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ABSTRACT 

Genomes undergo mutation during evolution. Out of several mutational events, large-

scale mutations, called genome rearrangements, mainly contribute to large-scale 

structural changes in chromosomes. My study of genome rearrangements mainly 

concentrates on identifying chromosomal evolutionary breakpoint regions and connects 

these to changes gained by each species during the course of evolution. In this thesis, I 

first focused on comparative genome analysis of seven mammalian genomes and 

discovered 192 evolutionary breakpoints in the pig genome. Subsequently, an extensive 

study demonstrated how chromosomal rearrangements produced variations in the gene 

networks potentially used by natural selection for adaptation. Thereafter, I developed a 

novel computational tool which uses a statistical method to find breakpoints in 

chromosomes with respect to various genome attributes, such as genome size, assembly 

type, and the phylogenetic relationship between species. The published cattle EBR 

dataset was used to test the algorithm, in which I was able to classify upto 95.55% of 

cattle specific EBRs. The comparative analysis of avian genomes demonstrates that 

there are lower rates of chromosome evolution as well as the presence of lower 

fractions of transposable elements in bird genomes compared to mammals. Our study 

revealed enrichment for Gene Ontology terms related to regulation of gene expression and 

biosynthetic processes in bird, crocodile and turtle HSBs. The archosaurian HSBs were 

found enriched for genes that are responsible for the similar retina structures in birds 

and crocodiles, while the avian HSBs contain genes involved in the bird skeleton and 

limb development. Moreover, the analysis of gene content in and around avian EBRs 

revealed enrichments for genes related to lineage-specific phenotypes, such as the GO 

terms “regionalisation” in the Adelie penguin and “forebrain development” in the Budgerigar. 

Our findings shed light on mechanisms underlying adaptation, development, and 

evolution at the genomic level. 
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1. INTRODUCTION 

A species genome is constantly changing in evolution to adapt the host organism to the 

ever-changing environment. Over time, genomes accumulate information about their 

evolutionary history. In animals, this information is passed to the next generations 

through cell division in the process called “meiosis”. For a long time it was believed that 

the main evolutionary changes in genomes that have adaptive values are small changes 

in the coding parts of genes (“single nucleotide mutations”) leading to changes of amino 

acids in proteins (Ackers and Smith 1985, Ng and Henikoff 2006). These, so called 

“point” mutations do indeed affect gene products by producing aberrant and non-

functional proteins (mis-sense mutations), or by changing the physical properties of 

proteins (non-synonymous mutations) (Miyata et al. 1979, Betts and Russell 2003). If a 

gene accumulates too many non-synonymous mutations, the resulting protein could 

even change its function compared to the original protein leading to the birth of a novel 

gene and protein (Hoyle and Wickramasinghe 2000). With the growing understanding of 

genome function and evolution, it became clear that in addition to the point mutations 

other events might play an important role in the adaptive changes of organisms. One 

type of such event is the structural DNA changes called “chromosome rearrangements” 

(Griffiths et al. 1999). This event affects the order and position of genes in 

chromosomes and is often associated with gene duplications and deletions that occur at 

their boundaries (so called evolutionary breakpoint regions (EBRs). While the nature 

and mechanism of chromosome rearrangement formation are different from those of 

point mutations, multiple evidence collected from different taxa show that these events 

also play a crucial role in genome evolution and organism adaptation (Crombach and 

Hogeweg 2007, Bovine Genome et al. 2009, Larkin 2012). In addition, the exploration 

of the rearrangement history of a set of genomes allows for an in-depth understanding 

of the evolutionary history of the corresponding organisms (William J Murphy et al. 

2005). Therefore, a study of genome organisation and chromosomal rearrangements 

using whole genome sequences is important to better understand the evolutionary 

history of organisms and ways of adaptations in clades and individual lineages. 

There has been a long debate about whether chromosome rearrangements contribute to 

speciation and adaptation (Ohno 1973, King 1995, Loren H Rieseberg 2001, Pérez-

Ortı́n et al. 2002, Navarro and Barton 2003, F. J. Ayala and M. Coluzzi 2005, Butlin 
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2005, Brown and O'Neill 2010, Faria and Navarro 2010, Chang et al. 2013, Ayala et al. 

2014, Hou et al. 2014). While some chromosome rearrangements most likely contribute 

to the speciation process by building reproduction barriers between populations in 

lower taxa (Sites and Moritz 1987, Noor et al. 2001, Loren H Rieseberg 2001), their 

contribution to speciation and adaptive changes in higher taxa is still unclear (White 

1969, Bush et al. 1977, Jian Lu et al. 2003, Navarro and Barton 2003, Faria and Navarro 

2010, Servedio et al. 2011).  

Recently, several genome sequencing projects have provided us with high quality 

genome sequences. These genomes of phylogenetically-related and distinct species are 

assembled to chromosomes or scaffolds and provide the basis for a detailed exploration 

of genome dynamics. The genomic information can be used to better understand the 

changes in the genomic architecture of organisms which happen during the course of 

evolution. In addition, genome resources provide a means for addressing questions 

about the influence of genomic rearrangements on adaptation in higher taxa at a new 

level (Pevzner and Tesler 2003b, W. J. Murphy et al. 2005, Larkin et al. 2009, Ruiz-

Herrera et al. 2012).  

The various novel computational methods and tools1 have been recently developed to 

identify regions of shared synteny i.e., homologous synteny blocks (HSBs), and EBRs 

among the growing number of sequenced genomes of different species (Bourque et al. 

2004, Ruiz-Herrera et al. 2004, Ruiz-Herrera et al. 2006, Larkin et al. 2009, Farre et al. 

2011). The molecular and computational analysis of EBRs has revealed that they are not 

randomly distributed in genomes, but tend to cluster in break-prone genome intervals 

i.e., in hotspots of genome rearrangements (Bourque et al. 2004, Ruiz-Herrera et al. 2004, 

Ruiz-Herrera et al. 2006, Larkin et al. 2009, Farre et al. 2011). The EBRs are associated 

with several genomic features such as gene-rich regions (Everts-van der Wind et al. 

2004, Ma et al. 2006), chromosome fragile sites (Ruiz-Herrera et al. 2006), and an 

elevated frequency of segmental duplications and repetitive elements (Bailey et al. 2004, 

William J Murphy et al. 2005). It addition, the GC content and CpG islands were found 

enriched in chicken EBRs. This, therefore, could highlight a potential role for these 

genomic features in evolutionary instability of genome structures. The evolutionary 

features mentioned above have nourished a growing fascination in chromosomal 

                                                      
1 http://bioinformaticsonline.com/blog/view/4574/tools-to-detect-synteny-blocks-regions-among-
multiple-genomes Accessed: 14/10/2014  

http://bioinformaticsonline.com/blog/view/4574/tools-to-detect-synteny-blocks-regions-among-multiple-genomes
http://bioinformaticsonline.com/blog/view/4574/tools-to-detect-synteny-blocks-regions-among-multiple-genomes
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evolution, particularly on the relationship between chromosome rearrangements and 

species adaptation to the environment. 

Although tremendous progress has been made in recent years towards determining the 

relationship between EBRs and various sequence features and their association with 

probable mechanisms of chromosome breakage in evolution (William J Murphy et al. 

2005, Ruiz-Herrera et al. 2006, Gordon et al. 2007, Larkin et al. 2009, Larkin 2012, Farré 

et al. 2013, Bose et al. 2014), the role of EBRs in adaptation to the environment is 

unclear. Henceforth, this poses several fundamental questions: How does one detect 

and classify EBRs across phylogenetically related species? Can EBRs be accurately 

classified using a statistical framework? Are EBRs enriched for genes underlying 

adaptation of species to the ever changing environment? 

 

Recent molecular and computational advances, coupled with the availability of amniote 

(reptile, avian and mammalian) whole genome sequences 2  make it possible to start 

addressing the above mentioned questions. Hence, the main objective of this thesis was 

to understand how chromosome rearrangements affect amniotes evolution, focusing 

mainly on the relationship between chromosomal rearrangements and adaptation to the 

environment. This work therefore focuses on the detection and classification of EBRs 

and the role of evolutionary rearrangements in clade and species-specific biology in two 

classes – mammals (using pig as an example) and reptiles (using comparison of genomes 

from 21 bird species). The main objective can be sub-divided into three specific aims:  

 

1. Identify chromosome rearrangements and detect pig-specific EBRs to elucidate 

their influence on the pig lineage-specific biology. 

2. Develop a novel computational algorithm to automatically detect and assign 

EBRs to phylogenetic nodes by taking into account phylogenetic relationships 

of the genomes involved in the analysis. 

3. Application of the novel tool developed to the detection and study of the role of 

rearrangements in de novo sequenced bird genomes. 

The work presented in this thesis has permitted the first computational analysis of the 

relationship between chromosome organisation, genome rearrangements, and 

                                                      
2 https://genome10k.soe.ucsc.edu/ Accessed: 14/10/2014  

https://genome10k.soe.ucsc.edu/
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adaptation in pigs and birds. Overall, several scientific findings and a computational 

method will be reported:  

 The application of comparative genomics methods to several mammalian 

genomes revealed a large number of EBRs in the pig lineage and their impact on 

the pig genome evolution. 

 

 The development of a novel algorithm to identify EBRs and assign them to 

proper phylogenetic nodes. The algorithm was implemented into a user-friendly 

tool which identifies and assigns EBRs to phylogenetic nodes based on the 

phylogenetic relationships provided by user or downloaded from the NCBI. 

 

 The use of the algorithm for the comparative study of 21 avian, and five non-

avian species to address fundamental questions of genome organisation and 

chromosome evolution in birds and reptiles. 

 

This thesis is organised and proceeds as follows: 

 

 The chapter 2 will cover an in depth literature review on the genome structure, 

genome organization followed by an introduction to genome mapping 

techniques. It then covers a general background of genome evolution, synteny, 

and chromosomal rearrangements. 

 

 The work described in the chapter 3 covers the pig chromosome evolution 

analysis using seven sequenced and assembled mammalian genomes. This 

chapter focuses on the chromosomal rearrangement events that have occurred 

in artiodactyl species with a particular focus on the evolutionary events present 

in the pig genome. It also covers the computational analysis of the gene content 

in and around pig EBRs and demonstrates that chromosomal rearrangements 

introduce changes in the gene networks and these changes are likely to be used 

by the natural selection for adaptation. 

 

 Chapter 4 introduces and discusses the algorithm developed to perform an 

automated identification and classification of EBRs from a large number of 
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genomes taking into account their phylogenetic relationships. This software tool 

named as “Evolutionary Breakpoint Analyzer” (EBA) can be used not only for 

the genomes assembled to chromosomes, but also with the genomes that have 

fragmented scaffold-based assemblies. 

 

 Chapter 5 covers the application of the EBA tool to a set of 21 avian, and five 

non-avian genomes. The EBA tool detects and classifies lineage- and group-

specific EBRs. Later, the enrichment analysis for transposable elements (TE) 

and genes related to lineage-specific phenotypes were done and patterns similar 

to those observed in mammalian genomes were observed. Our first 

comprehensive and large scale genome analysis of bird and reptile genome 

rearrangements provides a resource for studying the nature of karyotype stability 

in birds. In addition, our results demonstrate how the chromosome 

rearrangements could have contributed to the maintenance of ancestral and 

formation of novel phenotypes in reptiles. 

 

 Finally, chapter 6 is an in depth discussion of the results presented in this thesis 

and outlines some future directions. 
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2. LITERATURE REVIEW 

SECTION 1: GENOME STRUCTURE AND MAPPING 

1.1 AMNIOTE GENOME: AN OVERVIEW 

The nuclear genome is composed of deoxyribonucleic acid (DNA), which holds 

information about an organism’s development, physiology, and evolution. Additionally, 

eukaryotes also bear organelles genomes contained within mitochondria and chloroplast. 

(Schwartz and Dayhoff 1978). Each genome of an organism contains genes that encode 

for proteins with particular structures and functions, and these proteins are a building 

block of living organisms. The phenotype of any organism is determined by their 

genetic makeup and the environmental pressures to which the organism is subject. Both 

the number of base pairs and the number of genes vary widely from one species to 

another, and there is only a rough correlation between the two, an observation known 

as the C-value paradox (Thomas Jr 1971). At present, the organism with the most 

known genes is the trichomoniasis-causing protozoan, which has a genome containing 

approximately 60,000 genes, almost three times as many as found in the human 

genome3. In the early 1970s the discovery of non-coding DNA resolved the question of 

the C-value paradox to some extends (Thomas Jr 1971, Elgar and Vavouri 2008). It has 

been hypothesised that genome size does not reflect the number of genes in eukaryotes. 

This is because most of the DNA is non-coding (i.e., does not code for proteins) and 

henceforth does not consist of genes. Such cases are clearly visible in the human 

genome, in which protein-coding regions comprise less than 2% of the nuclear genome. 

However, the Encyclopedia of DNA Elements (ENCODE) 4  project has built a 

comprehensive list of functional elements in the human genome and states that while 

the gene coding portion of the genome is only 2% of base pairs, 80% of the human 

genome is still comprised of “functional DNA” (Consortium 2004). These functional 

DNA regions or elements are biologically relevant; they may be promoters or parts of 

other regulatory elements. Moreover, a positive correlation between biological 

complexity and the amount of non-coding DNA has been reported, which suggests 

                                                      
3 http://www.genomesize.com/statistics.php 
4 https://www.encodeproject.org/  

http://www.genomesize.com/statistics.php
https://www.encodeproject.org/
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introns, intergenic sequences, repeat elements have far more importance than thought 

previously (Taft and Mattick 2004). 

 

Prokaryotes are distinguished from eukaryotes in many ways. In the genetic material of 

prokaryotes is not bound by a membrane, whereas eukaryotic cells contain membrane-

bound organelles, such as the nucleus. Additionally, the differences in cellular structure 

of prokaryotes and eukaryotes include the presence of mitochondria and chloroplasts, 

the cell wall, and the structures of their chromosomal DNA. Prokaryote genomes 

contain only a single loop of stable chromosomal DNA stored in an area named the 

nucleoid, whereas eukaryotic genomes are tightly bound and organised into 

chromosomes found within the nucleus. Prokaryotic genes lack intron and the majority 

of their genomes code for proteins, whereas a large portion of eukaryotic genome does 

not encode for proteins or transcribed RNA.  Prokaryotic genes  are expressed in 

groups known as operons, while eukaryotes express genes individually (Lodish 2008). 

The amniotes, which includes turtles, lizards, birds, dinosaurs, and mammals, last shared 

a common ancestor approximately 310 MYA and diversified dramatically during the 

Carboniferous period (Deakin and Ezaz 2014). Amniotes have been laying eggs for 

millions of years. Their eggs consist of a membrane bound shell filled with an amnios to 

prevent developing embryos from drying out. These adaptations enable them to lay eggs 

on land rather than in water as anamniotes do.  While most modern mammal do not lay 

eggs, one group of mammals, the monotremes, still do (Hall 2008). The amniote 

embryos are protected and aided by several membranes. These membranes contain the 

amniotic sac that surrounds the foetus in eutherians (placental mammals). The first 

known basal amniotes resembled small lizards. The unique ability of small lizard eggs to 

survive out of water, "breathe", and cope with wastes empowered amniotes to diversify, 

adapt to drier environments, and evolve into larger forms (Hall 2008). Interestingly, 

despite the common origin of amniote lineages, they have strikingly different 

chromosomes (Figure 2.1). This genomic diversity directly suggests that amniote 

genomes have undergone a considerable amount of chromosomal rearrangement since 

they last shared a common ancestor (Deakin and Ezaz 2014). 
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Figure 2.1 Amniote phylogeny with representative karyotypes. The haploid 

chromosome number and range are indicated on respective branches. The micro-

chromosomes are denoted by a dark grey colour (Deakin and Ezaz 2014). 

Genomics has been a boon to evolutionary biologists, as it has enabled the exploration 

of the evolution of genomes amongst taxa such as amniotes. Compared to other 

animals, avian have fewer repetitive elements, lower GC content, and genome size 

variation, and they also have comparatively small genomes as well (Shedlock et al. 2007). 

Such cases are also reported in alligator and turtle, in which the genome sizes are 30% 

smaller than human (David W Burt et al. 1999). Additionally, alligator, turtles, and 

chicken genomes have a significant number of micro-chromosomes (David W Burt et 
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al. 1999). Avian genomes are gene rich, as reported in chickens (Ellegren 2005). Soft-

shelled turtles exhibit an extinction of repetitive elements (Shedlock et al. 2007). 

1.2 GENOME ORGANISATION 

The genomic DNA segments that encodes for a polypeptide or a functional RNA are 

called genes. Genes are sometime also called “protein coding DNA”, but recently it has 

been determined that a gene does not need to code for a protein. The flow of genetic 

material from DNA to RNA to protein is known as the central dogma of biology. In 

other words, “DNA makes RNA, RNA makes proteins, which in turn facilitate the 

previous two steps as well as the replication of DNA” with a few notable exceptions. 

The entire process is further broken down into the following steps: transcription, 

splicing, translation, and replication. The first step is transcription, in which a section of 

DNA is transferred to a newly assembled piece of messenger RNA (mRNA) by RNA 

polymerase and transcription factors. In eukaryotic cells the primary transcript (pre-

mRNA) is processed, and one or more sequences (introns) are cut out via the 

mechanism of alternative splicing. Thereafter, the mature mRNA is read by the 

ribosome as triplet codons. Triplet codons usually begin with an AUG, or initiator 

methonine codon downstream of the ribosome binding site. Complexes of initiation 

factors and elongation factors bring aminoacylated transfer RNAs (tRNAs) into the 

ribosome-mRNA complex, matching the codon of the mRNA to the anti-codon of the 

tRNA, thereby adding the correct amino acid into the sequence encoding the gene. The 

final element of the Central Dogma is transmission of genetic information from parents 

to progeny, that is, the DNA must be replicated faithfully. Replication is carried out by a 

complex group of proteins that unwind the double-stranded DNA helix, and, using 

DNA polymerase and its associated proteins, copy or replicate the master template itself 

so the cycle can be repeated, from DNA to RNA to proteins in a new generation of 

cells or organisms. 

 

In order to store the entire genome within the microscopic nuclear space, DNA 

molecules must undergo many levels of structural and biochemical compactisation 

resulting in discrete nuclear 'environments’ (Figure 2.2). Moreover, this complex 

genome organisation must be dynamically responsive as cells go about the process of 

producing functional proteins and respond to environmental challenges. In other words, 
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the genome should be organised in such a way that the execution of various biological 

processes such as gene expression, protein interaction and gene regulation should be 

possible. Moreover, the genome organisation, expression and regulation complexities 

increase with chromosome numbers and also with the number of genes present in an 

organism (Assis et al. 2008). The condensed and systematically packed chromosomes in 

nucleus have special spatial organisation with territories, which tend to change with 

increased gene expression and after chromosomal rearrangements (Finlan and Bickmore 

2008). 

 The high resolution mapping technologies for spatial chromatin structure such as 

chromosome conformation capture (3C), circular chromosome conformation capture 

(4C), 3C-carbon copy (5C), hydrophobic interaction chromatography (HiC), tethered 

conformation capture (TCC) techniques guide researchers in exploring spatial genome 

organisation with respect to structure and functions (Göndör and Ohlsson 2009, Belton 

et al. 2012, Gibcus and Dekker 2013). Even before the above mentioned high-

throughput molecular biology methods, the microscopy and ChIP (chromatin 

immunoprecipitation) was the main approach to study arrangement of chromosomes 

and their interactions in the nucleus. The newly developed 3C technique combined with 

ultra-high-throughput DNA sequencing, dramatically increased the scale relative to the 

ChIP method, at which physical interactions between genomic elements can be studied 

(Splinter et al. 2004). The 4C is an upgraded version of 3C which allows for the 

detection of unknown DNA regions of interaction with the region of interest (Ohlsson 

and Göndör 2007). The 5C, a high-throughput version of 3C for large-scale mapping of 

chromatin interaction networks, which employs quantitative DNA sequencing using 

454-technology or microarray as detection methods (Dostie et al. 2006). In order to 

enable the research community to adopt 5C, to study, visualise and analyse the large 

chromatin interaction a new technology the 'my5C' 5  has been developed. It allows 

detailed insights into the three-dimensional arrangements of complete genomes at 

kilobase resolution (Lajoie et al. 2009). Later, a genome-wide and unbiased method, Hi-

C technology, came into existence which combines 3C with deep sequencing. In other 

words, the 5C method is more or less similar to Hi-C but the comparison is genome 

wide. These techniques enabled scientists to reveal both known hallmarks of nuclear 

organization such as chromosome territories formation, and preferred co-locations of 

                                                      
5 http://my5c.umassmed.edu/welcome/welcome.php 
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particular pairs of chromosomes, as well as novel folding principles of chromosomes 

(Van Berkum et al. 2010, Nagano et al. 2013). In addition, the new molecular biology 

techniques and recently completed genome projects are assisting to reveal a great deal 

about how genomes are organised, expressed and genes are regulated in a cell (Belton et 

al. 2012). A recent study by Dixon et al. reported that topological boundaries of 

chromatin interaction are enriched for an insulator binding protein, housekeeping genes 

and short interspersed elements (SINE) retro-transposons suggesting their  role in 

establishing the topological domain structures of the genome (Dixon et al. 2012). 

Additionally, the genome organisation study also reveals the modular organisation and 

their triggering effect on dynamic chromosome structure and role in genome activity 

(Nagano et al. 2013). The genomic spatial heterogeneity and their contribution in 

recurrent chromosomal translocations have also been reported, in which translocation 

was found to be significantly enriched in cis along single chromosomes containing target 

DNA double-strand breaks (DSBs) and within other chromosomes and sub-

chromosomal domains. These findings suggest the role of spatial heterogeneity, which 

allowed recurrent DSBs to drive translocation (Zhang et al. 2012). Moreover, the recent 

ENCODE project has also reported hundreds of long range interactions, which show 

strong correlation between gene expressions and the region of functional classes such as 

enhancers (Malin et al. 2013). In ENCODE they reported 2,324 and 19,813 genes 

involved in “single-gene” enhancer-promoter interactions and “multi-genes” 

interactions complex respectively. The multigene complexes found spanned up to 

several megabases, including promoter-promoter and enhancer-promoter interactions 

(Birney 2012, Hoffman et al. 2012). 

Every living organism possesses a genome which contains the encrypted biological 

information needed to construct and maintain a living organism. This cellular life form’s 

genome is made up of DNA (deoxyribonucleic acid), with a few exceptions like viruses 

have ribonucleic acid (RNA) genomes (Brown 2002). The DNA and RNA are 

polymeric molecules made up of chains of monomeric subunits called nucleotides 

(Watson and Crick 1953). The extensively studied, explored, and annotated human 

genome, is in many respects a fairly good model for eukaryotic genomes and analytical 

studies in general. All of the studied eukaryotic nuclear genomes are divided into two or 

more linear DNA molecules, each organised and arranged in a different chromosome 

(Pray 2008).  In addition to the nuclear genetic material, the eukaryotes also possess 
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smaller and circular mitochondrial genomes with very few known genes (Cooper and 

Hausman 2000) . However, the human genome is not suitable to illustrate unique plant 

photosynthetic organelles which were specifically located in the chloroplasts of each 

plant cell nucleus. 

All discovered and cytogenetically studied eukaryotes organisms are known to have at 

least two chromosomes with linear DNA molecules without any exceptions (Strachan 

and Read 1999). However, the only known variability noticed at this level of prokaryotic 

and eukaryotic genome structure lies with the number of chromosomes, which appears 

not to be correlated to the biological features of the organism (Pray 2008). Later, the 

structural genome organization and packaging system were further explored to better 

understand these complex mechanisms. 

1.2.1 Packaging of DNA into chromosomes  

The DNA molecules are much longer than the chromosomes they packed in. 

Henceforth, in order to store large DNA molecule a highly organised and sophisticated 

biological packaging mechanism were deployed to keep all of DNA molecules in 

chromosomes. To understand this complex biological packaging mechanism, Clark and 

Felsenfeld in 1971 carried out research on nuclear protection and organisation using 

biochemical analysis and electron microscopy techniques (Clark and Felsenfeld 1971). 

They used DNA-histone complexes to understand the packaging of single uninterrupted 

molecule of DNA which is tightly bound to a group of small, essential proteins called 

histones (Clark and Felsenfeld 1971). The DNA in the eukaryotic nucleus exists mainly 

in combination with histone proteins. These DNA–histone biological complexes with 

other protein that makes up the chromosome are termed as “chromatin”. The 

chromatin, half DNA and half protein, can be envisioned as a repeat of structural units 

called “nucleosomes” which appeared similar to beads on a string through electron 

microscope (Figure 2.2) (Kornberg 1974). A nucleosome core particle is composed of 

histone octamer (H2A, H2B, H3, and H4) plus the DNA that wraps around the 

octamer in a left-handed supercoil in about 1.75 turns which encloses about 146bp 

(Clark and Felsenfeld 1971). Histone octamer H1 is a linker which works along with 

linker DNA  (the DNA in between two nucleosome core particles) to physically connect 

the adjacent nucleosome core particles (Van Hoide et al. 1974, Wolffe 1998, 

Schwarzacher and Heslop-Harrison 2000). 
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The 30nm chromatin fibre is formed in the nucleus during interphase, the period 

between nuclear divisions (Luger and Hansen 2005, Woodcock 2005). The DNA adopts 

a more compact configuration during the nuclear division and packaging, resulting in 

the highly condensed metaphase structure. These condensed and compact structures 

can be seen with the light microscope, which have the appearance generally associated 

with the word 'chromosome'. In most of the bacteria these chromosomes are single in 

number and size 2 to 4.6 Mbp with up to 8288 genes (E. Coli). However, the 

chromosome size is much larger in eukaryotes which might go up to 1440 

chromosomes as in Ophioglossum reticulatum (Khandelwal 1990, Grubben 2004)6. 

 

Figure 2.2 Packaging of DNA molecule. The chromatin (DNA-histone complexes) has 

a highly complex structure with several levels of structural compactisation. The simplest 

level is the double-helical structure of DNA. The image was adapted from (Purves et al. 

2003). 

The cells in an organism contain the highly ordered and packed DNA content; however 

the expression activity of genes in a genome changes during organism development 

leading to formation of specialised cells and tissues. Moreover, the spatial organisation 

                                                      
6 http://www.genomesize.com/  

http://www.genomesize.com/
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studies indicate that chromosomes occupy distinct territories in the eukaryotic nucleus 

(Cremer and Cremer 2010). The gene expression regulation is seems to be correlated to 

the folding pattern and territories (Pederson 2004, Bártová and Kozubek 2006, Cremer 

and Cremer 2010, Halverson et al. 2014). The gene rich and poor regions tend to occupy 

different nuclear areas (Tanabe et al. 2002, Cremer and Cremer 2010). However, the 

dynamic organisation of chromosomes and repositioning of genome within territories 

are believe to play an important role in gene expression (Gasser 2002). The spatial 

organisation or the “3D genome organisation” bring together the genes located on 

different chromosomes, which is called as ‘gene kissing’ (Lanctôt et al. 2007, Bantignies 

and Cavalli 2011). These gene-gene interactions either contribute to transcriptional 

silencing (Francis et al. 2004) or activation (Lomvardas et al. 2006) or epigenetic gene 

network regulation (Murrell et al. 2004). It has also been reported that silencing or 

mutation in one of the kissing pair gene can affect the expression of the pair (Zhao et al. 

2006).  Moreover, the mounting biological evidence indicates the role of spatial 

organization of the genome, and their role in biological gene networks (Smallwood and 

Ren 2013). However, the chromosomal organization and dynamic nature of chromatin 

still a puzzle and scientist are trying to explore more about how these orchestrate vital 

role in the maintaining biological systems and controlling gene activity. 

1.2.2 Genes 

1.2.2.1 Gene duplication 

Any set of two or more similar genes in one genome with similar biochemical function 

is known as gene family. These are generally formed by gene duplication, also known as 

chromosomal duplication or gene amplification (Figure 2.3) (Ohno 1970). The 

amplification might involve either large DNA segments or individual genes or exons 

(Betrán and Long 2002). Various natural biological events, such as homologous 

recombination, chromosome duplication, and retrotransposition events, promote the 

formation of new gene families (Meyer and Schartl 1999, Jiang et al. 2004, Volff 2006, 

Ranz et al. 2007). The duplicated gene families and their ancestry are generally identified 

using rigorous sequence similarities, phylogenetic analysis, and functional analysis 

techniques. Furthermore, these duplicated gene families and their ancestry are verified 

by examination of their  secondary or tertiary structural organisation, which is conserved 

even if the sequences have diverged considerably (Roth et al. 2007). The expansion or 
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contraction of gene family that appears in lineage or order might be due to natural 

selection or random changes (Hahn et al. 2005, Demuth et al. 2006). One recent study 

found between ten and thousands of gene are duplicated every millions years 

throughout the vertebrate genome and reported that over the last 200 Myr the rate of 

duplication was 0.00115 Myr1 (Cotton and Page 2005). 

 

 

Figure 2.3 Schematic representation of evolution of gene family. The unequal crossing 

over generates new gene families. I) An initial duplication of a single copy region 

demonstrates an unequal crossing over event and the two products that are generated. 

One product is deleted and the other is duplicated for the same region. In this example, 

the duplicated region contains a second complete copy of a single gene. The blue dot 

indicates the genetic exchange site. II) Expansion from a two repeat cluster illustrates a 

second round of unequal crossing over that can occur in a genome that is homozygous 

for the original duplicated chromosome. In this case, the crossover event has occurred 

between the two copies of the original gene. The vertical blue line indicates the region 

of pairing and the cross-over site. Only the duplicated product generated by this event is 

shown. Over time new gene members can diverge into new gene families. 

Gene duplication plays an important role in evolution; it is one source of the raw 

material from which natural selection produces adaptations in response to 

environmental conditions (Yamanaka et al. 1998, Hughes 2002, Zhang 2003, Bailey et al. 

2004, W. J. Murphy et al. 2005, Larkin et al. 2009). Some notable examples of adaptation 

via selection on duplicated genes include accelerated expansion of immune-related 

genes, which were previously known to be evolving in mammalian genome (Barreiro 
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and Quintana-Murci 2009, Elsik et al. 2009). The Toll-like receptors (TLRs) play a key 

role in the innate immune system, which have been reported in eutherian mammals 

(Armant and Fenton 2002). The expansion in TLRs family occurred in mammals 300 

Mya (Beutler and Rehli 2002), birds 147 Mya (Brownlie and Allan 2011), and in chicken 

as recently as 65 Mya (Temperley et al. 2008), producing TLR2A and TLR2B (Temperley 

et al. 2008). The comparative mammalian genome analysis reported accelerated 

evolution in certain families, such as cathelicidin in cetartiodactyl, and β-defensins and 

C-type lyzozymes in ruminants. Moreover, the I interferon (IFN) and interferon tau 

(IFNT) genes have been duplicated in the pig and cattle genomes respectively (Elsik et 

al. 2009). 

Orthology and paralogy are both evolutionary concepts that are defined by speciation 

and duplication events. Orthologous genes are genes that have become distinct copies 

through a speciation events (Lechner et al. 2014). Similarly,  copies of genes that arise 

through duplication events are paralogs (Jensen 2001). In order to detect orthologs, 

several algorithms, tools such as orthobench (Trachana et al. 2011), BLASTO (Zhou and 

Landweber 2007), OrthoMCL (Li et al. 2003), OrthoSelect (Schreiber et al. 2009), 

MSOAR 2.0 (Shi et al. 2010), OrthologID (Chiu et al. 2006), MetaPhOrs (Pryszcz et al. 

2010), PHOG (Datta et al. 2009), have been implemented. Most of the commonly used 

tools implement phylogenetic approaches to reconstruct the best evolutionary view of 

orthologous and paralogous relationships (Trachana et al. 2011). The tools with tree 

reconciliation algorithms are expected to provide fine-grained predictions but are 

computational very expensive and not free of artefacts. 

Depending on the number of genes found in each species, EnsEMBL classifies the 

genes and differentiates them into one2one, one2many and many2many relationships (Figure 

2.4). The one2one label indicates that one copy of the gene is present in both species; 

whereas one2many represent occurrences of one gene in one species and its multiple 

duplications in another species. The many2many label denotes the occurrences of 

multiple duplications within a gene family in both species being compared. The apparent 

one2one homologs were counted in the one2one homologs list.  
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Figure 2.4 Schematic gene tree of homolog relationships between Homo sapiens (Hsap) 

and Mus musculus (Mmus) genes. These pairwise relationships between genes can be 

inferred with EnsEMBL’s GeneTree algorithms. The duplication nodes are denoted by 

red, whereas speciation nodes are blue. Orthologous and paralogous relationships are 

indicated by coloured lines. The one2one relationship indicates the presence of one copy 

of a gene in both species; whereas one2many relationships represent occurrences of a 

single gene in one of the species and many copies of the same gene with similar function 

in other species. The many2 many denotes the occurrences of multiple genes in both the 

species for single functions.7 

1.2.2.2 Gene ontology and enrichment analysis 

The several ongoing projects discussed above and availability of many annotated 

genomes empower the biological science with enormous data, but also cause confusion 

regarding the annotation, expression, and protein products of genes (Lewis 2005). The 

Gene Ontology (GO) consortium, therefore, has come into existence to rescue, unify 

and manage the huge amount of biological information with a certain set of well-defined 

and universal vocabularies for biological domains (Ashburner et al. 2000, Consortium 

2008). These consortiums believe in the fact that certain biological functions are shared 

                                                      
7 http://www.ensembl.org/info/genome/compara/homology_method.html  

http://www.ensembl.org/info/genome/compara/homology_method.html
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amongst eukaryotes and that those functions slowly evolve over time (Ashburner et al. 

2000). In other words, there is a unified universe of genes and their products that are 

dispersed across living organism. For example, such unified and important biological 

processes are DNA replication, transcription, and metabolism, which are functionally 

conserved across all eukaryotes. In order to systematically manage all this information, 

three main extensive ontologies have been designed to describe the molecular function, 

biological processes, and cellular component8 of genes. The GO consortium keeps all 

the GO data cross-linked with several genes and protein keyword databases in the 

public domain, which can be further scrutinised by scientists around the world and thus 

improve over time 9  (Ashburner et al. 2000, Hill et al. 2008, Consortium 2010, 

Consortium 2013). 

Despite having highly curated and freely available GO data, scientists need some 

specialised tools and software to capture localised genes and their products with 

annotation references. GO data is most often accessed with some specialised software 

developed by the GO consortium, such as AmiGO (Carbon et al. 2009), QuickGO 

(Binns et al. 2009), GO browse, etc. Similarly, several other independent pieces of 

software have been developed by research groups to accomplish their GO analysis 

research, and such common software and tools are mentioned in table 2.1. In addition, 

some tools like GOFigure (Khan et al. 2003) and Goblet (Groth et al. 2004) have been 

developed to automate the annotation of GO terms (Zhou et al. 2005). 

 

 

 

 

 

 

                                                      
8 http://www.geneontology.org/GO.doc.shtml 
9 http://www.geneontology.org   

http://www.geneontology.org/GO.doc.shtml
http://www.geneontology.org/
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Table 2.1 List of GO analysis and visualisation tools, open source software, plugins, 

modules and web servers 

Tool name  Remarks 

BiNGO (Maere et al. 2005) Biological Networks Gene Ontology tool 

(BiNGO) is an open-source Java tool 

FatiGO (Al-Shahrour et al. 

2004) 

Web application, FatiGO, allowing for easy 

and interactive querying 

MAPPFinder (Doniger et al. 

2003) 

Gene Ontology and GenMAPP to create a 

global gene-expression profile 

GO:TermFinder (Boyle et al. 2004) Identify GO nodes that annotate a group 

of genes with a significant p-value 

GOStats (Beißbarth and 

Speed 2004) 

Find statistically overrepresented Gene 

Ontologies within a group of genes 

GOTree Machine 

(GOTM) 

(Zhang et al. 2004) Web-based platform for interpreting sets 

of interesting genes using Gene Ontology 

hierarchies 

AmiGO (Carbon et al. 2009) Online access to GO consortium database 

GOEAST (Zheng and Wang 

2008) 

Web-based software toolkit for Gene 

Ontology enrichment analysis 

ClueGO (Bindea et al. 2009) Cytoscape plug-in to decipher functionally 

grouped gene ontology and pathway 

annotation networks 

DAVID (Dennis Jr et al. 

2003) 

Database for annotation, visualisation, and  

integrated discovery 

CLENCH (Shah and 

Fedoroff 2004) 

Calculate Cluster ENriCHment using the 

Gene Ontology 

EasyGO (Zhou and Su 

2007) 

Gene Ontology-based annotation and 

functional enrichment analysis tool for 

agronomical species 

 

Several tools and web server have been developed to recognise genes and their product, 

which invariably contributes to a better understanding of complex biological processes. 

Each tools has several advantages over others. For example, the Biological Networks 
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Gene Ontology tool (BiNGO)(Maere et al. 2005) is an open-source Java tool that is easy 

to use and provides interactive cytoscape10 visualisation interface, whereas Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (Dennis Jr et al. 2003) is a 

web based server with cross connectivity with multiple databases, Ids conversion, and 

pathway analysis features. The Perl module GO:TermFinder has also have been 

developed to analyse GO term with significant P-values (Boyle et al. 2004). Similarly, 

ClueGO also come into existence to decipher functionally grouped gene ontology and 

pathway annotation networks (Bindea et al. 2009). However, scientifically readable 

biological information about molecular systems is not only dependent on the software 

type, but also dependent upon the quality of the database being used. Therefore, 

GeneGO MetaCore was produced, which provides a highly curated database with 

interactive gene and protein analysis via a visualisation interfaces. 

 

1.2.3 Transposable elements (TEs) 

Repetitive DNA, DNA sequence with a high number of copies, is found in all 

prokaryotes and eukaryotes, and it makes up a significant fraction of the entire genome 

of most organisms (Tautz and Renz 1984, Lupski and Weinstock 1992, van Belkum et al. 

1998, Jurka et al. 2005). These significant fractions of DNA repeats in genomes are of 

two types, tandem repeats and interspersed repeats. An array or copies of adjacent motif 

DNA sequences are called tandem repeats, whereas interspersed repeats are dispersed 

throughout the genome as a single unit flanked by unique sequence. The interspersed 

repeats generally originate by a process of transposition, which is a “jumping” 

movement of DNA from one location to another in a genome, albeit with low 

frequency. Transposition can occur either directly by a cut-and-paste mechanism 

(transposons) or indirectly through an RNA intermediate (retrotransposons), such as 

short interspersed repeat elements (SINEs), long interspersed repeat elements (LINEs), 

and retrovirus-like elements with long-terminal repeats (LTRs) (Munoz-Lopez and 

García-Pérez 2010, Levin and Moran 2011). The segments of DNA with this unique 

ability to move are called TEs, also known as transposons or “jumping genes” (Figure 

2.5). These mobile elements were first discovered by maize geneticist Barbara 

McClintock, and she hypothesised that they play a regulatory role as they can move to 

different chromosomes. She also posited that they can contribute to the creation of new 

                                                      
10 http://www.cytoscape.org/  

http://www.cytoscape.org/
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genes and determine which genes are turned on and when this activation takes place 

(McClintock 1950, McClintock 1965). While, this ground-breaking finding was largely 

dismissed by the scientific community at that period, Roy Britten and Eric Davidson 

supported it and further speculated that these mobile elements not only play a role in 

gene expression regulation, but also generate different cell types and biological 

structures (Britten and Davidson 1969). Later, it was shown that TEs can inactivate any 

gene by inserting and thereby interrupting the coding part of its sequence. For example, 

insertion of an Alu retroelement into the exon of the CMP gene disrupted the normal 

open reading frame, which resulted in a lack of N-glycolyl neuraminic acid (Neu5Gc) on 

a surface of human cell membranes (Chou et al. 1998, Irie et al. 1998). Insertional 

inactivation of genes is useful for isolating mutants defective in specific functions and 

for mapping genes (Nowacki et al. 2009). Alternatively, TEs can also activate adjacent 

genes by altering the promoter or transcriptional activator to the gene. A study of 

Pseudomonas cepacia showed that the insertion of certain TEs in the upstream region of a 

poorly expressed gene can increases its expression by more than 30-fold (Scordilis et al. 

1987). 

Moreover, TEs were formerly thought to be found only in a few species, but we now 

know that TEs (both active and inactive) constitute a large amount of the DNA in many 

higher eukaryotes, 40% in human (Smit 1999), 27% in cattle (Elsik et al. 2009), and 37% 

in mouse (Chinwalla et al. 2002). Moreover, fish and bird genomes consist of 10% TEs 

(Abrusán et al. 2008), whereas the genome of C. elegans is having 12% TEs (Consortium 

1998, Stein et al. 2003). However, in some plants, such as maize, the TE percentage 

exceeds 80% of the entire genome (SanMiguel et al. 1996). These TEs are omnipresent 

in the biosphere and are self-trained to efficiently propagate themselves. Moreover, the 

impact of TEs in genomic instability and reconfiguration of gene expression networks is 

costly, as they may cause several diseases (Kazazian Jr 1998, Kazazian 2004, Reilly et al. 

2013). Approximately 0.27% of human diseases are attributed to retrotransposable 

elements (Callinan and Batzer 2006, Fedoroff 2012).  

1.2.3.1 Impact of TE in genome evolution 

Transposable elements (TEs) and their fingerprints are found throughout genomes, 

ranging from the coarsest features of genomic landscapes to gene dense regions. These 

elements are not just junk DNA or mutagens, but instead an “operating system” or 
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fertile ground for genome evolution (Biémont and Vieira 2006, Fedoroff 2012). In 

addition, as predicted by Barbara McClintock and others, TEs play a vital role in 

genome evolutions by controlling or interfering with gene structure, function, 

regulation, and expression (Tautz and Renz 1984, Lupski and Weinstock 1992, van 

Belkum et al. 1998, Jurka et al. 2005, Fedoroff 2012, Chang et al. 2013). Such alterations 

are being made by the insertion of transposons or retrotransposons into the functional 

regions of genes (Medstrand et al. 2005). This can either damage or alter the gene 

functions. For example, insertion of Alu repeats can obstruct the chromosomal pairing 

which results in unequal crossover, mediating further duplications (Chandley 1989).  

The role of TEs in the evolution of various amniote genomes, such as those of human 

(Mills et al. 2007), great apes (Warnefors et al. 2010), cow (Bovine Genome et al. 2009), 

mouse (Nellåker et al. 2012, Rebollo et al. 2012), reptiles, and birds (Kordis 2010) have 

been studied extensively. These studies show the profound impact of TEs on structure, 

function, and genome evolutions by interfering with respective genomes. It has been 

shown that some of the TEs that were found more active in non-mammalian 

vertebrates during Silurian period are the source of ultra-conserved elements within 

mammalian genomes, with some exceptions (Sela et al. 2010). In addition, the 

vertebrates exhibit a high abundance of TEs in intrinsic sequences and introns in 

comparisons to invertebrates (Sela et al. 2010) 

1.2.3.2 Activation and deactivation over the period of genome evolution 

Many TEs were reported to be inactive or active at specific periods in evolutionary time. 

As reported in the cattle genome, the non-LTR LINE retrotransposon were found 

lacking an open reading frame (ORF) suggesting their inactive nature (Malik and 

Eickbush 1998). On the other hand, a few of the BovB repeats were found containing 

intact ORF suggesting they are actively expanding and evolving in the cattle genome 

(Elsik et al. 2009). The older repeats are believed to be destroyed by insertion of new 

and highly active repeats. The bovine genome consortium reported a lower number of 

ancestral repeat families in cattle-specific EBRs, whereas there are significantly more 

repeats in ancestral EBRs (Elsik et al. 2009). These findings suggest that either repeat 

elements were more recently inserted into regions lacking ancient repeats or that older 

repeats were destroyed by such insertions. Another evolutionary study employing a 

genome-wide defragmentation approach has revealed the early activity of some MER2 
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transposons and the relatively recent activity of MER1 transposons during the evolution 

of primate lineages (Giordano et al. 2007). These bouts of activation and inactivation 

contribute to evolution of the genome, providing raw material to natural selection. 

1.2.3.3 Retrotransposed genes 

The evolutionary dynamics of genomes are influenced by various genomic processes 

that give rise to novel sequences; one such process is retrotransposition. In this process 

the mRNA transcript is spontaneously reverse-transcribed and reintegrated into the 

genome (Boeke et al. 1985). The large-scale retrotransposition of mRNAs into 

mammalian genomes has been revealed by the detection of thousands of obvious 

retrotransposition in mouse, rat, and human (Zhang et al. 2002, Zhang and Gerstein 

2003, Zhang et al. 2003). The retropseudogenes (processed pseudogenes) mostly lack 

promoters and introns and possess relics of the poly-(A) tail at their 3′ tail (Harrison and 

Gerstein 2002). Retropseudogenes also include short direct repeats flanking their 

sequences (Betrán et al. 2002), frequent a truncation at the 5' ends, and at a genomic 

location different from that of the parent gene (Zhang et al. 2002, Zhang et al. 2003). 

These are the hallmark characteristics of retrotransposition, which often deteriorate or 

inactivate gene sequence copies. Henceforth, retropseudogenes are generally considered 

non-functional and "dead on arrival" from the moment they reintegrate into the genome 

(Harrison and Gerstein 2002). Contrary to this, a few events have been reported in 

which insertions may have contributed exons to existing genes (Baertsch et al. 2008). A 

growing number of studies have been carried out on spontaneous substitutions, 

deletions, and insertions in retropseudogenes (Ophir and Graur 1997). It has been 

discovered in human that these processes are mainly mediated by  reverse-transcriptase 

(Mathias et al. 1991) and endonuclease (Feng et al. 1996) functions of the LINE-1 ORF2 

protein. These processes work in assistance with the ORF1 protein, which binds RNA 

(Hohjoh and Singer 1997) and functions as a chaperone (Martin and Bushman 2001). 

Additionally, LINE-1 mobilises other transcripts including Alu (Dewannieux et al. 2003), 

SINE-VNTR-Alu (Hancks et al. 2011) and processed pseudogenes (Esnault et al. 2000). 

The processed pseudogene formation through reverse-transcriptase varies among 

species, and mainly depends on the retroelement content of the genome. Many genes 

with novel function may have originated via the retrotransposition process, as few of 

the genes in mammalian genomes were reported to bear the characteristics of 



  

24 

 

retrosequences (Brosius 1999, Emerson et al. 2004). Some of the retrotransposed genes 

have been annotated in human and mouse and are known to be expressed in testis, 

which may be a driving force for rapid testis evolution in primates (Emerson et al. 2004, 

Marques et al. 2005).  

1.2.3.4 Role of TE in genome instability and rearrangements  

There have been reports describing the association between TEs and chromosomal 

breakpoints in several plants and animals (Nevers and Saedler 1977, Gray 2000, Lönnig 

and Saedler 2002, Bennetzen et al. 2005); however, this was first studied by McClintock 

to better understand the mechanisms of chromosome breakage and fusion in maize. In 

her research, she identified a locus on chromosome 9, which is called “Ds” or 

“dissociation” locus and has repeatedly broken over time. Later, she discover the locus 

Activator, which initiates its own transposition and can activate chromosomal breakage 

(McClintock 1947). Similarly, Collins and Rubin (1983) first reported an aggressive case 

of chromosomal rearrangements in Drosophila, in which a 10Kb fold back TE with a 

complex inverted shape contributed to rearrangements (Collins and Rubin 1983). The 

association between TEs and chromosomal breakage has been verified by several 

groups of scientist in various organisms, such as Drosophila melanogaster (Lim and 

Simmons 1994, Ladeveze et al. 1998), yeast (Roeder and Fink 1980), cattle (Elsik et al. 

2009), gibbon (Girirajan et al. 2009) and other mammals (Schibler et al. 2006). Moreover 

there is ample research that confirms the significant enrichment of TE in chromosomal 

breakpoints beyond that expected by random chance,  suggesting a probable role of TEs 

in chromosomal rearrangements (Longo et al. 2009, Penny 2012).  
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Figure 2.5 A schematic representation of transposable elements (TEs) movements 

A TE (shown in orange) is inserted via a cut-and-paste mechanism, disrupting the 

existing target DNA sequence. The second TE mechanism makes a copy of a 

transposon and inserts into another location of the genome and interrupting DNA 

sequences11 

1.3 GENOME MAPPING 

To quickly navigate the features of interest and detect their relative positions in the 

genome, genome maps have been developed. Genome mapping, also called gene 

mapping, is the assignment of DNA fragments to specific chromosome locations and 

the determination of the relative distances between genes on those chromosomes 

(Sturtevant 1913). The gene for eye-colour was first located by Thomas Hunt Morgan 

on the X chromosome of fruit fly. Shortly thereafter, E.B. Wilson identified sex-linked 

genes underlying colour blindness and haemophilia in humans, similar to the many X-

                                                      
11 https://www.broadinstitute.org/education/glossary/transposable-elements  

https://www.broadinstitute.org/education/glossary/transposable-elements
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linked factors that were being described by the Morgan group in flies. Later, Donis-

Keller et al. (1987) generated the first comprehensive genetic linkage map of human 

chromosomes using restriction fragment length polymorphism (RFLP) techniques. This 

genetic map was based on 400 RFLPs, which are variations in DNA sequence observed 

by digesting DNA with restriction enzymes (Donis-Keller et al. 1987). These types of 

maps organise valuable annotations, which assists in further understanding of genomes. 

Additonally, genetic variation can be used to locate genes responsible for diseases. 

These genetic variants can either occur in genes (coding), regulatory regions or non-

coding (and non-regulatory) sequences. These genetic variants that are identified and 

mapped throughout genomes are called markers (Brown 2002). Henceforth, the 

accuracy of genome maps entirely depends on the quality of the markers detected and 

the methods applied. 

 

There are two distinct types of molecular maps— physical and genetic-linkage—that 

can be derived for each chromosome in the genome. These maps provide the likely 

order of markers along a chromosome. The physical maps can also be divided into three 

general types: Chromosomal (also known as cytogenetic maps), Radiation hybrid (RH) 

maps, and Sequence maps. Figure 2.6 not only illustrates and distinguishes the methods 

that are used to create maps, but also the metrics used for measuring distances within 

them. Linkage maps, also called recombination maps, are constructed from loci that 

occur in two or more heritable forms, or alleles. Therefore, monomorphic loci, those 

with only a single allele, cannot be mapped using this technique. On the other hand, 

chromosomal map use size and banding pattern inferred from direct cytogenetic analysis 

or by linkage and physical positions that are associated with observable chromosomal 

banding patterns. This is the most direct mapping approach. The resolution of 

chromosomal maps is low compared to linkage or physical approaches and therefore it 

is less frequently used.  Physical maps use the direct analysis of DNA, in which physical 

distances between and within loci is measured in basepairs (bp), kilobasepairs (kb) or 

megabasepairs (mb). There are several physical mapping techniques available. One such 

technique is fluorescent in situ hybridization, which directly observes the relative 

position of markers in the genome (Iacia and Pinto-Maglio 2013). Other methods are 

also useful, but use less direct approaches to map genetic markers. However, almost 

physical mapping techniques use a common approach to isolate a portion/gene of 

interest from the genome and map relevant markers. Out of all three aforementioned 
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mapping techniques, only the basepair distances measured by physical maps provide an 

accurate description of the actual length of DNA that separates loci from each other.  

Each of these types of maps provides the same information regarding chromosomal 

assignment and the order of loci, but the relative distance between the loci generally 

varies (see more about all map types in subsequent sub-sections). 

 

 

 

Figure 2.6 Comparative image of physical and genetic-linkage maps. The relative sizes of 

molecular maps -- linkage, chromosomal, and physical are shown for a 1,200 Kb 

genomic interval around the Tcp10b locus on mouse chromosome 17 (Barlow et al. 

1991). The lines connect the relative positions of the same loci as mapped in linkage, 

physical and chromosomal maps. 

 

The recent rapid advancement in various genome technologies has allowed the 

exploration and elucidation of the underlying molecular mechanisms of genome 

evolution. This has changed the way molecular biology research is conducted. The 

Human Genome Project (HGP) (E. S. Lander et al. 2001) had a profound impact on 

biomedical research and revolutionised a wide spectrum of biological research and 

clinical medicine programs; it also provoked the generation of genome sequences from 

other mammals. Many genome projects have leveraged new technology and produced 

an unprecedented wealth of genomic data for comparative analysis (Haussler et al. 2009). 
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The National Institute of Health (NIH) has funded several projects to expand the 

current understanding of molecular and evolutionary mechanisms by sequencing more 

mammalian genomes. The Broad Institute is currently sequencing ~150 mammal 

species, while other centres are generating an additional ~150 mammalian genomes. For 

example, the National Human Genome Research Institute (NHGRI), a large-scale 

sequencing centre, has sequenced the genomes of 24 species to low (~2x) sequence 

coverage12. Similarly, the 1000 Genomes Project is the first project to sequence the 

genomes of a large number of humans, in order to provide a comprehensive resource of 

human genetic variation (Siva 2008). The Genome 10K Community of Scientists 

(G10KCOS) have a long-term goal of generating and assembling ~10,000 vertebrate 

genomes of fishes, mammals, amphibians, reptiles and birds (Haussler et al. 2009). These 

sequencing projects will help us to understand the genetic basis of adaptive evolutionary 

changes within related species and also understanding the evolutionary mechanisms 

behind adaptation. G10K will enable the study of genetics in threatened and endangered 

species, disease risk factors within non-model organisms and help to reconstruct 

ancestral genomes for different clades. Additionally, it will assist in  predicting the 

response of species to climate change, pollution, emerging diseases and invasive 

competitors (Bell et al. 2004, Kohn et al. 2006). 

 

By comparing all annotated genomes, scientist can infer the order and relative positions 

of the markers. Maps annotated with marker information are an invaluable source for 

comparative genome mapping, which uses genome maps of various phylogenetically 

related species to reveal conservation of genes and synteny relationship amongst them. 

These map-based comparative techniques provide an insight into genome evolution and 

also assist in annotating the gene's location in new target species. These maps are also an 

invaluable asset for genome sequencing (Table 2.2). Genome maps are frequently used 

to guide and validate the multi-step procedure of genome assembly. This multi-step 

procedure of genome assembly first requires the cloning of DNA fragments, that are 

then sequenced and computationally assembled based on the markers the sequence 

contain. In order to obtain full coverage of genomes, I need to use fully-annotated 

physical and genetic maps (Beyer et al. 2007). High-resolution physical maps of several 

                                                      
12 http://www.genomesonline.org/cgi-bin/GOLD/index.cgi  

http://www.genomesonline.org/cgi-bin/GOLD/index.cgi


  

29 

 

species’ chromosomes empowers comparative genomics discovery and are 

indispensable for sequence assembly precision (Lewin et al. 2009).  

 

Table 2.2 Physical and linkage map and genome assemblies. Physical and linkage maps 

have been used as anchors for mammalian genome assemblies in various whole genome 

sequencing projects (Lewin et al. 2009).  

*Physical and linkage maps have been used to anchor sequences to chromosomes for 

mammalian genome assemblies in various genome sequencing projects (Lewin et al. 

2009). 

1.3.1 Genetic linkage mapping 

Mendel’s conclusions were drawn from a series of experiments on Pisum sativum. His 

"law of independent assortment" states that factors (later identified as genes) are 

transmitted from parents to offspring independent of one another (Mendel 1865). 

However, not all genes are inherited independently. Thomas H. Morgan postulated that 

Species* Genome 

Size(Gbp) 

Sequence 

mapped 

Type of physical maps Number of 

markers 

Human 2.8 99% Fingerprint map 25,241 

   Fluorescent in situ 

hybridisation map / 

Radiation hybrid map / 

Linkage map 

924 

Macaque 3.1 92.2 Radiation hybrid map 802 

   Linkage map 241 

Mouse 2.6 97.6 Radiation hybrid map 11,109 

   Linkage map 7,377 

Cattle 2.8 90.3 Radiation hybrid map / 

Linkage map 

1,680 

   Radiation hybrid map 3,484 
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linked genes are present in a linear order along a chromosome and depending upon the 

distance, during first meiotic prophase, a variable amount of reciprocal exchanges may 

occur between genes; he later confirmed this postulation in Drosophila melanogaster 

(Morgan 1910). Genes that are present on the same chromosome were described as 

“linked” genes by Bateson and Punnett (Bateson and Punnett 1911). On the basis of 

recombination frequency, Sturtevant (1913a, 1913b) published the first linkage map, 

placing three genes on the X chromosome of Droshophila melanogaster. In the 20th 

century, scientists were able to construct genome linkage maps using the log score 

technique (Haldane and Smith 1947), polymerase chain reaction (Mullis 1994, Mullis et 

al. 1995), Restriction Fragment Length Polymorphisms (RFLPs) (Botstein et al. 1980) 

and many other techniques. The drawback of genetic linkage mapping is its inability to 

accurately fine map closely located linked genes (i.e., genes with the lowest 

recombination frequency) and also the very coarse resolution of most genetic linkage 

maps. Despite this, linkage maps were extensively used for mapping marker intervals 

associated with phenotypic, disease, and economically important traits (Heyen et al. 

1999). 

 

Because of their low resolution, genetic maps do not make a strong basis for the 

sequencing phase of eukaryotic genome projects. However, due to the short life cycle of 

microorganisms, recombination events can be obtained in ample amounts, resulting in a 

highly detailed genetic map where the markers are a few kilobase (kb) apart, and thus 

microorganism linkage maps assist in genome sequencing and assembly. Besides being 

low resolution in eukaryotes, genetic maps also limited by their accuracy, as seen in 

comparative analysis of S.cerevisiae genetic map to the actual positions of markers as 

shown by DNA sequencing. Multiple markers, including glk1 and cha1,  mapped to 

different locations in the genetic and linkage maps (Oliver et al. 1992, Dujon et al. 1994). 

In order to address such problems, a plethora of physical mapping techniques have been 

developed.   

1.3.2 Physical mapping 

A physical map shows the physical location of markers on the chromosomes. The most 

common methods used in physical mapping are fluorescent in situ hybridisation (FISH) 

mapping, radiation hybrid (RH) mapping, bacterial artificial chromosome fingerprinting 

and DNA sequencing. RH mapping and FISH mapping were widely used techniques for 
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physical mapping, but each of them has its own benefits and limitations. RH mapping 

makes use of RH panels and statistical methods to determine the order of and distances 

between DNA markers on chromosomes (Walter and Goodfellow 1993). RH mapping 

techniques have become a general way to construct high-resolution, contiguous physical 

maps for several species, such as human, rat, mouse, cat and pig (Murphy et al. 2000, 

Chowdhary et al. 2003, Kwitek et al. 2004, Wind et al. 2005).  FISH mapping utilises 

hybridisation of fluorescent-labeled DNA probes to find the order of markers on 

chromosomes. Lorenzi et al. (2010) corrected the gene location in Btau_4.0 assembly 

using FISH (De Lorenzi et al. 2010). However, most FISH techniques generally provide 

insufficient resolution to map closely located markers.  

 

Schwartz et al. (1990) developed a new method, optical mapping (OM), to construct an 

ordered, high-resolution restriction map from DNA. The unique feature of OM is that 

it preserves the order of DNA fragments. In this method the cells are lysed to retrieve 

genomic DNA and the DNA is randomly sheared to produce a "library" of large 

genomic molecules for optical mapping. Single genomic DNA molecules are placed 

onto a microfluidic device and digested by restriction enzymes. Later, the DNA 

fragments are stained with intercalating dye and are visualised by fluorescence 

microscopy. The fragment sizes are measured by their fluorescence intensity. Finally, all 

optical maps are combined to produce a consensus optical genomic map. This 

technique has been mostly used for the construction of whole-genome restriction maps 

of several eukaryotes (Schwartz et al. 1993, Lin et al. 1999). The main advantage of 

optical mapping includes its high throughput and resolution, safety and low cost. 

1.4 SEQUENCING APPROACHES 

Maxam and Gilbert (1973) developed the first method to determine DNA sequences 

and reported the sequence of 24 base pairs using a method known as “wandering-spot 

analysis” (Gilbert and Maxam 1973). The Maxam and Gilbert sequencing protocol is 

based on preferential, base-specific methylation of nucleotides, followed by chemical 

cleavage to generate a nested set of end-labelled derivatives at the final stage (Maxam 

and Gilbert 1977). The Maxam and Gilbert sequencing approach has a major 

disadvantage, because it dependents on the use of radioactive reagents. In the meantime, 

Frederick Sanger and co-workers (1977) develop a new method, known as “dideoxy 
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sequencing” or the “chain termination method”. The principle of this method was 

based on the use of dideoxynucleotide triphosphates (ddNTPs) as DNA chain 

terminators. This reaction results in all fragments ending in one of the four fluorescent 

dye-labeled terminators. Later, these fragments are separated by electrophoresis, in 

which the fluorescence is detected by laser excitation and a CCD camera (Figure 2.7) (F. 

Sanger et al. 1977). Later, this technique became the “workhorse” for genome 

sequencing because of its practicality. Technological advancements since the 1970s have 

made the Sanger method not commonly used for high-throughput sequencing, but still 

widely used for small, low throughput sequencing (Hert et al. 2008). Mostly, this 

approach is widely used for sequencing projects targeting a small region in a large 

number of individuals. The new sequencing technologies that have replaced this method 

are based on the same principles (Gilbert and Maxam 1973). Automated sequencing has 

been developed so that more DNA can be sequenced in a shorter period of time. 

Despite dramatic changes in sequencing approaches, the primary data production for 

most genome sequencing since the Human Genome Project (HGP) has relied on the 

same type of capillary sequencing instruments as the HGP used. However, this situation 

is rapidly changing due to the invention and commercial introduction of several 

revolutionary approaches for DNA sequencing, the so-called “next-generation 

sequencing technologies”. 
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Figure 2.7 DNA sequencing via the Sanger method13 

The sequencing machines produce large amount of sequenced base pairs or ‘raw’ 

sequence. These raw sequences are jumbled together, like the pieces of a jigsaw puzzle. 

Each nucleotide sequences is called a “read or short DNA sequences”, which were used 

later to reconstruct the original sequence (Church and Gilbert 1984). All available 

genome sequencing platforms usually generate sequence data in the form of many 

independent reads. These reads are later assembled together using certain computational 

tools to form a complete sequence using pair-wise overlaps between the reads and other 

sophisticated assembly strategies 14 . For Sanger sequencing method these reads are 

routinely around 800-1000 base pairs long (Frederick Sanger et al. 1977). However, the 

next-generation sequencing methods produce comparatively much larger quantities of 

sequence, but in the form of much smaller reads. Illumina is the most commonly used 

platform, and here the read length is usually 100 to 150 base pair reads15. However, the 

lower-throughput platform can manage to produce read lengths of 400 base pairs16 .  

                                                      
13 http://www.vce.bioninja.com.au  
14 http://bioinformaticsonline.com/pages/view/22807/software-packages-for-next-gen-sequence-
analysis  
15 http://www.illumina.com/content/dam/illumina-
marketing/documents/products/technotes/technote-nrc-exome-read-length.pdf  
16 http://www.hindawi.com/journals/bmri/2012/251364/tab1/  

http://www.vce.bioninja.com.au/
http://bioinformaticsonline.com/pages/view/22807/software-packages-for-next-gen-sequence-analysis
http://bioinformaticsonline.com/pages/view/22807/software-packages-for-next-gen-sequence-analysis
http://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote-nrc-exome-read-length.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote-nrc-exome-read-length.pdf
http://www.hindawi.com/journals/bmri/2012/251364/tab1/
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In 1988, Lander and Waterman first described the theoretical redundancy of fold-

coverage (c) of a shotgun sequencing experiment as LN/G, where L is the read length, 

N is the number of reads and G is the haploid genome length (Lander and Waterman 

1988). However, the empirical average “depth-of-coverage” of an assembly were 

calculated by LN/A, where N is the number of reads, L is read length and A represent 

assembly size (Lander and Waterman 1988, Sims et al. 2014).  Therefore, “depth-of-

coverage” or “fold-coverage” terms are not the same and might be different because of 

sequencing error and unclonable or unmappable regions of the genome. The term depth 

may also be used to describe how much of the complexity in a sequencing library has 

been sampled. In real-world sequencing approaches the read can contain sequence 

errors. Those errors are mostly indistinguishable from a sequence variant. Such 

sequencing errors can be identified or can be overcome by increasing the number of 

sequencing reads. Increasing the depth of coverage can resolve some errors but it does 

not cure all sequencing ills. 

 

Demands for low cost sequencing have compelled the development of high-throughput 

sequencing technologies, which can produce millions of sequence reads at once. Several 

new methods have been introduced to decode the order of nucleotides in a genome. 

The three main platforms for massively parallel DNA sequencing read production are 

the following: i) Roche/454 FLX (Margulies et al. 2005), which uses a parallelised 

version of pyrosequencing, also known as the “single-nucleotide addition” (SNA) 

method (Hyman 1988); ii) Illumina/Solexa Genome Analyzer, which applies a reversible 

dye-terminator-based method (Bentley 2006, Mardis 2008); and iii) Applied Biosystems 

SOLiDTM System, which relies on sequencing with a ligation approach (Mardis 2008). 

In addition to that, two other massively parallel systems were recently announced: the 

Helicos Heliscope17 and Pacific Biosciences Single Molecule Real Time18 (SMRT). The 

important feature of both the Helicos and Pacific Biosystems instruments is that they do 

not require any amplification of DNA fragments prior to sequencing, as it as required 

by other sequencing approaches. Recently introduced nanopore sequencing methods, 

also known as “third generation sequencing” methods, use an approach that involves 

drawing individual strands of DNA through tiny nanoscopic holes, or pores (Clarke et 

al. 2009). This advance has the potential to sequence a mammalian genome within an 

                                                      
17 www.helicosbio.com  
18 http://www.pacificbiosciences.com 

http://www.helicosbio.com/
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hour with quality scores of Q40 (99.99% accuracy), read length of 1000 bp, coverage 

greater than 95% and, more importantly, at a total cost of less than $1,000. These 

technologies will lead genomics to an exciting stage where there will be a tremendous 

amount of data to allow the unlocking of biological questions. 

 

Next-generation sequencers require long run times of between 8 hours to 10 days, 

depending upon the read type (single end or paired ends) and platform being used. The 

yield of sequence reads and total bases per instrument run is significantly higher than 

the 96 reads of up to 750 bp produced by a single capillary sequencer run, and can vary 

from several hundred thousand reads (Roche/454) to tens of millions of reads (Illumina 

and Applied Biosystems SOLiD) (Mardis 2008). The advantages of Roche/454 method 

are the following: first, it does not rely on cloning template DNA, and second, it does 

not skip uncloneable segments, such as heterochromatin, during sequencing. However, 

the major drawback to the pyrosequencing approach is the incomplete extension of 

homopolymers, or simple repeats of the same nucleotide (e.g., AAAAAAA). Each read 

is only about 250-400 base pairs long at this time, making it difficult to differentiate 

between repeated regions longer than this length. To compare, paired-end methods in 

Illumina sequencers enable paired-end sequencing of up to 2 x 100 bp for fragments 

ranging from 250 bp to 40 kb. In addition to that, pyrosequencing is also improving 

quickly, and new machines can generate 400-base pair sequence reads. Thus far, 

chromosomes cannot be sequenced by a single read; all sequencing methods produce a 

series of segments of DNA code, referred to as 'reads'. After sequencing occurs, 

genomes need to be reconstructed from millions of short reads, or “assembled”. In 

order to reconstruct the original genome sequence from millions of reads, specialised 

computer programs called “assemblers” are used. 

 

New techniques and algorithms for whole-genome sequencing (WGS) have made it 

possible to sequence a genome in a short period of time, but assembly of these genomic 

sequences is still a painstaking task. Genome maps, such as RH maps, linkage maps, 

FISH maps and optical maps, have become very important and necessary resources for 

the assembly of genome sequence and their validation. These maps provide markers for 

anchoring and guiding the placement and orientation of genomic contigs or scaffolds 

onto the chromosomes (E.S. Lander et al. 2001, Warren et al. 2007, Miller et al. 2010). 
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With the availability of genome sequences and comparative genomics modules, it is now 

possible to explore genomes and compare them at high resolution. 

1.5 ASSEMBLY APPROACHES 

Because of dropping costs and increases in sequencing efficiency, the whole-genome 

sequencing for 10,000 vertebrate species was recently proposed (Genome 2009). This 

genomic information will help us to understand genome evolution and gene structures 

of vertebrate species. However, after genome sequencing the most cumbersome task is 

to assemble millions of sequence reads, which are short in length and potentially contain 

sequencing errors (Metzker 2009, Alkan et al. 2010, Zhang et al. 2011). The paired-end 

(PE) sequencing method is used to generate reads from both ends can,  and, to some 

extent, compensate for read length (Cahill et al. 2010). whereas the single molecule, real-

time (SMRT) technology produces longer reads but has higher error rates (Cahill et al. 

2010, Schadt et al. 2010). 

 

Genome assembly, a bioinformatics technique to stitch sequence data into contigs, 

scaffolds and chromosomes, needs highly efficient algorithms to correctly merge the 

millions of reads within a limited period of time. In order to develop competitive 

software, programmers predominantly used non-primitive data structures that can be 

categorised into two types: i) string-based models and ii) graph-based models. Initially, 

contigs, a set of overlapping DNA segments derived from a single genetic source, were 

built using overlap-layout-consensus strategies (Myers 1995). The high-quality 

assemblies of human (E. S. Lander et al. 2001, Li et al. 2010) and mouse (Chinwalla et al. 

2002) have been constructed with GigAssembler (Kent and Haussler 2001), Celera, 

ARACHNE (Batzoglou et al. 2002), and Phusion (Mullikin and Ning 2003) software. 

However, these programs compute a quadratic number of alignments and consequently 

are not efficient enough to handle the volume of sequences produced by next 

generation sequencing technologies, stimulating the development of a new generation of 

assembly software. 

 

Several algorithms have been developed to correctly handle the genomic jigsaw puzzle, 

and assemble genome reads in correct order. Greedy-extension algorithm of string 

based model software such as Quality-value guided de novo Short Read Assembler 
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(QSRA) (Dohm et al. 2007, Bryant et al. 2009), SHARCGS (Jeck et al. 2007), and SSAKE 

(Warren et al. 2006) are efficient de novo assemblers for prokaryotic genomes (Bryant et al. 

2009) because of less repetitive nature of their genomes than those of mammals. The 

graph based model and software are designed ABySS (Simpson et al. 2009), Velvet 

(Zerbino and Birney 2008, Zerbino et al. 2009), SOAPdenovo (Li et al. 2008, Li et al. 

2010) with implementation of thread parallelization to reduce the time cost, and 

EULER-USR to cope up with the large genomes and exploit pair end (PE) sequencing 

information to reduce gaps from assembled contigs.  

 

Some other genome-assembly software packages including Arachne (Batzoglou et al. 

2002), Atlas (Havlak et al. 2004), Ray (Boisvert et al. 2010), Celera Assembler (Myers 

2005), CAP3 (Huang and Madan 1999), Euler (Pevzner et al. 2001), Phrap (Bastide and 

McCombie 2007), RePS (Wang et al. 2002), Edena (Hernandez et al. 2008) implement 

OLC (Overlap-Layout-Consensus) approach that requires overlaps to be scored 

between all possible pairs of reads. This is computationally intensive and therefore is not 

widely used, whereas Taipan (Schmidt et al. 2009) uses a hybrid of string and graph 

based algorithmic approaches for assembly with a shorter period of run time. 

 

Out of the above mentioned algorithms, de Bruijn graph and Eulerian path approaches 

(Pevzner et al. 2001) are predominantly used methods in current scenarios for assembly, 

but they are still not fully capable to correctly assemble complex and repetitive parts of 

genomes. In order to improve the computational methods of genome assembly, and 

decide the best algorithm and software to them, a collaborative effort have been taken 

by ASSEMBLATHON19 to reassemble, compare and verify the genome assemblies with 

various assembly programmes. Comparative studies of de novo assemblies of 

individuals show that, assemblies were 16.2% shorter than the original genome 

sequence. It is speculated that de novo assembly algorithms collapse identical 

repeats(Green 2002), resulting into reduced or lost genomic complexity. The limitations 

of de novo assemblies  were also confirmed by looking at missing 420.2 megabase pairs of 

common repeats and 99.1% of validated duplicated sequences from the assembled 

genome (Alkan et al. 2010, Hubisz et al. 2011, Zhang et al. 2011, Keith R Bradnam et al. 

2013). The large size and high repetitive content of mammalian genome sequence still 

                                                      
19 http://assemblathon.org/  

http://assemblathon.org/
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requires new genome assemblers with highly memory-efficiency, reduced time cost, 

smart with repetitive and small sequences. The second collaborative meeting of 

ASSEMBLATHON uses varieties of sequenced data of three vertebrate species (a bird, 

a fish, and snake) and validated their assemblies. The ASSEMBLATHON team notice 

high degree of variability between assemblies, which invariably suggests certain 

possibilities of improvement in the field of genome assembly. Based on the findings of 

Assemblathon 2, they make broad practical considerations for de novo genome assembly 

and suggested that a single approach might not fit and work well in assembling of two 

different genomes (Keith R Bradnam et al. 2013). Several research groups are working 

in the direction to improve the accuracy level of genome assembly data using some new 

algorithmic approaches. For example, University of Washington is working on a new 

approach named as ‘Sub-Assembly’ (Young et al. 2010), with an idea of de-

fragmentation of genomics DNA. Graph string algorithms for short reads are one of 

the prospects for the future development of assembly algorithms.  

 

In the 20th century, genome sequencing was more expensive 20  (Figure 2.8) than 

constructing physical maps, but the development of new high-throughput and 

massively-parallel DNA sequencing technologies has radically changed the situation, 

reducing not only cost, but also the time required to sequence an entire genome 

(Metzker 2009, Mardis 2011). Currently, sequencing a mammalian genome at 30-fold 

coverage costs ~$10,000, which is comparable to the labour and reagents cost for 

physical mapping 21 . Though sequencing reads have been assembled by various 

algorithms, it is still difficult to validate resulting scaffolds and order them across 

chromosomes without having physical maps. However, by using computational and 

comparative genomics approaches, and with the aid of completely assembled genomes 

with reconstructed chromosome structures, such as human, mouse, rat, and cattle, it is 

possible to predict the order of scaffolds in newly sequenced genomes. Such approaches 

can even verify predicted chromosome structures using some chromosome features that 

can be identified from raw sequence reads because of their rarity (Kim et al. 2013). 

 

                                                      
20 www.genome.gov/sequencingcosts Accessed: 07/06/14 
21 www.illumina.com  

http://www.genome.gov/sequencingcosts
http://www.illumina.com/
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Figure 2.8  Genome sequencing versus cost statistics. Sequencing costs data from the 

NHGRI large-scale genome sequencing program22. The Gordon Moore observation is 

that over the history of computing hardware, the number of transistors in a dense 

integrated circuit has doubled approximately every two years. Moore predicted that this 

trend would continue for the foreseeable future (Brock and Moore 2006). In the above 

figure, it is clearly shown that the sequencing cost dramatically decreased even lower 

than the predicted line by Moore’s law. 

In this section, I first discussed the background information of amniotes biology and 

give an overview of genome, their organisation and various mapping techniques. I 

mainly focused on genome organisation and packing of the genetic material. The gene, 

genome, sequencing and their assembly, duplication and their impact on evolution were 

reviewed widely. This section also described how the computational complexities and 

approaches evolved over time. In addition to that, this section reviewed the impact of 

transposable elements and their role in shaping the genome. 

                                                      
22 www.genome.gov/sequencingcosts  Accessed: 07/06/14 

http://www.genome.gov/sequencingcosts
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In next section, I will discourse the research work related to chromosomal 

rearrangements and evolution. I will initiate with the basic concepts of evolutionary 

mechanisms and gave the detail description of complex terminologies in evolutionary 

biology. Apart from that, I will also review synteny, chromosomal rearrangements and 

their impact on amniote evolution.  
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SECTION 2: EVOLUTION AND CHROMOSOMAL 

REARRANGEMENTS 

2.1 HISTORY OF EVOLUTIONARY CONCEPTS 

Charles Darwin published “On the Origin of Species” in 1859 after decades of intense 

study of zoological and botanical specimens23 (Darwin 1859). Darwin concluded that all 

living organisms on Earth are related and have descended from a common ancestor; in 

other words, all groups of organisms, including animals, plants, and microorganisms, 

originated from a single ancestral organism. This is now referred as the “theory of 

common descent”. Another one of Darwin's theories, "descent with modification”, 

postulates that organisms with complex features evolved from relatively simple 

organisms with many gradual modifications occurring over time. Darwin, in his theory 

of evolution, suggested that the organism with the best adaptive features for their 

environment would be more likely to survive and reproduce successfully.  

 

In 1909 Wilhelm Johansen identified the fundamental units of heredity, which he called 

“genes” (Johannsen 1911). This discovery directed the scientific community to identify 

the entire set of genes in various species. Through these studies, scientists around the 

world hoped to discover which genes controlled traits of interest. In the early 1900s, the 

process of constructing genetic “maps” began, in an attempt to identify positions of 

chromosomal loci responsible for particular quantitative traits. 

 

A major breakthrough in understanding the mechanisms of evolution resulted from the 

rediscovery of the work of Gregor J. Mendel. Mendel postulated several laws of 

inheritance and determined that a unit of inheritance exists. Flemming (1882) discovered 

the chromosomes in the nuclei of salamander cells and confirmed their hereditary 

nature (Sutton 1903). This discovery created an opportunity to study the biological 

mechanisms of inheritance and test hypotheses using genetic material. In addition, 

modern developments in techniques for chromosomal study have made it possible to 

obtain accurate comparisons of chromosomes in various species and to reconstruct how 

chromosomes evolved in different clades (Ferguson-Smith and Trifonov 2007). 

                                                      
23 http://darwin-online.org.uk/specimens.html 

http://darwin-online.org.uk/specimens.html
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2.2 SYNTENY 

The genes in multicellular eukaryotes are distributed among a number of chromosomes. 

The chromosome number in a species is generally between 10 and 100, though in some 

species this number can be as low as 2, as in jack jumper ant Myrmecia pilosula (Crosland 

and Crozier 1986), or as high as 1440, as in adder's-tongue ferns Ophioglossum reticulatum 

(Khandelwal 1990, Grubben 2004). Each chromosome contains approximately 100 to 

1000 genes. The term “synteny” was first introduced by Renwick (1971) to describe two 

or more genes located on the same chromosome (Renwick 1971, de Grouchy 1972). 

Whereas, “conserved synteny” is the presence of two or more genes in the same order 

on one chromosome in two or more species. The order of genes on a chromosome and 

synteny can be conserved across species (O'Brien and Nash 1982), and such genomic 

segments with identical gene content are called “Homologous Synteny Blocks” (HSBs) 

(W. J. Murphy et al. 2005). These synteny blocks have the same gene order without any 

disruption by rearrangements, which help in tracking the evolutionary histories of 

genomes (Delseny 2004, W. J. Murphy et al. 2005). The chromosomal rearrangements 

accumulated through the process of evolution lead to major differences in synteny 

organisation of different genomes. Therefore, the synteny maps provide insight into a 

large scale pattern of genetic divergence (Feuillet and Keller 2002, J. Lu et al. 2003, 

Delseny 2004). In addition, using gene order and cross-species synteny information, it is 

possible to predict the location of unknown genes in a poorly annotated genome from 

another well-annotated genome (Waterston et al. 2002, Gibbs et al. 2004, Lindblad-Toh 

et al. 2005). Taking in account synteny can also facilitate annotation and characterisation 

of a genome (as well as genome assembly) by identifying regions of homology between a 

genome currently being sequenced and another finished genome (Pop and Salzberg 

2008, Kim et al. 2013). 

 

Synteny and conserved synteny has been identified using cytogenetic as well as 

computational genomic techniques for many genomes. However, there have been 

disagreements amongst scientists as to how to correctly classify “conserved synteny”. 

The work by Ovcharenko et al. (2005) on gene desert regions compelled researchers to 

rethink the definition of conserved synteny and then redefine it as “any conserved 

sequence block, regardless of whether it encompasses multiple genes, an area containing 

single genes, or areas devoid of known genes to be considered as synteny block as long 
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as there is conservation at the sequence level”. Various algorithms that apply this new 

definition have been developed to detect and identify conserved HSB amongst species. 

(The list of tools which are commonly used for synteny detection and visualization are 

mentioned in table 2.3). 

 

Most available synteny detection algorithms and tools (Table 2.3) use comparative 

genomic approaches that compare the genomes of both closely and distantly related 

species. Apart from computational synteny detection methods, the segments of 

conserved synteny can also be revealed by molecular–cytogenetic  methodology such as 

ZOO–FISH (Chowdhary et al. 1996, Aleyasin and Barendse 1999). Both types of 

methods allow the characterisation of structural and functional differences in both 

conserved and divergent genomic regions. Almost every conserved synteny detection 

tool has some competitive advantage over others in terms of accuracy, algorithmic 

approaches, and computational complexities. The complexities include strandedness of 

genes, transpositions, gene insertions, gene inversions, gene duplications, and reciprocal 

translocations in genomes. Pevzner and Tesler (2003b) developed an algorithm called 

‘GRIMM-Synteny’ to detect synteny blocks in sequenced genomes (Pevzner and Tesler 

2003b). The genome complexities previously mentioned are efficiently handled by 

Ortho-Cluster, which accepts the annotated gene sets of candidate genomes and 

pairwise orthologous relationships as input and efficiently identifies the synteny blocks 

(Zeng et al. 2008). Similarly, Cinteny tool automatically compares multiple genomes and 

quantifies evolutionary relationships between species in terms of chromosomal 

rearrangements with computed reversal distances (Sinha and Meller 2007).  Out of all 

available computational tools (Table 2.3) only AutoGRAPH was designed to provide an 

interactive display web server to detect preservation of synteny in large portions of a 

chromosome (macrosynteny), and for only a few genes at a time (microsynteny) (i.e., 

conserved segments [CS]) with high accuracy. This tool is particularly useful  as it can 

handle not only genome sequences but also meiotic maps and RH maps for a single 

species (Derrien et al. 2007). Similarly, SyntenyTracker follows the set of rules defined by 

Murphy et al. (W. J. Murphy et al. 2005) and defines HSBs using pairwise high-resolution 

radiation–hybrid (RH) or gene-based comparative maps as inputs. Comparison of 

AutoGRAPH and SyntenyTracker outcomes showed some differences. The first major 

difference was detected on cattle chromosome 16 (BTA16), where the “out-of-place” 

markers were used to create two HSB blocks by AutoGRAPH but were combined into 
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one HSB block by SyntenyTracker (Donthu et al. 2009). The second major discrepancy 

was reported on cattle chromosome X (BTAX), where SyntenyTracker detected an 

inversion that was ignored by AutoGRAPH (Donthu et al. 2009). Therefore, the 

SyntenyTracker program has some competitive advantage and more accurate synteny 

detection when compared to AutoGRAPH (Donthu et al. 2009). Recently, Jean and 

Nikolski (2011) developed SyDiG, which outperforms several other tools (Table 2.3) in 

detecting synteny in distantly related genomes. Scalable and comprehensive algorithms 

for synteny detection are available  not only for genomes with high degrees of inter- and 

intra-species chromosomal homology, but also for closely related microbial genomes 

(Minkin et al. 2013). Recently, SynChro was developed; it uses the Reciprocal Best-Hits 

(RBH) algorithm to reconstruct the backbone of synteny blocks between multiple 

genomes using their syntenic homologous genes and not DNA alignment. SynChro has 

an advantage over many other tools as it allows synteny blocks to be overlapping, which 

supports comparisons involving genomes that have undergone whole genome 

duplication events. SynChro also allows users to trace small rearrangements that may be 

responsible for small overlaps or inclusions between synteny blocks (Drillon et al. 2014). 

A newly-developed, user-friendly software package, PhylDiag, uses gene trees to identify 

statistically significant synteny blocks in pairwise comparisons of eukaryote genomes. 

PhylDiag takes into account gene orientations, allowed gaps between genes, blocks of 

tandem duplicates, and lineage specific de novo gene births during synteny block 

identification (Lucas et al. 2014). 
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Table 2.3 List of synteny detection and visualisation tools. 

Tool name References Remarks 

SyntenyTracker (Donthu et al. 2009) Efficient and accurate 

Cinteny (Sinha and Meller 2007) Reversal distance measure 

OrthoCluster (Zeng et al. 2008) Mining synteny blocks in 

multiple species 

SyMAP (Soderlund et al. 2006) Synteny mapping and analysis 

program Consists of the 

algorithm to compute synteny 

blocks and visualise them 

AutoGRAPH (Derrien et al. 2007) Display macrosynteny and 

microsynteny 

SynChro (Drillon et al. 2013, Drillon et 

al. 2014) 

Defines conserved synteny 

blocks 

SynBrowse (Pan et al. 2005) Synteny browser 

Sibelia (Minkin et al. 2013) A scalable and comprehensive 

algorithm to detect synteny in 

closely related microbial 

genomes 

GSV (Revanna et al. 2011) Genome synteny viewer 

SyDiG (Jean and Nikolski 2011) Uncover synteny in distant 

genomes 

 

The study of synteny relationships and chromosome rearrangements between the 

genomes of closely- or distantly-related species yields significant insight into the 

processes of evolution, development, and gene regulation (W. J. Murphy et al. 2005, 

Lemaitre et al. 2009). In other words, chromosome rearrangements often play an 

important role in the evolution of a genome through changes in DNA sequence and 

organisation. In the next sections, emphasis will be given to discuss chromosomal and 

genome rearrangements in various species. 
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2.3 CHROMOSOMAL REARRANGEMENTS 

Chromosomal rearrangements are a common type of mutation that occurs in eukaryotic 

genomes. These rearrangement events occur when a substantial track of DNA is 

inverted or repositioned on chromosomes (Lysák and Schubert 2013). The repositioning 

of chromosomal segments results in different classes of events: inversions (Sturtevant 

1926, Eisen et al. 2000), duplications, fissions, fusions, and translocations. During an 

inversion, the segment of a chromosome between two DNA breaks becomes inverted 

and as a result the gene order and nucleotide sequence for the segment is reversed 

relative to its original order. This mechanism is further classified as either a “pericentric” 

or “paracentric” inversion.  If inversion does not include the centromere, then the 

inversion is called “paracentric”, whereas an inversion spanning the centromere region it 

is called “pericentric” (Figure 2.9). A translocation occurs when a piece of chromosome 

breaks off and attaches elsewhere in the genome. There are of two types of 

translocations: reciprocal and non-reciprocal. Non-reciprocal translocations are one-way 

transfers of a given chromosomal segment to another chromosome, whereas reciprocal 

translocations occur when chromosomal segments are exchanged between two non-

homologous chromosomes (Griffiths et al. 2000). A Robertsonian translocation (ROB), 

first reported in grasshoppers (Robertson and Rees 1916), is a type of nonreciprocal 

translocation in which two acrocentric chromosomes break at the centromere and fuse 

whole long (q) arms to form a single chromosome with a single centromere. During a 

reciprocal translocation, chromosomes break and exchange fragments (Lysák and 

Schubert 2013). 
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Figure 2.9 A schematic representation of different types of chromosomal 

rearrangements. The chromosome changes involving a single chromosome or multiple 

chromosomes are depicted above (Schwab and Amler 1990). 

The repositioning of chromosomal segments is known to play an important role in 

genome evolution. For instance, it was reported that in Candida albicans and C. tropicalis 

chromosomal aberrations caused morphological changes (Suzuki et al. 1989, Barton and 

Scherer 1994) and in Aspergillus nidulans, rearrangements lead to sterility and negative 

fitness (Geiser et al. 1996). Similarly, chromosomal doubling of Drosophila melanogaster 

chromosomes fails to restore pairing and thus fertility (Dobzhansky 1936). Contrary to 

the situation observed in insects, rearrangements and doubling of the chromosomal 

complement in plants does not dramatically reduce fertility (Stebbins 1958). For 

example, several interchromosomal translocations have been observed in Helianthus 

annuuus and H. petiolaris genomes (Rieseberg et al. 1995, L.H. Rieseberg 2001) that led to 

lower recombination frequency, but did not affect fertility. The deletion of 

chromosomal segments causes a loss of genes, while duplication expands gene families 

(Hannenhalli and Pevzner 1995, Kececioglu and Sankoff 1995, Tesler 2002). Similarly, 

inversions in higher eukaryotes are associated with  reproductive isolation (Noor et al. 

2001, Iriarte et al. 2003), and may therefore contribute to speciation (L.H. Rieseberg 

2001). The in depth analysis of chromosomal rearrangements also shows their role in 

disrupting gene expression and regulation, which can exert genome-wide effects on 

expression (Harewood and Fraser 2014). 
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2.3.1 Genome rearrangements in non-mammlian species 

Genome rearrangements have been identified both in prokaryotic and eukaryotic 

organisms (Suyama and Bork 2001). Yeast is an important model in molecular and 

cellular biology that has helped to decipher the molecular functioning of eukaryotic 

cells. Because of its small genome size compared to mammals and the phylogenetic 

diversity of yeast, it is also an ideal model organism for genome rearrangements studies. 

Prior to the determination of chromosomal rearrangements throughout mammalian 

genome evolution, extensive studies were conducted with yeast genomes to understand 

the chromosomal organization and effects of genome rearrangements. 

 

Yeast species have undergone extensive genomic rearrangements, which include 

chromosome aberration and gene order changes (Langkjær et al. 2000, Llorente et al. 

2000, Fischer et al. 2001, Delneri et al. 2003, Špírek et al. 2003, Fischer et al. 2006). 

Chromosomal translocations have been characterized within the genomes of six closely 

related Saccharomyces sensu stricto species of yeast that mate with one another, but produce 

sterile hybrids on interspecific pairing (Fischer et al. 2000). Fischer and colleagues 

observed that distantly related genomes can be collinear whilst closely related species 

may be rearranged. Based on this finding they concluded that rearrangements are not 

required for speciation in yeast. Studies using genomic comparison of two yeasts 

(Saccharomyces bayanus and S. cerevisiae) identified rearrangements between distantly 

related species, which contradict the Fischer et al. (2001) conclusion. Comparative 

genomic studies of three species, S. paradoxus, S. mikatae, and S. bayanus, revealed 20 

unique inversions, of which 13 were found only in S. mikatae, indicating their relative 

genome instability (Liti et al. 2005). In the above comparisons, the order of genes in the 

inverted segment was also found to be conserved. Chromosomal rearrangements 

analysed in Saccharomyces cerevisiae strains that were raised for 500 generations by Dunham 

et al. (2002), showed a common translocation point supporting the previous finding that 

rearrangements can reoccur at the same point in evolution. It also suggests that 

rearrangements may be adaptive and increase the fitness of the strain (Dunham et al. 

2002). Similarly, reciprocal translocation between chromosomes VII and XVI appears to 

cause overexpression of the SSU1 gene in yeast, which is associated with resistance to 

sulfite concentrations. This rearrangement was shown to be adaptive (Pérez-Ortı́n et al. 

2002). Chromosomal rearrangements and their contribution to yeast’s copper tolerance 

have been reported, including one that showed the copy number of the crucial 
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transcriptional activator CUP2 to be correlated with the level of copper tolerance. The 

copper-tolerant phenotype correlates with chromosomal rearrangements of genes 

involved in the response to copper ions (CUP1, CUP2 and COX23); these regions were 

found to be highly significantly enriched for these genes (Chang et al. 2013). Moreover, 

the impact of environment to fix genome rearrangements has been widely demonstrated 

in yeast, in which adaptive phenotypes formed due to chromosomal rearrangements in 

natural populations. Later, it was reported that chromosomes could revert back to the 

wild-type-like organisation once suitable environment was provided in laboratory 

experiments (Chang et al. 2013). 

 

Comparative analysis of Caenorhabditis elegans and C. briggsae genomes identified 252 

conserved segments and 517 chromosomal rearrangements, with a high amount of 

transpositions in these two genomes. In addition, it has also been observed that the 

rates of rearrangements in nematodes is the highest among all eukaryotic species 

(Coghlan and Wolfe 2002). Comparative studies of  Drosophila pseudoobscura, its close 

relative D. miranda, and its distant out-group species D. melanogaster showed that the rates 

of rearrangement in these species were even higher than those found in C. elegans 

(Bartolomé and Charlesworth 2006). In addition, it was noticed that the D. pseudoobscura 

chromosomes with the highest level of inversion polymorphisms does not show an 

unusually fast rate of evolution with respect to their chromosome structure. This 

suggests that this classic case of inversion polymorphism reflects selection rather than a 

random mutational process (Bartolomé and Charlesworth 2006).  

 

2.3.2 Genome rearrangements in mammals 

In 1970 Susumu Ohno proposed a Random Breakage Model (RBM) of chromosome 

evolution, which postulated that evolutionary breakpoints occur at random 

chromosome positions and thus there are no rearrangement hotspots in mammalian 

genomes (Ohno 1970, Ohno 1973). Nadeau and Taylor (1984) did a comparative 

analysis between the human and mouse autosomes among 83 homologous loci. They 

observed that the distribution of lengths of 13 conserved segments in human and 

mouse genomes fits the distribution expected from a Poisson process and concluded 

that the evolutionary breakpoints were independently and uniformly distributed across 

human and mice genomes (Nadeau and Taylor 1984). The RBM has been confirmed by 
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many studies based on relatively low resolution comparative maps (Alekseyev and 

Pevzner 2010). Later, with the advancement of comparative genomics, data 

visualization, and DNA sequencing (see Chapter 2 section 1.4), it became possible to 

decode various genomes and trace their evolution (W. J. Murphy et al. 2005, Ma et al. 

2006). These technological advancements and improved resolution allowed us to 

observe that the number of small conserved segments appears to be larger than 

predicted by the RBM (Eichler and Sankoff 2003, Kent et al. 2003). 

 

After the completion of the human and mouse genome sequence assemblies, Pevzner 

and Tesler in 2003 did a detailed comparative analysis of the human and mouse 

chromosome organisations and identified 281 synteny blocks (Pevzner and Tesler 

2003a). Using the Hannenhalli and Pevzner algorithm (2003), they determined that at 

least 190 “reuse” evolutionary breakpoints were required to transform the mouse 

genome into the human genome in the most parsimonious scenario (Pevzner and Tesler 

2003b). The finding of reuse evolutionary breakpoints in mammals suggests the 

presence of evolutionary breakage hotspots in chromosomes and contradicts the RBM 

(Sankoff and Trinh 2004, Sankoff and Trinh 2005). Later, Pevzner and Tesler (2003b) 

suggested a new model of chromosome evolution that is known as the Fragile Breakage 

Model (FBM), suggesting that chromosome breakage occurs in fragile regions of the 

genome (Becker and Lenhard 2007). Trinh et al. (2004) investigated the breakpoint 

regions between the syntenic blocks in humans and mice and discovered that 

evolutionary breakpoints are not randomly distributed across the genome, supporting 

the FBM model (Trinh et al. 2004, Alekseyev and Pevzner 2011). Based on the 

comparative study of the human, mouse, and cattle genomes, Larkin et al. (2003) 

independently proposed the idea of breakpoint reuse (Larkin et al. 2003). Larkin et al. 

(2003) used direct experiential evidence and counted overlapping EBRs in multi-

genome synteny-based comparisons to detect reuse breakpoints. In contrast, the 

algorithmic approach used by Pevzner and Tesler (2003) identified an excess of small 

synteny blocks that could be explained only by breakpoint reuse (Larkin et al. 2003). 

While several models like RBM postulate that chromosomal rearrangements are 

“random” in nature (Ohno 1970), the Fragile Breakage Model (FBM) suggests that there 

are some specific fragile regions or hotspot in genomes which are prone to break and 

reorganize throughout evolution (Pevzner and Tesler 2003). Alternatively, the Turnover 

Fragile Breakage model (TFBM) postulates that fragile regions have a limited lifespan 
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and they are subjected to undergo birth and death processes, which implies that they can 

migrate between different genomic locations over evolutionary time (Alekseyev and 

Pevzner 2010).  

 

Evolutionary breakpoint analysis indicates that the breakpoint regions are gene-dense 

(Everts-van der Wind et al. 2004, Wind et al. 2005) and contain an elevated number of 

repeats (W. J. Murphy et al. 2005, Ma et al. 2006). In a multi-species comparative 

genome study, Larkin et al. (2009) also detected that evolutionary breakpoint regions 

have higher densities of structural variants, single nucleotide polymorphisms (SNPs), 

exoniphy, zinc-finger transcription factor genes, retrotransposed genes, and lower 

densities of highly conserved sequences and meiotic recombination hotspots compared 

to the rest of the human genome. The genes found in primate EBRs are associated with 

immune responses, and their enrichment in EBRs suggests that rearrangements may 

contribute to the development of adaptive phenotypes (Larkin et al. 2009). Recently, 

additional support for the role of EBRs in lineage-specific adaptation has come from 

analysis of the cattle genome (Elsik et al. 2009, Womack 2012). This cattle-based analysis 

found that gene families encoding proteins present in milk, such as HSTN, were 

affected due to substantial reorganization of cattle chromosome 6 (BTA6) which lead to 

juxtaposition of HSTN next to the regulatory element (BCE) important for β-casein 

(CSN2) expression. These events subsequently provided additional immune protection 

in cattle milk (Elsik et al. 2009, Danielle G. Lemay et al. 2009). Similarly, the β-defencin 

antimicrobial peptide genes were found within an artiodactyl-specific EBR and 

expanded in cattle chromosome 27. This might have contributed to the adaptive 

immune response in rumen evolution, suggesting that these adaptive changes are 

connected to the increased amounts of microorganisms present in rumens  (Elsik et al. 

2009, Larkin 2012).  

 

In summary, genomes contain prolonged regions that are evolutionary stable for 

hundreds of millions of years of evolution. In contrast, the fragile or hotspot regions of 

the genome are prone to breaking and are involved in chromosomal rearrangements 

because of their underlying genomic sequence features, like segmental duplications, 

copy number variants, and retrotransposed genes. These sequence features are a 

resource for producing adaptive phenotypes. Several research findings suggest that 

evolutionary chromosome rearrangements may have adaptive value and thus are subject 
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to selection (Ayala and Coluzzi 2005). With the advancement of new genome 

sequencing technologies and methods of genome assembly, newly sequenced genomes 

are a great resource for understanding molecular evolution. Along with chromosome 

organisation as well as gene expression, new full genome sequences will clarify the role 

of evolutionary chromosomal rearrangements in adaptation and speciation. 

 

Despite experimental difficulties, many speciation and adaptation theories have been 

proposed to explain evolutionary mechanisms, but the physical as well as genetic 

evidence has proved to be elusive. Till now breakpoint discoveries derived from 

precision physical mapping as well as genetic mapping of amniote genomes indicates 

that these fragile regions are reused in evolution (Pevzner and Tesler 2003b, W.J. 

Murphy et al. 2005), and enriched with genes and segmental duplications (Bailey et al. 

2004, Everts-van der Wind et al. 2004, W.J. Murphy et al. 2005). In addition to that, 

functional differences of genes in EBRs and HSBs has also been reported (Larkin et al. 

2009). The role of repeat sequences in chromosomal rearrangements as well as uneven 

rates of chromosome evolution in different lineages has been widely explored and well 

accepted in evolutionary biology (W. J. Murphy et al. 2005). Despite exhaustive studies, 

no positive relationship between EBRs and their impact in adaptive evolution has ever 

been made. This has proved to be the most difficult problem of all. In spite of the fact 

that enormous progress has been made by scientists in recent years towards (see chapter 

1 and 2 for more detail review) understanding and determining the relationships 

between EBRs and various sequence features and their association with probable 

mechanisms of chromosome breakage in evolution, the role of EBRs in adaptation to 

the environment is still unclear. The following subsequent chapters will explore the 

evidence in more detail. 
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3. DETECTION OF CONSERVED SYNTENY AND 

ANALYSIS OF EVOLUTIONARY BREAKPOINT 

REGIONS IN THE PIG GENOME  

3.1 INTRODUCTION 

Domestic pig (Sus scrofa domestica) belongs to genus Sus and is a part of the family Suidae. 

According to pig taxonomy review, there are seven species of pigs and 22 subspecies 

living in different parts of the World (Groves and Grubb 1993). The domestic pig, Sus 

scrofa domestica, is an even-toed ungulates livestock animal, a member of the order 

Artiodactyla (Figure 3.1). The Artiodactyla order is a distinct clade from rodents and 

primates that last shared a common ancestor with the human lineage between 79 and 97 

million years ago (Mya) (Kumar and Hedges 1998, Hedges and Dudley 2006). 

Artiodactyls include such animals as sheep, goats, camels, pigs, cows, deer, giraffes, and 

antelopes. Multiple artiodactyls have evolved features that are adaptive for life on open 

grasslands. As beasts of burden and/or as sources of meat, milk, hair, and leather, many 

artiodactyls have assumed important roles in many cultures and are important livestock 

species. 
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Figure 3.1 Phylogenetic tree of the order Artiodactyla. Some classifications tend to 

group Cetacea and Artiodactyla into order Cetartiodactyla. The blue colour branches 

represent the largest suborder Ruminantia in the Artiodactyla which contains 66 living 

genera and 164 species (Price et al. 2005). The branch in orange denotes Cetancodonta 

suborder, which includes hippos and cetaceans (baleen and toothed whales). The red 

colour indicates Suina (also known as Suiformes) suborder, which includes Suidae (pig 

family) and Tayassuidae (peccary family). Camelidae branch in dark black colour 

highlights Tylopoda suborder, which includes camels. Branch lengths are not 

proportional to species divergence time. Adapted from (Price et al. 2005). 

The theories about the origin of domestic pigs were controversial until recently. 

However, recent genetic and domestication studies suggest that Island South East Asia 

(ISEA) was the origin of pig-like animals later spread in trajectories by both hunter-

gatherers and farmers (Gosden 1995, Latinis 2000, Groves 2007). Moreover, the 

mitochondrial DNA (mtDNA), and available dental Sus fossil-based analysis of wild 

boars support the theory that pigs originated in the ISEA, later dispersed across Eurasia, 

and were domesticated approximately 9,000 years ago in several regions of the World 

(Epstein 1969, Oppenheimer and Richards 2001, Larson et al. 2007). Over the centuries, 
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pig farming in different geographical territories and environmental conditions ranging 

from extreme hot to cold climates has resulted in formation of breeds with distinct 

biological traits such as heat or cold tolerance, food adaptations, and disease resistance, 

which invariably favour their survival under environmental stresses. Pigs have also long 

undergone a breeding process by farmers for a variety of attributes with a major focus 

on productivity traits such as meat yields and fertility. To date, there are likely to be over 

700 pig breeds worldwide of which two thirds reside in China and Europe (Epstein 

1969, Oppenheimer and Richards 2001, Larson et al. 2007). There are five international 

trans-boundary (found in more than one country) pig breeds from the United States 

(US) or Europe 24  that dominate in the world. Pig breeds vary greatly in size, skin 

colour, body shape, ear carriage, behaviour, profligacy, and other traits. Nowadays, 

according to the food and agriculture organization (FAO) pigs are one of the most 

important nutritional sources of animal protein in the world25. A recent World health 

organization (WHO) report predicts a growing increase of meat production from 218 

million tonnes in 1997-1999 to 376 million tonnes by 2030 26 (Pilling and Rischkowsky 

2007). Similarly, a study of human food chains by Bonhommeau et al shows a global 

trend toward the incensement of diets richer in meat from 1961 to 2009 by 3% 

(Bonhommeau et al. 2013).  These reports indicate a high demand of meat including 

pork around the world. It is expected that world population of domestic pigs will reach 

1 billion by 2015 to fulfil the demands of growing human population27. 

Pigs are of particular interest for scientific studies not only because of existing breeds 

that show great phenotypic varieties for morphological, physiological and behaviour 

traits but also because of their similarities with humans anatomically, physiologically, 

and genetically (Rothschild and Ruvinsky 2011). Therefore, the utility of pigs in 

biomedical research promises many advantages compared with other animals such as 

mice and rats (Prather 2013). Due to physiological and biochemical advantage of pigs 

over other counterpart biomedical model organisms, pigs are treated as a model 

organism for humans to understand complex traits such as obesity (Kogelman et al. 

2013), arthritis, Parkinson, Alzheimer (Martien AM Groenen et al. 2012), cancer 

(Flisikowska et al. 2013) and cardiovascular disease (Tumbleson and Schook 1996). Pigs 

                                                      
24 http://dad.fao.org/ 
25 http://www.fao.org/docrep/007/y5019e/y5019e03.htm Accessed: 14/06/2012 
26 http://www.who.int/nutrition/topics/3_foodconsumption/en/index4.html Accessed: 14/06/2012 
27 http://www.fao.org/ag/againfo/themes/en/pigs/home.html Accessed: 14/06/2012 

http://dad.fao.org/
http://www.fao.org/docrep/007/y5019e/y5019e03.htm
http://www.who.int/nutrition/topics/3_foodconsumption/en/index4.html
http://www.fao.org/ag/againfo/themes/en/pigs/home.html
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are also proven to be the most successful non-primate animal for xenotransplantation in 

humans (Lunney 2007). The recent comparative anatomical analysis indicates 

differences between porcine and human organs, but still pigs are currently the only 

animal being considered as a source of organs for transplantation to humans 

(Schmoeckel et al. 1998, Goddard et al. 2000). For example, the xenotransplantation 

from non-human primates to humans were initially found more clinically suitable but 

later it was discovered that there is a higher risk of disease transmission from primate 

organs to humans than from pig organs to humans (Michler 1996). The 

xenotransplantation may transmit potentially lethal viruses from non-human primates to 

humans, including Ebola, Marburg, hepatitis A and B, herpes B, SV40, and SIV, and 

hence it is considered not safe to use non-human primates for this purpose (Vanderpool 

2002, Matoušková et al. 2013). 

Pigs also exhibit multiple adaptations. They have a strong sense of smell, providing a 

reason why they are used to sniff out truffles — edible fungi found underground28. The 

sensing ability of pigs is confirmed by the large number of the olfactory receptor (OR) 

genes present in the pig genome. Recently it has been found that the number of OR 

genes in the pig genome is larger than in the human, mouse and even dog genomes, 

which corroborates the pig’s physical sensing ability and reflects the strong reliance of 

pigs on their sense of smell while scavenging for food (M. A. Groenen et al. 2012). 

Additionally, pigs are omnivorous animals feeding on a variety of food of both plant 

and animal origin, and are indiscriminative in feeding. This unique ability probably made 

pigs able to survive in harsh environments and also an attractive target for 

domestication.  

The pig genome consists of 18 pairs of autosomes and X/Y sex chromosomes. The 

high quality pig whole genome RH maps (Hawken et al. 1999), linkage maps and 

bacterial artificial chromosome (BAC) clone libraries (Anderson et al. 2000) have been 

constructed to discover the small genomic regions of particular interest (e.g., loci 

controlling economically important quantitative traits; quantitative trait loci (QTL) (Sean 

J Humphray et al. 2007). The fatness and muscle traits linked to chromosome X, were 

initially investigated with linkage and RH mapping of 10 pig genes (Čepica et al. 2006). 

In other work, 21 genetic markers were mapped to a QTL region controlling for meat 

                                                      
28 http://ori.hhs.gov/education/products/ncstate/pig.htm Accessed: 14/06/2012 

http://ori.hhs.gov/education/products/ncstate/pig.htm
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quality on pig chromosome 17(Ramos et al. 2006). The QTL related to muscle mass and 

fat deposition (backfat thickness) were reported and confirmed on pig chromosomes 7 

and 2 (de Koning et al. 1999, Rattink et al. 2000, Tanaka et al. 2006). A comprehensive 

list of economically important pig QTLs with their genomic locations are available from 

the PigQTL database for further exploration and analysis29 (Hu et al. 2013).  

The chromosome rearrangement studies have identified a number of evolutionary 

events including duplications, inversions, translocations, fissions and fusions in many 

pig chromosomes once compared with human, mouse, rat, dog (Jiang et al. 2005) and 

cattle (Pinton et al. 2003) chromosomes. For example, the porcine-human whole-

genome RH comparative map constructed with 2,274 loci, including 206 ESTs and 

2,068 BAC-end sequences, identified a total of 51 conserved synteny groups that include 

173 conserved segments between the human and the porcine genomes (Johansson et al. 

1995, Meyers et al. 2005). Similarly, Rink et al. were also able to reveal a high degree of 

gene order conservation in porcine-human comparative RH map, with at least 60 large 

scale genome rearrangements and an additional 90 micro-rearrangements (Rink et al. 

2002). Furthermore, Sun et al. (1999) have validated the extensive synteny and gene 

order conservation between the human chromosome 13 and pig chromosome 11 using 

FISH mapping technique(Sun et al. 1999). A high-resolution comparative RH map 

constructed for porcine chromosome 2 (SSC2) showed four conserved segments 

between the SSC2 and human chromosomes 11 (HSA11), 19, and 5 (Rattink et al. 2001). 

Later, the rearrangement of gene order in the segment HSA11p15.4-q13 was observed 

and confirmed to be inverted on the SSC2 (Rattink et al. 2001). Additionally, 29 

evolutionary breakpoints were reported though a high resolution comparative mapping 

between human and pig chromosomes 2 and 16 (Lahbib-Mansais et al. 2006). The high 

resolution, bacterial artificial chromosome-based physically anchored, human-pig 

comparative maps were used in the pig genome sequencing project (Meyers et al. 2005, 

S.J. Humphray et al. 2007). The physical maps enabled coverage of over 98% of the 18 

pig autosomes (S.J. Humphray et al. 2007) and provided a template for genome 

sequencing and assembly of physically-anchored sequences across the genome 

(McPherson et al. 2001, Warren et al. 2006, Lewin et al. 2009). 

                                                      
29 http://www.animalgenome.org/cgi-bin/QTLdb/SS/index Accessed: 14/06/2012 

http://www.animalgenome.org/cgi-bin/QTLdb/SS/index
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The recent advancement and developments in the next generation sequencing 

techniques and reduction in sequencing costs (Shendure and Ji 2008) and henceforth an 

increase in the genomic data, empower evolutionary biologists to peruse, interpret and 

understand the evolutionary mechanisms at genomic level. The whole genome 

sequencing (WGS) of pigs has been initiated by the Swine Genome Sequencing 

Consortium (SGSC). The pig WGS sequence was performed using DNA isolated from 

a single Duroc sow (Schook et al. 2005, Archibald et al. 2010). The capillary sequencing 

was done at the Korean Livestock Research Institute, whereas the Illumina/Solexa 

sequencing was completed by the Wellcome Trust Sanger Institute and  Beijing 

Genomics Institute (BGI) (~40X coverage) through funding provided by Cooperative 

State Research, Education and Extension Service at the United States Department of 

Agriculture (CSREES-USDA)(Schook et al. 2005, Chen et al. 2007, Archibald et al. 2010). 

The current pig genome assembly (Sscrofa build 10.2) comprises 2.60 Gbp of DNA 

sequence assigned to chromosomes and 212 Mbp in unplaced scaffolds. This recently 

accomplished pig genome sequencing and annotation empowers us to study the 

chromosomal evolution in mammals, and connect chromosomal rearrangement events 

to changes gained by species during adaptation. Also, the genomic data facilitate the 

understanding of genetic complexity and assist in elucidating genetic variations that 

contribute to economically important traits and animal diseases(Jiang and Rothschild 

2007).  

Therefore our study aimed to investigate the chromosomal rearrangement events in the 

pig genome and their contribution to adaptive changes occurring during pig genome 

evolution. The first objective was to detect pig and artiodactyl EBRs with high accuracy. 

The second objective was to determine the probable impact of chromosome 

rearrangements on gene networks in pigs using gene enrichment analysis. In addition, 

the distribution of TEs families in and around pig and artiodactyl EBRs were compared 

to explore the role of TEs in the pig chromosome evolution. These studies were carried 

out using the pig whole-genome sequence assembly.  

The following  lists the work performed by me in this chapter: 

 Identified the homologous synteny blocks amongst seven mammalian genomes. 

 Discovered evolutionary chromosomal breakpoints and analysed them. 

 Detected novel porcine bitter taste receptor genes, and connected these to the 

EBRs.  
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 Detected  transposable elements in the pig genome and performed enrichment 

analysis in EBRs. 

 Enrichment analysis of genes present within and around EBRs. 

The validation of certain dubious EBRs (detected by me) was done with FISH 

techniques by Dr. Katie Fowler at University of Kent. 

3.2 METHODOLOGY 

3.2.1 Identification of homologous synteny blocks 

Seven sequenced mammalian genomes assembled to the chromosomal level were 

compared: cattle (UMD 3.0), dog (Cfam 2.0), horse (equcab 1.0), macaque (mmu 2.0), 

rat (rn 4.0), orang-utan (ponAbe 2.0) using the pig (build 10.2) and human genomes 

(hsg37) as references. All the genomes were separately aligned against the pig and also 

human genomes using the SatsumaSynteny program (M.G. Grabherr et al. 2010). In 

order to define pairwise HSBs between each of the genomes and the human or pig 

genomes the SyntenyTracker program was used (Donthu et al. 2009). The 

SyntenyTracker program settings allowed detection of HSBs >500 Kbp, >300 Kbp, 

>100 Kbp in the reference genome. Furthermore, a Perl script was written to split 

overlapping HSBs found the SynteyTracker output. The script finds the HSBs 

overlapping EBRs in at least one other target species and checks for probable 

breakpoints across all species studied at that position. If there were any small 

rearrangements detected in any target species then the corresponding HSBs were split to 

reveal missed EBRs (Figure 3.2). The visualization of HSBs using the pig or human 

chromosomes as references was performed in the Evolution Highway (EH) 

comparative genome browser30.  

                                                      
30 http://evolutionhighway.ncsa.uiuc.edu 

http://evolutionhighway.ncsa.uiuc.edu/
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Figure 3.2 Detection of missed rearrangement events in HSBs. The visualisation shows 

a comparision of 6 mammalian species using the pig chromosome 11 (SSC11) as a 

reference. The grey blocks indicate HSBs; with the target species chromosome numbers 

inside the blocks. The white colour indicates the EBRs or gap regions between HSBs. 

All HSBs in the target species were further checked for small rearrangement events 

overlapping with EBRs detected in at least one pairwise comparison. If a small 

rearrangement was identified within an HSB region then the original HSB was split to 

reveal missed EBRs.Plus ( + ) and minus (- ) in figure indicate the orientation of the 

HSBs compared to the reference chromosome. 

3.2.2 Identification and analysis of evolutionary breakpoints regions (EBRs) 

The EBRs were identified as intervals demarked by two adjacent HSB boundaries on 

the same reference chromosome. EBRs were assigned to phylogenetic lineages using the 

following species topology: ((pig, cattle), (dog, horse)), (rat, ((human, orang-utan), 

macaque)). 

 

To perform phylogenetic classification of EBRs, a custom algorithm was developed to 

define and classify different types of EBRs in genomes: lineage-specific (EBR that are 

present in one species), ordinal (EBRs that occur in all species from the same order), 
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and superordinal (EBRs present in species from the same super-order) (Figure 3.3 and 

3.4) by setting a score based on the probability of an EBR to belong to different 

phylogenetical nodes. As an input this algorithm uses a tab-delimited table containing 

coordinates of pairwise HSBs for all species compared to a single reference genome. 

Then it defines EBRs as intervals in-between two adjacent HSBs that belong to the 

same reference chromosome. Once the coordinates of probable EBRs are extracted, the 

algorithm checks the EBRs and classifies them in accordance with phylogenetic 

relationships of the species involved in the analysis. For a reliable classification of EBRs 

two scores were calculated for each EBR– a phylogenetic score and a gap score. 

 The phylogenetic score shows if an EBR is present in all species from the expected 

clade. For example, if an EBR is “pig-specific” and the pig genome was used as 

a reference for the chromosome comparison, then the highest quality EBR is 

expected to be present in all target species at the same reference genome 

position (phylogenetic (expected) score = 1, means expected clade EBR is 

classified with  100% accuracy). 

If the EBR is not detected in one of the species-[Clade: Break(species1, species2, 

species3, species4), NoBreak( species5),Break (species6, species7)], then the score will be 

(ExpectedPhyloScore-(NoBreakNum/TotalSpeciesNum)) given that seven species were 

aligned with the pig genome sequence. Using above clade as an example, the 

phylogenetic score will be ~0.86 (1-(1/7)). 

 The gap score is affected by the number of species in which the EBR is present 

and whether the EBR detected in one of the genomes overlaps with more than 

one non-overlapping EBRs in other genomes. For example, the phylogenetic 

score equals one and the gap score <7, implies that the EBR present in one 

genome overlaps with intersecting EBRs in other genomes.  
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Figure 3.3 Examples of HSBs and visualisation of EBRs using cattle, horse, dog, 

macaque, orang-utan, and human genomes on SSC10 and SSC11. In all chromosome 

images, the grey blocks indicate HSBs, with the target species chromosome numbers 

indicated inside the blocks and the white regions indicating EBRs or gaps. The orange 

arrow indicates the position of a gap region. Any breakpoint is called a “gap” if it 

overlaps with more than one EBR that does not overlap with each other in different 

target species or it overlaps with more than one EBR in the same target species. The 

artiodactyl (order-specific) EBR is indicated with a blue star on SSC10. This EBR is 

present in the cattle and pig genomes (pig genome is used as a reference) suggesting that 

the cattle and pig genomes have a chromosome organisation different from all other 

mammals in this region. The breakpoint present across all the species is a pig-specific 

EBR which is highlighted with a red star in this example. There is one additional lineage 

specific breakpoint which was highlighted with a red star on SSC11, in which there is 

only one chromosomal break detected in the cattle lineage. 
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Figure 3.4 The phylogenetic origin of EBRs. The EBRs phylogenetic relationships are 

denoted by stars in this tree. The blue colour star highlights an artiodactyl EBR which 

occurred in the cattle and pig ancestral lineage. The yellow colour star is used to 

represent a ferungulate EBR which occurred in the common ancestor of artiodactyls, 

dogs, and horses. The lineage-specific breakpoint found in a single species is 

represented with a red star. The branch lengths are not proportional to divergence time. 

 

If lineage–specific EBRs are identified using an out-group genome as a reference, (e.g. 

pig-specific EBRs are detected in the human genome) then a phylogenetic score of 1 

would imply that the EBR is present in only one species. The score would be decreased 

if the EBR was present in another genome as well, e.g., an overlapping EBR in the pig 

and mouse genomes has the phylogenetic score of 0.5 implying that it is present in two 

lineages. Moreover, the gap score in such cases will increase because the number of 

genomes sharing the EBR increases. The algorithm for the EBR classification was 

implemented as a custom Perl script (Figure 3.5). 
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Figure 3.5 Schematic representation of the EBR identification and classification process. 

The star ( * ) indicates that an EBR overlaps with more than one EBR that do not 

overlap with each other in different target species or it overlaps with more than one 

EBR in the same target species. 

3.2.3 Detection of novel porcine bitter taste receptor genes 

A total of 105 sequences from taste receptor, type 2 (TAS2R) gene family from cattle, 

dog, chimp, mouse, human, and pig genomes were collected. A tBLASTn comparison 

of the genes was performed against the pig chromosomes and unassigned contigs using 

E-value of e-10 as the threshold. All non-overlapping pig sequences that had matches 

>100 aa with known TAS2R genes were extracted. I added 1,000 bp to the 5’ and 3’ 

ends of the extracted sequences. Then I translated all six frames from all the DNA 

sequences into protein sequences and performed a BLASTp analysis against the NCBI 

nr database to identify orthologs of putative TAS2R genes. After detection of the 

matches I searched the pig sequence for the closest start and stop codons near the 

longest match from a known TAS2R gene. I considered an identified pig TAS2R gene 
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‘intact’ if it encodes for >290 aa, and has no frame-shift mutations or premature stop 

codons.  

3.2.4 Transposable elements enrichment in EBRs 

The distribution of TEs and other repetitive sequence families were studied in and 

around pig and artiodactyl EBRs. Detection of repetitive elements in the reference 

genome was performed by RepeatMasker (version 3.3.0)31 (Smit et al. 2004) using Repeat 

library v.20120124. An in-house pipeline was used to calculate the densities of TEs in 

each EBRs and non-EBRs regions of the pig genome. The pipeline divides 

chromosomes into 10 Kbp segments (bins) and calculates the number of bases from 

each TE family within each bin. The distribution of TE families was compared with the 

average number of bases (>100) in all genome bins between the EBR regions and other 

parts of the genome. A Student’s t-test with unequal variances was used to identify 

repeat families that were unequally distributed in EBRs when compared to the rest of 

the genome. FDR (Benjamini-Hochberg) and lfdr (Efron-Bradley) algorithms were used 

using FDRTool to calculate critical values and control for a false positive discovery rate 

(Strimmer 2008). 

Apart from analysing the overall density of TE elements in pig EBRs, a potential 

influence of lineage-specific TE insertions was searched for on genes involved in the 

taste transduction pathway.  Henceforth, an attempt was made to look for TE that were 

inserted into the taste transduction genes (focusing on exons, 5’ and 3’ untranslated 

regions (UTRs)) and found in/near the pig-specific EBRs. The taste transduction 

pathway-related genes were extracted from the Kyoto Encyclopaedia of Genes and 

Genomes (KEGG)32 database and were cross-verified using the pig EnsEMBL gene set. 

Later, the genome coordinates of 29 taste transduction genes and their corresponding 

transcript sequences were extracted from the Sanger pig transcript dataset 33  for the 

identification of exons, 5’ and 3’ UTR sequences. 

3.2.5 FISH Analysis 

The cytogenetic technique, FISH was used to check the chromosomal rearrangement in 

SSC3. The FISH analysis was performed by Dr. Katie Fowler (University of Kent). In 

this case, specific BAC probes CH242-207N16 and CH242-191E23 from the CHORI-

                                                      
31 http://www.repeatmasker.org/ 
32 http://www.genome.jp/kegg/  
33 ftp://ftp.sanger.ac.uk/pub/sf7/sscrofa10_2/e67_final_names/ Accessed: 14/06/2012 

http://www.repeatmasker.org/
http://www.genome.jp/kegg/
ftp://ftp.sanger.ac.uk/pub/sf7/sscrofa10_2/e67_final_names/
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242 BAC library were used. Based on the pig genome assembly (build 10.2) BAC clone 

CH242-207N16 was assigned to chromosome 10 and clone CH242-191E23 to 

chromosome 3 forming boundaries of two EBRs detected in our analysis.  

The ordering of BACs from CHORI 34  and FISH analysis were performed at the 

University of Kent. A sterile technique was used to streak an agar plate and the plate 

was placed at 37 0C overnight. The following day, the colonies were removed from the 

plate using a Pasteur pipette and sterile PBS. Subsequently, the QIAprep Spin Miniprep 

kit (Qiagen) was used (following the manufacturer’s instructions) to purify the plasmid 

DNA. Later, the BACs were amplified using the Illustra GenomiPhi V2 DNA 

Amplification Kit, following the manufacturers’ instructions. The nick translation was 

subsequently performed to directly label the BACs with fluorophores (FITC=green, 

Texas Red=Red), Agarose gel electrophoresis was performed to ensure the probes were 

of the correct size for downstream FISH analysis. The probes were purified using the 

QIAQuick Nucleotide Removal Kit (Qiagen), following manufacturers’ instructions. 

Metaphase preparations were dropped onto clean microscopy slides and observed under 

phase contrast microscopy to check for density of metaphases and presence of 

cytoplasm. Same species FISH and fluorescence microscopy was subsequently 

performed in house. Thereafter, FLPter analysis was performed using ImageJ software 

to ensure the probes hybridised to the expected chromosomal locations. 

3.2.6 Enrichment analysis of genes present within and around EBRs 

Gene enrichments were searched for in and around pig and artiodactyl EBRs, using the 

human and pig genomes and gene sets as references. The following materials were used 

for the analysis: 

3.2.6.1 Using human genome as a reference 

The human gene data set was downloaded from the NCBI ftp server 35 . The total 

number of genes annotated by NCBI was 45,542 which included unplaced, 

mitochondrial and pseudo-genes. The set was filtered to remove 74 mitochondrial 

genes, 511 genes on chromosome Y and 2,288 genes located on unplaced scaffolds. 

Additionally, all gene annotation files for human genomic contigs (GRCh37.p2) were 

                                                      
34 http://bacpac.chori.org/libraries.php Accessed: 14/06/2012 
35 ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/ Accessed: 14/06/2012 

http://bacpac.chori.org/libraries.php
ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/
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downloaded from the NCBI human genome database 36  and gene coordinates were 

extracted. Later, the chromosome coordinates were added to each of the genes using 

Entrez gene ID as a matching criteria between the gene and contig annotations. Finally, 

a filtered set of 37,299 genes (including putative or hypothetical genes) was obtained 

which was used during the pig EBRs gene enrichment analysis using human genome as 

a reference.  

3.2.6.1.1 Gene network analysis within pig EBRs 

The human genes were checked for an overlap with 189 pig-specific EBRs identified in 

the human genome (as a reference). A master file was created that contained 

information about the human genes with sequence coordinates overlapping with pig 

EBRs defined in the previous step (see methodology section 3.2.2). The genes that were 

located within +/-500 Kbp from the pig-specific EBRs were also identified. The total 

number of human genes that were found in or near 189 pig EBRs was 2,848. The genes 

were submitted to the DAVID v6.7 and separately to the GeneGo MetaCore database37 

(MetaCore™ v.6.9 build 30881) for the gene network enrichment analysis using the 

human filtered set of 37,299 genes as a reference. The false discovery rate (FDR) of 5% 

was used as a significance threshold for the analysis. 

3.2.6.2 Using pig genome as a reference 

The latest pig gene annotation files were downloaded from NCBI38 and EnsEMBL39 

and coordinates of all pig genes annotated in these databases were extracted. A total of 

25,827 genes were found which were predicted by the NCBI in the pig genome 

(including unplaced scaffold, Y, and MT), out of which 8,051 genes were assigned a 

gene name. Similarly, in the EnsEMBL dataset a total of 25,009 genes were predicted 

(with all UN, MT, and Y), out of which 15,554 genes were assigned a unique name.  

 

The set of homologs between the pig and human genomes were downloaded from 

EnsEMBL 40 . In addition, pig and human EnsEMBL gene annotation files were 

downloaded from the EnsEMBL server, which contain gene location and structure 

information of the respective genomes. Later, the unplaced scaffold (24), chromosome 

                                                      
36 ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ Accessed: 14/06/2012 
37 http://www.genego.com  
38 ftp://ftp.ncbi.nlm.nih.gov/genomes/Sus_scrofa/GFF/ Accessed: 14/06/2012 
39 ftp://ftp.sanger.ac.uk/pub/sf7/sscrofa10_2/e67_final_names Accessed: 14/06/2012 
40 ftp://ftp.ensembl.org/pub/release-67/mysql/ensembl_mart_67/ Accessed: 14/06/2012 

ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
http://www.genego.com/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Sus_scrofa/GFF/
ftp://ftp.sanger.ac.uk/pub/sf7/sscrofa10_2/e67_final_names
ftp://ftp.ensembl.org/pub/release-67/mysql/ensembl_mart_67/
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Y (23) and mitochondrial (14) genes were filtered out from the pig EnsEMBL gene list. 

These genes were filtered out from the list because mitochondrial genes and genes on 

chromosome Y were not analysed for overlaps with chromosome EBRs. The gene set at 

this stage contained 19,094 annotated genes in the pig genome (Table 3.1).  

 

Moreover, the filtered file with 19,094 annotated pig genes was further filtered for genes 

that had more than one known ortholog in the human or pig genomes. Depending on 

the number of genes found in each species, EnsEMBL differentiates among one2one, 

one2many and many2many gene relationships. These relationships and their potential 

influence on gene annotations are discussed in Chapter 2 section 1.2.2.1. 

 

Table 3.1 Number of pig and human homologous genes in the pig genome. 

All 

homologs 

Not placed 

to 

chromosomes 

Mitochondrial ChrY Filtered 

homolog 

set* 

one2one 

orthologs 

one2many 

orthologs 

many2many 

orthologs 

21,099 1,976 13 16 19,094 12,660 4,799 1,634 

* Final filtered set of pig genes which does not include unplaced, chromosome Y and 

mitochondrial regions.  

3.2.6.2.1 Orthologous gene set 

A total of 12,660 pig genes annotated by EnsEMBL (build 67) were extracted, mapped 

to known chromosome positions in the pig genome and with a single known ortholog 

in human chromosomes. This set was further filtered by excluding those genes which 

were located in the non-orthologous positions of the pig and human chromosomes 

identified from the whole-genome pig-human SatsumaSynteny alignment dataset used 

to build pairwise HSBs between the human and pig genomes. The orthologous 

positions were identified either by a direct overlap with the pig-to-human sequences 

alignments, or predicted if a gene was located in between two homologous positions 

within an HSB as defined by the sequence alignment. Those genes that had a single 

ortholog in the human and pig genomes and were located in an EBR in the pig genome 

were also kept. As the result of this filtering step 613 genes were removed. To produce a 

comprehensive set of genes with well-defined orthologous relations between the pig and 
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human genomes, 127 genes were added to the dataset that were found in the 

independent pig genome annotation from NCBI, had no coordinate or name overlap 

with the annotated pig EnsEMBL gene set, had human orthologs located in the 

homologous positions in the pig and human chromosomes as defined by sequence 

alignments (see above). A further 209 genes that had assigned gene names by NCBI 

only, were found in homologous positions in human chromosomes confirmed by the 

whole-genome sequence alignment and had >30% overlap with unnamed pig genes in 

the EnsEMBL gene set were added. 

 

The resulting set of 12,383 orthologs between the pig and human genomes was used to 

build human-pig HSBs with SyntenyTracker program (Donthu et al. 2009). This led to 

the detection of 109 genes that were located in unexpected positions within HSBs (“out-

of-place”) or represented a single gene HSB (“singleton”). These genes were excluded 

because they are likely to be located in misassembled pig genome intervals and could 

affect our gene network analysis. At the end, there was a set of 12,274 genes that were 

used for the gene network analysis. 

3.2.6.2.2 Gene network analysis within pig EBRs 

The 12,274 pig genes with defined orthologs in the human genome were checked for an 

overlap with 192 pig-specific EBRs found in pig chromosomes. In total 1,329 genes 

were detected that are located within the EBRs or in ±500Kbp intervals adjacent to the 

EBR boundaries. To find gene ontology (GO) categories overrepresented in the genes 

present in pig EBRs, the human EnsEMBL gene IDs were used. 

 

MetaCore GeneGo v.6.9 build 30881 online database41 and DAVID v6.7 were used to 

identify GO categories overrepresented within the gene set found in/near pig EBRs. 

The complete set of 12,274 orthologous genes were used as a background for this 

analysis out of which 12,249 EnsEMBL gene IDs were recognised by MetaCore. Out of 

1,329 genes in/near the EBR regions 1,320 were recognized. The KEGG42(Ogata et al. 

1999) were later used to look into the pathways that were found significantly enriched in 

the pig EBRs gene set. 

                                                      
41 http://www.genego.com  
42 http://www.genome.jp/kegg/ 

http://www.genego.com/
http://www.genome.jp/kegg/
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3.3 RESULTS AND DISCUSSION 

3.3.1 EBRs 

Using the pig-based HSB sets and stringent filtering criteria (see methodology section 

3.2) 192 “consensus” pig-specific EBRs were detected. These EBR were consistently 

present in all three HSB datasets or in the 300 Kbp and 100 Kbp sets (missed in the 500 

Kbp set because of a lower resolution of this set). Similarly, when the human genome 

was used as reference, 189 pig-specific EBRs were detected. In addition to pig EBRs, 

the EBRs present in the artiodactyl ancestral genome (common ancestor of pigs and 

cattle in our dataset) were identified. A total of 20 and 18 artiodactyl EBRs were 

identified using the pig and human genomes as references, respectively. The number of 

lineage-specific EBRs in the cattle genome detected at the 500 Kbp resolution set (Elsik 

et al. 2009, Larkin et al. 2009) is comparable to the number of EBRs detected in the pig 

genome at the same resolution (100 in the cattle lineage compared to 146 EBRs in the 

pig lineage, Table 3.2) suggesting that both lineages evolved with the rate of ~1.7 - 2.4 

large-scale rearrangement per million years after the divergence from a common 

artiodactyl ancestor ~60 Mya (W.J. Murphy et al. 2005). This compares to ~1.9 

(127/65Mya) rearrangements per million years of evolution within the primate lineage 

(Table 3.2).  

 

The comparison of the number of genomic rearrangements between the 500 Kbp and 

100 Kbp resolution sets in the primate and pig genomes indicates that there is ~689% 

increase in the number of rearrangements in the pig lineage while in the primate 

genomes there is only ~158% increase (Table 3.2). This suggests either an extremely 

high level of small-scale genomic rearrangements in the pig lineage or (more likely) 

assembly issues present at <300 Kbp resolution level in the current pig genome 

assembly. Both scenarios should be evaluated during further efforts on the 

improvement of pig genome assembly. 
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Table 3.2 Pig and primate EBRs at 500Kbp, 300Kbp, and 100Kbp resolutions of HSB 

detection.   

Resolutions Pig as reference Human as reference 

     Pig EBRs      Pig filtered     

EBRs* 

    Primate 

EBRs  

Primate filtered 

EBRs* 

500   198 (100%)    146 (100%)       151 (100%)       107 (100%) 

300    270 (136%)    193 (132%)       175 (115%)       127 (119%) 

100 1,495 (755%) 1,006 (689%)         231 (132%)       169 (158%) 

Consensus**   NA   192       NA       NA 

 

*Indicates the number of EBRs present in the porcine and primate lineages that passed 

stringent thresholds (gap score >2, phylogenetic score >0.86). Percentages indicate 

fractions of EBRs identified at the 300Kbp resolution sets compared to 500 Kbp 

resolution (100%). There is an increase in numbers of EBRs observed due to higher 

resolution of the 300 Kbp set. 

**Consensus EBRs were defined in the pig lineage as those that are consistently present 

in the sets of 500 Kbp, 300 Kbp and 100 Kbp, or missed only in the 500 Kbp set 

because of a lower resolution of this set. The consensus EBR set was used for the gene 

and TE enrichment analyses. 

3.3.2 Transposable enrichment in EBRs 

Transposable elements (TEs) comprise a large fraction of mammalian genomes and 

influence the structure of the genomes they have invaded. These mobile elements play 

an important role in shaping the genomes during evolution (Lowe and Haussler 2012). 

The genome analyses indicate that TEs are not uniformly distributed in genomes, but 

are clustered at certain regions of chromosomes (Duret et al. 2000, Caspi and Pachter 

2006, Fontanillas et al. 2007, Elsik et al. 2009). Moreover, a significant enrichment for 

LINE-L1s and ERVs have been reported in tammar wallaby EBRs (Longo and Carone 

2009) and Alu repeats with AAAT motif in Great Apes (Farré et al. 2011). These 

findings suggest that TEs might play an important role in chromosomal rearrangements 

and genome evolution by altering the state of the chromatin conformation or by 
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stimulating the insertion of other TEs (Lim and Simmons 1994, Craig 1996). Similarly, 

the cattle genome studies show the tRNAGlu–derived and LTR-ERVL repeat densities 

were significantly higher in artiodactyl EBRs compared to the rest of the cattle genome 

suggesting their contribution to formation of ancestral artiodactyl chromosome 

rearrangements (Elsik et al. 2009). 

A comparative examination of densities of TEs and other repetitive sequences in the pig 

and artiodactyl EBRs has revealed a significant enrichment for LTR-ERV1 TEs and 

satellite repeats in the pig-specific EBRs compared to other intervals of the pig genome 

(Table 3.3). This suggests that these two families contributed to chromosomal evolution 

in the pig lineage. However, the current work failed to detect enrichment for the LINE-

L1 elements (ancestral TEs which were shown replicating in many mammals since ~170 

Mya (W.J. Murphy et al. 2005) in the porcine EBRs contrary to previous observations in 

the cattle and other mammalian genomes (Larkin et al. 2003, Larkin 2012) (Figure 3.6) 

where lineage-specific EBRs were found enriched for the LINE-L1 elements (Table 

3.3). This suggests that LINE-L1 transposons could not be as active in the pig lineage as 

in other mammals and did not contribute to the genomic rearrangements in the pig 

genome. A recent analysis of TE activity in the pig genome indicated that indeed LINE-

L1 were not active in the in the pig lineage. The fact that LINE-L1 elements were found 

enriched in artiodactyl EBRs in both the pig (this study) and cattle genomes (Elsik et al. 

2009) indicates that this group of mobile elements was active in the artiodactyl ancestor 

and promoted at least some of artiodactyl rearrangements (Table 3.3).  

Another group of mobile elements that could have promoted artiodactyl chromosomal 

rearrangements is SINE-tRNA-Glu. This group of elements has originated in the 

common ancestor or all cetartiodactyls (Shimamura et al. 1999) and was found 

overrepresented in artiodactyl EBRs in the cattle genome (Elsik et al. 2009, Larkin 2012) 

(Figure 3.7). The fact that this group of transposons was also found enriched in 

artiodactyl EBRs detected in the pig genome in the current study strongly supports the 

hypothesis that active TEs promote lineage-specific genomic rearrangements. 
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Table 3.3 Densities of repetitive element families found to differ significantly in pig or 

artiodactyl-specific EBRs compared to other parts of the pig genome. Repetitive 

element content is expressed as bp/10Kbp. 

Repeats Pig EBRs Other Intervals 

Artiodactyl 

EBRs 

Other 

Intervals 

Number of 10 Kbp 

intervals 2,156 257,329 210 259,275 

LINE-L1 1,429 1,332  1,813* 1,332 

SINE-tRNA-Glu 944* 1,050 1,239* 1,049 

LTR-ERV1 210* 145 270* 145 

LINE-L2 131* 256 145* 255 

SINE-MIR 116* 227 102* 226 

LTR-ERVL-MaLR 105* 160 122* 159 

DNA-hAT-Charlie 65* 111 70* 111 

Satellite 300* 229 368 229 

*Found significant at FDR < 0.05 
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Figure 3.6 Density of LINE-L1 elements in cattle, and artiodactyl EBRs. The 

enrichment analysis for LINE-L1 elements in pig (this study; right) compared with cattle 

published data (Elsik et al. 2009; left), shows significant enrichment of LINE-L1 in 

artiodactyl EBRs. These finding suggest that this group of mobile elements was active in 

the artiodactyl ancestor and promoted at least some of artiodactyl rearrangements.  The 

star (*) indicate the statistically significant result at FDR<0.05. 
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Figure 3.7 Density of SINE-tRNA-GLU elements in cattle, pig, and artiodactyl EBRs. 

The enrichment analysis for SINE-tRNA-GLU elements in pig (right) compared with 

cattle published data (Elsik et al. 2009) (left) shows a significantly enriched for 

tRNAGlu-derived SINEs elements in artiodactyl EBRs. These results suggest an active 

role of tRNAGlu-derived SINEs in formation of at least some of artiodactyl 

rearrangements. The star (*) indicates the statistically significant result at FDR<0.05. 

3.3.3 Gene networks affected by chromosome rearrangements in the pig genome 

The gene network enrichment within and around pig-specific EBRs was analysed to 

determine if genes from specific functional pathways are found preferentially in the 

EBRs. For this analysis, the enrichment for specific gene functions within and +/-500 

Kbp from the pig-specific EBRs was analysed. The pig-specific EBRs for the pig and 

human reference datasets were analysed independently.  

3.3.3.1 Human genome as reference 

The Gene Ontology (GO) analysis of cellular processes categories enriched in the pig EBRs 

using the human genome as a reference was carried out with the Metacore 43 

(MetaCore™ v.6.9 build 30881) and DAVID software (Dennis Jr et al. 2003). The GO 

analysis using Metacore demonstrates a significant enrichment for the genes involved in 

                                                      
43 http://www.genego.com 

http://www.genego.com/
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sensory perception of taste, keratinisation and epidermal cell differentiation processes (FDR < 0.05; 

P < 0.05). The results suggest that genes involved in skin- and taste-related biological 

processes were likely affected by chromosomal rearrangements in the pig evolution 

(Table 3.4). Moreover, by looking at the KEGG taste transduction (TT) pathway it was 

observed that certain network signalling nodes (substrates and reactions) related to 

sensory perception of taste were affected (denoted with yellow stars) and underwent 

evolutionary changes during the course of genome rearrangements in the pig genome 

(Figure 3.8). Similarly, genes involved in keratinisation, epidermal cell differentiation, 

and keratinocyte differentiation process were found significantly affected by genomic 

rearrangements. All these three processes are directly connected to the keratinisation 

mechanism in which lower layers of the dermis become tough, insoluble and 

subsequently skin becomes almost waterproof; which helps to maintain water balance in 

the body and afford a degree of protection. A further look into the genes related to the 

keratinisation process and related pathways led to the identification of seven genes: 

GNB, IVL, LOR, SHARPIN, SPRR2G, SPRR3, and TGM1 which were located very 

close to the positions of chromosome rearrangement events in the pig genome. These 

findings suggest that certain keratinization pathway genes were affected by genome 

rearrangements during pig evolution, which could be connected to change of gene 

regulation leading to adaptations required to develop thick skin. The proximity of pig 

EBRs to genes involved in important metabolic pathways and processes supports 

previous findings of Larkin et al. (2009) suggesting that the EBRs are associated with 

genes having adaptive functions(Larkin et al. 2009). 
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Table 3.4 Gene Ontology cellular processes enrichment in pig EBRs using human 

genome as a reference. 

No. GO Process P-value Ratio 

1 Sensory perception of taste 1.9e-10* 21/49 

2 Keratinisation 9.7e-10* 20/48 

 a) Epidermal cell differentiation 1.6e-5* 23/101 

 b) Keratinocyte differentiation 2.5e-5* 21/90 

5 Detection of chemical stimulus involved in sensory 

perception of bitter taste 

1.6e-4 8/20 

Note: *Sensory perception of taste, keratinisation, epidermal cell differentiation, and keratinocyte 

differentiation were found significantly enriched in pig EBRs at FDR < 0.05. Certain GO 

processes, such as epidermal cell differentiation and keratinocyte differentiation were 

linked to a wider keratinisation category, therefore were sub-grouped (a, and b) under 

one process. 

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
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Figure 3.8 Human taste transduction pathway and gene nodes affected by pig genome 

rearrangements. The KEGG nodes marked with red stars are those affected by genome 

rearrangements. The names for the node genes found near/in the EBRs are shown in 

boxes. 

3.3.3.2 Pig genome as reference 

3.3.3.2.1 GO cellular process analysis:  

The enriched functional annotations of porcine one-to-one orthologs of human genes 

based on the “cellular process” tree of the Gene Ontology were analysed. The GO 

analysis of a filtered set of orthologous genes using the MetaCore database shows that 

porcine EBRs and adjacent intervals are enriched for the genes involved in sensory 

perception of taste (P<8.9e-6; FDR<0.05) (Table 3.6) suggesting that taste phenotypes may 

be affected by the events associated with genomic rearrangements in pigs. These sensory 

perceptions of taste were further studied to get a better sense of affected nodes and genes. 
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3.3.3.2.1 .1 Salty taste perception 

Among the thirteen taste-perception-related genes present in/near the porcine EBRs 

(Table 3.7), the SCNN1B (a gene encoding a sodium channel involved in the perception 

of salty tastes) was found translocated from its adjacent paralog SCNN1G (an 

association found in the human genome in HSA16: 23.19 Mbp and other mammalian 

genomes) to the telomeric region of SSC10 in the current pig assembly build 10.2. 

However, there was a doubt that a large genome block of homology in the SSC3 would 

break down and recombine without one small fragment translocated to the telomeric 

region of SSC10 (Figure 3.9). This process could not be explained by known 

chromosome rearrangement mechanisms in mammals. Therefore, the translocation was 

further tested using the FISH technique by Dr. Katie Fowler at the University of Kent. 
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Figure 3.9 A putative pig genome rearrangement affects the SCNN1B gene. The upper 

panel shows HSA16:22.8-23.6 Mb with aligned sequences from the mouse, dog, horse, 

cattle, and pig chromosomes. The blue gene track shows the order of human genes that 

have defined orthologs in the pig genome.  The black arrow indicates the position of a 

putative pig EBR that results in translocation of a 307Kb interval homologous to 

HSA16 to SSC10. This event leads to breakage of synteny in between SCNN1G and 

SCNN1B genes in pig. The pig SCNN1G is located in SSC10 with a partial copy 

(ENSSSCG00000007835) of SCNN1B found next to it. The red gene track shows the 

order of genes in the pig genome. The BAC clones CH242-207N16 and CH242-191E23 

from the CHORI-242 BAC library assigned to chromosome 10 and chromosome 3, 

respectively in the pig genome assembly were used for a FISH experiment to verify an 

accuracy of the genome assembly in this region.  
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Table 3.5 Positions of the SCNN1B gene in genome assembly and in the pig genome 

(based on the FISH data). 

Gene Name Assembly position FISH mapping results 

SCNN1B SSC10:309,239-337,906 BAC clone CH242-207N16 

containing SCNN1B was assigned to 

SSC3, p-arm 

 

Both porcine BAC clones (CH242-207N16 and CH242-191E23) flanking a potential 

genomic rearrangement between SSC3 and SSC10 were unambiguously mapped to 

SSC3 (Figure 3.10) by FISH. The clone CH242-207N16 contains the gene SCNN1B. 

These results suggest an assembly error involving SSC3 and SSC10. It is likely that the 

SCNN1B gene is still involved in some kind of rearrangement or duplication events in 

the pig genome that have complicated assembly of this region, confirming a previous 

studies that report that pigs have a low ability to taste salty compounds (Hellekant and 

Danilova 1999).  
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Figure 3.10 Fluorescence in situ hybridisation of probes CH242-207N16 and CH242-

191E23 with porcine metaphase chromosomes. The partial metaphase plate shown 

above after FISH with CH242-207N16 and CH242-191E23 probes named ‘a’ and ‘b’ 

respectively. The pig chromosomes can be seen in blue. The fluorescent signal was 

observed only on SSC3 (highlighted with orange arrows where the sequenced-tagged 

BAC were hybridized (red) and clearly did not map to SSC10. The probes were re-run 

with a confirmed SSC3 probe labelled with green fluorescein isothiocyanate (FITC) to 

confirm that they map to the p-arm of SSC3. 

 

3.3.3.2.1.2 Umami and sweet taste perception 

A gene, ITPR3, a receptor for inositol triphosphate and a calcium channel involved in the 

perception of umami and sweet tastes was affected by the insertion of several copies of 

porcine-specific SINE mobile elements into its 3’UTR region, consistent with the 

observation of a higher density of some TEs in EBRs. The 3' Untranslated Region (3'-

UTR) may contain sequences that regulate translation efficiency, regulatory regions, 

mRNA stability, and polyadenylation signals and influence post-transcriptional gene 

expression. Therefore, the insertion of TEs in 3'-UTR can directly influence the gene 

regulation and expression, both at the transcriptional and post-transcriptional 

levels(Smit 1999).  

 



  

84 

 

Table 3.6 Gene Ontology cellular processes enrichment in pig EBRs with pig a 

reference dataset. 

Processes P-values Ratio 

Sensory perception of taste 8.9e-6* 11/23 

Glutathione metabolic process 8.0e-4 9/25 

Sensory perception of bitter taste 1.3e-3 5/9 

Midbrain-hindbrain boundary development 1.3e-3 5/9 

Regulation of protein ubiquitination involved in ubiquitin-

dependent protein catabolic process 

1.3e-3 5/9 

*Sensory perception of taste was found significant at FDR < 0.05. 
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Table 3.7 Genes from taste transduction pathways (KEGG) and taste transduction 

processes (MetaCore) found in/near pig EBRs. 

Gene 

name 

Gene functions44 Pig EBR 

coordinates 

Database 

DBH Dopamine beta-hydroxylase/ 

monooxygenase (DBH) is a protein-

coding gene mostly associated dopamine 

beta-hydroxylase deficiency.  

1:306,934,651

- 306,985,541 

MetaCore 

GNG13 GNG13 (guanine nucleotide binding 

protein (G protein), gamma 13) is a 

protein-coding gene. Its function includes 

a signal transducer activity. 

3:41,571,689 -

41,622,736 

MetaCore, 

KEGG 

ADCY6 This ADCY6 gene encodes adenylate 

cyclase 6, which is a membrane-

associated enzyme and catalyses the 

formation of the secondary messenger 

cyclic adenosine monophosphate 

(cAMP). This gene prominent role in 

adenylate cyclase activity and protein 

kinase binding. 

5:15,059,839 -

15,062,939 

KEGG 

WNT10B WNT10B (wingless-type MMTV 

integration site family, member 10B) is a 

protein-coding gene which encodes 

secreted signalling proteins. 

5:15,059,839 -

15,062,939 

MetaCore,  

TAS2R9 This gene specifically expressed in the 

taste receptor cells of the tongue and 

palate epithelia. The functional 

expression studies show they respond to 

bitter taste. 

5:63,741,431 -

63,794,981 

KEGG 

                                                      
44 http://www.genecards.org/ 
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TAS1R3 The TAS1R3 gene is a major determinant 

of differences between sweet-sensitive 

and -insensitive mouse strains in their 

responsiveness to sucrose, saccharine, 

and other sweeteners. 

6:57,756,164 -

57,809,595 

MataCore, 

KEGG 

ITPR3 This gene encodes a receptor for inositol 

1,4,5-trisphosphate, it contains a calcium 

channel at the C-terminus and the ligand-

binding site at the N-terminus. A 

knockout study shows their key role in 

exocrine secretion underlying energy 

metabolism and growth. 

7:34,125,342 -

34,126,061 

MataCore, 

KEGG 

ADCY4 This gene encodes a member of the 

family of adenylate cyclases, which are 

membrane-associated enzymes that 

catalyze the formation of the secondary 

messenger cyclic adenosine 

monophosphate (cAMP). It is expressed 

in olfactory cilia which may couple with 

olfactory receptors. 

7:79,938,055 -

79,942,518 

KEGG 

SCNN1B Nonvoltage-gated, amiloride-sensitive, 

sodium channel; controls fluid and 

electrolyte transport across epithelia in 

many organs. This gene encodes the beta 

subunit, and mutations in this gene have 

been associated with 

pseudohypoaldosteronism type 1(PHA1), 

and Liddle syndrome. 

10:340,718 -

392,716 

MetaCore, 

KEGG 

TAS2R41 TAS2R41 (taste receptor, type 2, member 

41) is a protein-coding gene. This 

receptor may play a role in the perception 

18:6,766,018 -

6,823,666 

MetaCore, 

KEGG 
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of bitterness, and also a role in sensing 

the chemical composition of the 

gastrointestinal content.  

TAS2R60 TAS2R60 (taste receptor, type 2, member 

60) is a protein-coding gene. This 

receptor may play a role in the perception 

of bitterness. May play a role in sensing 

the chemical composition of the 

gastrointestinal content.  

18:6,766,018 -

6,823,666 

MetaCore, 

KEGG 

TAS2R40 TAS2R40 (taste receptor, type 2, member 

40) is a protein-coding gene. This 

gustducin-coupled receptor implicated in 

the perception of bitter compounds in 

the oral cavity and the gastrointestinal 

tract. 

18:6,766,018 -

6,823,666 

MetaCore, 

KEGG 

NPY This gene encodes a neuropeptide that is 

widely expressed in the central nervous 

system and influences many physiological 

processes, including cortical excitability, 

stress response, food intake, circadian 

rhythms, and cardiovascular function.  

18:53,339,574

- 53,398,769 

MetaCore 

 

3.3.3.2.1.3 Bitter taste perception 

Eight bitter taste receptor genes were annotated in the pig genome by EnsEMBL, of 

which five genes were assigned to chromosomes and three were found on unassigned 

scaffolds. Out of five mapped bitter-taste receptor genes, four were found in/near two 

EBRs on SSC18 (TAS2R40, TAS2R41, TAS2R60) and one on SSC5 (TAS2R9). In 

contrast, the human genome contains 25 bitter taste receptor genes that originated from 

a series of primate-specific duplication events (Fischer et al. 2005). An additional 

annotation of bitter taste receptor genes in the pig genome was performed to identify 

potentially unidentified genes. Apart from eight annotated bitter taste receptor genes 
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annotated by EnsEMBL 9 additional intact porcine bitter taste receptor genes were 

found. The predicted bitter taste receptor genes are listed with pig gene names and 

corresponding chromosome coordinates in Table 3.8. In a case where several different 

pig genes had the most significant match to the same member of the TAS2R gene 

family from other mammals, the extensions “A, B, C” were added at the end of porcine 

gene names to distinguish between the porcine gene family members. 

Table 3.8 Identified intact porcine bitter taste receptor genes. 

Gene name* 

Pig chromosome and scaffolds 

coordinates In/near EBR 

Annotated by 

EnsEMBL 

TAS2R42  5:63,867,091-63,868,041  YES  NO 

TAS2R20  5:63,904,140-63,905,054  YES  NO 

TAS2R7A  5:63,940,163-63,941,095  YES  NO 

TAS2R7B  5:63,950,624-63,951,541  YES  NO 

TAS2R10  5:63,965,446-63,966,375  YES  NO 

TAS2R7C  5:63,985,142-63,986,080  YES  NO 

TAS2R9  5:63,976,739-63,977,674  YES  YES 

TAS2R134  18:5,876,579-5,877,487  NO  NO 

TAS2R41  18:7,018,806-7,019,729  YES  YES 

TAS2R60  18:7,045,247-7,046,597  YES  YES 

TAS2R40  18:7,266,600-7,267,764  YES  YES 

TAS2R39  18:7,358,848-7,359,855  NO  YES 

TAS2R38  18:8,357,518-8,358,525  NO  NO 

TAS2R16  18:25,883,452-25,884,354  NO  NO 

TAS2R1  GL893464.1:28,052-29,033  NA  YES 

TAS2R3  GL892960.2:34,965-35,915  NA  YES 

TAS2R4  GL892960.2:41,686-42,576  NA  YES 

    * A, B, C at the end of porcine gene names to distinguish between putative porcine gene 

family members. 

 

The previous studies indicate that pigs are not so sensitive to bitter tastes and respond 

to higher concentrations of bitter compounds than humans (Nelson and Sanregret 1997, 

Hellekant and Danilova 1999) suggesting that pigs are able to use some additional food 
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sources that humans cannot. This makes it temping to hypothesize that this feature 

coupled with a fast growing rate made pigs an attractive species for domestication 

somewhere around 9,000 year ago (Groenen et al. 2012).  

 

The review of the taste transduction network from the KEGG (Figure 3.11) shows 

additional genes affected by chromosome rearrangements and related to taste 

transduction. This demonstrates that the pig genome rearrangements tend to affect the 

apical cell membrane layer and nodes of taste receptor processes of the network.  

3.3.3.2.2 GO Molecular function analysis 

In addition to GO molecular processes GO molecular functions enriched in the porcine 

EBRs were looked into separately. The results are shown in Fig. 3.12. It was observed 

that there was an overrepresentation of genes related to receptor activity and binding 

categories in the pig EBRs. The top 5 processes were related to adrenergic receptor activity 

which is a member of G-coupled receptor protein superfamily that plays an important 

role in smooth muscle contraction and relaxation. These muscles contribute to 

vasoconstriction in many blood vessels, including those of the skin, gastrointestinal 

system, kidney (renal artery) (Schmitz et al. 1981). These data confirm other results 

suggesting that chromosomal rearrangements in the Sus lineage could have significantly 

contributed to various lineage-specific adaptations. 
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Figure 3.11 Pig KEGG taste transduction pathway. Red stars indicate nodes affected by 

porcine genome rearrangements. The genes from the affected nodes found near/in the 

EBRs are shown in boxes. 
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Figure 3.12 Gene Ontology (GO) molecular functions enrichment analysis in the pig 

EBRs with pig genes used as reference. 
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3.3.4 Differences in the Results of GO Enrichment Analyses using Human and 

Pig Genomes as References 

The results of the GO enrichment analyses in EBRs using human and pig genomes as 

references show some differences. For instance, keratinization and epidermal cell 

differentiation pathway genes were significantly enriched in the pig EBRs in the analysis 

that used the human genome as a reference, whereas in the analysis that used the pig 

genome as a reference these processes were not found significantly enriched in pig 

EBRs. It was possible to observe these differences because of an incomplete gene 

annotation of the pig genome (19,094 annotated pig genes vs. 37,299 genes in the 

human genome). The data on TAS2R genes indeed demonstrate that the pig genome 

annotation is highly incomplete. This incompleteness could affect the GO analysis and 

make the pig genome-based analysis less statistically powerful. As such, MetaCore 

identifies 1,513 genes near the pig EBRs in the pig genome-as-reference set, whereas in 

a carefully annotated human genome–as-reference set 2,839 gene ids were recognized 

associated with pig EBRs. This difference in gene numbers could alter the GO 

enrichments resulting in different GO groups found significantly enriched. However, 

the occurrence of the “sensory perception of taste” biological process enrichment in 

both analyses provides independent confirmation for the validity of the result. 

3.4 CONCLUSION 

In summary, pig has been a matter of interest for many centuries due to its economical, 

evolutionary and medical importance. With the availability of a large number of 

mammalian genomes assembled to the chromosome level it is now possible to provide a 

basis for the identification of major chromosome evolutionary changes that contributed 

to biology of existing species or clades (including pigs). Using a comparative genomics 

approach, I demonstrated that the ancestral and lineage-specific chromosomal 

rearrangements in the pig genome have contributed to the formation of the pig-specific 

biology. For the first time EBRs were detected in the porcine and artiodactyl genomes 

with a high accuracy using complete pig genome assembly and sequence alignments to 

other genomes. These EBRs were used to reveal some adaptive changes in the pig 

genome that are found to be linked to the pig-specific biology.  
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In the study the focus was on the role of genes, gene networks, and TEs directly 

associated with EBRs, on sensory perception in pigs. The GO analysis has revealed how 

the pig lineage could have attained an omnivorous status via the metabolic adjustment 

for taste. The further study of EBRs in pigs and artiodactyls could influence genomic 

selection approaches in agriculture in order to improve pig feeding strategies. The study 

of the pig genome in general will empower genetic-based improvements within pork 

industry, which will allow fulfilling the worldwide food demands. 

 

Summary of Novel Contributions  

I identified 192 pig- specific EBRs and 20 artiodactyl breakpoints in the pig genome.The 

rate of chromosomal rearrangements in cattle and pig lineage were ~1.7 – 2.4 large scale 

rearrangements per million years of evolution. The LTR-ERV1 and Satellite repeats 

were found to be significantly enriched in the pig-specific EBRs. The Artiodactyl 

breakpoints were found to be enriched for SINE-tRNA-Glu transposable elements. We 

examined the EBRs regions for gene enrichments and identified that the pig EBRs was 

found to be enriched with the genes related to the sensory perception of taste. The 

genes DBH, GNG13, ADCY6, WNT10B, TAS2R9, TAS1R3, ITPR3, ADCY4, 

SCNN1B, TAS2R41, TAS2R60, TAS2R40, NPY from taste transduction pathways were 

found around pig EBRs. Seven genes, namely GNB, IVR, LOR, SHARPIN, SPRR2G, 

SPRR3, and TGM1 were very close to the position of chromosomal rearrangements 

events in the pig genome. The GO analysis revealed how the pig lineage could have 

attained an omnivorous status by the adjustment of the taste transduction pathway. 

 

In this chapter I described the importance of comparative genomics in evolutionary 

studies. The gene enrichments studies for the gene ontology categories showed how 

chromosomal rearrangements produce variations in the gene networks used in the 

natural selection for adaptation. Apart from that, the transposons and satellite repeats 

studies suggest how certain repetitive sequences have contributed to chromosomal 

evolution in the pig lineage. While working with pig as a reference data, I noticed 

chromosome evolution depends entirely depends upon breakpoints. It is crucial to study 

of chromosome evolution and provides answers to the evolutionary questions.  In the 

next chapter, I devised a new method to detect EBRs in multispecies, and classify them.  

 



  

94 

 

4. AN ALGORITHMIC APPROACH TO IDENTIFY AND 

CLASSIFY EBRS IN SEQUENCED AMNIOTE 

GENOMES 

4.1 INTRODUCTION 

Chromosomal rearrangements play an important role in genome evolution and 

adaptation by providing a substantial source of genomic variation for natural selection, in 

addition to point mutations occurring in nucleic acids. Genome rearrangements alter 

relative positions of multiple genes from the same (inversions) or multiple 

(translocations, fusions) chromosomes and contribute to speciation due to the 

reproductive isolation of geographically separated populations (Francisco J Ayala and 

Mario Coluzzi 2005). The hotspots of genome evolution associated with chromosome 

rearragements are EBRs, regions of chromosomes where the DNA strands break and re-

join due to non-allelic homologous recombination (Venturin et al. 2004) and end-joining 

processes (Critchlow and Jackson 1998, Hefferin and Tomkinson 2005). 

Multiple studies have demonstrated that EBRs possess DNA features that make them 

distinct from other regions of the genome. EBRs are gene rich (Everts-van der Wind et 

al. 2004, Wind et al. 2005, Larkin et al. 2009), are associated with the repositioning of 

centromeres and telomeres, and contain a higher than expected frequency of segmental 

duplications and some families of TEs (W.J. Murphy et al. 2005, Bulazel et al. 2007, 

Martien AM Groenen et al. 2012). EBRs also are frequently associated with fragile 

chromosome sites (Ruiz-Herrera et al, 2006) and positions of recurrent DNA aberrations 

observed in certain cancers (Murphy et al, 2005; Darai-Ramqvist et al, 2008). In non-

vertebrates EBRs are involved in adaptation processes causing changes in gene regulation 

(Iriarte and Hasson 2000). A well-known example is the reciprocal translocation between 

chromosomes VII and XVI in yeasts that changes regulation of the gene SSU1, making 

the mutated strand able to survive in media containing a high concentration of sulphate 

(Pérez-Ortı́n et al. 2002). There are accumulating evidences that EBRs play a critical role 

in lineage-specific adaptations in mammals as well. In cattle, an immune-related gene 

HSTN has moved to a casein genes regulatory sequence during chromosomal 

rearrangement. Which lead to an expression of HSTN gene in milk and subsequently 
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provide an additional immune protection for calves (Elsik et al. 2009, Danielle G Lemay 

et al. 2009). In addition, an expansion of β-defencin antimicrobial peptide genes in cattle 

has occurred in an EBR in cattle chromosome 27, likely facilitating appearance of the 

rumen in evolution (Elsik et al. 2009, Larkin 2012). A comprehensive analysis of the gene 

content within primates has revealed that primate EBRs are enriched for the genes 

involved in inflammatory response, neutrophil activation, chemotaxis, and muscle contraction (Larkin 

et al, 2009). In pigs I demonstrated that the taste transduction genes are overrepresented in 

the EBRs that are pig-specific, possibly making omnivouros pigs an attractive trarget for 

domestication about 9,000 ya (Martien AM Groenen et al. 2012). These examples 

demonstrate how the functional analysis of EBRs in the genomes of individual species or 

groups of related species provides an additional level of understanding of lineage- 

specific phenotypes, the origin of which could not be understood completely if the 

genetic analysis does not consider gene synteny.  

With the advent of next generation sequencing technologies, genome sequencing became 

a trivial endeavour that provides a basis for ambitious projects aiming at sequencing large 

number of human individuals (1000 genomes) (Siva 2008) or species (10,000 genomes 

(Haussler et al.), i5K genomes (Levine 2011). While these projects have already resulted 

in numerous publications of individual human or various species genomes,  providing 

important insides into the population or species-specific biology (Abecasis et al. 2012, 

Cho et al. 2013, Ge et al. 2013, X. Zhan et al. 2013), most genome studies do not include 

analyses of EBRs due to the (1) fragmented nature of the majority of the available 

genomes and (2) lack of automated tools to identify EBRs and assign them accurately to 

phylogenetic nodes. To deal with the problem of genome fragmentation, several 

computational tools have been developed to use existing reference genomes to predict 

chromosome or nearly chromosomal organization of the genomes that lack chromosome 

assemblies. Some of them, e.g., Reference Assistant Chromosome Assembly (RACA) 

(Kim et al., 2013) use a combination of the comparative information and evidences from 

the long-range mate pair read libraries to identify the most likely organization of 

chromosomes, while others Hi-C methods produce genome-wide interaction maps and 

provide means to reconstruct chromosome architectures of fragmented assemblies 

(Belton et al. 2012). These tools provide a highly accurate prediction of chromosome 

structure for the de novo sequenced species, but underestimate the number of lineage-

specific genome rearrangements. When RACA was used to reconstruct predicted 
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chromosome fragments of the Tibetan antelope chromosomes, it was able to achieve 

about 95% accuracy in the chromosome fragment reconstruction, but detected only 2 

antelope-specific EBRs while the cattle genome assembled to chromosomes was 

reported to contain 64 cattle-specific EBRs in the same analysis (Kim et al., 2013). 

Therefore, there is a need for a computational tool that would be suitable to perform 

identification of EBRs from de novo sequenced genomes in an automated way and assign 

these EBRs to phylogenetic lineages based on the EBR presence in chromosomes of 

species from the same clade. This tool should be suitable for detection of EBRs from a 

large number of genomes assembled to chromosomes or scaffolds to make use of 

genomes generated by G10K and other large-scale genome projects. It should also take 

into account the quality of individual genome assemblies when assigning probabilities of 

EBRs occurring in a specific lineage or clade. 

Here I present the evolutionary breakpoint analyser (EBA), an algorithm that detects 

and assigns BRs to individual lineages or clades using several sets of pairwise HSBs, 

defined at different resolutions of rearrangement detection. The previous approaches of 

chromosomal breakpoint identifications were based on a manual extraction and 

classification of EBRs using certain user-defined threshold values. Such manual 

classification was feasible for small sets of genomes assembled to chromosomes, but 

when it comes to the analysis of a large amount of genomes with varied levels of 

assembly, it is not feasible to perform this analysis manually. The advantage of the new 

tools is that it parses the phylogenetic relationships of species from the NCBI taxonomy 

database, or alternatively uses a user-defined phylogenetic relationship. The algorithm 

detects the reference genome coordinates of BRs from all input HSB sets and estimates 

probabilities of failing to detect BRs for each target genome at each resolution (β) due 

low resolution of HSBs detection, assembly issues or other reasons. Using a Poisson 

process approximation, the algorithm estimates the probabilities that BRs from different 

target genomes or groups of phylogenetically related genomes have been reused in 

evolution (R). At the next step, the algorithm tests different hypotheses about the 

phylogenetic origin of each BR using the respective β and R values. Then, the tool 

selects the most probable hypothesis and classifies each BR for each resolution. At the 

final step, the algorithm compares the positions of BRs from different resolutions, 

identifies the narrowest and widest coordinate interval for each BR and performs 

classification of the final EBR set using the data from all resolutions. 
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EBA was applied to a set of 25 birds and 7 mammalian genomes out of which 11 were 

assembled to complete chromosomes and 21 were scaffold-based assemblies with N50 

> 2 Mbp. The tool detected 2,066 EBRs in bird lineages at 100Kb resolution, out of 

which 1,796 (86.93%) were assigned to phylogenetic nodes (see Chapter 5 section 5.3.1). 

In mammals, 90 EBRs were detected and 86 (95.55%) assigned to individual lineages or 

clades. 

4.2 MATERIALS AND METHODS  

4.2.1 Genome datasets  

4.2.1.1 Bird genome homologous synteny blocks 

Five published and 15 unpublished bird genomes that were sequenced as part of the 

International bird genome sequencing project (Zhang et al. 2014) were aligned against 

the chicken genome sequence (ICGSC Gallus_gallus 4.0). Apart from that five reptile 

genomes and 3 mammalian genomes were also aligned to the chicken genome and used 

as outgroups in the EBR classification experiments. Details of bird genome synteny 

block definition are at Chapter 5 material and method section 5.2. 

4.2.1.2 Mammalian homologous synteny blocks 

In order to test and verify if this algorithm is capable of a proper classification of EBRs 

in sequenced animal genomes, the new methodology was applied to the previously 

published cattle genome dataset that had EBRs identified (Bovine Genome et al. 2009). 

To identify EBRs in the cattle genome, alignment was carried using human (hg19), 

rhesus macaque (rheMac2), dog (canFam4), mouse (mmu9), and pig (susScr3) 

chromosome assemblies to cattle chromosomes (UMD3.1) using the Satsuma Synteny 

program (M. G. Grabherr et al. 2010). HSBs were defined at three resolutions (≥ 

100Kbp, ≥ 300Kbp, and ≥ 500Kbp) using SyntenyTracker (Donthu et al. 2009). 

Thereafter, the algorithm was applied to detect and classify EBRs in the cattle genome 

using the following topology: (((human, rhesus), mouse), (dog, (cattle, pig))).  

 

Two EBR classifications were performed: (i) using EBR intervals exactly as they were 

defined from the HSBs sets, (ii) allowing EBR intervals to be extended by 20Kbp. The 

extended set could potentially allow for the detection of additional cattle-specific EBRs 
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in the regions of the reference genome where exact identification of HSB boundaries 

was complicated due to duplications or local misalignments. Translation was performed 

using the manually-defined and published cattle EBR coordinates from the Btau4.0 

assembly (Bovine Genome et al. 2009) to the UMD3.1 assembly used in this analysis. 

This was done using the UCSC Genome Browser LiftOver tool. Out of 100 cattle-

specific EBR intervals identified in the Btau4.0 assembly, 98 were successfully translated 

into the UMD3.1 coordinates. The EBRs found on cattle chromosome X (BTAX) were 

excluded from the comparison because the Btau4.0 assembly had a very incomplete 

BTAX assembly. The translated UMD3.1 coordinates of the remaining 90 cattle-specific 

autosomal EBRs were compared to cattle EBRs detected by this algorithm.  

4.2.2 EBA algorithm 

A novel algorithm was devised to detect, characterize and classify EBRs which are 

genomic intervals  demarcating the boundaries between two adjacent HSBs or Syntenic 

Fragments (SFs) on the same reference chromosome or same scaffold, respectively. The 

multi-step automated EBRs detection and classification algorithm was implemented in a 

set of Perl scripts to detect, define, and classify the EBRs. 

The custom Perl script identified all intervals between two adjacent SFs in the reference 

genome chromosomes. This was done separately for each SF set at every resolution 

included in the analysis. If a target genome was not assembled to the chromosomal 

level, only breakpoint regions (BRs) found within the scaffolds of the target species 

were used and classified as EBRs at the final step. All remaining BRs from all target 

genomes from the same SF set were coordinate-wise cross-compared for reference 

genome coordinate overlaps. A target genome BR that overlapped with more than one 

non-overlapping BRs in any other target genome(s) was treated as a gap and genomes 

containing gaps at any reference chromosome position were excluded from 

classification of EBRs at that position. All intervals in a reference genome chromosome 

between adjacent scaffolds from a single target genome that overlapped a BR in any 

other target genome were treated as gaps as well. Breakpoint regions were assigned to 

phylogenetic lineages using an updated version of the phylogenetic tree containing only 

the branches leading to species used in the BR analysis and the out-group species. 

Phylogenetic classification of BRs was performed, and later assigned EBR status using 

an ad hoc likelihood ratio approach. Since BRs identification was statistically independent 

for each target genome, it was possible to estimate the likelihood of any given 
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breakpoint classification hypothesis (Hi) with respect to the phylogenetic classification 

of a BR as: 

 

 

𝐿(𝐻𝑖) =  ∏ 𝑃𝑖𝑗(𝐷𝑗|𝐻𝑖)
𝑛

𝑗=1
, 

Where Pij (Dj|Hi) is the conditional probabilities of occurrence of the observed data in 

species j (Dj), given that Hi was correct. The values of these conditional probabilities Pij 

(Dj|Hi)  could be one of the following four values corresponding to four mutually 

exclusive events as given in the braces below: 

𝑃𝑖𝑗(𝐷|𝐻𝑖) =  

{
 

 
𝛽𝑗,

1 − 𝛽𝑗 ,

𝑅𝑗𝑘 , 𝑜𝑟

1

 

The first probability, j, or the probability of failing to detect a BR, was assigned when 

the occurrence of a BR in species j was expected under hypothesis Hi, but no BR was 

detected. The second probability (1 - j) corresponded to the opposite event (i.e., when 

the occurrence of a BR in species j was expected under hypothesis Hi, and a BR was 

indeed detected). The third probability, Rjk, or the probability of random overlaps 

between a BR in species j and interval of interest k, was assigned when no BR was 

expected in species j under hypothesis Hi, but a BR was detected. Finally, when no BR 

was expected or detected, a value of 1 was assigned (i.e., ignoring the very small 

probability of failing to detect a BR that would overlap with the interval of interest by 

chance). 

For example, HSBs relative to a reference genome were identified in five species (1-5), 

three of which (1-3) are of the same order based on phylogenetic information: (1, 2, 3), 

4, 5. Overlapping BRs were observed in species 1 and 2, but not in the remaining three 

species. In such a case scenario the algorithm will probabilistically assess three 

hypotheses: 



  

100 

 

i. H1: The observed BR is order-specific (i.e., due to a rearrangement that 

occurred in the common ancestor of species 1-3); 

ii. H2: The observed BR is species-specific and was caused by independent 

rearrangements in species 1 and 2 (i.e., the BR was reused in evolution); 

iii. H3: The observed BR is reference-specific (i.e., present in species 1-5 compared 

to the reference genome). 

After estimating appropriate β and R values (see below) the algorithm will assess the 

likelihoods of the three hypotheses above as follows: 

 Pr(Data|H1) = L(H1) ~ (1- β1)(1- β2)β3  

 Pr(Data|H2) = L(H2) ~ (1- β1)(1- β2)R1,2 

 Pr(Data|H3) = L(H3) ~ (1- β1)(1- β2)β3 β4 β5 

Then, the algorithm selects the most probable hypotheses and classifies each BR for 

each resolution. Given the hypothetical example presented above, the algorithm would 

calculate likelihood ratios and quantify the probabilistic support for each hypothesis. 

For example: 

 LR (H1, H2) = β3/R1, 2 

It is expected that Rij<< βi<< (1- βi), and H1 will therefore be favoured. The support 

will be weaker for higher Rij (e.g., for gaps or widely defined breakpoint regions) and for 

HSB data resulting from lower quality alignments or inaccurate HSB definition (i.e., 

when βi ~ (1- βi)). At the final step, the algorithm compares the positions of breakpoint 

regions from different resolutions, identifies the narrowest and widest coordinate 

intervals for each breakpoint region and performs classification of the final BR set using 

data from all resolutions. 

4.2.2.1 Probability of missing EBR (βj) 

The j was calculated for all of the BRs detected in species at each possible resolution by 

cross-validating those with higher and lower resolutions. In other words, the estimate of 

j for any intermediate resolution was calculated as the proportion of BRs that were not 

detected at that resolution, but were detected at both higher and lower resolutions. For 

the highest resolution, j  was calculated as the proportion of BRs that were not detected 

at that resolution, however detected at the other two lower resolutions. For the lowest 

resolution, the value of j was extrapolated on basis of j values estimated at higher 

resolutions by means of general regression neural network algorithms (Specht 1991). 
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4.2.2.2 Probability of random EBR overlaps (Rjk)  

The probability of random overlap between a BR and a genome region of interest (Rjk) 

was approximated with aid of non-homogeneous Poisson process (Ross 1996). For 

defining the parameters, all BRs were first grouped size-wise, then the frequency rate of 

each class in target genomes estimated, and eventually the value of (Rjk) determined as: 

Rjk   L(j)(Lj + Mk), 

where L(j) was the rate of occurrence of BRs from size class L in species j, Lj was the 

average size of BRs from class L in species j, and Mk was the size of the genome region 

of interest k. 

4.2.2.3 “Unique”, “uncertain”, and “reuse” EBR classifications 

After determining the likelihoods for each hypothesis of a BR classification, likelihood 

ratios were estimated between the first and second most likely hypotheses. These ratios 

were used for assigning BRs to phylogenetic branches in order to qualify them as EBRs. 

The EBRs with a ratio between the top hypotheses that is equal to or close to one were 

classified as uncertain due to the inability of the algorithm to select a most likely 

classification hypothesis. The only possible scenario to classify a BR as uncertain is when 

two or more phylogenetic nodes are indistinguishable based on the set of species used 

for the BR classification (see results for an example). BRs with a ratio >1 but less than a 

user defined threshold (T) between the top two (or more) classifications containing a set 

of species from distinct phylogenetic nodes was classified as reuse, suggesting that the 

EBR has likely occurred at the same position in two or more phylogenetic nodes 

independently. The final ratio of probabilities for these EBRs will be recalculated as a 

ratio between T < average_of_all_probabilities >1 to the highest probability outside this set. 

In other words for reuse breakpoints a new score was calculated by using two different 

approaches: 

Assume there are six classifications for a single breakpoint, namely A, B, C, D, E, and F.  

a) If the reuse EBRs are A and B then the new ratio is calculated between the average of 

reuse EBR ratio values and the maximum ratio values of non-reuse EBRs in the same 

cluster (C,D,E,F). 



  

102 

 

b) If the reuse EBRs are A and D then the new ratio is calculated by calculating an 

average value ratio of all non overlapping EBRs in the classification cluster. 

The remaining EBRs (i.e., with likelihood ratios >T) were classified as unique, suggesting 

that they could be assigned to a specific lineage or clade.  In order to reduce the false 

positive classifications, were removed from further analyses those EBRs whose 

likelihood ratios values were lying in the lowest 5% values within the respective 

classification group. 

4.2.2.4 Generating and analysing a merged BR set 

After all individual resolution datasets were analysed and individual resolution result files 

were generated the algorithm generated an artificial BR set by merging BR data from all 

resolutions with a base resolution dataset selected by the user. This was done to avoid 

possible misclassification of some BRs at the base resolution due to failing to detect BR 

in some of the target species at that resolution. However, if the lower or higher 

resolutions are taken into account, missed BRs might be observed and added back to 

the analysis. The algorithm does not change the total number of EBRs in the base 

resolution detected in the reference genome, but it will ensure that for each potential 

EBR region BRs from all target species are analysed. The merged set was then used to 

perform the calculation of new R values (but β values would correspond to the base 

resolution because the total number of EBRs does not change) and re-classification of 

BRs taking into account the data from all other resolutions. The final classification of 

the BRs from the merged set is expected to be the most accurate one because this set 

contains information about BRs that were not detected at the base resolution due to the 

alignment, assembly or HSB definition problems. 

4.3 RESULTS 

4.3.1 Algorithm implementation 

The EBA algorithm was implemented as (i) a core program and (ii) a set of modules that 

are called by the main script at different stages to perform individual operations. The 

EBA package reads data folders containing files with information on HSB blocks 

defined for multiple target genomes. The user provides a file with the reference 

chromosome sizes; optional species phylogeny and β score files (see Methods). The 

HSB dataset submitted for the analysis can optionally be validated by the CheckData 
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module by default (user can applies an optional -v flag to ignore it). The module verifies 

presence of expected folders named after resolutions of HSB files (e.g., “10” for the 10 

Kbp resolution, “100” for the 100 Kbp resolution, etc.). The module also checks input 

file formats. During the next cycles the package analyses data in each folder separately.  

The structure of a single EBA cycle is shown in Figure 4.1. First putative BRs are 

identified in the reference genome coordinates as intervals in between two HSB 

boundaries that are adjacent in a reference chromosome. The algorithm ignores the 

putative BRs that could be present at the ends of reference chromosomes. The program 

gives a special status of pseudobreakpoints to the intervals of the reference chromosomes 

found in between adjacent synteny blocks that belong to different scaffolds in a target 

species that lacks chromosome assembly given that both breakpoint boundaries belong 

to either the start/end of two target species adjacent scaffolds. The BR detection step is 

performed by the BreaksFinder module. At the next step all BRs defined in the reference 

chromosome coordinates are checked for overlaps in reference chromosomes. 

Overlapping intervals are detected and recorded by the BreaksAmongstSpecies module. 

Next, the BreaksMatrix module checks all BRs that belong to the recorded intervals for 

overlaps with more than one BR in the same or different target genome. The 

pseudobreakpoint regions that do not overlap with at least one BR are eliminated from 

the further analysis. All BRs that overlap with >1 BR from the same or different target 

species are classified as gaps because the exact position of the regions in target species 

genomes cannot be identified. Gap status is also assigned to all pseudobreakpoint 

regions remaining in the set. The final matrix of BRs is recorded into a temporary file by 

the CreateFinalMatrix module. 
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Figure 4.1 The workflow of EBA tool framework. The optional modules were not 

inclided in figure. The overlapping boxes are to show they used the output of conneting 

modules. 

The ClassifyBreakpoints module parses the phylogenetic relationships among all species in 

the user dataset using the NCBI Taxonomy Database (Federhen 2012) stored in the 

taxdump folder. The module identifies groups of related species and the corresponding 

phylogenetic nodes from names.dmp and nodes.dmp files respectively. The results are 

stored in the classification.eba file. Alternatively, if the user wants to provide custom 
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phylogenetic relationships among species they need to produce a custom classification 

file and use the -c flag with classification.eba file to make the package using that file during 

the further steps. Providing a custom phylogeny file is useful when the phylogeny of 

species is not well established and the user would try different phylogenies to identify 

the one that fits data best. The classification file is used by the core program to identify 

suitable classification hypotheses to test for each BR recorded in the final.eba6 file. 

However, to estimate the probability of a BR to belong to a certain phylogenetic node a 

special case needs to be considered when the BR is not observed in some of the species 

expected. To account for that the CalculateBeta module estimates probabilities of not 

observing a BR in each target genome at each resolution as described in the methods 

section. This probability is calculated and used for estimating the chances of missing 

BRs for the species in the dataset that are expected to contain the EBR. This is done to 

reduce chances of a breakpoint to be assigned to a wrong phylogenetic node with high 

probability when HSB files have a high fraction of missed BRs due to the alignment or 

assembly issues. Next the module PoissonMethod estimates the probability of BRs from 

individual genomes to overlap due to a random breakage process rather than a recent 

evolutionary relation of the species (see material and methods section 4.2 for a detailed 

description of the approach). The module tests how each classification hypothesis fits 

each BR in the dataset by comparing all appropriate probabilities. The hypotheses with 

the top two scores are compared and the ratio between them is calculated. Based on the 

ratio the user could judge how reliable is the classification produced by the package. The 

results of individual EBR classifications are stored as result_<resolution>.final files in the 

folders named after individual resolutions.  

In a few cases the ratio between the top hypotheses could be equal to one suggesting 

that it is not possible to distinguish these hypotheses using the current dataset. The 

corresponding BRs will be classified as uncertain (see material and methods section 4.2). 

This happens when a species critical for the assignment of a BR to a phylogenetic node 

would have a gap at the position overlapping with the BR in another species from the 

same clade. In such a case the species containing gap would be excluded from the 

classification reducing the number of genomes from the clade used in the BR 

classification in a specific chromosome interval. e.g., if two carnivore genomes (cat and 

dog) are used to assign BRs to the carnivore clade and the dog dataset has a gap while 

the cat dataset has a BR at the overlapping position, then the dog data would be 
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excluded from BR classification resulting in the ambiguity between the lineage-specific 

(cat) and clade-specific (carnivore) classification of the BR.  

The datasets that have gaps at a given BR position are excluded from the classification 

of the BR because of the lack of data. If this results in exclusion of a significant number 

of species from the BR classification the reliability of EBR classification will suffer. 

Therefore, in addition to the ratio between the top hypotheses the output file 

result_<resolution>.final contains the information about the fraction of species 

informative for each EBR classification. 

In the cases when several hypotheses for the same BR have ratios > 1 but less than a 

user defined threshold T the FindReuseEBRs module recalculates the ratio for the BR 

and assigns it to the reuse set in addition to the individual lineages. These results are 

written to the resultreuse_<resolution>.final file. 

After all data folders are analysed and individual resolution result files are generated the 

module MergeResolutions parses the base resolution (selected by the user (-p flag) and adds 

BRs from additional target species from other resolutions present in the reference 

chromosome positions where the base resolution has the BRs present (Figure 4.1). This 

merge set is then used to perform a new calculation of R values and re-classification of 

BRs taking into account the data from all other resolutions. The final classification of 

the EBRs from the merge set is expected to be the most accurate one because this set 

contains information about EBRs that were not detected in the base resolution due to 

alignment, assembly or the HSB definition issues. 

4.3.2 Testing the algorithmic approach of EBR detection using a published EBR 

set 

We applied our algorithm to a set of seven mammalian genomes to compare how 

precisely a set of previously published cattle EBRs (Elsik et al. 2009) will be detected. 

Out of the 90 EBRs our algorithm classified 76 (84.44%) as cattle-specific in the non-

extended EBR set at the same resolution of HSBs detection (500Kbp). When I allowed 

the EBR intervals to be extended by 20Kbp, 86 (95.55%) of the 90 EBRs were reported 

as cattle-specific by our approach. In the extended set the remaining four EBRs were 

reported as gaps and were excluded from the EBR classification step (Figure 4.2). As 

expected, in the extended set a decrease in the number of lineage-specific EBRs 

compared to the non-extended set (up to 25% for the rhesus-specific EBRs) was 
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observed and also a higher fraction of EBRs was classified as reuse (8% in the extended 

set vs. 7% in the non-extended set) (Table 4.1).  

 

 

Figure 4.2 Comparison of the algorithmic approach to manually defined cattle EBR set 

(Bovine Genome et al. 2009). Cattle chromosome 8 showing the EBRs previously 

detected and published (Prev), newly detected EBRs not extending the boundaries 

(NoExt) and extending by 20Kbp (20). The red rectangle demarcates an example of an 

EBR classified as a “gap” by our algorithm. 

While the extension of EBR intervals may help recovering additional reference-specific 

EBRs (11% in our set), on the other hand it leads to the overestimation of the number 

of reuse EBRs and to the underestimation of the number of lineage-specific EBRs. Such 

problematic EBRs would need to be carefully verified using FISH, PCR or other 

techniques. Therefore, in the computational analysis of the avian chromosomal 

rearrangements, it was decided to be conservative and not to extend EBR boundaries 

(see Chapter 5). 
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Table 4.1 Comparison of the not extended EBRs definition to 20Kbp the extended 

EBRs definition (autosomes only). 

 

Non-filtered Filtered 

 

Not Ext 20Kbp Ext 20Kbp 

Ferungulate 22 20 8 8 

Dog 85 76 82 73 

Rhesus 41 32 40 30 

Human 49 38 49 37 

Artiodactyla 24 26 19 20 

Mouse 156 151 156 151 

Catarrhini 33 37 30 36 

Cattle 125 132 119 126 

Pig 100 97 100 96 

Total 635 609 603 577 

Species-specific only 556 526 546 513 

Reuse 42 49 42 47 

 

In our analysis of the UMD 3.1 cattle genome assembly 35 additional cattle-specific 

EBRs were identified that were not reported in the Btau4.0 assembly (Bovine Genome 

et al. 2009). While these EBRs were not useful to verify the EBR-detection algorithm 

tracing their origin was of interest. When these EBRs were translated into the sequence 



  

109 

 

coordinates of Btau4.0 using the LiftOver tool45, it was found that 29 of them did not 

match a synteny break in the Btau4.0 compared to other species. Six additional EBRs 

were not reported previously as EBRs in the pig genome, and therefore were classified 

as artiodactyl- rather than cattle-specific in the cattle genome paper. The 29 EBRs 

represent BRs that result from differences between Btau4.0 and UMD3.1 or differences 

in the methodology of genome comparisons: the cattle genome comparison (Bovine 

Genome et al. 2009) was performed using the alignment of a limited number of cattle 

BAC-end sequences against other species while in our analysis complete whole-genome 

sequence alignments were used. The six EBRs not reported previously in the pig 

genome are results of differences between the pig genome assembly (susScr3) used in 

our analysis and the pig physical map used in the cattle genome paper (Bovine Genome 

et al. 2009). 

4.3.3 EBR detection in 25 bird genomes  

The EBRs were assigned to different bird phylogenetic lineages using a custom 

classification file based on the TENT tree containing only the branches leading to 

species used in the EBR analysis (Jarvis and al. 2014). This algorithm was run to define 

and classify EBR for four resolutions (500Kbp, 300Kbp, 100Kbp and 50Kbp) of HSB 

detection by an alignment of 20 avian and five outgroup genomes to chicken genome. 

For more detail see Chapter 5.  

4.3.3.1 Reuse filtration 

In the bird dataset reuse EBRs were classified as the EBRs with the ratio between the 

first and the second classification <20 but >1. These thresholds have been chosen 

because these EBRs sets in this analysis were found enriched for classifications that 

belong to distinct phylogenetic nodes. If the ratio between first and second classification 

is more than the threshold (20) then the EBR classifications will be enriched for groups 

that tend to belong to the same clade. For more in-depth introduction of reuse 

breakpoint please see section 4.2.2.3. Finally, filtering was performed on those EBRs 

that had the ratio between the first and the second classification <45 and <50% of the 

studied species which were used to classify the EBR (Table 4.1).  

                                                      
45 http://genome.ucsc.edu/cgi-bin/hgLiftOver  

http://genome.ucsc.edu/cgi-bin/hgLiftOver
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4.4 DISCUSSION 

Comparative analyses of mammalian genomes have facilitated the discovery of the 

important features of chromosome evolution. Moreover, the comparative genome 

analyses get adversely affected by fragmented NGS data or partially assembled genomes. 

Therefore, concentrating on assemblies’ limitations, EBA tools which can handle 

scaffold data with ease was developed. This method uses HSBs together with the 

phylogenetic relationship to deduce fragile region of the chromosome with high 

accuracy. The EBA framework is generic enough to accommodate other available 

information such as width size, phylogeny, chromosome size to analyse EBRs. 

The genomes assembled to chromosomes have enabled the discovery of important 

genomic features of chromosome evolution. The critical limiting factor of genome 

evolution study lies in the quality of genome assemblies and analytical tools. In many 

cases in the current era of genome sequencing, the sequenced genomes are fragmented 

and not fully assembled to chromosomes, which either hinder to gain greater insight 

into the biology of genome evolution or generate unrealistic results. Therefore, a reliable 

computational method, such as EBA tool, was needed for reliable chromosomal 

breakpoint detection from NGS assemblies. The EBA algorithm detects EBRs and 

classifies them using their phylogenetic relationships. The EBA method uses 

homologous synteny blocks data and the Poisson approach to detect chromosomal 

breakpoint with high accuracy. The EBA tool also handles and accommodates other 

available genomic information, such as scaffolds, and phylogenetic data. The utility and 

effectiveness of EBA tool was demonstrated by defining chromosomal breakpoints and 

their classification using avian birds genomes (see Chapter 5).  Moreover, with the 

availability of EBA tool results for chromosomal breakpoints, it will then be possible to 

address questions about the rates of chromosomal rearrangements and other genomic 

features of chromosome evolution, which may exhibit many unique adaptations. 

In this study, I tested the EBA algorithm on already published cattle breakpoint 

classification data (Elsik et al. 2009). The EBA classified, and correctly assigned 84.44% 

of cattle EBRs to their phylogenetic nodes. In addition, once I tested the same by 

extending (20Kb) the EBRs size, which increased the accuracy to 95.55% for cattle-

specific breakpoints. Our results show that EBA can detect and classify breakpoints 

with high accuracy. Therefore, it’s clear from the findings that I can reach high accuracy 
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for both precision of detection of chromosomal breakpoints and their classification 

using the EBA tool. In addition to that, the EBA tool efficiently handles the challenge 

of fragmented assemblies due to the limited length of sequence reads. As I have shown, 

EBA permits the detection of chromosome breakpoints from SFs on a genome-wide 

basis in a de novo sequenced species. Our EBA tool therefore, efficiently handles the 

large scale genomic data and identifies classifies the EBRs amongst multiple genomes. 

Which, therefore, allows detailed evolutionary studies of genomes and better 

understanding of the unique adaptations that have occurred in different lineages (Lewin 

et al. 2009). 

4.5 CONCLUSION AND REQUIREMENT 

With EBA46, this offers the geneticist a tool specially developed for non-specialists, 

which is user-oriented, fast, ready-to-use and standalone. In other words, the EBA is a 

offline tool and, thus, does not dependent on an Internet connection and a browser. 

The EBA tool provides a collection of modules for the EBR analysis, with an emphasis 

on the classification of EBRs regions. The EBA has been tested to work with Linux and 

Windows 7. The EBA capability has been tested on an Ubuntu Linux-based operating 

system with 16 GB RAM and an Intel i5 processor. It requires Perl (≥5.14.2), and 

Perl::GD module. For program’s usability and requirements for complete novices are 

provided at EBA webpage47. The jobs that detects EBRs for 10 genomes with three 

different resolutions can be processed in 4 hours. Upon job completion, users can 

retrieve their results from Output folder. EBA tool provides an option to get all 

intermediate files, output and figures for further analysis by the user. I provide the EBA 

tool in the hope that it will be useful for evolutionary study, but it is provided as is 

without any warranty of any kind, expressed or implied. Finally, as research continues in 

our lab, I will continue to make additions and updates to EBA tool. 

4.6 FUTURE PLANS 

The EBA provides a simple and user friendly approach to identify, and classify any 

number of chromosome breakpoints (with different resolutions) using their 

                                                      
46 http://www.bioinformaticsonline.com/EBA 
47 http://bioinformaticsonline.com/mod/EBA/Manual.pdf 
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phylogenetic relationship. On-going EBA methodological developments focus more 

about phylogenetic distances, rate of chromosomal rearrangements, putative genome 

assembly error regions, ancestral breakpoints calculations and comparisons. Future 

development will also address the possibility to compare ancestral breakpoints and 

predict future possible breakpoint regions. 

Summary of Novel Contributions  

I developed a novel algorithm to detect and classify EBRs in genome assemblies at both 

the chromosomal and scaffold levels. The tool named “EBA” works with any  number 

of genomes and resolutions in order to predict statistically significant breakpoints. It 

predicts and assigns EBRs breakpoints scores which were estimated using poisson 

process. The EBA algorithm detects breakpoint regions in genomes assembled to 

chromosome or scaffolds and classifies them using their phylogenetic relationships. 

While validating with real data, we noticed the EBA tool detected EBRs with 84.44% 

accuracy in a non-extended set, whereas 95.55% accuracy was observed once we 

extended the EBRs size by 20Kbp. 

In this chapter, I developed new algorithms, and examined their accuracy on a real cattle 

chromosome breakpoint dataset. It has been shown to detect and consistently classify 

lineage- and group-specific evolutionary breakpoint regions efficiently. In the next 

chapter, I will test the EBA tool to identify chromosomal breakpoints in real avian 

genomes,  chromosomes or scaffolds and then classify them.  
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5. COMPARATIVE ANALYSIS OF AVIAN GENOMES 

EVOLUTION IN BIRDS, ARCHOSAURIANS, AND 

REPTILES 

5.1 INTRODUCTION 

The non-random rearrangements of chromosomes are considered to be one of the most 

prominent features of animal genome evolution (Pevzner and Tesler 2003b, Larkin et al. 

2009). The reshuffling of genome fragments in evolution still maintains large blocks of 

conserved synteny (chromosomal fragments) for billions of years of cumulative 

evolution. They are demarked by dynamic and changing EBRs from a single or both 

sides. Multiple evidence suggests that HSBs and EBRs appear to be evolving in different 

ways, and have different gene functional category enrichments (Larkin et al. 2009). 

However, to date, these conclusions have been drawn through study of the genome 

assemblies of sequenced mammalian genomes and may not necessarily hold the same 

pattern in other genomes. 

Various evidence suggests that segmental duplications or repetitive DNA sequences 

promote chromosomal rearrangements in mammals (Bovine Genome et al. 2009, Larkin 

et al. 2009, Farre et al. 2011, M. A. Groenen et al. 2012). Additionally, it has been 

reported for mammals that lineage-specific active TEs promote species-specific 

rearrangements (Bovine Genome et al. 2009, M. A. Groenen et al. 2012), which point to 

connections between the mechanisms of chromosomal rearrangements and TE activity. 

As mentioned previously, in mammals HSBs and EBRs are enriched for strikingly 

different functional gene content. This has been first reported by the Larkin and co-

workers (2009). They have pointed out that the genes related to organismal 

development are preferentially located in HSBs (Larkin et al. 2009), whereas, the lineage-

specific EBRs often affect the order and chromosomal positions of genes related to 

lineage-specific biology and adaptive features (Bovine Genome et al. 2009, Larkin et al. 

2009, M. A. Groenen et al. 2012). These discoveries shed light on the mechanism of 

mammalian chromosome evolution and their potential influence on lineage-specific 

phenotypes.  
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However, there are a range of genomics features that make mammalian genome 

structurally different from the other amniotes genomes. Several major features that 

make them unique are:  

a) A mammalian genome, on average, contains a large proportion of TEs and 

other repetitive DNA sequences (~50%) with many duplicated genes (E. S. 

Lander et al. 2001, Gibbs et al. 2004, Lindblad-Toh et al. 2005). 

b) Mammalian genomes are organised in relatively large chromosomes with a few 

exceptions of micro-chromosomes (Becker et al. 2011, Trifonov et al. 2013). 

c) The karyotypes of mammals are evolutionary variable with multiple inter-

chromosomal rearrangements found in species (Pontius et al. 2007).  

d) The mammalian chromosome numbers range widely from 2n=6 in Indian 

Muntjac to 2n=102 in Viscacha rat (Ruiz-Herrera et al. 2012). 

 

The extent to which mammalian genomes are different from other amniote clades or 

representative of other amniotes remains an open question. With this in mind, it is quite 

fascinating to study the chromosomal evolution in another phylogenetic class, e.g., 

birds. 

Birds, the only living descendants of dinosaurs (Padian and Chiappe 1998), are widely 

distributed all around our surroundings within a diverse group, bright showy displays of 

colours, distinct melodious natural songs and calls, which add an enjoyment to our daily 

lives. The birds’ diverse plumages and behaviours are not only observed all round the 

world, but also play a critical role in the many food chains and webs that exist in many 

ecosystems. Birds transport a variety of things in our environment such as seeds, fish 

eggs, pollen, and certain diseases. They also control pests and work as a bio-indicators 

for environmental pollution. In addition to that, domesticated birds are kept for the 

eggs they produce, their meat, and feathers. Birds are an affordable and tasty source of 

protein enjoyed by people around the world. The poultry meat industry is growing by 

leaps and bound to fulfil the growing demand of food by the world population 48 . 

Despite having such a huge biological and environmental impact, their evolutionary 

relationships are poorly understood. The birds are a highly varied group with ~10,000 

recognised species adapting to a wide variety of habitats across a broad geographic 

                                                      
48 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/430104/poultry-
statsnotice-23apr15.pdf 



  

115 

 

distribution (del Hoyo 1992-2013) and having a huge variety in body size and weight. 

The global bird speciation rates across space and time has been explored with 9,993 

known living bird species using their DNA-sequence data (6,663 species and 3,330 

species with no genetic data)49  (W Jetz et al. 2012). 

The birds show greater phenotypic variability, whereas their genomes mostly exhibit 

lower genome variability and are more compact (about one third the size) than of  

mammalian species (Gregory 2014). The repetitive DNA elements proportion in bird 

chromosomes is less than in mammals and constitutes only around ~15% of a bird 

genome (International Chicken Genome Sequencing 2004, Shedlock 2006, Zhang et al. 

2014). A bird genome contains deletions of many duplicated gene family members, 

which are found in mammals and other amniotes (Zhang et al. 2014). The short intronic 

and intergenic regions in bird genomes could lead to a relatively short bird genome size 

(Hughes and Hughes 1995, Alekseyev and Pevzner 2009).  In addition, the avian 

karyotypes show less variability that those of mammals (Ellegren 2010, Ruiz-Herrera et 

al. 2012), with most of them containing ~2n=80 chromosomes (D. K. Griffin et al. 

2007). A typical avian karyotype contains 5 to 10 large chromosomes (macro-

chromosomes) and a large number of small (<20 Mbp) chromosomes (micro-

chromosomes).  

Reconstructions of an ancestral avian karyotype based mostly on the zoo-FISH studies 

of macro-chromosomes suggest that most of them maintain conserved synteny in 

descendant genomes. These were often not disrupted by interchromosomal 

rearrangements over the period of avian evolution (Ellegren 2010, Skinner and Griffin 

2012). Until very recently, however, a comprehensive study of avian genome at 

sequence level was impossible due to insufficient availability of sequenced genomes. The 

few available genetic maps and chromosomal assemblies of the chicken, turkey, and 

zebra finch genomes did provide an important insight into avian chromosomal 

evolution (D. W. Burt et al. 1999, Dalloul et al. 2010, Völker et al. 2010, Warren et al. 

2010, Skinner and Griffin 2012). However, the nature and patterns of bird genome 

evolution, and their differences from mammalian genome evolution were unclear.  

A comparative study using chicken, turkey, and zebra finch genomes have shown 

enrichment for repetitive sequences within chicken EBRs. However, the role and impact 

                                                      
49 http://birdtree.org/ 

http://birdtree.org/
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of TEs in the formation of species-specific EBRs was not resolved (Skinner and Griffin 

2012). Volker and co-workers (Völker et al. 2010) have demonstrated that bird EBRs co-

localize with copy number variants (CNVs). The similar trend was also reported for 

mammalian EBRs (W. J. Murphy et al. 2005, Larkin et al. 2009).  However, in contrast 

to what was found in mammals and insects, association of  bird EBRs with hotspots of 

recombination in chicken chromosomes might indicate the mechanisms of 

chromosome evolution between birds and other groups may differ (Völker et al. 2010). 

Due to availability of only three avian genomes at the time, it has not been possible to 

address the question of whether spatial organization of ancestral gene networks is 

maintained in bird and other reptile lineages. With the availability of multiple avian 

genome sequences, we are now equipped and able to test hypotheses in birds that 

lineage-specific EBRs alter the gene order in networks that had adaptive value and cross 

check the previously known evolutionary pattern in mammalian genomes. 

In order to test the hypothesis, 21 available bird genomes were used, which were either 

assembled to chromosomes or to large scaffolds (N50 >2 Mbp).  For the comparative 

genome analysis, we used the previously known methodologies along with our newly 

developed techniques, which were previously tested in mammalian genomes. By using 

all required methodologies, in the present study, we identified EBRs, HSBs, and stable 

intervals of ancestral avian, archosaurian, archosaurian/testudines, sauropsid, and 

amniote chromosomes (msHSBs). The rates of chromosomal rearrangements in 21 bird 

genomes, TEs densities in EBRs and other genome interval, and presence of genes in 

evolutionary stable ancestral chromosome regions were also investigated to better 

understand the processes that occurred during billions of years of independent bird 

genome evolution. Later, the gene networks, which were preferentially reshuffled during 

the course of bird chromosome evolution, were detected. Together the results are the 

first comprehensive sequence-based analysis of chromosome evolution in birds and 

other reptiles. These results demonstrate how the chromosomal evolution has acted 

upon and ruled the formation of ancestral and lineage-specific phenotypes.  

Throught this chapter, the EBRs detection, scaffold handling, classification, validation, 

testing, and breakpoint reconstruction in target species was done by me, whereas the 

EBRs enrichment analyses were performed by Dr. Marta Ferre Belmonte. 
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5.2 MATERIALS AND METHODS 

5.2.1 Syntenic fragments (SFs) detection 

The chicken chromosome sequences (ICGSC Gallus_gallus 4.0) were aligned against 

eighteen bird genome assemblies with N50>2 Mbp (Zhang et al. 2014) (common 

cuckoo, peregrine falcon, American crow, little egret, crested ibis, domestic pigeon, 

hoatzin, golden-collared manakin, medium ground finch, downy woodpecker, Adelie 

penguin, Emperor penguin, Anna’s hummingbird, chimney swift, killdeer, Pekin duck, 

budgerigar and ostrich) using Satsuma Synteny, a genome-wide synteny detection, 

program (M. G. Grabherr et al. 2010). In addition to that, the chicken chromosome 

alignments were also done with two previously published bird assemblies: turkey (TGC 

Turkey_2.01) and zebra finch (WUGSC 3.2.4) and five outgroup genomes: Anole lizard 

(AnoCar2.0), boa constrictor snake (snake 5C; (Keith R. Bradnam et al. 2013), painted 

turtle (Chrysemys picta bellii-3.0.1), Chinese alligator (ASM45574v1), and opossum 

(monDom5). 

Later the pairwise alignments were further checked and cleaned from overlapping 

fragments and duplicated matches. The filtered set were used to define syntenic 

fragments (SFs) using the SyntenyTracker program (Donthu et al. 2009). These SFs were 

identified using sets of parameters that allowed the detection of genome rearrangements 

at ≥ 500Kbp, ≥ 300Kbp, ≥ 100Kbp in the chicken chromosome sequences. The SF 

sets identified were further classified as complete HSBs and SFs. The SFs found in the 

genomes assembled to chromosomes represent complete HSBs, whereas SFs detected 

in fragmented assemblies are referred to as partial synteny blocks (SFs). The HSBs and 

SFs were made publicly available through the Evolution Highway 50  comparative 

chromosome browser (Figure 5.1). 

 

                                                      
50 http://evolutionhighway.ncsa.uiuc.edu 

http://evolutionhighway.ncsa.uiuc.edu/
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Figure 5.1 Evolutionary breakpoint regions (EBRs), syntenic fragments (SFs) and 

homologous synteny blocks (HSBs) identified in the chicken chromosome 5. Grey 

blocks define SFs in target genomes compared to the chicken chromosome, with target 

species scaffold or chromosome numbers indicated inside the blocks. Only the rows 

with genomes assembled to chromosomes (turkey, duck, zebra finch, Anole lizard and 

opossum) contain complete HSBs while blocks in the remaining rows represent either 

HSBs or SFs. EBRs are defined as white intervals in between either two adjacent SFs 

originating from the same scaffold in a target genome or two adjacent HSBs. Reference-

specific EBRs are represented by the white intervals that overlap in all species. The 

arrowheads point to a reference-specific and Galloanserae-specific EBRs. Pale green 

boxes demarcate avian msHSBs that are longer than 1.5Mbp in the chicken 

chromosome. 

 

5.2.2 Identification and classification of evolutionary breakpoint regions 

Evolutionary breakpoint regions (EBRs), intervals delimited by two adjacent HSB 

boundaries on the same reference chromosome, were identified and classified using our 

algorithm. The multi-step automated EBRs detection and classification algorithm was 

implemented in Perl to detect, define, and classify the EBRs (see Chapter 4 section 4.3.1 

for detail). 
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5.2.3 Identification of multispecies homologous synteny blocks (msHSBs) 

In order to identify multispecies homologous synteny blocks (msHSBs), the regions of 

reference chromosomes that had no EBRs or uncertain BRs (see Chapter 4 section 

4.2.3.3) detected in a set of target species, the 100Kbp SF and EBR sets were used. 

These higher resolution sets were used to ensure that regions of the genomes that had 

no rearrangements even at a relatively high level of resolution compared to the 300Kbp 

and 500Kbp sets were identified. The five different sets of msHSBs (avian, 

archosaurian, archosaurian/testudines, sauropsida, amniote msHSBs) have been defined 

using the above mentioned msHSBs identification approach. The msHSBs were defined 

based on occurrences in a selected number of the study species. The msHSBs defined in 

this analysis are as follows: 

i. Archosaurian (birds and crocodiles) 

ii. Archosaurian/testudines (birds, crocodiles, turtles, and dinosaurs) 

iii. Avian (all bird species) 

iv. Sauropsida (all reptile species) 

v. Amniote (all species studied) 

 

Later, the distribution of msHSB sizes in each set was tested for goodness-of-fit to 

measure the largest difference between the observed and theoretical distribution of 

msHSB. These exponential distribution analyses were done using the Kolmogorov-

Smirnov test following Churchill et al. (1990) and Pevzner and Tesler (2003). The 

probabilities of each msHSB to be detected under the Poisson process were calculated. 

5.2.4 Functional analysis of genes in EBRs and msHSBs 

In order to perform functional analysis of genes present in the regions of interest, the 

following steps have been taken. 

5.2.4.1 Gene selection 

The gene sequence coordinates with a single known ortholog in the chicken and human 

genomes were downloaded from EnsEMBL using Biomart (v.74)51. At the time of data 

extraction the focus was on the chicken genes with a single known ortholog in the 

                                                      
51 http://www.biomart.org/  

http://www.biomart.org/
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human genome. This was done because the follow-up analyses used functional 

annotation of genes generated for mammalian genomes. Some genes were filtered out 

from the list if they were mis-assembled or had erroneous ortholog definition. These 

gene errors were identified with the SyntenyTracker program by building chicken-

human HSBs using only the genes coordinate information. This led to the detection of 

“singleton” and “out-of-place” genes located in unexpected positions within HSBs or 

representing a single-gene HSB (see Chapter 3 section 3.2.1). 

5.2.4.2 Overlapping gene selection 

The remaining filtered set of genes was assigned to EBRs and msHSBs based on 

overlaps of gene coordinates in chicken chromosomes. In order to identify the 

functional categories of genes over-represented in msHSBs, only blocks larger than 

1.5Mbp were considered to avoid genes that could be located in proximity to EBRs. 

Similarly, in order to evaluate gene functional enrichment in and near EBRs, genes that 

were located within EBRs or within 300Kbp from EBR boundaries were considered. 

5.2.4.2 GO analysis 

The DAVID (Huang et al. 2008) servers has been used to detect gene ontology (GO) 

categories for the genes that were overrepresented in these datasets. The GO terms 

enriched in these gene lists were examined using the DAVID functional annotation 

chart tool. The terms with >1.3 fold-enrichment in EBRs or msHSBs relative to all 

other regions on chicken chromosomes were considered significantly enriched (Huang 

et al. 2009). In order to minimise the number of potentially false positive discoveries the 

number of such categories were limited to a maximum of two, which in this dataset was 

delimited by a false discovery rate (FDR) of 6%. 

5.2.5 Comparing densities of transposable elements (TEs) in EBRs and other 

parts of the bird genomes 

The densities of TEs in EBRs and other parts of the bird genome were calculated using 

the following steps: 

5.2.5.1 Coordinate translation 

The lineage-specific EBRs identified in chicken genome coordinates were translated into 

the coordinates of target bird genomes using the correspondence between SFs boundary 
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coordinates in the chicken and target genomes. These translations were performed with 

a custom Perl script. 

5.2.5.2 Density of TEs  

In the resulting 20 target bird EBR sets and the chicken-specific EBRs, the densities of 

TEs (RepeatMasker52 output, RepBase v.18) from the major families, most abundantly 

occurring repeats family, were calculated and compared to those in other intervals of 

each target genome. Following our previous publications a t-test with unequal variances 

was used to identify TE families that were enriched in the 10 Kbp genome intervals 

overlapping EBR positions (Bovine Genome et al. 2009, Larkin et al. 2009, M. A. 

Groenen et al. 2012). Local false discovery rate (FDR) critical values (Efron et al. 2001) 

were calculated to control for false positive discovery rate using the fdrtool (Strimmer 

2008). 

5.2.6 Density of bird-specific highly conserved non-coding elements (CNE) and 

genes in msHSBs 

Bird-specific highly conserved elements (Zhang et al. 2014) were filtered to remove the 

elements present in coding parts of chicken genes and all mRNA sequences mapped to 

the chicken genome (UCSC genome browser dataset). This approach leaves only 

putative conserved non-coding elements (CNE). Consequently, the UCSC genome 

browser LiftOver tool was used to translate the CNE coordinates to the galGal4 

genome assembly to make the data compatible with the HSB sets. The set of conserved 

elements that was not found overlapping with coding sequences after two filtering steps 

represents the bird-specific conserved non-coding elements (CNE) in the chicken 

genome. Later, the densities of CNEs and chicken genes (UCSC all known gene set) 

were calculated in avian, archosaurian/testudines, and sauropsida msHSBs and 

compared to the rest of the reference genome using the same published pipeline used to 

compare densities of TEs in EBRs and other genome intervals (see above). 

                                                      
52 http://www.repeatmasker.org/  

http://www.repeatmasker.org/
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5.3 RESULTS 

5.3.1 Syntenic fragments and evolutionary breakpoint regions 

The SFs were detected at three resolutions: 100Kbp, 300Kbp, and 500Kbp by an 

alignment of 20 avian and five outgroup genomes to the chicken genome. At the highest 

resolution (i.e. 100kbp) a total of 12,761 avian SFs were detected. Out of which 914 

HSBs were identified in genomes assembled to chromosomes, whereas the remaining 

11,847 SFs share boundaries either with EBRs or scaffolds ends (Figure 5.1). The 

average and maximum sizes of an avian HSB were 3.13Mbp (± 338Kbp) and 65.84Mbp, 

respectively. The average size of an avian SF was 1.46Mbp (± 360Kbp) and maximum 

was 38.99Mbp. The number of pairwise HSBs ranged from 261 between the chicken 

and duck to 330 between chicken and zebra finch chromosomes. On average 89.90% of 

the chicken genome was covered by the avian pairwise SFs. The pairwise coverage of 

the chicken genome in SFs ranged from 85.74% in the chicken-to-Downy woodpecker 

to 91.61% in the chicken-to-Emperor penguin comparisons. Once the five outgroup 

genomes were added, the pairwise SFs number increased to 16,457, with an overall 

average size of 1.61Mbp. 

The SFs from all three resolutions were used to identify EBRs. After comparing the 

number of EBRs in all resolutions of all studied species, the 100Kbp resolution was set 

for the final estimation of chromosomal rearrangement rates and the msHSB definition. 

The highest 100Kbp resolution was selected to avoid possible false EBR estimation and 

errors in msHSB detection. It also matches the ~300Kbp resolution in mammalian 

genomes, the resolution commonly used to define mammalian EBRs. In contrast, the 

500Kbp set contained the fewest number of BRs that could be assembly errors and was 

selected for gene enrichment analysis in EBRs. A total of 2,066 avian EBRs were 

detected at 100Kbp resolution, out of which 1,796 (86.93%), with average size 

18.54Kbp, were assigned to phylogenetic nodes. These EBRs cover almost 32.99Mbp 

(3.7%) of the chicken chromosome sequences. The 16 chicken lineage- and 42 

Galliformes-species EBRs were detected. The reuse EBRs analysis revealed 211 reuse 

EBRs in avian genomes, which is 11.75% of the total number of avian EBRs (Table 

5.1). Once the outgroup genomes were added, it increased the number of 

unambiguously classified EBRs to 2,589; with 486 reuse EBRs (18.77%; Table 5.1). In 

order to compensate for the fragmentation of some genome assemblies, the recovery 
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rate of reference-specific EBRs in each target genome was used to calculate the 

‘expected’ number of EBRs in each lineage (See Table 5.1).  The expected number of 

EBRs in each lineage was estimated using the recovery rate of the reference-specific 

EBRs. Thus, we used the “expected number of EBRs” in the calculation of the rates of 

genome rearrangements to compensate for the fragmented nature of some genomes. 

Moreover, for the genomes assembled at scaffold level, we analysed the possible effect 

of scaffold length on the EBR detection and found that these two variables do not 

correlate (r=-0.4960, p-value=0.06), suggesting that our EBRs estimation is not biased 

towards genomes with longer scaffolds. 

Table 5.1 Number of detected and expected EBRs in each avian lineage at 100Kbp 

resolution. 

  
Detected  

no. EBRs 

Expected 

no. EBRs 

Species-specific 
  

 
Anas platyrhyncos 113 130 

 
Aptenodytes forsteri 38 43 

 
Calypte anna 92 99 

 
Chaetura pelagica 45 56 

 
Charadrius vociferous 25 27 

 
Gallus gallus 16 16 

 
Columba livia 102 114 

 
Corvus brachyrhynchos 37 40 

 
Cuculus canorus 106 110 

 
Egretta garzetta 40 47 

 
Falco peregrinus 86 99 

 
Geospiza fortis 35 40 

 
Manacus vitellinus 35 44 

 
Meleagris gallopavo 255 255 

 
Melopsittacus undulates 181 199 

 
Nipponia nipon 39 42 

 
Opisthocomus hoazin 39 50 

 
Picoides pubescens 147 184 
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Pygoscelis adeliae 47 55 

 
Struthio camelus 124 137 

 
Taeniopygia guttata 47 53 

Clade-specific  
  

 
Galliformes 42 42 

 
Galloanserae 15 23 

 
Trochiliformes + Apodiformes 2 2 

 
Ciconiiformes 3 3 

 
Passeroidea 14 14 

 
Passeroidea + Corvoidea 19 21 

 
Passeriformes 16 17 

 
Sphenisciformes 4 4 

 

Passeriformes + Psittaciformes + 

Falconiformes + Piciformes + Ciconiiformes 

+ Sphenisciformes + Charadriiformes + 

Opisthocomiformes 

2 4 

 
Non-galloanserae 11 13 

 
Non-galloanserae + non-columbiformes 1 1 

 
Neognathae 9 14 

 
Avian 9 14 

Total avian EBR 1796* 
 

Reuse                  211 (11.7%)  

* Total number of EBRs does not include the reuse EBRs, because these were counted 

as lineage or order specific in corresponding lineages. 

5.3.2 Rates of chromosomal rearrangements 

In order to estimate rates of chromosomal rearrangements, a published bird TENT tree 

was used (Jarvis and al. 2014). The observed number of EBRs in bird genomes varies 

from 16 (chicken) to 181 (budgerigar) with an average of 48 EBRs (Table 5.1). In order 

to estimate global rates of chromosome rearrangements in birds and other lineages the 

expected number of EBRs in each node were normalized by the node branch length in 

million years (MY) (Table 5.1). The rearrangement rates were defined as: (i)”low”, < 

1.22 EBRs/MY, (ii) “intermediate”, 1.22-2.13EBRs/MY, and (iii) “high”, > 2.13 

EBRs/MY based on the average number of EBRs and 95% confidence intervals (Figure 
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5.2). The turkey EBRs and rearrangements rates were excluded from the further analysis 

because of the large differences in number of observed EBRs at 100Kbp and 300Kbp 

resolutions. This large number of observed differences points towards the probable 

large number of local miss-assemblies present in the turkey genome at <300Kbp 

resolution. Such differences were not observed in other genome which suggests that the 

other assemblies were reliable enough to perform chromosomal rearrangement studies 

at the resolutions selected.  The estimated bird chromosomal rearrangement rates were 

identical with the previously reported  rearrangement rates by us (Zhang et al. 2014) with 

minor differences because of inclusion of some additional outgroup genomes (Chinese 

alligator, painted turtle, and boa snake). Due to the inclusion of the alligator genome it 

was found that the divergence of the ancestral bird lineage from crocodiles was 

accompanied with one of the lowest rates of rearrangements in bird genome evolution 

(0.098 EBRs/MY), whereas the branch leading to Neognathae (~5.73 EBRs/MY) 

contains the highest rate of rearrangements. 
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Figure 5.2 Chromosomal rearrangement rates in avian lineages. The phylogenetic tree is 

based on the total evidence nucleotide (TENT) tree (Jarvis and al. 2014). Rearrangement 

rates (RR) for the 100Kbp resolution dataset are plotted on each branch. Green lines 

represent low rates (<1.22 EBRs/MY); grey, medium rates (1.22-2.13 EBRs/MY), and 

red high rates (>2.13 EBR/MY). Turkey rate was omitted from the calculation of these 

intervals (black line). Red bars represent a significant enrichment of TEs (LINE-CR1, 

LTR-ERVL, LTR-ERVK or LTR-ERV1) in species-specific EBRs; green bars show 

negative association of TEs with species-specific EBRs and grey bars indicate elevated 

numbers of the TE families in species-specific EBRs. 

The cytogenetic studies, performed by Griffin et al. in 2007, on bird chromosomes 

suggested that birds have a stable karyotype. Therefore the chromosomal 

rearrangements affecting the chromosome numbers have occurred sporadically (D. K. 

Griffin et al. 2007). The estimation of inter-chromosomal rearrangement rates in each 

species relative to the chicken reference genome has been made using the SFs dataset.  
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The study shows a high rate of chromosomal rearrangements in Emperor penguin (2.23 

EBRs/MY) and Adelie penguin (2.82 EBRs/MY). In addition, Emperor penguin and 

Adelie penguin genomes contain many lineage-specific interchromosomal EBRs (18 and 

20, respectively). In comparisons, Passeriformes exhibit significantly fewer 

interchromosomal EBRs than other bird lineages (t-test=-2.9224, p-value=0.0096). 

However, the global rearrangement rate in Passeriformes is significantly higher than in 

other bird lineages due to a large number of interchromosomal rearrangements (t-

test=2.48, p-value =0.029).  In contrast to the previous cytogenetic study (DK Griffin et 

al. 2007), ostrich (2n=80) seems to have a large number of interchromosomal 

rearrangements (26) and an intermediate rearrangement rate (1.38 EBRs/MY). 

5.3.3 Density of transposable elements in avian EBRs 

The lineage specific EBRs were tested for enrichment of the abundant group of TEs 

(>100bp on average in the EBR- or non-EBR-containing non-overlapping 10Kbp 

genome intervals). Due to a comparatively small fraction of TEs in bird genomes (4-

19%) compared to mammalian genomes (~50%) only four families of TEs: LINE-CR1, 

LTR-ERVL, LTR-ERVK and LTR-ERV1 passed this threshold in at least one of the 

bird genomes. A significant enrichment or elevated number of at least one of these TEs 

groups was observed in the majority of avian lineage-specific EBRs (Figure 5.2). 

However, no significant enrichment for these TEs families was found in ostrich and 

Adelie penguin-specific EBRs. Moreover, the analysis of ostrich EBRs and TEs shows a 

significant negative association of the EBRs with LINE-CR1 elements (p-value=1.1e-6). 

Similarly, the LINE-CR1 and LTR-ERVL elements also show a negative association 

with Adelie penguin EBRs (p-value=0.005 and p-value=0.0002, respectively). 

The potential for a correlation between the rates of chromosome rearrangements and 

the total number of TEs in individual bird genomes was investigated. When all species 

and all TEs families were considered there was no correlation detected (r=0.23, p-value 

= 0.314). Similarly, no significant correlation was found when four highly represented 

families of TEs were considered r=0.24, p-value=0.301). However, the correlation 

coefficient increases to 0.66 (p-value =0.001) if only LTR-ERVL and LTR-ERV1 were 

analysed in the all bird genomes. When Passeriformes were analysed separately from 

other species a strong correlation was observed (Figure 5.3) between the total number 

of Passeriform TEs and chromosomal rearrangements rates in the same species (r=0.96, 

p-value= 0.033).  
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Figure 5.3 Number of transposable elements (TEs) and rearrangement rates 

(EBRs/MY) in bird species. Red dots show Passeriformes, while black dots show the 

other species. The dotted line depicts the correlation of rearrangement rates and TEs in 

Passeriformes. Turkey was not included in this analysis as explained in the text. 

5.3.4 Multispecies HSBs 

The 100Kbp resolution was used to define the msHSBs using the pairwise SFs dataset. 

An msHSB was defined as a chromosomal region, which was not interrupted by EBRs 

across all or a subset of genomes. By applying this approach, 1,746 avian msHSBs were 

detected, covering 76.29% of the chicken genome. The longest avian msHSB with the 

size of 4.81Mbp was found on GGA1. The chicken genome coverage in the msHSBs 

was reduced to 53.33% in 1,514 amniotes msHSBs after the addition of five species 

(Table 5.2). The analysis of msHSB length distribution approximates to an exponential 

distribution in four of the msHSB sets (Additional data section 5). These distributions 

are consistent with a random distribution of evolutionary chromosomal breakages in the 
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genomes. However, some msHSBs were detected (6 amniote, 4 reptile, 3 

archosaurian/testudines, 3 archosaurian and 5 avian msHSBs) that were longer than the 

maximum length expected from a random distribution of EBRs in the corresponding 

genome sets. Out of these it was noticed that one amniote msHSB on GGA1, two 

sauropsid msHSBs on GGA6 and GGA3, one archosaurian/testudines msHSB on 

GGA3, one archosaurian msHSB and one avian msHSB on GGA1 were significantly 

larger than expected if all EBRs were distributed randomly (p-value <0.05). 

Table 5.2 Multispecies Homologous Synteny Blocks (msHSBs) present in different 

subsets of the species studied. 

  

Avian Archosaurian 
Archosaurian 

& Testudines 
Sauropsid Amniote 

  

Total length (Mbp) 765.21 665.03 651.74 545.95 534.92 

Coverage of chicken 

genome (%) 
76.29 66.3 64.98 54.43 53.33 

Max length (Mbp) 4.81 4.46 4.67 4.67 4.17 

Expected max length 

(Mbp)* 
3.52 3.25 3.06 2.73 2.79 

* The expected maximum msHSB sizes were calculated assuming an exponential 

distribution as L[ + ln(n+1)], where L is mean fragment length and = 0.5772 is 

Euler’s constant (Churchill et al. 1990).  
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5.3.5 Bird-specific conserved non-coding elements (CNEs) in msHSBs 

A total of 215,998 bird-specific CNEs with sizes longer than 10bp have been discovered 

in the chicken genome (Zhang et al. 2014). They were significantly enriched in all 

msHSBs sets (p-value < 3e-12). The ratio between the number of CNEs in msHSBs 

and other genome intervals ranged from 1.42 for reptile and amniote msHSBs to 1.72 

for avian msHSBs. Similarly, the density of chicken genes were also checked in 

msHSBs, which followed the opposite trend with msHSBs having significantly fewer 

genes than other chromosome intervals with the ratios ranging from 0.58 for avian 

msHSBs to 0.74 for reptile and amniote ones (p-value < 3e-12). 

5.3.6 Functional analysis of genes within msHSBs 

Comparison of gene ontologies (GO) associated with genes located in the evolutionary 

stable (msHSBs) and dynamic (EBRs) regions allowed identification of preferred gene 

functional categories located in EBRs and msHSBs regions of avian and reptile 

genomes. In order to perform these analyses 11,153 genes with a single known ortholog 

in the chicken and human genomes were extracted from BioMart53. The gene sets were 

filtered for misassembled regions and unreliable orthology, which finally produced 

10,830 genes in this reference dataset. 

Table 5.3 msHSBs >1.5Mbp in each subset of species with the total number of genes in 

each msHSB set. 

 No. msHSBs 

>1.5Mbp 

Coverage of 

chicken 

genome (%) 

No. genes 

Percentage of 

total genes 

used (10,830) 

Birds 85 18.12 1315 12.14 

Archosaurian 67 14.07 1024 9.45 

Archosaurian + 

Testudines 

62 13.17 959 8.85 

Sauropsid 45 9.16 706 6.52 

Amniote 44 8.03 676 6.24 

 
                                                      
53 http://biomart.org/  

http://biomart.org/
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In order to perform gene enrichment analysis only those msHSBs which were longer 

than 1.5Mbp in the chicken genome were used. They covered from 8.03% to 18.12% of 

the chicken genome in amniote and avian msHSBs, respectively and contained 6-12% of 

genes from the reference list (Table 5.3). The GO categories which were significantly 

enriched and passed the FDR threshold in each of the five msHSB sets were identified 

(Figure 5.4). Once the avian, archosaurian, and archosaurian/testudines msHSBs were 

checked for GO term enrichments, we found a significant enrichment for the regulation 

of gene expression and biosynthetic processes in avian, archosaurian, and 

archosaurian/testudines msHSBs. Interestingly, these processes were also found 

enriched in sauropsida or amniote msHSBs but did not pass the FDR threshold. The 

GO terms enriched in avian, archosaurian and archosaurian/testudines msHSBs show a 

very strong correlation but not all of these categories reached the FDR threshold in 

archosaurian or archosaurian/testudines msHSBs sets (r=0.95, p-value<0.0001 for avian 

and archosaurian comparison and r=0.86, p-value<0.0001 for avian and 

archosaurian/testudines). However, this correlation pattern fails when the bird, 

sauropsida and amniote msHSBs were compared (r=-0.40, p-value=0.22; r=-0.65, p-

value=0.17, respectively). 
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Figure 5.4 Gene Ontology (GO) terms enriched in four sets of msHSBs. Green boxes 

show a fold enrichment >1.3 while red boxes depict a fold enrichment >2. White 

crosses inside boxes show categories that passed the FDR significance threshold of 6%. 

Later, highly enriched (>2 fold) GO categories in the msHSBs were analysed (Figure 

5.4). The development of primary sexual characteristics category was found highly enriched in 

all msHSBs sets but passed the FDR threshold in avian, archosaurian and 

archosaurian/testudines msHSBs only. These 17 genes were found in 14 avian msHSBs. 

These msHSBs were distributed across 12 chicken chromosomes, one of them, the 

bone morphogenetic protein receptor 1B BMPR1B gene involved in chondrogenesis 

and growth of wings was found present only in an avian msHSB. The avian and 

archosaurian msHSBs show a significant enrichment of retina development in camera-eye type 

category. This category contains nine genes in six avian msHSBs and found distributed 

across six chicken chromosomes. The avian, archosaurian and archosaurian/testudines 

msHSBs sets were found significantly enriched for the appendage and limb development 

categories. But the FDR threshold was passed by the avian set only.  The nineteen genes 

of these categories were distributed across 12 avian msHSBs in eight chicken 

chromosomes. Out of nineteen genes, five genes, namely SHOX, DLX5, DLX6, 

HOXA11, and BMPR1B were in the msHSBs found only in bird genomes  
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5.3.7 Functional analysis of genes within or around EBRs 

In order to perform the gene enrichment analysis in EBRs, only enriched GO terms 

(fold-enrichment >1.3; FDR<6%) with genes found in >1 EBR region were considered 

as significant. Using this approach we most likely detected the gene networks affected 

by multiple chromosomal rearrangements rather than functional enrichments in 

individual genome intervals. 
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Table 5.4 Gene Ontology terms enriched in EBRs 

EBR 

classification 

GO term No. 

genes 

Fold-

enrichment 

FDR 

(%) 

No. 

EBRs 

Downy 

woodpecker 

Histidine metabolism 6 8.12 0.51 5 

Adelie penguin Regionalization 7 6.48 0.83 7 

Anterior/Posterior 

pattern formation 

6 7.78 1.23 6 

Pattern specification 

process 

7 4.89 3.59 7 

Killdeer Transmembrane 

transport 

9 4.03 1.47 4 

Little egret Neurological system 

process 

6 7.67 0.97 5 

Feeding behaviour 3 34.23 3.94 3 

Manakin Cytokine-cytokine 

receptor interaction 

6 4.91 4.61 3 

Peregrine 

falcon 

Metal ion 

transmembrane 

transporter activity 

11 3.26 2.12 8 

Synapse 8 4.03 3.28 7 

Nucleoside-

triphosphatase regulator 

activity 

10 3.09 5.49 9 

 Cation channel activity 10 3.38 3.03 7 

Budgerigar Forebrain development 12 2.74 5.47 11 
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A total of 13 significantly enriched GO categories have been detected in species-specific 

EBRs of seven bird species (Table 5.4). The GO term regionalisation and pattern specification 

were found enriched in the Adelie penguin-specific EBRs, which include seven genes 

(NR2F2, LHX1, KIF3A, and GBX2 among them). All these seven genes were found 

in/near seven EBRs and were distributed amongst five reference chromosomes. 

Similarly, the Budgerigar-specific EBRs study indicates that certain genes, namely 

NOTCH1, DRAXIN, GATA2, and NUMB are involved in forebrain development 

processes which tend to reshuffle during chromosomal rearrangement. Some genes 

NPY1R, APLP2, and BSX, related to feeding behaviour and RGS9BP, TECTA, and 

P2RX4, related to neurological system process have been found co-localised with the little 

egret-specific EBRs. The GO term enrichment analysis for falcon-specific EBRs shows 

enrichments of three GO terms: metal ion transmembrane transporter activity, synapse and 

nucleoside-triphosphatase regulator activity.  Further descriptive gene analysis of each process 

indicates 11 genes for metal ion transmembrane transporter activity distributed among six 

reference chromosomes, eight genes for synapse in six chromosomes and 10 genes for 

nucleoside-triphosphatase regulator activity in seven chromosomes. The six genes (ALDH6, 

HAL and CNDP1 among others) related to histidine metabolism process was found co-

localise with downy woodpecker-specific EBRs. 

5.4 DISCUSSION 

The 26 sequenced avian genomes were made available recently due developments and 

advancements in sequencing technologies (Mardis 2008) and subsequent initialization of 

various large-scale projects (Genome 2009). This work used a set of avian (21) and 

reptile (4) genomes to perform a comprehensive study of chromosome rearrangements 

in birds. 

A similar alternate pattern of faster and slower rates of chromosomal rearrangements 

(Figure 5.2) in avian species as was earlier reported for mammals (W. J. Murphy et al. 

2005, Larkin et al. 2009) was observed. For instance, the split between Paleognathae and 

Neognathae ~100 MYA was accompanied with an enhanced rate of chromosomal 

rearrangements in the Neognathae ancestral lineage. The observed low chromosome 

rearrangement rate in Neognathae is similar to the rates observed in the eutherian 

mammals until the Cretaceous-Tertiary (K-T) boundary (W. J. Murphy et al. 2005). In 
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the majority of Neognathae clades, chromosome rearrangement rates were lower in 

comparison to mammalian orders. In contrast, the fraction of reuse EBRs in case of  

birds (11.7%) is higher when compared to mammals (8.0%; (Ma et al. 2006, Larkin et al. 

2009) and is similar to the earlier estimates on a lower number of bird species (Skinner 

and Griffin 2012). 

If the smaller genome sizes in birds (~1.05 Gbp compared to ~3.0 Gbp in mammals) is 

considered and observed slow ancestral chromosomal rearrangements rates, then it can 

perhaps be hypothesized that almost all bird clades had a stable genome organization 

which was needed to be maintained in order not to affect important gene networks and 

phenotypes. This hypothesis could be checked through the following studies: (i) by 

relating the global rates of rearrangements in birds to diversification rates and 

phenotypes, (ii) by comparing the rates of rearrangements to densities of TEs, and (iii) 

by observing signatures of gene network enrichments in evolutionary stable and 

dynamic chromosome intervals. 

It was noticed that the lowest rates of lineage-specific chromosomal rearrangements in 

those avian species which retain most ancestral phenotypes like chicken (Romanov et al. 

2014) and hoatzin (Mayr and De Pietri 2014) while highly diverged species/clades such 

as penguins and budgerigar contain  more rearranged chromosomes. The highest level 

of chromosome rearrangements was found in the lineage leading to Passeriformes, 

falcons, parrots and woodpeckers. From the seven species belonging to this clade in this 

analysis, it was found out six that have shown fast rates of chromosomal rearrangement 

with the fastest rate found in zebra finch and medium ground finch genomes. It makes 

it tempting to compare finches with murid rodents because of the highest levels of 

genome rearrangements found in both groups in birds and mammals, respectively 

(Bourque et al. 2004, Zhao and Bourque 2009). In comparison to mammals, it was 

noticed that there was a noteworthy difference in terms of percentage of intra- and 

inter-chromosomal rearrangement. For instance, ~89-100% of rearrangements in 

finches are intra-chromosomal and in rodents ~16-36% is inter-chromosomal. 

Conversely, there was a high correlation between the diversification rates (especially 

when diversification rates are high) and the rates of chromosomal rearrangements in 

birds (r=0.92, p-value=0.025).  These results suggest that the link between the stable 

bird karyotypes and ancestral phenotypes does exist. The reproductive isolation, 

adaptation (see below) and speciation could be ensured and appear eventually as a result 
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of intra-chromosomal rearrangements. In other words, the derived phenotypes and 

speciation may appear without significant disruption of karyotype structure (F. J. Ayala 

and M. Coluzzi 2005). 

The lineage- and order-specific EBRs are enriched for TEs and other duplicated 

sequences that were active at the time of lineage/order formation in mammals as 

reported by many earlier works (Schibler et al. 2006, Larkin et al. 2009, M. A. Groenen 

et al. 2012). Repeats could have promoted the process of chromosomal rearrangements 

through the non-allelic homologous recombination process (NAHR) (Bailey et al. 2004). 

Therefore if bird EBRs are also enriched for TEs, a lower fraction of TE in avian 

species (~4-20%) compared to mammals (~50%) could be accountable for the 

evolutionary stability of bird karyotypes. In this analysis 19 out of 21 bird lineage-

specific EBR sets were either significantly enriched (p-value<0.05; FDR<0.05) or had 

an elevated fraction of at least one of the highly abundant families of TEs (Figure 5.2). 

It was observed that there was a significant negative association between the two sets of 

lineage-specific EBRs (budgerigar and ostrich) with the density of TE elements, a 

pattern consistent with ancestral TE families in mammalian EBRs (M. A. Groenen et al. 

2012). This suggests that some unknown families of TEs may contribute toward the 

genome rearrangements in ostrich and budgerigar. The TEs contributed to the genome 

rearrangements in birds and mammals which comply with past studies which stated that 

in birds, LTRs and LINEs were significantly enriched in EBRs but not in the HSBs 

(Skinner and Griffin 2012).  From in-depth analysis of the clade with the higher rate of 

chromosomal rearrangements (Passeriformes), a highly positive correlation (r=0.96, p-

value =0.033) of the total number of TEs in the passeriform species with the 

corresponding rearrangement rates was found, which suggests a connection between 

these two characteristics in Passeriformes. A similar trend was found in the two 

penguins and ostrich genomes, but not in other species where the number of observed 

EBRs is significantly lower than would be expected from the total number of TEs, 

suggesting a likely negative selection of chromosomal rearrangements at the germ cell 

level. This is strongly supported by the woodpecker genome data. For instance, in the 

woodpecker has a large expansion of LINE-CR1 elements comprising ~19% of the 

genome. The woodpecker-specific EBRs were highly enriched with LINE-CR1 

elements. The chromosome rearrangements rate in woodpecker is high (2.78 EBR/MY) 

but comparatively lower than what would be expected from the number of TEs (Figure 
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5.3), suggesting a strong negative selection against chromosome breakage in various 

parts of woodpecker chromosomes. Besides, it was discovered that those parts of avian 

chromosomes that are devoid of EBRs (msHSBs) are highly enriched for bird-specific 

CNEs and not having many genes in comparison to other regions. This confers a 

rationale behind the negative selection for evolutionary breakage in these gene deserts 

enriched for regulatory sequences. Eventually, it could be suggested that TE families 

have taken part in the formation of lineage-specific EBRs in birds. A smaller fraction of 

TEs in the bird genomes in comparison to mammals coupled with the selection against 

chromosomal rearrangements in some lineages or genome intervals might be 

responsible for more stable karyotype in birds compared to other lineages. 

Identification of several long regions in amniote chromosomes were shown to be non-

randomly maintained in evolution (Larkin et al. 2009) and were enriched for the genes 

responsible for development of organ systems in the human genome (Larkin et al. 2009). 

The current study puts emphasis on the functional gene categories overrepresented in 

various ancestral reptile and bird msHSBs. These msHSBs covered 9-18% of chicken 

chromosomes, contained about 6-12% of chicken genes with well-established orthologs 

in the human genome. In avian, archosaurian, and archosaurian/testudines msHSBs, a 

significant correlation for GO categories relevant to regulation of gene expression and 

biosynthetic processes was found, however, the correlation was not present in the reptile and 

amniote msHSB sets. This suggests that the ancestral archosaurian/testudines lineage 

went through re-organisation of genes which are either controlling gene expression or 

taking part in biosynthetic processes; and that some ancestral syntenies are maintained 

in the descendant lineages. The slow chromosomal rearrangement rate occurred at the 

split of archosaurian and testudines affirms this hypothesis. From all the GO terms 

enriched in all msHSBs sets, only the development of primary sexual characteristics has passed 

the FDR significance threshold in avian, archosaurian, and archosaurian/testudines 

msHSBs. A BMPR1B gene resided uniquely inside an avian msHSB (GGA4: 

57,866,704-59,398,610). Besides having an effect on ovulation (Onagbesan et al. 2003),  

it has a foremost function in the process of digit condensation in mammalian limbs and 

bird wings. In one recent study, the arrest of digit I formation in bird wings was 

attributed to the low expression of BMPR1B and SOX9 genes, which could explain the 

appearance of the three digit wings in birds (Welten et al. 2005).  A presence of bird-

specific CNE situated 100bp upstream of BMPR1B was detected in this work, whereas 
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the closest CNE present in all vertebrate species was placed 34.5Kbp upstream, 

indicating that the presence of BMPR1B in an avian msHSB may be related to change of 

its regulation and expression. 

Retina development in camera-type eye GO category was found to be significantly enriched in 

both the avian and archosaurian msHSBs but not in any other msHSBs. Crocodiles and 

birds share a similar organization of the retinal centrifugal visual system that varies from 

other reptiles and possibly incepts in their archosaurian ancestor (Ferguson et al. 1978).  

Remarkably, SOX2 gene, found in an archosaurian msHSB, is accountable for 

reprogramming of non-neural retinal pigment epithelium cells to differentiate towards 

retinal neurons in chicken embryos (Ma et al. 2009).  Thus, this work links the 

morphological similarity of the retina in birds and crocodiles to their corresponding 

identical genome regions containing the genes involved in retina development. 

Whereas GO category related to limb development was found to be enriched in avian, 

archosaurian, and archosaurian/testudines msHSBs, only in the avian msHSBs this 

particular category was highly enriched and passed the FDR threshold. The five genes 

namely DLX5, DLX6, BMPR1B, SHOX, and HOXA11 were identified that 

differentiate the bird msHSBs set from its evolutionarily closest archosaurian group. 

Therefore, these genes are prime candidates to contribute to bird-specific limb 

phenotypes.  The BMPR1B gene is responsible for the formation of the three-digit bird 

limb as described above. DLX5, a representative of the distal-less (DLX) family of 

homeobox-containing genes is found to be expressed in the apical ectodermal ridge 

guiding the outgrowth and patterning of limb mesoderm (Ferrari et al. 1995). This gene 

is also involved in early feather bud development and is actively expressed in the bud 

epidermis. Activity of DLX5 in chicken embryos could be responsible for feather 

fusions and loss (Rouzankina et al. 2004), supporting the fact that DLX5 is one of the 

crucial genes accountable for the origin of feathered animals. A bird-specific CNE 

1.9Kbp upstream of the DLX5 was found and could be accountable for a distinct 

expression of the gene in birds and non-feathered species. An idiopathic short stature 

and skeletal malformation which was regularly seen in human patients with Turner, 

Leri–Weill and Langer syndromes (Tiecke et al. 2006) happened as a consequence of  

mutation in SHOX, another homeobox-containing gene. SHOX gene is primarily related 

with both developing cartilage and muscle elements of limbs in chicken, however such 

function is not present in the case of human muscle formation (Tiecke et al. 2006). 
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Over-expressed SHOX in the chicken embryos tends to enhance the length  of skeletal 

elements significantly, demonstrating that SHOX modulates length of bones (Tiecke et 

al. 2006). Eventually, the HOXA11 gene expressed in zeugopod territory (Zeller et al. 

2009) during the proximodistal limb bud development aids in the formation of the ulna 

and radius bones.      

Additionally, this work focused on genomic regions and gene networks that define 

species-specific characteristics (Larkin et al. 2009, Danielle G. Lemay et al. 2009, M. A. 

Groenen et al. 2012) by performing the GO analysis in lineage-specific EBRs. There 

were 13 GO categories found to be significantly enriched in the lineage-specific EBRs 

of seven bird species (Table 5.4). Five out of 13 GO terms may be associated with 

adaptive changes in the bird lineages. Adelie penguin’s EBRs were enriched for genes 

connected with pattern specification and regionalization including the NR2F2 and KIF-3 

genes. Both genes are likely to be expressed during the spinal motor neuron 

development (Lutz et al. 1994) and left-right determination (Hirokawa et al. 2009) as 

demonstrated earlier. Spatial reorganizations in the genome could change the regulation 

and expression of these genes (Marques-Bonet et al. 2004), which in turn, made the body 

structure adaptation in such a way that Adelie penguins may able to swim deeper and 

spend less energy than other penguins (Culik et al. 1994). Another case is the GO terms 

overrepresented in the little egret-specific EBRs. They cause the re-shuffling of feeding 

behaviour related genes, including the spatial reorganization of a genomic region having 

the gene NPY1R, wherein mutations could connect it to carbohydrate intake (Elbers et 

al. 2009) in humans. Hence, it is tempting to state that NPY1R reorganization is 

associated with the specific diet of egrets. The budgerigar-specific EBRs are enriched 

with the genes whose functions are connected with forebrain development. These parts of 

the brain are responsible for producing vocalizations in vocal-learner bird species and 

are called ‘vocal brain nuclei’. Parrots surprisingly have unique neuronal connections in 

comparisons to other vocal-learners (songbirds and hummingbirds) (Jarvis 2004). Three 

genes (NUMB, NOTCH1 and DRAXIN) out of those related to the forebrain 

development in budgerigar EBRs were found to be responsible for neuron 

differentiation (Wakamatsu et al. 1999, Islam et al. 2009). According to analysis of the 

current data, these genes will be primarily the topmost candidates for the appearance of 

neurological features in the parrot’s forebrain. Peregrine falcon EBRs were found to be 

enriched with genes responsible for cation channel activity and synapse, in similar line, with 
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the nervous system- and sodium ion transport-related genes evolving rapidly in two 

falcon species founded on the basis of latest whole genome-based comparison 

(Xiangjiang Zhan et al. 2013).     

5.5. CONCLUSIONS 

In summary, this work demonstrated that multiple genome synteny comparison is a 

powerful tool to understand the chromosomal rearrangements and their impact on 

evolution. In addition, it also enabled detection of ancestral and lineage-specific 

genome-rearrangements as well as evolutionary stable chromosomal intervals in birds 

and other reptiles. The study also demonstrated that chromosomal breakage in reptiles 

and birds is not random but is connected to multiple genome features including the 

number of TEs, regulatory sequences and a relative gene order. It was found that the 

rates of genome rearrangements over evolutionary time in birds are not constant but 

vary significantly, in agreement with earlier findings in mammals (W. J. Murphy et al. 

2005). They correlate positively with diversification rates (W. Jetz et al. 2012), but on 

average are lower than in mammals. The lower density of TEs in birds is most likely an 

important factor in part responsible for the evolutionary stable avian karyotype. Apart 

from this some other factors like selection against EBRs in the genome intervals 

containing genes and regulatory sequences related to some pathways established in the 

common ancestor of birds, crocodiles, and turtles or formation of micro-chromosomes 

(D. W. Burt et al. 1999, Burt 2002) should also be considered. Moreover, with the 

availability of a larger number of genomes assembled to the chromosomal level, this 

approach coupled with ancestral genome reconstruction (Ma et al. 2006) will provide a 

basis for the identification of major chromosome changes that contributed to the 

formation of existing species or clades. 

Summary of Novel Contributions  

The comparative analysis of avian genomes indicates that there are lower rates of 

chromosome evolution as well as the presence of a lower fraction of transposable 

elements in bird genomes compared to mammals. The study revealed enrichment for 

GO terms related to regulation of gene expression and biosynthetic processes in bird, 

crocodile and turtle HSBs. These findings point towards the order of these genes being 

established in the archosaurian/testudines ancestor about 300 million years ago (MYA) 
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and then maintained in the descendant species. The archosaurian HSBs were found 

enriched for genes that are responsible for the similar retina structures in birds and 

crocodiles, while the avian HSBs contain genes involved in the bird skeleton and limb 

development. The analysis of gene content in and around avian EBRs revealed 

enrichments for genes likely to be related to lineage-specific phenotypes, such as GO 

terms related to regionalisation in the Adelie penguin and forebrain development in the 

Budgerigar. The lower fraction of TE in avian species (~4-20%) compared to mammals 

(~50%) could be accountable for the evolutionary stability of avian karyotypes. 

In this chapter I showed the importance of the EBA tool, and its application in 

evolutionary research. Apart from that, I also reported some of the noble findings and 

application of EBRs on avian genome evolution (see above paragraph). In the next 

chapter, I discuss my research findings and limitations.  
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6. GENERAL DISCUSSION AND CONCLUSION 

6.1 INTRODUCTION 

Recent developments in sequencing technology have led to a breakthrough in studies of 

chromosomal evolution and the rapidly developing field of comparative genomics. The 

research presented in this thesis demonstrates the role and application of computational 

techniques into modern comparative genomics and genome evolution studies. Keeping 

the technological development in mind, it is obvious that large scale genome wide 

analyses have fundamentally changed the current perspective in which evolutionary 

problems are considered. In other words, these large scale genome wide analyses have 

permitted the explanation of long-standing evolutionary biology problems such as how 

reshuffling of genomes and evolutionary forces works for the same. While on the other 

hand, they have also raised many challenging questions and avenues of research. The 

study of amniote (mammalian, avian and non-avian reptile) evolution has come to a new 

era, where genomic sequences are used to explore the evolutionary perspective. The 

complete amniote genome sequences generated by whole genome sequencing (WGS) 

provide genomic sequences that empower us to clarify key aspects of early amniote 

evolution. The comparative genome analysis of fully or partially assembled genomes has 

demonstrated that many key genomic elements play a vital role in adaptive changes that 

occur over the course of evolution. This research helps exploration and understanding 

of the molecular mechanisms behind chromosome evolution and their adaptive 

consequences. Moreover, there is a wide scepticism not only regarding genome 

sequence data, but also regarding the outcomes of actual computational analyses, which 

are believed to be often erroneous due to various genome sequencing approaches, 

genome assembly algorithms, and inaccurate phylogenies. Once the amount of data and 

dimension increases, the problem to be solved becomes more complex, and therefore 

more sophisticated analytical tools are needed to address this complexity (Chapter 4). 

This is especially true in the case of comparative analyses (see Chapter 3 and 5), as the 

most prevalent drawbacks of comparative genomics are the misleading results. 

Comparative genomics, as applied in our amniote chromosomal rearrangements study, 

is a powerful method for high-resolution, cross-species genomic inference. This 

approach is not only used to detect the boundaries of conserved synteny, but also to 
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determine the chromosomal rearrangements and breakpoints within genomes. Such 

powerful a high-resolution comparative genomics approach was applied to analyse 

mammalian species (described in Chapter 3) and avian chromosome evolution 

(described in Chapter 5).  In this thesis, the comparative genomics approach has been 

applied to amniote genomes, representing a period of 300 million years of divergent 

evolution (Saitou 2013). In the course of this work, the pig genome was examined first 

and analysed the chromosomal rearrangements and breakpoints to understand their 

impact on pig evolution. Ultimately, the chromosomal rearrangement events were 

explored at 100Kb, 300Kb, and 500Kb resolution and cross compared among these 

resolutions to get the most accurate result. The breakpoints inferred across the multiple 

genomes characterise the EBRs or the genomic regions where breaks happened in 

evolution. These EBRs provide the ultimate resource for attempting to understand the 

adaptation and speciation mechanism at the genomic level. In addition, it explains how 

an amniote chromosome evolves and contributes to lineage-specific phenotypes. The 

comparative genome analysis strategy was applied to mammalian genomes and 

proceeded step-wise to avian genomes. This approach was successful because of the 

genomic resources already available from the Genome 10K consortium54, as well as the 

pipeline and tools that have been developed to detect multispecies EBR using 

computational resources available at the IBERS, Aberystwyth University, UK.  

This discussion of my work is intended to detail what these computational analysis 

results suggest more broadly, with reference to early mammalian and avian evolution. 

However, before discussing the limitations of this work, future directions and 

conclusions of the results presented in this thesis, I will discuss some important 

considerations that recur throughout this thesis.  

6.2 COMPARATIVE GENOMIC APPROACHES TO AMNIOTES 

GENOME 

Whole genome sequencing has created a watershed of research opportunities in biology 

that have helped to elucidate genome evolution and understand the mechanism of 

adaptation. For these purposes, comparative genome analysis is the primary method 

which has been used for investigation. Moreover, the species chosen are crucial, as some 

                                                      
54 https://genome10k.soe.ucsc.edu/  

https://genome10k.soe.ucsc.edu/
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inferences are dependent upon their positions on the tree of life. Thus amniotes have 

become a focus of great attention in comparative genomics, because the taxon 

comprises all extant land-dwelling vertebrates. It is therefore clear that amniote genomes 

will play an essential role in elucidating the genetic background of phenotypic evolution.  

Chapter 3 describes the distribution of EBRs within the pig genome and demonstrates 

how chromosomal rearrangements produce variations in the gene networks likely used 

by the natural selection for adaptation to environment. The comparative study of seven 

mammalian genomes has provided a glimpse into the dynamic nature of gene networks 

by discovering the EBRs linked to the pig-specific biology. Chapter 3 demonstrates, that 

the functional genes categories in and around pig EBRs are found significantly enriched 

for the gene ontology (GO) category sensory perception of taste and mostly affect the 

periphery of metabolic networks pathway. In addition, these findings illustrate the 

adaptation throughout the course of pig genome evolution.  

 

Chapter 4 demonstrates the importance of computational techniques, along with 

application of scripting languages, which are applied to develop a novel chromosomal 

breakpoint identification tool named “evolutionary breakpoint analyser” (EBA). To the 

best of our knowledge, this tool is the only existing tool that precisely determines the 

EBRs demarking rearrangements in chromosomes. EBRs are enriched for segmental 

duplications, TEs and are often associated with lineage-specific expansions of gene 

families. To investigate a potential adaptive role of EBRs in different animal lineages, a 

bioinformatics tool is required that would identify EBRs reliably and assign them to the 

correct phylogenetic nodes. This task becomes more complicated when the genomes are 

not assembled to complete chromosomes and are represented by relatively short DNA 

scaffolds. To allow the detection of EBRs from a large number of sequenced genomes 

available through high throughput genome projects; an algorithm was developed to 

perform an automated identification and classification of EBRs from a large number of 

animal genomes, taking into account their phylogenetic relationships. In short, EBA was 

shown to detect and consistently classify lineage- and group- specific EBRs efficiently.  

 

In Chapter 5, an extensive comparative study has been carried out using the EBA 

algorithm on a large number of genomes (i.e., on 21 avian, and five non-avian species) 

to address fundamental questions of genome organisation and chromosome evolution. 
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As it was shown previously for mammalian genomes (W. J. Murphy et al. 2005, Larkin 

et al. 2009, Larkin 2012) EBRs are enriched for segmental duplications, TEs and genes 

related to lineage-specific phenotypes. In order to investigate if similar patterns hold in 

avian genomes, the avian and non-avian genomes were exploited. The EBA algorithm 

and tool (see Chapter 4 section 4.2.2) was used to detect the EBRs and classify them 

using phylogenetic relationships of birds and other reptiles. The application of the EBA 

tool to avian genomes revealed many chromosomal rearrangements, which shed light on 

chromosome evolution in reptiles. In addition, these results provide novel evolutionary 

insights on the nature of karyotype stability in birds and the contribution of 

chromosomal rearrangements to the maintenance of ancestral phenotypes and 

formation of novel phenotypes in birds and reptiles. The wealth of genomes merits 

additional investigations of these data, which will hopefully provide more insights on the 

role and importance of chromosomal evolution. 

6.3 CHROMOSOMAL REARRANGEMENTS AND THEIR 

IMPACT ON EVOLUTION  

Systematic genome analysis has been used over the last decade to identify various 

features associated with EBRs. The analysis of the genomic landscape in and around 

EBRs has yielded important insights into the possible mechanism of breakpoint use, 

reuse and genome evolution. The results in this thesis in mammalian (Chapter 3) and 

bird (Chapter 5) genomes suggest that a key role is played by chromosomal 

rearrangements in adaptation to the environment. 

The pig-based analysis results (Chapter 3) corroborate the previous observation (W. J. 

Murphy et al. 2005, Larkin 2011) that chromosomal rearrangements play an important 

role in genome evolution and adaptation. In amniote genomes, as expected, the largest 

fraction of EBRs was found to be lineage-specific. Moreover, avian evolution shows an 

alternation of faster and slower rates of chromosomal rearrangements, as reported in 

Neognathae clades where EBR frequency is however lower than in the mammalian 

orders. In contrast, the reuse EBRs within birds were found to be more frequent than in 

mammals. In addition, the amniote multi-species HSBs (which represent the regions of 

chromosomes where synteny and order of genes that have been maintained for over 

million of years) shows enrichment for developmentally important genes.  
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Similarly, as reported in mammals the lineage- and order-specific EBRs are enriched for 

TEs and other duplicated sequences that were active at the time of lineage and order 

formation. I found that almost all studied avian lineage-specific EBRs were either 

significantly enriched for or had elevated fraction of at least one of the highly abundant 

families of TEs. This implies that in avian lineages TEs contributed to the genome 

rearrangements, as has been reported in mammals (Larkin 2012). The analysis of gene 

ontologies for lineage-specific EBRs indicated that the genomic regions and gene 

networks are related to species-specific characteristics. The GO category enrichment 

analysis in EBRs identified five GO terms that were directly linked to adaptive changes 

in bird lineages. These results suggest that at least some evolutionary chromosome 

rearrangements may have adaptive value by creating novel configurations of structural 

and regulatory loci involved in responses to environmental challenges.  

6.4 RECOMMENDATION 

6.4.1 Limitation 

The molecular biology research has reached the genomics era, where genome sequences 

are commonly used for comparative genome analysis. Even if there are many biological 

software and tools for storing, comparing and visualising the wealth of genomic data, 

these resources suffer several major computational as well as biological limitations. One 

major flaw could be the sensitivity of the genome alignment algorithms and procedures. 

Apart from that, another difficulty is that the findings from a given reference genome 

cannot be directly used within another target genome context, but that rather 

painstaking genomic and computational validation is needed. Comparative genomics has 

a huge potential in evolutionary genomics research, but there are a number of 

limitations as well:   

1. Most of analysis requires a large number of high-quality DNA sequences, which 

can be difficult to handle in small computational labs.  

2. Various molecular and computational protocols are needed, which vary 

depending on the nature of research and priorities of the experiment.  

3. Whole genome comparative genomics are computationally very expensive in 

terms of memory and time needed.   
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4. The computational analysis of the results needs a high computational and 

technical knowledge. 

5. The availability of reliable and correct assembly of full-length chromosomes 

using NGS data(Alkan et al. 2010). 

The availability of low cost genome sequencing in a reasonable timeframe makes 

comparative genomics a main focus for research over the next decade. Moreover, this 

advancement has taken into consideration evolutionary studies amongst phylogenetically 

related species and has inferred evolutionary mechanisms. Therefore, a great deal of 

effort is needed to develop computational algorithms that are able to cope with 

multispecies WGS. The computational alignment and analysis of assemblies to scaffolds, 

genomes, intra- and inter- chromosomal rearrangements and the identification of 

functional elements are some research areas that need extensive computational and 

algorithmic support to allow analysis by comparative genomics approaches. In addition 

to that, the visual interpretation of such biological information requires an improved 

interface to elucidate patterns. 

6.4.2 Future work 

This thesis explored the comparative genomics approaches with WGSs to shed light on 

genome evolution and adaptive biological processes. Phylogenetic information guided 

the inspection of the ways in which chromosomes change over evolutionary time. In 

each case, the computational method depends on well-posed questions based on current 

established biological knowledge. 

One fruitful extension of this comparative genome work would be the examination of 

high resolution 3D genome architecture maps for syntenic and non-syntenic blocks 

within the genomes of other closely- and distantly- related amniotes. This work on 

chromosomal rearrangements could also be extended to the comprehensive study of 

mammals and more distantly related birds. These studies may provide more information 

and evidence that may accumulate for the specific mechanisms, which have caused 

evolutionary rearrangements and shaped amniote genomes. Furthermore, as more 

sequence-level studies in eukaryotes accumulate, it will help to assess whether there is 

any correspondence of rearrangement breakpoints across the genomes of multiple 

organisms. 
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There is a wealth of information encoded in eukaryotic and prokaryotic genomes. The 

basis for intelligence, immunity and development is all encoded within genome 

sequences. In forthcoming years, it will be interesting to articulate new hypotheses from 

3D genomic data. New biological models will be needed to discover novel aspects of 

epigenetic regulation, and their very discovery will result from genome-wide studies. 

Development of new algorithms, statistical and computational methods and tool will be 

needed for exploration of biological data. The following are interesting projects that still 

lay ahead. 

1. The demonstration and analysis of genomic interactions using HiC is possible 

even within single cells. This approach is likely to initiate the generation of a 

whole new wave of analytic tools. This will enable genome organisation and 

regulation to be investigated in much more depth than is currently possible. 

Accordingly, the EBA tool will be improved to use HiC data and detect EBRs. 

2. The ENCODE project has revolutionised the biological understanding of non-

coding DNA. This project changed the perception of “junk” DNA by 

demonstrating that non-coding DNA not only works as a genome operating 

system but also contains lots of genetic regulatory switches. In the future, it will 

be illuminating to look at these regions with respect to EBRs and HSBs. In 

addition, non-coding DNA, which is the regulatory fragment of biological 

function, needs to examined for its impact on HSB and EBRs. The 

understanding of genome evolution is will be possible following exploration and 

analysis of all various kinds of noisy and neutral biological processes.  

3. The 3D organisation of amniote genomes and the functional relationship of 

gene expression during evolution remain largely unexplored. Studying these 

topics will help to determine whether the chromosome threads found on the 

surface of the nucleus are only affected by evolutionary forces or not, and if so, 

then which forces are responsible. In addition, I can also study some genes 

which have been activated and deactivated over periods of evolutionary time 

(Chapter 3). Therefore, it is important to develop a tool to trace genes of 

interests over evolutionary time and determine their evolutionary impacts. 

4. While genetics research scientists are actively involved in discovering 

chromosomal rearrangements and synteny involved in complex biological 

mechanism, EBA detection and classification methods will need to be 
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continually reassessed and possibly redesigned for optimal prediction of 

complex evolutionary breakpoints. Although our EBA tool currently accounts 

for a large proportion of the chromosomal breakpoints and contributes to the 

understanding of chromosome evolution, new bioinformatics tools and methods 

that evaluate chromosome breakpoints for regulatory, functional enrichments 

and splicing will broaden our understanding of evolutionary mechanisms. 

Moreover, it is largely unclear where it is possible to detect EBRs without a 

reference genome or not. In future I will dedicate my time to resolve them and 

develop an algorithm to make that determination. 

 

In the near future, there will be more insight into the effects and nature of chromosome 

rearrangements using 3D models of the genome. In addition, their vital role in various 

evolutionary mechanisms, and the regulation of gene expression, both local and 

genome-wide, will be better explained. With this thesis, it has been possible to increase 

the understanding of chromosomal rearrangements and adaptation throughout amniote 

evolution. There remain several challenging goals that need to be accomplished 

(examples are mentioned above), and further efforts are needed to understand these 

complex natural phenomena. The exploration and understanding of the position of 

EBRs within 3D chromosome models is certainly one topic for future research. A better 

understanding of chromosomal and evolutionary dynamics of closely- and distantly-

related species is yet another goal. Finally, it can be suggested that a further focus on 3D 

amniote genome evolution is necessary to understand specific differences between 

HSBs and EBRs.  

6.5 CONCLUSION 

To the best of knowledge, this study is the first large-scale genome analysis to 

investigate the role of chromosomal rearrangements and their impact on amniote 

genome evolution. The previous comparative evolutionary studies on several species 

were either applied to very small genomes, or limited to a certain group of species. This 

thesis exploited a wide range of biological information from the sequenced amniote 

genomes (see Chapter 3 and 5). The computational analyses presented in this thesis have 

discovered unique biological findings that are non-discoverable by traditional molecular 

techniques, regardless of the time or effort spent. The computational approach 
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presented is general and has the competitive advantage that one can increase its power 

by increasing the number of species studied; as sequencing costs decrease and 

sequencing capacity increases, obtaining additional genomes becomes only a question of 

time. The computational comparison of multiple distantly- or closely-related species 

might present a new paradigm for understanding genome evolution. In particular, our 

multi-species comparative genome analysis methods are currently being applied to 

amniote genomes. This study reveals the power of comparative genome analysis, which 

can be applied to closely- or distantly-related species in order to infer a wide range of 

evolutionary mechanisms occur over the course of evolution. 

The GO analysis using the MetaCore database shows that porcine EBRs and adjacent 

intervals are enriched for the genes involved in sensory perception of taste suggesting that 

taste phenotypes may be affected by the events associated with genomic rearrangements 

in pigs. On the other hand, there were 13 GO categories found to be significantly 

enriched in the lineage-specific EBRs of seven bird species. The 5 out of 13 GO terms 

may be associated with adaptive changes in the bird lineages. Adelie penguin’s EBRs 

were enriched for genes connected with pattern specification and regionalization including the 

NR2F2 and KIF-3 genes. In addition, the GO terms overrepresented in the little egret-

specific EBRs, cause the re-shuffling of feeding behaviour related genes, including the 

spatial reorganization of a genomic region having the gene NPY1R. The NPY1R 

reorganization is believed to be associated with the specific diet of egrets. The 

budgerigar-specific EBRs are enriched with the genes whose functions are connected 

with forebrain development. Three genes NUMB, NOTCH1 and DRAXIN, out of those 

related to the forebrain development in budgerigar EBRs were found to be responsible 

for neuron differentiation. Peregrine falcon EBRs were found to be enriched with genes 

responsible for cation channel activity and synapse, in similar line, with the nervous system- 

and sodium ion transport-related genes evolving rapidly in two falcon species. All these 

EBRs enrichment study in avian genomes were done by Dr. Marta Ferre Belmonte. The 

distribution of TEs and other repetitive sequence families in and around pig-specific 

EBRs were enriched for LTR-ERV1 transposons and satellite repeats suggesting that 

these two families of repetitive sequences have contributed to the chromosomal 

evolution in the pig lineage. In contrast, due to a comparatively small fraction of TEs in 

bird genomes only four families of TEs: LINE-CR1, LTR-ERVL, LTR-ERVK and 

LTR-ERV1 passed this threshold in at least one of the bird genomes. Comparatively 
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small fraction of TEs in the bird genomes compared to mammals might explain the 

stable karyotype in birds compared to other lineages. My approach, henceforth, 

demonstrates how chromosomal rearrangements produce variations in the gene 

networks used by the natural selection for adaptation. 

In other words, these results show that comparative analysis with closely related species 

can be invaluable in understanding the adaptive mechanism at a genomic level. It also 

reveals the way different EBR regions affect chromosomes during evolution and 

provides clues as to their evolutionary importance. These comparative genome studies 

show consistency with previous studies in mammals that suggest that chromosomal 

breakage in amniotes is not random but is connected to multiple genome features. 

Moreover, the enrichments study that used assembled and fragmented genomes, found 

functional categories of genes that are enriched in lineage- or order-specific breakpoint 

intervals. In many cases, these genes were directly related to ancestral- or lineage-specific 

adaptive biology. In birds, the rates of genome rearrangements are found to be lower 

than in mammals. A lower density of TEs in birds and the formation of micro-

chromosomes are a likely factor responsible for the evolutionary stability of the avian 

karyotype. Continued advances and the availability of more genomes provide a basis for 

the identification of major chromosome changes that contributed to the formation of 

existing species or clades. This progress also contributes greatly toward an improved 

understanding of the role of chromosome rearrangements in adaptation and speciation. 

 

 

 

 

 

 



  

153 

 

APPENDIX A 

List of published full length papers 

Analyses of pig genomes provide insight into porcine demography and evolution. 

Nature 491, 393-398. 

Comparative genomics reveals insights into avian genome evolution and adaptation. 

Science, 346(6215), 1311-1320. 
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