871 research outputs found

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand

    Get PDF
    The identification of conserved syntenic regions enables discovery of predicted locations for orthologous and homeologous genes, evenwhennosuchgeneispresent.Thiscapabilitymeansthatsynteny-basedmethodsarefarmoreeffectivethansequencesimilaritybased methods in identifying true-negatives, a necessity forstudying gene loss and gene transposition. However, the identification of syntenicregionsrequirescomplexanalyseswhichmustberepeatedforpairwisecomparisonsbetweenanytwospecies.Therefore,as the number of published genomes increases, there is a growing demand for scalable, simple-to-use applications to perform comparative genomic analyses that cater to both gene family studies and genome-scale studies. We implemented SynFind, a web-based tool that addresses this need. Given one query genome, SynFind is capable of identifying conserved syntenic regions in any set of targetgenomes.SynFindiscapableofreportingper-geneinformation,usefulforresearchersstudyingspecificgenefamilies,aswellas genome-wide data sets of syntenic gene and predicted gene locations, critical for researchers focused on large-scale genomic analyses. Inference of syntenic homologs provides the basis for correlation of functional changes around genes of interests between related organisms. Deployed on the CoGe online platform, SynFind is connected to the genomic data from over 15,000 organisms from all domains of life as well as supporting multiple releases of the same organism. SynFind makes use of a powerful job execution framework that promises scalability and reproducibility. SynFind can be accessed at http://genomevolution.org/CoGe/SynFind.pl. A video tutorial of SynFind using Phytophthrora as an example is available at http://www.youtube.com/watch?v=2Agczny9Nyc

    SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand

    Get PDF
    The identification of conserved syntenic regions enables discovery of predicted locations for orthologous and homeologous genes, evenwhennosuchgeneispresent.Thiscapabilitymeansthatsynteny-basedmethodsarefarmoreeffectivethansequencesimilaritybased methods in identifying true-negatives, a necessity forstudying gene loss and gene transposition. However, the identification of syntenicregionsrequirescomplexanalyseswhichmustberepeatedforpairwisecomparisonsbetweenanytwospecies.Therefore,as the number of published genomes increases, there is a growing demand for scalable, simple-to-use applications to perform comparative genomic analyses that cater to both gene family studies and genome-scale studies. We implemented SynFind, a web-based tool that addresses this need. Given one query genome, SynFind is capable of identifying conserved syntenic regions in any set of targetgenomes.SynFindiscapableofreportingper-geneinformation,usefulforresearchersstudyingspecificgenefamilies,aswellas genome-wide data sets of syntenic gene and predicted gene locations, critical for researchers focused on large-scale genomic analyses. Inference of syntenic homologs provides the basis for correlation of functional changes around genes of interests between related organisms. Deployed on the CoGe online platform, SynFind is connected to the genomic data from over 15,000 organisms from all domains of life as well as supporting multiple releases of the same organism. SynFind makes use of a powerful job execution framework that promises scalability and reproducibility. SynFind can be accessed at http://genomevolution.org/CoGe/SynFind.pl. A video tutorial of SynFind using Phytophthrora as an example is available at http://www.youtube.com/watch?v=2Agczny9Nyc

    Gene order in rosid phylogeny, inferred from pairwise syntenies among extant genomes

    Get PDF
    BACKGROUND: Ancestral gene order reconstruction for flowering plants has lagged behind developments in yeasts, insects and higher animals, because of the recency of widespread plant genome sequencing, sequencers' embargoes on public data use, paralogies due to whole genome duplication (WGD) and fractionation of undeleted duplicates, extensive paralogy from other sources, and the computational cost of existing methods. RESULTS: We address these problems, using the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent WGD events, and two others (poplar and cucumber) that descend from independent WGDs, in inferring the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We improve and adapt techniques including the OMG method for extracting large, paralogy-free, multiple orthologies from conflated pairwise synteny data among the six genomes and the PATHGROUPS approach for ancestral gene order reconstruction in a given phylogeny, where some genomes may be descendants of WGD events. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids. CONCLUSIONS: Gene orders of ancestral eudicot species, involving 10,000 or more genes can be reconstructed in an efficient, parsimonious and consistent way, despite paralogies due to WGD and other processes. Pairwise genomic syntenies provide appropriate input to a parameter-free procedure of multiple ortholog identification followed by gene-order reconstruction in solving instances of the "small phylogeny" problem

    Algorithms and methods for large-scale genome rearrangements identification

    Get PDF
    Esta tesis por compendio aborda la definición formal de SB, empezando por Pares de Segmentos de alta puntuación (HSP), los cuales son bien conocidos y aceptados. El primer objetivo se centró en la detección de SB como una combinación de HSPs incluyendo repeticiones lo cual incrementó la complejidad del modelo. Como resultado, se obtuvo un método más preciso y que mejora la calidad de los resultados del estado del arte. Este método aplica reglas basadas en la adyacencia de SBs, permitiendo además detectar LSGR e identificarlos como inversiones, translocaciones o duplicaciones, constituyendo un framework capaz de trabajar con LSGR para organismos de un solo cromosoma. Más tarde en un segundo artículo, se utilizó este framework para refinar los bordes de los SBs. En nuestra novedosa propuesta, las repeticiones que flanquean los SB se utilizaron para refinar los bordes explotando la redundancia introducida por dichas repeticiones. Mediante un alineamiento múltiple de estas repeticiones se calculan los vectores de identidad del SB y de la secuencia consenso de las repeticiones alineadas. Posteriormente, una máquina de estados finitos diseñada para detectar los puntos de transición en la diferencia de ambos vectores determina los puntos de inicio y fin de los SB refinados. Este método también se mostró útil a la hora de detectar "puntos de ruptura" (conocidos como break points (BP)). Estos puntos aparecen como la región entre dos SBs adyacentes. El método no fuerza a que el BP sea una región o un punto, sino que depende de los alineamientos de las repeticiones y del SB en cuestión. El método es aplicado en un tercer trabajo, donde se afronta un caso de uso de análisis de metagenomas. Es bien sabido que la información almacenada en las bases de datos no corresponde necesariamente a las muestras no cultivadas contenidas en un metagenoma, y es posible imaginar que la asignación de una muestra de un metagenoma se vea dificultada por un evento reorganizativo. En el articulo se muestra que las muestras de un metagenoma que mapean sobre las regiones exclusivas de un genoma (aquellas que no comparte con otros genomas) respaldan la presencia de ese genoma en el metagenoma. Estas regiones exclusivas son fácilmente derivadas a partir de una comparación múltiple de genomas, como aquellas regiones que no forman parte de ningún SB. Una definición bajo un espacio de comparación múltiple de genomas es más precisa que las definiciones construidas a partir de una comparación de pares, ya que entre otras cosas, permite un refinamiento siguiendo un procedimiento similar al descrito en el segundo artículo (usando SBs, en vez de repeticiones). Esta definición también resuelve la contradicción existente en la definición de puntos de BPs (mencionado en la segunda publicación), por la cual una misma región de un genoma puede ser detectada como BP o formar parte de un SB dependiendo del genoma con el que se compare. Esta definición de SB en comparación múltiple proporciona además información precisa para la reconstrucción de LSGR, con vistas a obtener una aproximación del verdadero ancestro común entre especies. Además, proporciona una solución para el problema de la granularidad en la detección de SBs: comenzamos por SBs pequeños y bien conservados y a través de la reconstrucción de LSGR se va aumentando gradualmente el tamaño de dichos bloques. Los resultados que se esperan de esta línea de trabajo apuntan a una definición de una métrica destinada a obtener distancias inter genómicas más precisas, combinando similaridad entre secuencias y frecuencias de LSGR.Esta tesis es un compendio de tres artículos recientemente publicados en revistas de alto impacto, en los cuales mostramos el proceso que nos ha llevado a proponer la definición de Unidades Elementales de Conservación (regiones conservadas entre genomas que son detectadas después de una comparación múltiple), así como algunas operaciones básicas como inversiones, transposiciones y duplicaciones. Los tres artículos están transversalmente conectados por la detección de Bloques de Sintenia (SB) y reorganizaciones genómicas de gran escala (LSGR) (consultar sección 2), y respaldan la necesidad de elaborar el framework que se describe en la sección "Systems And Methods". De hecho, el trabajo intelectual llevado a cabo en esta tesis y las conclusiones aportadas por las publicaciones han sido esenciales para entender que una definición de SB apropiada es la clave para muchos de los métodos de comparativa genómica. Los eventos de reorganización del ADN son una de las principales causas de evolución y sus efectos pueden ser observados en nuevas especies, nuevas funciones biológicas etc. Las reorganizaciones a pequeña escala como inserciones, deleciones o substituciones han sido ampliamente estudiadas y existen modelos aceptados para detectarlas. Sin embargo, los métodos para identificar reorganizaciones a gran escala aún sufren de limitaciones y falta de precisión, debido principalmente a que no existe todavía una definición de SB aceptada. El concepto de SB hace referencia a regiones conservadas entre dos genomas que guardan el mismo orden y {strand. A pesar de que existen métodos para detectarlos, éstos evitan tratar con repeticiones o restringen la búsqueda centrándose solamente en las regiones codificantes en aras de un modelo más simple. El refinamiento de los bordes de estos bloques es a día de hoy un problema aún por solucionar

    Whole-genome assembly of the coral reef Pearlscale Pygmy Angelfish (Centropyge vrolikii)

    Get PDF
    The diversity of DNA sequencing methods and algorithms for genome assemblies presents scientists with a bewildering array of choices. Here, we construct and compare eight candidate assemblies combining overlapping shotgun read data, mate-pair and Chicago libraries and four different genome assemblers to produce a high-quality draft genome of the iconic coral reef Pearlscale Pygmy Angelfish, Centropyge vrolikii (family Pomacanthidae). The best candidate assembly combined all four data types and had a scaffold N50 127.5 times higher than the candidate assembly obtained from shotgun data only. Our best candidate assembly had a scaffold N50 of 8.97 Mb, contig N50 of 189,827, and 97.4% complete for BUSCO v2 (Actinopterygii set) and 95.6% complete for CEGMA matches. These contiguity and accuracy scores are higher than those of any other fish assembly released to date that did not apply linkage map information, including those based on more expensive long-read sequencing data. Our analysis of how different data types improve assembly quality will help others choose the most appropriate de novo genome sequencing strategy based on resources and target applications. Furthermore, the draft genome of the Pearlscale Pygmy angelfish will play an important role in future studies of coral reef fish evolution, diversity and conservationUC Berkeley | Ref. S10RR029668UC Berkeley | Ref. S10RR02730

    SynBlast: Assisting the analysis of conserved synteny information

    Get PDF
    <p>Abstract</p> <p>Motivation</p> <p>In the last years more than 20 vertebrate genomes have been sequenced, and the rate at which genomic DNA information becomes available is rapidly accelerating. Gene duplication and gene loss events inherently limit the accuracy of orthology detection based on sequence similarity alone. Fully automated methods for orthology annotation do exist but often fail to identify individual members in cases of large gene families, or to distinguish missing data from traceable gene losses. This situation can be improved in many cases by including conserved synteny information.</p> <p>Results</p> <p>Here we present the <monospace>SynBlast</monospace> pipeline that is designed to construct and evaluate local synteny information. <monospace>SynBlast</monospace> uses the genomic region around a focal reference gene to retrieve candidates for homologous regions from a collection of target genomes and ranks them in accord with the available evidence for homology. The pipeline is intended as a tool to aid high quality manual annotation in particular in those cases where automatic procedures fail. We demonstrate how <monospace>SynBlast</monospace> is applied to retrieving orthologous and paralogous clusters using the vertebrate <it>Hox </it>and <it>ParaHox </it>clusters as examples.</p> <p>Software</p> <p>The <monospace>SynBlast</monospace> package written in <monospace>Perl</monospace> is available under the GNU General Public License at <url>http://www.bioinf.uni-leipzig.de/Software/SynBlast/</url>.</p

    On the distribution of the number of cycles in the breakpoint graph of a random signed permutation

    Get PDF
    International audienceWe use the finite Markov chain embedding technique to obtain the distribution of the number of cycles in the breakpoint graph of a random uniform signed permutation. This further gives a very good approximation of the distribution of the reversal distance between two random genomes

    Orthology guided transcriptome assembly of Italian ryegrass and meadow fescue for single-nucleotide polymorphism discovery

    Get PDF
    Single-nucleotide polymorphisms (SNPs) represent natural DNA sequence variation. They can be used for various applications including the construction of high-density genetic maps, analysis of genetic variability, genome-wide association studies, and mapbased cloning. Here we report on transcriptome sequencing in the two forage grasses, meadow fescue (Festuca pratensis Huds.) and Italian ryegrass (Lolium multiflorum Lam.), and identification of various classes of SNPs. Using the Orthology Guided Assembly (OGA) strategy, we assembled and annotated a total of 18,952 and 19,036 transcripts for Italian ryegrass and meadow fescue, respectively. In addition, we used transcriptome sequence data of perennial ryegrass (L. perenne L.) from a previous study to identify 16,613 transcripts shared across all three species. Large numbers of intraspecific SNPs were identified in all three species: 248,000 in meadow fescue, 715,000 in Italian ryegrass, and 529,000 in perennial ryegrass. Moreover, we identified almost 25,000 interspecific SNPs located in 5343 genes that can distinguish meadow fescue from Italian ryegrass and 15,000 SNPs located in 3976 genes that discriminate meadow fescue from both Lolium species. All identified SNPs were positioned in silico on the seven linkage groups (LGs) of L. perenne using the GenomeZipper approach. With the identification and positioning of interspecific SNPs, our study provides a valuable resource for the grass research and breeding community and will enable detailed characterization of genomic composition and gene expression analysis in prospective Festuca Lolium hybrids
    corecore