo.Description = 'd,an-

gle_btn_rob_trget,x,y,rob_rot_ang'; 

             
            %initializing Action states settings 
            ActionInfo = rlFiniteSetSpec([1 2 3]); 
            ActionInfo.Name = 'Movement Action'; 

             
            % implementing reinforcement learning environment 
            this = this@rl.env.MATLABEnvironment(ObservationInfo,Ac-

tionInfo); 

             
            % initializing property values 
            updateActionInfo(this); 
        end 

         
        %% environment with one action 
        function [Observation,Reward,IsDone,LoggedSignals] = 

step(this,Action) 
            LoggedSignals = []; 
            % initialize the robot body and boundary parameters for 
            % visualizer 
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            robot(this); 
            %set action 
            this.k=Action; 
            %select the lage location which is retrieved from MV 
            position_control(this,Action); 

             
            % update observation states 
            this.State = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt]; 
            Observation = this.State; 

             
            % check terminal condition 
            IsDone=(~this.is_in_circle)||this.at_destination; 
            this.IsDone = IsDone; 

             
            %%calculate rewards 
            Reward = getReward(this); 
            %notify the change 
            notifyEnvUpdated(this); 
        end 

         
        %% set initial condition after every terminal episode 
        function InitialObservation = reset(this) 

             
            %connection to the machine vision server 
            if isempty(this.t) 
                initiate_server_connection(this) 
            end 

             
            if isempty(this.fig_servo_ctrl) || ~is-

valid(this.fig_servo_ctrl) 
                servo_interface_loading(this) 
            end 

             
            %data receive for MV system 
            data_rec(this) 
            %default action 
            this.k=2; 
            Action=this.k; 
            this.pre_d=this.d; 
            robot(this); 
            %select the large location which is retrieved from MV 
            position_control(this,Action); 
            InitialObservation = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt]; 
            this.State = InitialObservation; 

             

             
            % (optional) use notifyEnvUpdated to signal that the 
            % environment has been updated (e.g. to update visualiza-

tion) 
            notifyEnvUpdated(this); 
            this.count=this.count+1; 
        end 
    end 
    %% Optional Methods (set methods' attributes accordingly) 
    methods 
        %% robot and boundary parameter 
        function robot(this) 
            this.w = this.Lx/40; 
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            this.h = this.Ly/60; 
            this.xc=this.Lx/2; 
            this.yc=this.Ly/2; 
            this.r=min(this.Lx/2,this.Ly/2); 
        end 

         
        %% emulate and calculate the effect of the action 
        function position_control(this,Action) 
            if ~ismember(Action,this.ActionInfo.Elements) 
                error('Action must be 1,2,3 but %g is oc-coured.',Ac-

tion); 
            end 
            this.k=Action; 
            if this.k==1 
                calibration_and_move_servo(this,this.xl,this.yl); 
            elseif this.k==2 
                calibration_and_move_servo(this,this.x,this.y); 
            elseif this.k==3 
                calibration_and_move_servo(this,this.xr,this.yr); 
            end 
            data_rec(this); 
            measurment(this); 

             
        end 
        %% calculate the the effect of the action 
        function measurment(this) 
            %distance between target and robot 
            this.pre_d=this.d; 
            this.d=sqrt(abs((this.xt-this.x)^2+(this.yt-this.y)^2)); 

             
            %creating vector to find angle 
            x2=(this.xl+this.xr)/2; 
            y2=(this.yl+this.yr)/2; 
            v1 = [x2-this.x y2-this.y]; 
            v2 = [this.xt-this.x this.yt-this.y]; 

             

            % find angle between robot and target 
            angle_btn_rob_trget_in_red = 

acos(dot(v1,v2)/(norm(v1)*norm(v2))); 
            %conversion to degrees 
            if isfinite(angle_btn_rob_trget_in_red) 
                if det([v1;v2])<=0 
                    this.angle_btn_rob_trget = (an-

gle_btn_rob_trget_in_red * (180/pi)); 
                else 
                    this.angle_btn_rob_trget =-(an-

gle_btn_rob_trget_in_red * (180/pi)); 
                end 
            else 
                this.angle_btn_rob_trget=0; 
            end 

             
            %check the destination reached or not 
            this.at_destination=(this.d<this.proximity_to_terget); 

             
            %%checking robot current position inside the circle 
            this.is_in_circle=((this.x-this.xc).^2+(this.y-

this.yc).^2<=this.r^2); 
        end 

         



88 

 

         
        %% update action states 
        function updateActionInfo(this) 
            this.ActionInfo.Elements = [1 2 3]; 
        end 

         

         
        %% Reward function 
        function Reward = getReward(this) 
            if ~this.IsDone 
                Reward = reward(this); 
            elseif ~this.is_in_circle 
                Reward = this.penalty_not_in_circle; 
            else 
                Reward = 100; %positive reward for achieving the tar-

get 
            end 
        end 

         
        function rwd = reward(this) 

             
            if (this.d)<(this.pre_d) 
                r1=5; %positive reward for going towards the target 
            elseif (this.d)>(this.pre_d) 
                r1=-2; %negative reward for going away from the target 
            else 
                r1=0; 
            end 

             
            % reward for maintaining low angle 
            if abs(this.angle_btn_rob_trget)<25 
                r2=1; 
            else 
                r2=-5; 
            end 

             
            % penalty for taking more step 
            r3=-1; 

             
            %total reward for the action 
            rwd=r1+r2+r3; 
            disp(rwd) 

             

        end 
        %% vision server connection 
        function initiate_server_connection(this) 
            % establish connection with machine vision server 
            % Connection data 
            host = '127.0.0.1'; 
            port = 4000; 
            timeout = 60; 

             
            % Configuration and connection 
            this.tcp_connection=tcpip(host,port,'NetworkRole','serv-

er'); 
            this.tcp_connection.timeout = timeout; 
            this.tcp_connection; 
            % Wait for connection 
            disp('Waiting for connection'); 
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        end 

         
        %% data receive 
        function data_rec(this) 
            fopen(this.tcp_connection); 
            fwrite(this.tcp_connection,'send'); 
            disp('data sent to vision soft') 
            disp('Connection OK'); 

             
            this.data_receive =fread(this.tcp_connec-

tion,this.recv_data_size,'double'); 
            disp(this.data_receive) 

             
            % check data integrity 
            [row,~]=size(this.data_receive); 
            if row==this.recv_data_size && (this.data_receive(8)==99) 
                %leg positions: l:left leg R:right leg 
                this.xl=this.data_receive(1); 
                this.yl=this.data_receive(2); 

                 

                this.x=this.data_receive(3); 
                this.y=this.data_receive(4); 

                 

                 
                this.xr=this.data_receive(5); 
                this.yr=this.data_receive(6); 

                 

                %rotation angle of the robot 
                this.rob_rot_ang=this.data_receive(7); 

                 
            end 
            fclose(this.tcp_connection); 
        end 

         
        %% servo interface loading 
        function servo_interface_loading(this) 
            %initialization of servo controller serial numbers 
            serial_number_1 =27253885; 
            serial_number_2 =27501118; 

             
            waitbar_h=waitbar(.1,'Please wait, Loading ActiveX Con-

troller'); 

             

             
            f=.7; %magnification factor of the fig_servo_ctrl con-

tainer 
            fpos(1) = 100; 
            fpos(2) = 100; 
            fpos(3) = f*480; % window width 
            fpos(4) = f*2*300; % window height 
            this.fig_servo_ctrl = figure('Position', 

fpos,'Menu','None','Name','Controller Interface'); 

             
            % activeX controller 
            this.x_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*295 f*450 f*300 ], this.fig_servo_ctrl); 
            this.y_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*1 f*450 f*300 ], this.fig_servo_ctrl); 
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            % initialize and start control 
            this.x_axis_controller.StartCtrl; 
            this.y_axis_controller.StartCtrl; 

             
            % set the serial number 
            waitbar(.2,waitbar_h,'Seting the serial number') 
            set(this.x_axis_controller,'HWSerialNum', serial_num-

ber_1); 
            pause(1) 
            set(this.y_axis_controller,'HWSerialNum', serial_num-

ber_2); 

             
            % identify the device serial number 
            waitbar(.5,waitbar_h,'Indentifing the devices') 
            this.x_axis_controller.Identify; 
            pause(.5) 
            this.y_axis_controller.Identify; 
            % waiting for the GUI loading; 
            pause(5); 

             

             
            % Moving to home position 
            waitbar(.7,waitbar_h,'Moving to home position') 
            this.x_axis_controller.MoveHome(0,0); 
            pause(1) 
            this.y_axis_controller.MoveHome(0,0); 
            waitbar(1,waitbar_h,'Done!') 
            delete(waitbar_h); 
        end 

         

         
        %%steer laser beam to the desired location 
        function calibration_and_move_servo(this,x_move,y_move) 
            %% calibration data 
            xo = 7.40389; 
            xf = 5.34398; 
            x_in_mm = 10*9.305264; 

             
            yo =9.42645; 
            yf =6.99811; 
            y_in_mm = 8*9.305264; 

             

             

            x_axis = (xo-((xo-xf)*x_move)/x_in_mm)+.0534+.0029; 
            y_axis = (yo-((yo-yf)*y_move)/y_in_mm)-.0670; 

             
            %% move servo motor 
            if x_axis>0 
                this.x_axis_controller.SetAbsMovePos(0,x_axis); 
                this.x_axis_controller.MoveAbsolute(0,1==0); 
            end 

             
            if y_axis>0 
                this.y_axis_controller.SetAbsMovePos(0,y_axis); 
                this.y_axis_controller.MoveAbsolute(0,1==1); 
            end 
            pause(.01) 
        end 
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        %% visualization 
        function plot(this) 
            envUpdatedCallback(this) 
        end 

         
        %% properties validation 
        function set.State(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','vector','numel',7},'','State'); 
            this.State = double(value(:)); 
            notifyEnvUpdated(this); 
        end 
        function set.k(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','k'); 
            this.k = value; 
            notifyEnvUpdated(this); 
        end 
        function set.x(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','x'); 
            this.x = value; 
        end 
        function set.y(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','y'); 
            this.y = value; 
        end 
        function set.xt(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','xt'); 
            this.xt = value; 
        end 
        function set.yt(this,value) 
            validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','yt'); 
            this.yt = value; 
        end 
        function set.penalty_not_in_circle(this,value) 
            validateattributes(value,{'numeric'},{'real','fi-

nite','scalar'},'','PenaltyorFalling'); 
            this.penalty_not_in_circle = value; 
        end 
    end 
    %%   simulator visualization 
    methods (Access = protected) 
        %update visualization every time the environment is updated 
        function envUpdatedCallback(this) 
            simulator(this) 
        end 

         

        %% simulator 
        function simulator(this) 
            % create a simulator container if not available 
            if isempty(this.handel) || ~isvalid(this.handel) 
                this.handel = figure(... 
                    'Toolbar','none',... 
                    'NumberTitle','off',... 
                    'Name','LCN Robot Position Simulator and Visualiz-

er',... 
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                    'Visible','on',... 
                    'MenuBar','none'); 
                figure(this.handel); 
                f=clf; 
                ha = gca(f); 
                ha.XLim=[0 this.Lx]; 
                ha.YLim=[0 this.Ly]; 
                grid(ha,'off'); 
                hold(ha,'on'); 
            else 
                figure(this.handel); 
                f=clf; 
                ha = gca(f); 
                ha.XLim=[0 this.Lx]; 
                ha.YLim=[0 this.Ly]; 
                grid(ha,'off'); 
                hold(ha,'on'); 
            end 

             
            %if robot body is not initiated before e.g. before taking 
            %first step 
            if isempty(this.V1) 
                c = cos(deg2rad(this.rob_rot_ang)); 
                s = sin(deg2rad(this.rob_rot_ang)); 
                R = [c -s;s c]; %rotation matrix 
                T = [R [this.x this.y]';zeros(1,3)]; %translation ma-

trix 
                robot(this); 
                %robot structure matrix 
                V0 = [  -this.w     this.w     this.w     0             

-this.w ; 
                    -this.h     -this.h    this.h    this.h*2.5     

this.h ; 
                    ones(1,5)   ]; 
                this.V1 = T*V0; %translation matrix of the robot body 
            end 

             
            %robot-body location 
            vx = this.V1(1,1:5); 
            vy = this.V1(2,1:5); 

             
            %find the body, boundary circle and target point 
            body = findobj(ha,'Tag','body'); 
            boundary_circle = findobj(ha,'Tag','boundary_circle'); 
            target_point = findobj(ha,'Tag','target_point'); 

             
            if isempty(body) 
                patch(vx,vy,[0.3010 0.7450 0.9330],'Tag','body'); 
            else 
                body.XData = vx; 
                body.YData = vy; 
            end 

             
            if isempty(boundary_circle) 
                this.xc=this.Lx/2; 
                this.yc=this.Ly/2; 
                this.r=min(this.Lx/2,this.Ly/2); 
                boundary_circle=viscircles([this.xc,this.yc],this.r); 
                boundary_circle.Tag='boundary_circle'; 
            end 
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            if isempty(target_point) 
                target_point= viscircles([this.xt,this.yt],this.h/5); 
                target_point.Tag='target_point'; 
            end 

             
            %% robot trajectory; most useful for checking learned pol-

icy 
            if this.trace==true 
                if isempty(this.ax) || ~isvalid(this.ax) 
                    figure(); 
                    this.ax = axes; 
                else 
                    copyobj(findobj(ha,'Tag','body'),this.ax); 
                    copyobj(findobj(ha,'Tag','target_point'),this.ax); 
                    copyobj(findobj(ha,'Tag','boundary_cir-

cle'),this.ax); 
                    hold(this.ax,'on') 
                end 
            end 
            drawnow(); 
            hold(ha,'off') 
        end 
    end 
end 
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