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Abstract

The identification of conserved syntenic regions enables discovery of predicted locations for orthologous and homeologous genes,

evenwhennosuchgene ispresent.This capabilitymeans that synteny-basedmethodsare farmoreeffective thansequencesimilarity-

based methods in identifying true-negatives, a necessity for studying gene loss and gene transposition. However, the identification of

syntenic regions requires complexanalyseswhichmustbe repeated forpairwise comparisonsbetweenany twospecies. Therefore, as

the number of published genomes increases, there is a growing demand for scalable, simple-to-use applications to perform com-

parative genomic analyses that cater to both gene family studies and genome-scale studies. We implemented SynFind, a web-based

tool that addresses this need. Given one query genome, SynFind is capable of identifying conserved syntenic regions in any set of

targetgenomes.SynFind is capableof reportingper-gene information,useful for researchers studyingspecificgenefamilies,aswell as

genome-wide data sets of syntenic gene and predicted gene locations, critical for researchers focused on large-scale genomic

analyses. Inference of syntenic homologs provides the basis for correlation of functional changes around genes of interests between

related organisms. Deployed on the CoGe online platform, SynFind is connected to the genomic data from over 15,000 organisms

from all domains of life as well as supporting multiple releases of the same organism. SynFind makes use of a powerful job execution

framework that promises scalability and reproducibility. SynFind can be accessed at http://genomevolution.org/CoGe/SynFind.pl.

A video tutorial of SynFind using Phytophthrora as an example is available at http://www.youtube.com/watch?v=2Agczny9Nyc.

Key words: synteny, homology, genome evolution, cyberinfrastructure.

Introduction

Conserved synteny refers to an inferred homology relationship

between genes which are supported by sharing a common

genomic neighborhood, and is a widely used measurement of

evolutionary divergence across all domains of life (Moreno-

Hagelsieb et al. 2001; Engstrom et al. 2007; Heger and

Ponting 2007; Poyatos and Hurst 2007; Tang, Bowers, et al.

2008). Conserved synteny is evident when large sets of genes

or genomic features are preserved in close proximity (synteny),

and often in the same order and orientations (colinearity)

(Tang, Bowers, et al. 2008). Conserved synteny across species

lays an essential foundation for genomic research, including

map-based cloning, validating predicted gene models (Law

et al. 2015), and identifying conserved noncoding sequences

(Haudry et al. 2013). Conserved synteny within species

identifies ancient polyploidy events or other types of large-

scale genomic duplications (Wolfe 2001).

Synteny provides an extra layer of information to confirm

gene homology, and is much more reliable than inference

based on sequence similarities alone. Results from a typical

Basic Local Alignment Search Tool (BLAST) analyses do not

easily indicate whether there is a gene loss or transposition.

Popular approaches based on the reciprocal best hit do not

take into account the ancestral state of a genome nor provide

much insight into the evolutionary history of a gene or gene

family. More generally, protein clustering algorithms such as

OrthoMCL (Li et al. 2003) and INPARANOID (Ostlund et al.

2010) may be successful for single copy gene families when

evolutionary rates are constant, but can be confounded by

accelerated rates of evolution in certain gene copies, and
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will sometimes produce false-positive assignments of orthol-

ogy, particularly in cases of reciprocal loss of paralogous genes

between species. Positional studies that track gene move-

ments over evolutionary time require more gene-centric

synteny tools (Woodhouse et al. 2011).

Curated syntenic gene sets are critical tools for deriving

genome-scale patterns and evolutionary trends, and are

widely popular (Woodhouse et al. 2011; Baxter et al. 2012;

Schnable et al. 2012). Unfortunately, construction of robust

and accurate syntenic data sets requires a set of specialized

comparative genomic skills currently limited to a small number

of research groups. Until now, the primary method by which

the broader research community employed syntenic informa-

tion in their research is through manually curated syntenic

gene sets published by these groups. Manually curated gene

sets are inherently limiting because, as a result of the lag in-

troduced by the publication cycle, by the time a given syntenic

gene set is published, genome assemblies for new species will

often have become available, and genome assemblies, anno-

tations, and gene identifiers will often have been updated for

existing published genomes. Genome sequence assemblies

being released at an ever increasing pace, there is a need

for tools that enable individual researchers to rapidly identify

syntenic regions between species.

The majority of community use of synteny data generally

falls into one of several use cases: 1) Researchers interested in

a specific gene from a specific species who want to rapidly

find the syntenic ortholog(s) of their target gene in one or

more additional species and 2) researchers who want to

trace changes in the positional history of a single gene or

gene family across a population of related species. In addition

to the lag time introduced in publishing syntenic gene lists,

most published lists only provide information on conserved

syntenic orthologs, but do not provide information on pre-

dicted syntenic locations for genes where no syntenic ortho-

logs are found. This severely limits their utility for use case #2

above, as it strips out one of the key advantages of syntenic

analysis, the ability to identify confident sets of “true nega-

tives.” True negatives include both lineage specific, recently

inserted genes (also known as the “gray genome”) (Freeling

et al. 2008), and genes conserved at syntenic locations across

multiple species in a clade but deleted from the genomes of

one or more specific species. Many evolutionary studies re-

quire the knowledge of whether a certain gene is indeed

missing or relocated from a genomic region (transposition).

Distinguishing transposition from gene removal is critical

because potential changes in gene expression patterns are

different under these two scenarios.

Identification of syntenic genes has additional advantages

for functional research studies, as syntenic homologs are more

likely to retain the same expression pattern than nonsyntenic

homologs (Dewey 2011; Schnable 2015). Orthologous genes

(as identified by OrthoMCL) at nonsyntenic locations show

reduced correlation in expression pattern between different

grass species (Davidson et al. 2012). Genes captured by heli-

trons and relocated to a new genomic neighborhood in maize

show novel patterns of expression (Barbaglia et al. 2012).

Common methods of gene transposition—transposon cap-

ture (Lai et al. 2005) and intrachromosomal recombination

(Woodhouse et al. 2010)—can often carry protein-coding

sequence of a gene without the associated regulatory se-

quences. A study in maize also found that genes that retain

in syntenic positions across multiple grass species were signif-

icantly more likely than nonsyntenic genes to produce visible

mutant phenotypes when knocked out (Schnable and Freeling

2011), further highlighting the functional relevance of synteny

information in the validation of direct functional homologs.

As we provide a novel implementation of yet another

synteny-finding tool, we offer an overview of popular

synteny-finding algorithms, including several tools that were

designed and implemented by several of the authors in the

past. In general, the synteny-finding algorithms can be

grouped based on whether they are based on positional co-

linearity or positional density, for what type of statistical fea-

tures they are searching (Ghiurcuta and Moret 2014), and

their definition of “syntenic block.” A list of recent synteny

search software includes iAdHore (Proost et al. 2012), mGSV

(Revanna et al. 2012), SyMap (Soderlund et al. 2011), SynMap

(Lyons et al. 2008), Orthocluster (Vergara and Chen 2010),

Synorth (Dong et al. 2009), MCScan (Tang, Wang, et al.

2008), and MCScanX (Wang et al. 2012) among many

others. These synteny search software vary greatly in the

trade-offs accepted by the authors in terms of run time, com-

putational resource requirements, and goal of minimizing

either type I (false positive) or type II (false negative) errors.

In addition, from a pragmatic standpoint, the tools are also

distinguished by interface type (i.e., command line, web

based) and whether a given tool offers the built-in function-

ality to provide graphical outputs, enabling visual proofing of

results. Herein, we provide a review of major features of

recent synteny-finding software in table 1.

A careful evaluation of these algorithms suggested funda-

mental challenges that are still not met for more general uses.

First and foremost, data curation is often a significant chal-

lenge (Lohr 2014), requiring users to convert genomic anno-

tation files into a range of idiosyncratic file formats required by

different algorithms. Many tools are run from the command

line, and often obtaining the most accurate results from a

given tool will require experimentation with a range of set-

tings, presenting an additional challenge to users who must

develop methods of evaluating and ranking multiple output

data sets. As the number of organisms a user is interested in

comparing grows, computational time requirements will often

scale quadratically, presenting challenges for these primarily

offline algorithms.

After closely working with researchers in the community in

the past few years, it was clear that the life cycle of gene

synteny analysis requires running multiple algorithms to

SynFind GBE
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create input homology data (different BLAST-like algorithms),

adjusting parameters on-the-fly (configurable thresholds), as

well as allowing different synteny-finding/scoring schemes

(colinear vs. density) (table 1). Following the same design prin-

ciple as other CoGe tools, we continue to adopt a cloud-based

implementation that offers a one-stop solution that combines

user-configurable input data (genomes and structural anno-

tations), algorithms, scalable computing resources (paralleliza-

tion, memory, and storage), integrated visualization, links to

additional tools for further data analysis, readily exportable

results, and reproducibility through permanent URLs.

Our new online method, SynFind, has a number of features

not typically found in other systems (table 1) that reflect recent

innovations in comparative genomic analysis adopted in a few

newly sequenced genomes (Amborella Genome Project 2013;

Ibarra-Laclette et al. 2013; Chalhoub et al. 2014; Green et al.

2014). SynFind identifies multiple syntenic regions between a

gene in a reference genome and a target genome, entirely

independently of whether syntenic ortholog or paralog is pre-

sent at the predicted location or not. SynFind provides the

option for both density and colinear scoring of syntenic re-

gions to address the different structural genomic changes in

taxa with different evolutionary distances and different

genome assembly qualities. SynFind generates syntenic

depth tables as well as gene presence–absence table to

reveal ancient polyploidy events and genes unique to one

genome against others. Most critically, the integration with

CoGe provides instant access to thousands of genomes across

all domains of life along with CoGe’s tools to let users add

new genomes, keep them private, and compare them using

SynFind as rapidly as they are released. Tight integration with

up-to-date genomic data facilitates access to computing re-

sources, downstream visualization and analysis tools, thereby

creating an open-ended pipeline of research that facilitates

exploration of multidimensional genomic data sets that

bridge evolutionary genomics and functional genomics.

Materials and Methods

Synteny Score

SynFind processes putatively homologous gene pairs in order

to extract the syntenic blocks, using each gene as query. Gene

pairs are computed from sequence similarity search programs,

such as BLAST, LASTZ, or LAST (Kielbasa et al. 2011). The

modular architecture of SynFind allows the straightforward

incorporation of new sequence similarity search algorithms

in the future. Although SynFind can output information for

a single gene, in each run, syntenic regions in the target ge-

nome(s) are identified for every annotated gene in the query

genome. Extra caution is taken with genes which are mem-

bers of tandem arrays (groups of homologous genes clustered

together in the genome) as matches among such genes are

likely overcounted and show up as false-positive synteny

blocks. Consequently, tandem matches are reduced to a

single copy in this step to avoid seeding a synteny block

inside a tandem array. The treatment of tandem arrays is sim-

ilar to the strategy used in MCScanX and iADHoRe (Proost

et al. 2012; Wang et al. 2012).

To seed synteny blocks, our algorithm works by selecting a

fixed number of genes up and downstream from the query

gene (fig. 1A). This method is robust with respect to variation

in gene density and intergenic spacing observed across differ-

ent species. All gene pairs to a target genome between the

region surrounding the gene of interest and candidate synte-

nic locations in the target genome are then identified and the

number of matching gene pairs is counted as the “synteny

score” (fig. 1B). SynFind provides positioning cues for

Table 1

Comparison of Major Features of Synteny-Based Homology Detection Software

Tool References Interface Multiple

Genomes

Syntenic

Families

Infer Gene

Loss

Scoring

Mode

Parallel

Computing

Integration

with Data

ColinearScan Wang et al. (2006) Command � � � Colinear � �

Cinteny Sinha and Meller (2007) Web + � � Colinear � Limited (~20)

MCScan Tang, Bowers, et al. (2008) Command + + � Colinear � �

SynMap Lyons et al. (2008) Web � � � Hybrid � CoGe (~25K)

MCMuSeC Ling et al. (2009) Command + + + Synteny � �

OrthoClusterDB Ng et al. (2009) Web Limited � � Colinear � Limited (~50)

Cyntenator Rodelsperger and Dieterich (2010) Command + � � Colinear � �

MicroSyn Cai et al. (2011) GUI + + � Synteny � �

SyMAP Soderlund et al. (2011) GUI/Web + � � Hybrid � Limited (~10)

MCScanX Wang et al. (2012) Command + + � Colinear � �

i-ADHoRe Proost et al. (2012) Command + + � Both/Hybrid + �

SynFind Command/Web + + + Both + CoGe (~25K)

NOTE.—The tools published in the last 10 years are given in the table. Symbols + and � represent yes and no, respectively. “Scoring mode” is the optimization goal used
in identifying syntenic regions. “Colinear” requires the gene order to be preserved; “Synteny” does not enforce conserved gene order; “Hybrid” uses “Colinear” initially and
recruits imperfect synteny; “Both” supports both modes as program options. “Integration with data” is a count of available genomes for immediate use with a given tool.

Tang et al. GBE
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visualization through genome browsers. Comparisons across

sets of homologous regions are facilitated through automated

centering and truncation of colinear panels. The middle gene

of the current window or the “query” is used to as the center

of the syntenic panels. The extent of syntenic gene pairs in the

current window can be used to truncate the matching panels

to focus on a particular region of interest. Finally, SynFind

automatically flips sequences so syntenic regions are visualized

on the same strand for clarity. These data are useful in auto-

matically creating local syntenic views in CoGe for subsequent

manual validation.

The output of the seeding step consists of syntenic gene

pairs and a score to indicate the level of conserved synteny

between their respective genomic locations. For each target

region found, the synteny score reflects the number of gene

pairs that are syntenic or colinear within the window, depend-

ing on the scoring function. When a matching region is found,

the flanking genes for the query gene are identified and the

status of the syntelog is tracked in a single letter notation—S/

F/G, following the nomenclature in Woodhouse et al. (2011).

S is “syntelog,” which means that it has a match to the region.

In this case, the match itself is used to represent the region. In

contrast, F class and G class refer to the cases that the syntelog

is missing (fractionated or moved) from syntenic region iden-

tified in the target genome. F has both flankers present,

whereas G has only one flanker (fig. 1C). G class syntenic

regions are largely the result of adjacent genomic rearrange-

ments (inversions and translocations) in either the target or

query genome, but can also occur at the end of

pseudomolecules, scaffolds, or contigs. In the case of F or

G, a flanker gene is used to represent the region as a “proxy”

to identify the approximate location of where a syntelog is

expected to reside in the target genome.

As a final validation, we recover tandem matches by check-

ing against the original BLAST output as the tandem matches

were reduced to single copy prior to the “seeding” step. This

validation step increases the sensitivity of SynFind for genes

inside tandem arrays. A single best match among the tandem

array is selected to be the representative syntelog for a query

gene, for the sake of clarity. The source code of SynFind can

be found at https://github.com/tanghaibao/quota-alignment/

blob/master/scripts/synteny_score.py (last accessed November

30, 2015).

Choice of Parameters: Beauty in Simplicity

There are a few intuitive, user-configurable parameters that

adjust sensitivity or specificity of SynFind.

Window Size: Window Size in Number of Neighboring
Genes (Default: 40)

Given an anchor gene, SynFind searches upstream and down-

stream half a window size from the query. For example, a

window size of 40 means that a total of 41 genes are checked:

The query gene, plus 20 upstream genes and 20 downstream

genes (fig. 1A).

Minimum synteny score: The minimum number of anchor-

ing genes to call a region “syntenic.”

A

B

C

FIG. 1.—Illustration of three key steps in SynFind. The three key steps include (A) extraction of genomic neighborhood, (B) gene pair generation and

scoring of each matching region, and (C) identification of flankers (neighboring gene pairs) and annotation of syntelog class.
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The combination of “window size” and “minimum

number of genes” together controls the sensitivity and speci-

ficity of the algorithm (fig. 1B). The default number 4 means

that a region is considered syntenic if 4 of 41 genes are syn-

tenic. This threshold is capable of finding weakly homologous

regions, such as regions undergoing high degree of fraction-

ation following polyploidy. In our test, moving the threshold

below 10% would often run into the risk of false positives due

to repeats and gene transpositions.

Scoring Function

Scoring can be based on colinearity or density. For colinearity,

a colinear arrangement of syntenic genes is enforced, based

on the “longest increasing subsequence” method

(Woodhouse et al. 2011). For density, we use single-linkage

clustering to group gene pairs within the window in compar-

ison, and any arrangement of gene-pairs is tolerated.

Although colinearity is frequently used in plant genome com-

parisons, synteny without requiring shared order is often the

only criteria in the comparison of insect and vertebrate ge-

nomes, due to different rates and scales of inversions and

translocations between plant and animal genomes (Tang,

Bowers, et al. 2008). The two different scoring functions

allow flexibility in accommodating taxa with different modes

of karyotypic evolutions.

Maximum Syntenic Depth: Limit the Number of Syntenic
Regions Up To the Specified Depth

This parameter is useful in lineages with shared duplication

events. Enforcing the syntenic depth allows screening of re-

gions derived from specific evolutionary events (Tang et al.

2011). In particular, enforcing a maximum syntenic depth of

1 between species which are diploid relative to each other, but

share one or more ancient whole-genome duplications

(WGDs) would limit the search to only orthologous regions.

The default is to output all syntenic regions found.

CoGe Implementation

SynFind is implemented as one of the main entry points and

analytical tools of CoGe. The user-interface (UI) contains two

sections: One which is used to select a gene of interest and

target genomes to search for syntenic homologs, the other to

specify SynFind’s algorithms and parameters (fig. 2). This UI is

consistent with the general look-and-feel for other CoGe

tools. CoGe’s implementation of SynFind allows users to

search an arbitrary number of genomes for syntelogs of any

gene located in a genome to which the user has access.

Specifically, the genomes need to be any public data sets or

private data sets that are owned by or shared with the user.

Target genomes to be analyzed by SynFind are similarly spe-

cified by searching for organisms by name or taxonomic de-

scription, and then selecting the appropriate genome (fig. 2A).

By repeating the name searches, several genomes may be

added to the genome list (fig. 2B). Researchers may also

select a previously saved genome list (e.g., a list of “ten

grass genomes that have been sequenced thus far”) as a

shortcut for researchers interested in a frequently accessed

set of species. SynFind depends on the existence of structurally

annotated protein coding gene models as a starting point for

any query (fig. 2C). Some “draft” genome assemblies are re-

leased and loaded into CoGe with no available gene annota-

tions. These genomes are automatically detected and

excluded from the genome list (with information presented

to the user as to why the genome is blocked from analysis by

SynFind). In the configuration tab, users can select which al-

gorithm to use for generating the homology pairs file as well

as SynFind parameters: Window size, minimum number

of genes to call a region syntenic, and the scoring scheme

(colinear or density) (fig. 2D).

When SynFind completes its analysis, the results show a

table of matching regions along with their synteny scores

and whether or not a syntenic gene was identified (fig. 3A).

Additional links are available under the table, including micro-

synteny analysis of the identified regions in GEvo for valida-

tion, pairwise syntenic dotplots in SynMap, links to raw data

and intermediate data files, and a link to revisit and regenerate

the same SynFind analysis (fig. 3B).

Master Syntenic Pairs Table

SynFind identifies syntenic regions against any set of genomes

given a gene in one genome, and curates the results in a

master gene list. The pan-genome master list is important as

this file contains all the syntenic regions identified in the target

genomes for all of the genes in the query genome. The master

list is a tab-delimited table, containing all syntenic gene sets

between the query and target genomes, along with links to

visualize microsynteny for each local set of region. As a filter-

ing option, SynFind can also report top N best matches in

query genome(s), which is useful to extract only orthologous

regions that are often the best syntenic match when N is set to

1. As a byproduct of this master gene pairs table, SynFind

reports a list of genes that are unique to some genomes.

For example, in the case of comparing a set of bacterial strains,

this feature can be used to find pathogenicity genes and

phage insertions specific to one strain against others

(Tettelin et al. 2005).

Syntenic Depth

Syntenic depth refers to the number of syntenic regions iden-

tified in a target genome for a given query position. SynFind

calculates syntenic depth on a per gene basis and reports

these data as a histogram, showing a breakdown of how

many genes are covered in 1-, 2-, to x-fold regions (fig. 3C).

Genes with a syntenic depth of zero are the genes that lack

any matching region in the target genome. A syntenic depth

Tang et al. GBE
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of one most often reflects identification of an orthologous

genomic region between two species, whereas a syntenic

depth greater than 1 most often is the result of either para-

logous or co-orthologous regions derived from whole-

genome (or other large scale) duplications. Syntenic depth

provides a more consistent marker for large scale genomic

events than changes in the copy number of individual genes

which are influenced by a greater number of small scale pro-

cesses (expansion and contraction of tandem arrays, transpo-

son capture and duplication, etc.). The proportion of genes

with a syntenic depth of at least 1 is a useful metric for eval-

uating the relative completeness of genome assemblies,

whereas modal and maximum syntenic depths are good indi-

cators for the number of paleopolyploidies in a given lineage.

Plant genomes have rich history of genome-wide duplica-

tion events that give rise to very high level of syntenic depth

(Tang, Bowers, et al. 2008). For example, in comparison to

Arabidopsis genome, both peach and grapevine genomes

show significant genome coverage of depth up to 3 (fig.

3C), corresponding to the pan-rosid genome triplication

event (Lyons et al. 2008; Tang, Bowers, et al. 2008). The

syntenic depth evaluation of SynFind was employed to identify

multiple degenerate polyploidy events in the highly compact

plant genome, Utricularia (Ibarra-Laclette et al. 2013).

Examples of various syntenic depth tables and their interpre-

tation in the context of paleopolyploidy can be found on

CoGePedia (http://genomevolution.org/r/4suf, last accessed

November 30, 2015).

FIG. 2.—SynFind web UI. The web UI includes several components that users can interact with (A) find target genome and select target genome version,

(B) build list of multiple target genomes, (C) input query gene, (D) set SynFind parameters.
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Results and Discussion

Focused Analyses for Functionally Important Genes

We show that SynFind is powerful for gene-centric analyses

through selected examples based on past studies, but the

usage is generally applicable to almost any gene family mem-

bers in any set of organisms available in the CoGe database. In

the past, such comparative analyses would usually take much

dedicated time and work—from downloading and reformat-

ting data sets, performing sequence alignment, reformatting

data again for use in synteny detection tools, identifying syn-

tenic genes, selecting informative visualization software for

manual validation, and performing multiple analyses to iden-

tify an optimal configuration of parameters and software

tools—all of which can now be performed within the

SynFind tool in a few clicks.

One natural application of SynFind is to deduce gene pres-

ence and absence across a set of related organisms. In the

context of bacterial genomics, we can infer possible patho-

genic sequences through syntenic comparisons (Jin et al.

2002; Tettelin et al. 2005). We used SynFind to compare

three-way Shigella flexneri 2a strain 301, Escherichia coli K12

substrain 1655 and Escherichia coli O157:H7 strain EDL933, in

an analysis similar to the study in Jin et al. (2002). When using

S. flexneri genome as the query, we looked for the cases

where SynFind reported either proxy in the two E. coli ge-

nomes, that is, the genes that were missing in their expected

locations or for which expected regions could not be identified.

This has allowed us to identify Shigella-specific “islands.” In

particular, one 27 gene island (from SF0294 to SF0320) found

only in the Shigella genome, previously termed SfII, was shown

to be a lysogenic phage insertion, by which Shigella might

have acquired virulence (Jin et al. 2002). Other interesting

genes on these Shigella-specific islands include ipaH genes

(e.g., SF0722, SF1383, SF1880, and SF2610) that shared ho-

mology with different phages (Jin et al. 2002). The SynFind link

to this analysis is available: https://genomevolution.org/r/fggo

(last accessed November 30, 2015).

As our second example, we use another previously studied

gene involved in the soft grain trait in the grasses. Genes

FIG. 3.—SynFind example output. The output of a typical SynFind search: (A) List of all syntenic regions found and presence of syntelog, (B) links for

micro-synteny viewer (GEvo) and master tables for downstream analyses, (C) syntenic depth table useful for evaluating syntenic coverage and WGD events.
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involved in the soft grain trait has been studied extensively in

wheat, including the Hardness (Ha) locus and several Ha-like

genes (Charles et al. 2009). SynFind analysis (Brachypodium

genes as “query,” barley, rice, and sorghum as “target”)

showed that Ha-like genes were present in Brachypodium

representing the lineage of Pooideae, but were missing in

rice and sorghum. For barley, rice and sorghum, SynFind

output displays “proxy for region” rather than a direct synte-

log (fig. 4A). With visual proofing using GEvo, we confirmed

that there is a syntenic sequence match in barley, whereas

there are no matching sequences in rice and sorghum as in-

dicated by SynFind (fig. 4B). This suggested that the flanking

regions of Ha-like gene were relatively intact whereas the

gene itself has been lost in rice and sorghum. Alternatively,

the gene could be inserted into this region in Brachypodium

and barley. Although both scenarios are equally likely, previ-

ous study preferred the scenario that the gene was lost in rice

and sorghum (Charles et al. 2009). With SynFind tool, we

have confirmed that the presence or absence of the Ha-like

gene in this set of syntenic regions nicely explains the soft

wheat and barley grains versus the hard grains like in rice

and sorghum.

In addition to the two examples shown above for the pur-

pose of demonstration, SynFind has enabled a number of

evolutionary studies of important functional genes in diverse

lineages (Woodhouse et al. 2010; Tang and Lyons 2012;

Hofberger et al. 2013; Waters et al. 2013). For example,

SynFind was used to screen regions in the Aethionema ara-

bicum genome displaying synteny to genomic regions in

Arabidopsis thaliana harboring glucosinolate biosynthesis

(GS) loci (Hofberger et al. 2013). SynFind was essential in clar-

ifying the series of tandem duplication and WGD events that

drove GS pathway expansion, which were critical to the evo-

lutionary success to the mustard family (Hofberger et al.

2013). Also, SynFind was essential for proving that the

genome of Utricularia gibba, despite is small size (82 MB), is

derived from three sequential WGD events (Ibarra-Laclette

et al. 2013).

Quality of Homology Assignments and Benchmark of
SynFind against Competing Tools

Clade-wide syntenic gene sets are useful for detecting

genome-wide transposition and deletion events

(Woodhouse et al. 2010; Schnable et al. 2012), and automa-

tion of this step could be essential in such studies. We have

benchmarked SynFind against a number of studies that typi-

cally require a substantial amount of human curation to com-

plete. Although the human curated gene sets are still

imperfect and subject to errors, they serve as a basis for com-

paring between different synteny search tools including

SynFind. In this study, we evaluate the performance of

SynFind and compare that with competing software including

MCScanX and iADHoRe, which are the two most popular

state-of-the-art tools that perform well in a number of studies

(Proost et al. 2012; Wang et al. 2012).

Our first set of test data is a list of WGD duplicates from

A. thaliana curated by Bowers et al. (2003). This list contains a

total of 5,788 gene duplicates collectively derived from the

alpha, beta, and gamma WGDs (Bowers et al. 2003). Our

second data set is based on comparison of yeast genomes,

using data from Yeast Gene Order Browser (YGOB) (Byrne

and Wolfe 2005). We were able to find 14 yeast genomes

in the CoGe system, whereas a few yeast species in YGOB

were not yet released to GenBank with structural gene anno-

tations and therefore not included in this study. YGOB uses

“pillars” to store homology assignments (Byrne and Wolfe

2005), which were converted to gene pairs for validation pur-

poses. Finally, as the third test set, we used a pan-grass syn-

teny gene set curated by Schnable et al. (2012). Schnable et al.

manually clustered and curated gene members from rice,

Brachypodium, sorghum, and maize according to inter- and

intragenomic comparisons (Schnable et al. 2012). A typical set

of syntenic genes in the Schnable set contain up to 2 rice

genes, up to 2 Brachypodium genes, and up to 2 sorghum

genes all derived from the shared pan-grass WGD, and up to 4

maize genes because of an additional maize-specific WGD.

Similarly, we converted families into a list of gene pairs before

validation. The choice of these data sets is based on the avail-

ability of curated data sets, and inclusion of gene sets with

both paralogous and orthologous relationships.

For SynFind, MCScanX, and iADHoRe, we computed the

syntenic gene list and compared against the curated set,

which are considered as “truth” (fig. 5). Two metrics are com-

puted—“Sensitivity” (Sn) is defined as common items divided

by total items in truth set; “Purity” (Pu) is defined as common

items divided by total items in the test set as can be used to

infer false-positive discovery. SynFind consistently ranks the

highest in sensitivity, recovering 63%, 75%, and 61% of

the items in the truth set (fig. 5). As a tradeoff, the purity of

SynFind results compare less favorably than the other tools

(fig. 5). As we have designed SynFind as a gene-centric

query tool, this benchmark reflects our focus on sensitivity—

we would tolerate some false positives but prefer to have low

false negatives. Differences in the treatments of tandem gene

sets may have contributed to the nonoverlapping members—

SynFind, MCScanX, and iADHoRe may have picked a single

matching gene within the array which is not necessarily the

tandem member in the curated set.

The list of predicted locations for missing genes is often

good indication of potential loss-of-function, which could be

associated with differences in phenotypic and physiological

traits between grasses, as illustrated in our Ha example.

Missing genes in one grass genome versus others could also

suggest possible misassemblies, leading to iterative improve-

ment of genome assemblies and recovery of missing gene

fragments in genome annotation efforts (Law et al. 2015).
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Integration with CoGe Comparative Genomics Platform

Integration in CoGe permits SynFind to be tightly connected

to thousands of genomes as well as to downstream analysis

tools such as GEvo (Lyons and Freeling 2008) and SynMap

(Lyons et al. 2008) for micro and whole-genome syntenic

analysis, respectively. The method for selecting query and

target genomes loads the same module. SynFind automati-

cally generates links to GEvo views for gene-centric analyses as

well as SynMap views for chromosome-level analyses. The

open-ended analysis workflow provides the users with

enough flexibility between tools of different scales. In addi-

tion, CoGe’s user-data management systems let researches

add private genomes and share them with collaborators,

create lists (notebooks) of genomes that can be imported

quickly into SynFind, and automatically record links to regen-

erate any analysis performed.

The CoGe job execution (JEX) framework facilitates parallel

processing of queries against multiple genomes by using Work

Queue (Thrasher et al. 2012) (fig. 6). When a SynFind analysis

runs, each pairwise workflow consisting of separate query-

target genome pairs is submitted to CoGe’s JEX framework.

The JEX framework controls the parallel computing in process-

ing multiple genomes (fig. 6). It first checks to see whether the

anticipated results file already exists and retrieves that file if it

does, otherwise, it submits the analysis for processing and

subsequently caches the results file. This system permits reus-

ing the results of previously run analysis as well as running

multiple workflows in parallel. For example, in contrast

to other gene clustering approaches, new genomes can be

incrementally added to the target list and the CoGe server

would only need to compute the missing comparisons.

Overall, this greatly improves the performance of the system

in terms of the time it takes to complete an analysis.

Additionally, if a user decides to modify and rerun an analysis,

recomputation starts from the first divergent step of the anal-

ysis, while reusing data from earlier, identically configured

steps, allowing fast tweaking of parameters.

The scale of analysis in comparative genomics is an impor-

tant issue. Although SynMap excels in identifying large-scale

structural similarities, it lacks the gene-centric searches where

FIG. 4.—SynFind analysis of Ha-like gene across Brachypodium, barley, rice, sorghum. (A) SynFind table output illustrating four matching regions in the

selected grasses. Result can be regenerated: https://genomevolution.org/r/iiv4 (last accessed November 30, 2015). (B) GEvo visualization of the compiled

syntenic regions, showing the presence of a syntenic sequence in barley, and lack of syntenic ortholog in Ha-like gene in rice and sorghum. Each panel

represents a syntenic region in Brachypodium, barley, rice, and sorghum, from top to bottom. Arrows in each panel represent gene models, and boxes on top

of the gene models are sequence matches (HSPs). For the top Brachypodium panel, there are three tracks of HSPs, which are to barley, to rice and to

sorghum, respectively. We can conclude that the Ha-like gene in Brachypodium has match to barley and no match to rice and sorghum. Result can be

regenerated: https://genomevolution.org/r/iivx (last accessed November 30, 2015).
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researchers just want to study their genes of interest across a

set of genomes. This conceptual difference was often referred

to as “macrosynteny” versus “microsynteny” analyses in com-

parative genomics. Microsynteny search tools, such as

SynFind, achieve higher sensitivity and more flexibility for

gene-centric research. Although SynMap is necessarily con-

strained to making pairwise comparisons between genomes,

SynFind can simultaneously launch comparisons of multiple

genomes. Additionally, SynFind identifies syntenic locations

even when the gene itself is absent, either as a result of line-

age-specific gene deletion or lineage-specific gene insertion.

Analyses based on SynMap output required substantial cus-

tomized offline postprocessing and analysis to generate equiv-

alent predicted locations (Schnable et al. 2012). Importantly,

both of these tools permit on-the-fly analyses and allow direct

manipulation of parameters (e.g., higher or lower stringency,

such as window size and “score cutoff”), and are intercon-

nected in order to characterize and validate patterns of

genome structure and dynamics.

A typical exploratory workflow that we recommend would

be to 1) use SynMap to characterize genome-wide rearrange-

ments and possibly genome duplications, 2) zoom-in on a pair

of contigs or chromosomes with interesting rearrangement or

duplication pattern, 3) select a gene to fish out additional syn-

tenic regions using SynFind, and 4) validate putatively syntenic

regions using GEvo to ensure that each region covered the

entire region of interest. In real-world applications, the combi-

nation of SynFind and SynMap can both be applied to offer

A

B

C

FIG. 5.—Comparison of SynFind, MCScanX, and iADHoRe on curated data sets. (A) Arabidopsis thaliana alpha, beta, and gamma duplicates from

Bowers et al. (2003). (B) Yeast genomes from YGOB (Byrne and Wolfe 2005). (C) Grass genomes from Schnable et al. (2012). Sn: sensitivity, defined as

common items divided by total items in truth set; Pu: Purity, defined as common items divided by total items in the test set.
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complementary views. For example, in a study of conservation

of imprinting across a set of grass taxa, gene-level comparisons

were made between syntenic genes in the genomes of maize,

rice, and sorghum using the software SynMap followed by

SynFind to offer the most coverage (Waters et al. 2013).

Scalable and Sustainable Infrastructure for Gene-Centric
Evolutionary Study

The SynFind algorithm addresses important limitations and

challenges in the postgenomics era. Researchers have access

to large and inexpensive sequencing power making it possible

to study genetic and genomic evolution across whole clades of

species rather than being confined to individual model organ-

isms. However, in order to unlock the potential power of

comparative genomic approaches to accelerate studies of

the origin, regulation, and function of individual genes it is

necessary to enable the broadest possible range of scientists to

make direct comparisons across the genomes of large groups

of related species. Online computational resources, such as

CoGe, create ecosystems of specialized applications that are

easily linked to and from one another. Similarly, resources

developed by cyberinfrastructure projects such as the iPlant

Collaborative (Goff et al. 2011) and XSEDE provide computa-

tional platforms that enable scalable access to computing and

data storage resources.

The development of computational ecosystems which will

be successful in bringing about a democratization of bioinfor-

matics research requires the deployment of modular analysis

pipelines that allow each new tool to exploit existing compu-

tational resources, architectures, and curated data sets.

SynFind joins the increasing list of CoGe-powered and

iPlant-enabled applications (Goff et al. 2011), which already

include GEvo, SynMap, and many others. The availability of

SynFind will begin to merge the two analytical worlds of com-

parative and functional genomics such that researchers can

more easily transfer system-level functional knowledge from

data-rich model organisms to the thousands of others organ-

isms being analyzed by only a handful of scientists.

Conversely, SynFind enables comparative, in silico studies

across a wide range of species to inform the study of specific

genes within model organisms, where even today 30–34% of

all genes have no annotated function (data from Arabidopsis

thaliana, as cited in the National Plant Genome Initiative

2014 report).

Query Genome

List of target 
genomes

Target genome 1

Target genome 2Target genome 2
...

Target genome N

Build Homology 
Lists

SynFind Algo

Assemble Results

Extract CDS 
sequences

Filter tandem 
duplicates

Build Homology 
Lists

Extract CDS 
sequences

Build Homology 
Lists

Build Homology 
Lists

Filter tandem 
duplicates

Filter tandem 
duplicates

Filter tandem 
duplicates

SynFind Algo SynFind Algo SynFind Algo

FIG. 6.—SynFind computational workflow as implemented on CoGe. The query genome and target list of genomes are processed in parallel—extracting

coding sequences, building homology lists, filtering tandem repeats, and running SynFind algorithm. The last step assembles the processed data into a master

table. This strategy is similar to the “Map-Reduce” paradigm used in parallel computing.
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Conclusions

SynFind fills the current gap of algorithm that performs syn-

tenic gene queries and compiles matching set of genomic

regions on-the-fly. SynFind identifies all syntenic regions to a

given gene in a user-selected set of genomes, regardless of

whether the gene is still present in that region. SynFind is

powered by an algorithm that calculates synteny score be-

tween a pair of regions. Performance-wise, SynFind has

higher sensitivity but lower purity compared with competing

tools when validated against manually curated sets. Feature-

wise, SynFind contains several key functions not typically

found in existing systems (table 1). Integrated with the

CoGe online platform and powered by the iPlant project,

syntenic queries can now be performed in an interactive

manner and retrieved for downstream analyses through

SynFind in a scalable and reproducible manner. SynFind is

an important tool for assessing genome dynamics including

gene transpositions, impact of genome duplications, and cor-

relation to functional changes across a set of related taxa of

interest.

Data Availability

SynFind is available for use through a web-based interface in

CoGe. Data sets used in benchmarking SynFind with related

tools are available on figshare with the following public DOI:

. Tang, Haibao (2015): SynFind supporting data: Benchmark
on three curated syntenic gene sets. figshare. http://dx.doi.
org/10.6084/m9.figshare.1589735 (last accessed
November 30, 2015)
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