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RESUMEN 
 

1. Introducción 

La presente tesis está centrada en la utilización de nuevas tecnologías (Interfaces Cerebro-

Máquina y Realidad Virtual). La tesis consta de 3 estudios descritos en los capítulos 2, 3 y 

4, junto con un capítulo introductorio (Capítulo 1) y un capítulo final (Capítulo 5) que 

resume las principales conclusiones y los trabajos de cara a futuro. En cada estudio se ha 

descrito un estado del arte, una metodología, unos resultados, una discusión y unas 

conclusiones. 

En la primera parte de la tesis (capítulo 2) se describe la definición y la aplicación de un 

conjunto de métricas para evaluar el estado funcional de los pacientes con lesión medular 

en el contexto de un sistema de realidad virtual para la rehabilitación de los miembros 

superiores. El objetivo de este primer estudio es demostrar que la realidad virtual puede 

utilizarse, en combinación con sensores inerciales para rehabilitar y evaluar 

simultáneamente. 15 pacientes con lesión medular llevaron a cabo 3 sesiones con el sistema 

de realidad virtual Toyra y se aplicó el conjunto definido de métricas a las grabaciones 

obtenidas con los sensores inerciales. Se encontraron correlaciones entre algunas de las 

métricas definidas y algunas de las escalas clínicas utilizadas con frecuencia en el contexto 

de la rehabilitación. 

La rehabilitación con Toyra se centró en los pacientes con un cierto grado de movilidad en 

los miembros superiores. Sin embargo, el uso de realidad virtual para la rehabilitación no se 

limita a este tipo de pacientes. También existe la posibilidad de ejercer la rehabilitación 

incluso en los casos más graves. El campo de las Interfaces Cerebro-Máquina (en adelante 

BMI por sus siglas en inglés-Brain Machine Interface-) abrió la puerta a un nuevo 

paradigma de rehabilitación, en el que los movimientos son ordenados desde la propia 

intención del paciente, a través de sus señales electroencefalográficas (EEG). Esto permite 

la introducción de realidad virtual en la rehabilitación de pacientes que no son capaces de 

mover sus extremidades. En la segunda parte de la tesis (capítulo 3), hemos combinado una 

retroalimentación virtual con un estimulador eléctrico funcional (en adelante FES, por sus 

siglas en inglés-Functional Electrical Stimulator-), ambos controlados por un BMI, para 
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desarrollar un nuevo tipo de enfoque terapéutico para los pacientes. El sistema ha sido 

utilizado por 4 pacientes con lesión medular que intentaron mover sus manos. Esta 

intención desencadenó simultáneamente el FES y la retroalimentación virtual, cerrando la 

mano de los pacientes y mostrándoles una fuente adicional de retroalimentación para 

complementar la terapia. La realidad puede servir para superar una de las limitaciones del 

FES, que es que la mano del paciente no siempre reacciona a la corriente eléctrica de la 

misma manera, y, por lo tanto, a veces la mano se cierra con diferentes patrones. Al mostrar 

la mano virtual que siempre se cierra correctamente, siempre podemos proporcionar al 

paciente una retroalimentación positiva, independientemente de la respuesta de su miembro 

a la estimulación eléctrica. Por otra parte, la realidad virtual podría ofrecer una recompensa 

adicional a la terapia, mediante el suministro de objetos virtuales con el fin de realizar 

tareas dirigidas a objetivos. 

Este trabajo es, de acuerdo al estado del arte revisado, el primero que integra BMI, FES y 

realidad virtual como terapia para pacientes con lesión medular. Se han obtenido resultados 

clínicos prometedores por 4 pacientes con lesión medular después de realizar 5 sesiones de 

terapia con el sistema, mostrando buenos niveles de precisión en las diferentes sesiones 

(79,13% en promedio). 

Ambos sistemas (Toyra y BMI + FES + VR) ya descritos en las dos primeras partes de la 

tesis han sido diseñados con el propósito de promover neuroplasticidad, que podría 

definirse como el proceso que experimenta el sistema nervioso central para restaurar y 

reparar las áreas que han sido dañadas por una lesión, como la lesión medular. Con el fin de 

evaluar la eficacia de las nuevas tecnologías para la neurorrehabilitación, el abordaje más 

habitual suele ser medir los efectos en el estado físico de los pacientes, como lo hemos 

hecho en la primera parte de la tesis con las métricas cinemáticas definidas. Sin embargo, la 

recuperación neurológica suele preceder a la recuperación funcional. Por lo tanto, también 

es importante estudiar los cambios en la actividad neuronal de los pacientes después de 

realizar una terapia. 

Existen muchas técnicas diferentes para medir las interacciones cerebrales, muchas de ellas 

basadas en señales de resonancia magnética funcional (fMRI por sus siglas en inglés-

Functional Magnetic Resonance Imaging). Por otro lado, el electroencefalograma (EEG) 
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ofrece una alternativa interesante para el desarrollo de las tecnologías de 

neurorrehabilitación, ya que es portátil y más barato que fMRI. Además, tiene una mejor 

resolución temporal, por lo que permite estudiar de manera precisa las interacciones 

temporales entre diferentes áreas del cerebro. En la tercera parte (capítulo 4) de la tesis 

hemos definido una nueva métrica para estudiar los cambios de conectividad cerebral en los 

pacientes con lesión medular, que comprende información de las interacciones neuronales 

entre diferentes áreas. El objetivo de este estudio ha sido extraer información clínicamente 

relevante de la actividad del EEG cuando se realizan terapias basadas en BMI (con FES + 

VR en un estudio y con exoesqueleto en otro). El objetivo ha sido desarrollar nuevos 

enfoques para medir si las nuevas tecnologías de neurorrehabilitación (BMI, VR, 

exoesqueletos) han promovido efectivamente la neuroplasticidad. 

2. Antecedentes 

2.1 Métricas cinemáticas 

La cuantificación de los movimientos de las extremidades superiores se ha investigado 

durante muchos años. Uno de los primeros estudios en este campo fue llevado a cabo por 

Fitts en 1954 con el objetivo de analizar el equilibrio velocidad-exactitud y, en 

consecuencia, calcular el rendimiento y un índice de dificultad de una tarea a partir de tres 

parámetros: el tiempo dedicado a realizar el movimiento, la distancia y el tamaño del objeto 

a alcanzar [1]. 

El interés en obtener parámetros que pudieran proporcionar información relevante para el 

personal clínico a partir de la cuantificación de los movimientos de las extremidades 

superiores es relativamente reciente. Existen algunos estudios que analizan los 

movimientos realizados por los pacientes con trastornos neurológicos durante la realización 

de las tareas y también dibujando [2]–[4]. También hay estudios en los que se ha analizado 

una actividad básica de la vida diaria (AVD), como la de beber, en personas con accidente 

cerebrovascular [5] o SCI [6], y también se han desarrollado algunas métricas para una 

tarea específica [7], [8]. 
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En la mayoría de los estudios mencionados, se han utilizado sistemas de fotogrametría para 

registrar la información de movimiento, que son el estándar más utilizado para el análisis 

biomecánico, debido a su precisión. Por el contrario, en este trabajo, hemos extraído 

información de los sensores inerciales, ya que permiten diseñar sistemas para ser utilizados 

fuera del entorno de un laboratorio de análisis de movimiento, ya que no requieren cámaras 

adicionales para capturar los movimientos. Esto es de especial interés para el desarrollo de 

sistemas de realidad virtual para la rehabilitación. Por otra parte, muchos de los estudios 

anteriores se centraron en una tarea específica, pero estamos más interesados en métricas 

que puedan  incluir  muchos movimientos diferentes en un solo valor, para ofrecer una 

medición global que podría estar relacionada con la funcionalidad. Existe aún la necesidad 

de investigar en mayor profundidad la validez de este tipo de métricas en un entorno clínico 

[9], por lo tanto, creemos que es necesario buscar relaciones entre los parámetros clínicos y 

métricas cinemáticas. 

2.2 BMI en rehabilitación de los miembros superiores 

Las interfaces cerebro-máquina (BMI) permiten la decodificación en tiempo real de los 

comandos neuronales (por ejemplo, mediante el uso de señales electroencefalográficas), y 

por lo tanto, proporcionan un método muy útil para detectar intención de movimento. La 

intención del paciente se identifica a partir de la actividad neural en curso y se puede 

utilizar para controlar diferentes dispositivos. Este enfoque abrió la puerta a varias 

aplicaciones de BMI que podrían ser utilizadas potencialmente por pacientes con lesión 

medular completa, la mayoría de ellos con fines asistivos. Sin embargo, el potencial del 

BMI para la rehabilitación es especialmente relevante en pacientes con lesión medular 

incompleta, ya que se cree que el mantenimiento de tan sólo el 10% de las vías neuronales 

es suficiente para proporcionar una recuperación funcional [10]. 

La combinación de BMI y FES se puede utilizar con un propósito de rehabilitación en la 

lesión incompleta de médula espinal [11], basándose en la hipótesis de que una 

potenciación a largo plazo (LTP, por sus siglas en inglés-Long Term Potentiation) se 

induce en las sinapsis en la médula espinal cuando las señales descendentes del cerebro 

alcanzan la sinapsis aproximadamente al mismo tiempo que los impulsos antidrómicos de 

los nervios periféricos estimulados [12]. Desde esta perspectiva y apoyado por el principio 
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del aprendizaje hebbiano [13], una terapia basada en la activación simultánea de las vías 

motoras (a través de la intención motora detectada por el BMI) y las vías sensoriales (a 

través de la estimulación eléctrica funcional) del tracto corticoespinal debe tener un efecto 

mayor que ambas terapias por separado [14]. 

Por otra parte, como justificación de muchas terapias motoras existentes se establece la 

premisa de que la práctica repetitiva y atractiva utilizando el miembro afectado induce 

cambios plásticos en las redes neuronales implicadas en el control motor y el aprendizaje 

[15]. En este sentido, la retroalimentación es una característica clave durante la terapia de 

rehabilitación, ya que permite que los pacientes sientan sus mejoras de rendimiento a lo 

largo de las sesiones, por lo que los involucra y motiva, y también permite recibir una 

respuesta congruente con la intención motora. Sin embargo, las estructuras 

musculoesqueléticas humanas forman un sistema muy complejo que presenta respuestas 

musculares no lineales y variables al FES [16]. Por lo tanto, los pacientes tienen diferentes 

respuestas musculares a valores constantes de FES, dificultando la recepción de un 

feedback repetitivo y positivo durante la terapia. Esto puede compensarse mediante la 

inclusión de una fuente suplementaria de retroalimentación. El uso de una 

retroalimentación con realidad virtual permite la incorporación de una recompensa 

adicional, basada en los principios de juego para la rehabilitación, lo que puede mejorar la 

adhesión del paciente a la terapia [17]. Además, se ha planteado la hipótesis de que, dado 

que hay una mayor proporción de fibras visuales que entran en las estructuras cerebrales 

responsables del aprendizaje, la retroalimentación visual puede conducir a un aprendizaje 

más rápido [18]. De hecho, hay un estudio reciente que mostró recuperación significativa 

de la locomoción en pacientes con lesión medular después de 12 meses de entrenamiento 

con una combinación de BMI, exoesqueletos y realimentación de la realidad virtual [19]. 

Los BMI en combinación con FES y realidad virtual también ofrecen la posibilidad de 

evaluar el progreso del paciente durante el proceso de rehabilitación. Esto se puede lograr 

analizando las señales EEG grabadas durante las sesiones y con algoritmos de cálculo para 

medir la conectividad funcional (FC, por sus siglas en inglés-Functional Connectivity). Este 

tema se tratará durante el Capítulo 4 y, por lo tanto, no se explicará en este capítulo, pero es 
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importante tenerlo en cuenta, porque este objetivo también estuvo presente durante el 

diseño del sistema. 

Existen bastantes estudios apoyando los beneficios de los sistemas desencadenados por 

comandos neurofisiológicos para promover la recuperación motora en pacientes con ictus 

[20]–[22], así como la neuroplasticidad en sujetos sanos [23]. Sin embargo, hay menos 

estudios que aplican estos sistemas a pacientes con lesión medular. En un estudio reciente, 

BMI + FES se aplicó a pacientes con SCI  completas e incompletas (ASIA [24] A y B, 

respectivamente) con un objetivo rehabilitador, obteniendo mejoras moderadas en los 

resultados funcionales del paciente con ASIA B y sin cambios en el paciente con ASIA A 

[25]. En otro estudio, BMI + FES se aplicaron para recuperar parcialmente la función de la 

marcha en un paciente con SCI [26]. Más recientemente, un estudio con pacientes con SCI 

ha demostrado que el BMI + FES restablece la actividad cortical y la fuerza muscular de la 

desincronización relacionada con el evento (ERD por sus siglas en inglés-Event Related 

Desynchronization) en mayor medida que el FES pasivo [27]. La combinación de BMI y 

exoesqueleto para la rehabilitación de miembros inferiores también se ha probado en 

pacientes con lesión medular [28]. Sin embargo, no está claro si el entrenamiento con BMI 

+ FES puede inducir ganancias funcionales, por ello, en nuestro estudio se evalúa el estado 

funcional antes y después del entrenamiento mediante escalas clínicas. 

Por todas estas razones, creemos que la integración de las tecnologías mencionadas en un 

único sistema, fácil de usar y seguro para los pacientes, es esencial para llenar el vacío 

existente entre los estudios de investigación y los estudios clínicos en el campo de los BMI. 

Antes de llegar a un estudio clínico para evaluar la efectividad de una terapia basada en 

tecnología, es fundamental llevar a cabo una evaluación piloto del sistema en un entorno 

clínico real, con el fin de probar el rendimiento del sistema y sus efectos inmediatos sobre 

los pacientes. Por lo tanto, el objetivo del presente trabajo es investigar si el sistema de 

retroalimentación en bucle cerrado resultante de la integración de BMI, FES y 

retroalimentación de la realidad virtual puede ser utilizado para la rehabilitación de la mano 

por parte de pacientes con SCI, en un entorno clínico, seguro y cómodo para la paciente. 

Con este fin, el primer paso fue diseñar un sistema que cumpliera todos los requisitos que 

se explicarán más detalladamente en la sección Métodos. Luego, se probó un sistema piloto 
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inicial con 3 sujetos sanos para refinar las características, especialmente las relativas al 

clasificador de EEG. Después de redefinir el sistema y comprobar su buen desempeño con 

sujetos sanos, se realizó una experiencia piloto preclínica con 4 pacientes con SCI para 

evaluar la viabilidad del sistema en un entorno clínico. 

 

2.3 Métricas de neuroplasticidad 

En primer lugar, es necesario revisar los diferentes métodos que se han utilizado para 

determinar la conectividad en EEG, teniendo en cuenta sus ventajas y limitaciones. Es 

importante comenzar a distinguir entre 2 términos: conectividad funcional (FC) y 

conectividad efectiva (EC). El primer término se refiere a las correlaciones simétricas y no 

dirigidas entre la actividad de fuentes corticales, mientras que el segundo se refiere a 

dependencias dirigidas o causales [29]. Los primeros estudios calcularon FC a través de 

correlaciones lineales y coherencias entre señales EEG del cuero cabelludo [30], [31]. Estas 

técnicas presentan un grave riesgo de identificación errónea en sistemas con ruido 

correlacionado o fuerte autocorrelación, como es el caso de las señales cerebrales [32]. A 

pesar de esto, ambas están entre las herramientas más utilizadas para evaluar la 

conectividad en el campo de la neurociencia [33]. Algunos ejemplos de técnicas de EC son 

el modelado causal dinámico (DCM), la función de transferencia dirigida (DTF), el 

modelado de ecuaciones estructurales (SEM), la entropía de transferencia (TE) y el método 

de causalidad de Granger (GC). Una división de estas técnicas en 2 grupos (basada en 

modelos o basada en datos) se dará en las siguientes líneas, junto con una breve descripción 

de cada uno: 

 Conectividad efectiva basada en modelos: estas técnicas utilizan modelos teóricos 

inspirados en la neurobiología. DCM y SEM se encuentran dentro de este grupo. 

  Conectividad efectiva basada en datos: no asumen ningún modelo subyacente ni 

conocimientos previos sobre las relaciones espaciales o temporales subyacentes 

[33]. GC, DTF y coherencia parcialmente dirigida (PDC) se encuentran dentro de 

este grupo. 
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Con respecto a la conectividad funcional (FC), se puede establecer una división entre 

técnicas lineales, no lineales y basadas en información. 

 Conectividad lineal: correlación cruzada, coherencia de magnitud al cuadrado 

(MSC), coherencia wavelet (WC) y parte imaginaria de coherencia (IC) se 

encuentran dentro de este grupo. 

 Conectividad no lineal: estas métricas no están diseñadas para superar los métodos 

lineales, sino para dar cuenta de fenómenos no lineales que son fundamentales en el 

sistema neural, como la regulación de los canales iónicos de voltaje, que depende de 

una relación no lineal entre el potencial de membrana y el flujo de corriente [33]. 

Las técnicas de conectividad no lineal se basan en la medición de la sincronización. 

Existen principalmente 4 métodos diferentes para calcular la sincronización: valor 

de bloqueo de fase (PLV), sincronización generalizada (GS), índice de retardo de 

fase  (PLI) e índice de retardo de fase ponderado (WPLI). 

 Conectividad basada en la información: estas técnicas son capaces de detectar 

interacciones tanto lineales como no lineales. La información mutua cruzada (CMI), 

la longitud mínima de descripción (MDL) y la entropía de transferencia (TE) se 

encuentran dentro de esta categoría. 

No hay una métrica de conectividad ideal; su adecuación depende de los fenómenos 

particulares o de la población estudiada. La sensibilidad a más aspectos de la dinámica 

neural puede ser una propiedad deseable, pero, al mismo tiempo, puede hacer que la 

métrica sea menos robusta [34]. Con respecto a la distinción entre métricas lineales y no 

lineales, es cuestionable que los métodos no lineales sean superiores a los lineales, a menos 

que la no linealidad sea el objetivo específico del estudio [34]. 

Estudios anteriores han reunido información sobre los cambios derivados de la 

neuroplasticidad a partir de EEG. De Vico et al. analizaron la conectividad funcional 

mediante la comparación de 5 sanos y 5 pacientes con SCI [35]. Otro estudio de Hou et al. 

analizaron mediante fMRI los patrones de conectividad de los sujetos con SCI en 

comparación con controles sanos. Obtuvieron hallazgos interesantes, como el aumento de 

FC intrahemisférico y disminuido entre hemisferios en pacientes con lesión medular en 

comparación con controles sanos. Encontraron que la FC entre la corteza sensorimotora 
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primaria izquierda y el cerebelo izquierdo se incrementó en pacientes con lesión medular, y 

ésta FC se correlacionó negativamente con la puntuación motora del ASIA. También 

hallaron que la FC entre la corteza sensoriomotora primaria derecha y la SMA derecha 

estaba aumentado en los pacientes con SCI y también se correlacionaba negativamente con 

la puntuación motora del ASIA [36].  

En otro estudio, Young et al. hallaron en pacientes con ictus después de realizar una terapia 

de neurofeedback mediada por BCI, algunas correlaciones entre cambios en escalas clínicas 

y cambios de FC entre diferentes áreas, especialmente entre el tálamo y la corteza motora y 

entre el tálamo y el cerebelo [37]. Sin embargo, algunas de estas correlaciones fueron 

positivas y otras fueron negativas, lo que sugiere que los cambios de FC debidos a la 

reorganización cerebral pueden ser también maladaptativos, lo cual está en línea con otros 

estudios [38]. Por lo tanto, existe la necesidad de investigar más acerca de cuáles de estos 

cambios FC están directamente relacionados con la neuroplasticidad positiva, 

especialmente en los sujetos con lesión medular, ya que, según nuestro conocimiento, no 

hay estudios sobre los cambios en FC después de una terapia BCI en sujetos con dicha 

lesión. 

 

3. Metodología 

3.1 Estudio métricas cinemáticas (capítulo 2) 

Para el proceso de captura cinemática, se ha utilizado un sistema de captura de movimiento 

basado en sensores inerciales MTx Xsens Company (Xsens Inc, Países Bajos). En esta 

aplicación, 5 sensores inerciales se localizaron en la cabeza, el tronco, el brazo, el antebrazo 

y la mano. Los sensores capturan los movimientos principales de la extremidad superior: 

flexión / extensión del hombro, abducción / aducción del hombro, rotación del hombro, 

flexión / extensión del codo, pronosupinación, flexión / extensión de la muñeca y 

desviación radial-cubital. Estos movimientos se traducen en tiempo real a un avatar que 

aparece en la pantalla en un entorno virtual llamado Toyra, específicamente diseñado para 
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realizar tareas de rehabilitación de miembros superiores. Este sistema comprende dos tipos 

de sesiones:  

• Sesiones de evaluación: diseñadas para medir los rangos movimiento de los miembros 

superiores mencionados. Durante ellos, se requiere que los pacientes alcancen sus 

amplitudes máximas, tocando las esferas que aparecen secuencialmente en la pantalla. 

• Sesiones de actividades de la vida diaria (AVD): fueron diseñadas para simular AVDs 

como comer con una cuchara, lavar con una esponja o agarrar objetos diferentes. 

Los sensores inerciales MTx incluyen acelerómetros de tres ejes, giroscopios y 

magnetómetros. Teniendo en cuenta que los sensores inerciales sólo proporcionan 

información de la orientación de cada segmento del cuerpo, se requiere un modelo 

biomecánico para calcular las magnitudes angulares de relevancia clínica sobre la base de 

cada orientación. Para el cálculo de los ángulos de articulación, se definió un sistema de 

referencia local para cada segmento. 

El protocolo de evaluación cinemática consistió en la realización de una sesión utilizando el 

Sistema VR Toyra ®, concretamente la Sesión de Evaluación. Se analizaron los rangos de 

movimiento de los hombros, codo y muñeca con la herramienta MATLAB® (Matrix 

House, Cambridge, UK), obteniendo así 14 variables cinemáticas diferentes: abducción 

paso a paso del hombro (AbdshoulderS),  Abducción completa del hombro 

(AbdshoulderC), flexión del hombro (FlexshoulderS), flexión completa del hombro 

(FlexshoulderC), rotación del hombro (Rotshoulder), flexión del codo paso a paso 

(FlexelbowS) paso, flexión completa del codo (FlexelbowC), extensión del codo 

(Extelbow), supinación del codo (Supelbow), pronación del codo (Proelbow), extensión de 

la muñeca (Extwrist), flexión de la muñeca (Flexwrist), desviación radial de la muñeca 

(Raddevwrist) y desviación cubital de la muñeca (Uldevwrist). 

Finalmente, se han definido cinco métricas diferentes, basadas en los datos cinemáticos 

obtenidos durante las sesiones Toyra ®. La amplitud de la articulación y la amplitud de 

alcance reflejan magnitudes que se usan comúnmente en las evaluaciones clínicas, pero las 

novedades en este estudio son que pueden ser calculadas mientras se realizan AVDs y se 

comparan con un patrón de referencia saludable. Esto es de especial interés en el campo de 
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la rehabilitación ya que estaremos expresando rangos de movimiento plenamente 

funcionales, traducidos directamente a tareas reales. Las otras 3 métricas, agilidad, 

exactitud y repetibilidad presentan nuevas definiciones de conceptos que no son fácilmente 

medibles por métodos convencionales. 

Participaron en el estudio quince sujetos (11 varones y 4  mujeres con lesión completa de la 

médula espinal, edad media 35,33 ± 14,4 años, 4,8 ± 2,37 meses desde la lesión). 

 

3.2 Estudio BMI + Realidad Virtual + FES (capítulo 3) 

Hemos diseñado un sistema de neurorrehabilitación, que incluye un BMI que decodifica la 

intención del paciente en tiempo real y activa los otros 2 subsistemas simultáneamente: 

FES y realimentación virtual. La retroalimentación virtual se visualizó en la pantalla al 

mismo tiempo que se generaba el agarre. Consistió en una mano abierta virtual que se 

cerraba al detectarse  la intención motora del paciente. El sistema diseñado en este trabajo 

consistió en los siguientes subsistemas: 

1) Interfaz cerebro-máquina. 

2) Estimulador eléctrico funcional (FES). 

3) Retroalimentación de la realidad virtual e interfaz gráfica de usuario. 

4) Controlador de alto nivel (HLC). 

Se realizó un estudio de viabilidad con 4 pacientes con SCI (ASIA B, C o D), quienes 

realizaron 5 sesiones con el dispositivo BMI + FES + realidad virtual. El objetivo fue 

analizar la viabilidad y usabilidad del dispositivo como herramienta para la 

neurorrehabilitación y evaluar los efectos inmediatos sobre los pacientes después de usar el 

sistema. Para ello se aplicó la intervención a uno de los brazos del paciente, de ahora en 

adelante denominado "brazo estimulado", mientras que el otro se denominará "brazo no 

estimulado". 
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Los pacientes usaron su intención de movimiento para desencadenar un movimiento de 

agarre con FES, mientras que simultáneamente recibían una retroalimentación visual de un 

cierre virtual de la mano. Se realizaron evaluaciones clínicas iniciales y finales, así como 

una prueba de usabilidad y una prueba de esfuerzo que los 4 pacientes respondieron 

después del estudio. El protocolo experimental consistió en 5 sesiones, con una duración 

aproximada de una hora cada una.  

 

3.3 Métricas de neuroplasticidad (capítulo 4) 

Se han aplicado dos métricas de FC a los datos de EEG para analizar su desempeño en un 

contexto de BMI: parte imaginaria de coherencia (IC) y versión ponderada del índice de 

retardo de fase (WPLI). Ambos son menos sensibles a la conducción de volumen que las 

otras métricas, por lo tanto creemos que podrían ser adecuados en un entorno de BMI. IC es 

una métrica lineal, mientras que WPLI no es lineal, por lo tanto, la comparación de las 

interacciones cerebrales que ambas métricas son capaces de revelar, nos permitirá 

determinar si la linealidad del EEG puede ser asumida o no. Después de estudiar qué 

interacciones cerebrales están más directamente relacionadas con el estado clínico de los 

pacientes, desarrollaremos una nueva métrica que incluya esta información, para ofrecer 

una métrica de sincronía global (GSYM) que podría usarse como un método de evaluación 

de los cambios cerebrales durante las terapias de neurorrehabilitación. Esta métrica 

pretende ofrecer una síntesis de los cambios en la actividad cerebral de diferentes áreas. 

Las grabaciones EEG utilizadas para calcular las métricas de neuroplasticidad provienen de 

los experimentos BMI + FES + realidad virtual ya descritos en el Capítulo 3. En ellos, 4 

sujetos realizaron 5 sesiones controlando un FES y una retroalimentación virtual 

directamente desde su propia intención, mediante MA de la parte superior. Hubo sesiones 

de entrenamiento (utilizadas para recopilar datos para entrenar al clasificador) y sesiones 

interactivas (con retroalimentación FES y realidad virtual). Se analizaron las grabaciones de 

EEG de las sesiones de entrenamiento después de la aparición de la señal (por lo tanto, 

desde t = 0 s a t = 3 s), porque estamos interesados en estudiar la actividad cerebral 

relacionada con la intención motora. Con el fin de encontrar correlaciones entre las 
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evaluaciones clínicas y métricas de neuroplasticidad, se consideró la primera y la última 

sesión de cada paciente. 

Después de calcular GSYM a partir de señales EEG de los experimentos BMI + FES + 

realidad virtual, queríamos validar esta métrica en un conjunto de datos diferente, con el fin 

de estudiar su aplicabilidad en diferentes experimentos de BMI. Para este objetivo, hemos 

calculado GSYM también en un conjunto de señales de EEG de experimentos en los que 4 

pacientes con SCI controlaron un exoesqueleto de miembros inferiores mediante un BMI. 

 

4. Conclusiones 

A continuación enumeramos las conclusiones obtenidas en cada capítulo: 

Capítulo 2 

• Se ha diseñado un nuevo conjunto de métricas cinemáticas para evaluar la 

función de los miembros superiores por medio de un sistema de rehabilitación 

de la realidad virtual. 

• Las características clave clínicas se han traducido en formulaciones matemáticas 

que comprenden los datos cinemáticos registrados por los sensores inerciales. 

• Se ha demostrado que algunas de las métricas cinemáticas definidas están 

correlacionadas con las escalas clínicas estándar, lo que demuestra su 

significado clínico. 

• El conjunto de métricas cinemáticas proporciona información objetiva de 

relevancia clínica que permite la segmentación del paciente, así como una 

evaluación más precisa, que es esencial para facilitar el uso de tecnologías de 

rehabilitación en entornos clínicos. 

• Estas métricas, junto con el sistema de realidad virtual, ofrecen la posibilidad de 

realizar evaluación y terapia simultáneamente, lo cual es muy importante para 

refinar el tratamiento del paciente. 
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• Se ha definido un método para minimizar la influencia de movimientos 

involuntarios en la evaluación de la agilidad considerando la relación entre la 

media y la máxima velocidad angular. 

• En comparación con trabajos anteriores, este es uno de los primeros estudios 

que han encontrado información clínicamente relevante en un entorno virtual de 

rehabilitación, recogiendo parámetros de un conjunto complejo y variado de 

ejercicios realizados por pacientes con SCI. 

 

Capítulo 3 

 La novedad de la integración de BMI, FES y la realidad virtual como terapia para 

los pacientes con lesión medular, permitiendo a los pacientes controlar ambos 

sistemas por sí mismos, sin ayuda externa 

 El sistema mostró altos niveles de precisión a lo largo de las diferentes sesiones 

(79,13% en promedio). 

 La precisión del sistema en la detección de la intención de movimiento 

permaneció estable durante las diferentes sesiones, por lo que podemos concluir 

que los algoritmos diseñados son suficientemente robustos. 

 El análisis discriminante escaso, una técnica de aprendizaje automático para 

reducir la dimensionalidad y clasificar los datos, se ha aplicado con éxito al 

dominio BMI. 

 Un algoritmo que combina características temporales (MRCP) y características 

de frecuencia (ERD) ha demostrado ser eficaz para los pacientes con SCI para 

detectar intento de movimiento de los miembros superiores. 

 Los algoritmos desarrollados en este trabajo también permiten analizar las 

características neurofisiológicas más relevantes para cada paciente, lo cual es 

muy importante para proporcionar un sistema que pueda servir para realizar la 

terapia y también para evaluar a los pacientes. 

 El retardo entre la intención de movimiento y la respuesta lograda por el sistema 

es suficientemente corto para proporcionar a los pacientes la sensación de control 

inmediato de FES y VR, que es esencial para el éxito de la terapia. 
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 El dispositivo de terapia ha sido probado con seguridad por los pacientes, sin 

observar efectos adversos en ninguno de ellos. 

 En términos de usabilidad y esfuerzo, todos los pacientes mostraron su 

satisfacción después del uso de la aplicación. 

 Prometedores resultados clínicos han sido obtenidos por 4 pacientes con SCI 

después de realizar 5 sesiones de terapia con el sistema, como pequeñas mejoras 

de su agarre cuantitativo en el brazo estimulado en comparación con el brazo no 

estimulado. Por lo tanto, concluimos que el diseño del sistema cumplió 

correctamente los objetivos deseados. 

 Los resultados de este trabajo apoyan la factibilidad de una realimentación de la 

realidad virtual BMI + FES + para ser considerada como una herramienta 

terapéutica para la rehabilitación de los miembros superiores. 

 

Capítulo 4 

 La novedad de la aplicación de las métricas de FC en el contexto de los 

experimentos basados en BMI con pacientes con lesión medular. 

 El diseño de una métrica global de sincronía (GSYM) que comprende las 

interacciones entre áreas cerebrales más estrechamente relacionadas con el estado 

clínico de los pacientes. 

 La definición de una metodología para extraer información clínicamente 

relevante de señales de EEG que podrían aplicarse en diferentes escenarios, 

como los experimentos BMI + FES + realidad virtual y BMI + Exoesqueleto 

descritos en este estudio. 

 Mediciones lineales de FC, como IC, y no lineal, como WPLI, revelan similares 

interacciones cerebrales en el contexto de un estudio de BMI. 

 La parte imaginaria del espectro es una forma fiable de determinar las 

interacciones neuronales incluso en presencia de ruido. 

 Los sistemas basados en EEG de superficie, a pesar de su baja resolución 

espacial, junto con algoritmos robustos para la minería de datos, ofrecen una 

interesante herramienta para evaluar la neuroplasticidad, especialmente útil para 
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desarrollar sistemas de neurorrehabilitación, debido a su portabilidad y no 

invasividad 

 Existen correlaciones significativas entre los cambios en la interacción cerebral y 

el estado físico de los pacientes con SCI, antes y después de las terapias basadas 

en el BMI: BMI + FES + realidad virtual y BMI + Exoesqueleto. 
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CHAPTER 1: INTRODUCTION 
 

 

This thesis is focused on the innovative use of Brain-Machine Interfaces and Virtual 

Reality to evaluate and rehabilitate patients with Spinal Cord Injury (SCI). In the first part 

of the thesis (chapter 2), a virtual reality system was designed with exercises performed 

using inertial sensors and a new set of metrics from the inertial recordings was defined with 

the aim of evaluating patients’ status, showing correlations with clinical scales. In the 

second part of the thesis (chapter 3), virtual reality is directly controlled with the patients’ 

electroencephalographic signals, by means of a Brain-Machine Interface in combination 

with a Functional Electrical Stimulator, with the aim of promoting recovery of grasping 

movement. In the third part of the thesis (chapter 4), a Brain-Machine Interface is used with 

the objective of evaluating neural interactions through a methodology that makes use of 

imaginary coherence between different areas of the brain, combined with graph theory 

metrics. The defined metrics showed correlations with clinical scales in two different kinds 

of Brain-Machine Interfaces with different patients. 

In order to introduce the need of developing new technologies for SCI patients, I would like 

to emphasize that SCI dramatically changes the lives of those that suffer it. It is in most of 

cases accompanied by a severe disability of upper and lower limbs, depending on the level 

of injury. During the last decades, there have been plenty of studies approaching the 

challenge of regenerate or replace the damaged areas of the spinal cord. In the meanwhile, 

technologies have been rapidly improving in several fields such as virtual reality, robotics, 

mobile applications, wearable devices and machine learning. The progressive introduction 

of these technologies in the medical field has allowed the definition of new paradigms of 

treatment for SCI patients. One of these new paradigms includes the use of virtual reality 

(VR) to promote rehabilitation. 

VR allows the immersion of the patients in a new rehabilitation environment, where they 

are able to interact with both virtual and real elements while performing exercises and tasks 

specifically designed to improve their abilities. Moreover, at the same time that they are 

performing the tasks, motion capture sensors (mocaps) can be used to monitor their 

progress, offering a powerful tool to the clinicians in order to adjust treatments and to 

accurately detect changes in the patients’ functionality. Therefore, one of the main 
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advantages of the use of VR games for rehabilitation is that they allow simultaneous 

exercise and assessment, by means of mocaps. 

Although several previous studies have focused on developing metrics to assess disability 

with mocaps, there are few examples that have shown the clinical relevance of those 

metrics. One of the main difficulties is that some of the aspects that determine the physical 

status of the patients have not been yet objectively defined. Therefore, it is essential to 

establish appropriate definitions of the rehabilitation essential concepts, such as agility, 

repeatability or precision, and then to translate these concepts into mathematical definitions 

that can be computed from the wearable sensor recordings. 

In the first part of this thesis, we describe the definition and the application of a set of 

metrics to evaluate the functional status of patients with SCI in the context of a VR system 

for upper limb rehabilitation. The aim of this first study is to demonstrate that VR can be 

used, in combination with mocaps, to rehabilitate and evaluate simultaneously.  15 SCI 

patients carried out 3 sessions with Toyra VR System and the defined set of metrics was 

applied to the recordings obtained with the inertial sensors. There were correlations 

between some of the defined metrics and some of the clinical scales frequently used in the 

rehabilitation context. 

Rehabilitation with Toyra focused on patients with a certain degree of mobility in the upper 

limbs. However, VR use for rehabilitation is not limited to this kind of patients. There also 

exists the possibility of exerting rehabilitation even in the most severe cases. The field of 

Brain-Machine Interfaces (BMI) opened the door to a new paradigm of rehabilitation, in 

which the movements are commanded from the patient’s own intention, throughout his/her 

electroencephalographic (EEG) signals. This allows the introduction of VR in the 

rehabilitation of patients that are not able to move their limbs. In the second part of the 

thesis, we have combined a VR feedback with a Functional Electrical Stimulator (FES), 

both of them controlled by a BMI, to develop a new kind of therapeutic approach for 

patients. The system has been used by 4 SCI patients that attempted to move their hands. 

This intention triggered simultaneously the FES and the VR feedback, closing patients’ 

hand and showing them an additional source of feedback to complement the therapy. VR 

might serve to overcome one of the limitations of FES, which is that patient’s hand does 

not always react to the electrical current in the same way, and, therefore, sometimes the 
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hand closes with different patterns. By displaying the VR hand that always closes correctly, 

we can always provide the patient with a positive feedback, independently from the 

response of his/her limb to the electrical stimulation. Moreover, VR could offer an 

additional reward to the therapy, by supplying virtual objects in order to perform goal-

directed tasks. 

This work is to the best of our knowledge, the first that integrates BMI, FES and virtual 

reality as therapy for SCI patients. Promising clinical outcomes were obtained by 4 patients 

with SCI after performing 5 therapy sessions with the system, showing good levels of 

accuracy throughout the different sessions (79.13 % on average). Moreover, an automatic 

procedure for feature extraction based on SDA was developed in order to identify the EEG 

channels that most faithfully reflect the underlying neurophysiological phenomena (MRCP 

and ERD) in SCI patients. Three different subsystems (BMI, FES and virtual reality) were 

successfully integrated by means of a HLC controller, giving rise to a system that works 

transparently to the user, allowing the patients to control the FES and virtual reality by 

themselves, without external assistance. 

Both systems (Toyra and BMI+FES+VR) already described in the first two parts of the 

thesis have been designed with the purpose of promoting neuroplasticity, that could be 

defined as the process that undergoes the nervous central system to restore and repair the 

areas that have been damaged by an injury, such as Spinal Cord Injury. In order to evaluate 

the efficacy of new technologies for neurorrehabilitation, the most common approach is 

usually to measure the effects in the physical status of the patients, as we have done in the 

first part of the thesis with the defined kinematic metrics. However, neurological recovery 

usually precedes functional recovery. Therefore, it is also important to study the changes in 

the neuronal activity of patients after performing a therapy. 

There are many different techniques to measure brain interactions, many of them are based 

on fMRI signals. On the other hand, EEG offers an interesting alternative for the 

development of neurorrehabilitation technologies, since it is portable and cheaper than 

fMRI. Besides, it has a better time-resolution, so it allows to study in a precise way the 

temporal interactions between different areas of the brain. In the third part of the thesis we 

have defined a new metric to study brain connectivity changes in SCI patients, that 

comprises physiological information with phase-signals from the brain and network theory 
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parameters. The aim of this study has been to extract clinically relevant information from 

EEG activity when performing BMI-based therapies (with FES+VR in one study and with 

exoskeleton in another one). The aim was to develop new approaches to measure if new 

neurorrehabilitation technologies (BMI, VR, exoskeletons) have effectively promoted 

neuroplasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

CHAPTER 2: KINEMATIC METRICS BASED ON VIRTUAL 
REALITY AS AN ASSESSMENT OF THE UPPER LIMB 
REHABILITATION IN PEOPLE WITH SPINAL CORD 
INJURY 
 

1. INTRODUCTION 

It has been estimated that the prevalence of spinal cord injury (SCI) is 223-755 per million 

inhabitants, with an incidence of 10.4-83 per million inhabitants per year [39]. Fifty per 

cent of the patients with SCI are diagnosed as complete, and in one-third of the patients, the 

SCI is reported as tetraplegic.  

In patients with tetraplegia, the arm and hand function is affected to a different degree, 

depending on the level and severity of the injury [40].  

Several studies have shown that the improvement in upper extremity function is one of the 

greatest needs in patients with tetraplegia [41]. In this respect, upper extremities therapy in 

people with tetraplegia plays a key role during the rehabilitation. 

Virtual Reality (VR) has emerged in the rehabilitation context in an effort to promote task 

oriented and repetitive movement training of motor skills while using a variety of 

stimulating environments [42]. This approach can increase patient motivation, while 

extracting objective and accurate information enables the patient’s progress monitorization. 

The aim of VR is to create a feeling of immersion within the simulated environment so that 

the patient’s behaviour during the game resembles as much as possible his/her behaviour in 

the real world. 

There are different motion capture technologies that permit to transfer the actual patient’s 

movement to a virtual environment. One of them is the inertial measurement technology. 

There are several advantages of using Inertial Measurement Systems (IMUs) as motion 

capture systems for VR applications, since they are compact, light, resistant to 

environmental interference and easy to wear. 

VR technology increases the range of possible tasks, partly automating and quantifying 

therapy procedures, and improving patient motivation using real-time task evaluation and 

reward [43]. It also permits the standardization of tasks and the recording of kinematic data 
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during the execution of these tasks, making it an interesting tool for assessment of the 

rehabilitation progress.  

Evaluation of the SCI patient’s functional status is usually carried out by means of clinical 

scales, although they have a high subjective component depending on the observer who 

scores the test. Therefore, a better understanding of human movement requires more 

objective testing and accurate analysis of motion to describe the arm movements more 

precisely and specifically during functional testing. Kinematic analysis is one such method 

[44]. 

Clinical scales are not very sensitive to slight improvements in functionality, neither they 

are able to establish the biomechanical characteristics that explain the clinical changes in 

the scores obtained by the patients during their rehabilitation. Thus, it is important to find 

the kinematic parameters that correlate with clinical scales. In a previous study from our 

group, correlations were already found between kinematic data and clinical scales [45]. 

These scales inform about global disability. But they include specific items related to upper 

limb impairment. Therefore, it seems relevant to go deeper in the analysis trying to obtain a 

more specific correlation between kinematics and functionality. 

It is important to underline that kinematic data by themselves are not always sufficiently 

clear and understandable for clinicians in order to reliably evaluate a patient. However, 

combining them to obtain new metrics could enhance their potentiality as tools for physical 

assessment.  

The objectives of the present study are: (i) to analyze the correlations between kinematic 

data after performing upper limb tasks included in the VR System Toyra, considering 

patients with tetraplegia and clinical sub-scales more closely related to upper limb function 

(ii) to define kinematic metrics based on data recorded by the VR System Toyra ® that 

could offer additional information to clinicians and (iii) to analyze the correlation between 

the defined kinematic metrics and clinical scales, by applying them to a group of 15 

patients with tetraplegia. 
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2. STATE OF THE ART 

2.1. KINEMATIC METRICS 

Quantification of upper extremity movements has been researched for many years. One of 

the first studies in this field was carried out by Fitts in 1954, with the aim of analyzing the 

speed-accuracy trade-off and, as a result, calculating the performance and an index of 

difficulty of a task from three parameters: the time spent on performing the movement, the 

distance and the size of the object to be reached [1].   

The interest in obtaining parameters that could provide relevant information to clinicians 

from the quantification of the upper extremity movements is relatively recent. To this aim, 

there are some studies that analyze the movements performed by patients with neurological 

disorders during reaching tasks and also while drawing [2]–[4]. There are also studies in 

which a basic activity of daily living (ADL) has been analyzed, such as the drinking task, in 

people with stroke [5] or SCI [6], and also some metrics have been developed for a specific 

task [7], [8].   

 

Some of the kinematic parameters calculated to obtain information that could be clinically 

relevant are the time spent on the task, maximum [46] and mean velocity [2],  range of 

motion during the movement [6], [44], [47]; the inter-joint correlation between the shoulder 

and elbow flexion movements [4]–[6]; and the number of peaks in the speed profile [5].  

In neurological rehabilitation, the assessment of upper limb motor recovery should include 

smoothness, efficacy and efficiency of the movement [3]. In this study, metrics related to 

these movement characteristics have been proposed:  

 Efficacy: the percentage of the task successfully completed by patient’s voluntary 

movement. 

 Accuracy: the spatial deviation between the path followed by the patient’s hand and the 

theoretical trajectory (in other studies it has been named “trajectory error”). 

 Efficiency: it is a measure of the ratio between the length of the hand trajectory during the 

movement and the length of the theoretical trajectory.  
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 Smoothness: it is computed from the speed profile of the hand during the movement as 

the number of peaks.  

These metrics are more easily applicable to reaching movements, in which the theoretical 

hand trajectory is the straight line between the starting point and the target location. Other 

authors have calculated the trajectory curvature from the first and second derivatives of 

position with respect to the time [48]. There also examples of combination of time and 

distance measurements, together with the size of an object to reach, in order to provide a 

metric of the difficulty of task [49]. 

Most of the proposed metrics are a measure of the error or deviation between two variables. 

So, for example, smoothness as the number of peaks is a measure of error, since a higher 

number of peaks is related to a less smooth movement. The same occurs in accuracy and 

efficiency metrics, in which a decrease in these metrics indicates an improvement in motor 

performance for a functional task. For that reason, it seems necessary to obtain parameters 

that could be directly proportional to the patient’s functional status [50].    

Other authors have quantified accuracy as a spatial overshoot, considered as the excess of 

distance with respect to the target during reaching tasks [51]. There are also some metrics 

that quantify smoothness from changes in acceleration, by calculating the number of zero-

crossings [52]. 

In most of the aforementioned studies, photogrammetry systems have been used to record 

the motion information, which are the gold standard for biomechanical analysis, due to 

their accuracy. In contrast, in this work, we extracted information from inertial sensors, 

because they allow designing systems to be used out of the environment of a motion 

analysis laboratory, since they do not require additional cameras to capture movements. 

This is of special interest for the development of virtual reality systems for rehabilitation. 

Moreover, many of the previous studies focused on a specific task, but we are rather 

interested in metrics that could comprise many different movements in a single value, to 

offer a global measurement that could be related with functionality. There is still a need of 

further research about the validity of this kind of metrics in a clinical environment [9], 

hence we believe that it is necessary to look for relationships between clinical parameters 

and kinematic metrics. 
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2.2. CLINICAL SCALES  

There are plenty of scales in the literature which attempt to assess the patients in order to 

detect functional changes during the upper limb rehabilitation process [53]. These 

assessment scales include grasping, holding, and manipulating objects, which require the 

recruitment and complex integration of muscle activity from shoulder to fingers.  

The upper extremity motor function tests are classified in the following categories: (1) 

Strength tests; (2) Functional tests; (3) ADL tests [54]. In this section, only the clinical 

scales that were used in this study and those that will be mentioned in the “Discussion” 

section are described.  

 

Strength tests:  

The evaluation of key muscle groups is essential to identify the motor level in patients with 

tetraplegia. Muscular strength offers an important indicator of patients’ progress and it is 

regularly used to perform neurological classification of SCI patients, to plan the therapy 

and to evaluate the outcome of a determined intervention [55].  

 Motricity Index: itassesses power and range of active movement for shoulder 

abduction, elbow flexion, and pinch between the thumb and index finger. The total score is 

rated between 0 (no movement) and 100 (normal movement). The total score of the scale 

has been evaluated and also each of the sub-scores: shoulder abduction (UL 

MIAbdShoulder), elbow flexion (UL MIFlexelbow) and pinch (UL MIPinch). [56]. 

 

Functional tests:  

Functional tests are designed to evaluate the abilities of the patients by performing a 

determined series of tasks, standardized to allow comparison between subjects and 

populations. Those tasks have been specifically designed to quantify several aspects of 

upper limb function, such as dexterity, precision, speed, bilateral movements or fine hand 

function. Some functional tests are designed for a specific population, while others have a 

general purpose:  

 



28 
 

 Jebsen Taylor Test of Hand Function [57] is a scale to assess the hand disability and 

the improvements in the hand functionality gained by therapeutic procedures in patients 

with hand disabilities[54], but, due to the kind of activities proposed in the test, it is 

necessary to have a minimum of hand and fingers’ dexterity to complete it. It has been used 

for different pathologies, such as cerebral palsy, SCI or arthritis and it consists of 11 tasks 

such as writing, turning over cards, picking up different objects, etc. The outcome measure 

is the time taken to complete the tasks. 

 The Action Research Arm test (ARAT) provides a rapid yet reliable and 

standardized performance test appropriate for use in assessing recovery of upper limb, but it 

is used solely in stroke patients[58]. It consists of 19 sub-items that comprise 4 sub-tests: 

grasp, grip, pinch and gross arm function. Each item is rated in a 4-point ordinal scale from 

0 to 3. 

 The Fugl-Meyer Assessment (FMA) was developed to measure sensorimotor stroke 

recovery based on Twitchell and Brunnstrom’s concept of sequential stages of motor 

recovery in patients with hemiplegic stroke [59]. It is a general scale, not focused only in 

upper limb assessment, but also comprising areas such as balance, sensory function and 

pain. 

 Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP): 

this scale has been specifically designed to assess upper limb impairment in patients with 

SCI [60]. It evaluates sensitivity, prehension and strength with 6 different subtests. 

 

 

ADL tests:  

 

This kind of scales is especifically focused in the quantification of ADL performance. 

Therefore, they may require the patient either to carry out those activities or to answer a 

questionnaire rating his/her performance. Two of the most used ADL evaluations for 

patients with tetraplegia are the Functional Independence Measure (FIM) and the Spinal 

Cord Independence Measure II (SCIM II). These tests are validated and reliable, and show 

strong correlation with each other [46]. 
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 The Motor Activity Log (MAL) is a scripted, structured interview that was 

developed by Taub et al. to measure the effects of Constraint-Induced Movement (CI) 

therapy on use of the more-impaired arm outside the laboratory in individuals with stroke 

[61]. It evaluates the quality and amount of movement during several daily tasks. Each item 

is rated between 0 and 5. 

 Functional Independence Measure (FIM): The purpose of this scale is the 

measurement of the severity of the patient’s disability and the outcomes of medical 

rehabilitation in patients. The FIM has a good clinical inter-rater agreement in patients 

undergoing inpatient medical rehabilitation (ICC=0.97). FIM scores were significantly 

lower in complete C4 tetraplegics than in C6 tetraplegics, which indicated that the FIM is 

sensitive enough to differentiate between different levels of injury [54]. 

 Spinal Cord Independence Measure II (SCIM II): it was specifically developed for 

SCI persons, in order to make the functional assessments of persons with paraplegia or 

tetraplegia more sensitive to changes. The SCIM has a good inter-rater reliability (r=0.98). 

Besides, the sensitivity of the SCIM is higher than the sensitivity of the FIM, showing in 

patients with tetraplegia that this scale missed 22% of the functional changes detected by 

the SCIM [54] 

 

Regarding the kind of patients of this study, with a complete SCI at levels between C5 and 

C8, Motricity Index, FIM and SCIM tests are considered the most suitable ones and, 

therefore, they have been chosen for this study.  

 

 

3. METHODS 

3.1 CAPTURED RAW KINEMATIC DATA 

For the kinematic capture process, a motion capture system based on inertial sensors MTx 

Xsens Company (Xsens Inc, Netherlands) has been used. In this application, 5 inertial 

sensors were located on the head, trunk, arm, forearm and hand. The placement of the 
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sensors can be seen in Figure 2.1. The sensors capture the main upper limb movements: 

shoulder flexion/extension, shoulder abduction/adduction, shoulder rotation, elbow 

flexion/extension, pronosupination, wrist flexion/extension and wrist ulnar/radial deviation. 

These movements are translated in real-time to an avatar that appears on the screen in a 

virtual environment called Toyra, specifically designed to perform upper limb rehabilitation 

tasks. This system comprises two kinds of sessions: 

 

a      b 

 

Fig 2.1 Placement of the inertial sensors: a, frontal view; b, posterior view. The sensors were located on the trunk (1), the 

back of the head (2), the right arm (3), the forearm (4) and the hand (5).[62]  

 

 Evaluation sessions: designed to measure ranges or motions for the 

aforementioned upper limb movements. During them, patients are required to 

reach their maximum amplitudes, by touching spheres that appear sequentially 

on the screen. 

 Activities of daily living (ADL) sessions: they were designed to simulate 

ADLs such as eating with a spoon, washing with a sponge or grasping different 

objects. 

The avatar and the virtual environment can be seen in Figure 2.2. 
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Fig 2.2 Avatar and virtual environment during a Toyra session  

 
 

A biomechanical model, previously reported [62], was developed, based on inertial sensor 

data and Upper Limb (UL) anthropometric data. The MTx inertial sensors include tri-axis 

accelerometers, gyroscopes and magnetometers. As long as the inertial sensors only 

provide information of the orientation of each body segment, a biomechanical model is 

required to calculate the angular magnitudes of clinical relevance on the basis of each 

orientation. The kinematic chain proposed in this model consists of 7 DoF (Degrees of 

Freedom): three in the shoulder joint (flexion-extension, abduction-adduction and external-

internal rotation); two in the elbow joint (flexion-extension and pronation-supination) and 

two in the wrist (palmar-dorsal flexion and radial-ulnar deviation). In the trunk, the inertial 

sensor was placed over a rigid support, parallel to the spine. The trunk reference system is 

defined with vector X parallel to the line from right to left acromion, and vector Z parallel 

to the longitudinal axis of the trunk. 

For the computation of the joint angles, a local reference system was defined for each 

segment. Therefore, it was necessary to transform the orientation matrix from the global to 

the local reference system, by means of rotation matrices (GRS ) between both systems, that 
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contain the three vectors representing the sensor reference system with respect to Earth’s 

magnetic and gravity vectors as follows: 

 

 

The kinematic assessing protocol consists in the execution of one test using the VR System 

Toyra ®, the Evaluation Session, whose principal objective is to assess the patient's 

functional capacity, based on the record of the kinematic variables during the execution of 

analytical movements of the UL joints, in each degree of freedom. The same therapist 

carried out the Evaluation Sessions to all patients, in order to minimize the errors due to the 

different placement of the sensors by different therapists. In Figure 2.3, the position of a 

patient in front of the screen during the execution of a session with Toyra ® can be seen. 

Joint ranges of motion (ROM) of shoulder, elbow and wrist were analysed with the 

mathematics software tool MATLAB® (Matrix House, Cambridge, UK), thus obtaining 14 

different kinematic variables: step-by-step shoulder abduction (AbdshoulderS), complete 

shoulder abduction (AbdshoulderC), step-by-step shoulder flexion (FlexshoulderS), 

complete shoulder flexion (FlexshoulderC), shoulder rotation (Rotshoulder), step-by-step 

elbow flexion (FlexelbowS), complete elbow flexion (FlexelbowC), elbow extension 

(Extelbow), elbow supination (Supelbow), elbow pronation (Proelbow), wrist extension 

(Extwrist), wrist flexion (Flexwrist), wrist radial deviation (Raddevwrist) and wrist ulnar 

deviation (Uldevwrist). The “step-by-step” variables have been measured during exercises 

in which the goals the patients have to reach appear on the screen sequentially from the  

bottom to the top of the screen, in such a way that they have to perform discrete movements 

and stay in the object for one second, approximately, needing a minimum of control in the 

muscles involved in this movement.For the “complete” variables, all goals are displayed at 

the same time, so that the patients perform a continuous trajectory. The reason to measure  
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Fig 2.3 Patient performing a Toyra® session 

 

these two kinds of variables separately is that “step-by-step” movements require holding 

the arm in a fixed position, so the patient needs to exert the task with greater movement 

control. Depending on the level of SCI, some patients may be able to perform complete 

movements but not the step-by-step ones. 

The Ranges of Motion (ROM) have been calculated from the 14 kinematic variables 

previously mentioned, as the difference between the maximum and the minimum value 

reached by the patients during each specific exercise.  

3.2 KINEMATIC METRICS 

 

With the aim of evaluating the functional capacities of SCI patients during the realization of 

the therapy with Toyra, a novel set of kinematic metrics have been defined. We have 

previously specified a list of requirements that all of the metrics have to fulfil: 

 

1) They have to be computed from kinematic information recorded: trajectories 

and velocities of the 3 upper limb joints (wrist, elbow and shoulder). 

2) They have to allow comparisons with a healthy reference pattern, getting a 

percentage of patient’s performance against that healthy reference.  
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3) They have to be flexible, in order to allow its application to different 

exercises of a virtual reality rehabilitation system. 

4) They have to reflect clinically relevant features. 

 

Finally, five different metrics have been defined, based on the kinematic data obtained 

during the Toyra ® sessions. Joint amplitude and reaching amplitude reflect magnitudes 

that are commonly used in clinical assessments, but the novelties in this study are that they 

can be calculated while performing ADLs and they are compared with a healthy reference 

pattern. This is of special interest in the rehabilitation field since we will be expressing fully 

functional ranges of motion, directly translated into real tasks. The other 3 metrics, agility, 

accuracy and repeatability present new definitions of concepts that are not easily 

measurable by conventional methods: 

 

-Joint Amplitude: it has been defined as the sum of the ROMs obtained by a patient, 

normalized by the corresponding ROM obtained by a healthy subject, defined as “ideal 

ROM”: 

 

 

 

 

 

 

 

Where: 

ROMi[º]= degrees covered by the joint under study (it is important to remark that 

each session exercise has been designed to check the performance of a single joint. 

For example, the shoulder abduction exercise will measure the shoulder ability, 

despite some other joints are, to a lesser extent, also involved in this movement)  

ki= weighting coefficients of the exercises, chosen to emphasize the ROMs that are 

more related to the motor abilities of the patient.  
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-Reaching Amplitude: it has been defined as the range that the patient is able to reach for 

the three different axes (X,Y,Z). The X-axis has been established horizontally, parallel to 

the screen, the Y-axis horizontally perpendicular to the screen, and the Z-axis is vertical, 

parallel to the screen.  

It is expected that, as a patient with SCI is able to move closer to the objects that surround 

him, he would get more autonomy and functionality. 

Reaching Amplitude is calculated for each axis as the difference between the maximum and 

the minimum value of the patient’s hand position, getting a range of reaching for each 

exercise, while the patient is carrying out the three-dimensional movements required by the 

task. Then, these ranges of reaching are summed up and normalized by the sum of ranges 

obtained by a healthy subject. The final result is calculated as a weighted sum of these 

factors for each of the 3 axes. 

 

 

 

 

 

    

Where: 

kj=weighting coefficient, to assign each axis a different influence in the total 

reaching amplitude. 

hji= hand’s trajectory for each axis j, for each exercise i carried out by the patient.  

idealhji= hand’s trajectory for each axis j, for each exercise i carried out by a 

healthy subject. 

 

Depending on the value assigned to kj (being j=1 the X-axis, j=2 the Y-axis and j=3 the Z-

axis), it is possible to compute the reaching amplitude separately for each direction. For the 

total reaching amplitude, the same weight kj = 1 will be assigned to the 3 axes. 
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-Accuracy: it has been calculated considering 2 parameters: mean distance from the 

trajectory performed by the patient’s hand to the ideal hand trajectory performed by a 

healthy subject (dmean ), and the maximum distance between these 2 trajectories (dmax).  

 

 

 

 

 

 

The idea of this formula is to penalize the accuracy of those trajectories that present several 

peaks of deviation with regard to the ideal trajectory. If they have few peaks, dmean will not 

be affected to a great extent by these peaks, so that dmean << dmax and, thus, the penalization 

for the accuracy would be approximately 2dmean.  

However, if the number of peaks of deviation is higher, dmean will be affected by these 

values, and dmean will increase. Considering an extreme case, in which there were so many 

peaks of deviation that dmean ≈ dmax , then the penalization for the accuracy would be 4dmean, 

much higher than in the previous case. 

In order to obtain values in percentages, as in previous metrics, accuracy has been 

normalized by the accuracy value obtained by a healthy subject: 

 

 

 

 

-Agility: it has been considered that an agile movement should be not only fast but also 

precise. To this aim, this metric takes into consideration three parameters: accuracy (as 

defined previously), angular velocity and time needed to execute the task.  
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Where: 

dmeani[m] = mean distance from the trajectory performed by the patient’s hand to 

the ideal trajectory of  a healthy subject’s hand. 

dmaxi [m] = maximum distance between the trajectory performed by the patient’s 

hand and the ideal trajectory of a healthy subject’s hand. 

vmaxi [º/s] = maximum angular velocity of the joint under study in each exercise. 

vmeani [º/s] = mean angular velocity of the joint under study in each exercise. 

ti [s] = time spent by the patient on performing the exercise i. 

tideal [s] = time spent by a healthy subject on performing the exercise i 

 

The first term of the agility penalization regards the accuracy error, and it has been 

explained previously.  

The second term is regarding angular velocity. A very high maximum angular velocity is 

penalized, unless the mean velocity is also high. The reason to calculate it in this way is 

that patients with a badly preserved functionality will carry out the exercises quite slowly, 

obtaining a low mean angular velocity, but they will also carry out uncontrolled 

movements, for example dropping the arm, thus getting a high maximum angular velocity. 

Therefore, it is important to evaluate the relationship between the maximum and the mean 

angular velocity, not only each of them separately. 

The third term takes into account the time spent by the patient on performing the exercise, 

in relation with the time spent by a healthy subject on performing the same exercise.  

In order to express the value as a percentage, as in the previous metrics, agility has been 

normalized by the agility value obtained by a healthy subject: 

 

 

 

 

 

-Repeatability: it computes the inverse of the area comprised between the upper and the 

lower envelope of the repetitions of the same movement during a session: 
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Where: 

Ai = area comprised between the upper and the lower envelope of the repetitions of 

the exercise i.  

k, k0 = normalizing coefficients used to adjust the scale. Here k=1000 and k0 have 

been used. 

nrep= number of repetitions for each exercise (it is necessary that all exercises have 

the same number of repetitions). 

 

For this metric, only the exercises 1 to 8 have been used. They are step-by-step shoulder 

abduction, complete shoulder abduction, step-by-step shoulder flexion, complete shoulder 

flexion, step-by-step elbow flexion, complete elbow flexion, elbow extension and shoulder 

rotation. These exercises are the ones that require the patient to perform a determined 

trajectory to accomplish the task, so the trajectories of different repetitions should be 

similar, if the task has been correctly executed. Area Ai has been computed by calculating 

the upper and the lower envelope along time of all repetitions of the kinematic variable 

corresponding to exercise i. For example, for the first exercise, shoulder abduction curve 

along time has been used, as can be seen in Figure 2.4 and Figure 2.5. 

The area comprised in each exercise is being weighted by the number of repetitions (nrep), 

because the area tends to increase with the number of repetitions used. 

The idea is that, as the patient improves his performance, he should be able to repeat more 

accurately the same task, decreasing the area between the envelopes. 
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Fig 2.4 Example of the shoulder abduction curves recorded during 2 repetitions of the same movement by a patient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.5 Example illustrating the calculation of the repeatability for the 2 repetitions shown in Figure 2.4 

 

 

 

3.3 PARTICIPANTS 

 

Fifteen subjects (11 males and 4 females with complete spinal cord injury; mean age 35.33 

± 14.4 years, 4.8 ± 2.37 months since injury) participated in the study. Subject’s 

demographic and clinical characteristics are shown in the Table 2.1. 

 

 



40 
 

 

TABLE 2.1: DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE 

SAMPLE ANALYSED 

Sex (male)† 11(73.33) 

Age [years]* 35.33(14.40) 

Time since injury [months]* 4.80(2.37) 

Dominance (right)† 9(60) 

ASIA (A) † 9(60) 

Etiology (trauma)† 14(93.33) 

Level of neurological injury (C5-

C8)† 

C5 C6 C7 C8 

7(46.66) 4(26.66) 3(20) 1(6.66) 

* Continuous variables are expressed as mean and standard deviation values. † Categorical variables 

are expressed as frequency and percentage of the sample analyzed 

 

 

Eligible participants met the following criteria: (1) at least 18 years of age; (2) less than 12 

months from the injury; (3) motor complete spinal cord injury according to the ASIA´s 

impairment scale at the level of C5 to C8 (A-B ASIA level [24]); (4) no history of 

traumatic or cognitive pathology that can affect the Upper Limb (UL) movements; (5) 

normal or corrected-to-normal vision and hearing; (6) no history of technology addiction; 

and (7) no history of epilepsy. Each subject gave informed consent voluntarily, which was 

approved by the local Ethics Committee.  

 

 

3.4 DATA COLLECTION AND ANALYSIS 

 

Subjects remained seated on their own wheelchair in front of the screen. A total of five 

MTx IMUs were used to capture movements of the dominant UL, wirelessly connected 
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(Bluetooth) to a computer via a digital data bus (Master Xbus), which was responsible for 

the synchronization, data collection and transmission. The IMUs were strategically placed 

on the trunk, the back of the head, the arm, the forearm and the hand [63]. Each subject 

received an explanation about how to perform the activity, which consisted of moving the 

arm trying that the avatar that mimics his or her movements reaches the goals that appear 

on the screen. Subjects were instructed to perform each of the 14 analytic movements 

required, including complete and step-by-step shoulder, elbow and wrist motion required. A 

sampling frequency of 25 Hz was used for the MTx IMUs recordings. The subjects 

cyclically executed each exercise three times. The mean of these three recordings yielded 

the final measurement value for each subject.  

As described in the “New kinematic metrics” section, some of the metrics require some 

data recorded from healthy subjects, in order to compare the results of the metrics with a 

reference value, thus yielding a final value expressed as a percentage with respect to the 

healthy reference. In order to obtain this reference values, a group of five healthy subjects 

(2 males and 3 females, with a mean age of 29 years and standard deviation of 6.041) was 

previously registered. The following parameters were extracted from the healthy subjects 

and then averaged to obtain the reference values: ROMs, trajectories, time spent on each 

exercise and absolute value for the metrics.   

Neurological examinations of all the patients were performed according to the ASIA 

standards [24]. The functional examination was done by using three scales. The first scale 

was SCIM II, which has 16 items divided into three functional areas: self-care, respiration 

and sphincter management, and mobility. Total score can vary from 0 (minimal) to 100 

(maximal) [64]. Only the self-care sub-score has been considered in this study, because it is 

more closely related with the upper limb function [65]. From now one, this sub-scale will 

be named Self-care SCIM.   

The second assessment scale was the UL part of Motricity Index Scale (UL MI) which 

assesses power and range of active movement are rated for shoulder abduction, elbow 

flexion, and pinch between the thumb and index finger. The total score is rated between 0 

(no movement) and 100 (normal movement) [56]. The total score of the scale has been 

evaluated and also each of the sub-scores: shoulder abduction (UL MIAbdShoulder), elbow 

flexion (UL MIFlexelbow) and pinch (UL MIPinch). 
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The third scale was Functional Independence Measure (FIM), which consists of 18 items 

organized in six categories, four corresponding to motor functions (self-care items, 

sphincter control, mobility items, and locomotion) and two corresponding to cognitive 

functions (communication and social cognition). The lowest and highest scores of the total 

ranged from 18 to 126 [66]. As in the SCIM, only the self-care sub-score has been taken 

into account. From now on, this sub-scale will be named Self-care FIM. 

Both the kinematic assessment with Toyra ® and the clinical evaluation were carried out 

for each patient with a maximum difference of 2 days.  

 

Descriptive analysis including means and standard deviations (SD) for continuous variables 

was initially performed to characterize each subject and also each group of subjects 

considering the neurological level of injury (C5-C8). The Pearson correlation coefficient 

was used to correlate kinematic ROMs with clinical and functional variables. A 

significance level of p less than 0.05 has been used. All statistical analysis was performed 

with Matlab (The Mathworks Inc., Natick, MA, USA). 

4. RESULTS 

 

Kinematics recorded by Toyra ® (the 14 kinematic variables already mentioned) were 

obtained for each patient and averaged by levels of neurological injury. These averages can 

be seen in Tables 2.2, 2.3 and 2.4. 

The values obtained by all patients in the clinical scales SCIM, UL MI and FIM have also 

been obtained and averaged by level of injury, showing the results in the Table 2.5. 

Positive strong correlations have been found between kinematic variables and clinical 

scales in the following parameters: Self-care SCIM and Shoulder Flexion step-by-step 

(r=0.776, p=0.00067), Self-care SCIM and Complete Shoulder Flexion (r=0.74, p=0.0016), 

UL MI and Shoulder Flexion step-by-step (r=0.714, p=0.0028) and UL MI and Complete 

Shoulder Flexion (r=0.712, p=0.0029). 
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TABLE 2.2: SHOULDER KINEMATICS PER LEVEL OF INJURY (MEAN ± SD) 

 

 AbdshoulderS AbdshoulderC FshoulderS FshoulderC Rotshoulder 

C5 

n=7 73.184± 28.436 72.402± 36.022 103.506± 53.465 107.957± 41.308 114.707± 31.245 

C6 

n=4 95.903± 34.925 122.465± 26.207 157.989± 28.381 138.222± 56.126 89.824± 22.948 

C7 

n=3 102.218± 52.31 113.985± 45.117 165.138± 32.002 152.904± 21.112 108.454± 47.901 

C8 

n=1 137.787±12.10 152.151±13.21 178.582± 12.34 175.32± 14.25 130.843±12.120 

 

 

TABLE 2.3: ELBOW KINEMATICS PER LEVEL OF INJURY (MEAN ± SD) 

 

 

Positive moderate correlations have been found between kinematic variables and clinical 

scales in the following parameters: Self-care SCIM and Shoulder Abduction step-by-step 

(r=0.548, p=0.034), Self-care SCIM and Complete Shoulder Abduction (r=0.518, p=0.048), 

Self-care SCIM and Ulnar Deviation (r=0.551, p=0.033), UL MI and Shoulder Abduction 

step-by-step (r=0.547, p=0.035), Self-care FIM and Shoulder Abduction step-by-step 

(r=0.675, p=0.0113) and Self-care FIM and Complete Shoulder Flexion (r=0.618, 

p=0.0243). Results are shown in Table 2.6. 

 

 FelbowC Extelbow FelbowS Supelbow Proelbow 

C5 

n=7 118.624± 15.864 126.714± 19.974 111.632± 27.046 162.411± 85.775 146.391± 17.788 

C6 

n=4 129.835± 10.935 145.311± 25.908 125.537± 22.501 126.215± 9.024 185.726± 58.672 

C7 

n=3 132.846± 6.68 145.044± 9.539 131.95± 2.635 142.297± 31.714 178.916± 39.569 

C8 

n=1 112.46± 13.23 151.505± 32.12 116.905±12.23 122.997± 24.12 183.384± 21.14 
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TABLE 2.4: WRIST KINEMATICS PER LEVEL OF INJURY (MEAN ± SD) 

 Extwrist Flexwrist Raddevwrist Uldevwrist 

C5 

n=7 57.204± 11.602 44.053± 17.086 24.878± 10.11 23.155± 11.656 

C6 

n=4 44.275± 21.867 47.589± 13.546 20.796± 8.173 25.851± 15.579 

C7 

n=3 77.045± 9.831 65.793± 8.925 36.476± 2.415 42.669± 1.238 

C8 

n=1 56.002± 12.02 54.004± 11.23 23.656± 11.21 34.868± 10.25 

 

 

TABLE 2.5: CLINICAL SUB-SCALES SELF-CARE SCIM, UL MI AND SELF-CARE FIM 

PER LEVEL OF INJURY (MEAN ± SD) 

 Self-care SCIM UL MI Self-care FIM 

C5 n=7 2± 1.414 66.429± 20.999 10± 2.828 

C6 n=4 3± 1.414 64.25± 17.115 13± 9.539 

C7 n=3 5± 1.732 69± 19.079 12± 2 

C8 n=1 8± 0 93± 0 16± 0 

 

 

 

The metrics developed were applied to patient groups. In Figures 2.6, 2.7, 2.8 and 2.9 the 

results are shown averaging the values of the metrics by injury levels. 

The metrics developed in this study have been applied to 15 patients, then comparing the 

obtained values with the clinical scales’ scores. As shown in Table 2.7, strong positive 

correlation has been found between the metric Joint amplitude and the Self-care SCIM 

(r=0.797, p=0.000375), and between this metric and the sub-scale UL MIAbdShoulder 

(r=0.861, p=0.00003). 
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TABLE 2.6: CORRELATIONS FOUND BETWEEN KINEMATIC VARIABLES 

RECORDED BY VR SYSTEM TOYRA ® AND CLINICAL SUB-SCALES 

 

 

* p<0.05, **p<0.01, ***p<0.001 

 

 

 

 

 

 

 

 

 

Fig 2.6 Kinematic metric Joint amplitude per level of injury (mean ± SD). It is expressed as a percentage with respect 

to the reference value of healthy subjects. 

 

There were moderate positive correlations between the following parameters: Joint 

amplitude and Self-care FIM (r=0.591, p=0.0335), Reaching Amplitude (Y-axis) and Self-

care FIM (r=0.708, p=0.00673), Reaching Amplitude (Z-Axis) and UL MI (r=0.552, 

p=0.0457), Reaching Amplitude (Z-Axis) and UL MIAbdShoulder (r=0.551, p=0.0332), 

 

 

 Self-care SCIM UL MI Self-care FIM 

AbdshoulderS r=0.548 * r=0.547  * r=0.675 * 

p=0.034 p=0.035 p=0.0113 

AbdshoulderC r=0.518 * r=0.385 r=0.551 

p=0.048 p=0.157 p=0.074 

FshoulderS r=0.776  *** r=0.714  ** r=0.476 

p=0.00067 p=0.0028 p=0.1 

FshoulderC r=0.74  ** r=0.712  ** r=0.618* 

p=0.0016 p=0.0029 p=0.0243 

Udwrist r=0.551  * r=0.336 r=0.165 

p=0.033 p=0.221 p=0.59 
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Fig 2.7 Kinematic metric Accuracy per level of injury (mean ± SD). It is expressed as a percentage with respect to the 

reference value of healthy subjects 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.8 Kinematic metric Agility per level of injury (mean ± SD). It is expressed as a percentage with respect to the 

reference value of healthy subjects 

 

 

 

 

 

 

 

 

 

Fig 2.9 Kinematic metric Repeatability per level of injury (mean ± SD). It is expressed in absolute value. It has been 

calculated only for levels C5, C6 and C7 because the number of registers for C8 level was not sufficient to establish a 

reliable value. For the same reason, the reference value of healthy subjects has not been calculated for this metric. 
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TABLE 2.7: CORRELATIONS BETWEEN KINEMATIC METRICS AND CLINICAL SUB-

SCAES 

 

* p<0.05, **p<0.01, ***p<0.001 

 

Reaching Amplitude (Z-Axis) and UL MIFlexelbow (r=0.52, p=0.0467) and Reaching 

Amplitude (Z-Axis) and Self-care FIM (r=0.681, p=0.01).   

There was also a moderate negative correlation between Agility and UL MIAbdShoulder 

(r=-0.536, p=0.0397). 

 

 

 

 

Self-care 

SCIM 

UL 

MI 

UL MI 

AbdShoulder 

     UL MI 

   Flexelbow 

   UL MI 

   Pinch 

Self-care       

FIM 

Joint 

    amplitude 

   r=0.797  *** r=0.513     r=0.861 *** r=0.292 r=0.276 r=0.591 * 

  p=0.000375 p=0.05     p=0.00003 p=0.291 p=0.32 p=0.0335 

Reaching 

amplitude 

(total) 

r=-0.068 r=0.376 r=-0.041 r=-0.024 r=0.346 r=0.539 

p=0.811 p=0.167 p=0.883 p=0.931 p=0.207 p=0.057 

Reaching 

amplitude 

(X-axis) 

r=-0.374 r=0.05 r=-0.393 r=-0.23 r=0.14 r=0.019 

p=0.17 p=0.858 p=0.147 p=0.409 p=0.0619 p=0.952 

Reaching 

amplitude 

(Y-axis) 

r=0.217 r=0.4 r=0.258 r=0.005 r=0.315 r=0.708** 

p=0.17 p=0.139 p=0.354 p=0.986 p=0.252 p=0.0067 

Reaching 

amplitude 

(Z-axis) 

r=0.474    r=0.523 * r=0.551 *        r=0.52 * r=0.315 r=0.681* 

p=0.075    p=0.0457 p=0.0332       p=0.0467 p=0.252 p=0.01 

Accuracy r=-0.239 r=-0.174 r=-0.364 r=-0.442 r=-0.062 r=-0.283 

p=0.391 p=0.535 p=0.182 p=0.099 p=0.828 p=0.349 

Agility r=-0.259 r=-0.248 r=-0.536 * r=-0.463 r=-0.081 r=-0.338 

p=0.351 p=0.373 p=0.0397 p=0.082 p=0.775 p=0.26 
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5. DISCUSSION 

 

The present study shows that the kinematic data recorded by the VR system Toyra ® 

correlate with the clinical sub-scales more related with upper limb function, what is in line 

with our group preliminary results [45]. Some metrics have been defined based on these 

kinematic data, showing promising results in terms of clinically relevant information, as has 

been demonstrated by the correlation found between some of the metrics and the self-care 

sub-scales. 

This study supports the use of such VR systems not only as rehabilitation tools but also as 

an objective assessment tool of the user’s performance, providing data with potential 

clinical relevance. The different degree of correlation found between the clinical scales and 

the kinematic variables yields interesting information that can be used in two directions. 

One is to analyse in minute resolution the patients’ physical state, trying to use this 

information to complement the clinical scales scores and to design treatments that 

encourage the training of the joints more linked with a functional improvement. The second 

direction would be to develop predictive models that could offer to the clinician an 

estimation of the clinical scale score expected for a patient, thus adding objective data that 

could facilitate the evaluation and to follow the progression of a patient. Some previous 

studies go in this direction [2], [67]. 

The highest positive correlation between clinical scales and kinematic variables was found 

in the step-by-step shoulder flexion. As previously mentioned, the step-by-step kinematic 

variables require higher muscle control, and this could be the reason of the high correlation 

of this variable with the functionality. Together with the moderate correlations found in the 

shoulder abduction, this results suggest the importance of the shoulder range or movement 

in patients with SCI, what is consistent with previous studies that established that shoulder 

muscle strength, in patients with tetraplegia, is an important determinant of functional 

ability level [68]. 

In a previous study in which correlations between kinematics and clinical scales were also 

studied [46], no correlation was found between shoulder range of motion and any clinical 

scales. However, the methodology used in that study is quite different than the one 

presented here, because the patients performed only one kind of reaching and grasp task, 
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without using any VR system, so that they did not encourage them to reach their maximum 

values of range of motion in all directions. In contrast with that study, here the patients 

carry out a wide variety of tasks, because the goals to reach are displayed in some different 

locations around the patient. This is one of the advantages of VR, which permits to measure 

the patient’s kinematics during different tasks without the difficulties of setting up a new 

physical environment for each one. 

The only kinematic variable not related with the shoulder that showed positive correlation 

with clinical scales was the ulnar wrist deviation. This result could be due to the tenodesis 

effect, an anatomical consequence of the SCI very common in patients with level of injury 

C6 or C7 that entails a high wrist range of motion during the execution of the Activities of 

Daily Living (ADL) [69]. 

Regarding the kinematic metrics developed in this study, the higher correlation obtained 

between the joint amplitude and the clinical scales, in comparison with any of the 

correlations obtained between the same scales and the isolated kinematic variables, 

suggests that the combination of kinematic variables could offer more clinically relevant 

information than each individual parameter. 

The strong positive correlation between joint amplitude and the SCIM scale, and also the 

Upper Limb Abduction Shoulder sub-score shows that this metric could be a good indicator 

of functionality. A similar result was obtained in [67], where the range of motion was found 

to affect to a large extent to the performance of a model that predicts the clinical score from 

the kinematic recordings of a therapeutic robotic arm. 

Reaching amplitude along the Z-axis shows moderate correlations with four of the clinical 

scores or sub-scores (UL MI global, UL MI Abdshoulder, UL MI Flexelbow and Self-care 

FIM scale). As has been defined, the Z-axis goes vertically upwards, so that the movements 

in this direction require a higher force, and, thus, this ability could be closely related to the 

clinical measurements. Also reaching amplitude along the Y-axis shows a positive 

correlation with Self-care FIM scale. The Y-axis was defined horizontally, perpendicular to 

the screen, and it is thereby the direction in which some of the ADL considered in the FIM 

scale take place, like eating or grooming. This could be the rationale of this correlation. 

The negative correlation that showed the Agility with the UL MIAbdShoulder was 

unexpected, and it could indicate that the normalization by the mean velocity used to 
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calculate this metric may have not been enough to counteract the presence of involuntary 

movements, very common in patients with SCI, that usually lead to the appearance of high 

velocity peaks. Further filtering strategies and an optimization of the metric’s parameters 

will be necessary to improve this metric. 

In respect to the metric accuracy, no correlation with clinical scores was found, in contrast 

with a previous report, where there were strong correlations between a metric called 

“trajectory error”, with a similar foundation to the accuracy presented here [70]. We 

believe that the clinical scales (Self-care SCIM, Self-care FIM and UL MI) used in our 

study do not encompass the specific information that this metric provides. Maybe other 

methods could be used in further researches to evaluate its validity. For example, in the 

mentioned study, clinical scales Fugl–Meyer, Motor Activity Log, Action Research Arm 

Test, and Jebsen-Taylor Hand Function Test were used. These scales are likely to measure 

aspects more related to the accuracy of movements than the ones used here. 

These metrics present some limitations, such as the different number of patients in each 

group of injury. Therefore, it will be necessary to increase the number of patients in future 

research, in order to have a sufficient number to compare the averages of each level of 

injury. It could be also interesting to apply this metrics and kinematic analysis when the 

patients are performing more functional task such as ADLs in VR environments, not only 

analytical movements as in the Evaluation session presented here. 

6. CONCLUSIONS AND MAIN CONTRIBUTIONS 

1. A new set of kinematic metrics to evaluate upper limb function by means of a 

virtual reality rehabilitation system has been designed. 

2. Clinical key features have been translated into mathematical formulations that 

comprise the kinematic data recorded by the inertial sensors. 

3. It has been shown that some of the defined kinematic metrics are correlated with 

standard clinical scales, therefore proving its clinical meaning. 

4. The set of kinematic metrics provides objective information of clinical relevance 

that allows patient segmentation, as well as a more accurate assessment, which is 

essential to facilitate the use rehabilitation technologies in clinical settings. 



51 
 

5. These metrics, together with the virtual reality system, offer the possibility of 

carrying out evaluation and therapy simultaneously, which is very important to 

refine patient’s treatment. 

6. A method to minimize the influence of involuntary movements in the assessment of 

the agility has been defined by considering the relationship between the mean and 

the maximum angular velocity. 

7. In comparison with previous works, this is one of the first studies that have found 

clinically relevant information in a virtual environment of rehabilitation, gathering 

parameters from a complex and varied set of exercises performed by SCI patients. 
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CHAPTER 3: BRAIN-TRIGGERED ELECTRICAL 
STIMULATION WITH VIRTUAL REALITY FEEDBACK IN 
PATIENTS WITH INCOMPLETE SPINAL CORD INJURY 

 
 

1. INTRODUCTION 

The prevalence of spinal cord injury (SCI) is 223–755 per million inhabitants, with an 

incidence of 10.4–83 per million inhabitants per year [39]. In one third of the patients, the 

SCI is reported as tetraplegic, in which the arm and hand functions are affected to a different 

degree, depending on the level and severity of the injury [71]. One of the greatest needs to 

improve the quality of life of patients with tetraplegia is the improvement in upper extremity 

function [41] and, in particular, the recovery of grasping has been identified as the priority 

for most subjects [72]. 

In this context, one of the therapies for the recovery of grasping is functional electrical 

stimulation (FES), which is aimed to drive impaired muscles and joints using electrical 

pulses to execute predefined functional tasks. There are studies supporting the benefits of 

FES in recovery of upper limb function, like grasping in SCI patients [73]. 

It is crucial for the success of the FES therapy to apply the electrical stimulation while the 

patient is volitionally attempting to perform the movement. In fact, it has previously been 

shown that the effectiveness of FES when applied without patient’s voluntary involvement is 

reduced by approximately half [74]. This volitional trigger is currently achieved by different 

methods, such as residual electromyographic activity [75] or gyroscopes [76]. However, 

these methods present several shortcomings, since very often SCI patients suffer hypertonia 

and involuntary movements that can cause discrepancies between the patient’s intention and 

the movement, probably decreasing the neuroplastic effects of the therapy [12].  

Brain-machine interfaces (BMI) allow the real-time decoding of neural commands (e.g., by 

the use of electroencephalographic signals) and therefore provide a very useful method to 

detect a volitional trigger. The patient’s intention is identified from the ongoing neural 

activity and can be used to control different devices. This approach opened the door to 

several BMI applications which could potentially be used by SCI patients, most of them with 

assistive purposes. However, the potential of BMI for rehabilitation is especially relevant in 
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patients with incomplete SCI, since it is believed that only 10% of spared neuronal pathways 

is sufficient to provide a functional recovery [10]. 

The combination of BMI and FES can be used with a rehabilitative purpose in incomplete 

spinal cord injury (iSCI) patients [11], relying on the hypothesis that a long-term potentiation 

(LTP) is induced at synapses in the spinal cord when descending signals from the brain reach 

the synapse at approximately the same time as antidromic volleys from the stimulated 

peripheral nerves [12]. From this perspective, and supported by the principle of Hebbian 

learning [77], a therapy based on simultaneous activation of the motor pathways (through 

motor intention detected by the BMI) and the sensory pathways (through functional 

electrical stimulation) of the corticospinal tract should have a bigger effect than both 

therapies alone [14].  

Moreover, as a rationale for many existing motor therapies is the premise that repetitive and 

engaging practice using the affected limb induces plastic changes in neural networks 

involved in motor control and learning [15]. In this regard, feedback is a key feature during 

the rehabilitation therapy, since it allows the patients to feel their performance improvements 

along the sessions, thus engaging and motivating them, and also it permits to receive a 

contingent response to the motor intention. However, human musculoskeletal structures form 

a very complex system that presents non-linear and time-variant muscular responses to FES 

[16]. Therefore, patients have different muscular responses to constant values of FES, 

hindering the reception of a repetitive and positive feedback during the therapy. This may be 

compensated by including a supplementary source of feedback. The use of a virtual realistic 

feedback allows incorporation of an additional reward, based on the principles of gaming for 

rehabilitation, which may improve the adherence of the patient to the therapy [78]. 

Furthermore, it has been hypothesized that, since there is a larger proportion of visual fibers 

entering to brain structures responsible of learning, visual feedback may lead to faster 

learning [18]. Indeed, there is a recent study that showed significant recovery of locomotion 

in SCI patients after 12 months of training with a combination of BMI, exoskeletons and 

virtual reality feedback [19]. 

BMIs in combination with FES and VR also provide the possibility of evaluating patient’s 

progress during the rehabilitation process. This can be achieved by analyzing EEG signals 

recorded during the sessions and computing algorithms to measure functional connectivity 
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(FC). This topic will be addressed during Chapter 4, and therefore it will not be explained 

during this chapter, but it is important to keep it in mind, because this aim was also present 

during the design of the system. 

For all these reasons, we believe that the integration of the aforementioned technologies 

into a single system, easy to use and safe for the patients, is essential to fill the existing gap 

between research studies and clinical studies in the BMI field. Before getting to a clinical 

study to assess the effectiveness of a technology-based therapy, it is crucial to carry out a 

pilot evaluation of the system in a real clinical environment, in order to test the system 

performance and its immediate effects on the patients. Therefore, the objective of the 

present work is to investigate if the closed-loop feedback system resulting from the 

integration of BMI, FES and virtual reality feedback can be used for hand rehabilitation by 

iSCI patients, in a clinical setting, safely and comfortably for the patient. To this end, the 

first step was to design a system that fulfilled all the requirements that will be further 

explained in the Methods section. Then, an initial pilot system was tested with 3 healthy 

subjects to refine the characteristics, especially those concerning the EEG classifier. After 

redefining the system and checking its proper performance with healthy subjects, a pilot 

pre-clinical experience with 4 iSCI patients was carried out to evaluate the feasibility of the 

system in a clinical environment. 

 

2. STATE OF THE ART 

As we have mentioned in the introduction, most of previous BMI studies have focused on 

the development of assistive devices for people with complete injuries [79][80][81]. 

However, the approach of this study is slightly different, since the objective is to design a 

device that could be used in the daily rehabilitation of patients. 

Indeed, a large body of literature supports the benefits of systems triggered by 

neurophysiological commands to promote motor recovery in stroke patients 

[20][82][21][22] as well as neuroplasticity in healthy subjects [23]. Nevertheless, there are 

fewer studies that apply these systems to SCI patients. In a recent study, BMI+FES were 

applied to SCI patients with both complete and incomplete injuries (ASIA [24] A and B, 

respectively) with a rehabilitative aim, obtaining moderate improvements in functional 
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outcomes of the patient with ASIA B, and no changes of the patient with ASIA A [25]. In 

another study, BMI+FES were applied to partially recover gait function in a patient with 

SCI [26]. More recently, a study with SCI patients has shown that BMI+FES restores 

Event-related Desynchronization (ERD) cortical activity and muscle strength to a higher 

extent than passive FES [27]. The feasibility of the combination of BMI and exoskeleton 

for lower limb rehabilitation has been also tested in SCI patients [28]. However, it remains 

unclear if training with BMI+FES may induce functional gains; therefore, in our study we 

assess functional status before and after the training by means of clinical scales. 

 

3. METHODS 

3.1) Introduction 

Since there are not many examples of similar systems implementing BMI systems in 

clinical environments, several challenges must be addressed both during the design and the 

experimental stages. The final aim is to design a system for neurorehabilitation that could 

be used by SCI patients in their daily rehabilitation. Therefore, we defined the following 

requirements: 

 Safety: this is the most important criteria to follow and, hence, it affected 

mostly the integration stage and specially the FES subsystem, since this is the one 

that could be potentially more dangerous for patients. 

 Balance between time and efficacy: since patients have a very tight schedule 

during their inpatient hospital stay in a rehabilitation center, the time for preparation 

of the system must be as short as possible, and must be accompanied by a clinical 

improvement that could make worthwhile the time invested during the realization of 

the therapy. Although the demonstration of the clinical efficacy of this experimental 

therapy is out of the scope of this work, since this is a first approach with a small 

number of patients, a clinical evaluation was performed to all of them to obtain first 

insights of the potential benefits of the use of this system. 

 Accuracy: a value over 70 % of correct results is generally considered 

acceptable for a BMI [83]. Moreover, for a BMI intended to be used for clinical 
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therapy, we believe that it should be slightly higher, to avoid frustration in the 

patients when receiving a feedback that could be incongruent with their intentions. 

 Delay: this is another essential feature, since, to guarantee the success of the 

therapy, it is crucial that patients feel that they are controlling both the VR and the 

FES device from their own thoughts. If the delay between the motor attempt (MA) 

and the appearance of the feedback is too long, it could affect the neuroplastic 

reinforcement provided by Hebbian learning, as it was previously explained in the 

introduction of this chapter. The delay constraint was specially taken into account 

during the choice of the communication protocol between the controller and the 

different devices. 

 Robustness: it is mandatory to design a system robust against failures, 

because, as we have already mentioned, the time available for the therapy is very 

scarce and, therefore, interruptions must be minimized. 

 Usability: in order to obtain a device that could be potentially used in the 

daily rehabilitation, we have to ensure that patients are willing to use it. This 

requirement is difficult to quantify, since it is subjective and comprises several other 

aspects previously described, such as delay, robustness, efficacy, etc. It is necessary 

to keep this idea in mind during the design of the system, because a balance should 

be found between complexity and capability. For example, when detecting the 

motion intention of the patients, the more the number of sensors used, the better the 

accuracy will be, but increasing the number of sensors could affect patients’ 

comfortableness. Hence, this requirement will be present along the whole process of 

designing and testing the system. With the aim of evaluating the usability of the 

designed system, a test was fulfilled by every patient after performing 5 sessions. 

This kind of studies add valuable information to the state of the art, since most of 

BMI studies have been conducted by healthy subjects without taking into 

consideration the needs of the final users. 

 

Along the following sections, we will firstly explain the description of the different 

subsystems that were designed and integrated in this study, as well as the process carried 
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out to decide which technological solutions were the most appropriate according to the 

defined requirements. 

 

3.2) Description of the system 

We designed a system for neurorehabilitation, comprising a BMI that decoded the patient’s 

intention in real time and triggered the other 2 subsystems simultaneously: FES and virtual 

reality feedback. The virtual reality feedback was displayed on the screen at the same time 

that the grasping was generated. It consisted of a virtual open hand that closed when the 

patient’s motor intention was detected. The system designed in this work consisted of the 

following subsystems, as can be seen in Fig. 3.1 a:  

1) Brain-machine interface.  

2) Functional Electrical Stimulator (FES). 

3) Virtual reality feedback and graphical user interface. 

4) High Level Controller (HLC). 

 

Each of these subsystems will be further described in the following subsections. 

 

3.2.1) Brain-machine interface 

 

a) EEG Recording 

The EEG was acquired using a commercial g.Tec system (g.Tec GmbH, Graz, Austria), 

with 32 channels placed at AFz, FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, 

CPz, CP2, CP4, FP1, FP2, F7, F3, Fz, F4, F8, T7, T8, P7, P3, Pz, P4, P8, O1, and O2 

(according to the international 10/10 system, see Fig 3.2). The ground and reference 

electrodes were placed on FPz and on the left earlobe, respectively. The EEG was digitized 

at a sampling frequency of 256 Hz, and power-line notch filtered to remove the 50 Hz line 
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Fig 3.1 (a) General architecture of the BMI+FES system for therapy (b) Patient carrying out a session. 
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interference. Although we believe that fewer channels could be sufficient to achieve an 

acceptable accuracy to control a BMI, we decided to choose 32 channels because we will 

use this information to develop algorithms to compute neuroplasticity metrics that will be 

described in Chapter 4. Once these metrics are defined, a smaller number of channels could 

be sufficient in future experiments with the systems. 

 

 

Fig 3.2  International standard 10/10 for EEG recordings (redrawn from [84]) 
 

The aforementioned EEG recording system requires the use of a conductive gel to maintain 

a proper contact between the skull and the electrodes. Although there are already available 

EEG recording systems with dry electrodes, their efficacy has not been yet completely 

shown, and, therefore, it will be a matter of future researches to determine if BMI-based 

therapies can be implemented with dry electrodes. That would be the ideal situation, since it 

would dramatically decrease the preparation time as we as the discomfort for the patient 

and the need of washing them after the experiments, which adds additional burden to the 

caregivers, as it has been identified by previous authors [85]. 
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Bearing in mind these considerations, we tried to minimize as much as possible the 

required time for preparation. To this end, we developed an easy-to-interpret graphical 

interface that shows with different colors which electrodes have proper impedance (below 5 

kΩ) and which not. This is helpful for the clinicians and allows the system to be used by 

therapists who do not have previous experience with EEG.  

With this setup, we obtained preparation times below 15 minutes for every session, which 

was within our expectations.  

 

b) EEG signal preprocessing 

A z-score procedure was applied to remove artifacts. It consists in automatically discarding 

trials whose δ power (1-4 Hz), θ power (4-7 Hz), α power (7-12 Hz), β power (12-30 Hz), 

trial variance or maximum amplitude more than 2.5 times higher than the mean. It is a 

recursive process, since the mean is calculated again after rejection of a trial, and the z-

score procedure is applied until no more trials are rejected. Other authors applied the same 

procedure but discarding trials with values twice higher than the mean [86], but in the case 

of our study, as the number of trials is not so high, we used a looser threshold. 

Moreover, signals were bandpass filtered (between 0.1 and 50 Hz) by means of a 10th order 

Butterworth zero-phase shift filter, whose frequency response is shown in Figure 3.3, in 

order to remove DC shifts. 

 

 

Fig 3.3  Frequency response of the Butterworth bandpass filter. 
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c) Feature extraction and classification 

c1. Requirements 

The aim of the BMI system is to differentiate between hand motor attempt and rest as 

accurately and fast as possible. Moreover, as the system is intended to be used in a clinical 

environment, there is another requirement that must be taken into account, which is the 

time to setup the whole setting. This time includes the training of the classifier, which 

involves the realization of some training sessions to record enough data, as well as the time 

needed to specifically train the classifier with the recorded signals. This could be a very 

time-consuming process, depending on the method used to classify, and a balance must be 

kept between acceptable accuracy and time spent. In a clinical environment, patients are 

always involved in a very intense rehabilitation program that makes difficult to find more 

than one hour to perform experiments or new approaches for therapy. Therefore, it is 

mandatory to design a classifier that minimizes the required time for calibration.  

Another essential characteristic to be taken into account by our classifier should be the 

amount of information required to obtain a robust classifier: there should also be a balance 

between accuracy achieved and number of signals required. There is a general consensus in 

the BMI community about the fact that an accuracy over 70 % is regarded as sufficiently 

high to operate successfully a BMI [83]. For a BMI intended to be used for clinical therapy, 

as we have already mentioned, we believe that it should be slightly higher, to avoid 

frustration in the patients when receiving a feedback incongruent with their intentions.  

 

 

c2. Choice of the features   

We extracted two EEG movement correlates: event-related desynchronization (ERD) of 

sensorimotor rhythms [87], and movement-related cortical potentials (MRCP) [88]. 

ERD/ERS is the task-related or event-related change in the amplitude of the oscillatory 

behavior of specific cortical areas within various frequency bands [89]. An amplitude (or 

power) increase is defined as event-related synchronization (ERS), while an amplitude (or 

power) decrease is defined as event-related desynchronization (ERD). As event related 

potentials, ERD/ERS patterns are associated with sensory processing and motor behavior, 

when neurons are in a resting state, they have a fixed potential. But then, when an action is 
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being prepared, neurons begin to activate at different instants, so they add each other in a 

destructive way, leading to a global decrease of the power. When neurons accomplish the 

task, they return to the resting state, staying ready for the next task. This produces a new 

synchronization of neurons, globally working as an increase of the power. This 

phenomenon is frequency-dependent, so it is necessary to use metrics such as power 

spectral density to detect it, as can be seen in the figure 3.4. An important characteristic of 

the ERD/ERS is that they appear both when the subject imagines or attempts to move and 

when he/she actually moves. This makes them very useful in the context of a BMI and, 

therefore, they have been very often used. 

 

 

Fig 3.4 Representative time-frequency power spectral density map of the ERD/ERS at C3 electrode 
from a patient of the study,  
where t=0 is the cue arrival. 

 

MRCP are slow cortical potentials and they also happen when the subject volitionally 

initiates, attempts or imagines a movement. They are amplitude features, as can be seen in 

the figure 3.5. 

ERD/ERS and MRCP were chosen because both of them present several advantages for 

their use in BMI within a clinical environment: 

 They are measurable even in paralyzed patients [90], [91].  

 They allow high temporal precision when using robotic prostheses [92]. 
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Fig 3.5 Representative amplitude of the MRCP at C3 electrode from a patient of the study,  
where t=0 is the cue arrival. 

 

More specifically, MRCP present additional advantages that make them a suitable feature 

for BMI applications in a clinical context: 

 They are more stable between subjects and days, therefore, they require less 

training, which is an essential requirement, as we have already commented. 

 They can be detected faster than sensory-motor rhythms, presenting 

detection delays of hundreds of milliseconds [93], [94].  

 They can be elicited even by naïve users, in contrast with sensory-motor 

rhythms, where between 20 and 25 % of subjects are not able to generate detectable 

signals [95]. 

There is also an important disadvantage that must be considered, which is their low 

amplitude, making them more sensitive to noise. For example, eye movement presents a 

similar shape than MRCP and higher amplitude, but this inconvenient was addressed by 

using a common average reference (CAR) filter to compute the MRCPs, which will be 

further explained. ERD and MRCP calculation process will be described in the following 

subsection “Feature extraction”. 

Therefore, we have identified these 2 features as suitable candidates for a BMI system in a 

clinical environment. A previous study showed that the combination of the two kinds of 

features achieves better results than separately in stroke patients for movement intention 



64 
 

decoder [96]. The novelty of this study is that both of them are going to be applied in an 

online BMI with SCI subjects.  

 

 

c3. Feature extraction and classification 

After identifying the frequency bands to be used, we chose the sliding window length. One 

second window was chosen as an ideal value, because it allows extracting frequencies 

between 1 Hz and 128 Hz, so we are covering the spectrum needed for the ERD features. 

For the MRCP it is not needed to cover any spectrum, since this an amplitude feature. 

Subsequently, we had to design an ideal time step for the sliding window that matches the 

aforementioned requirements. A too short time could prevent the system to work in real-

time, since time for feature calculation for each window could be higher than step time. 

Also, a too long time could cause a considerable delay between the patient’s motor 

intention and the system response. Therefore, an appropriate balance must be found. Firstly, 

we tested with healthy subjects a sliding step of 125 ms, but the response of the system was 

too slow. Subsequently, a sliding step of 62.5 ms was tested and it worked properly in real-

time. The delays between the appearance of the cue and the response of the BMI+FES+VR 

system obtained from 3 healthy subjects with these characteristics are shown in the table 

3.1. They have been calculated averaging 40 trials carried out by each subject. 

 

TABLE 3.1: Average delays obtained by healthy subjects. 

 
Subject 1 Subject 2 Subject 3 

0.92 s 1.15 s 1.02 s 

 

It is important to emphasize that these delays have been computed from the appearance of 

the cue to the response of the system, it is not the delay between the beginning of the motor 

attempt and the response of the system, which would be considerably shorter. These delays 

were considered as acceptable, since they were short enough to provide the subjects a 

feeling of natural and uninterrupted control of the system. 
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Therefore, after testing with healthy subjects, the final configuration was achieved, with a 

one-second long sliding window applied with a sliding step of 62.5 ms between -4 and -1 

seconds to represent the rest class, and between 0 and 3 seconds for the MA class (with 0 

being the time of the presentation of the MA cue), as can be seen in Fig. 3.6. 

 

Fig 3.6 Paradigm used for the interactive sessions with the BMI + FES + VR, where t=0 represents the 
cue appearance 

 

 

For each 1-second window, ERD and MRCP features were extracted: 

 

• ERD features were extracted after applying a small Laplacian filter to the fronto-

central (FCx), central (Cx), and centro-parietal (CPx) EEG channels. Then, a 16th order 

autoregressive (AR) model with a frequency resolution of 1 Hz was used to obtain the 

power values in the frequency range [7-30] Hz, based on Burg’s algorithm [97], according 

to 

ாሾ݊ሿݕ =෍ܽ௞ ∙ ாሾ݊ݕ െ ݇ሿ ൅ ݁ሾ݊ሿ,

ଵ଺

௞ୀଵ

 
  

(1) 

where yE denotes the electrode of interest and e[n] is the error with zero means and 

variance σ2. This method computes the AR coefficients a
k
 by minimizing the sum of the 

square of the forward and backward prediction errors, thus reducing the minimum entropy 

components, which are generally associated to noise [98]. Power spectral density (PSD) is 

calculated from the AR coefficients using the following expression: 

ܲሺݓሻ =
ଶߪ

|1 െ ∑ ܽ௞݁ି௜௞௪
ଵ଺
௞ୀଵ |

 
 

(2) 
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As the number of EEG channels used was 15 and the number of frequency bins (between 7 

and 30 Hz, with a resolution of 1 Hz) was 24, the total number of ERD features extracted 

for each 1-second window will be 360.  

• MRCP features were computed after subsampling the signals to 64Hz and applying 

a bandpass filter between [0.1-1] Hz. Subsequently, a common average reference (CAR) 

was applied to channels FC3, FCz, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and 

CP4, whose time samples were added to the features vectors. As the number of EEG 

channels used was 13 and the number of samples is 64, there will be 832 MRCP features 

for each 1-second window. 

Hence, for each window, a total of 1192 features were extracted. 

A sparse discriminant analysis (SDA) was used to automatically select the most 

discriminant features, after removing redundant ones [99]. SDA is based on the classical 

Lineal Discriminant Classifier (LDA), which is a well-known method, commonly used in 

the BMI field, favoured due to its simplicity, robustness and high accuracy in low-

dimensional settings. However, it can fail when the number of features is higher than the 

number of observations, as is the case of our study. Hence, it may be desirable to perform 

the classification with just a subset of the predictors (features). This is called a sparse 

classification and ensures an easier interpretation of the model as well as reducing 

overfitting. With this aim, Sparse Discriminant Analysis (SDA) was developed by 

Clemmensen et al.[99]. This algorithm performs simultaneously feature selection and 

classification. It also reduces noise by using 2 constraints to the classifier that estimate 

some of the classifier weights as exactly zero. Therefore, SDA works as a penalized version 

of LDA. SDA has been used in different domains of machine learning field, but it has not 

been so broadly used in the BMI context. Therefore, we believe that this algorithm could be 

very useful for BMI applications, since it reduces the training time for the classifier and it is 

especially appropriate when the number of features is higher than the number of 

observations. 

In this paper, as in Clemmensen et al. work, we are using the optimal scoring formulation 

of the LDA classifier, that manages the classification problem as a regression problem by 

turning the categorical variables into quantitative variables [99]. This conversion is 

performed by means of a vector (θk) that assigns scores to the different classes. Adding the 
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2 aforementioned constraints to achieve sparseness, the SDA algorithm gives the solution 

to: 

minimize βk,θk {||Yθk-Xβk ||
2 + γβk

T Ωβk + λ||βk||1},      (3) 

subject to 2 constraints to prevent trivial zero solutions: 

1)  
ଵ

௡
 θk

TYTYθk=1, to obtain vectors that are normalized with respect to an inner 

product. 

2)  θk
TYTYθl=0  ∀ l<k,  to obtain mutually orthogonal vectors. 

In the following lines we will describe the meaning of each symbol: 

 Y is a nxK matrix of dummy variables (where n is the number of samples 

and K the number of classes), indicating Yij elements whether the ith observation 

belongs to the jth class. 

  θk is the score vector (Kx1) that assigns scores to the different classes. It 

must be centered and with unit variance. 

 X is a nxp matrix of observations, where n is the number of samples and p 

the number of features. 

 βk are the discriminant vectors. 

 Ω is the penalty matrix. It must be positive definite and it is defined as Ω = 
ଵ

௡
 

YTY. 

 γ is a non-negative parameter that controls the smoothness of the 

discriminant vectors. 

 λ is a non-negative parameter that controls sparseness of the discriminant 

vector. It assigns zero weights to some of the features in order to reduce 

dimensionality. 

Although for each subject and sessions this feature selection process will be repeated, it is 

necessary to establish the same number of features for all of them. Therefore, at each 

session, the classifier could make use of a different subset of features, but with the same 

size in all of them. In order to find the optimal number of features, we performed an offline 

analysis with the data obtained from 3 healthy subjects. γ and λ are the tuning parameters 
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that determine the smoothness and the sparseness of the discriminant vectors. It is also 

necessary to determine the number of features that will be used. With this aim, we firstly 

performed an initial optimization process, with a fixed number of features, selected as 50. 

We performed a 5-fold cross-validation test, training and testing the classifier for each 

subject with different combinations of γ and λ. For γ, the interval of possible values ranged 

between 10-7 and 1000 in a logarithmic scale. For λ, the interval ranged between 1 and 40 in 

a linear scale. We show in the figure 3.6 the accuracies obtained with the different feature 

combinations for different number of features. We show in the table 3.2 the five parameter 

combinations that maximized accuracy. 

 

TABLE 3.2: Results of the five combinations of SDA parameters that maximize accuracy with 50 

features. 

Combination of 
parameters 

γ λ Accuracy 

1 10-5 15 90.1 % 

2 10-3 20 89.3 % 

3 10-5 13 89.1 % 

4 10-6 11 88.7 % 

5             10-4 12 87.2 % 

 

We wanted to analyze if the accuracy remained stable when decreasing the number of 

features. With this aim, we tested with the 5 aforementioned combinations of parameters, 

but changing the number of features. We show in the figure 3.6 the results, where it can be 

seen that accuracy dramatically increases from around 18 features, but then it stabilizes 

around 30. Therefore, 30 was chosen as the number of features that will be used with 

patients. 

On each session, the movement intention decoder was calibrated after recording the 

screening blocks, and used in real-time during the closed-loop feedback blocks. Its 

objective was to distinguish between the brain signals corresponding to rest and MA. To 
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that end, it was trained specifically for each patient using all the trials from the screening 

blocks recorded in previous, as well as in the same session, with that patient. 

Fig 3.6 Average accuracies obtained by healthy subjects with different number of features and the five best configurations 

of SDA parameters. 

 

c4. Decoding scheme 

During the online operation of the system (i.e., for the feedback blocks) the EEG was 

monitored continuously. A sliding window was applied every 62.5 ms, extracting the 

features previously described, and keeping the values selected by SDA. For each sliding 

window, the BMI classifier determined if the signal corresponded to rest or to MA class. 

When five consecutive windows of MA class were detected, the BMI sent a trigger to the 

high-level controller. The controller ignored the BMI outputs during the rest periods to 

avoid stimulating the patients due to false detections. Therefore, on each feedback trial, the 

patient was stimulated if the BMI generated a trigger after the “Movement” cue appearance.  

 

 

 

3.2.2) Functional electrical stimulator 

The INTFES stimulator (Technalia S.L., Spain) was used to drive grasping movement 

synchronized with the patients’ intention to move. The forearm flexor muscles (Flexor 
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Carpi Ulnaris, Flexor Digitorum) were superficially stimulated through a pair of electrode 

pads (Pals Platinum – rectangle 2’’ x 2’’). A common reference electrode was placed near 

the elbow. A clinician set the stimulation parameters before the first session, using a 

biphasic pulse of 40 Hz with 350 µs of duration for all patients. The pulse amplitude was 

set independently for each patient and gradually increased until the grasping response was 

generated within comfortable limits. Amplitude was adjusted before each session to 

compensate time-varying muscle response, although it was changed only once, before the 

second therapy session of subject S2, when amplitudes of Flexor Digitorum and Ulnaris 

electrodes were decreased, due to the discomforts reported by the patient. The amplitude 

parameters used for each subject are shown in the table 3.3. 

 

TABLE 3.3: FES parameters for each subject. 

Subject Amplitude of Flexor 

Digitorum electrode 

Amplitude of Flexor 

Ulnaris electrode 

Stimulated 

hand 

S1 26 mA 19 mA Left 

S2 19 mA (*) 16 mA (*) Left 

S3 25 mA 26 mA Right 

S4 18 mA 14 mA Right 

              (*) In the second session of S2, Amplitude of Flexor Digitorum and the Ulnaris electrodes  

 were decreased to 9 mA and 6 mA, respectively   

 

 

3.2.3) Virtual reality feedback 

The main purpose of this subsystem was to provide a realistic feedback to the patient, 

consisting of a hand closing, triggered by the BMI when the motor intention was detected. 

The hand was displayed in a first person perspective, with the background simulating the 

walls and the floor of the laboratory, in order to increase the feeling of immersion. The 

objective was to provide a positive feedback regardless of the actual movement that FES 

was eliciting, which can vary between patients, sessions, and even between trials of the 

same session. The virtual environment has been developed using open source 3D 

programming interface, Open Scene Graph. 
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There is also a graphical user interface that allows clinicians to easily input parameters for 

the electrical stimulator, as well as visualizing the accuracy results in real-time. 

 

3.2.4) High-Level Controller (HLC) and architecture 

The HLC is implemented in a PC104 architecture running under XPC Target® 

environment for real time operation. It is responsible of coordinating the therapy operation. 

It receives the therapy session parameters specified by clinicians, configures the FES 

device based on these parameters and synchronizes with the BMI system for setting up the 

listening and blanking signal windows. The interconnections between the different 

subsystems are shown in the figure 3.7. 

 

 

 

Fig 3.7  Interconnections between the different subsystems and the controller. 

 

PC104 is an ideal platform to develop embedded systems, since it is compact, rugged and 

easily expandable. Therefore, it met the requirements that we previously specified for our 

system. ` 



72 
 

Connection between HLC and EEG recording system was established via UDP, since we 

required fastness to send a constant flow of EEG data. For the communication between the 

VR, FES and HLC, a CAN bus was chose, because of its following characteristics: 

 Robustness against interferences. 

 Ability to self-detect failures. 

 Ability to communicate systems from different manufacturers.  

 It reduces the number of wires due to its multiplex nature. 

 

The intervention session is composed of 4 states. The first corresponds to the “Idle” state, 

where the system is waiting for FES parameters, stimulation time, number of repetitions, 

EEG time window for signal listening and blanking and the rest periods after stimulation. 

Once all this information is correctly set up and all devices are connected to the HLC, the 

therapy starts and the system switches sequentially to other states, which are “Movement 

Intention Detection”, “Grasping”, and “Rest”. During the “Movement Intention Detection” 

state, the EEG system is recording and analyzing signal and it sends a trigger signal when it 

detects a MA. When the HLC receives this trigger, the system moves to “Grasping” state 

(FES on) during a period of time previously established by the clinician, and then it goes to 

the “Rest” state (FES off). If the trigger signal was not generated, the system moves 

directly to the “Rest” state (FES off). This process repeats until the number of repetitions is 

fulfilled. The state diagram is represented in Fig. 3.8. 

 

 

 
  Fig 3.8 State diagram of the system. 
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3.3) Patients 

Patients were recruited within a hospital specialized in Spinal Cord Injury and the 

experiments were approved by the Local Ethics Committee. Since the main objective of the 

intervention is to investigate the potential of the BMI+FES as a neurorehabilitation tool for 

the grasping function, all patients must have this movement affected, but, at the same time, 

to have possibilities of recovery. Therefore, we considered for the study patients able to 

slightly move their hand, but not able to perform grasping. These requirements lead to 

determine the following inclusion criteria:  

(1) SCI classified as ASIA B, C or D, with cervical neurological level of injury 

(NLI), according to the International Standards for Neurological Classification 

of Spinal Cord Injury [100];  

(2) to have a limited hand functionality, getting 3 or less in the Manual Muscle 

Testing (MMT) in the wrist and fingers muscles [101];  

(3) age between 18 and 75 years;  

(4) muscular response to electrical stimulation;  

(5) spasticity less than 3 in the Modified Ashworth Scale [102]; and  

(6) no history of osteoporosis or cardiorespiratory illnesses.  

Four patients with SCI were recruited for this study. Patients’ information is summarized in 

Table 3.4. All subjects gave their written informed consent to participate in this study. 

 

TABLE 3.4: Clinical and demographic information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ASIA: American Spinal Cord Injury Classification 
NLI: Neurological Level of Injury 
Stim. arm: arm which performed the BMI + FES sessions 
Dom. Arm: dominant arm 
R: Right 
L: Left 

 
(*)Arm dominance of S4 changed after the injury, from right to left 

Sub 

 
Etiology of 

injury 
 

Age 
Months 

since 
injury 

ASIA NLI 
Gende

r 
Dom. 
arm 

Stim
. 

arm 

S1 Infectious 71 4  C C5 Male R L 

S2 Traumatic 38 10  C C5 Male R L 

S3 Traumatic 36 7  B C6/C7 Male R R 

S4 Postsurgical 55 4  D C5 Male R(*) R 
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 3.4) Description of the protocol of the feasibility study with patients 

We carried out a feasibility study with 4 patients with iSCI (ASIA B, C or D [18]), who 

performed 5 sessions with the BMI + FES + virtual reality feedback device. The aim is to 

analyze the feasibility and usability of the device as a tool for neurorehabilitation and assess 

the immediate effects on the patients after using the system. To this end, the intervention 

was applied to one of the patient’s arms, from now on referred as “stimulated arm”, 

whereas the other will be referred to as “non-stimulated arm”. 

The patients used their motion intention to trigger a grasping movement with FES, while 

simultaneously receiving a visual feedback of a virtual hand closing. Initial and final 

clinical assessments were performed, as well as a usability test and an exertion test that the 

4 patients answered after the study.  

The experiments were conducted in accordance with the Helsinki Declaration. The 

experimental protocol consisted of 5 sessions, with an approximate duration of one hour 

each. A clinician performed a visual evaluation of the response of the patient’s hands to 

FES, in order to select the most appropriate hand for the intervention, following the 

inclusion criteria (2) and (4) previously defined. In case that both hands met both inclusion 

criteria, the most affected hand was selected. 

Fig. 3.1 b shows a patient during a therapy session. Each session was performed in a 

different day, completing the 5 sessions within a maximum time interval of 10 days. During 

the experimental sessions, the patients were seated on their wheelchairs, facing a computer 

screen, and with the FES electrodes attached on one of their arms. The sessions consisted of 

screening blocks and feedback blocks. The screening blocks were performed to acquire 

data for the BMI calibration, whereas the feedback blocks entailed a closed-loop 

intervention that associated the brain patterns of motor attempt with the simultaneous 

activation of FES and virtual reality feedback. 

During the screening blocks, the words “Rest” and “Movement” were indicated 

alternatively to the patients through the computer screen. They were asked to rest or to 

perform MA of the hand selected for the therapy, following the cues displayed on the 

screen. The “Rest” period lasted randomly between 4 and 7 seconds, and the “Movement” 

interval lasted 3 seconds. These blocks consisted of 20 trials without any feedback.  
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For the closed-loop feedback blocks, the patients were also placed in front of a screen 

where the virtual hand was displayed, and the FES electrodes were placed on the arm 

selected by the clinician. The feedback blocks consisted of 20 repetitions each, in which the 

subjects performed MA, receiving 2 seconds of FES and virtual reality feedback when the 

system correctly detected the attempt. Each repetition started with 10 seconds of rest, 

followed by 3 seconds of MA. If the BMI detected the motion intention in the MA interval, 

the patient was stimulated, otherwise, the next repetition started. 

On the first session, the patients were asked to perform 4 screening blocks (therefore a total 

of 80 trials to train the classifier) and 2 feedback blocks (40 trials with the closed-loop 

system), whereas on the remaining 4 sessions they were asked to perform 2 screening 

blocks (40 trials) and 4 feedback blocks (80 trials). 

 

 

3.5) Outcome measures 

 

3.5.1) Clinical scales 

Each patient performed an initial (1 day before the intervention) and a final (1 day after the 

intervention) evaluation that consisted of the application of the clinical scales Spinal Cord 

Independence Measure (SCIM III) [103] and the GRASSP (Graded and Redefined 

Assessment of Strength, Sensibility and Prehension) [60]. SCIM III is a scale specifically 

designed to measure independence of SCI patients. It consists of 3 sub-items: self-care, 

mobility, and respiration and sphincter management. Since our intervention is focused 

exclusively on the grasping movement, improvements in mobility and respiration and 

sphincter management are out of the scope of this work and, therefore, the scores obtained 

in these sub-items are not shown. 

GRASSP scale assesses 3 different hand function domains: strength, sensibility, and 

prehension (quantitatively and qualitatively). With the aim of evaluating the motor effects 

of the BMI + FES therapy, we used the strength, prehension-qualitative and prehension-

quantitative sub-items, which are directly related to motor function, whereas the sensation 

sub-item was used as an indicator of the usability of the system, to find out any side-effect 

derived of the FES. GRASSP strength sub-item evaluates 10 upper limb muscles (graded 
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between 0 and 5) separately for left and right side, giving a maximum score of 50 for each 

side. 

 

3.5.2) Usability assessment 

All patients were asked after the last session to fill in a usability and satisfaction survey, to 

evaluate the possibilities of incorporating the integrated system in a clinical environment. 

The questions that comprised this test were adapted and translated from a previous 

questionnaire [104]. The possible answers followed the Likert scale: 1 (“I strongly agree 

with the sentence”), 2 (“I agree”), 3 (“Neutral”), 4 (“I disagree”), and 5 (“I strongly 

disagree”). The exertion was evaluated through the Borg Scale, whose values range from 6 

(“very, very light”) to 20 (“very, very hard”) [105]. 

 

3.5.3) BMI accuracy 

BMI accuracy has been evaluated as the percentage of trials correctly decoded by the 

system for every patient. Moreover, we have extracted the amplitude of two 

neurophysiological phenomena, which have been demonstrated to correlate with the 

movement intention; namely the event-related desynchronization (ERD) and the motor 

related cortical potentials (MRCP). 

 

4. RESULTS 

4.1) Usability and immediate effects 

The results of the usability and satisfaction tests are presented in Table 3.5. Patients 

generally agreed with the statements regarding satisfaction and the will to continue using 

the system (e.g., questions 1, 2, or 9), and disagreed with the questions implying difficulties 

or discomfort (e.g., questions 5 and 6). In terms of exertion, according to the Borg Scale, 

subject S1 rated the degree of exhaustion during the use of the system with a 9 (“very 

light”), S2 with a 13 (“somewhat hard”), S3 with an 11 (“fairly light”) and S4 with a 6 

(“very, very light”). 
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TABLE 3.5: Usability and satisfaction scores for all patients. 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

  

1 (“I strongly agree with the sentence”), 2 (“I agree”), 3 (“Neutral”), 4 (“I disagree”) and 5 (“I strongly disagree”). 

 

 

No adverse effects were observed in any of the patients, and, in general, there were higher 

improvements in their quantitative prehension in the stimulated arm compared with the 

non-stimulated arm, as it can be extracted from Table 3.6. In one of them (S3), there was a 

1-point increase in the stimulated arm in contrast to a 2-point decrease in the non-

stimulated arm. Regarding prehension quality, 2 patients (S1 and S4) showed higher 

increases in the stimulated arm than in the non-stimulated arm, whereas the other 2 (S2 and 

S3) did not undergo any change in any of the arms.  

As explained above, results of sensation (shown in Table 3.7) are not interpreted as an 

expected outcome of the experimental therapy, but as a measure of any side-effect of the 

electrical stimulation. 2 patients (S2 and S4) showed a decrease in dorsal sensation 

according to the GRASSP scale in the stimulated arm in contrast with an increase in the 

non-stimulated arm; whereas S3 showed approximately the same score pre/post 

intervention in both arms, and S1 showed a decrease in the non-stimulated-arm in contrast 

 

 

 

Question  S1 S2 S3 S4 

1. I would like to use these applications in therapy 1 1 1 1 

2. The application was more engaging than the exercises I have done before 3 2 1 1 

3. The application was more strenuous than the therapy I have done before 3 3 1 5 

4. I could see myself using this kind of applications in the future 1 2 1 2 

5. It was hard to understand the directions for using the application 5 5 1 4 

6. I felt frustrated while using the application 5 4 5 5 

7. I was motivated to keep using the application. 2 1 2 1 

8. It was easy to understand how to use the controller to use the application 1 2 1 2 

9. I feel as though I would benefit from using this kind of applications in therapy 1 1 1 1 
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TABLE 3.6: Pre-post comparison of GRASSP prehension and strength scores in the stimulated and 
the non-stimulated arm. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Stim: Stimulated arm 
Non-stim: Non-stimulated arm 
PRE/POST: before/after intervention 

 

with a small change in the stimulated-arm. Regarding palmar sensation, changes were very 

similar between both arms. Therefore, there is not a general pattern of changes in dorsal 

and palmar sensation, since they are very small and different for each patient, so they can 

be attributed to the progress of the injury. Hence, there is no observable side-effect of FES. 

In terms of self-care ability (measured by SCIM III sub-item), only 1 patient improved his 

score (S3), another one got worse (S4) and the other 2 patients (S1 and S2) obtained the 

same scores before and after the intervention, as it can be seen in Table 3.8. SCIM-III Total 

score (range between 0 and 100) is reported only with the aim of offering an overview of 

the functional status of the patients before and after the intervention. 

 

4.2) BMI accuracy 

In total, 360 test trials were recorded for each patient (40 on session 1, and 80 on each of 

the subsequent sessions). The BMI correctly decoded 79.13 ± 13.80% of the trials for all 

subjects and sessions. Fig. 3.9 shows the percentage of decoded trials for each subject and 

session, as well as the average of all of them. 

 

Sub Arm Strength (max 
50) PRE/POST 

Prehension-Qualitative 
(max 12) PRE/POST 

Prehension-
Quantitative (max 30) 

PRE/POST 
S1 Stim. 33 / 30 

 
6 / 9 10 / 15 

Non-stim 33 / 31 9 / 9 14 / 16 

S2 Stim. 19 / 20 4 / 3 10 / 12 

Non-stim 17 / 20 4 / 3 6 / 7 

S3 Stim. 18 / 17 2 / 2 13 / 14 

Non-stim 15 / 17 1 / 1 13 / 11 

S4 Stim. 30 / 31 7 / 8 20 / 24 

Non-stim 43 / 45 11 / 10 28 / 28 
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TABLE 3.7: Pre-post comparison of GRASSP sensation scores in the stimulated and the non-
stimulated arm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Stim: Stimulated arm 
Non-stim: Non-stimulated arm 
PRE/POST: before/after intervention 

 

 

TABLE 3.8: Independence scores obtained by all subjects (SCIM III scale). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PRE/POST: before/after intervention  
 SCIM III: Spinal Cord Independence Measure III 

 

 

 

 

 

 

Sub Arm Sensation-Dorsal 
(max 12) 

PRE/POST 

Sensation-Palmar 
(max 12) 

PRE/POST 
S1 Stim. 6 / 7 

 
9 / 8 

Non-stim 11 / 6 11 / 10 

S2 Stim. 8 / 6 5 / 4 

Non-stim 3 / 6 2 / 0 

S3 Stim. 7 / 7 8 / 8 

Non-stim 7 / 8 8 / 7 

S4 Stim. 12 / 11 10 / 11 

Non-stim 9 / 11 10 / 12 

Sub 

SCIM III 
Total score (max. 

100) 
PRE/POST 

SCIM III 
Self-care (max. 20) 

sub-item 
PRE/POST 

S1 19 / 26 3 / 3 

S2 27 / 28 4 / 4 

S3 29 / 34 3 / 6 

S4 28 / 42 8 / 5 
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Fig 3.9 Percentage of correctly decoded trials for each subject and session. Each bar color corresponds to one subject. 
Black line represents the average for all subjects and sessions 
 
 

The average delays obtained by patients are shown in the figure 3.10. The average of the 4 

subjects was 1.4 s between the appearance of the cue and the response of the system. 

 

Fig 3.10 Average and standard deviation of the delay between cue and response of the system. Each bar color corresponds 
to one subject. Black line represents the average for all subjects and sessions 
 

 

As we performed a recalibration before each session, we wanted to measure what was the 

influence of such recalibration in the decoding performance. Hence, we simulated offline 

the performance of the decoder as if it had been trained with the data recorded only during 

the first session (i.e., if no recalibration had been performed in every session). On average, 

such decoder decoded correctly 58.5 ± 32.48% of the trials. A Wilcoxon paired test 

comparing the percentage of correctly decoded trials for each subject and session revealed 

that recalibrating the classifier before each session provided significantly higher decoding 
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results (p < 0.05). Furthermore, the performance of this recalibration scheme versus other 

methods has been evaluated in a parallel work [106]. 

 

4.3) Neurophysiological analysis 

Fig. 3.11 displays the neural correlates of the motor intention, corresponding to the first 

screening session, averaged for all patients. Notice that, as 2 patients performed the therapy 

with their left hand (S1 and S2) and 2 patients with their right hand (S3 and S4), for this 

offline analysis we swapped the lateralized channels of patients S1 and S2, so that we 

averaged their signals simulating that all of them performed the intervention on their right 

hand. Bilateral ERD appeared on α and β frequency bands, especially in channels C3 and 

C4. Conversely, MRCP appeared more lateralized towards the left hemisphere, showing 

maximum amplitude in channels C3 and C1. 

 
Fig 3.11 (a) Significant ERD in ten channels over the motor cortex (x axis corresponds to the time interval [-4, 3], y axis 
represents the frequency range [1-50] Hz). (b) Average MRCPs for all patients in ten channels over the motor cortex (x 
axis corresponds to the time interval [-4, 3], y axis represents the MCRP amplitude) 
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4.4) EEG features 

The classifier used an automatic procedure to extract the features for each subject. 

Therefore, a post-hoc analysis was carried out to visualize those selected features, which 

can be seen in Figure 3.12. It can be observed that more frequency features (ERD) were 

selected than temporal ones (MRCP) for all patients. ERD features are more consistently 

detected in central and centroparietal electrodes. Channel C4 was the most frequently  

 

 

Fig 3.12 EEG features selected by the SDA classifier for each subject. The left part shows the ERD features as channel-
frequency pairs, whereas the right part shows the MRCP features as channel-time pairs. The number of occurrences is the 
number of sessions in which each feature has been selected 
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selected for subjects 1 and 2, C3 for subject 3 and CP3 for subject 4, which is consistent 
with the MA that they performed, since subjects 1 and 2 carried out left hand MA and 
subjects 3 and 4 right hand MA. 
 

5. DISCUSSION 

This work proposed a system combining BMI and FES therapy complemented with virtual 

reality feedback for neurorehabilitation of patients with iSCI. The system was validated in 4 

patients, showing very positive results in terms of usability and exertion, promising 

outcomes in clinical scales, and good levels of accuracy.  

All patients reported that they would like to use this kind of application in therapy. They 

also rated that the system was easy to use. In terms of motivation, the answers to the 

questions 6 and 7 of the questionnaire revealed that patients did not feel frustrated while 

using the system, and they were quite motivated. We believe that two factors played an 

important role in these results: the combined feedback provided by the therapy and the high 

accuracy obtained by all patients in all sessions. From the first session, the patients 

obtained acceptable values of accuracy. Furthermore, the patients did not show any harmful 

effect neither during nor after the therapy. In terms of exertion, three out of the four patients 

rated the effort of using the system as light, and only one of them rated it as “somewhat 

hard”.  

One of the main reasons of the good acceptance of the system by the users is probably its 

stable and predictive behavior to trigger the feedback. In order to achieve this, we had to 

carry out a short recalibration of the system at the beginning of each session (less than 10 

minutes of recording and data processing) that significantly improved the decoding results. 

This is crucial to guarantee that the patient receives a sufficient dose of brain-triggered 

electrical stimulation during the intervention sessions and to make him feel that he controls 

the system. Indeed, all patients reported to have this feeling of commanding the movements 

of their affected arm with their own brain. This kind of functional coupling is an important 

factor to promote neural plasticity [107]. 

We believe that another important factor of the high motivation of the patients was that the 

setup time was less than 15 minutes, thus maximizing the available time for therapy. Other 
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authors have emphasized that this is a key aspect to translate BMI applications to the 

routine of rehabilitation [108]. 

All patients showed higher improvements of their quantitative prehension in the stimulated 

arm compared with the non-stimulated arm. This preliminary result should be interpreted 

with caution, due to the small sample of patients, but it is considered as positive, since the 

system was designed with this aim. Half of the patients also improved their quantitative 

prehension.  

Another important observation is that the system is also appropriate for patients without 

any residual motor function in the affected limb (such as in severe tetraplegia or 

hemiplegia) and, therefore, cannot use systems based on muscular activity. Patient S3, with 

ASIA B, was unable to volitionally move his fingers, but was able when using the system 

to perform a complete hand grasping. Although this ability was not translated into 

functional recovery during the study, it is a starting point to involve these patients in future 

studies with these technologies.  

The therapeutic approach described in this study provides somatosensory and virtual reality 

feedback during the execution of repetitive tasks, supporting motor relearning [109]. 

Although FES has shown efficacy itself, due to the muscle contraction elicited by 

orthodromic activations [110], we believe that combining FES with BMI can provide even 

better results. The BMI allows synchronizing the antidromic impulses induced by FES with 

the voluntary motor commands decoded in the EEG, which may support the rewiring of the 

neurons by coincident voluntary motor commands through Hebb-type modifiable synapses 

[111]. Furthermore, previous studies with stroke patients have shown that combination of 

BMI and FES induces higher improvements than FES alone in motor function, 

electromyographic activations, and brain plasticity [107]. Since iSCI patients still maintain 

certain neuronal pathways, combination of BMI and FES may also be beneficial for their 

rehabilitation, as it is in stroke population. The main weakness of the electrical stimulation 

as feedback is the high variability in muscle responses that patients experiment even for 

constant FES values [16]. To overcome that limitation, we propose the use of the virtual 

reality feedback, designed to match closely the real task that the subjects had to carry out, 

namely closing the hand. This feedback was well tolerated by the subjects, since they 

perceived that the movement of the virtual hand was synchronized with their volitional 
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commands. For future studies, the use of virtual environments in BMI settings may enable 

to perform more complex tasks, such as grasping different objects, therefore enhancing the 

motivational component of the therapy. Hence, we consider that the combination of BMI+ 

FES + Virtual reality feedback may take advantage of the benefits of each and every one of 

them, enhancing the rehabilitation outcome. 

Two types of neural correlates were used to control the BMI: the ERD and MRCPs. They 

were present in the four subjects and did not change significantly across sessions, which 

allowed for fast recalibration between sessions. Several works have shown that both types 

of correlates are weaker for complete SCI patients than for healthy subjects during motor 

tasks [87][112]. We are only aware of two studies on iSCI patients that also reported the 

presence of both correlates with similar activations to those of healthy subjects [28][113]. 

Although our findings support previous results, further research on a larger population is 

necessary to characterize these brain patterns for iSCI patients and assess the impact on 

BMI performances. Also, it is still an open question whether it is better to ask patients to 

attempt to move or to imagine movements to promote recovery. Despite both of them can 

be decoded with a BMI [114], we asked the patients to attempt to move so that the actual 

motor command would reach as far as possible into the spinal circuits, given that motor 

imagery requires suppression of movement [107]. 

Finally, as limitations of the work, we want to remark that, because of the nature of this 

feasibility study, the number of participants is small, so further research with a larger 

number of subjects and a control group will be necessary to confirm these results. Due to 

the novelty of this kind of therapeutic applications of the BMI technology, we consider 

essential to gather as much information as possible before envisaging a clinical study with a 

larger sample. 

 

6. CONCLUSIONS AND MAIN CONTRIBUTIONS 

The conclusions and main contributions of this section of the thesis are: 

1. The novelty of the integration of  BMI, FES and virtual reality as therapy for SCI 

patients, allowing the patients to control both systems by themselves, without external 

assistance 
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2. The system showed high levels of accuracy throughout the different sessions (79.13 

% on average). 

3. The accuracy of the system in detecting motion intention remained stable 

throughout the different sessions, so we can conclude that the designed algorithms are 

sufficiently robust. 

4. Sparse discriminant analysis, a machine learning technique to reduce dimensionality 

and classify data, has been successfully applied to the BMI domain. 

5. An algorithm combining temporal features (MRCP) and frequency features (ERD) 

has shown to be effective for SCI patients to detect motion attempt of the upper limbs. 

6. The algorithms developed in this work also allow to analyze the most relevant 

neurophysiological features for each patient, which is very important to provide a system 

that could serve to perform therapy and, also, to assess patients. 

7. The delay between motion intention and response achieved by the system is 

sufficiently short to provide the patients the sensation of immediate control of both FES 

and VR, which is essential for the therapy success. 

8. The therapy device has been safely tested by patients, without observing any 

adverse effects in any of them. 

9. In terms of usability and exertion, all patients showed their satisfaction after the use 

of the application. 

10. Promising clinical outcomes have been obtained by 4 patients with iSCI after 

performing 5 therapy sessions with the system, as small improvements of their quantitative 

prehension in the stimulated arm compared with the non-stimulated arm. Therefore, we 

conclude that the design of the system correctly accomplished the desired aims. 

11. The results of this work support the feasibility of a BMI + FES + virtual reality 

feedback to be considered as a therapeutic tool for upper limb rehabilitation. 
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CHAPTER 4: EEG DERIVED METRICS TO ASSESS 
NEUROPLASTICITY CHANGES IN 
NEURORREHABILITATION 
 

1. INTRODUCTION 

Some studies have suggested [11], [12], [107] that the synchronization between descending 

information from the brain (throughout motor intention) and afferent information from an 

external stimulus that BMIs allow, can facilitate the reconnection of damaged neurons 

based on Hebbian learning theory [5]. However, there is insufficient evidence to conclude 

that these therapies really promote neuroplasticity. Some studies have shown, by using 

functional magnetic resonance imaging, that there are effective changes in the intensity and 

in the activated areas when motion imagination is performed after the completion of a 

number of BCI sessions [82], [115], [116]. However, these changes are not always directly 

related to an improvement in the patient’s functionality, since characterizing the brain as a 

set of disjoint areas dismisses the complex and timed interactions that take place to perform 

any action [117]. Accordingly, it is necessary to find other metrics that reflect more 

naturally the flow of information within the brain and therefore could be more directly 

related to the regenerative processes of the nervous system, based on the idea that the brain 

tends to organize its connections as effectively as possible. Since the brain works as a 

complex network of neural assemblies, it is essential to study the interactions between the 

different areas. One of the most popular methods to assess this interaction is to measure 

brain connectivity [33]. Moreover, it has been suggested that a connectivity-based study of 

the brain could be more related to pathological changes than the traditional approach of 

measuring the activation changes of disjoint areas [118]. 

Although fMRI has been broadly used to study interactions between brain áreas, EEG 

presents several advantages that make this technology an ideal candidate to study the brain 

as a dynamic system [34], specially its temporal resolution [33]. Other characteristics make 

EEG highly useful in the context of rehabilitation technologies, such as its portability, non-

invasiveness and relative low cost. Therefore, it is relevant to find EEG-based metrics in 

order to assess neuroplasticity in patients at the same time that they are performing a 
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therapy. However, in order to find useful metrics, it is necessary to overcome some 

limitations of EEG technology, such as the fact that EEG poorly measures neural activity 

that occurs below the upper layers of the brain (the cortex) making  impossible to measure 

the interaction between lower layers. Moreover, EEG presents a low spatial resolution. Due 

to this reason, the aim of this work is to determine whether the information provided by 

EEG could be sufficient to obtain clinically relevant information.  

 

2. STATE OF THE ART 

Firstly, it is necessary to review the different methods that have been used to determine 

connectivity from EEG recordings, considering their advantages and limitations. It is 

important to begin distinguishing between 2 terms: functional connectivity (FC) and 

effective connectivity (EC). The first term refers to symmetric and undirected correlations 

between the activity of cortical sources, whereas the second refers to directed or causal 

dependencies [29]. The earliest studies calculated FC through linear correlations and 

coherences between EEG signals from the scalp [30], [31]. These techniques present a 

serious risk of misidentification in systems with correlated noise, strong autocorrelation, 

such is the case of brain signals [32]. Despite this, both are among the most used tools to 

assess connectivity in the field of neuroscience [33]. Some examples of EC techniques are 

dynamic causal modeling (DCM), directed transfer function (DTF), structural equation 

modeling (SEM), transfer entropy (TE) and Granger causality (GC) method. A division of 

these techniques in 2 groups (model-based or data-driven) will be given in the following 

lines, together with a brief description of each one: 

 Model-based effective connectivity: these techniques use neurobiologically-inspired 

theoretical models. DCM and SEM lie within this group. 

o DCM: the key idea of this technique is that a dynamic system can be 

modeled by a network of discrete but interacting neuronal sources [33]. 

o SEM:   this technique approaches neural data by considering the covariance 

structure. Parameters are estimated by minimizing the difference between 
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the observed covariances and these implied by a structural or path model 

[119]. 

 Data-driven effective connectivity: they do not assume any underlying model or 

previous knowledge about underlying spatial or temporal relationships [33]. GC, 

DTF and PDC lie within this group. 

o GC: Granger causality is based on the idea that if a signal can be predicted 

from previous information of a second signal better than from its own past 

information, then it is said that the second signal is Granger causal to the 

first [33]. According to Nolte et al. this method may be very sensitive to 

noise when there are individual noisy channels, since spurious connectivity 

patterns would be obtained [34]. 

o DTF: Directed Transfer Function measures the influence of element j to 

element i with respect to the influence of all the other elements on i, 

similarly to Granger causality. According to Hamedi et al., it is quite robust 

against noise and volume conduction (VC), a phenomenon that will be 

further explained [120]. However, since this method can be regarded as a 

version of GC [121], Nolte et al., claimed that may elicit spurious 

connectivity patterns [34].  

o PDC: Partial Directed Coherence can be considered a spectral version of GC 

[122]. It quantifies the relationship between 2 out of n signals, while 

avoiding volume conduction (the most typical handicap of traditional 

coherence) by accounting the interactions from the other n-2 signals [33]. 

With respect to functional connectivity (FC), a division between lineal, non-linear and 

information-based techniques can be established. 

 Linear connectivity: cross-correlation, magnitude squared coherence (MSC), 

Wavelet coherence (WC) and imaginary part of coherence (IC) lie within this 

group: 

o Cross-correlation: it was one of the first techniques used to measure 

connectivity, early in the 1950s [30], [31], identifying functionally 

connected areas with highly correlated signals. 
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o MSC or simply coherence: it is computed as the cross-spectral density 

function (which is equal to the squared Fast Fourier Transform) normalized 

by their individual autospectral density functions. It allows to measure 

spatial correlations in different frequency bands [123]. Due to the finite 

amount of data available in EEG recordings, spectrum is usually estimated 

(known as periodogram) using smoothing techniques such as Welch method 

[124].  MSC gives information in terms of power and phase changes of any 

of the 2 signals under study; however, it does not give the actual relationship 

but the stability of this relationship [33]. MSC is affected by the window 

length and overlap chosen to calculate the spectral density. 

o Wavelet Coherence (WC): it is an alternate method to compute coherence. It 

requires previous information about frequency and time ranges of coupling. 

It is particularly useful to calculate time-varying coherence, since it uses a 

shorter window for higher frequencies and a longer window for lower 

frequencies, instead of the constant length of the window used to calculate 

the spectrum in MSC technique. WC presents the enhancement that it allows 

to obtain a probability distribution of the calculated coherence. This can be 

interesting for clinical studies, since it gives the significant changes of WC 

with respect to a population average, for example [33]. Additionally, if the 

windows used to calculate the coherence are short enough, stationarity can 

be assumed. 

o Imaginary part of coherency (IC): this is a particularization of the coherence, 

developed by Nolte et al., which is based on the assumption that the 

imaginary part of the coherency is insensitive to volume conduction 

[34].The rationale for this is that a scalp potential has no time-lag with 

respect to its source [125] and imaginary part of coherency is only sensitive 

to processes that are time-lagged to each other, so it cannot be affected by 

potentials caused by the same source. 

 Non-linear connectivity: these metrics are not designed to overcome linear methods, 

but to account for non-linear phenomena that are fundamental in the neural system, 

such as the regulation of the voltage-gated ion channels, which depends on a steep 
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non-linear relationship between the membrane potential and the current flow [33]. 

Non-linear connectivity techniques are based on the measurement of 

synchronization. There are mainly 4 different methods to calculate synchronization: 

phase locking value (PLV), generalized synchronization (GS), phase lag index (PLI) 

and weighted phase lag index (WPLI): 

o PLV: it is computed from the Hilbert Transform, which calculates 

instantaneous phase. This method assumes that two dynamic systems may 

have their phases synchronized even if their amplitudes are zero correlated 

[126]. It does not require stationarity of the signals. According to Niso et al. 

this method is not robust against volume conduction [127].  

o GS: this strategy is based on the idea that neurons are highly non-linear 

systems, which sometimes exhibit chaotic behavior. Therefore, according to 

this premise, it might be useful to use non-linear measures in 

neurophysiology analysis [128]. 

o PLI: it is less sensitive to common sources, since it is based in the idea that a 

consistent phase lag between two time series cannot be explained by VC 

from a single common source [129]. 

o WPLI: it takes into account not only the phase, but also the amplitude of the 

imaginary component of the cross-spectrum. In this way, relative phases 

corresponding to small amplitudes of the imaginary cross-spectrum have a 

small impact in the index [130]. 

 Information-based connectivity: these techniques are able to detect both linear and 

nonlinear interactions. Cross-mutual information (CMI), minimum description 

length (MDL) and transfer entropy (TE) lie within this category: 

o CMI: it quantifies the mutual dependence of two signals by measuring the 

quantity of information one signal gains by measuring the other. It is given 

in function of the delay between the two signals [33]. The main strength of 

this technique is that it is able to detect high-order correlations [120]. 

o MDL: the key idea of this technique is that the best model for representing a 

signal is the one with the shortest possible code length. Therefore, the 
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savings in code of one signal by knowing the other are a measure of the 

dependence between them [131].  

o TE: it incorporates directional and dynamical information because it is 

inherently asymmetric and based on transition probabilities [132]. 

One of the main difficulties to overcome when measuring connectivity from EEG 

recordings is the volume conduction. This process originates from the fact that surface EEG 

recordings do not offer direct information from the neural sources, but instead they measure 

a superposition of electrical activity from different sources. Moreover, this activity is 

distorted by the skull, scalp and other conductive tissues. These effects together are known 

as volume conduction [120]. This process may produce spurious correlations and therefore 

misinterpretations of spatial analysis of the EEG [133]. There are several approaches to 

address this problem,, such as designing connectivity metrics which eliminate 

instantaneous effects[34], [134]–[136]. Another interesting metric that was developed with 

the same aim was phase lag index (PLI), which is less sensitive to common sources, since it 

is based on the idea that a consistent phase lag between two time series cannot be explained 

by VC from a single common source, and therefore it is able to render true interactions 

between brain areas [129]. However, it presents a limitation due to its discontinuity; since 

small perturbations may turn phase lags into leads and vice versa. This limitation has been 

overcome by developing a weighted version of PLI (WPLI), as we have already mentioned. 

According to Makeig et al in 2012, effective connectivity techniques better reflect the 

underlying cortical activity and therefore, their potential in BCI field is higher [117]. 

There is not an ideal connectivity metric; their suitability depends on the particular 

phenomena or population under study. Sensitivity to more aspects of the neural dynamics 

may be a desirable property but, at the same, it may turn the metric less robust[34]. With 

respect to the distinction between linear and nonlinear metrics, it is questionable that non-

linear methods are superior to the linear ones, unless the non-linearity is the specific target 

of the study [34]. 

In addition to the connectivity metrics already described, graph theory offer some 

parameters that may help to better quantify EEG networks, and therefore, provide clinically 
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relevant information. Graph theoretical approaches applied to EEG define the electrodes as 

vertices and the connections between them as edges. They are usually given in combination 

with functional connectivity metrics, since the latest provide the information regarding the 

connections between electrodes that will be used to build the network. 

 There are two groups of theoretical graph metrics: regional and global. The first refers to 

the properties of individual nodes and their influence in the network, whereas global 

metrics describe parameters of the whole network. In order to choose the most appropriate 

one, it is important to consider that global network metrics have shown to be less reliable 

than regional ones in a test-retest experiment, in which regional and global metrics were 

evaluated in functional magnetic resonance images of the same subjects with 5 months of 

difference [137]. This experiment revealed that regional metrics were more robust against 

noise than global ones. 

Previous studies have gathered information about neuroplasticity-derived changes from 

EEG recordings. De Vico et al. analyzed functional connectivity by comparing 5 healthy 

and 5 SCI subjects, and applied graph theory metrics [35]. They calculated functional 

connectivity (FC) by using Direct Transfer Function (DTF). They found that, for 3 

frequency bands (theta 4-7 Hz, alpha 8-12 Hz and beta 13-29 Hz), local efficiency was 

higher in SCI subjects than in healthy ones, suggesting higher fault tolerance and a larger 

level of internal organization, as a compensatory mechanism in response to the injury. 

Youssofzadeh et al. found negative correlation between frontoparietal FC (calculated by 

Partial Granger Causality) and kinematic error (difference between the ideal and the actual 

trajectory) in healthy subjects while walking with the aid of an exoskeleton [138], 

suggesting that this FC could serve as a marker of motor learning and adaptation.  

It is of special interest in the field of rehabilitation technologies to find assessment metrics 

that correlate with clinical improvements, and, therefore can be useful for the clinicians to 

quantify and objectively study patient’s evolution. There have been several studies that 

have found correlation between motor recovery and brain activity in SCI patients. One of 

these studies, carried out by Jurkiewicz et al, found that motor cortex activation measured 

with fMRI at different time points along the first year after injury was significantly 
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correlated with ASIA motor score [139]. They also found that the activity in sensorimotor 

areas, such as Supplementary Motor Area (SMA) increased in SCI subjects with respect to 

healthy ones and progressively decreased with the recovery. Other study by Hou et al. 

analyzed by fMRI the connectivity patterns of SCI subjects in comparison with healthy 

controls. They obtained interesting findings, such as increased intra-hemispheric and 

decreased inter-hemispheric FC in SCI patients compared to healthy controls. They found 

that FC between left primary sensorimotor cortex and left cerebellum was increased in SCI 

patients, and this FC was negatively correlated with ASIA motor score. They also found 

that FC between right primary sensorimotor cortex and right SMA was increased in SCI 

patients and it was also negatively correlated with ASIA motor score [140]. The latest 

finding is of special interest for our work, since both areas are easily recordable by EEG. 

They speculated that the inter-hemispheric decreased FC implies the loss of information 

transfer efficiency between both hemispheres, due to the interruption of the efferent and 

afferent pathways, whereas the increased intra-hemispheric FC reflects axon sprouting 

generating new pathways that may compensate the impaired pathways [140]. This 

increased intra-hemispheric FC was negatively correlated with ASIA motor score; hence it 

remained unclear whether this regenerative mechanism is leading to functional recovery. 

However, a later study from the same author showed that recovery rate in SCI subjects was 

positively correlated with FC between right primary motor cortex (M1) and right SMA, and 

also with FC between right M1 and right premotor cortex (PMC)[141]. The rationale they 

suggest to explain this phenomenon is that one of the main recovery mechanisms after an 

insult to the nervous system is the recruitment of new motor areas to compensate the 

reduced capacity of the primary motor cortex to produce a sufficient motor output, which is 

in line with the findings of other studies on patients with stroke [142], [143], as well as with 

other study that showed that the PMC was one of the main contributors to the motor 

recovery of SCI patients 3-4 months after injury [144]. Despite of the importance of these 

studies, all of them have been performed using fMRI to calculate FC, more specifically, in 

the case of Hou et al., they use frequencies between 0.01 Hz and 0.08 Hz, of BOLD 

signals, a phenomenon known as Low Frequency Fluctuations. Therefore, it remains 

unclear whether FC obtained from EEG signals could be correlated with clinical scores in 
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SCI patients, which is of special interest for portable neurorehabilitation technologies as the 

one presented in this work. 

There are a couple of studies that have found correlation between FC and motor outcomes 

reached after completion of a BCI therapy, but none of them in SCI patients. Varkuti et al. 

found in patients with stroke, after performing a therapy with an upper limb robot 

controlled by a BCI, positive correlation between Fugl-Meyer Scale and changes in FC 

between Inferior Parietal Lobe (IPL) and the SMA and between the Anterior Cingulate 

Cortex (ACC) and the SMA [145]. In another study, Young et al. found in stroke patients 

after performing a BCI-mediated neurofeedback therapy some correlations between clinical 

scale changes and FC changes between different areas, specially between the thalamus and 

the motor cortex and between the thalamus and the cerebellum [37]. However, some of 

these correlations were positive and some others were negative, thus suggesting that FC 

changes due to brain reorganization can be also maladaptive, which is in line with other 

studies [38]. Therefore, there is a need of further investigating about which of these FC 

changes are directly related with positive neuroplasticity, especially in SCI subjects since, 

to the best of our knowledge, there are no studies on changes in FC after a BCI-therapy in 

subjects suffering such injury.  

 

3. METHODS 

We are interested in developing FC metrics that could be applied in a BMI therapy. These 

metrics should therefore meet the following requirements: 

 They need to show information that could be clinically relevant. This is 

probably the most subjective point, since the clinical relevance depends on what is 

considered as such by medical experts. In the case of this study, as we have done in 

Chapter 2 with the virtual reality study, we are going to rely on clinical assessments. 

Therefore, we look for metrics that could be correlated or, at least, that show similar 

trends than the scores of the clinical scales. 
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 We focus on the real application of BMI systems, in such a way that the 

defined metrics could be potentially applied in a low-cost BMI (namely, with a 

small number of electrodes). 

 The metrics should have a neurophysiological rationale. With this aim, an 

analysis of the state of the art was performed, in order to identify the brain 

interactions that could reflect progress in the SCI patients’ rehabilitation. Thus, the 

metrics defined here are tailored to the characteristics of patients with SCI, although 

its application in other populations such as stroke patients should not be dismissed, 

according to the existing similarities between neurological injuries. 

Keeping these requirements in mind, two metrics of FC have been applied to EEG data in 

order to analyze their performance in a BMI context: imaginary part of coherency (IC) and 

weighted version of phase-lag index (WPLI). Both of them are less sensitive to volume 

conduction than the other metrics, therefore we believe that they could be adequate in a 

BMI environment. IC is a linear metric, whereas WPLI is non-linear, hence comparing the 

brain interactions that both metrics are able to unwrap, will allow us to determine if EEG 

linearity can be assumed or not. After studying which brain interactions are more directly 

related to clinical status of the patients, we will develop a new metric comprising this 

information, to offer a global synchrony metric (GSYM) that could be used as a method of 

assessment brain changes during neurorrehabilitation therapies. This metric pretends to 

offer a synthesis of brain activity changes from different areas. 

The EEG recordings used to compute the neuroplasticity metrics come from the 

BMI+FES+VR experiments already described in Chapter 3. In them, 4 subjects performed 

5 sessions controlling a FES and a VR feedback directly from their own intention, by MA 

of the upper limbs. There were screening sessions (used to gather data in order to train the 

classifier) and interactive sessions (with FES and VR feedback). We analyzed EEG 

recordings from the screening sessions after the cue appearance (therefore, since t=0 s to 

t=3 s), because we are interested in studying brain activity related with motor intention. In 

order to find correlations between clinical assessments and neuroplasticity metrics, we 

considered the first and the last session for each patient. 
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Before applying the different FC techniques, there are several pre-processing steps that 

must be applied in order to obtain appropriate electrophysiological information. These steps 

are summarized in the following section: 

 

3.1 Pre-processing of the EEG signals 

 Choice of the EEG reference: our study has been conducted with a common 

referenced montage (ear reference). However, these conventional montages can be affected 

by confounding activity. Therefore, there are some methods to re-reference the data offline, 

in order to minimize its harmful effects [146]. One of them is Common Average Reference 

(CAR), but it is less effective in low density EEG recordings, such as the case of our study. 

Other methods are infinite reference, that tries to estimate a time-varying constant that is 

removed from the recorded data [147] and surface Laplacian (SL), also known as Current 

Source Density (CSD) [148]. However, it is not clear which method could work better to 

find FC metrics. In a previous study, it was stated that SL filters were not able to 

distinguish between information coming from volume conduction or from real sources 

[149]. However, other authors are definitely in favour of using SL [150]. More, 

specifically, other study claimed the usefulness of SL to remove volume conduction in 

preparation of connectivity analysis [151]. In the case of FC metrics that ignore zero-phase-

lag synchronizations, such as IC and WPLI, we assume that it is not necessary to perform a 

re-reference of the EEG data and therefore we will work with the original ear-referenced 

data. 

 Choice of signal or source domain: a single EEG source can affect several 

electrodes at the same time, because of field spread effect of the EEG. Moreover, the 

conductivity of the human scalp produces the aforementioned problem of volume 

conduction. To mitigate these effects, it is necessary to perform a translation from signal to 

source domain, what is known as the “inverse problem”. However, there is not a unique 

solution to this problem and, moreover, it is not possible to establish if the determined 

sources are reflecting true brain interactions [152]. This is why IC and WPLI emerge as 

useful metrics in the rehabilitation context, since they are insensitive to zero-lag 
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interactions and hence they assume that mapping between sensors and sources is 

instantaneous.  

 Artifact rejection: this step has been performed by using the same method already 

described in chapter 3; therefore we are just going to mention it here. Firstly, power-line 

notch filter to remove the 50 Hz line interference; secondly a z-score procedure to remove 

trials with artifacts. Thirdly, a bandpass filter (between 0.1 and 50 Hz) to remove DC shifts 

and finally a CAR filter to deal with ocular movement artifacts. It is especially relevant 

when computing FC metrics that all applied filters are zero-phased, to avoid distortion of 

phase information. 

3.2 Choice of epochs 

There is a large range of values of epochs lengths in FC studies, from 1 second to a few 

minutes or even a day [146]. However, for phase synchronization metrics, longer epochs 

could result in lower FC values due to the asymmetry of phase distribution [146].  

During the first trials with a BMI, there could be some seconds of poor concentration of the 

patients, since they are not accustomed to use a BMI. During the last trials, the patient 

could experience a certain fatigue, so we consider for the FC metrics the central trials. 

Therefore, we will take the 20 central trials, discarding the 10 initial ones and the 10 final 

ones. 

3.3 Resting state vs task-related FC 

Most of FC studies have been performed by means of fMRI. This technology involves a 

series of limitations, such as low temporal resolution (>1 s), as well as the spatial 

constraints imposed by the fMRI scanners, in which the subjects have to remain motionless 

during the recordings. This, together with the fact of the low number of time samples 

recorded by fMRI, makes difficult to study task-related FC changes during short tasks. 

Although resting-state FC has been shown as an effective method to assess changes in FC 

[36], [145], [153], in this study we would like to take the most of the EEG advantages by 

analyzing task-related FC. As other authors highlighted, clinical implications of task-related 
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FC changes have been rarely studied. Therefore, we will calculate FC during motor attempt 

of the upper limbs, namely during the 3 seconds after the cue appearance. 

3.4 Choice of frequency bands 

It has been already shown that lower (7-10 Hz) and higher (10-12 Hz) α bands are involved 

in cognitive processes [154]. For oscillations over 20 Hz in surface recordings, there are 

studies suggesting that they could be muscular artifacts [155], [156]. As there are not many 

studies about FC in SCI patients from EEG recordings, it is not clear which frequency 

band(s) could reveal more interesting information from brain interactions. In the study of 

Fallani et al., the three classical EEG bands (θ, α and β) were used to determine FC. 

Therefore, in order to compare with that study and also considering that those frequency 

band have been broadly used to study different aspects of the brain, we decided to also use 

these frequency bands in our analysis. 

3.5 Computation of metrics 

Signal processing steps for each trial for Imaginary Coherence (IC) between two signals x 

and y. In the case of this study, x and y are two signals from 2 different EEG channels: 

1. Zero-padding of x and y, because we are using convolution to smooth and, by 

default, it assumes that data outside the points we have are all zero. 

2. Detrending of x and y. 

3. Apply Hamming window to the detrended data. 

4. Fast Fourier Transform (FFT) of the windowed signals. 

5. Repeat step 4 for the whole signal, using a sliding window. 

6. Calculate cross spectrum of x and y (Sxy) from spectrum of x (Sx) and spectrum of y 

(Sy):      

Sxy(f)=x(f)·y(f)*    (4) 

7. Calculate autospectrum of x and y: 

Sxx(f)=|x(f)|2              Syy(f)=|y(f)|2    (5) 
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8. Apply time-frequency smoothing of the spectra (Sxy, Sxx and Syy), by 2D 

convolution with a Gaussian kernel. 

9. Calculate coherency from the smoothed spectra:  

࢟࢞࡯ = ࢟࢞ࡿ

ඥ࢟࢟ࡿ·࢞࢞ࡿ
   (6) 

10. Calculate imaginary part of Cxy. 

11. Average per frequency bands (theta 4-7 Hz, alpha 8-12 Hz and beta 13-29 Hz). 

 

Signal processing steps for each trial for the calculation of Weighted Phase Slope Index 

(WPLI): 

1. Zero-padding of x and y, because we are using convolution to smooth and, by default, 

it assumes that data outside the points we have are all zero. 

2. Detrending of x and y. 

3. Apply Hamming window to the detrended data. 

4. Fast Fourier Transform (FFT) of the windowed signals. 

5. Repeat step 4 for all the signal, using a sliding window. 

6. Calculate cross spectrum of x and y (Sxy) from spectrum of x (Sx) and spectrum of y 

(Sy), as in formula (4). 

7. Apply time-frequency smoothing of the cross spectrum (Sxy), by 2D convolution with 

a Gaussian kernel. 

8. Calculate WPLI from the smoothed spectrum:  

ࡵࡸࡼࢃ = ࢍࢇ࢓ࡵ ቀ ࢟࢞ࡿ

|࢟࢞ࡿ|
ቁ   (7) 

9. Average per frequency bands (theta 4-7 Hz, alpha 8-12 Hz and beta 13-29 Hz). 

The next procedure is common for both metrics: IC and WPLI. We computed both metrics 

on the after cue period, namely the interval of 3 seconds after the cue appearance, since we 

are interested in the neural interactions during the motor attempt phase of the BMI 
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experiment. These steps are applied for each pair or EEG channels. After that, we have one 

value of IC and WPLI per frequency band and per pair of channels for each trial. 

Considering that there are 32 channels and both WPLI and IC are antisymmetric (i.e. IC 

between channel 1 and 2 will have the same value with opposite sign than IC between 

channel 2 and 1), we discarded the computation of the inverse metrics, then obtaining 496 

combinations of each metric (IC and WPLI) between channels for each of the 3 frequency 

bands, giving a total number of 1488 IC metrics for each trial (IC matrix) and another 1488 

WPLI (WPLI matrix). 

 As we have described in section 3.2, we will take the 20 central trials, discarding the 10 

initial ones and the 10 final ones. We averaged IC and WPLI matrices for the 20 central 

trials, obtaining a single matrix for each session.  

3.6 Global synchrony metric (GSYM) 

As we have mentioned in the Introduction chapter, there are many different ways of 

measuring synchrony between brain areas, and within them, there are hundreds of possible 

combinations of frequency bands, epochs, etc. Then, one of the aims of this work is to 

design a method that comprises all this information in a single metric. We want to design a 

metric that could reflect the changes in brain interactions that could underlie functional 

recovery. Therefore, we studied which brain areas showed a FC more highly correlated 

with clinical scales already shown in Tables 3.6 and 3.8 from Chapter 3: GRASSP (items 

Strength, Prehension-Qualitative and Prehension-Quantitative) and SCIM. We designed a 

Global Synchrony metric (GSYM) that weighted and normalized this FCs in a single value. 

The weighted coefficients were taken from the Pearson correlation coefficient between the 

FCs and the clinical scales: 

ࡹࢅࡿࡳ =
૚

ࡺ
∑ ࢏ࢇ ∙ ࢏࡯ࡲ
ࡺ
ୀ૚࢏     (8) 

Where ࢏ࢇ are the weighting coefficients, FCi is the value of the functional connectivity 

between two areas identified as correlated with clinical scales and N is the number of pairs 

of brain areas found highly correlated with clinical scales. 
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Before computing GSYM, it is necessary to pre-process FC by removing mean and shifting 

the values in such a way that all FC values are positive. Otherwise, adding up negative and 

positive terms would cancel the contribution of some of them. This pre-processing does not 

affect to the correlation since it does not change the waveform of the FC vectors.  

3.7 Validation of GSYM 

After calculating GSYM from EEG signals of the BMI+FES+VR experiments, we wanted 

to validate this metric in a different dataset, in order to study its applicability in different 

BMI experiments. To this aim, we calculated GSYM also in a set of EEG signals from 

experiments in which 4 SCI patients controlled a lower limb exoskeleton with a BMI. More 

details about these experiments were published in a work from our group [28]. The 

paradigm was similar to the one used in BMI+FES+VR, namely 3 seconds of motor 

attempt after the cue appearance. In this case, the cue was auditive, since the patient could 

not be focused on a screen because of the nature of the experiments. We used those 3 

seconds interval from screening sessions to calculate GSYM. There were 40 trials of MA 

on each training session, and we calculated GSYM in the initial and final session performed 

by each patient, discarding the 10 initial and 10 final trials, as we did in the BMI+FES+VR 

experiments. In all screening sessions, the participants were standing, wearing the 

exoskeleton, and holding a walking aid, as can be seen in Figure 4.1. The patients could not 

actually move the legs during the screening blocks (as the exoskeleton joints were blocked). 

Therefore, they were attempting to perform the movement. 

As the areas involved in motor attempt of the upper limb are not the same than the ones 

involved in motor attempt of the upper limb, we have to apply the same methodology 

described in the previous section, namely studying which brain areas showed a FC more 

highly correlated with clinical scales. In this case, clinical scales used were also different, 

since in these experiments both upper and lower limbs are involved, whereas in the 

BMI+FES+VR experiments only the upper limbs were involved. The clinical scales used 

for BMI+Exoskeleton experiments were: lower extremity motor score (LEMS), SCIM and 

10 meter walk test (10MWT). LEMS was used to measure muscle strength, with 5 key 

muscles examined in each leg: hip flexors, knee extensors, ankle dorsiflexors, long toe 
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extensors, and ankle plantar flexors. The grading system for the muscle strength goes from 

0 to 5 (0 = absence of muscle contraction, 5 = normal active movement with full range of 

motion against full resistance). The cumulative score for the lower extremities ranges 

between 0 and 50. SCIM is a scale specifically designed to measure independence of SCI 

patients. It consists of 3 sub-items: self-care, mobility, and respiration and sphincter 

management [157]. 10MWT is a simple test in which the time to walk 10 meters is 

measured [158]. The scores obtained by patients ranged between 12 and 90 seconds. As we 

want to obtain values that increase with improvements of the user, we subtracted 100-

10MWT [s]; in this way all the clinical assessments will increase with patient’s 

improvements.  

 

 

 Fig 4.1 Patient carrying out a session with the BMI and the exoskeleton. 
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4. RESULTS 

4.1 Neuroplasticity metrics for the BMI+FES+VR experiments  

We were interested in observing which of the metrics could reflect clinically relevant 

information. Therefore, we calculated for all combinations of pairs of channels and 

frequency bands correlation between FC metrics (IC and WPLI) and clinical scales 

described in Chapter 3: GRASSP (items Strength, Prehension-Qualitative and Prehension-

Quantitative) and SCIM. We compared initial and final clinical assessments with FC from 

first and last session for each patient. There were found 24 combinations that showed 

strong significant positive correlation between IC and clinical scales (considering strong as 

Pearson r > 0.9 with p<0.001), as can be seen in Table 4.1, and 20 combinations for WPLI, 

as can be seen in Table 4.2.  

Results from IC and WPLI did not differ very much, since 16 of the combinations of 

between-channels FC that were found significantly correlated with clinical scales by WPLI 

were also found by IC. As IC provided a slightly higher number of correlated pairs, we 

selected this magnitude to design our own metric, GSYM. Therefore, according to the 

formula number (5), N was chosen as 24 and FCi was the IC for each of the 24 

combinations. 

Using the IC between the identified areas shown in Table 4.2, we computed GSYM 

according to formula (5), obtaining an initial (PRE) and a final (POST) value of GSYM for 

each patient, as is shown in Fig. 4.2. PRE value represents the IC from the first session and 

POST from the last one. 

GSYM scores were strongly correlated (ρ=0.939) with high significance (p<0.001) with 

Quantitative Prehension scale. 

 

 

 



105 
 

TABLE 4.1: Combinations of channels where IC showed strong positive correlation with clinical 

scales (r > 0.9 and p<0.001) 

EEG Channel EEG Channel Frequency band Clinical scale ρ 
CP4 T7 theta strength 0.933 
FC4 CP2 alpha strength 0.956 
FC4 CP4 alpha strength 0.928 
C5 Fz alpha strength 0.930 

CP2 F7 alpha PreQual 0.979 
CP4 F7 alpha PreQual 0.933 
C5 Fz alpha PreQual 0.945 

CP2 F3 beta PreQual 0.929 
C5 F8 alpha PreQuan 0.934 
C3 F8 alpha PreQuan 0.976 

AFz C1 beta PreQuan 0.986 
AFz CPz beta PreQuan 0.956 
C5 Fz beta PreQuan 0.927 
FP1 Fz beta PreQuan 0.957 
F7 Fz beta PreQuan 0.959 

FP1 F4 beta PreQuan 0.966 
C3 F8 beta PreQuan 0.940 
CPz P7 beta PreQuan 0.930 
Fz Pz beta PreQuan 0.926 

FP2 P4 beta PreQuan 0.957 
F3 P4 beta PreQuan 0.926 
Fz P4 beta PreQuan 0.965 
C2 O1 beta PreQuan 0.926 

CP4 FP2 alpha SCIM 0.930 

Freq. bands: theta 4-7 Hz, alpha 8-12 Hz and beta 13-29 Hz. Clinical scales: strength 
(GRASSP item), PreQual (Qualitative Prehension GRASSP item), PreQuan(Quantitative 
Prehension GRASSP item), SCIM (Spinal Cord Independence Measure) 

 

4.2 Neuroplasticity metrics for the BMI+FES+Exoskeleton experiments  

As we have described in section 3.7, in order to validate GSYM, the same methodology 

was applied to a different dataset: EEG data from BMI+Exoskeleton experiments. Clinical 

scores obtained by patients in this case are shown in Table 4.3. 
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TABLE 4.2: Combinations of channels where WPLI showed strong positive correlation with 

clinical scales (r > 0.9 and p<0.001) 

EEG Channel EEG Channel Frequency band Clinical scale ρ 
FC4 CP2 alpha strength 0.935 
CP2 F7 alpha PreQual 0.934 
CP4 F7 alpha PreQual 0.959 
F7 F3 alpha PreQual 0.942 
C5 Fz alpha PreQual 0.934 

CP3 F4 alpha PreQual 0.932 
FC4 C6 beta PreQual 0.942 
CP2 F3 beta PreQual 0.935 
C5 F8 alpha PreQuan 0.950 
C3 F8 alpha PreQuan 0.962 

AFz C1 beta PreQuan 0.972 
FP1 Fz beta PreQuan 0.957 
F7 Fz beta PreQuan 0.927 

FP1 F4 beta PreQuan 0.966 
CPz P7 beta PreQuan 0.939 
AFz Pz beta PreQuan 0.932 
FP2 P4 beta PreQuan 0.971 
F3 P4 beta PreQuan 0.941 
Fz P4 beta PreQuan 0.953 

CP4 FP2 alpha SCIM 0.930 

Freq. bands: theta 4-7 Hz, alpha 8-12 Hz and beta 13-29 Hz. Clinical scales: strength 
(GRASSP item), PreQual (Qualitative Prehension GRASSP item), PreQuan(Quantitative 
Prehension GRASSP item), SCIM (Spinal Cord Independence Measure) 

Following the same methodology, we calculated the brain interaction more tightly related 

with patient’s status. In this case, 6 interactions were identified, as is shown in Table 4.4. 

 

. 
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Fig 4.2 GSYM value before (PRE) and after (POST) BMI+FES+VR experiments for all subjects. 

 

TABLE 4.3: Clinical scores obtain by the 4 subjects before and after the BMI+Exoskeleton 

 S1 S2 S3 S4 
 PRE POST PRE POST PRE POST PRE POST 
Left LEMS 8 7 13 14 6 7 9 5 
Right LEMS 12 11 8 9 11 9 19 21 
SCIM-Personal care  16 16 15 15 12 12 17 13 
SCIM-Mobility  20 18 19 21 16 19 21 19 
100-10MWT score 58,47 54,137 79,067 87,01 63,017 77,203 26,007 10,19 

PRE: before first session. POST: after last session. LEMS: Lower Extremity Motor Score. SCIM: Spinal Cord 

Independence Measure. 10MWT: 10 meter walk test 

 

Using the IC between these areas, we computed GSYM according to formula (8), obtaining 

an initial (PRE) and a final (POST) value of GSYM for each patient, as is shown in Fig. 

4.3. 
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TABLE 4.4: Combinations of channels where IC showed strong positive correlation with clinical 

scales (r > 0.9 and p<0.001) 

EEG Channel EEG Channel Frequency band Clinical scale ρ 
C3 T8 theta Right Muscle Test 0,962 
F8 T8 beta Right Muscle Test 0,932 
C1 O2 beta SCIM-Personal care 0,933 
FP1 FP2 theta 10MWT 0,928 
CP2 T7 alpha 10MWT 0,977 
C1 F3 beta 10MWT 0,927 

 

 

 Fig 4.3 GSYM value before (PRE) and after (POST) BMI+Exoskeleton experiments for all subjects. 

GSYM scores were strongly correlated (ρ=0.882) significantly (p<0.05) with left LEMS 

scale. 

5. DISCUSSION 

This is, to the best of our knowledge, the first study showing correlations between FC 

metrics calculated from EEG signals and clinical scales in patients with SCI after a BMI-

based experimental therapy. We have shown that BMI can be used simultaneously to 
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rehabilitate and evaluate patient’s progress along the therapy, through FC metrics extracted 

from EEG signals. After studying the interactions between brain areas more directly related 

with functional recovery, we designed a metric that comprised all these interactions in a 

single value, weighted by the correlation coefficient of each of them.  

Most of the correlations between FC metrics and clinical scales were found with respect to 

Quantitative Prehension item of GRASSP. This is an encouraging finding, since the main 

aim of the experiment described in Chapter 3 was to design a system able to promote 

recovery of grasping.  

Interestingly, the IC between the pair of channels that most frequently appeared as 

correlated with clinical scores was in the pair C5-Fz, showing strong correlation in α band 

with strength, in α band with Qualitative Prehension and also in β band with Quantitative 

Prehension. C5 electrode is located in the motor cortex (M1) and Fz is located in the 

Supplementary Motor Area (SMA). Therefore, our result was consistent with previous 

findings from Hou et al.[141] , where they found in SCI patients from fMRI recordings that 

FC between M1 and SMA was correlated with functional recovery. Hence, we believe that 

it is feasible to obtain FC metrics from EEG recordings, with a cheaper and more portable 

technology implemented in a BMI. 

The high similarity found between IC and WPLI indicated that both metrics are robust and 

can be used alternatively to assess FC in BMI studies. The difference between them is that 

WPLI is calculated using solely the imaginary part of the cross spectrum, while IC depends 

also on the amplitude of the individual spectrum, since it is normalized by them [130]. 

While IC is a linear metric, WPLI is non-linear. As we have shown, in the context of a 

BMI-based study, adding the non-linearity did not reveal new brain interactions. Our results 

then show that imaginary part of the spectrum offers a reliable metric, even in the presence 

of noise, of the synchrony between brain areas. 

We have also shown that designing a new metric of global synchrony (GSYM) also reveals 

a neurophysiological assessment correlated with clinical status of patients. GSYM was 

strongly correlated with clinical scales (Quantitative Prehension in the case of 

BMI+FES+VR study and LEMS in the case of BMI+Exoskeleton). Even when brain areas 
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involved in motor attempt of the upper and lower limbs are different, the methodology 

defined in this study allows calculating a single metric with clinical significance. It is also 

to the best of our knowledge the first study showing correlation of brain metrics with 

clinical status of patients before and after using an exoskeleton. There was just one study in 

which Youssofzadeh et al. found correlation between PDC and performance using the 

exoskeleton in healthy subjects [138]. 

It is interesting to highlight the robustness of the metrics against noise, since both have 

been applied in potentially noisy environments, specially the second scenario, in which 

patients are standing up and wearing a robotic exoskeleton. Since imaginary part of the 

spectrum is insensitive to zero-lag signals, the possible muscular artifacts are not affecting 

to the metrics. 

Moreover, we believe that the methodology that we have described in this study could be 

useful to discriminate between FC changes due to brain reorganization that could be 

maladaptive, as other authors have suggested, and FC changes that are really reflecting a 

positive neuroplasticity [38]. It could allow the identification of FC changes directly related 

with clinical improvements. 

We believe that the use of FC metrics in BMI studies could allow the clinicians evaluating 

patient’s progress during the rehabilitation. It could also help to take decisions about going 

further or not with a particular neurorrehabilitative therapy. They are adding information 

about changes in brain synchrony, that could precede the functional recovery, as other 

authors have highlighted [159]. Additionally, the metrics could be used, with a larger 

database of patients, to perform patient segmentation, in order to assign the patient to a 

group and provide insight about which stage of the rehabilitation are the patients in, and 

then study the possibilities of success of BMI-based therapy. We claim that offering such 

information could narrow the existing gap between BMI research studies and real clinical 

applications. 
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6. CONCLUSIONS AND MAIN CONTRIBUTIONS 

The conclusions and main contributions of this section of the thesis are: 

1. The novelty of the application of FC metrics in the context of BMI-based 

experiments with SCI patients. 

2. The design of a global metric of synchrony (GSYM) that comprises the 

interactions between brain areas more closely related with clinical status of the 

patients. 

3. The definition of a methodology to extract clinically relevant information 

from EEG signals that could be applied in different scenarios, since the 

BMI+FES+VR and the BMI+Exoskeleton experiments described in this study. 

4. Linear measurements of FC, such as IC, and non-linear, such as WPLI, 

reveal similar brain interactions in the context of a BMI study. 

5. Imaginary part of the spectrum is a reliable way of determining neural 

interactions even in the presence of noise. 

6. Surface EEG-based systems, despite its low spatial resolution, together with 

robust algorithms for data mining, offer an interesting tool to evaluate 

neuroplasticity, especially useful to develop neurorrehabilitation systems, due to its 

portability and non-invasiveness 

7. There are significant correlations between brain interaction changes and 

physical status of patients with SCI, before and after BMI-based therapies: 

BMI+FES+VR and BMI+Exoskeleton. 

 

 

 

 

 



112 
 

CHAPTER 5: FUTURE WORK AND CONCLUSIONS 

In this thesis, it has been demonstrated that Brain-Machine Interfaces and Virtual Reality 

can be useful for rehabilitation and also evaluation of patients. We have already written 

conclusions for each of the 3 chapters, but we summarize them in this final chapter: 

• A new set of kinematic metrics to evaluate upper limb function by means of 

a virtual reality rehabilitation system has been designed. 

• Clinical key features have been translated into mathematical formulations 

that comprise the kinematic data recorded by the inertial sensors.  

• It has been shown that some of the defined kinematic metrics are correlated 

with standard clinical scales, therefore proving its clinical meaning.  

• These metrics, together with the virtual reality system, offer the possibility 

of carrying out evaluation and therapy simultaneously, which is very important 

to refine patient’s treatment. 

• A method to minimize the influence of involuntary movements in the 

assessment of the agility has been defined by considering the relationship 

between the mean and the maximum angular velocity. 

• BMI, FES and virtual reality have been successfully integrated as a system 

for therapy, allowing SCI patients to control both systems by themselves, 

without external assistance 

• The system showed high levels of accuracy throughout the different sessions 

(79.13 % on average). 

• The accuracy of the system in detecting motion intention remained stable 

throughout the different sessions, so we can conclude that the designed 

algorithms are sufficiently robust. 

• Sparse discriminant analysis, a machine learning technique to reduce 

dimensionality and classify data, has been successfully applied to the BMI 

domain. 

• Promising clinical outcomes have been obtained by 4 patients with iSCI 

after performing 5 therapy sessions with the system, as small improvements of 

their quantitative prehension in the stimulated arm compared with the non-
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stimulated arm. Therefore, we conclude that the design of the system correctly 

accomplished the desired aims. 

• The novelty of the application of FC metrics in the context of BMI-based 

experiments with SCI patients. 

• A methodology to extract clinically relevant information from EEG signals 

that could be applied in different scenarios, since the BMI+FES+VR and the 

BMI+Exoskeleton experiments described in this study. 

• A global metric of synchrony (GSYM) has been designed, comprising the 

interactions between brain areas more closely related with clinical status of the 

patients. 

• Imaginary part of the spectrum has shown to be a reliable way of 

determining neural interactions even in the presence of noise. 

• Surface EEG-based systems, despite its low spatial resolution, together with 

robust algorithms for data mining, offer an interesting tool to evaluate 

neuroplasticity, especially useful to develop neurorrehabilitation systems, due to 

its portability and non-invasiveness. 

• There are significant correlations between brain interaction changes and 

physical status of patients with SCI, before and after BMI-based therapies: 

BMI+FES+VR and BMI+Exoskeleton. 

 

 

We have identified several aspects that could be a matter of research for future studies: 

• The set of metrics defined in Chapter 2 could be used in combination with 

the neuroplasticity metrics of Chapter 4, by the same group of patients. This 

experiment would be interesting to verify our hypothesis that the kinematic 

metrics are more tightly related with neuroplastic changes, since they address 

more specific aspects of patient’s abilities than clinical scales. 

• The sample of the BMI+FES+VR tests should be enlarged to confirm the 

promising results that the experimental therapy offered with 4 patients. 
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• In order to improve wearability of the designed systems, it would be 

interesting to study if other motion capture systems, such as Kinect, could be 

used to extract similar kinematic metrics, with the advantages of its lower cost 

and comfort for the user. 

• New virtual reality headsets are being released very often, such as Oculus 

Rift or HTC Vive. It would be interesting to extend BMI+FES+VR with such 

headsets, in a more immersive scenario, that could open many possibilities for 

rehabilitation, such as designing therapeutic approaches combined with 

interactive videogames, to get the user more engaged and motivated. 

• We have mentioned throughout the thesis the importance of low-cost in 

order to improve the acceptance of these experimental technologies in real 

clinical environments. Therefore, it would be very interesting to study the use of 

low-cost EEG recording systems, such as Emotiv or Neuroelectrics. Moreover, 

these devices do not require the application of conductive gel, which is one of the 

major drawbacks of BMI, according to the opinions of patients that we gathered 

in Chapter 3. 

• Regarding functional connectivity (FC) techniques, we have shown the 

stability and robustness of imaginary spectrum strategies, as well as their 

correlation with the subjects’ clinical status. Therefore, we believe that this kind 

of metrics should be used more frequently in BMI studies. There is still an 

existing gap between BMI research and real applications for patients, and one of 

the main reasons of this low acceptance is the lack of studies that show the real 

effects of the use of this technology in patients. Since one of the main arguments 

used to justify the goodness of BMI is that they are able to bridge lost 

connections of the neural system, it is essential to show the changes that the brain 

is undergoing. This includes not only amplitudes or intensity of signal in 

different areas, but also the interaction between them. This is what FC techniques 

allow; hence we emphasize their importance to add clinically relevant 

information to BMI investigation. 

• Applying graph theory metrics, in combination with FC techniques, would 

allow studying the network structure of brain interactions in SCI patients. Other 
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authors have found, for example, that network efficiency is increased in SCI 

patients with respect to healthy ones (De Vico Fallani et al., 2007). It would be 

very interesting to investigate, in a long term period, the evolution of this 

network metrics and its relation with clinical status of patients.  
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