940 research outputs found

    Enhancement of Robot-Assisted Rehabilitation Outcomes of Post-Stroke Patients Using Movement-Related Cortical Potential

    Get PDF
    Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and to improve their quality of life. Among various rehabilitation strategies, robot-assisted rehabilitation is an efficient method that is utilized more and more in clinical practice for motor recovery of post-stroke patients. However, excessive assistance from robotic devices during rehabilitation sessions can make patients perform motor training passively with minimal outcome. Towards the development of an efficient rehabilitation strategy, it is necessary to ensure the active participation of subjects during training sessions. This thesis uses the Electroencephalography (EEG) signal to extract the Movement-Related Cortical Potential (MRCP) pattern to be used as an indicator of the active engagement of stroke patients during rehabilitation training sessions. The MRCP pattern is also utilized in designing an adaptive rehabilitation training strategy that maximizes patients’ engagement. This project focuses on the hand motor recovery of post-stroke patients using the AMADEO rehabilitation device (Tyromotion GmbH, Austria). AMADEO is specifically developed for patients with fingers and hand motor deficits. The variations in brain activity are analyzed by extracting the MRCP pattern from the acquired EEG data during training sessions. Whereas, physical improvement in hand motor abilities is determined by two methods. One is clinical tests namely Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) which include FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movements’ tests. The other method is the measurement of hand-kinematic parameters using the AMADEO assessment tool which contains hand strength measurements during flexion (force-flexion), and extension (force-extension), and Hand Range of Movement (HROM)

    Advanced technology for gait rehabilitation: An overview

    Get PDF
    Most gait training systems are designed for acute and subacute neurological inpatients. Many systems are used for relearning gait movements (nonfunctional training) or gait cycle training (functional gait training). Each system presents its own advantages and disadvantages in terms of functional outcomes. However, training gait cycle movements is not sufficient for the rehabilitation of ambulation. There is a need for new solutions to overcome the limitations of existing systems in order to ensure individually tailored training conditions for each of the potential users, no matter the complexity of his or her condition. There is also a need for a new, integrative approach in gait rehabilitation, one that encompasses and addresses all aspects of physical as well as psychological aspects of ambulation in real-life multitasking situations. In this respect, a multidisciplinary multinational team performed an overview of the current technology for gait rehabilitation and reviewed the principles of ambulation training

    Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review

    Get PDF
    Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination\u27s complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain–computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although there has been significant research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types of tasks and human activities, human gait remains still underinvestigated. In this article, we aim to shed light on the recent development in the analysis of human gait using a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during the data collection and selection phase. In this review, we put a particular focus on the commonly used signal processing and machine learning algorithms, as well as survey the potential applications of gait analysis. We distill some of the critical findings of this survey as follows. First, hardware specifications and experimental paradigms should be carefully considered because of their direct impact on the quality of gait assessment. Second, since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and physiological noises, there is a quest for more robust and sophisticated signal processing algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG and fNIRS and associated with cortical activation, can help better identify the correlation between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet much explored for the lower limb due to its complexity compared to the higher limb. Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems perform well in a controlled experimental environment when it comes to adopting them as a certified medical device in real-life clinical applications, there is still a long way to go

    Magnetoencephalography in Stroke Recovery and Rehabilitation

    Get PDF
    Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility

    Mining the brain to predict gait characteristics: a BCI study

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018A locomoção é uma das atividades mais comuns e relevantes da vida quotidiana, sendo que envolve a ativação dos sistemas nervoso e músculo-esquelético. Os distúrbios da locomoção são comuns principalmente na população idosa, sendo que frequentemente estão associados a uma diminuição da qualidade de vida. A ocorrência destes distúrbios aumenta com a idade, estimando-se que aproximadamente 10% das pessoas com idades entre 60 e 69 anos sofram de algum tipo de distúrbio da locomoção, enquanto esse número aumenta para mais de 60% em pessoas com idade superior a 80 anos. Os padrões da locomoção são influenciados por doenças, condições físicas, personalidade e humor, sendo que um padrão anormal ocorre quando uma pessoa não é capaz de andar da maneira usual, maioritariamente devido a lesões, doenças ou outras condições subjacentes. As causas dos distúrbios da marcha incluem condições neurológicas e músculo-esqueléticas. Um grande número de condições neurológicas pode causar um padrão de marcha anormal, como por exemplo um acidente vascular cerebral, paralisia cerebral ou a doença de Parkinson. Por outro lado, as causas músculo-esqueléticas devem-se principalmente a doenças ósseas ou musculares. A avaliação ou análise da marcha, inclui a medição, descrição e avaliação das variáveis que caracterizam a locomoção humana. Como resultado, este estudo permite o diagnóstico de várias condições, bem como avaliar a progressão da reabilitação e desenvolver estratégias de intervenção. Convencionalmente, a marcha é estudada subjetivamente com protocolos observacionais. No entanto, recentemente foram desenvolvidos métodos mais objetivos e viáveis. Os métodos de análise da marcha podem ser classificados em laboratoriais ou portáteis. Embora a análise baseada em laboratório utilize equipamentos especializados, os sistemas portáteis permitem o estudo da marcha em ambientes naturais e durante atividades da vida diária. A análise laboratorial da marcha é baseada principalmente em informações de imagem e vídeo, embora sensores de piso e placas de força também sejam comuns. Por outro lado, os sistemas portáteis consistem em um ou vários sensores, ligados ao corpo. A adaptação da locomoção é um dos mais relevantes conceitos na análise da mesma, sendo que a sua origem e dinâmica neuronal têm sido amplamente estudadas nos últimos anos. A adaptação da marcha reflete a capacidade de um sujeito em mudar de velocidade e direção, manter o equilíbrio ou evitar obstáculos. Em termos da reabilitação neurológica, a adaptação da locomoção interfere na dinâmica neuronal, permitindo que os pacientes restaurem certas funções motoras. Atualmente, os dispositivos robóticos para membros inferiores e os exoesqueletos são cada vez mais usados não só para facilitar a reabilitação motora, mas também para apoiar as funções da vida diária. No entanto, a sua eficiência e segurança depende da sua eficácia em detetar a intenção humana de mover e adaptar a locomoção. Recentemente, foi demonstrado que o ritmo auditivo tem um forte efeito no sistema motor. Consequentemente, a adaptação tem sido estudada com base em ritmos auditivos, onde os pacientes seguem tons de estimulação para melhorar a coordenação da marcha. A imagem motora (MI), uma prática emergente em BCI, ou interface cérebro-máquina, é definida como a atividade de simular mentalmente uma determinada ação, sem a execução real do movimento. O desempenho da classificação da MI é importante para desenvolver ambientes robustos de interface cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas. O desempenho da classificação da MI é importante para desenvolver ambientes robustos de interface cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas, uma vez que, estudos anteriores, concluíram que realizar uma sessão de MI ativa parcialmente as mesmas regiões cerebrais que o desempenho da tarefa real. Inicialmente, a tarefas de MI centravam-se apenas nos movimentos dos membros superiores, no entanto, recentemente, estas começaram também a focar-se nos movimentos dos membros inferiores, de modo a estudar a locomoção humana. A deteção da intenção motora em tarefas de MI enfrenta vários desafios, mesmo para duas classes (esquerda / direita, por exemplo), sendo que um dos principais desafios se deve ao número, localização e tipo de elétrodos de EEG usados. Recentemente, um número crescente de estudos investigou a atividade cerebral durante a locomoção humana. Esses estudos, baseados maioritariamente no EEG, encontraram várias relações entre regiões cerebrais e ações ou movimentos específicos. Por exemplo, concluiu-se que a atividade cerebral aumenta durante a caminhada ou a preparação para caminhar e que a potência nas bandas μ e β diminui durante a execução voluntária do movimento. Em termos de adaptação da marcha, foi demonstrado que a atividade eletrocortical varia de acordo com a tarefa motora executada. Recentemente, as Interfaces Cérebro-Máquina permitiram o desenvolvimento de novas terapias de reabilitação para restaurar as funções motoras em pessoas com deficiências na locomoção, envolvendo o SNC para ativar dispositivos externos. Na primeira parte desta tese, foram realizadas várias tarefas de MI, juntamente com os movimentos reais dos membros inferiores, de modo a comparar o desempenho da classificação de um sistema wireless de 16 elétrodos secos com um sistema wireless de 32 elétrodos com gel condutor. A extração e classificação das características do sinal foram também avaliadas com mais de um método (LDA e CSP). No final, a combinação de um filtro beta passa-banda com um filtro RCSP mostrou a melhor taxa de classificação. Embora durante a aquisição do EEG todos os canais tenham sido utilizados, durante os métodos de processamento, foram escolhidas duas configurações específicas, onde os elétrodos foram selecionados de acordo com sua posição relativamente ao córtex motor. Desde modo, infere-se que uma seleção cuidada da localização dos elétrodos é mais importante do que ter um denso mapa de elétrodos, o que torna os sistemas EEG mais confortáveis e de fácil utilização. Os resultados mostram também a viabilidade do uso doméstico de sistemas de elétrodos secos com um reduzido número de sensores, e a possibilidade de diferenciar entre as tarefas de MI (esquerda e direita), para ambos os membros, com uma precisão relativamente alta. Por outro lado, a segunda parte desta tese apresenta um esquema de adaptação da marcha em ambientes naturais. De modo a avaliar a adaptação da marcha, os sujeitos seguem um tom rítmico que alterna entre três modos distintos (lento, normal e acelerado). As características da locomoção foram extraídas com base numa câmara RGB, sendo que os sinais de EEG foram monitorados simultaneamente. De seguida, estas características bem como as informações do tempo de reação foram utilizadas para extrair as etapas de adaptação da marcha versus etapas de não adaptação. De modo a remover os artefactos presentes no EEG, devidos maioritariamente ao movimento do sujeito, o sinal for filtrado com uma filtro passa-banda e sujeito a uma análise de componentes independentes (ICA). Posteriormente, as características de adaptação da marcha do EEG foram investigadas com base em dois problemas de classificação: i) classificação dos passos em direito ou esquerdo e ii) etapas de adaptação versus não adaptação da marcha. As características foram extraídas com base em padrões espaciais comuns (CSP) e padrões espaciais comuns regularizados (RCSP). Os resultados mostram que é possível discriminar com sucesso a adaptação versus não adaptação com mais de 90% de precisão. Este procedimento permite a monitoração dos participantes em ambientes mais realistas, sem a necessidade de equipamentos especializados, como sensores de pressão. Este método demonstrou que é possível detetar a adaptação com mais de 90% de precisão, quando os participantes tentam adaptar sua velocidade de marcha para uma velocidade maior ou menor.Gait adaptation is one of the most relevant concepts in gait analysis and its neuronal origin and dynamics has been extensively studied in the past few years. In terms of neurorehabilitation, gait adaptation perturbs neuronal dynamics and allows patients to restore some of their motor functions. In fact, lower-limbs robotic devices and exoskeletons are increasingly used to facilitate rehabilitation as well as supporting daily life functions. However, their efficiency and safety depend on how well they can detect the human intention to move and adapt the gait. Motor imagery (MI), an emerging practise in Brain Computer Interface (BCI), is defined as the activity of mentally simulating a given action, without the actual execution of the movement. MI classification performance is important in order to develop robust brain computer interface environments for neuro-rehabilitation of patients and robotic prosthesis control. In the first section of this thesis, it was performed a number of motor imagery tasks along with actual movements of the limbs to compare the classification performance of a dry 16-channel and a wet, 32-channel, wireless (Electroencephalography) EEG system. Results showed the feasibility of home use of dry electrode systems with a small number of sensors, and the possibility to discriminate between left and right MI tasks for both arms and legs, with a relatively high accuracy. The second part of this thesis presents a gait adaptation scheme in natural settings. This procedure allows the monitorization of subjects in more realistic environments without the requirement of specialized equipment such as treadmill and foot pressure sensors. Gait characteristics were extracted based on a single RGB camera, and EEG signals are monitored simultaneously. This method demonstrated that it is possible to detect adaptation steps with more than 90% accuracy, when subjects tries to adapt their walking speed to a higher or lower speed

    Fusion of virtual reality and brain-machine interfaces for the assessment and rehabilitation of patients with spinal cord injury

    Get PDF
    La presente tesis está centrada en la utilización de nuevas tecnologías (Interfaces Cerebro-Máquina y Realidad Virtual). En la primera parte de la tesis se describe la definición y la aplicación de un conjunto de métricas para evaluar el estado funcional de los pacientes con lesión medular en el contexto de un sistema de realidad virtual para la rehabilitación de los miembros superiores. El objetivo de este primer estudio es demostrar que la realidad virtual puede utilizarse, en combinación con sensores inerciales para rehabilitar y evaluar simultáneamente. 15 pacientes con lesión medular llevaron a cabo 3 sesiones con el sistema de realidad virtual Toyra y se aplicó el conjunto definido de métricas a las grabaciones obtenidas con los sensores inerciales. Se encontraron correlaciones entre algunas de las métricas definidas y algunas de las escalas clínicas utilizadas con frecuencia en el contexto de la rehabilitación. En la segunda parte de la tesis se ha combinado una retroalimentación virtual con un estimulador eléctrico funcional (en adelante FES, por sus siglas en inglés Functional Electrical Stimulator), ambos controlados por un Interfaz Cerebro-Máquina (BMI por sus siglas en inglés Brain-Machine Interface), para desarrollar un nuevo tipo de enfoque terapéutico para los pacientes. El sistema ha sido utilizado por 4 pacientes con lesión medular que intentaron mover sus manos. Esta intención desencadenó simultáneamente el FES y la retroalimentación virtual, cerrando la mano de los pacientes y mostrándoles una fuente adicional de retroalimentación para complementar la terapia. Este trabajo es, de acuerdo al estado del arte revisado, el primero que integra BMI, FES y realidad virtual como terapia para pacientes con lesión medular. Se han obtenido resultados clínicos prometedores por 4 pacientes con lesión medular después de realizar 5 sesiones de terapia con el sistema, mostrando buenos niveles de precisión en las diferentes sesiones (79,13% en promedio). En la tercera parte de la tesis se ha definido una nueva métrica para estudiar los cambios de conectividad cerebral en los pacientes con lesión medular, que incluye información de las interacciones neuronales entre diferentes áreas. El objetivo de este estudio ha sido extraer información clínicamente relevante de la actividad del EEG cuando se realizan terapias basadas en BMI

    Brain computer interface based neurorehabilitation technique using a commercially available EEG headset

    Get PDF
    Neurorehabilitation has recently been augmented with the use of virtual reality and rehabilitation robotics. In many systems, some known volitional control must exist in order to synchronize the user intended movement with the therapeutic virtual or robotic movement. Brain Computer Interface (BCI) aims to open up a new rehabilitation option for clinical population having no residual movement due to disease or injury to the central or peripheral nervous system. Brain activity contains a wide variety of electrical signals which can be acquired using many invasive and non-invasive acquisition techniques and holds the potential to be used as an input to BCI. Electroencephalogram (EEG) is a non-invasive method of acquiring brain activity which then, with further processing and classification, can be used to predict various brain states such as an intended motor movement. EEG provides the temporal resolution required to obtain significant result which may not be provided by many other non-invasive techniques. Here, EEG is recorded using a commercially available EEG headset provided by Emotiv Inc. Data is collected and processed using BCI2000 software, and the difference in the Mu-rhythm due to Event Related Synchronization (ERS) and Desynchronization (ERD) is used to distinguish an intended motor movement and resting brain state, without the need for physical movement. The idea is to combine this user intent/free will with an assistive robot to achieve the user initiated, repetitive motor movements required to bring therapeutic changes in the targeted subject group, as per Hebbian type learning

    Seven Capital Devices for the Future of Stroke Rehabilitation

    Get PDF

    A Multi-Modal, Modified-Feedback and Self-Paced Brain-Computer Interface (BCI) to Control an Embodied Avatar's Gait

    Full text link
    Brain-computer interfaces (BCI) have been used to control the gait of a virtual self-avatar with the aim of being used in gait rehabilitation. A BCI decodes the brain signals representing a desire to do something and transforms them into a control command for controlling external devices. The feelings described by the participants when they control a self-avatar in an immersive virtual environment (VE) demonstrate that humans can be embodied in the surrogate body of an avatar (ownership illusion). It has recently been shown that inducing the ownership illusion and then manipulating the movements of one’s self-avatar can lead to compensatory motor control strategies. In order to maximize this effect, there is a need for a method that measures and monitors embodiment levels of participants immersed in virtual reality (VR) to induce and maintain a strong ownership illusion. This is particularly true given that reaching a high level of both BCI performance and embodiment are inter-connected. To reach one of them, the second must be reached as well. Some limitations of many existing systems hinder their adoption for neurorehabilitation: 1- some use motor imagery (MI) of movements other than gait; 2- most systems allow the user to take single steps or to walk but do not allow both, which prevents users from progressing from steps to gait; 3- most of them function in a single BCI mode (cue-paced or self-paced), which prevents users from progressing from machine-dependent to machine-independent walking. Overcoming the aforementioned limitations can be done by combining different control modes and options in one single system. However, this would have a negative impact on BCI performance, therefore diminishing its usefulness as a potential rehabilitation tool. In this case, there will be a need to enhance BCI performance. For such purpose, many techniques have been used in the literature, such as providing modified feedback (whereby the presented feedback is not consistent with the user’s MI), sequential training (recalibrating the classifier as more data becomes available). This thesis was developed over 3 studies. The objective in study 1 was to investigate the possibility of measuring the level of embodiment of an immersive self-avatar, during the performing, observing and imagining of gait, using electroencephalogram (EEG) techniques, by presenting visual feedback that conflicts with the desired movement of embodied participants. The objective of study 2 was to develop and validate a BCI to control single steps and forward walking of an immersive virtual reality (VR) self-avatar, using mental imagery of these actions, in cue-paced and self-paced modes. Different performance enhancement strategies were implemented to increase BCI performance. The data of these two studies were then used in study 3 to construct a generic classifier that could eliminate offline calibration for future users and shorten training time. Twenty different healthy participants took part in studies 1 and 2. In study 1, participants wore an EEG cap and motion capture markers, with an avatar displayed in a head-mounted display (HMD) from a first-person perspective (1PP). They were cued to either perform, watch or imagine a single step forward or to initiate walking on a treadmill. For some of the trials, the avatar took a step with the contralateral limb or stopped walking before the participant stopped (modified feedback). In study 2, participants completed a 4-day sequential training to control the gait of an avatar in both BCI modes. In cue-paced mode, they were cued to imagine a single step forward, using their right or left foot, or to walk forward. In the self-paced mode, they were instructed to reach a target using the MI of multiple steps (switch control mode) or maintaining the MI of forward walking (continuous control mode). The avatar moved as a response to two calibrated regularized linear discriminant analysis (RLDA) classifiers that used the μ power spectral density (PSD) over the foot area of the motor cortex as features. The classifiers were retrained after every session. During the training, and for some of the trials, positive modified feedback was presented to half of the participants, where the avatar moved correctly regardless of the participant’s real performance. In both studies, the participants’ subjective experience was analyzed using a questionnaire. Results of study 1 show that subjective levels of embodiment correlate strongly with the power differences of the event-related synchronization (ERS) within the μ frequency band, and over the motor and pre-motor cortices between the modified and regular feedback trials. Results of study 2 show that all participants were able to operate the cued-paced BCI and the selfpaced BCI in both modes. For the cue-paced BCI, the average offline performance (classification rate) on day 1 was 67±6.1% and 86±6.1% on day 3, showing that the recalibration of the classifiers enhanced the offline performance of the BCI (p < 0.01). The average online performance was 85.9±8.4% for the modified feedback group (77-97%) versus 75% for the non-modified feedback group. For self-paced BCI, the average performance was 83% at switch control and 92% at continuous control mode, with a maximum of 12 seconds of control. Modified feedback enhanced BCI performances (p =0.001). Finally, results of study 3 show that the constructed generic models performed as well as models obtained from participant-specific offline data. The results show that there it is possible to design a participant-independent zero-training BCI.Les interfaces cerveau-ordinateur (ICO) ont été utilisées pour contrôler la marche d'un égo-avatar virtuel dans le but d'être utilisées dans la réadaptation de la marche. Une ICO décode les signaux du cerveau représentant un désir de faire produire un mouvement et les transforme en une commande de contrôle pour contrôler des appareils externes. Les sentiments décrits par les participants lorsqu'ils contrôlent un égo-avatar dans un environnement virtuel immersif démontrent que les humains peuvent être incarnés dans un corps d'un avatar (illusion de propriété). Il a été récemment démontré que provoquer l’illusion de propriété puis manipuler les mouvements de l’égo-avatar peut conduire à des stratégies de contrôle moteur compensatoire. Afin de maximiser cet effet, il existe un besoin d'une méthode qui mesure et surveille les niveaux d’incarnation des participants immergés dans la réalité virtuelle (RV) pour induire et maintenir une forte illusion de propriété. D'autre part, atteindre un niveau élevé de performances (taux de classification) ICO et d’incarnation est interconnecté. Pour atteindre l'un d'eux, le second doit également être atteint. Certaines limitations de plusieurs de ces systèmes entravent leur adoption pour la neuroréhabilitation: 1- certains utilisent l'imagerie motrice (IM) des mouvements autres que la marche; 2- la plupart des systèmes permettent à l'utilisateur de faire des pas simples ou de marcher mais pas les deux, ce qui ne permet pas à un utilisateur de passer des pas à la marche; 3- la plupart fonctionnent en un seul mode d’ICO, rythmé (cue-paced) ou auto-rythmé (self-paced). Surmonter les limitations susmentionnées peut être fait en combinant différents modes et options de commande dans un seul système. Cependant, cela aurait un impact négatif sur les performances de l’ICO, diminuant ainsi son utilité en tant qu'outil potentiel de réhabilitation. Dans ce cas, il sera nécessaire d'améliorer les performances des ICO. À cette fin, de nombreuses techniques ont été utilisées dans la littérature, telles que la rétroaction modifiée, le recalibrage du classificateur et l'utilisation d'un classificateur générique. Le projet de cette thèse a été réalisé en 3 études, avec objectif d'étudier dans l'étude 1, la possibilité de mesurer le niveau d'incarnation d'un égo-avatar immersif, lors de l'exécution, de l'observation et de l'imagination de la marche, à l'aide des techniques encéphalogramme (EEG), en présentant une rétroaction visuelle qui entre en conflit avec la commande du contrôle moteur des sujets incarnés. L'objectif de l'étude 2 était de développer un BCI pour contrôler les pas et la marche vers l’avant d'un égo-avatar dans la réalité virtuelle immersive, en utilisant l'imagerie motrice de ces actions, dans des modes rythmés et auto-rythmés. Différentes stratégies d'amélioration des performances ont été mises en œuvre pour augmenter la performance (taux de classification) de l’ICO. Les données de ces deux études ont ensuite été utilisées dans l'étude 3 pour construire des classificateurs génériques qui pourraient éliminer la calibration hors ligne pour les futurs utilisateurs et raccourcir le temps de formation. Vingt participants sains différents ont participé aux études 1 et 2. Dans l'étude 1, les participants portaient un casque EEG et des marqueurs de capture de mouvement, avec un avatar affiché dans un casque de RV du point de vue de la première personne (1PP). Ils ont été invités à performer, à regarder ou à imaginer un seul pas en avant ou la marche vers l’avant (pour quelques secondes) sur le tapis roulant. Pour certains essais, l'avatar a fait un pas avec le membre controlatéral ou a arrêté de marcher avant que le participant ne s'arrête (rétroaction modifiée). Dans l'étude 2, les participants ont participé à un entrainement séquentiel de 4 jours pour contrôler la marche d'un avatar dans les deux modes de l’ICO. En mode rythmé, ils ont imaginé un seul pas en avant, en utilisant leur pied droit ou gauche, ou la marche vers l’avant . En mode auto-rythmé, il leur a été demandé d'atteindre une cible en utilisant l'imagerie motrice (IM) de plusieurs pas (mode de contrôle intermittent) ou en maintenir l'IM de marche vers l’avant (mode de contrôle continu). L'avatar s'est déplacé en réponse à deux classificateurs ‘Regularized Linear Discriminant Analysis’ (RLDA) calibrés qui utilisaient comme caractéristiques la densité spectrale de puissance (Power Spectral Density; PSD) des bandes de fréquences µ (8-12 Hz) sur la zone du pied du cortex moteur. Les classificateurs ont été recalibrés après chaque session. Au cours de l’entrainement et pour certains des essais, une rétroaction modifiée positive a été présentée à la moitié des participants, où l'avatar s'est déplacé correctement quelle que soit la performance réelle du participant. Dans les deux études, l'expérience subjective des participants a été analysée à l'aide d'un questionnaire. Les résultats de l'étude 1 montrent que les niveaux subjectifs d’incarnation sont fortement corrélés à la différence de la puissance de la synchronisation liée à l’événement (Event-Related Synchronization; ERS) sur la bande de fréquence μ et sur le cortex moteur et prémoteur entre les essais de rétroaction modifiés et réguliers. L'étude 2 a montré que tous les participants étaient capables d’utiliser le BCI rythmé et auto-rythmé dans les deux modes. Pour le BCI rythmé, la performance hors ligne moyenne au jour 1 était de 67±6,1% et 86±6,1% au jour 3, ce qui montre que le recalibrage des classificateurs a amélioré la performance hors ligne du BCI (p <0,01). La performance en ligne moyenne était de 85,9±8,4% pour le groupe de rétroaction modifié (77-97%) contre 75% pour le groupe de rétroaction non modifié. Pour le BCI auto-rythmé, la performance moyenne était de 83% en commande de commutateur et de 92% en mode de commande continue, avec un maximum de 12 secondes de commande. Les performances de l’ICO ont été améliorées par la rétroaction modifiée (p = 0,001). Enfin, les résultats de l'étude 3 montrent que pour la classification des initialisations des pas et de la marche, il a été possible de construire des modèles génériques à partir de données hors ligne spécifiques aux participants. Les résultats montrent la possibilité de concevoir une ICO ne nécessitant aucun entraînement spécifique au participant
    • …
    corecore