

Md Aman Khan

LOCOMOTION OPTIMIZATION OF PHO-
TORESPONSIVE SMALL-SCALE RO-

BOT: A DEEP REINFORCEMENT
LEARNING APPROACH

Faculty of Engineering and
Natural Sciences

Master of Science Thesis
November 2019

i

ABSTRACT

Md Aman Khan: Locomotion Optimization of Photoresponsive Small-scale Robot: A Deep
Reinforcement Learning Approach

Master of Science Thesis
Tampere University
Degree Programme in Automation Engineering, MSc (Tech)
November 2019

Soft robots comprise of elastic and flexible structures, and actuatable soft materials are often

used to provide stimuli-responses, remotely controlled with different kinds of external stimuli,
which is beneficial for designing small-scale devices. Among different stimuli-responsive materi-
als, liquid crystal networks (LCNs) have gained a significant amount of attention for soft small-
scale robots in the past decade being stimulated and actuated by light, which is clean energy,
able to transduce energy remotely, easily available and accessible to sophisticated control.

One of the persistent challenges in photoresponsive robotics is to produce controllable auton-
omous locomotion behavior. In this Thesis, different types of photoresponsive soft robots were
used to realize light-powered locomotion, and an artificial intelligence-based approach was de-
veloped for controlling the movement. A robot tracking system, including an automatic laser steer-
ing function, was built for efficient robotic feature detection and steering the laser beam automat-
ically to desired locations. Another robot prototype, a swimmer robot, driven by the automatically
steered laser beam, showed directional movements including some degree of uncertainty and
randomness in their locomotion behavior.

A novel approach is developed to deal with the challenges related to the locomotion of pho-
toresponsive swimmer robots. Machine learning, particularly deep reinforcement learning
method, was applied to develop a control policy for autonomous locomotion behavior. This
method can learn from its experiences by interacting with the robot and its environment without
explicit knowledge of the robot structure, constituent material, and robotic mechanics. Due to the
requirement of a large number of experiences to correlate the goodness of behavior control, a
simulator was developed, which mimicked the uncertain and random movement behavior of the
swimmer robots. This approach effectively adapted the random movement behaviors and devel-
oped an optimal control policy to reach different destination points autonomously within a simu-
lated environment. This work has successfully taken a step towards the autonomous locomotion
control of soft photoresponsive robots.

Keywords: Soft robot, photoresponsive robot, liquid crystal network, deep reinforcement

learning, deep q learning, autonomous locomotion control.

PREFACE

The research work of this thesis was conducted in Hervanta Campus of Tampere Uni-

versity during 2019 under a seven-month period research assistantship. My sincere grat-

itude to my examiner Prof. Arri Priimägi, who gave me the opportunity to work with Smart

Photonic Materials (SPM) research team as a research assistant and for providing con-

stant support, effective advice, ample resources and freedom in decision-making. He

has been an inspiration for my future scientific careers. I am grateful to my supervisor

and second examiner Dr. Hao Zeng for his immense cooperation and guidance during

my thesis. My gratitude to the staff and colleagues at the Smart Photonic Materials group

for a friendly atmosphere and assistance in practical matters. I also like to express my

gratitude towards the Phototune project.

I also want to thank all of my friends for their encouragement, especially Md. Mehedy

Hasan Sumon, Zahangir Khan, and M Sabbir Rahman. Last but not least, thanks to my

family for supporting me along with my studies in all aspects.

Tampere, 16 November 2019

Md Aman Khan

CONTENTS

1. INTRODUCTION... 1
1.1 Thesis structure ... 4

2. MATERIALS AND DEVICES ... 5
2.1 Liquid crystals and liquid crystal networks .. 5

2.2 LCN photomechanical actuation... 6

2.2.1 Photochemical actuation in LCNs ... 7

2.2.2 Photothermal actuation in LCNs .. 9

2.2.3 Comparison between photochemical and photothermal actuators

 10

2.3 Scaling effect on LCN robots .. 11

2.4 LCN soft robots .. 12

3. MACHINE VISION AND MACHINE LEARNING .. 15
3.1 Machine vision ... 16

3.1.1 Illumination.. 16

3.1.2 Optical components .. 17

3.1.3 Camera sensor ... 17

3.1.4 Image processing.. 18

3.2 Artificial intelligence and machine learning ... 18

3.3 Reinforcement learning .. 21

3.3.1 Elements of reinforcement learning ... 22

3.3.2 Markov decision process (MDP) ... 23

3.3.3 Reinforcement learning algorithms .. 24

3.3.4 Value function ... 25

3.3.5 Q-learning ... 25

3.4 Deep reinforcement learning .. 26

3.4.1 Deep Q-learning.. 26

4. IMPLEMENTATION .. 29
4.1 Laser steering workspace setup ... 29

4.1.1 Machine vision subsystem .. 29

4.1.2 Laser steering subsystem ... 31

4.2 Robot tracking system .. 33

4.2.1 Machine vision for robot tracking ... 33

4.2.2 Communication server .. 37

4.2.3 Servo motor control subsystem ... 37

5. EXPERIMENTAL RESULTS ... 39
5.1 Light actuation in an LCN bending strip .. 39

5.2 Optical control in three legs walking robot .. 41

5.3 Light propelled robotic swimmer ... 42

5.4 Light controlled swimming .. 43

6. REINFORCEMENT LEARNING IN LIGHT DRIVEN SWIMMING ROBOT
(SIMULATIONS) ... 46

6.1 Simulation environment .. 46

6.1.1 Action space and observational space .. 46

6.1.2 Simulator .. 47

6.1.3 Reward function .. 48

6.2 Setting up the agent and training .. 49

6.3 Training without associating randomness in locomotion 51

6.4 Training approaching the real situation... 53

7. CONCLUSIONS AND OUTLOOK ... 59
REFERENCES ... 61
APPENDIX A: SERVO MOTOR CONTROL SUBSYSTEM OBJECT 69
APPENDIX B: VEDIO ANALYSIS TOOL FOR ANGLE MEASURMENT (USER

INTERFACE) .. 73
APPENDIX C: DEVELOPED DEEP Q LEARNING PROGRAM 74
APPENDIX D: DEVELOPED DEEP Q LEARNING PROGRAM FOR

IMPLEMENTATION WITH MV AND LASER STEERING SYSTEM 84

LIST OF FIGURES

 Comparison of Young's moduli for different materials. Adapted with

permission from Ref. [6] ... 2
 a. Traditional rigid-bodied robot. b. Soft-robotic gripper being

driven by pneumatic actuation. c. Photoresponsive small-scale
robotic gripper. b. Adapted with permission from Ref. [11], c.
Adapted with permission from Ref. [12] .. 2

 a. LC phase to isotropic phase transition. b. Common LC phases 6
 a. Photoisomerization of azobenzene and changes in molecular

geometry. b, c. Different photoinduced bending with different LC
alignment, b. Homogeneously aligned, c. Homeotropically aliened.
a. Adapted with permission from Ref. [37]. b, c. Adapted with
permission from Ref. [38] ... 7

 Photothermal mechanism. Adapted with permission from Ref. [53] 9
 Relation between Artificial Intelligence, Machine Learning and

Deep Learning ... 19
 Machine learning categories .. 19
 Classical control system ... 21
 RL in control system perspective .. 21

 RL framework and sub-elements .. 22
 The deep Q-learning algorithm with experience reply. Adapted with

permission from Ref. [103] ... 27
 Laser steering workspace setup (front, side and rear view) and

different components of the workspace .. 30
 a. An LCN robot and the robot’s leg illuminated with a green laser

beam (captured using a regular camera). b. Image from the
machine vision system without an optical filter. c. Image from the
vision system’s camera with a colored glass filter................................. 31

 Robot tracking system .. 33
 a. The dot grid pattern for camera calibration b. Image after

calibration, including the tangential distortion correction 34
 a. State diagram for the vision system. b. Steps in the Inspect

state. c. Steps under the Vision Assistant step and changes of the
original image along with these steps ... 35

 Output of the Inspect state and rectangular boxes indicate some
steps (i.e. green: ROI1, purple: ROI2 and red: matched feature) 36

 A sequence diagram of the servo motor control subsystem 37
 a. Timeline of LCN strip deformation dynamics during (light on at

1.5 s) and after (light off at 5.1 s) light exposure. b, c. Angle
measurement, the vertical blue line is the fixed axis and the other
axis follow the tip of the strip .. 40

 LCN strip bending deformation ... 40
 Features detection of three legs walking robot’s through machine

vision, photograph of the robot in the insert .. 41
 Locomotion timeline of a light propelled robotic swimmer 43
 Structure of a light controlled swimming robot 44
 LCN robot. a. Action states. b.Observational states 47
 LCN robot position simulator and visualizer.. 48
 Architecture of the applied deep neural network 50
 Training results without associating randomness in locomotion

behavior with a fixed destination point .. 52

 Evaluation of learned policy. a. Robot trajectory with the same
target location used during training b. Robot trajectory with a
different target location ... 52

 Training results with randomness in the rotational movement with a
fixed destination point .. 54

 Evaluation of learned policy with randomness in the rotational
movement. a. Robot trajectory with the same target location used
during training b. Robot trajectory with a different target location 54

 Training results with randomness in the rotational movement with
different destination points ... 55

 Evaluation of learned policy with different target locations and
randomness in the rotational movement. a,b,c,d,e,f. Robot
trajectory at different target location and robot successfully
reaches the targets .. 55

 Training results with randomness in every action with different
random destination points (changing the points in every 50
episodes). a, b. Conducted training in two sessions 56

 Evaluation of learned policy with different target locations and
randomness factors included in all actions. At the same target,
robot successfully reached using different trajectories. The same
target pairs are (a,b);(c,d),(e,f);(g,h) ... 57

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence
CCD Charge Coupled Device
CMOS Complementary Metal Oxide Semiconductor
DOF Degree of Freedom
DQN Deep Q Network
DRL Deep Reinforcement Learning
GLCNs Glassy Liquid Crystal Networks
LCs Liquid Crystals
LCNs Liquid Crystal Networks
MV Machine Vision
MDP Markov Decision Process
RL Reinforcement Learning
TD Temporal Difference

FG gravitational force
Fa active force
L characteristic length
μ viscosity
N normal force
Re Reynold number
v velocity
ρ density

1

1. INTRODUCTION

Robot is a device or machine that can carry out a series of pre-designed tasks, whose

actions often mimic the movement of living beings, performing motions such as walking,

swimming, grasping, rolling, etc. Traditionally, engineers utilize rigid materials to realize

sophisticated controlled robotic systems consisting of different discrete joints and links

for locomotion or manipulation. For developing more human-friendly and safe robots,

scientists and engineers are exploring the capability of soft, smart and stimuli-responsive

materials for designing soft-bodied machines to achieve specific robotic control [1].

Stimuli-responsive materials have the ability to react to different external stimuli, convert-

ing the input (stimulus) energy into the change of their physical and chemical properties

[2]. The stimuli can be in diverse forms, such as chemicals [3], electrical or magnetic field

[4], mechanical stress [5], temperature [6], humidity [7], light [8] and so on, the stimuli-

responsive-materials often being called as smart or intelligent materials [9]. A wide range

of stimuli-responsive materials are available in the literature for soft robotic realization,

such as liquid crystal networks, shape memory polymers, hydrogels, electro- and mag-

netorheological fluids, and many more [6]. Among those, liquid crystal networks (LCNs)

have gained an increasing amount of attention in the past decade. These soft and smart

materials can utilize different stimuli such as light [10], humidity [7], electric field, heat

and chemical reaction [6], to create deformation or locomotion. Particularly, LCN mate-

rials have become attractive because of the possibility of being stimulated and actuated

by light, ability to transduce energy remotely as well as light is easily available and pro-

vides sophisticated control.

Depending on the rigidity of constituent materials, robots can be divided into hard-bodied

robots and soft-bodied ones. A hard-bodied robot has rigid components with a limited

number of links and joints. Usually, it has a very limited degree of freedom (DOF) and

degree of movement. Conversely, soft robots comprise of soft actuable materials, with

Young’s modulus up to several gigapascals (Figure 1) [6], flexible joints and links and

can provide much more degrees of freedom for movement. Besides, the links and joints

of a soft robot can have different stiffness and can be arranged in a serial or parallel

fashion for creating complex movement.

2

 a b c

 a. Traditional rigid-bodied robot. b. Soft-robotic gripper being driven by
pneumatic actuation. c. Photoresponsive small-scale robotic gripper. b.

Adapted with permission from Ref. [11], c. Adapted with permission from Ref.
[12]

Soft robots have several advantages over hard-bodied robots, such as adaptation to

unpredictable obstacles, continuous actuation and shape change, etc. Typical examples

are shown in Figure 2, where a silicon-based soft pneumatic hand can grip an egg by

adapting its shape and curvature, which enables an easy handle of fragile objects without

precise machine programming (Figure 2b). In contrast, rigid gripper needs explicit pro-

gramming in each moving step to reach the target and accurate control of the force for a

precise grasping (Figure 2a) [13]. Nowadays, most of the soft robots use pneumatic ac-

tuation based on air or liquid tube powering. Designing small-scale robots for accom-

plishing different tasks at small length scales is extremely difficult using pneumatic tube

connection. For harnessing full potential and achieving practical applications, small-scale

soft robots need actuation, control, and power storage systems embedded into one soft

body, which raises the importance of stimuli-responsive smart materials [1][6][13].

Many reports have shown that soft smart materials are becoming a great candidate for

small-scale robotics, one pioneering example being shown in Figure 2c, where a pho-

toresponsive gripper can grab a falling object based on the light reflectance from the

object [12]. Smart materials can be actuated remotely with different stimuli. In this sense,

the power source can be separated from the robot body and deliver remotely the neces-

sary energy [10]. As demonstrated by the example shown in Figure 2, photoresponsive

 Comparison of Young's moduli for different materials. Adapted with per-
mission from Ref. [6]

Light

and smart

Rigid

to soft

3

materials can perform shape changes, and generally this kind of actuation can be ver-

satile due to the alignment control technique. To obtain the actuation, photo-sensitive

elements like photoswitches (molecular motors) are often used, in which the cooperative

movements can bring up deformation from a molecular scale to a macroscopic level [14].

Traditional hard-bodied robot subsystems consist of, for example, actuation system,

sensing elements, controller, computational system and power [1]. The photoresponsive

soft robot can have most of these subsystems into one monolithic sample: photoactua-

tion serves as an actuation plus a power delivery system, pre-programmed actuator (e.g.

through photopatterning) serves as a control/sensing system. In this aspect, photore-

sponsive materials can enable not only the miniaturization, but also advantageous ro-

botic functions based on specific material response design.

One of the persistent challenges in soft robotics is to design controllable bodies for de-

livering desirable behaviors. The traditional strategy for controlling a hard-bodied robot

is based on manipulating a series of rigid joints, each representing six degrees of free-

dom of movement. This strategy is not suitable for soft robots because of the fact that

soft materials are flexible and often exhibit high degrees of freedom, such as twisting,

bending, wrinkling, etc., thus presenting a large number of DOF. Some theoretical mod-

els have been developed to describe bending in soft matter [1][15]. It remains a great

challenge to develop an accurate model for predicting machine performance or efficient

strategy to execute tasks due to soft material properties [15]–[17]. Still, there is no well-

developed model or reliable algorithm for soft robotic movement. Thus, new strategies

and approaches are needed for the control of soft robots.

In this thesis, a novel machine-learning-based approach is developed to tackle the chal-

lenges related to the locomotion behavior of photoresponsive robots. A robotic function

can be split into perception task which is related to acquiring essential information from

the environment and control task which is related to achieve a goal based on that infor-

mation [18].

Machine vision system offers an efficient way of detecting small scale robots, including

information about their different parts and surrounding environment. Besides these pho-

toresponsive robots are driven by light, and each part of the robot can be actuated upon

a laser or an LED light field for creating robotic movement. The laser is preferable for

pin-point excitation of different robot section. A control system allows steering the laser

beam to desired locations automatically. A robot tracking system is developed for effi-

cient detection of photoresponsive robots, meanwhile synchronized with the control sys-

4

tem to drive the laser beam to the desired parts, according to developed algorithm. Dif-

ferent types of small-scale robots, such as a bending cantilever arm, walking robot and

floating swimmer, are tested under these robot vision/control/tracking systems.

Currently, reinforcement learning is used in different applications offering excellent deci-

sion-making capabilities [19]. In soft robot control, reinforcement learning can play a sig-

nificant role because it can produce an optimized control policy from its experiences that

obtained by interaction between robot and the environment, without any explicit

knowledge of the material, robot structure or robotic mechanism [20][21]. DeepMind

team of Google successfully utilized a conventional reinforcement learning called Q-

learning with deep neural networks to play computer games like Atari [22]. After that, this

method is adopted in many applications such as in mobile robot path planning and au-

tonomous navigation [23]–[26], autonomous driving [19][27], robot motion control[28][29]

and many more.

To develop an effective and optimal control policy for locomotion behavior of photore-

sponsive robots, a deep reinforcement learning method is applied. This technique re-

quires a large amount of experience to correlate the goodness of control of the robot.

Thus, the methods are only applied in a computer simulation environment for this Thesis

study. The simulated model contains specific operations, which mimic the uncertainty

and random movement behavior of a photoresponsive swimmer robot. This study serves

as a primary trial to develop effective adaptation in control of soft robotic movement and

optimal control policy for future robots.

1.1 Thesis structure

The thesis is divided into 7 chapters. After the Introduction, Chapter 2 introduces a con-

cise concept of liquid crystals (LCs) and liquid crystal networks (LCNs), photoactuation,

and effects of different forces on small scale robot as well as reported LCN robots. Chap-

ter 3 presents an overview of machine vision system and relevant concepts of reinforce-

ment learning, which are used in this thesis study. Chapter 4 describes the experimental

workspace setup and the implementation of robot tracking system. Chapter 5 highlights

the experimental results with different types of light-driven robots. Chapter 6 proceeds

with describing the RL environment, including the developed simulator, agent and train-

ing parameters, and the training results along with the robot’s autonomous movement to

evaluate the learned control policy. Finally, Chapter 7 summarizes the overall outcomes,

in addition to providing future perspectives and outlining the potential of this research.

5

2. MATERIALS AND DEVICES

Smart stimuli-responsive materials are capable of being actuated remotely by using dif-

ferent kinds of stimuli, which is beneficial for designing small scale robots. liquid crystal

networks (LCNs) are soft, smart, and stimuli-responsive material. LCNs have the ability

to transduce light energy into mechanical work output, which is one of most attractive

features for devising small wireless devices. In this chapter, firstly the concise concepts

of liquid crystals and liquid crystal networks are presented. Then photomechanics in

LCNs, including photothermal and photochemical actuation modes are described. Fi-

nally, effects of different forces on small scale LCN robots and various kinds of LCN

robots and their locomotion capabilities are briefly discussed.

2.1 Liquid crystals and liquid crystal networks

Liquid crystals (LCs) are special state of matter [30][31]. This state is an intermediary

between crystalline solids and isotropic liquids, also known as mesophase. LCs can re-

tain anisotropy (positional and orientational) characteristic of crystalline solids, along with

the fluidic property of liquids [7][31][32]. LCs undergo transition from anisotropic LC

phase (order) to isotropic phase (disorder) upon heating (Figure 3a) [10].

LCs are divided into thermotropic and lyotropic categories. LCs phase occurs for the

former type at a particular range of temperature, whereas the latter one requires a par-

ticular concentration in solution besides temperature for achieving the LC phase. Ther-

motropic LCs have different subphases based on positional and orientational alignment,

such as nematic, smectic and cholesteric phases (Figure 3b). In nematic phase, the mol-

ecules have an average direction (represented by a vector called director) in their orien-

tational order but no positional order. Smectic phase has positional and orientational

molecular order. Cholesteric phase is like nematic phase though the molecules are ar-

ranged in helical orientation along the director [7].

Liquid crystal networks are crosslinked synthetic polymer systems [15][16]. This unique

solid and can be fabricated in different ways, allowing to retain the molecular alignment

order of LCs even in the solid state [34]. They combine the liquid crystals’ anisotropy

properties and the mechanical properties of polymers. LCNs can be classified into two

types depending on the crosslinking, namely liquid crystal elastomers (LCEs) (weakly

crosslinked), whose glass-transition temperature, Tg, is below room temperature and

modulus is approximately between 0.1 to 5 MPa, and glassy liquid crystal Networks

6

(GLCNs) (moderate or densely crosslinked) whose Tg is approximately between 40°C

to 120°C and modulus is approximately between 0.8 to 2 GPa [15][16].

a

b

 a. LC phase to isotropic phase transition. b. Common LC phases

2.2 LCN photomechanical actuation

Actuators are devices that transduce other forms of energy into mechanical work. LCNs

are stimuli-responsive materials [35]. LCNs hold the anisotropy properties of LCs, and

the response of the material system is amplified from molecular level to macroscopic

scale by collective interaction between LC molecules and polymer networks. Hence,

LCNs serve a good basis for macroscopic actuation. LCNs can, in principle, respond to

thermal, electrical, and optical stimuli, hence transducing these forms of energy into me-

chanical motion such as deflection, deformation, or other types of motion [35]. Among

these stimuli, light is more feasible because of being clean, remotely and precisely con-

trollable. Azobenzene derivatives are used as photoswitch to design photoresponsive

macroscopic actuator. Photoswitches construct the molecular level deformable sys-

tem(molecular-scale motion) and their cooperative motion through the network can be

Order Disorder

Nematic Cholesteric Smectic

Director Helix axis Director

7

amplified to create macroscopic shape-change in LCNs, which results in photomechan-

ical actuation [7][31]. This actuation in LCNs incorporates two mechanisms: photother-

mal and photochemical actuation [7].

2.2.1 Photochemical actuation in LCNs

Photochemical actuation is driven by the reversible photoisomerization between two iso-

meric states in photoswitchable molecules [7]. For LCNs, azobenzene derivatives are

the most popular photoswitches [7][36]. Azobenzene is an aromatic molecule composed

of two phenyl rings linked by an azo group (N=N). Unsubstituted azobenzene and its

derivatives go through reversible photoisomerization, which occurs around the double

bond of an azo functional group (N=N) by switching between two states, i.e. a stable

trans-from (E isomeric state) and metastable cis-from (Z isomeric state) (Figure 4a) [37].

Priimagi and coworkers highlighted some attractive features of azobenzene derivatives

as photoswitches in LCNs: comparatively easy synthesis of a wide range of azobenzene

derivatives with different activation wavelengths and photochemical properties, the mis-

cible property of trans-azobenzene with multiple LCs and destabilization of LC phase

due to angular shape of cis-azobenzene [13].

b c

 a. Photoisomerization of azobenzene and changes in molecular geom-
etry. b, c. Different photoinduced bending with different LC alignment, b. Ho-

mogeneously aligned, c. Homeotropically aliened. a. Adapted with permission
from Ref. [37]. b, c. Adapted with permission from Ref. [38]

Trans-to-cis isomerization occurs when trans isomer of azobenzene (unsubstituted azo-

benzene and its derivatives) is irradiated with UV light (typically 320-380 nm). The isom-

erization is a reversible reaction, and cis-to-trans isomerization occurs thermally or upon

a

8

visible-light irradiation. Trans-to-cis and cis-to-trans isomerization of azobenzene exhibit

different changes in physical properties such as molecular geometry, dipole moment or

absorption spectrum [37][39]. Molecular geometry of trans-azobenzene is planar with 9.0

Å distance between the 4 and 4’ positions of the phenyl rings. On the other hand, cis-

azobenzene is more globular, particularly phenyl rings of cis-azobenzene are twisted at

90º relative to the C–N=N–C plane, which reduces the distance between the 4 and 4’

positions of phenyl rings to 5.5 Å. The geometric changes also lead to a change in the

dipole moment, i.e., no dipole moment in trans-form of parent azobenzene and 3.1 D

dipole moment in cis-form [7][37][40]. Molecular-level photoisomerization efficiently mod-

ulates molecular order within the LCN polymer network, inducing LC-to-isotropic phase

transition, and triggering photomechanical actuation in macroscopic free-standing sam-

ples [13][36][41].

The lifetime of cis-azobenzene is an important factor, since it determines the stability of

the photodeformed state [13]. Chemical substitution plays a significant role in the control

of the cis-lifetime and tuning the wavelength for activating trans-to-cis reaction [13]. For

example, the cis-lifetime of tautomerizable push-pull azo derivatives can be less than a

millisecond [42], whereas the ones in heterocyclic or ortho‐substituted azobenzenes can

last for months or years [43][44]. Supitchaya and coworkers present bi-stable photoac-

tuators containing fluorinated azobenzenes, which can preserve the photochemically de-

formed shape for several days [45]. Regarding the activation wavelength, some concep-

tual strategies have been proposed to induce trans-to-cis reaction upon visible illumina-

tion, aiming for a more efficient solar energy harvesting and human-friendly interaction

[13][45][46].

Photochemical actuators often create photoinduced bending whose direction depends

on the specific molecular alignment. LCN actuators with homogeneous alignment exhibit

bending towards the light source due to contraction of the LCN surface along the director

(Figure 4b). On the contrary, LCN actuators with homeotropic alignment exhibit bending

in the opposite direction because of the expansion of the light exposed surface (Figure

4c) [38]. LCN actuator with splayed alignment across thickness can produce different

strain within a single monolithic layer through forming expansion and contraction on op-

posite sides [12]. This alignment pattern yields efficient and noticeable bending defor-

mation. Also this alignment pattern defines the bending direction and axis of the actuator

irrespective of incident light [47]. These features are attractive for devising robots [12].

Azobenzene moieties have strong absorption properties that restrict light penetration into

the bulk. As a result, photoisomerization is limited to the LCN surface [13][19]. Upon

9

illumination, the concentration of cis-azobenzene varies with the distance from the sur-

face, which generates a non-uniform stress distribution across the thickness and pro-

duces bending in the LCN sample.

2.2.2 Photothermal actuation in LCNs

Photoactuation in LCNs can also be triggered through photothermal mechanism. For this

mechanism, photosensitive moieties, e.g. organic dyes or nanoparticles are introduced

in LCN as nanoscopic heat generators that absorb photons. Non-radiative thermal pro-

cesses convert the energy from the absorbed photons into heat, triggers order-disorder

transition of the LCNs and yielding macroscopic deformation of the entire network (Figure

5) [5][15][30]. Azobenzenes, which have short cis-lifetime or concurrent trans-cis and cis-

trans activation, are efficient photothermal heat generators. Thus, several sophisticated

photoactuator demonstrations achieved recently are designed by utilizing this actuation

mechanism [11][22][50]. Interestingly, photostabilizers and organic dyes, which are not

even photoisomerizable, can be used to induce photothermal heating in LCNs [51].

Though the key issue is the solubility of dopants into LC mixture, most of the time a small

amount of dopants (ca. 1 %) is sufficient for a significant photothermal heat generation

[51]. By using a suitable dye, photothermal actuation can be triggered by a large range

in spectrum, such as visible-near infrared wavelengths [52].

Nanoparticles of inorganic carbon or metals also can be doped into LCNs for photother-

mal actuation [54]. Carbon nanotubes able to align along the LC mesogen direction. Gold

nanoparticles of different sizes and shapes, e.g., rod, stars, govern the plasmon reso-

nance wavelength which determines the photothermal absorption. Like organic dyes, a

small amount of inorganic nanoparticles is needed for photothermal actuation, however

the major problem is the poor miscibility, which causes inferior mechanical properties,

enhanced light scattering and deficient performance of photothermal actuation [11][26].

Though suitable surface functionalization of these particles can be adopted to minimize

these problems [25], organic dyes are more appropriate for diverse applications.

 Photothermal mechanism. Adapted with permission from Ref. [53]

10

2.2.3 Comparison between photochemical and photothermal ac-

tuators

For devising actuators and small-scale robots, both photochemical and photothermal

mechanisms are significant. Depending upon the chemical characteristics and the phys-

ical features of these mechanisms, different distinct use cases for light-responsive robots

can be figured out [13]. The differences between these mechanisms are discussed be-

low.

Based on chemical characteristics, the critical difference between photochemical and

photothermal actuators is the position of active units within the LCN. Azobenzenes are

the active units in photochemically activated LCN within the LCN polymer to yield efficient

actuation. Whereas, dyes or nanoparticle are the active units in photothermally activated

LCN which are doped into the system, without any need to be crosslinked with the poly-

mer chains [10]. Another difference is the activation wavelength. For photochemical ac-

tuator, typically trans-to-cis isomerization is triggered by UV or deep blue light, and re-

verse isomerization is occurred by irradiating with 450-550 nm. Researchers are trying

to shift the activation wavelength towards green or near-infrared wavelength (using na-

noparticles) [55]–[57]. On the other side, photothermal actuation is at the best at the

wavelength the dyes absorb, leading human-friendly visible or near-infrared light activa-

tion [10]. Finally, changing the photoactive unit concentration may lead to different re-

sults. Increasing the concentration of azobenzene in photochemical LCN assists the ac-

tuation due to the enhanced absorption gradient [10], as presented by the group of Ikeda

[58][59]. On the contrary, a photothermal actuator with a small amount of dye can absorb

the major portion of incoming photons, and produce rapid actuation in a reversible way

[60].

Also, different physical features can be distinguished between photochemical and pho-

tothermal actuators, such as actuation speed, suitable environment to actuate, absorp-

tion gradient. In photochemical actuation, the molecular level photoisomerization hap-

pened immediately upon irradiation, but the macroscopic deformation of LCN requires

seconds or minutes [36], i.e. slow response. On the other side, long cis-lifetime gives the

actuator a bi-stable feature [61]; in other words, the deformed shape can be retained

after ceasing the excitation. Photothermal actuators show rapid deformation which can

take only milliseconds or seconds [10]. Also, fast recovery of original shape occurs when

ceasing excitation, and cooling down the actuator. Photochemical actuators have a dis-

tinct advantage of functioning in different environments including in aqueous medium

[62][63]. Whereas photothermal mechanism is hindered in an aqueous medium because

it relies on heat conduction by raising the temperature within the actuator. But the higher

11

heat conductivity of a liquid (e.g. water is 20 times of the one in air), reduces the actuator

temperature, or a higher order of magnitude light intensity is required to induce the equiv-

alent amount of deformation in water compared to the one operated in the air [10]. Be-

sides, as the photochemical mechanism depends on absorption gradient, it can yield

bending, but in-plane actuation is challenging. Unlike photochemical actuator, photother-

mal actuation in LCN can yield both in-plane actuation and out-of-plane bending [7] [10].

2.3 Scaling effect on LCN robots

From big-sized machines to microrobots, it requires geometric change in the material

driven by through actuation. For designing a photoresponsive robot or device and yield-

ing controlled locomotion or function, the interaction between the robot and its working

environment is essential to investigate [13][64].

Though the physics for all objects, either at the microscopic or macroscopic scale, is the

same, different forces and their contributions change depending on the scale of the ob-

ject. In other words, the ratio between forces as well as related physical phenomena may

change with the dimension of the device. Therefore, different forces may start dominating

the object motion depending on the object characteristic length (L), known as scaling

effect [65]. Here, Ls notation is used to represent the dimension influences where s is the

scaling factor. For instance, the gravitational force, FG and inertia are both related to the

volume of the object, which scales as L3. In LCN robot, the photo-induced elastic force

is the active force Fa, related to the cross-section of the material, thus scaling as L2 . The

overall force ratio (Fa : FG) scales as L-1, representing a strong size dependency. The

ratio between Fa and FG is comparatively high for a small LCN micro-robot compared to

ones with bigger size. This kind of difference at different scales implies the requirement

of different design concepts and strategies to achieve efficient locomotion. Interestingly,

hints are given by nature already: big mammals have strong skeletons for supporting

their weight, meanwhile they run using two or four legs when inertia plays a significant

role. However, for small insects, gravitation plays a minor role and they can easily jump

a long distance. In many cases, the insects grow specific hairy architecture on their skins

to prevent adhesion, whose effect is typically enhanced at microscale [66].

The locomotion of a microrobot at an interface contemplates as walking where adhesion

and friction forces arise mostly. This adhesion is the combination of van der Waals, ca-

pillary, and other forces. Van der Waals forces appear within a few nanometres due to

the fluctuating dipole in the material, which strongly depends on the contact area and

surface roughness. Capillary forces are enhanced in the presence of liquid in between

two solid surfaces, where the liquid tends to reduce the surface energy by minimization

12

of the surface area, thus posing an attracting force [67]. The classical equation for friction

is:

f =μ X N

where μ = friction coefficient and N = normal force [68]. This equation does not properly

describe soft materials experiencing adhesion. Particularly, in micro-world, gravitation is

negligible and friction/adhesion dominate, which is more unpredictable and depends on

the material softness and surface conditions [68]. When LCN robot is photo-heated, it

decreases the rigidity which results in a more dynamic adhesion/friction force. Due to

this reason, the precise control of LCN locomotion is challenging even though the cyclic

shape changes are predictable. Different methods have been introduced for LCN walking

robot to reduce the overall friction forces and set up reasonable amount of friction bias

to promote the directional walking tendency, such as adding an extra leg of rigid materi-

als, using the conical tip to minimize the effect contact area [67] [68].

The locomotion of a microrobot in a homogeneous liquid medium contemplates as swim-

ming. The interaction between microrobot and the medium is related to Reynold number,

which is the ratio of the internal forces and viscous forces [69]:

Re = ρvd/μ;

where, ρ = density of the liquid, μ = viscosity of the liquid, ν = velocity of the object, and

d = characteristic size of the object. It is easy to notice that the Reynold number scales

as L2. Typical example in nature are: a gigantic whale can have Re of 107, fish about 1-

10, and bacteria of 10-4 [70]. For large Re, swimming locomotion is dominated by inertia

forces whereas for small Re, locomotion is dominated by viscous forces. If a microrobot

has low Re (<< 1), the Stokes equation shows that a perfect time reciprocal motion is

unable to produce net motion [69]. Therefore, such swimmer requires a specific actuation

sequence to yield effective locomotion.

LCN robots are light actuated i.e. powered and controlled by light energy, which ranges

from tens of milliwatts per square centimetre (led source) to a hundred watts per centi-

metres (focused laser beam), depending on their scales. Photothermal heating speed of

an LCN robot is based on the heat capacity (scales as L3). In this sense, decrease of

size results in rapidly increase in photothermal actuation speed [13].

2.4 LCN soft robots

Photoresponsive LCN robot only utilizes light energy to produce elastic forces inside the

material that enables the robot to overcome the resistance of the surrounding medium

13

[10][71]. This kind of dynamics can be found in nature, which serves as a source of

inspiration in designing and devising LCN robots. From the past decades, substantial

achievements have been done in devising LCN robots such as walkers, swimmers ro-

bots, etc., but still, the example of multidirectional locomotion is rear and no autonomous

locomotion control policy has been reported.

The first photoresponsive robotic function was introduced by Ikeda and coworkers in

2008 [13]. They present a plastic motor consisting of a pulley system where an LCN strip

is used as a belt. It can produce rotation upon UV and visible light radiation in a se-

quence, hence the light is able to be transduced into mechanical energy [72]. After that

year, they introduced the first LCN based walker (like an inchworm) and a flexible robotic

arm showing multi-degree of movement [73]. The inchworm like walker was able to walk

only in one direction under alternative UV and visible light illumination [73]. Another inch-

worm like robot is presented by Kohlmeyer et al. which can be actuated by infrared light

and is able to crawl up a 50° inclined ratcheted substrate [74]. Zeng et al. report a micro-

scopic walker that is able to rotate, walk and jump depending on the surface condition

[75]. These robotic motions rely on spatial and temporal control of light, i.e. switching (on

or off) of the light source and scanning of a light beam. This control of light pattern in-

duces cyclic shape changes in the pre-patterned LCN, together with the interaction be-

tween robot and contact surface (accounting the friction bias, etc.), which is essential for

locomotion [13]. Utilizing the spatial modulation of light, Wasylczyk and coworkers

showed a caterpillar-like walking robot capable of moving forward and backward [76].

Gelebart et al. demonstrated an LCN film that also moved forward by wave generation

under constant light field [55]. White and coworkers presented a spiral ribbon of LCN,

which was able to roll over a long distance in a particular direction without the use or

either temporal or spatial control of a static illumination [54].

Huang et al. designed a robot equipped with an LCN strip and confined inside a glass

tube, which swam using temporal control of light [77]. The glass tube worked as a guide

to move in one direction. In 2016, Palagi et al. presented a back and forth swimming

locomotion of a cylindrical microrobot by creating traveling waves in the material with

structured light [78]. For the first time, they presented in plane-controlled swimming

movement using a disk-shaped microrobot by producing traveling wave [78]. Zeng et al.

realized an LCN walker robot mimicking caterpillar larva on paper surface and blazed

grating [79].

LCNs robots have advantages over traditional rigid bodied robots at small-scale and in

the aspect of human-friendly applications. In the last two decades, extensive research is

going on LCNs and LCN robots, and the field of LCN robot research is are evolving

14

rapidly. Different robotic functions are already demonstrated in different environments

and upon different illumination conditions. However, the control of locomotion in existing

robots still lacks reliable strategy, and it remains a great challenge to fully understand

the locomotive mechanism in soft matters. Though, pre-programmable and reversible

shape change and photoresponsive features of LCNs pave the way to a new class of

soft robotics, optimization of the locomotion in all these LCN based devices play signifi-

cant role in further research.

.

15

3. MACHINE VISION AND MACHINE LEARNING

The specific tasks to deliver robotic functions can be divided into perception and control

tasks. Perception task is related to acquiring required information from the environment

through sensors. Control task is to accomplish a goal based on the acquired information

[18]. While dealing with perception task, machine vision is often used as an efficient

system that gathers required information [80], and control task requires a control strat-

egy to utilize the information received from the machine vision system to achieve robotic

function.

Soft robotics is becoming a fast-developing research field in the past few years, crossing

different disciplines such as robotics, materials science, biotechnology, optics and ma-

chine learning [16]. Soft robots have impressive features like large degree of freedom in

actuation enabling bending, coiling or twisting, etc., possibility of grabbing objects of ir-

regular shapes and potential to use in human-friendly applications [16][81]. However, it

remains a great challenge to develop an accurate model for predicting machine perfor-

mance or efficient strategy to execute tasks due to soft material properties [15][16][17].

Currently, no general model can provide a compressive analysis of the dynamics and

kinematics of soft robots.

Extensive research has been done on systematic automation, particularly in vehicles,

drones, i.e., rigid machines in tough environments [24]. For autonomous operation in a

complex and dynamic environment, the robot requires a rational decision-making pro-

cess to take a suitable reaction based on the available information. In most cases, robotic

system has very limited information accessible from the environment, and the uncertainty

of the environment condition further increases the level of difficulty [25]. Soft robots pos-

sess multiple degrees of freedom, dynamic mechanical properties, thus special automa-

tion strategy must be developed to fit the situation in soft robotics. Reinforcement learn-

ing, a subdivision of machine learning, has an excellent decision-making ability without

requiring knowledge of robot inside structure or constituted material [18][19][21]. By us-

ing this method, an optimized control policy can be expected for the use in controlling

the soft robot locomotion.

This chapter firstly presents a brief overview of machine vision and its subsystems. Then,

artificial intelligence, machine learning, deep learning, and their mutual relationships are

introduced. Specific attention will be focused on reinforcement learning, its elements,

and different related methods. Finally, deep reinforcement learning will be discussed.

16

3.1 Machine vision

Machine vision (MV) is a branch of systems engineered with mechanical, optical, elec-

tronic, and software systems, which try to encompass the science and engineering of

vision studies [80][82]. MV extracts useful information by efficient detection and verifica-

tion [80], thus has become popular in industrial manufacturing, and the extended appli-

cations in fields such as robotics, face recognition systems (or fingerprint), etc. [80]. A

typical MV system consists of Illumination, optical components, camera sensor, image

processing and software.

3.1.1 Illumination

Illumination is an integral part of a machine vision system. The objective of illumination

is to generate a vision through machine’s “eyes” – make desirable features from the

target visible and unwanted features being suppressed. Different illumination methods

can be used to interact with the object and receiving the feedback information to achieve

such the objective [80][83][84]. For instance, depending on the directional properties of

light source illumination, one can use: (i) diffuse illumination, where the light is emitted

by a source in all directions evenly or (ii) directional illumination, where the light source

emits light in specific directions. For a special case, when the source emits light rays

parallelly along one single direction, it is called telecentric illumination[85].

Depending on the relative position of light source and camera, illumination can be con-

sidered as: (i) front light illumination – light source and camera are kept on the same side

with respect to the object, and (ii) back light illumination – light source and camera are

placed on the opposite side. Depending on the incident angle of the light source, front

light illumination can be divided into (i) bright field and (ii) dark field. In dark field illumi-

nation, light source is mounted at a small angle to the surface of the object, whereas the

opposite for bright field illumination [80][83]. Table 1. shows some of the most popular

methods combining these categories and their advantages for machine vision [85],

Methods Potentials

Diffuse bright field front light illumination Prevent shadows and reduce re-

flections

Directed bright field front light illumination Create shadows in cavities

Directed dark field front light illumination Enhance indentation and protru-

sion features, visibility for texture, and

engrave patterns.

Diffuse dark field backlight illumination Detect contours

Table 1. Most popular methods and their advantages for machine vision

17

3.1.2 Optical components

Optical components are a subsystem dealing with image acquisition, by which useful

optical signal is collected and noise reduced before being detected by the camera sen-

sor. The optics is crucial for an efficient repetitive task, and it assists to produce good

quality image and reduces the effort in digital image processing. As a result, the whole

vision system can become faster and more reliable. Depending on the system require-

ments, optical subsystem consists of different components such as filters, lenses, ab-

sorbing background, etc. [80].

A filter may enhance image contrast by blocking undesirable wavelengths. Coated inter-

ference filters and colored glass filters are the two most often used filters. Coated inter-

ference filter has a particular blocking and transmittance range, i.e. well-defined spectral

band. They can be bandpass, bandstop, shortpass, longpass and notch filters. Colored

glass filters are manufactured by adding a dopant element in the glass, which is respon-

sible for altering the absorption and transmission spectra. Comparatively, colored filter

is most prevalent in vision system application because of low cost. Moreover, colored

filter does not shift the wavelength transmission and makes no change in the spectral

properties despite a change in angle with respect to the optical axis [80][86].

Different types of lenses can be used to acquire the image, such as fixed focal lens,

zoom lens, and telecentric lens. Selecting a suitable lens involves consideration of the

factors of field of view, focal length, depth of view, camera sensor size, etc. Fixed focal

lens has a fixed angular field of view. It is ideal when the distance from the target does

not change. Zoom lens operates over a wide range of focal lengths and is suitable when

a change of field of view becomes necessary during the operation. Unlike the other two,

telecentric lens has no angular component to the field of view, and a constant field of

view at any distance from the object, thus its magnification remains unchanged [87].

3.1.3 Camera sensor

The core objective of a camera is to create images when the camera sensor is illumi-

nated by light that is collected by the lens. Camera sensors are solid-state electronic

devices consisting of photodetecting pixels. The sensor size and electronic readout for-

mat are essential properties of a camera. Typically, digital camera sensor technology

can be categorized into Charge-Coupled Device (CCD) and Complementary Metal Oxide

Semiconductor (CMOS) [88][89]. CCD sensor is a silicon chip with an array of photore-

sponsive sites that convert light into charges. The charges are moved into a serial

readout resistor through transfer gates and converted into voltages. After amplifying

18

those voltages, analog to digital converter is used to produce digital pixel information

[89]. On the other hand, serial readout register is not required in a CMOS sensor. The

photodetector sites convert charges into voltages directly, i.e. the analog to digital pro-

cessing is done in pixel level, and a row-column select circuit is used for readout [88][89].

CMOS has become a more popular sensor over CCD because of many advantages such

as smaller pixel size, better low-light performance, lower dark noise, higher fidelity image

and dynamic range, lower power consumption and lower cost in manufacture [2][14]–

[16].

3.1.4 Image processing

After capturing an image, the next step is to analyze it, which includes preprocessing to

enhance the image quality, camera calibration for accurate measurement, and different

algorithms for extracting desirable features of the targeted object. Image smoothing tech-

niques are used for reducing the noise in order to enhance the image quality by the

application of Gaussian filter, mean filter, linear filter, etc., algorithmically [80][91][92].

For detecting a particular type of object, algorithms can be developed by incorporating

many basic techniques such as geometric transformations, image segmentation, feature

extraction, edge extraction, fitting geometric primitives, etc. [80][91]. However, these

methods are not robust because different algorithms are required for finding different

types of objects. For a practical application, template matching methods are widely used

since they can detect objects by using a prototype, yielding easiness of finding different

objects. Besides, standard software packages are available for utilizing template match-

ing methods’ functionalities. Different types of template matching methods have been

developed, such as gray value-based matching, matching using image pyramids, robust

template matching, matching geometric primitives and shape-based matching [80][85].

3.2 Artificial intelligence and machine learning

Artificial intelligence (AI) is a general term to indicate the utilization of computers to model

intelligent behaviors without any help, or with minimum help, from humans, thus artifi-

cially mimicking human intelligence [93]. AI is successfully implemented in different dis-

ciplines such as speech recognition, image recognition, cancer cell detection, etc. [94].

The relation between artificial intelligence, machine learning, and deep learning can be

seen from the subset structure shown in Figure 6 [95].

19

 Relation between Artificial Intelligence, Machine Learning and Deep

Learning

Machine learning is a type of algorithm that enables a computer to learn without explicit

programming [96]. According to Dr. Tom M. Mitchell, “A computer program is said to

learn from experience E with respect to some class of tasks T and performance measure

P if its performance at tasks in T, as measured by P, improves with experience E” [97].

In other words, it is a program that can automatically learn from its experience, i.e. from

the input data [95][97]. Machine learning algorithms can be divided into three broad cat-

egories (Figure 7) based on the data receiving method and the manner of giving feed-

back on the learning process. They are supervised learning, unsupervised learning and

reinforcement learning.

 Machine learning categories

Supervised learning is nowadays the most common used method in machine learning.

Supervised learning algorithms use training data sets, which are correctly labeled be-

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Artificial Intelligence

Machine Learning

Deep Learning

20

forehand, i.e. the correct answer is already known during the training sessions. In train-

ing, the algorithm predicts the results and tries to find the correlation between the data

and the results. The aim is to develop the mapping function at an optimum level of per-

formance that can correctly predict the response of a new unseen instance [98]. Super-

vised learning is successfully used for solving real-world problems, such as recognition

of speech, handwriting, face patterns, natural language processing, bank credit scoring,

medical imaging, etc. [99].

Unsupervised learning algorithms discover a structure or pattern through common ele-

ments of an unlabeled data set. Thus, these algorithms do not require a training dataset.

As the data is not sorted or classified beforehand, these algorithms are more complex

and processing-time intensive than supervised learning [98][100]. Credit card fraud de-

tection, market analysis, fault detection, cancer cell detection, gene sequence study,

anomaly detection in a long series of data are among the various applications of unsu-

pervised learning [99].

Reinforcement learning (RL) algorithms are real-time learning algorithms. Different from

supervised and unsupervised learning which are based on datasets acquired before-

hand, RL is an online and real-time learning control system [101]. Reinforcement learning

is an algorithm where machines learn to utilize experiences gained through varying the

parameters and improve the desirable behavior of the system by receiving rewards (by

feedback technique). This algorithm has been used in various applications to achieve

human-level control, such as enabling autonomous robot and vehicle control, playing

computer games, etc. [20][23][28][101][102].

Reinforcement learning aims to find a suitable sequence of action by which maximum

reward can be achieved, leading towards an optimum outcome. Thus, it should be the

right approach to soft robot automation. Conversely, the main objective of supervised

learning is to extrapolate or generalize the response through training and produce correct

responses for new data. This feature is not applicable for a system that needs to learn

from its interaction with the dynamic environment – after changing the environment, an

agent still shows adaptive performance, if it learns from its experience. On the other

hand, unsupervised learning only discovers correlation within data, which cannot be a

tool to maximize the reward signal, the key to generate self-learn performance [20].

Deep learning, a subcategory of machine learning, was introduced in 2006 [104]. In com-

parison with contemporary machine learning, deep learning eliminates the requirement

of manual feature extraction; instead, it generates these features automatically. ”Deep

learning is about learning multiple levels of representation and abstraction that help to

21

make sense of data such as images, sound, and text”, said by R. Buyya et al. [105]. In

the next sections, the thesis will discuss about deep learning and its coordination of re-

inforcement learning.

3.3 Reinforcement learning

Reinforcement learning is a process in which an agent learns to adjust to actions for

receiving maximum rewards. The agent has no predefined knowledge of choosing an

action, but it needs to figure out the suitable action which can bring out the highest reward

by trying [20]. Reinforcement learning works in a dynamic environment and tries to find

out the most suitable sequence of actions. In many cases, actions may affect the current

rewards and, eventually, all subsequent rewards, leading to a “delayed reward”. Interac-

tions with the environment through “trial and error” and “delayed reward” are two distinct

features of RL [20].

 RL in control system perspective

In Figures 8 and 9, RL is compared to the classical control system. In a closed-loop

classical control system, the controller gets feedback to correct the random disturbance

and errors, thus improving and stabilizing the system. Whereas, RL system gets state

observations and rewards as feedback because of the action it has taken and updates

the agent according to the feedback to achieve maximum rewards. Sometimes the de-

sign of a traditional control system may become tough due to the nonlinearity or large

 Classical control system

Controlled
system

Disturbance

Controller

Feedback

Input Output

Controlled
system

Disturbance

Agent

Observer

Environment

State observation

Camera image, position

Action Behavior Part of re-

ward and ob-

servation

22

state and action space. In this kind of situation, RL is the best alternative. Because tra-

ditional control systems and RL have one common target to generate desirable system

response [106].

3.3.1 Elements of reinforcement learning

RL environment refers to every component in the system except the agent. The agent is

a piece of software that is responsible for generating action commands and sends it as

an input to the environment, updating the policy through receiving observations and re-

wards from the environment. RL framework (Figure 10) has four basic elements con-

necting the agent and the environment. They are a policy, a reward signal, a value func-

tion, and a model of an environment (optional part) [20][106].

 RL framework and sub-elements

Policy: Agent has a function that receives observational states, maps these states with

actions, and decides the suitable actions to be taken. This function is referred as a

policy. Policy is the core element of RL and solely responsible for determining the be-

havior of the system. A policy can be a lookup table of a simple function or a function

incorporating extensive and complex computations. For generating optimal policy, RL

algorithm is used. The RL algorithm can alter the policy depending on the actions, ob-

servational states and the amount of reward [20][106].

• Reward: On every time step, an action may change the observational states,

after which the environment assigns a number by evaluating the performance

quality or goodness of the behavior. This number is called reward signal. A re-

ward function defines the aim of an RL problem, which is the central bias for

Environment Agent

Function

Reinforcement

learning algorithm

Policy

Update

Action

Reward

Observations

23

changing the policy. An agent has a crucial intention to collect the maximum total

reward points over the long run. If a particular action chosen by the policy pro-

duces a lower reward, the policy will be altered by the RL algorithm in a way that

it will take another action when a similar situation is met [20][106].

• Value function: Value function estimates the total future reward available for a

sequence of actions from the current state and can bring the largest number of

reward points in the long run. Actions are chosen depending on value judgment.

Reward is related to the immediate result, whereas value function is related to

the long-term results. For example, A particular state may produce a smaller im-

mediate reward but can have high value because the state is a part of a sequence

of actions that produce largest amount of reward and vice versa [20][106].

• Model of an environment: Model is an optional element and helps in planning,

i.e., it serves a way of deciding the future effect of taking action. RL problems

which use model and planning is known as model-based methods. On the other

hand, RL problems which use trial and error methods instead of model or plan-

ning is known as model-free method [18][20][106].

By using RL algorithm, the agent eventually learns the best policy, which is able to take

optimal action sequences to generate maximum rewards [20][102]. RL tasks can be

continuous or episodic. In continuous tasks, the interaction between agent and environ-

ment does not break down. Conversely in episodic tasks, the interaction breaks down

into several separate episodes where episodes end after finite time steps regardless of

achieving the goal or not. This one is mathematically efficient because the effect of a

particular action on subsequent finite reward can be determined in every episode

[18][20].

3.3.2 Markov decision process (MDP)

Robotic function, which is a sequential task through interaction with the environment to

achieve an objective, can be represented as Markov Decision Process (MDP). MDP in-

cludes a tuple {A,S,R,P}; where A is a set of actions, S is a set of observational states,

P is a state transition probability function, and R is a reward function. Sometimes, a dis-

count factor, γ, is used [18][20]. In RL, the interaction between agent and environment

happens in discrete time steps, t = 0,1,2… At any t, agent receives observational states,

st ∈ S, and sends an action, at ∈ A. At t+1, because of the at, agent gets a reward, rt+1∈

R as well as a new state st+1.At every step, policy πt is updated. At a time step t, πt (s, a)

is the probability of at=a when st=s. Also the reward function and state transition function

24

can be denoted as R(s,a) and P(st+1, at+1) accordingly. In an episodic task, one episode

of MDP can be represented as {(s0,a0,r1) , (s1,a1,r2), (s2,a2,r3), ... , (st−1,at−1,rt)} where the

episode terminates with terminal state st. According to MDP, the probability of any state

st+1 depends only on the previous state st and action at [22][107][108]. A typical require-

ment for MDP is that the robot should fully understand the entire observational states,

which is in practice difficult. However, RL can deal with model-free and partially observ-

able MDP [20][108].

3.3.3 Reinforcement learning algorithms

RL framework has mainly two classes of algorithms for solving problems, which are

value-based methods and policy-based methods. There is also a third kind of hybrid

approach, Actor critic methods. These techniques can also extend with deep learning

[109].

• Value-based methods estimate the expected return value of taking an action in

a given state. For instance, Bellman’s equations are used to estimate the se-

quential states. These methods incorporate with Q-learning and SARSA (State-

Action-Reward-State-Action), though they may differ in target values. In Q-learn-

ing, the target value, i.e. Q-values are recursively updated at each time step. Q-

learning is an off-policy method. On the contrary, SARSA updates the value es-

timation using a policy and is an on-policy method[18][109].

• Policy-based methods do not use value estimation, but policy can be updated

directly through evaluation and improvement. These methods can be gradient-

based or gradient-free depending on parameter estimation. They have some ad-

vantages over value-based methods, such as convergence, less computational

time, dealing with continuous high-dimensional data, and solving deterministic

policies effectively. However, these methods are not suitable for a dynamic envi-

ronment where the agent needs to adapt [18].

• Actor critic methods can carry out a distinct representation of policy and state

estimation, and combine the iterative techniques of value function and policy-

based methods [18]. The actor, i.e. policy, learns by getting feedback from the

critic, i.e., the value function. Mainly, these methods utilize the value function as

a baseline for policy gradients. Hence, an actor-critic method uses learned value

function which is the main difference comparing with other two methods

[109][110].

25

3.3.4 Value function

Agent aims to maximize future rewards by selecting suitable actions wherein a dis-

counted factor γ is applied to rewards [20][111].The future discounted return at time t is

𝑅𝑡 = ∑ 𝛾𝑡′−𝑡 𝑟𝑡

𝑇

𝑡′=𝑡

where rt is the reward at time step t received after taking an action and T is the terminal

time step of the episode. After some sequence of action, a, and state, s the optimal

action-value function is defined as

Q* (s, a) = maxπ E [Rt | st=s, at=a, π]

where π is the policy. Here Q* (s, a) obeys the Bellman equation, an essential property

of dynamic programming. If the optimal value of the sequence s’ at the next step is known

for all possible actions a’, then the optimal strategy is to choose the action from all the

possible actions which will maximize the expected value of r + γQ* (s’, a’),

Q* (s, a) = E [r +γ maxa’ Q* (s’, a’), | s, a]

The action-value function is the foundation of many RL algorithms. The function utilizes

Bellman equation for iterative updating of

Qi+1 (s, a) = E [r +γ maxa’ Qi (s’, a’), | s, a]

And when i→∞ then Qi→ Q*, i.e., the value function iteration converse to the optimal

action-value function [20][111]. For every sequence, a separate action-value function is

estimated, which is not practical for applications. So a typical approach is to utilize a

function approximator for general estimation of action-value function [20][22][103][111].

Linear function approximator and nonlinear function approximator such as neural net-

work can be used in RL, though the nonlinear function approximator has been most

commonly used [22]. In the next sections, Q-learning is introduced, followed with incor-

poration with deep neural networks for developing more efficient learning method.

3.3.5 Q-learning

The core in reinforcement learning is temporal difference (TD) [112] and learning action-

value function from direct experience with TD error using the following update

rule[107][111]:

Q(st,at) ← Q(st,at)+ α [r + γmaxat+1Q(st+1,at+1) −Q(st,at)]

26

Where α refer to learning rate. Here, the learned action-value function, Q directly approx-

imate the optimal action-value function, Q*. So it is not dependent on any policy i.e. off-

policy control, which enables early convergence [20][112].

3.4 Deep reinforcement learning

Usually, a robotic system has a large number of DOF, large dimension of continuous

observational states and action space, and sometimes accompanied with high noise. A

similar challenge was faced by Mnih et al., in which they tried to play a computer game

called Atari through reinforcement learning [22]. The game has 1067970 possible game

states, which is a significantly large number [111]. The challenge was to scale up the

dimension of action and observational space as traditional RL based on MDP [113]. For

solving this kind of challenge, deep learning plays an important role where the neural

network is used to extract features from highly structured data.

Reinforcement learning can use deep neural networks for approximating different com-

ponents, such as value function V(s, θ) or q(s,a; θ). Policy π(a |s; θ) and model, i.e., state

transition and reward. Here θ is the weight parameter of the neural network [111]. How-

ever, RL with neural network used to approximate the action-value function is not very

stable. Significant changes occur in the policy due to the small shift in action-value func-

tion(Q), and this leads to changes in the data distributions and the correlations of Q value

and also target value [114]. For tackling these problems, the most common strategy is

experience replay where all experiences are stored in a replay memory. During training,

random mini-batches of replay memory replace the most recent transition which removes

the correlation in the observation sequence and changes the subsequent training sample

to avoid the local minimum [111].

In RL, the agent needs to find a policy through trial and error method to fetch more re-

wards, which raise the idea of exploration and exploitation. Exploration is related to try

new strategies, i.e. try a few new choices on top of existing information to explore further

information about the environment; Exploitation is associated with maximizing the reward

using known information. Meanwhile, typically epsilon-greedy strategy is used to ensure

feasibility between both [103][107].

3.4.1 Deep Q-learning

A Q-network can be designed using neural networks with weights θ. For applying expe-

rience replay, experiences of the agent at each time step, et=(st,at,rt,st+1) is stored into a

27

data set Dt={e1, ··· ,eN} [22][103][107].The deep Q-learning update iteration, i, using fol-

lowing loss function,

Li(θi) = E(s,a,r,s’) [(yi −Q(s, a; θi))2]

Where yi = r +γ maxa’ Q(s’, a’; θi
-) and weights,θi

- are used to calculate the target at i. To

estimate the action-value function without any generalization,

Q(s, a; θ) ≈ Q* (s, a)

The gradient of the loss function (differentiating with respect to θi) is,

∇θi L (θi) = Es,a,r,s’ [(r + γmaxa’Q(s’,a’,θi
-) −Q(s, a; θi)) ∇θi Q(s, a; θi)]

Though the full expectation can be computed from the above equation, optimization of

the loss function using stochastic gradient descent is more convenient. Therefore, a sim-

ilar approach as Q-learning can be used for DQN framework, where the weight is up-

dated after each time step, and the expectation is replaced by a single sample by setting

θi
-= θi-1 [103][107]. The deep Q-learning algorithm with experience replay is shown in

Figure 11.

 The deep Q-learning algorithm with experience reply. Adapted with per-
mission from Ref. [103]

DRL approach combines RL and deep learning to tackle different challenges of tradi-

tional RL approach like dependency on handcrafted features, discretized input and out-

put spaces, and the lack of scaling up the dimensionality of input and output states

28

[25][113]. Decision-making performance is enhanced by incorporating deep neural net-

works. In 2013, DeepMind Team of Google successfully utilized Q-learning with deep

neural networks i.e., deep Q learning to tackle the low dimensionality of input and output

states problem [22]. They utilized deep Q learning to play computer games like Atari [22].

Following the milestone of the DeepMind team, many successful experiments have been

conducted by developing an optimized control policy in an uncertain environment, which

is suitable for autonomous systems [23]. For instance, mobile robot path planning and

autonomous navigation [23]–[26], autonomous driving [19][27], robot motion con-

trol[28][29], just to list a few. Deep Q learning approach can be applied in controlling

locomotion and navigation for different soft robotic systems that integrate the path finding

capability as well as their mechanical properties [18]. In deep Q learning approach, the

controller directly learns from the raw data while interacting them in a dynamic environ-

ment and provides an end-to-end solution [11][13]. As deep Q learning approach does

not consider structure and material of the robot [3], a light responsive LCN robot can be

considered as a good platform to test deep Q learning. For autonomous control of loco-

motion in a dynamic environment, a reward system and optimal control policy are devel-

oped, as will be discussed in the next chapters of the thesis.

29

4. IMPLEMENTATION

As illustrated before, LCN robots can be driven by light, and each part of the robot can

be actuated/controlled upon a laser or an LED light field, for creating robotic movement.

For precise control, in general a laser beam is suitable for pin-pointing controlling of ro-

botic segments, such as robot’s walking legs or deforming body. For utilizing this photo-

actuation feature, a workspace is set up to steer the laser beam within two-dimensional

plane. This workspace is beneficial for conducting different kinds of experiments to ex-

plore the different robotic capabilities. In this chapter, the laser steering workspace setup

and its components will be firstly presented, followed with robot tracking system.

4.1 Laser steering workspace setup

The laser steering workspace configuration is divided into two parts: machine vision, and

laser steering subsystem. The workspace setup and its different components are shown

in Figure 12.

4.1.1 Machine vision subsystem

In this workspace, a Zeiss Cold light source (CL 4500 LED CRI90) is used as an illumi-

nation source that can serve up to 450 lm light flux with a continuous dimming option

[115]. A monochrome camera sensor (DCC1545M, Thorlabs [116]) equipped with a

zoom lens (Zoom 7000, Navitar [117]) is used to capture images. This camera has a

CMOS sensor of 1.3 Megapixels resolution with an electronic rolling shutter (see tech-

nical details in Table 2). The zoom lens is a close-focusing macro lens with a minimum

working distance of 13 cm, and can be manually controlled to adjust the zoom-in factor

and tune the focus. The objective of the camera is to capture live images of the working

platform while the laser beam is steering on the robot. However, the brightness of the

laser beam hinders the structural information of the robot (Figure 13b). In order to solve

this problem, a colored glass filter is used in front of the lens to block the laser wavelength

(532 nm), yielding a good-quality image suitable for further data analysis (Figure 13c).

30

 Laser steering workspace setup (front, side and rear view) and different
components of the workspace

Front view Side view

Servo motors

Rear view

Adjustable mirror

Mirror

Camera sensor

Lens

Optical Filter

Mirror

Illumination

Workspace

Illumination

Front closer view

Front closer view

Rear closer view

Servo motor

controllers

31

Parameter Value

Model DCC1545M

Sensor CMOS, Monochrome

Resolution 1.3 Megapixels (1280 x 1024)

Exposure Mode Rolling Shutter

Optical Sensor Format 1/2"

Read Out Mode Progressive Scan

Frame Rate 25 fps

Dynamic range 68.2 dB

SNR(MAX) 45 dB

Trigger Input: No, Output: Yes

Lens Mounting Thread CS-Mount

Interface USB 2.0

Supply voltage 3.0 V−3.6 V, 3.3 V nominal

Dimensions 48.6 mm x 44 mm x 25.7 mm

Weight 32 g

 a. An LCN robot and the robot’s leg illuminated with a green laser beam
(captured using a regular camera). b. Image from the machine vision system
without an optical filter. c. Image from the vision system’s camera with a col-

ored glass filter

4.1.2 Laser steering subsystem

For the actuation of an LCN robot, a solid-state, continuous-wave green laser (532 nm)

is used, and the power of the laser can be controlled manually, see technical specifica-

tions in Table 3. The laser beam is guided to an adjustable mirror mounted on top of the

workstation by using several mirrors. The adjusted mirror (SM05, Thorlabs[118]) is driven

by two DC servo motors and can continuously change/monitor its angular displacement

via computer control. The servo motor actuators can travel up to 12 mm, and the step

resolution is in a submicron level which allows a continuous angular displacement of the

mirror, see details in Table 4. Eventually, the laser beam is reflected down to the work-

space, and steered on the 2D plane along vertical and the horizontal direction, allowing

precise robotic actuation (Figure 12).

a b c

Table 2. Camera specifications[116]

32

Parameter Value

Model MGL-F-532

Wavelength (nm) 532±1

Output power (mW) 2500

Transverse mode TEM00

Operating mode CW

Power supply (90-264VAC) PSU-H-LED

Parameter Value

Model Z812

Travel Range 12.0 mm

Motor Type 6 VDC Servo

Micro steps per Revolution 34304

Backlash <8 µm

Bidirectional Repeatability <1.5 µm

Home Location Accuracy <2 µm

Velocity 2.6 mm/s (Max)

Acceleration 4 mm/s2 (Max)

Weight 0.134 kg

Note that the controller of the servo motor provides a differential encoder feedback to

ensure accurate positioning operation. Compatibility with the ActiveX® programming en-

vironment makes this controller suitable for developing custom applications. The details

of the servo motor controller can be found in Table 5.

Parameter Value

Model KDC101

Drive Voltage ±12 to ±15 V

Drive Type 8-bit Sign/Magnitude PWM

Control Algorithm Digital PID Filter

Feedback Differential Encoder Feedback (QEP

Inputs) for Closed-Loop Positioning

Velocity Profile Trapezoidal

Software Control Kinesis® or APT™

Output 15 V/ 2.5 W

Interface USB 3.0

Dimensions (H x W x D) 60.0 mm x 60.0 mm x 49.2 mm

Table 3. Solid-state green laser [119]

Table 4. DC servo motor actuators (Z812 from Thorlabs)[120]

Table 5. Servo motor controller (KDC101 from Thorlabs) [121]

33

4.2 Robot tracking system

The robot tracking is a synergistic system between machine vision and servo motor con-

trol subsystem. The integration is achieved through a communication server, as shown

in the schematic drawing in Figure 14. The machine vision is responsible for spotting the

robot location as well as extracting feature information of the robots, such as the location

of the legs, body orientation, the destination location, etc. The servo motor control sub-

system receives information from the machine vision and automatically steers the laser

beam to the desired location according to some pre-designed algorithm. The following

sections will describe all these systems in detail.

 Robot tracking system

4.2.1 Machine vision for robot tracking

For tracking the robot position, a dimensional calibration step is taken before using the

vision function in robotic applications [122]. After that, all images captured by the camera

contain dimensional information in real space. The captured images are further pro-

cessed with digital image processing and feature extraction technique, in order to en-

hance different structural features. For this, NI Vision Builder for Automated Inspection

(Vision Builder AI), an application from National Instruments is used in calibration includ-

ing programming and configuring vision algorithms for image analysis and processing.

Machine vision

Image
acquisition

Image
processing

Camera
calibration

Robot and legs
detection

Communication

server

Servo motor control

Check
received

data

Different
algorithms

Connect
servo APT
interface

Driving
motor

Workspace
and servo
calibration

34

Camera calibration is essential for precise detection and high accuracy in measurement.

It establishes a relation between the image and the actual scene for real-world measure-

ments. For instance, distortion due to perspective errors and lens aberrations affects

image coordinate and thus the related geometrical measurements [123][124]. Camera

calibration helps to correct these errors and to provide accurate dimensional data.

Vision Builder AI application is used for camera calibration by utilizing a dot grid pattern.

The grid has circular dots with equal spacing in both horizontal(x-axis) and vertical(y-

axis) directions. By default, this application provides measurements in pixel units. Spatial

calibration, i.e. mapping pixel into real-world units is also included in this calibration. A

distortion model (grid) was used in the calibration process. The dot grid pattern was cap-

tured (Figure 15a) using the machine vision setup. The center to center distance between

dots was provided including a user-defined reference coordinate to transform the pixel

coordinate to real-world coordinate (Figure 15b). The center to center distance between

dots was 9.3053 mm in both direction x and y.

 a. The dot grid pattern for camera calibration b. Image after calibration,
including the tangential distortion correction

After this initial calibration process, the system is ready to capture inspection images for

further image processing. Vision Builder AI uses a state diagram to model the image

analysis and feature extraction process, and every state can have several steps and

transitions. The developed state diagram is presented in Figure 16a.

The inspection starts with the Start state and immediately makes a transition into the

Inspect state. The Inspect state has several steps (Figure 16b). The first step is Acquisi-

tion, in which an image is captured from the camera. The second step, Vision Assistance,

processes the image to enhance the desired feature by using Color Threshold, Lookup

Table, Smoothing and Diate technique (Figure 16c).

a b

35

a

b

c

 a. State diagram for the vision system. b. Steps in the Inspect state. c.
Steps under the Vision Assistant step and changes of the original image along

with these steps

36

After that, the robot is detected (Detect Objects 1 step, Figure 16b) within a predefined

region of interest (ROI1 step) and then creates another region of interest (ROI2 step)

around the robot body (Figure 17). Match feature 1, Match feature 2 and Match feature

3 steps extract distinct and desired features from ROI2. The last step of the Inspect state

is Overlay, which is responsible for presenting information about the detected features

for the user (Figure 16b).

 Output of the Inspect state and rectangular boxes indicate some steps
(i.e. green: ROI1, purple: ROI2 and red: matched feature)

After completing these steps, the Inspect state makes a transition depending upon the

‘PASS’ value of all previous steps. If every step of the Inspect state is executed success-

fully (pass), then the current state will take the Wait_Transition to the Waiting state; oth-

erwise, the inspection will end by taking the default transition (Figure 16a).

In the Waiting state, a communication block waits for a fixed period to receive a specific

string from the communication server. Within this time window, if the communication

block has not received the specific string, the Waiting state transits to the End state.

Otherwise, it transits to the Data sending state where another communication block

sends the information about extracted features and parameters to the communication

server. Extracted features and parameters can be the locations of the matched features,

i.e. that x and y coordinate values of robot legs and target, scores of matched patterns

(not for every case), also a check string to notify the ending of the massage. After send-

ing the message, the Data sending state transits to the End state. When the execution

reaches the End state, the inspection starts again from the Start state.

Figure 16 represents a basic state diagram used in this thesis. For implementing several

case studies with different types of robots, some modifications are adopted in the state

diagram, especially in the Inspect state and the Data sending state (inspection programs

are available at this link: https://github.com/amankhan47/Aman_SPM_TUNI.git).

https://github.com/amankhan47/Aman_SPM_TUNI.git

37

4.2.2 Communication server

The machine vision and servo motor control subsystems are connected through a TCP

IP communication server. After feature extraction, the developed inspection program of

the vision system waits for a fixed period. Within this period, upon receiving a string from

the servo motor control subsystem, a message is sent to the servo motor control sub-

system. The servo motor control subsystem does not assign a sending string until the

previous operation of laser steering being finished.

4.2.3 Servo motor control subsystem

The servo motor control subsystem essentially deals with the control of two servo motors,

to steer the reflected laser spot to the designed positioning according to the messages

from the communication server. Particularly, one servo motor creates steering movement

along the x-axis, and the other along the y-axis. Hence, the motor-driven spot motion

requires another calibration process to connect the distance information (from machine

vision) with the laser position (driven by DV servo motor current) in the workspace. The

servo motor control subsystem is designed as an object utilizing MATLAB application.

The object contains methods for every component of this subsystem (Figure 18 and Ap-

pendix A).

 A sequence diagram of the servo motor control subsystem

The ActiveX® environment compatibility makes the servo motor controller suitable for

developing applications in MATLAB. The servo_interface_loading() method establish

connection to the controllers through ATP server by loading a servo control interface,

38

sending initiating commands, setting the serial numbers of the controllers, and finally

moving the motors to home positions. After this method, the initiate_server_connection()

method establishes a TCP IP connection with the communication server. The data_rec()

method requests for the extracted feature massage by sending a string to the communi-

cation server. After receiving the message, the position_control() method is responsible

for selecting suitable leg locations and pass the information to the calibra-

tion_and_move_servo() method. This method starts steering the laser beam to the de-

sired location. In this method, calibration requires some dimensional parameters of work-

space and servo motors. They are the moving distance of the steered spot in both x and

y directions (x_in_mm, y_in_mm) and the motor positions at starting and finishing points

(x0,xf,y0,yf) of that trajectory. For reaching a specific location (x_move, y_move) moni-

tored by the vision system, servo motors need to reach the following positions,

x_axis = (xo-((xo-xf)*x_move)/x_in_mm) and

y_axis = (yo-((yo-yf)*y_move)/y_in_mm),

here, x_axis and y_axis are the motor positions of x-axis and y-axis motors respectively.

Using these values, the laser beam is steered to a specific location. After reaching the

location, this program again starts executing from data_rec() method to calibra-

tion_and_move_servo() method in a loop that ensures continuous operation in the ex-

periment (Figure 18).

An optional method, set_k() is also developed, which allows manual selection of the leg

locations and assistance in evaluating the locomotion potential of an LCN robot before

developing a control strategy for continuous operation. Besides, the position_control()

method can be altered to develop other control strategies, depending on different geom-

etries in the robot design.

The machine vision subsystem assists in deploying different vision algorithms to extract

message about robot’s structure, which contains shape or configuration information. The

servo motor control subsystem utilizes this information to steer the beam and actuate

the robot, depending on the adopted locomotion control strategies. We believe the robot

tracking system has the potential to be utilized in many micro-robotic applications. Fur-

thermore, this system is capable of being integrated with reinforcement learning for au-

tomatic locomotion control, which will be discussed later.

39

5. EXPERIMENTAL RESULTS

Different soft robotic structures can be realized by using photomechanical LCN actuators

to achieve versatile robotic functions, such as shape-change, walking, and swimming.

Basically, these robots are often constructed by cutting actuator strips from an LCN film

and pasting them into designed configurations. The movement is then created by the

out-of-plane deformation of a bending strip. In this chapter, I will first characterize the

deformation properties of a splayed bending LCN strip. Then, I will introduce a failed trial

of my study in investigating locomotion of an LCN walking device, and a successful one

in realizing swimming locomotion on the water surface.

5.1 Light actuation in an LCN bending strip

In most cases, LCN strip is the basic building block of LCN robots, providing reversible

shape-change by bending actuation. Here, an experiment was conducted to examine

the bending deformation of an LCN strip. An LCN strip was prepared with splayed align-

ment [53], and attached to a base (Figure 19). The whole strip was irradiated with a

white-light illumination source (from a projector with lenses, about 1 W/cm2). A video

analysis tool was developed and used to measure the deformation angle and capture

the frames of the bending deformation (Appendix B). The measured angle is indicated in

Figure 19b and c. Figure 19a shows the images of deformed strip when light is switched

on and when ceasing the light, while Figure 20 plots the measured deformation angles,

automatically collected by the analysis program.

The LCN strip is heated up upon irradiation, and the deformation is driven by anisotropic

thermal expansion between the two surfaces of the splayed film. At 1.4 s (Figures 19a

and 20) the strip was irradiated with light, and immediately it started to bend. At 3.2 s,

the strip touched the substrate, which blocked further deformation. In this situation, the

portions close to the base and the strip-tip were fixed, bringing out no change in the

measured angle, however, other sections of the strip still deformed until 5.0 s, where the

light-induced heating was saturated. In total, the LCN strip bent 242o within 1.7 s. After

ceasing the light, the strip relaxed back to its original shape after about 30 s.

40

0.0 s

1.5 s

1.7 s

2.2 s

2.8 s

3.2 s

5.0 s

5.1 s

7.0 s

9.4 s

11.4 s

32.9 s

a

b

c

 a. Timeline of LCN strip deformation dynamics during (light on at 1.5 s)
and after (light off at 5.1 s) light exposure. b, c. Angle measurement, the vertical

blue line is the fixed axis and the other axis follow the tip of the strip

 LCN strip bending deformation

The average angular velocity of bending was 137o/s upon illumination (actuation speed)

and 8o/s after ceasing the light (relaxation speed). This experiment presents the impact

of light on/off operation on an LCN strip, which is advantageous for devising soft robots,

as illustrated in the following sections.

Angle: 80o Angle: 150o

41

5.2 Optical control in three legs walking robot

The robot was built utilizing three pieces of LCN strips (2.5 mm x 1 mm x 50 micron)

being UV glued into a central symmetric configuration (see the photograph in the insert

of Figure 21). We have implemented machine vision and tracking system, as discussed

in Chapter 4. To obtain walking locomotion, the robot was placed on a paper surface,

while the machine vision subsystem could automatically detect the robot’s legs, central

position, and orientation (Figure 21). Particularly, the machine vision could also capture

images from the top of the robot, measuring the length change of the legs. The decrease

of leg length upon illumination indicates bending of the strip towards the ground, which

is the key indication of leg actuation. In this experiment, the template matching technique

was utilized for the detection of legs. The image processing tool was provided with the

straight leg templates of the robot. Depending on the matches with the template in the

inspections, image processing tools provided score values that were used as a measure

of bending. All this information of detected features was sent to the servo motor control

subsystem.

 Features detection of three legs walking robot’s through machine vi-
sion, photograph of the robot in the insert

Then, the servo motor control subsystem started processing the received information.

For steering the laser beam, the set_k() method of servo motor control subsystem se-

lected one specific leg to be irradiated by calling the method with 1, 2 or 3 as an input

parameter (Appendix A). The subsystem re-tracked the robot position/orientation after

finishing one steering step and continued with next steering operation. After several op-

erations, the robot was expected to produce a significant translation through a sequence

42

of leg bending. However, unexpected hurdles have raised up during the experiments,

such as strong adhesion between the soft material and the ground interface, and unpre-

dictable randomness of friction. The robot has been tested on several substrates includ-

ing paper, plastic, and glass; however, no controlled locomotion was achieved. Since

dealing with kinetics of soft material is not the main objective of this thesis, in order to

complete the study of machine learning, an alternative plan was chosen based on an-

other type of locomotion, in order to produce more reliable light-controlled function.

5.3 Light propelled robotic swimmer

LCN strip can be used to build swimmer robots. A floating square film (2.5 mm x2.5 mm)

was placed on the water surface for exploring the capability of light-propelled swimming.

The mechanism is based on the fact that light illuminates on one or few edges of the film,

thus heating up the structure asymmetrically. Raising the temperature decreases the

force of surface tension on that edge, thus dragging the film towards the direction of the

opposite edge. Eventually, the film is always floating away from the laser spot. To

achieve automation in light steering of swimming towards the preselected destination,

machine vision was used. More specifically, the machine vision subsystem was used to

detect the location of two opposite edges of the square film as well as the destination

information (a marked line). This information was sent to the servo motor control subsys-

tem. The data_rec() method and the position_control() method of servo motor control

subsystem were changed to match each specific situation. To deploy automatic control

of laser steering, the position_control() method used following algorithm (Algorithm 1,

code is available at this link: https://github.com/amankhan47/Aman_SPM_TUNI.git):

Algorithm 1:

[1] Collect the edge location information

[2] Calculate the distance between the destination and the edge location

[3] Select the edge location which is farther away from the destination

[4] Call calibration_and_move_servo() method with selected edge location

Using this algorithm, the laser beam always irradiated the edge of the film with longest

distance to the destination (Figure 22). Meanwhile, machine vision subsystem detected

the new location and steered the laser beam to the new location automatically. Eventu-

ally, the system was able to propel the film towards the destination line, with an average

speed of around 0.66 mm/s and entire period of 15 s.

43

 Locomotion timeline of a light propelled robotic swimmer

Though locomotion of the film encompasses some degree of random rotation, it reached

to the destination line. The film can be propelled forward or backward by selecting edges

of the film. This on-demand directional movement of this experiment intrigues further

investigation of robots with better designed geometric patterns, which may lead to a

higher-level control of swimming property.

5.4 Light controlled swimming

Here, a swimmer robot was made by using a black-colored plastic film, with a specific

designed pattern, in order to achieve more control over the directional movement (Figure

23). The robot is composed of three edges/legs; all can be recognized by machine vision

and selected to be exposed with laser beam irradiation. During the experiment, machine

44

vision subsystem tracked the robot and servo motor control subsystem was used to se-

lect the legs to be excited. When one side-leg of the robot was irradiated with laser beam,

the whole body rotated clockwise or anti-clockwise (Table 6a,b). In case of the middle

leg, the robot moved forward (Table 6c). Note that the locomotion was not entirely

straight due to the fact that it is almost impossible to pin-point the laser beam exactly in

the middle of the structure. This randomness in orientation during light-driven motion

poses a hurdle in controlling robotic motion.

 Structure of a light controlled swimming robot

No Initial stage
Locomotion due to the

laser irradiation
Movement description

a

One side leg was irradiated
with a laser beam which

produced a clockwise rotation

b

Another side leg was
irradiated with a laser beam

which produced an
anticlockwise rotation

c

Middle leg was irradiated with
a laser beam which produced

forward movement with a
slight rotation

Randomness also appears when illuminating the side edge of the robot to create rotating

motion. Table 7 shows the experiment of a floating robot being excited on the side leg

Table 6. Directional movements of a swimming robot.

Left leg Middle leg Right leg

45

with laser power of 700 mW. The robot rotated to clockwise directions with different an-

gles (Table 7).

Initial stage
Locomotion due to the laser

irradiation

Approximate

rotation

angle(in degree)

95

90

35

100

Though the laser power was fixed and continuous in that experiment, the rotational angle

of this robot differs a lot. The randomness in light-driven rotation (excitation on the side-

legs) and orientation during forward moving (excitation on the middle-leg) both affect the

precision of light control in robotic motion. To solve this, reinforcement learning technique

is developed to optimize the locomotive controllability, which will be introduced in the

next Chapter.

Table 7. Rotational angle variations of a swimming robot.

46

6. REINFORCEMENT LEARNING IN LIGHT DRIVEN

SWIMMING ROBOT (SIMULATIONS)

This chapter will focus on a light-driven floating robot’s locomotion optimization by taking

the randomness factor of movement into account. The aim is to develop an optimal con-

trol strategy to drive the robot to swim to a pre-selected location. To achieve this, rein-

forcement learning has been implemented because of its remarkable advantages in con-

trolling robotic motion by learning from experiences without prior knowledge of the robot’s

performance. A variant of reinforcement learning, deep Q learning, is used to build a

mapping from abstract observational data to actions for achieving optimal locomotion of

the robot. Usually, reinforcement learning needs to deal with a large amount of training

data before achieving optimal behaviors. However, collecting such amount of data is

practically very challenging [23]. Thus, a simulator based on computer program is devel-

oped to train the deep Q network (DQN), before executing experiments on hardware.

The simulator is tuned and trained with different randomness factors related to the float-

ing robots to match the real-world scenario. The chapter will present the results of this

simulation. Firstly, the RL environment and its components are described, then the agent

and training parameters will be discussed. Finally, the simulation results will be pre-

sented.

6.1 Simulation environment

6.1.1 Action space and observational space

A swimming robot can exhibit three types of light-driven locomotion behaviors depending

on which leg is subjected to laser irradiation. Figure 24a represents these movements:

excitation on left/right leg yielding clockwise/anticlockwise rotation, and forward move-

ment while pin-pointed the spot at the middle of the robot. Herein, the RL agent needs

to train the object with three discrete actions, corresponding to the robot’s clockwise ro-

tation, forward movement and anticlockwise rotation, which are represented by numeri-

cal values 1, 2 and 3 in RL system. At each time, the agent selects an action among

these three candidates, and selecting an action is referred to as one step in the simula-

tion process.

After every action, the agent receives a set of data about observational states, which are

associated with the information delivered by the simulator or the vision system. This data

47

includes the x- and y-axis values of robot position, target location, the distance between

the robot and the target location, angle between the target and the robot as well as the

orientation of the robot body (Figure 24b).

a

b

 LCN robot. a. Action states. b.Observational states

6.1.2 Simulator

The swimming robot exhibits certain degrees of orientation with uncertainty and random-

ness in light-driven motion speed, as discussed in Chapter 5. Due to this reason, a sim-

ulator is modeled as a stochastic environment for learning the optimal policy using Deep

Q learning. The simulator interface is illustrated in Figure 25 where the light blue color

object represents the robot body, and the red dot indicates the targeted position where

the robot is trained to approach. The whole area inside the red boundary is a workspace

of the simulation serving as an effective region to execute robotic actions.

The simulator is associated with two methods: position_control() method and measure-

ment() method. The position_control() method is responsible for determining the position

and orientation of the robot after an action being taken by the agent and eventually up-

dating the simulator. This method is controlled by assigning control strings 1, 2 or 3,

which correspond to the robot’s clockwise rotation, forward movement, anticlockwise ro-

tation.

1
2 3

Robot location Target location

Distance between

robot and target

Angle between robot

and target

48

 LCN robot position simulator and visualizer

After taking an action, the measurement() method returns the observational data. Be-

sides, it also checks whether the robot has reached the target or not and the current

position of the robot remains being inside the boundary circle or not. Initially, Deep Q

learning was implemented on the simulator with simple case to get a simple solution.

After that, the simulator is configured to mimic more complex situations by adding more

parameters describing the randomness. These randomness effectors are tuned in the

position_control() method. Finally, this simulator can provide an option for illustrating the

whole trajectory of the robot, see details in Appendix C.

The simulator is designed in a way that it can still receive information from the vision

system when being implemented in the real world. It plots the robot position, orientation

and the target position in real-time, together with the trajectory of the robot. During the

simulation, the simulator itself does not serve any observation data, as the data is directly

fetched from the vision system. Besides the control strings used in the position_control()

method also fully supports the previously developed servo motor control subsystem to

steer the laser beam to the legs of the robot. Therefore, the training model in the simu-

lator is effortlessly deployable in the real workspace (Appendix D, codes are available at

this link: https://github.com/amankhan47/Aman_SPM_TUNI.git).

6.1.3 Reward function

The agent gets a reward for every action, which is calculated by a reward function. The

reward function is defined by using distance and angle between the robot and the target

location. The rewarding system is divided into two categories: (ii) reward at the end of

the episode (Algorithm 2) and (ii) reward for each action (Algorithm 3). When the robot

reaches the target, touches the boundary, or reaches the maximum step, the episode

ends. Based on each specific situation the agent gets a reward value. If the episode is

49

not a terminal episode then the reward function returns a reward value based on how

good the action was, in terms of going towards or away from the target and maintaining

small angle. The reward function inspires the agent to avoid the boundary and to take

the forward steps to reach the target location by assigning higher rewards. Also, it moti-

vates to maintain lower angular division during the locomotion with respect to the target.

Besides, a constant negative reward is assigned after taking every single step, and this

encourages the agent to reach the target by taking as little steps as possible. The aim of

the agent is to accumulate maximum reward and reach the target, thus proper action

knowledge is gained utilizing the developed reward function.

Algorithm 2:

IF episode is not in a terminal state

Calculate the reward for the action has been taken (Algorithm 3)

ELSE IF robot is not inside the boundary

Penalty, -100

ELSE

Reward for reaching target, 100

Return reward

Algorithm 3:

IF robot going towards the target

Positive reward, 5

ELSE IF going away from the target

Penalty, -2

ELSE not moved

No reward, 0

IF low angle maintained between target and robot

Reward for maintaining a low angle,2

ELSE

Penalty for not maintaining a low angle, -10

Penalty for taking more step, -1

RETURN total reward

6.2 Setting up the agent and training

The agent utilizes deep Q-learning with experience reply algorithm. A critic network is

built up to estimate the value function by conducting training. This network correlates

rewards and delay rewards by receiving the observational states and action states. The

critic network is configured with two input paths, the observational state path and action

state path, and one output path named as common path (Figure 26). The observational

50

state path consists of an input layer and two fully connected convolution layer with an

activation layer in between. The action state path has an input layer and a fully connected

convolution layer. The common path combines the other two paths using an addition

layer and connects to a fully connected convolution layer through an activation layer (see

details in Table 8).

Name Description

Observational state path

observational_state input layer, input size:7x1x1

Critic_State_FC1 fully connected convolution layer, size:12

Critic_Relu1 activation layer, rectified linear unit

Critic_State_FC2 fully connected convolution layer, size:12

Action path

Action_state input layer, input size: 1x1x1

Critic_Action_FC1 fully connected convolution layer, size:12

Common path

addition element-wise addition of 2 inputs

Critic_Common_Relu activation layer, rectified linear unit

output fully connected convolution layer, size:1

The RL system becomes ready for training after setting up the agent and training param-

eters. Every training session is divided into episodes, and in every episode the robot can

take a maximum number of actions, i.e. steps. The maximum number of steps to reach

the target is set to 20. The episode can end (a terminal state) when the robot touches

the boundary line or the target location. After termination of an episode, the simulator

restarts from the initial location to begin a new episode. The critic network employs gra-

dient descent utilizing Adam optimizer with a learning rate of 0.01. The agent uses epsi-

 Architecture of the applied deep neural network

Table 8. Deep network layer description

51

lon greedy strategy to ensure a balance between exploration and exploitation. Depend-

ing on the value of epsilon, the agent decides which action should be taken, which may

be a random one or the action with highest Q value. Initially, the agent collects experi-

ence data for later use in experience replay. The size of the replay memory is 10000,

with a minibatch size of 32. Table 9 lists the used parameters for executing the training

process. The best sequences of actions are saved for further use. Several training ses-

sions were performed for achieving stable performance by utilizing the previous experi-

ence. Besides the simulator parameters were tuned to adapt the locomotion behavior of

the swimming robot.

Parameters Value

Learning rate 0.01

Epsilon minimum 0.01

Epsilon decay 0.005

Discount factor 0.9

Experience buffer length 10000

Minimum batch size 32

Num steps to look ahead 1

Sample time 1

Target update method periodic

Target update frequency 4

Target smooth factor 1.0000e-03

6.3 Training without associating randomness in locomotion

The simulator was initialized with a fixed target location and simple movement behavior

according to Table 10, without associating randomness by setting the position_control()

method.

Selected action Movement

Actions 1 Generate clockwise rotational movement, -25o

Actions 2 Generate forward movement

Actions 3 Generate anticlockwise rotational movement, 25o

Figure 27 shows the training results of 500 episodes with about 5000 steps. The blue

dots indicate the total reward for that particular episode, the red dots indicate average

reward of the last five episodes and the green dots indicate the long term reward esti-

mation(Q0), whose value is given by the calculation based on the initial simulator states

and agent current condition.

Table 9. Agent parameters for the Deep Q learning

Table 10. Effect of selecting an action

52

According to the developed reward function, as shown in Figure 27, rewards of 100 or

more were received by reaching the target position, but, a penalty of 100 or more was

given if it passes the boundary. At the beginning of the training, the robot often crossed

the boundary thus yielding low rewards. After one hundred episodes, it learned to reach

the target and tried to achieve more rewards by spending fewer steps. After two hundred

episodes the critic was able to correlate the estimated long-term reward(Q0) and the

actual total reward with most of the episodes. In this case, the Q0 values conversed with

the average reward values because there was no randomness factor included in the

robot locomotion. After every training session, the episodes with reward values above

100 were saved for further training purposes.

 Training results without associating randomness in locomotion behavior
with a fixed destination point

a

b

 Evaluation of learned policy. a. Robot trajectory with the same target lo-
cation used during training b. Robot trajectory with a different target location

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

53

The learned policy was evaluated with the simulator, by observing the robot trajectory

for the fixed target location (used during the training session) (Figure 28a), and later on

by changing to a different target location (Figure 28b). For the first case, the robot

reached the target by spending eight steps and collected total rewards of 130. For a

different target, the robot spent 25 steps and went outside the boundary. Importantly, the

agent can move towards the target based on its learned skill.

6.4 Training approaching the real situation

The swimming robot always exhibits some degree of randomness in locomotion. To de-

velop an optimal locomotion policy matching with the real scenario, different randomness

factors were introduced in the simulator. The agent thus learned to adapt this random-

ness factors through different training sessions.

Introducing randomness factors into locomotion was done in three parts. The first part

introduces the randomness factors in rotating movements. The robot rotates randomly

in between 0 and 90o when the side legs are irradiated with a laser. Thus, a specific

randomness factor has been added to the simulator to describe this random re-orienta-

tion, as shown in Table 11.

Selected action Movement

Actions 1 generate random clockwise rotational movement which is

calculated by -90o X random number in the interval of (0,1)

Actions 2 generate forward movement

Actions 3 generate random anticlockwise rotational movement

which is calculated by 90o X random number in the interval of

(0,1)

Then, the agent was trained with a fixed target location, and the training was conducted

for 1200 episodes, together with about 13000 steps. The estimation value Q0 correlated

with most of the episode rewards, and most of the episodes got more than 100 rewards,

i.e. the robot successfully reached the target (Figure 29). Then the effectiveness of the

learned policy was accessed for two target points. The robot reached the fixed target

(used in the training session) in eight steps and collected a total reward of 130 (Figure

30a). After learning, the robot is given a different target (other than the fixed target), and

it was able to reach the target, by taking more steps and reaching a less reward (Figure

30b).

Table 11. Effect of selecting an action for the first part

54

For the second part, the training was progressed with six different target locations for

2000 episodes with total step number of about 23000. The simulator changed the loca-

tion every 99 episodes randomly which is also reflecting the training result (Figure 31).

The evaluation of learned policy at different locations is shown in Figure 32 where the

robot reaches the targets successfully.

 Training results with randomness in the rotational movement with a
fixed destination point

a
b

 Evaluation of learned policy with randomness in the rotational move-
ment. a. Robot trajectory with the same target location used during training b.

Robot trajectory with a different target location

 1 1 3 3 4 4

1

1

3

3

4

4

55

 Training results with randomness in the rotational movement with differ-
ent destination points

a b c

d e f

 Evaluation of learned policy with different target locations and random-
ness in the rotational movement. a,b,c,d,e,f. Robot trajectory at different target

location and robot successfully reaches the targets

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

56

For the third part, some random rotations were included in the robot’s forward move-

ments. This specific inclusion is due to the experimental observation that the forward

movement of the robot is not entirely straight. Thus, randomness in actions given by

using Table 12. Figure 33 shows the training results conducted in two sessions consist-

ing 4500 episodes (70000 steps). After these training sessions, the robot can reach dif-

ferent targets successfully (Figure 34). As all the actions include randomness factor, the

robot adapts suitable actions to reach the target point and may result in different trajec-

tories for the same destination point.

Selected action Movement

Actions 1 Generate random clockwise rotational movement which is

calculated by -90o X random number in the interval of (0,1)

Actions 2 Generate forward movement with random clockwise or

anticlockwise rotational movement, which is calculated by (-

45 X random number +45 X random number). The random

number has an interval of (0,1).

Actions 3 Generate random anticlockwise rotational movement

which is calculated by 90o X random number in the interval of

(0,1)

a b

 Training results with randomness in every action with different random
destination points (changing the points in every 50 episodes). a, b. Conducted

training in two sessions

Table 12. Effect of selecting an action for the third part

57

a b

c d

e f

g h

 Evaluation of learned policy with different target locations and random-
ness factors included in all actions. At the same target, robot successfully

reached using different trajectories. The same target pairs are
(a,b);(c,d),(e,f);(g,h)

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

 1 1 3 3 4 4

1

1

3

3

4

4

58

Gradually all the randomness factors were introduced in these training processes. In the

last part of the training, all the actions include randomness factors in order to resemble

the swimming robot locomotion. Due to the randomness in every action, the robot

chooses the best action (possibly) depending on the latest situation of the robot. The aim

is to promote the directional movement of the swimmer with orientation towards the tar-

get point. Overall, the agent attempts to move the robot towards different destination

points while maintaining small angle with respect to the destination point and spending

fewer steps. After all these training sessions (approximately 120 000 steps), the trajec-

tory results confirm that the deep Q learning agent is successful, and an optimal control

strategy to reach different target locations is developed.

59

7. CONCLUSIONS AND OUTLOOK

This Thesis study tried to develop an optical control method to enable directional loco-

motion of small-scale photoresponsive robots as well as an optimal control strategy for

locomotion possibly that can be used in future soft robotics.

The developed robot tracking system provided an efficient detection and analysis plat-

form for the small-scale photoresponsive robots through laser steering to the detected

features. The system was able to move laser efficiently by changing some commands,

as shown in Chapters 4 and 5. This system assisted in realizing different factors related

to LCN robots’ locomotion (walking and swimming). Among different types of photore-

sponsive robots, the swimmer robot exhibited potential directional movement, albeit with

some degree of uncertainty and randomness in their locomotion.

This Thesis presented a new approach for controlling locomotion of photoresponsive

swimmer robots by using deep Q learning, in order to optimize the moving efficiency to

reach a target. A simulator was developed to mimic the uncertain and random behavior

of those robots and used to collect a large number of training samples. The simulator

allowed to choose the way of exploring the environment and enabled the RL agent to

better understand the environment and decide the best actions. Gradual progress had

been made in the simulator where the agent learned from the fundamental to complex

movement behavior. Thousands of episodes had been conducted to develop an optimal

control policy where the robot spent fewer steps and took the possible shortest path

(considering all the randomness in every movement) to reach different target destina-

tions.

This work has successfully taken a step towards controlling the autonomous locomotion

of light-responsive soft robots. Furthermore, the agent can be trained as well as the

learned policy can be applied in the real environment because the entire system is de-

veloped in a way that it fully supports and correlates the robot tracking system. Thus, the

future step will be to deploy the learned optimal control policy with actual swimmer robots

in the real environment.

The developed robot tracking system can be used in different experiments to recognize

the different features of photoresponsive materials and robots. The machine vision pro-

gram uses a template matching technique, which enables affluent detection of desired

features. Besides laser steering system gives sequential options to steer the laser beam

60

automatically to detected features. This system already has been used for conducting

several experiments related to light-responsive materials and robots.

Application of deep reinforcement learning in soft photoresponsive robotics has many

potentials because of dynamic adaptation to the environment without the information of

structural configuration and constituent material properties as well as robotic mechanics.

This work can be extended to a real environment for locomotion control, obstacle avoid-

ance, micro-object delivery, and multiple robot control to accomplish collaborative tasks.

Also, the whole system can be used for photoresponsive robots of different types and

designs with minor modifications because of straightforward feature detection, efficient

laser steering, and facile insertion of different movement patterns in the simulator to train

the reinforcement learning agent. This approach of controlling robot locomotion can

bridge and make the path to locomotion control of different light-driven robots.

61

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature,
vol. 521, no. 7553. Nature Publishing Group, pp. 467–475, 27-May-2015.

[2] H. Abramovich, Intelligent Materials and Structures. De Gruyter, 2016.

[3] S. Maeda, Y. Hara, T. Sakai, R. Yoshida, and S. Hashimoto, “Self-Walking Gel,”
Adv. Mater., vol. 19, no. 21, pp. 3480–3484, Nov. 2007.

[4] S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson,
“Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo
Transport,” Adv. Mater., vol. 24, no. 6, pp. 811–816, Feb. 2012.

[5] C. Niezrecki, D. Brei, S. Balakrishnan, and A. Moskalik, “Piezoelectric Actuation:
State of the Art,” Shock Vib. Dig., Jan. 2001.

[6] L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, “Soft Actuators for Small-Scale
Robotics,” Advanced Materials, vol. 29, no. 13. p. 1603483, Apr-2017.

[7] O. Wani, “Bioinspired Light Robots from Liquid Crystal Networks.” Tampere
University, 2019.

[8] O. M. Wani, H. Zeng, and A. Priimagi, “A light-driven artificial flytrap,” Nat.
Commun., vol. 8, no. 1, p. 15546, Aug. 2017.

[9] I. Y. Galaev and B. Mattiasson, “‘Smart’ polymers and what they could do in
biotechnology and medicine,” Trends in Biotechnology, vol. 17, no. 8. pp. 335–
340, 01-Aug-1999.

[10] H. Zeng, P. Wasylczyk, D. S. Wiersma, and A. Priimagi, “Light Robots: Bridging
the Gap between Microrobotics and Photomechanics in Soft Materials,” Adv.
Mater., vol. 30, no. 24, p. 1703554, Jun. 2018.

[11] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft
Robotics for Chemists,” Angew. Chemie Int. Ed., vol. 50, no. 8, pp. 1890–1895,
Feb. 2011.

[12] O. M. Wani, H. Zeng, and A. Priimagi, “A light-driven artificial flytrap,” Nat.
Commun., vol. 8, no. 1, p. 15546, Aug. 2017.

[13] H. Zeng, M. Lahikainen, O. M. Wani, A. Berdin, and A. Priimagi, “Liquid Crystal
Polymer Networks and Elastomers for Light‐Fueled Robotics,” in Photoactive
Functional Soft Materials, Wiley, 2019, pp. 197–226.

[14] T. (Timothy) White, Photomechanical materials, composites, and systems :
wireless transduction of light into work. .

[15] R. J. Webster and B. A. Jones, “Design and Kinematic Modeling of Constant
Curvature Continuum Robots: A Review,” Int. J. Rob. Res., vol. 29, no. 13, pp.
1661–1683, Nov. 2010.

62

[16] H. Zhang, R. Cao, S. Zilberstein, F. Wu, and X. Chen, “Toward Effective Soft
Robot Control via Reinforcement Learning.”

[17] P. Hyatt, D. Wingate, and M. D. Killpack, “Model-based control of soft actuators
using learned non-linear discrete-time models,” Front. Robot. AI, vol. 6, no. APR,
2019.

[18] S. Bhagat, H. Banerjee, Z. T. H. Tse, and H. Ren, “Deep reinforcement learning
for soft, flexible robots: Brief review with impending challenges,” Robotics, vol. 8,
no. 1. MDPI, p. 4, 18-Jan-2019.

[19] A. El Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement learning
framework for autonomous driving,” in IS and T International Symposium on
Electronic Imaging Science and Technology, 2017, pp. 70–76.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction. 2008.

[21] G. W. B, L. Ren, and J. S. Dai, “Toward Effective Soft Robot Control via
Reinforcement Learning,” vol. 1, pp. 71–83, 2017.

[22] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” Dec. 2013.

[23] P. Yue, J. Xin, H. Zhao, D. Liu, M. Shan, and J. Zhang, “Experimental Research
on Deep Reinforcement Learning in Autonomous navigation of Mobile Robot,”
2019 14th IEEE Conf. Ind. Electron. Appl., pp. 1612–1616, 2019.

[24] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real Deep Reinforcement Learning:
Continuous Control of Mobile Robots for Mapless Navigation.”

[25] J. Xin, H. Zhao, D. Liu, and M. Li, “Application of deep reinforcement learning in
mobile robot path planning,” in Proceedings - 2017 Chinese Automation
Congress, CAC 2017, 2017, vol. 2017-Janua, pp. 7112–7116.

[26] H. Sasaki, T. Horiuchi, and S. Kato, “A study on vision-based mobile robot learning
by deep Q-network,” 2017 56th Annu. Conf. Soc. Instrum. Control Eng. Japan,
SICE 2017, vol. 2017-Novem, pp. 799–804, 2017.

[27] Y. Cheng and W. Zhang, “Concise deep reinforcement learning obstacle
avoidance for underactuated unmanned marine vessels,” Neurocomputing, vol.
272, pp. 63–73, 2018.

[28] S. James and E. Johns, “3D Simulation for Robot Arm Control with Deep Q-
Learning,” 16.

[29] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards vision-based
deep reinforcement learning for robotic motion control,” Australas. Conf. Robot.
Autom. ACRA, 2015.

[30] F. Reinitzer, “Beiträge zur Kenntniss des Cholesterins,” Monatshefte für Chemie -
Chem. Mon., vol. 9, no. 1, pp. 421–441, Dec. 1888.

[31] A. Priimagi, C. J. Barrett, and A. Shishido, “Recent twists in photoactuation and
photoalignment control,” J. Mater. Chem. C, vol. 2, no. 35, pp. 7155–7162, 2014.

[32] J. W. G. Goodby, Handbook of liquid crystals. .

63

[33] T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid
crystal polymer networks and elastomers Preparation and properties of LCEs and
LCNs,” 1 .

[34] S. Palagi et al., “Locomotion of light-driven soft microrobots through a hydrogel
via local melting,” in 2017 International Conference on Manipulation, Automation
and Robotics at Small Scales (MARSS), 2017, pp. 1–5.

[35] T. J. White, “Photomechanical effects in liquid crystalline polymer networks and
elastomers,” J. Polym. Sci. Part B Polym. Phys., vol. 56, no. 9, pp. 695–705, May
2018.

[36] H. Yu and T. Ikeda, “Photocontrollable Liquid-Crystalline Actuators,” Adv. Mater.,
vol. 23, no. 19, pp. 2149–2180, May 2011.

[37] E. Merino and M. Ribagorda, “Control over molecular motion using the cis – trans
photoisomerization of the azo group,” Beilstein J. Org. Chem., vol. 8, no. 1, pp.
1071–1090, Jul. 2012.

[38] H. Yu, “Recent advances in photoresponsive liquid-crystalline polymers
containing azobenzene chromophores,” J. Mater. Chem. C, vol. 2, no. 17, pp.
3047–3054, Apr. 2014.

[39] H. M. D. Bandara and S. C. Burdette, “Photoisomerization in different classes of
azobenzene,” Chem. Soc. Rev., vol. 41, no. 5, pp. 1809–1825, Feb. 2012.

[40] Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J.
Barrett, “Azobenzene photomechanics: Prospects and potential applications,”
Polym. Bull., vol. 69, no. 8, pp. 967–1006, Nov. 2012.

[41] T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,”
J. Mater. Chem., vol. 13, no. 9, p. 2037, Aug. 2003.

[42] J. García-Amorós and D. Velasco, “Recent advances towards azobenzene-based
light-driven real-time information-transmitting materials,” Beilstein J. Org. Chem.,
vol. 8, no. 1, pp. 1003–1017, Jul. 2012.

[43] C. Knie et al., “ortho -Fluoroazobenzenes: Visible Light Switches with Very Long-
Lived Z Isomers,” Chem. - A Eur. J., vol. 20, no. 50, pp. 16492–16501, Dec. 2014.

[44] J. Calbo, C. E. Weston, A. J. P. White, H. S. Rzepa, J. Contreras-García, and M.
J. Fuchter, “Tuning azoheteroarene photoswitch performance through heteroaryl
design,” J. Am. Chem. Soc., vol. 139, no. 3, pp. 1261–1274, 2017.

[45] S. Iamsaard, E. Anger, S. J. Aßhoff, A. Depauw, S. P. Fletcher, and N. Katsonis,
“Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer
Networks,” Angew. Chemie Int. Ed., vol. 55, no. 34, pp. 9908–9912, Aug. 2016.

[46] D. Bléger and S. Hecht, “Visible-Light-Activated Molecular Switches,” Angew.
Chemie Int. Ed., vol. 54, no. 39, pp. 11338–11349, Sep. 2015.

[47] D. J. Broer, G. P. Crawford, and S. Žumer, Cross-linked liquid crystalline systems:
From rigid polymer networks to elastomers. CRC Press, 2011.

[48] Y. Hu, Z. Li, T. Lan, and W. Chen, “Photoactuators for Direct Optical-to-
Mechanical Energy Conversion: From Nanocomponent Assembly to Macroscopic

64

Deformation,” Adv. Mater., vol. 28, no. 47, pp. 10548–10556, Dec. 2016.

[49] H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S.
Wiersma, “Light-Fueled Microscopic Walkers,” Adv. Mater., vol. 27, no. 26, pp.
3883–3887, Jul. 2015.

[50] D. Martella, S. Nocentini, D. Nuzhdin, C. Parmeggiani, and D. S. Wiersma,
“Photonic Microhand with Autonomous Action,” Adv. Mater., vol. 29, no. 42, p.
1704047, Nov. 2017.

[51] A. H. Gelebart, G. Vantomme, E. W. Meijer, and D. J. Broer, “Mastering the
Photothermal Effect in Liquid Crystal Networks: A General Approach for Self-
Sustained Mechanical Oscillators,” Adv. Mater., vol. 29, no. 18, p. 1606712, May
2017.

[52] L.-X. Guo et al., “A calamitic mesogenic near-infrared absorbing croconaine
dye/liquid crystalline elastomer composite,” Chem. Sci., vol. 7, no. 7, pp. 4400–
4406, Jun. 2016.

[53] M. Lahikainen, H. Zeng, and A. Priimagi, “Reconfigurable photoactuator through
synergistic use of photochemical and photothermal effects,” Nat. Commun., vol.
9, no. 1, p. 4148, Dec. 2018.

[54] Y. Ji, J. E. Marshall, and E. M. Terentjev, “Nanoparticle-Liquid Crystalline
Elastomer Composites,” Polymers (Basel)., vol. 4, pp. 316–340, 2012.

[55] R. Yin et al., “Can sunlight drive the photoinduced bending of polymer films?,” J.
Mater. Chem., vol. 19, no. 20, p. 3141, May 2009.

[56] F. Cheng, Y. Zhang, R. Yin, and Y. Yu, “Visible light induced bending and
unbending behavior of crosslinked liquid-crystalline polymer films containing
azotolane moieties,” J. Mater. Chem., vol. 20, no. 23, p. 4888, Jun. 2010.

[57] W. Wu, L. Yao, T. Yang, R. Yin, F. Li, and Y. Yu, “NIR-Light-Induced Deformation
of Cross-Linked Liquid-Crystal Polymers Using Upconversion Nanophosphors,” J.
Am. Chem. Soc., vol. 133, no. 40, pp. 15810–15813, Oct. 2011.

[58] Y. Yu, M. Nakano, and T. Ikeda, “Directed bending of a polymer film by light,”
Nature, vol. 425, no. 6954, pp. 145–145, Sep. 2003.

[59] T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, and A. Kanazawa, “Anisotropic Bending
and Unbending Behavior of Azobenzene Liquid-Crystalline Gels by Light
Exposure,” Adv. Mater., vol. 15, no. 3, pp. 201–205, Feb. 2003.

[60] H. Zeng, O. M. Wani, P. Wasylczyk, R. Kaczmarek, and A. Priimagi, “Self-
Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer,” Adv. Mater.,
vol. 29, no. 30, p. 1701814, Aug. 2017.

[61] S. Iamsaard, E. Anger, S. J. Aßhoff, A. Depauw, S. P. Fletcher, and N. Katsonis,
“Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer
Networks,” Angew. Chemie - Int. Ed., vol. 55, no. 34, pp. 9908–9912, 2016.

[62] A. H. Gelebart, M. Mc Bride, A. P. H. J. Schenning, C. N. Bowman, and D. J.
Broer, “Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of
Cilia for Transport Applications,” Adv. Funct. Mater., vol. 26, no. 29, pp. 5322–
5327, Aug. 2016.

65

[63] C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, “Printed artificial cilia
from liquid-crystal network actuators modularly driven by light,” Nat. Mater., vol. 8,
no. 8, pp. 677–682, Aug. 2009.

[64] Y. Bellouard, “Applied Physics for Microrobotics,” in Microrobotics, 2009, pp. 113–
158.

[65] I. Shimoyama, “Scaling in microrobots,” in Proceedings 1995 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human Robot
Interaction and Cooperative Robots, vol. 2, pp. 208–211.

[66] J. W. Hermanson, “Principles of Animal Locomotion,” J. Mammal., vol. 85, no. 3,
pp. 584–584, Jun. 2004.

[67] J. N. Israelachvili, Intermolecular and surface forces. Academic Press, 2011.

[68] N. R. Tas, C. Gui, and M. Elwenspoek, “Static friction in elastic adhesion contacts
in MEMS,” J. Adhes. Sci. Technol., vol. 17, no. 4, pp. 547–561, Jan. 2003.

[69] E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys., vol. 45, no. 1, pp. 3–
11, Jan. 1977.

[70] M. Salta et al., “Designing biomimetic antifouling surfaces,” Philos. Trans. R. Soc.
A Math. Phys. Eng. Sci., vol. 368, no. 1929, pp. 4729–4754, Oct. 2010.

[71] T. Ikeda, J. Mamiya, and Y. Yu, “Photomechanics of Liquid-Crystalline Elastomers
and Other Polymers,” Angew. Chemie Int. Ed., vol. 46, no. 4, pp. 506–528, Jan.
2007.

[72] M. Yamada et al., “Photomobile Polymer Materials: Towards Light-Driven Plastic
Motors,” Angew. Chemie Int. Ed., vol. 47, no. 27, pp. 4986–4988, Jun. 2008.

[73] M. Yamada et al., “Photomobile polymer materials—various three-dimensional
movements,” J. Mater. Chem., vol. 19, no. 1, pp. 60–62, Dec. 2009.

[74] R. R. Kohlmeyer and J. Chen, “Wavelength-Selective, IR Light-Driven Hinges
Based on Liquid Crystalline Elastomer Composites,” Angew. Chemie Int. Ed., vol.
52, no. 35, pp. 9234–9237, Aug. 2013.

[75] H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D. S.
Wiersma, “Artificial Muscle: Light-Fueled Microscopic Walkers (Adv. Mater.
 6/ 1),” Adv. Mater., vol. 27, no. 26, pp. 3842–3842, Jul. 2015.

[76] M. Rogóż, H. Zeng, C. Xuan, D. S. Wiersma, and P. Wasylczyk, “Light-Driven Soft
Robot Mimics Caterpillar Locomotion in Natural Scale,” Adv. Opt. Mater., vol. 4,
no. 11, pp. 1689–1694, 2016.

[77] C. Huang, J.-A. Lv, X. Tian, Y. Wang, Y. Yu, and J. Liu, “Miniaturized Swimming
Soft Robot with Complex Movement Actuated and Controlled by Remote Light
Signals OPEN,” Nat. Publ. Gr., 2015.

[78] S. Palagi et al., “Structured light enables biomimetic swimming and versatile
locomotion of photoresponsive soft microrobots,” Nat. Mater., vol. 15, no. 6, pp.
647–653, 2016.

[79] H. Zeng, O. M. Wani, P. Wasylczyk, and A. Priimagi, “Light-Driven, Caterpillar-

66

Inspired Miniature Inching Robot,” Macromol. Rapid Commun., vol. 39, no. 1, p.
1700224, Jan. 2018.

[80] B. G. Batchelor, Machine vision handbook. 2012.

[81] W. Liu, Z. Jing, G. D’Eleuterio, W. Chen, T. Yang, and H. Pan, “Shape Memory
Alloy Driven Soft Robot Design and Position Control Using Continuous
Reinforcement Learning,” pp. 1 4–130, 2019.

[82] E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities (Signal
Processing and its Applications). New York: Academic Press, 2005.

[83] A. Hornberg, Handbook of Machine Vision. Wiley-VCH, 2007.

[84] A. Hornberg, Handbook of Machine and Computer Vision : the Guide for
Developers and Users. John Wiley & Sons, Incorporated, 2017.

[85] C. Steger, M. Ulrich, and C. Wiedemann, Machine Vision Algorithms and
Applications. 2018.

[86] “Filtering in Machine Vision | Edmund Optics.” [Online]. Available:
https://www.edmundoptics.eu/resources/application-notes/imaging/filtering-in-
machine-vision/. [Accessed: 23-Oct-2019].

[87] “The Advantages of Telecentricity | Edmund Optics.” [Online]. Available:
https://www.edmundoptics.eu/resources/application-notes/imaging/advantages-
of-telecentricity/. [Accessed: 24-Oct-2019].

[88] A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices
Mag., vol. 21, no. 3, pp. 6–20, May 2005.

[89] G. C. Holst, T. S. Lomheim, and Society of Photo-optical Instrumentation
Engineers, CMOS/CCD sensors and camera systems. .

[90] “What are the benefits of CMOS based machine vision cameras vs CCD?”
[Online]. Available: https://www.1stvision.com/machine-vision-
solutions/2019/07/benefits-of-cmos-based-machine-vision-cameras-vs-ccd.html.
[Accessed: 24-Oct-2019].

[91] Z. Illes et al., Computer Vision: Algorithms and Applications, vol. 35, no. 12. 2005.

[92] P. Corke, Image formation, vol. 73. 2011.

[93] V. Misrai, A. de la Taille, and M. Rouprêt, “In Peer (Artificial Intelligence) Review
We Trust,” Eur. Urol., vol. 76, no. 1, pp. 133–135, Jul. 2019.

[94] D. T. Hogarty, D. A. Mackey, and A. W. Hewitt, “Current state and future prospects
of artificial intelligence in ophthalmology: a review,” Clin. Experiment. Ophthalmol.,
vol. 47, no. 1, pp. 128–139, Jan. 2019.

[95] J. (Consultant) Patterson and A. Gibson, Deep learning : a practitioner’s
approach. .

[96] S. Russell, Artificial Intelligence : a Modern Approach. Pearson Education Limited,
2016.

67

[97] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[98] C. McCue, Information Security Analytics. Elsevier, 2015.

[99] G. Shobha and S. Rangaswamy, “Machine Learning,” Handb. Stat., vol. 38, pp.
197–228, Jan. 2018.

[100] Data Mining and Predictive Analysis. Elsevier, 2015.

[101] J. Si, “Direct Learning by Reinforcement,” Electr. Eng. Handb., pp. 1151–1159,
Jan. 2005.

[102] X. Xue, Z. Li, D. Zhang, and Y. Yan, “A Deep Reinforcement Learning Method for
Mobile Robot Collision Avoidance based on Double DQN,” in 2019 IEEE 28th
International Symposium on Industrial Electronics (ISIE), 2019, pp. 2131–2136.

[103] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[104] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief
nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[105] R. Buyya et al., “Deep Learning and Its Parallelization,” Big Data, pp. 95–118, Jan.
2016.

[106] “Reinforcement Learning with MATLAB,” The MathWorks, Inc., 2019. [Online].
Available: https://www.mathworks.com. [Accessed: 18-Sep-2019].

[107] F. Tan, P. Yan, and X. Guan, “Deep Reinforcement Learning: From Q-Learning to
Deep Q-Learning,” 17, pp. 47 –483.

[108] N. Kwak, S. Yoon, and K. Roh, “Learning Motion Policy for Mobile Robots Using
Deep Q-Learning,” Proc. - 2017 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2017,
pp. 805–810, 2018.

[109] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A Brief
Survey of Deep Reinforcement Learning,” pp. 1–16.

[110] P. S. Thomas, “Bias in natural actor-critic algorithms,” 31st Int. Conf. Mach. Learn.
ICML 2014, vol. 1, no. 11, pp. 693–700, 2014.

[111] F. Tan, P. Yan, and X. Guan, “Deep Reinforcement Learning: From Q-Learning to
Deep Q-Learning,” Springer, Cham, 17, pp. 47 –483.

[112] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3–4, pp.
279–292, 1992.

[113] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning in
robotics: Applications and real-world challenges,” Robotics, vol. 2, no. 3, pp. 122–
148, 2013.

[114] J. N. Tsitsiklis and B. Van Roy, “Analysis of temporal-difference learning with
function approximation,” in Advances in Neural Information Processing Systems,
1997, pp. 1075–1081.

[115] “Carl Zeiss Microscopy GmbH.” [Online]. Available: https://www.micro-

68

shop.zeiss.com/en/de/. [Accessed: 29-Oct-2019].

[116] “CMOS Cameras: USB . and USB 3. .” [Online]. Available:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4024.
[Accessed: 29-Oct-2019].

[117] “Zoom Macro Lenses | Navitar Optical Solutions.” [Online]. Available:
https://navitar.com/products/imaging-optics/low-magnification-video/zoom-
macro/. [Accessed: 29-Oct-2019].

[118] “Precision Kinematic Mirror Mounts.” [Online]. Available:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3. [Accessed:
29-Oct-2019].

[119] “LD PUMPED ALL-SOLID-STATE GREEN LASER.” [Online]. Available:
http://www.cnilaser.com/PDF/MGL-F-532.pdf. [Accessed: 29-Oct-2019].

[120] “1/ " (1 mm or 13 mm) Travel Motorized Actuators.” [Online]. Available:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1882.
[Accessed: 29-Oct-2019].

[121] “Kinesis® K-CubeTM Brushed DC Servo Motor Controller.” [Online]. Available:
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2419&pn=KDC1
01. [Accessed: 29-Oct-2019].

[122] J. Caja, E. Gómez, P. Maresca, and M. Berzal, “Development of a calibration
model for optical measuring machines,” Procedia Eng., vol. 63, pp. 225–233,
2013.

[123] J. Weng, P. Coher, and M. Herniou, “Camera Calibration with Distortion Models
and Accuracy Evaluation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 10,
pp. 965–980, 1992.

[124] J. Heikkila, O. Silvcn, and I. Oulu, “A Four-step Camera Calibration Procedure
with Implicit Image Correction,” pp. 11 6–1112, 1997.

69

APPENDIX A: SERVO MOTOR CONTROL SUB-

SYSTEM OBJECT

Codes are also available at: https://github.com/amankhan47/Aman_SPM_TUNI.git

Program 1. Laser steering system

%% This program can be used for steering a laser beam to photorespon-

sive robot’s parts detected by a machine vision system.
%A machine vision system serves the location information of the robot

legs and other features. Different control algorithm can be added to

the position_control()function.

classdef laser_steering_system<handle
 properties
 %tcp ip connection variable
 tcp_connection;
 recv_data_size = 8;
 data_receive;

 %servo conrtoller
 fig_servo_ctrl;
 x_axis_controller=[];
 y_axis_controller=[];

 %robot legs; x,y:location; l:left leg; r:right leg
 xl,yl,x,y,xr,yr,
 rob_rot_ang; % rotation angle of the robot with the target
 k; %leg selection action
 end

 %% Initialize system
 methods
 function this = laser_steering_system1(this)
 %servo interface loading
 if isempty(this.fig_servo_ctrl) || ~is-

valid(this.fig_servo_ctrl)
 servo_interface_loading(this)
 end

 %connection to the machine vision server
 if isempty(this.tcp_connection)
 initiate_server_connection(this);
 end

 %iteration of steering operation
 i=1;
 while i<100
 %receive data from the machine vision server
 data_rec(this)
 %calibration and send comment to servo motor control-

ler
 position_control(this)
 i=i+1;
 end

https://github.com/amankhan47/Aman_SPM_TUNI.git

70

 end
 end

 methods
 %% servo interface loading
 function servo_interface_loading(this)
 %initialization of servo controller serial numbers
 serial_number_1 =27253885;
 serial_number_2 =27501118;

 waitbar_h=waitbar(.1,'Please wait, Loading ActiveX Con-

troller');

 f=.7; %megnification factor of the fig_servo_ctrl con-ten-

ier
 fpos(1) = 100;
 fpos(2) = 100;
 fpos(3) = f*480; % window width
 fpos(4) = f*2*300; % window height
 this.fig_servo_ctrl = figure('Position',

fpos,'Menu','None','Name','Controller Interface');

 % activeX controller
 this.x_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*295 f*450 f*300], this.fig_servo_ctrl);
 this.y_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*1 f*450 f*300], this.fig_servo_ctrl);

 % initialize and start control
 this.x_axis_controller.StartCtrl;
 this.y_axis_controller.StartCtrl;

 % set the serial number
 waitbar(.2,waitbar_h,'Seting the serial number')
 set(this.x_axis_controller,'HWSerialNum', serial_num-

ber_1);
 pause(1)
 set(this.y_axis_controller,'HWSerialNum', serial_num-

ber_2);

 % identify the device serial number
 waitbar(.5,waitbar_h,'Indentifing the devices')
 this.x_axis_controller.Identify;
 pause(.5)
 this.y_axis_controller.Identify;
 % waiting for the GUI loading;
 pause(5);

 % Moving to home position
 waitbar(.7,waitbar_h,'Moving to home position')
 this.x_axis_controller.MoveHome(0,0);
 pause(1)
 this.y_axis_controller.MoveHome(0,0);
 waitbar(1,waitbar_h,'Done!')
 delete(waitbar_h);
 end

71

 %% vision server connection
 function initiate_server_connection(this)
 % establish connection with machine vision server
 % Connection data
 host = '127.0.0.1';
 port = 4000;
 timeout = 60;

 % Configuration and connection
 this.tcp_connection=tcpip(host,port,'NetworkRole','serv-

er');
 this.tcp_connection.timeout = timeout;
 this.tcp_connection;
 % Wait for connection
 disp('Waiting for connection');
 end

 %% data receive
 function data_rec(this)
 fopen(this.tcp_connection);
 fwrite(this.tcp_connection,'send');
 disp('data sent to vision soft')
 disp('Connection OK');

 this.data_receive =fread(this.tcp_connec-

tion,this.recv_data_size,'double');
 disp(this.data_receive)

 % check data integrity
 [row,~]=size(this.data_receive);
 if row==this.recv_data_size && (this.data_receive(8)==99)
 %leg positions: l: left leg R:right leg
 this.xl=this.data_receive(1);
 this.yl=this.data_receive(2);

 this.x=this.data_receive(3);
 this.y=this.data_receive(4);

 this.xr=this.data_receive(5);
 this.yr=this.data_receive(6);

 %rotation angle of the robot
 this.rob_rot_ang=this.data_receive(7);

 end
 fclose(this.tcp_connection);
 end
 %% selection of leg manually
 function set_k(this)
 val=(input('select an action for the robot: 1,2,3 \n>>'));
 this.k = val;
 end
 %% select the leg location (Different control algorithm can be

added)
 function position_control(this)

 if this.k==1

72

 calibration_and_move_servo(this,this.xl,this.yl);
 elseif this.k==2
 calibration_and_move_servo(this,this.x,this.y);
 elseif this.k==3
 calibration_and_move_servo(this,this.xr,this.yr);
 end
 end
 %% steer laser beam to the desired location
 function calibration_and_move_servo(this,x_move,y_move)
 %% calibration data
 xo = 7.40389;
 xf = 5.34398;
 x_in_mm = 10*9.305264;

 yo =9.42645;
 yf =6.99811;
 y_in_mm = 8*9.305264;

 x_axis = (xo-((xo-xf)*x_move)/x_in_mm)+.0534+.0029;
 y_axis = (yo-((yo-yf)*y_move)/y_in_mm)-.0670;

 %% move servo motor
 if x_axis>0
 this.x_axis_controller.SetAbsMovePos(0,x_axis);
 this.x_axis_controller.MoveAbsolute(0,1==0);
 end

 if y_axis>0
 this.y_axis_controller.SetAbsMovePos(0,y_axis);
 this.y_axis_controller.MoveAbsolute(0,1==1);
 end
 pause(.01)
 end
 end
end

73

APPENDIX B: VEDIO ANALYSIS TOOL FOR AN-

GLE MEASURMENT (USER INTERFACE)

Figure (i): Measuring bending deformation of an LCN strip

Figure (ii): Measuring bending deformation of an LCN strip

Code is available at: https://github.com/amankhan47/Aman_SPM_TUNI.git

https://github.com/amankhan47/Aman_SPM_TUNI.git

74

APPENDIX C: DEVELOPED DEEP Q LEARNING

PROGRAM

Codes are also available at: https://github.com/amankhan47/Aman_SPM_TUNI.git

Program 2. Environment
%% This program is used for creating RL environment and simulator

classdef robotenvironment< rl.env.MATLABEnvironment
 %% robot_environment: Defining environment for the photoresponsive

robot.
 properties
 %x,y-axis location of the destination target
 xt=300;
 yt=300;

 %boundary circle
 Lx=500; %x limit of boundary circle
 Ly=500; %y limit of boundary circle
 xc; % center location,x
 yc; % center location,y
 r; %redius

 %robot properties
 k; %current robot leg
 rob_rot_ang=-45; %orientation of the robot body
 angle_btn_rob_trget; % angle between robot and target
 w; %robot width in the simulator
 h; %robot hight in the simulator
 V1=[]; %translation matrix of the robot body
 % current position of the robot
 x=150;
 y=200;
 % distence between robot and target
 d;
 pre_d=1; %previous distance

 % Reward
 Reward; %total reward for an action
 at_destination=false; %initializing flag for checking robot at

destination or not
 is_in_circle=true; %initializing flag for checking robot is

indide the circle or not
 penalty_not_in_circle= -100;% setting penalty for not in the

circle

 %simulator figure container handler
 handel;

 %plot robot trajectory; most useful for checking learned pol-

icy
 trace=true;
 %trace figure container handler
 ax;

https://github.com/amankhan47/Aman_SPM_TUNI.git

75

 %(optional)counter for changing target location at regular in-

terval
 count=0;
 end

 properties
 %initializing observational states: [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt]
 State = zeros(7,1)
 end

 properties(Access = protected)
 %initializing flag for indicating episode ends
 IsDone = false
 end

%% required methods for reinforcement learning
 methods
 %% creating environment instance
 function this = robotenvironment()
 %initializing observation states
 ObservationInfo = rlNumericSpec([7 1]);
 ObservationInfo.Name = 'Robot states';
 ObservationInfo.Description = 'd,an-

gle_btn_rob_trget,x,y,rob_rot_ang';

 %initializing Action states settings
 ActionInfo = rlFiniteSetSpec([1 2 3]);
 ActionInfo.Name = 'Movement Action';

 % implementing reinforcement learning environment
 this = this@rl.env.MATLABEnvironment(ObservationInfo,Ac-

tionInfo);

 % initializing property values
 updateActionInfo(this);
 end

 %% simulating environment with one action
 function [Observation,Reward,IsDone,LoggedSignals] =

step(this,Action)
 LoggedSignals = [];
 % initalize the robot body and boundary parameters
 robot(this);
 %set action
 this.k=Action;
 %emulate and calculate the effect of the action
 position_control(this,Action);
 %update observation states
 this.State = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt];
 Observation = this.State;
 %check terminal conditions
 IsDone=(~this.is_in_circle)||this.at_destination;
 this.IsDone = IsDone;
 %calculate rewards
 Reward = getReward(this);
 %notify the change
 notifyEnvUpdated(this);

76

 end

 %% set initial condition after every terminal episode
 function InitialObservation = reset(this)
 this.k=2;
 Action=this.k;
 this.x=150;
 this.y=200;
 this.rob_rot_ang=-45;
 this.xt=150;
 this.yt=400;
 this.pre_d=this.d;
 robot(this);
 position_control(this,Action);
 InitialObservation = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt];
 this.State = InitialObservation;
 notifyEnvUpdated(this);
 end
 end
 %% methods related to action effect measurement and validate val-

ues
 methods
 % robot and boundary parameter
 function robot(this)
 %robot body size
 this.w = this.Lx/40;
 this.h = this.Ly/60;
 % circle center and the radius from the center
 this.xc=this.Lx/2;
 this.yc=this.Ly/2;
 this.r=min(this.Lx/2,this.Ly/2);
 end

 %% emulate and calculate the effect of the action
 function position_control(this,Action)
 envUpdatedCallback(this)
 if ~ismember(Action,this.ActionInfo.Elements)
 error('Action must be 1,2,3 but %g is occurred.',Ac-

tion);
 end
 this.k=Action;
 if this.k==1
 % set clockwise angle
 this.rob_rot_ang=this.rob_rot_ang-25;
 % calculate the effect of the action
 measurment(this);
 elseif this.k==2
 if this.rob_rot_ang<0
 % move forward

this.x=this.x+20*(cos(deg2rad(this.rob_rot_ang+90)));

this.y=this.y+20*(sin(deg2rad(this.rob_rot_ang+90)));
 measurment(this);
 else
 this.x=this.x-

20*(cos(deg2rad(this.rob_rot_ang+180+90)));
 this.y=this.y-

20*(sin(deg2rad(this.rob_rot_ang+180+90)));
 measurment(this);
 end
 elseif this.k==3

77

 % set anticlockwise angle
 this.rob_rot_ang=this.rob_rot_ang+25;
 measurment(this);
 end
 end
 %% calculate the effect of the action
 function measurment(this)
 %distance between target and robot
 this.pre_d=this.d;
 this.d=sqrt(abs((this.xt-this.x)^2+(this.yt-this.y)^2));

 %rotation and translation matrix computation
 c = cos(deg2rad(this.rob_rot_ang));
 s = sin(deg2rad(this.rob_rot_ang));
 R = [c -s;s c]; %rotation matrix
 T = [R [this.x this.y]';zeros(1,3)]; %translation matrix

 %robot structure matrix
 V0 = [-this.w this.w this.w 0 -this.w ;
 -this.h -this.h this.h this.h*2.5 this.h ;
 ones(1,5)];
 this.V1 = T*V0; %translation matrix of the robot body

 %creating vector to find angle
 x2=this.V1(1,4);
 y2=this.V1(2,4);
 v1 = [x2-this.x y2-this.y];
 v2 = [this.xt-this.x this.yt-this.y];

 % find angle between robot and target
 angle_btn_rob_trget_in_red =

acos(dot(v1,v2)/(norm(v1)*norm(v2)));
 %conversion to degrees
 if isfinite(angle_btn_rob_trget_in_red)
 if det([v1;v2])<=0
 this.angle_btn_rob_trget = (an-

gle_btn_rob_trget_in_red * (180/pi));
 else
 this.angle_btn_rob_trget =-(an-

gle_btn_rob_trget_in_red * (180/pi));
 end
 else
 this.angle_btn_rob_trget=0;
 end

 %check the destination reached or not
 this.at_destination=(this.d<30);

 %checking current position inside the circle
 this.is_in_circle=((this.x-this.xc).^2+(this.y-

this.yc).^2<=this.r^2);
 end

 %% update action states
 function updateActionInfo(this)
 this.ActionInfo.Elements = [1 2 3];
 end

 %% Reward function
 function Reward = getReward(this)

78

 if ~this.IsDone
 Reward = reward(this);
 elseif ~this.is_in_circle
 Reward = this.penalty_not_in_circle;
 else
 Reward = 100; %positive reward for achieving the tar-

get
 end
 end

 function rwd = reward(this)

 if (this.d)<(this.pre_d)
 r1=5; %positive reward for going towards the target
 elseif (this.d)>(this.pre_d)
 r1=-2; %negative reward for going away from the target
 else
 r1=0;
 end

 % reward for maintaining low angle
 if abs(this.angle_btn_rob_trget)<25
 r2=1;
 else
 r2=-5;
 end

 % penalty for taking more step
 r3=-1;

 %total reward for the action
 rwd=r1+r2+r3;
 % disp(rwd)
 end

 %% visualization
 function plot(this)
 envUpdatedCallback(this)
 end

 %% properties validation
 function set.State(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','vector','numel',7},'','State');
 this.State = double(value(:));
 notifyEnvUpdated(this);
 end
 function set.k(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','k');
 this.k = value;
 notifyEnvUpdated(this);
 end
 function set.x(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','x');
 this.x = value;
 end
 function set.y(this,value)

79

 validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','y');
 this.y = value;
 end
 function set.xt(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','xt');
 this.xt = value;
 end
 function set.yt(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','yt');
 this.yt = value;
 end
 function set.penalty_not_in_circle(this,value)
 validateattributes(value,{'numeric'},{'real','fi-

nite','scalar'},'','PenaltyorFalling');
 this.penalty_not_in_circle = value;
 end
 end
 %% simulator visualization
 methods (Access = protected)
 %update visualization every time the environment is updated
 function envUpdatedCallback(this)
 simulator(this)
 end

 %% simulator
 function simulator(this)
 % create a simulator container if not available
 if isempty(this.handel) || ~isvalid(this.handel)
 this.handel = figure(...
 'Toolbar','none',...
 'NumberTitle','off',...
 'Name','LCN Robot Position Simulator and Visualiz-

er',...
 'Visible','on',...
 'MenuBar','none');
 figure(this.handel);
 f=clf;
 ha = gca(f);
 ha.XLim=[0 this.Lx];
 ha.YLim=[0 this.Ly];
 grid(ha,'off');
 hold(ha,'on');
 else
 figure(this.handel);
 f=clf;
 ha = gca(f);
 ha.XLim=[0 this.Lx];
 ha.YLim=[0 this.Ly];
 grid(ha,'off');
 hold(ha,'on');
 end

 %if robot body is not initiated before e.g. before taking
 %first step
 if isempty(this.V1)
 c = cos(deg2rad(this.rob_rot_ang));
 s = sin(deg2rad(this.rob_rot_ang));
 R = [c -s;s c]; %rotation matrix

80

 T = [R [this.x this.y]';zeros(1,3)]; %translation ma-

trix
 robot(this);
 %robot structure matrix
 V0 = [-this.w this.w this.w 0

-this.w ;
 -this.h -this.h this.h this.h*2.5

this.h ;
 ones(1,5)];
 this.V1 = T*V0; %translation matrix of the robot body
 end

 %robot-body location
 vx = this.V1(1,1:5);
 vy = this.V1(2,1:5);

 %find the body, boundary circle and target point
 body = findobj(ha,'Tag','body');
 boundary_circle = findobj(ha,'Tag','boundary_circle');
 target_point = findobj(ha,'Tag','target_point');

 if isempty(body)
 patch(vx,vy,[0.3010 0.7450 0.9330],'Tag','body');
 else
 body.XData = vx;
 body.YData = vy;
 end

 if isempty(boundary_circle)
 this.xc=this.Lx/2;
 this.yc=this.Ly/2;
 this.r=min(this.Lx/2,this.Ly/2);
 boundary_circle=viscircles([this.xc,this.yc],this.r);
 boundary_circle.Tag='boundary_circle';
 end

 if isempty(target_point)
 target_point= viscircles([this.xt,this.yt],this.h/5);
 target_point.Tag='target_point';
 end

 %% plot robot trajectory; most useful for checking learned

policy
 if this.trace==true
 if isempty(this.ax) || ~isvalid(this.ax)
 figure();
 this.ax = axes;
 else
 copyobj(findobj(ha,'Tag','body'),this.ax);
 copyobj(findobj(ha,'Tag','target_point'),this.ax);
 copyobj(findobj(ha,'Tag','boundary_cir-

cle'),this.ax);
 hold(this.ax,'on')
 end
 end
 drawnow();
 hold(ha,'off')
 end
 end
end

81

Program 3. DQN and agent training

%% This program is used for creating DQN and agent training

%% creating environment instance
rob_env = robotenvironment;
%validate Environment
validateEnvironment(rob_env)

%random number seed
rng(0);

% deep neural network
state_path = [
 imageInputLayer([7 1 1], 'Normalization', 'none', 'Name', 'obser-

vational_state')
 fullyConnectedLayer(12, 'Name', 'Critic_State_FC1')
 reluLayer('Name', 'Critic_Relu1')
 fullyConnectedLayer(12, 'Name', 'Critic_State_FC2')];

action_path = [
 imageInputLayer([1 1 1], 'Normalization', 'none', 'Name', 'ac-

tion_state')
 fullyConnectedLayer(12, 'Name', 'Critic_Action_FC1')];

common_path = [
 additionLayer(2,'Name', 'addition')
 reluLayer('Name','Critic_Common_Relu')
 fullyConnectedLayer(1, 'Name', 'output')];

critic_network = layerGraph(state_path);
critic_network = addLayers(critic_network, action_path);
critic_network = addLayers(critic_network, common_path);
critic_network = connectLayers(critic_network,'Critic_State_FC2','ad-

dition/in1');
critic_network = connectLayers(critic_network,'Critic_Action_FC1','ad-

dition/in2');

%plot network
figure
plot(critic_network)

% critic parameters
critic_opts = rlRepresentationOptions('LearnRate',0.01,'Gradi-

entThreshold',1);

% get observation and action states info
obs_info = getObservationInfo(rob_env);
act_info = getActionInfo(rob_env);

% setting RL agent
critic = rlRepresentation(critic_network,obs_info,act_info,'Observa-

tion',{'observational_state'},'Action',{'action_state'},critic_opts);

% setting up DQN agent parameters
agent_Opts = rlDQNAgentOptions(...
 'UseDoubleDQN',false, ...
 'TargetUpdateMethod',"periodic", ...
 'TargetUpdateFrequency',4, ...

82

 'NumStepsToLookAhead',1,...
 'ExperienceBufferLength',10000, ...
 'DiscountFactor',0.9, ...
 'MiniBatchSize',32,...
 'SampleTime',.00001,...
 'ResetExperienceBufferBeforeTraining',0,...
 'SaveExperienceBufferWithAgent',1);

%create DQL agent
agent = rlDQNAgent(critic,agent_Opts);

% tanning parameters
train_Opts = rlTrainingOptions(...
 'MaxEpisodes', 3000, ...
 'MaxStepsPerEpisode', 20, ...
 'Verbose', false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',300,...
 'SaveAgentCriteria',"EpisodeReward",...
 'SaveAgentValue', 100);

%% initiate tanning
%use previously saved agent
%load('savedAgents/ran_ang_1_3.mat','agent');
training = train(agent,rob_env,train_Opts);

% save the trained agent
save(train_Opts.SaveAgentDirectory + "/diff_tar_ran_all_ac-

tion.mat",'agent')

83

Program 4. Run_Simulaton

%% This program is used for evaluating the learned polices

%% creating environment instance
rob_env = robotenvironment;
%validate Environment
validateEnvironment(rob_env)

% set target location
rob_env.xt=250;
rob_env.yt=450;

%load trained agent
load('savedAgents/diff_tar_ran_all_action.mat','agent');

%set simulation option
sim_options = rlSimulationOptions('MaxSteps',50, 'NumSimulations',1);
experience = sim(rob_env,agent,sim_options);
totalReward = sum(experience.Reward)

84

APPENDIX D: DEVELOPED DEEP Q LEARNING

PROGRAM FOR IMPLEMENTATION WITH MV

AND LASER STEERING SYSTEM

Program 5. Environment
%% This program is used for creating RL environment implementing with

mv and laser steering system
classdef robotenvironment_MV< rl.env.MATLABEnvironment
 %% robotenvironment_MV: Defining environment for the photorespon-

sive robot.

 %% Properties (set properties' attributes accordingly)
 properties
 %x,y-axis location of the destination target
 xt=300;
 yt=300;

 %boundary circle
 Lx=500; %x limit of boundary circle
 Ly=500; %y limit of boundary circle
 xc; % center location,x
 yc; % center location,y
 r; %radius

 %robot properties
 k; %current robot leg
 rob_rot_ang=-45; %orientation of the robot body
 angle_btn_rob_trget; % angle between robot and target
 proximity_to_terget=30; % minimum distance between robot and

target
 w; %robot width in the simulator
 h; %robot hight in the simulator
 V1=[]; %translation matrix of the robot body
 % current position and robot legs: x,y:location; l:left leg;

r:right leg
 xr;
 yr;
 x;
 y;
 xl;
 yl;
 % distance between robot and target
 d;
 pre_d=1; %previous distance

 % Reward
 Reward; %total reward for a action
 at_destination=false; %initializing flag for checking robot at

destination or not
 is_in_circle=true; %initializing flag for checking robot is

inside the circle or not
 penalty_not_in_circle= -100;% setting penalty for not in the

circle

85

 %simulator figure container handler
 handel;

 %plot robot trajectory; most useful for checking learned pol-

icy
 trace=true;
 %trace figure container handler
 ax;

 %tcp ip connection variable
 tcp_connection;
 recv_data_size = 8;
 data_receive;

 %servo conrtoller
 fig_servo_ctrl;
 x_axis_controller=[];
 y_axis_controller=[];
 end

 properties
 %initializing observational states: [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt]
 State = zeros(7,1)
 end

 properties(Access = protected)
 %initializing flag for indicating episode ends
 IsDone = false
 end

 %% required methods for reinforcement learning
 methods
 %% creating environment instance
 function this = robotenvironment_MV()
 %initializing observation states
 ObservationInfo = rlNumericSpec([7 1]);
 ObservationInfo.Name = 'Robot states';
 ObservationInfo.Description = 'd,an-

gle_btn_rob_trget,x,y,rob_rot_ang';

 %initializing Action states settings
 ActionInfo = rlFiniteSetSpec([1 2 3]);
 ActionInfo.Name = 'Movement Action';

 % implementing reinforcement learning environment
 this = this@rl.env.MATLABEnvironment(ObservationInfo,Ac-

tionInfo);

 % initializing property values
 updateActionInfo(this);
 end

 %% environment with one action
 function [Observation,Reward,IsDone,LoggedSignals] =

step(this,Action)
 LoggedSignals = [];
 % initialize the robot body and boundary parameters for
 % visualizer

86

 robot(this);
 %set action
 this.k=Action;
 %select the lage location which is retrieved from MV
 position_control(this,Action);

 % update observation states
 this.State = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt];
 Observation = this.State;

 % check terminal condition
 IsDone=(~this.is_in_circle)||this.at_destination;
 this.IsDone = IsDone;

 %%calculate rewards
 Reward = getReward(this);
 %notify the change
 notifyEnvUpdated(this);
 end

 %% set initial condition after every terminal episode
 function InitialObservation = reset(this)

 %connection to the machine vision server
 if isempty(this.t)
 initiate_server_connection(this)
 end

 if isempty(this.fig_servo_ctrl) || ~is-

valid(this.fig_servo_ctrl)
 servo_interface_loading(this)
 end

 %data receive for MV system
 data_rec(this)
 %default action
 this.k=2;
 Action=this.k;
 this.pre_d=this.d;
 robot(this);
 %select the large location which is retrieved from MV
 position_control(this,Action);
 InitialObservation = [this.d;this.an-

gle_btn_rob_trget;this.x;this.y;this.rob_rot_ang;this.xt;this.yt];
 this.State = InitialObservation;

 % (optional) use notifyEnvUpdated to signal that the
 % environment has been updated (e.g. to update visualiza-

tion)
 notifyEnvUpdated(this);
 this.count=this.count+1;
 end
 end
 %% Optional Methods (set methods' attributes accordingly)
 methods
 %% robot and boundary parameter
 function robot(this)
 this.w = this.Lx/40;

87

 this.h = this.Ly/60;
 this.xc=this.Lx/2;
 this.yc=this.Ly/2;
 this.r=min(this.Lx/2,this.Ly/2);
 end

 %% emulate and calculate the effect of the action
 function position_control(this,Action)
 if ~ismember(Action,this.ActionInfo.Elements)
 error('Action must be 1,2,3 but %g is oc-coured.',Ac-

tion);
 end
 this.k=Action;
 if this.k==1
 calibration_and_move_servo(this,this.xl,this.yl);
 elseif this.k==2
 calibration_and_move_servo(this,this.x,this.y);
 elseif this.k==3
 calibration_and_move_servo(this,this.xr,this.yr);
 end
 data_rec(this);
 measurment(this);

 end
 %% calculate the the effect of the action
 function measurment(this)
 %distance between target and robot
 this.pre_d=this.d;
 this.d=sqrt(abs((this.xt-this.x)^2+(this.yt-this.y)^2));

 %creating vector to find angle
 x2=(this.xl+this.xr)/2;
 y2=(this.yl+this.yr)/2;
 v1 = [x2-this.x y2-this.y];
 v2 = [this.xt-this.x this.yt-this.y];

 % find angle between robot and target
 angle_btn_rob_trget_in_red =

acos(dot(v1,v2)/(norm(v1)*norm(v2)));
 %conversion to degrees
 if isfinite(angle_btn_rob_trget_in_red)
 if det([v1;v2])<=0
 this.angle_btn_rob_trget = (an-

gle_btn_rob_trget_in_red * (180/pi));
 else
 this.angle_btn_rob_trget =-(an-

gle_btn_rob_trget_in_red * (180/pi));
 end
 else
 this.angle_btn_rob_trget=0;
 end

 %check the destination reached or not
 this.at_destination=(this.d<this.proximity_to_terget);

 %%checking robot current position inside the circle
 this.is_in_circle=((this.x-this.xc).^2+(this.y-

this.yc).^2<=this.r^2);
 end

88

 %% update action states
 function updateActionInfo(this)
 this.ActionInfo.Elements = [1 2 3];
 end

 %% Reward function
 function Reward = getReward(this)
 if ~this.IsDone
 Reward = reward(this);
 elseif ~this.is_in_circle
 Reward = this.penalty_not_in_circle;
 else
 Reward = 100; %positive reward for achieving the tar-

get
 end
 end

 function rwd = reward(this)

 if (this.d)<(this.pre_d)
 r1=5; %positive reward for going towards the target
 elseif (this.d)>(this.pre_d)
 r1=-2; %negative reward for going away from the target
 else
 r1=0;
 end

 % reward for maintaining low angle
 if abs(this.angle_btn_rob_trget)<25
 r2=1;
 else
 r2=-5;
 end

 % penalty for taking more step
 r3=-1;

 %total reward for the action
 rwd=r1+r2+r3;
 disp(rwd)

 end
 %% vision server connection
 function initiate_server_connection(this)
 % establish connection with machine vision server
 % Connection data
 host = '127.0.0.1';
 port = 4000;
 timeout = 60;

 % Configuration and connection
 this.tcp_connection=tcpip(host,port,'NetworkRole','serv-

er');
 this.tcp_connection.timeout = timeout;
 this.tcp_connection;
 % Wait for connection
 disp('Waiting for connection');

89

 end

 %% data receive
 function data_rec(this)
 fopen(this.tcp_connection);
 fwrite(this.tcp_connection,'send');
 disp('data sent to vision soft')
 disp('Connection OK');

 this.data_receive =fread(this.tcp_connec-

tion,this.recv_data_size,'double');
 disp(this.data_receive)

 % check data integrity
 [row,~]=size(this.data_receive);
 if row==this.recv_data_size && (this.data_receive(8)==99)
 %leg positions: l:left leg R:right leg
 this.xl=this.data_receive(1);
 this.yl=this.data_receive(2);

 this.x=this.data_receive(3);
 this.y=this.data_receive(4);

 this.xr=this.data_receive(5);
 this.yr=this.data_receive(6);

 %rotation angle of the robot
 this.rob_rot_ang=this.data_receive(7);

 end
 fclose(this.tcp_connection);
 end

 %% servo interface loading
 function servo_interface_loading(this)
 %initialization of servo controller serial numbers
 serial_number_1 =27253885;
 serial_number_2 =27501118;

 waitbar_h=waitbar(.1,'Please wait, Loading ActiveX Con-

troller');

 f=.7; %magnification factor of the fig_servo_ctrl con-

tainer
 fpos(1) = 100;
 fpos(2) = 100;
 fpos(3) = f*480; % window width
 fpos(4) = f*2*300; % window height
 this.fig_servo_ctrl = figure('Position',

fpos,'Menu','None','Name','Controller Interface');

 % activeX controller
 this.x_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*295 f*450 f*300], this.fig_servo_ctrl);
 this.y_axis_controller = actxcontrol('MGMOTOR.MGMo-

torCtrl.1',[f*10 f*1 f*450 f*300], this.fig_servo_ctrl);

90

 % initialize and start control
 this.x_axis_controller.StartCtrl;
 this.y_axis_controller.StartCtrl;

 % set the serial number
 waitbar(.2,waitbar_h,'Seting the serial number')
 set(this.x_axis_controller,'HWSerialNum', serial_num-

ber_1);
 pause(1)
 set(this.y_axis_controller,'HWSerialNum', serial_num-

ber_2);

 % identify the device serial number
 waitbar(.5,waitbar_h,'Indentifing the devices')
 this.x_axis_controller.Identify;
 pause(.5)
 this.y_axis_controller.Identify;
 % waiting for the GUI loading;
 pause(5);

 % Moving to home position
 waitbar(.7,waitbar_h,'Moving to home position')
 this.x_axis_controller.MoveHome(0,0);
 pause(1)
 this.y_axis_controller.MoveHome(0,0);
 waitbar(1,waitbar_h,'Done!')
 delete(waitbar_h);
 end

 %%steer laser beam to the desired location
 function calibration_and_move_servo(this,x_move,y_move)
 %% calibration data
 xo = 7.40389;
 xf = 5.34398;
 x_in_mm = 10*9.305264;

 yo =9.42645;
 yf =6.99811;
 y_in_mm = 8*9.305264;

 x_axis = (xo-((xo-xf)*x_move)/x_in_mm)+.0534+.0029;
 y_axis = (yo-((yo-yf)*y_move)/y_in_mm)-.0670;

 %% move servo motor
 if x_axis>0
 this.x_axis_controller.SetAbsMovePos(0,x_axis);
 this.x_axis_controller.MoveAbsolute(0,1==0);
 end

 if y_axis>0
 this.y_axis_controller.SetAbsMovePos(0,y_axis);
 this.y_axis_controller.MoveAbsolute(0,1==1);
 end
 pause(.01)
 end

91

 %% visualization
 function plot(this)
 envUpdatedCallback(this)
 end

 %% properties validation
 function set.State(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','vector','numel',7},'','State');
 this.State = double(value(:));
 notifyEnvUpdated(this);
 end
 function set.k(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','k');
 this.k = value;
 notifyEnvUpdated(this);
 end
 function set.x(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','x');
 this.x = value;
 end
 function set.y(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','scalar'},'','y');
 this.y = value;
 end
 function set.xt(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','xt');
 this.xt = value;
 end
 function set.yt(this,value)
 validateattributes(value,{'numeric'},{'fi-

nite','real','positive','scalar'},'','yt');
 this.yt = value;
 end
 function set.penalty_not_in_circle(this,value)
 validateattributes(value,{'numeric'},{'real','fi-

nite','scalar'},'','PenaltyorFalling');
 this.penalty_not_in_circle = value;
 end
 end
 %% simulator visualization
 methods (Access = protected)
 %update visualization every time the environment is updated
 function envUpdatedCallback(this)
 simulator(this)
 end

 %% simulator
 function simulator(this)
 % create a simulator container if not available
 if isempty(this.handel) || ~isvalid(this.handel)
 this.handel = figure(...
 'Toolbar','none',...
 'NumberTitle','off',...
 'Name','LCN Robot Position Simulator and Visualiz-

er',...

92

 'Visible','on',...
 'MenuBar','none');
 figure(this.handel);
 f=clf;
 ha = gca(f);
 ha.XLim=[0 this.Lx];
 ha.YLim=[0 this.Ly];
 grid(ha,'off');
 hold(ha,'on');
 else
 figure(this.handel);
 f=clf;
 ha = gca(f);
 ha.XLim=[0 this.Lx];
 ha.YLim=[0 this.Ly];
 grid(ha,'off');
 hold(ha,'on');
 end

 %if robot body is not initiated before e.g. before taking
 %first step
 if isempty(this.V1)
 c = cos(deg2rad(this.rob_rot_ang));
 s = sin(deg2rad(this.rob_rot_ang));
 R = [c -s;s c]; %rotation matrix
 T = [R [this.x this.y]';zeros(1,3)]; %translation ma-

trix
 robot(this);
 %robot structure matrix
 V0 = [-this.w this.w this.w 0

-this.w ;
 -this.h -this.h this.h this.h*2.5

this.h ;
 ones(1,5)];
 this.V1 = T*V0; %translation matrix of the robot body
 end

 %robot-body location
 vx = this.V1(1,1:5);
 vy = this.V1(2,1:5);

 %find the body, boundary circle and target point
 body = findobj(ha,'Tag','body');
 boundary_circle = findobj(ha,'Tag','boundary_circle');
 target_point = findobj(ha,'Tag','target_point');

 if isempty(body)
 patch(vx,vy,[0.3010 0.7450 0.9330],'Tag','body');
 else
 body.XData = vx;
 body.YData = vy;
 end

 if isempty(boundary_circle)
 this.xc=this.Lx/2;
 this.yc=this.Ly/2;
 this.r=min(this.Lx/2,this.Ly/2);
 boundary_circle=viscircles([this.xc,this.yc],this.r);
 boundary_circle.Tag='boundary_circle';
 end

93

 if isempty(target_point)
 target_point= viscircles([this.xt,this.yt],this.h/5);
 target_point.Tag='target_point';
 end

 %% robot trajectory; most useful for checking learned pol-

icy
 if this.trace==true
 if isempty(this.ax) || ~isvalid(this.ax)
 figure();
 this.ax = axes;
 else
 copyobj(findobj(ha,'Tag','body'),this.ax);
 copyobj(findobj(ha,'Tag','target_point'),this.ax);
 copyobj(findobj(ha,'Tag','boundary_cir-

cle'),this.ax);
 hold(this.ax,'on')
 end
 end
 drawnow();
 hold(ha,'off')
 end
 end
end

	1. Introduction
	1.1 Thesis structure

	2. Materials and devices
	2.1 Liquid crystals and liquid crystal networks
	2.2 LCN photomechanical actuation
	2.2.1 Photochemical actuation in LCNs
	2.2.2 Photothermal actuation in LCNs
	2.2.3 Comparison between photochemical and photothermal actuators

	2.3 Scaling effect on LCN robots
	2.4 LCN soft robots

	3. Machine VISION AND MACHINE LEARNING
	3.1 Machine vision
	3.1.1 Illumination
	3.1.2 Optical components
	3.1.3 Camera sensor
	3.1.4 Image processing

	3.2 Artificial intelligence and machine learning
	3.3 Reinforcement learning
	3.3.1 Elements of reinforcement learning
	3.3.2 Markov decision process (MDP)
	3.3.3 Reinforcement learning algorithms
	3.3.4 Value function
	3.3.5 Q-learning

	3.4 Deep reinforcement learning
	3.4.1 Deep Q-learning

	4. Implementation
	4.1 Laser steering workspace setup
	4.1.1 Machine vision subsystem
	4.1.2 Laser steering subsystem

	4.2 Robot tracking system
	4.2.1 Machine vision for robot tracking
	4.2.2 Communication server
	4.2.3 Servo motor control subsystem

	5. EXPERIMENTAL RESULTS
	5.1 Light actuation in an LCN bending strip
	5.2 Optical control in three legs walking robot
	5.3 Light propelled robotic swimmer
	5.4 Light controlled swimming

	6. Reinforcement learning in light driven swimming robot (simulations)
	6.1 Simulation environment
	6.1.1 Action space and observational space
	6.1.2 Simulator
	6.1.3 Reward function

	6.2 Setting up the agent and training
	6.3 Training without associating randomness in locomotion
	6.4 Training approaching the real situation

	7. Conclusions and outlook
	REFERENCES
	Appendix A: Servo motor control subsystem Object
	Appendix B: Vedio analysis tool for angle measurment (User interface)
	Appendix C: Developed Deep q learning program
	Appendix D: Developed Deep q learning program for implementation with MV and Laser steering system

