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Abstract 

Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and to 

improve their quality of life. Among various rehabilitation strategies, robot-assisted rehabilitation is an 

efficient method that is utilized more and more in clinical practice for motor recovery of post-stroke patients. 

However, excessive assistance from robotic devices during rehabilitation sessions can make patients perform 

motor training passively with minimal outcome. Towards the development of an efficient rehabilitation 

strategy, it is necessary to ensure the active participation of subjects during training sessions. This thesis uses 

the Electroencephalography (EEG) signal to extract the Movement-Related Cortical Potential (MRCP) 

pattern to be used as an indicator of the active engagement of stroke patients during rehabilitation training 

sessions. The MRCP pattern is also utilized in designing an adaptive rehabilitation training strategy that 

maximizes patients’ engagement.   

This project focuses on the hand motor recovery of post-stroke patients using the AMADEO 

rehabilitation device (Tyromotion GmbH, Austria). AMADEO is specifically developed for patients with 

fingers and hand motor deficits. 

 The variations in brain activity are analyzed by extracting the MRCP pattern from the acquired EEG 

data during training sessions. Whereas, physical improvement in hand motor abilities is determined by two 

methods. One is clinical tests namely Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) 

which include FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movements’ tests. 

The other method is the measurement of hand-kinematic parameters using the AMADEO assessment tool 

which contains hand strength measurements during flexion (force-flexion), and extension (force-extension), 

and Hand Range of Movement (HROM).  

The original contribution of this thesis is the development of an “Adaptive Robot-Assisted 

Rehabilitation Strategy” which significantly enhances the motor recovery outcomes of post-stroke patients. 

A series of systematic experiments are designed and tested in this project which leads to the development of 

the adaptive rehabilitation strategy. Firstly, the changes in the features of the MRCP pattern are understood 

during different robot-assisted rehabilitation training protocols with both healthy subjects and post-stroke 

patients. It is found that the negative peak (abbreviated as Npeak in this thesis) of the MRCP pattern in both 

groups is more prominent during the interactive training protocol (2D games) compared to simple visual-cue 

protocol. Secondly, the effect of a designed longitudinal rehabilitation training program on the features of the 

MRCP pattern acquired from post-stroke patients is analyzed. It is observed that the Npeak amplitude 

significantly decreases as the patients get comfortable with the exercises. Moreover, it is established that the 

variations in the MRCP features, as well as the training effect on hand motor skills, depend upon the stroke 

lesion locations. The supratentorial stroke patients show Npeak decrease with a positive association in the 

improvements of hand motor abilities earlier when compared to infratentorial stroke patients. The 

infratentorial stroke patients require more training time to show the corresponding Npeak decrease and 

significant hand motor recovery. Lastly, the practical demonstration of the novel adaptive rehabilitation 

training strategy is provided in which training modes progress to the next level depending on the individual 
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patient’s EEG response to the current training mode. 

During the adaptive rehabilitation training strategy, the number of days a patient spends on any 

AMADEO training mode is in accordance with the time he/she needs to master the current training mode. 

Furthermore, it is found that Npeak amplitude increases at all channels whenever a new training mode is 

introduced to the subject which is an indication of active engagement while performing the motor task during 

the new training mode. The efficacy of this rehabilitation strategy is determined by calculating the percentage 

change in the results of the clinical tests and hand-kinematic parameters for the patients who completed the 

fixed-training strategy and for those who underwent the adaptive-training strategy. The results revealed that 

the adaptive-training group achieved 38.98 %, 73.6 %, 39.29 %, and 19.7 % more improvement in FMA-

wrist, FMA-hand, MAS-hand, and MAS-advanced hand movements’ test respectively compared to the fixed-

training group. While, the force-flexion, force-extension, and HROM parameters improved by an extra 145.37 

%, 1.39 %, and 1.89 % for the adaptive-training group compared to the fixed-training group. 

EEG is a user-friendly, cost-effective, scalable, and practical method compared to other methods of 

monitoring brain activities during the rehabilitation process. Therefore, the adaptive rehabilitation training 

strategy developed in this project could potentially be utilized by therapists as an aid to prescribing 

individualized exercises that can continuously challenge patients, keeping them engaged. Ultimately, this 

adaptive-training strategy could promote faster motor and functional recovery for post-stroke patients 

ensuring the best outcome for patients as well as the rehabilitation centres. 
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Introduction 

1.1 Stroke and Stroke Therapy 

Stroke is considered as one of the leading causes of severe disability in the world today [1]. According 

to the latest annual report of the World Stroke Organization, approximately 14 million people had their first-

time stroke in 2019 and 80 million people live with the impact of stroke globally [2]. Stroke is an acute onset 

of neurological impairment and abnormality. There are two basic types of stroke; one is known as an ischemic 

stroke caused by the closure of a blood vessel and the other is known as hemorrhagic stroke due to bleeding 

from the vessel inside the brain [3]. The ischemic stroke is further divided into two categories which are 

embolic stroke where a blood clot travels from the heart or a major vessel and lodges in a smaller vessel and 

thrombotic stroke where fats, cholesterol, or other substances build up inside the blood vessel and blocks it. 

All these types of strokes are shown in Figure 1.1.  

 

Figure 1.1: Types of stroke; (a) Embolic (Ischemic), (b) Thrombotic (Ischemic), (c) Hemorrhagic [4] 

After stroke onset, the brain cells malfunction due to the lack of oxygen and glucose. Without oxygen, 

the neurons and the brain cells start to die after 3 to 4 minutes. The effects of stroke vary among patients and 

it depends on the type of stroke, the brain part that is damaged, and the amount of damage caused by it. 

Generally, stroke results in changes in the level of consciousness, changes in behavioral styles, and 

impairment of cognition, perception, language, sensory, and motor skills. The motor skills impairments are 

reported to be a predominant effect of the stroke where a stroke survivor is unable to move a limb to perform 

Activities of Daily Living (ADL). The ADLs include bathing, dental hygiene, toileting, eating, dressing as 

(a) (b) (c) 
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well as transfer and mobility. Specifically, the impairment of the upper extremities can limit the independence 

of the stroke-affected subjects. 

Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and improve 

their quality of life. The main goal of stroke rehabilitation programs is to teach patients to re-learn their lost 

skills due to stroke. The re-learning of the lost motor functions for stroke-affected patients is made possible 

by implementing various motor training strategies which include conventional physical therapy [5, 6], 

Constraint-Induced Movement Therapy (CIMT) [7, 8], Functional Electrical Stimulation (FES) treatment [9, 

10], Mirror-Box therapy [11, 12], Motor Imagery (MI) therapy [13], Virtual Reality (VR) therapy [14, 15] 

and Robotic Rehabilitation therapy [16, 17] - a new method of therapy that has emerged over the last decade 

with the advancement in robotic technology. The description of the aforementioned motor training strategies 

is given in Table 1.1.  

Table 1.1: Motor training strategies for post-stroke rehabilitation 

Sr. 

No. 

Types of Motor Training 

Strategies 
Description 

1. 
Conventional Physical 

Therapy 

Re-learning of daily life motor activities such as walking, 

standing, sitting, lying down, and switching process from one 

type of movement to another. It relies initially on repeatedly 

performing exercises to improve strength, balance, and 

coordination followed by graduated task practice. It may also 

involve developing compensatory learning when sufficient 

motor recovery of the affected limb is thought not to be 

possible. 

2. 
Constraint-Induced 

Movement Therapy 

CIMT involves the restriction of the non-affected limb over an 

extended period, in combination with a large number of task-

specific repetitive training of the affected limb. This form of 

therapy forces patients to use their affected limb by preventing 

them from developing compensatory skills with their 

unaffected limb. 

3. 
Functional Electrical 

Stimulation Treatment 

In FES treatment, electrical shocks are delivered to the affected 

peripheral nerve which activates the muscle to move. It is 

primarily used to reduce pain and prevent muscles from 

permanently contracting. 

4. Mirror-Box Therapy 

A rehabilitation therapy in which a mirror is placed between the 

arms or legs so that the image of a moving non-affected limb 

gives the illusion of normal movement in the affected limb. It is 

believed to activate neural cells in the affected side of the brain. 

5. Motor Imagery Therapy 

In MI therapy, a mental rehearsal of the movement of the 

affected body parts is performed, without actually attempting to 

perform the movement. This may also activate neural cells on 

the affected side of the brain. 

6. Virtual Reality Therapy 

By simulating real-life activities using VR technology, stroke 

patients can practice motor skills in a setting that is usually 

impossible to create in a hospital environment. 
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7. 
Robotic Rehabilitation 

Therapy 

Robotic rehabilitation therapy involves the use of intelligent 

devices that uses sensors to monitor movement and positioning 

of a limb, then use this feedback to interact with the 

environment. This type of therapy can deliver high-intensity 

and task-specific training, making it useful for stroke patients 

with motor disorders. 

All the above-stated types of motor training strategies promote the mechanism of neuroplasticity in 

stroke patients that reinforces the neural pathways controlling the movement [18]. In this way, these training 

strategies help post-stroke patients to achieve their motor and functional recovery. Motor recovery refers to 

the ability of patients to perform voluntary movements with the affected limb in the same way as before the 

stroke onset, while functional recovery refers to improvements in the ability to perform ADLs independently 

[19].  

1.2 Neuroplasticity and Motor Skill Re-learning in Stroke Patients 

The ability of the brain to adapt, even in adulthood, is called “Neuroplasticity” or “Brain Plasticity” 

[20]. Neuroplasticity can take place at both microscopic and macroscopic levels inside the brain. At the 

cellular level, neuroplasticity is depicted as new or strengthened synaptic connections made by surviving 

neurons [21] while at the structural level, cortical re-mapping occurs whereby other parts of the brain, usually 

adjacent to the damaged brain tissues, take over the functions previously performed by the damaged brain 

part(s) [22, 23]. It can occur if the brain receives an external stimulus such as what might be provided by 

task-oriented motor training [23]. 

Skill is the ability to perform a task with consistency, efficiency, and flexibility [24]. In clinical practice, 

two types of rehabilitation strategies are employed depending on stroke severity and stage of recovery. The 

first approach primarily focuses on compensatory training of patients to regain their motor skills (e.g., 

performing a task with the unaffected limb(s), using a wheelchair instead of walking). The second approach 

is task-oriented training focusing on practicing parts of a task and consolidate these parts into the completion 

of a whole task with the affected limb(s). Some centres are also incorporating new technology including 

robotic devices and computer-based training strategies. This transition in rehabilitation methods is happening 

because neuroscientific research has shown that neuroplasticity changes in the cerebral cortex and other parts 

of the Central Nervous System (CNS) are the primary reasons for the underlying mechanisms of motor skill 

re-learning after stroke [25-27]. More specifically, task-oriented training that focuses on the practice of skilled 

motor performance is the critical link to facilitating neural reorganization and rewiring in the CNS following 

stroke [28-31]. Therefore, whenever possible, task-oriented training at an intense level should be incorporated 

into the rehabilitation program for any patient with stroke-related motor deficits.  

The neurological recovery of stroke patients has two distinct phases; one is an acute phase and the other 

is a post-acute phase [32, 33]. The acute stroke phase lasts for about 2 weeks after the onset of the lesion 

while the post-acute stroke phase usually lasts up to 6 months after the onset [33]. In the acute phase, a rapid 

and natural recovery usually occurs where surrounding cells, that are still alive, return to function. The 

recovery in the acute phase is possible because of the restoration of viable blood supply to the affected region 



20 

 

as well as the resolution of perilesional edema and inflammation [34]. Another important factor of recovery 

in the acute phase is the phenomena of “diaschisis” in which neuronal networks in the undamaged brain 

regions remote from the original damaged site but functionally connected assume some of the roles of the 

damaged part of the brain. Neuroimaging techniques have confirmed that diaschisis may arise from 

subcortical regions on the affected side of the brain or the contralateral motor cortex [35]. These mechanisms 

are less important in the post-acute stages of stroke whereas the neuroplasticity mechanism described above 

becomes more important [32]. Therefore, a better understanding of the pathophysiology of functional deficits 

at various phases after stroke onset is important to optimize the outcomes of rehabilitation interventions [32]. 

1.3 Post-Stroke Robot-Assisted Rehabilitation 

As stated in Section 1.2, the intensive dosage of task-oriented training may facilitate significant 

improvement in motor skills following a stroke due to neuroplasticity phenomena. Conventional 

rehabilitation therapy usually consists of a one-to-one session between therapists and patients. Such types of 

therapies are subject to labor and cost limitations that, in turn, prevent the execution of high-frequency and 

high-intensity rehabilitation interventions [36, 37]. Moreover, manual rehabilitation therapies are associated 

with significant intra and inter-individual variations in delivery and therefore, rehabilitation outcomes may 

not be consistent [36]. Due to the advancement in robotic technology, robot-assisted therapy is being 

investigated and coming into clinical practice [17, 38, 39]. Robot-assisted therapies can provide more 

consistent and frequent rehabilitation training to patients with motor deficits [40]. They also provide a more 

accurate and reliable measure for changes in motor performance compared to measurements in conventional 

therapy for stroke rehabilitation [40]. According to literature, robot-based rehabilitation training is superior 

in improving motor impairments of stroke patients as compared to conventional therapy [38, 41], and further 

meta-analysis studies suggest that using robot-assisted therapy in conjunction with conventional therapy is 

more effective than deploying either alone [36, 38, 41, 42]. 

Robot-assisted therapies utilize intelligent devices with sensors to monitor limb’s movement and 

positioning to adapt to the requirements of the patient under treatment [16, 17]. The rehabilitation robots use 

various techniques which include but are not limited to passive exercise, active-assisted exercise, active-

constrained exercise, active-resistive exercise as well as adaptive exercise [43, 44]. Passive exercises require 

no or little involvement of the patient. In active-assisted exercises, the patient moves his or her limb in a 

predetermined pathway without any force pushing against it. The active-constrained exercise involves the 

movement of the patient’s limb with an opposing force if the movement is outside the defined pathway. The 

active-resistive exercise is the movement with an opposing force. Lastly, an adaptive exercise involves the 

adaptation of a robot to a new unknown pathway.  

In literature, robot-based therapy is being applied for the recovery of both Upper-Extremity (UE) and 

Lower-Extremity (LE) functions. It has been established as a safe and effective method for UE restoration, 

while the role of robotic devices in the rehabilitation of LE remains to be determined [17]. It is proposed that 

for task-oriented rehabilitation of the UE, the robotic devices should possess the following characteristics: 

skill acquisition of functional motor tasks, active participation of the patient in the training process, and 

individualized adaptive-training [37]. This project is based on the recovery of fine hand motor skills by using 
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robot-assisted therapy. 

There are two basic categories of robotic devices used in the field of neurorehabilitation: exoskeleton 

and end-effector robots. Exoskeleton robotic devices are connected to the patients at multiple points and allow 

accurate determination of the kinematic configuration of human joints. Some examples of commercially 

available exoskeleton robots for upper limb recovery include Armeo Spring, Armeo Power, MyoPro Motion-

G, and Hand Mentor devices as shown in Figure 1.2 [45-48]. Whereas, the end-effector robotic devices are 

connected to the limb at only one point and exert forces at the interface (some distal part of the affected limb). 

Examples of end-effector robots available commercially for recovery of the UE are the InMotion, Mirror 

Image Movement Enabler (MIME), Burt, Kinarm, REAplan, and AMADEO as shown in Figure 1.3 [49-53]. 

Both categories of robotic devices enable the implementation of intensive training for patients with upper 

limb motor deficits. There are, also, many other devices in different stages of development or 

commercialization [54, 55]. 

 

Figure 1.2: Exoskeleton robotic devices; (a) Armeo Spring [45], (b) Armeo Power [46], (c) MyoPro Motion-G [47],  

(d) Hand Mentor [48] 

(a) (b) 

(c) (d) 
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Figure 1.3: End-effector devices; (a) InMotion [49], (b) MIME [50], (c) Burt [51], (d) Kinarm [52], (e) REAplan [53], 

(f) AMADEO 

1.4 Methods for Brain Activity Measurement 

There are various modalities developed to date to capture neural activities over different parts of the 

brain [56]. These modalities include Electroencephalography (EEG), Electrocorticography (ECoG), 

Stereotactic EEG (sEEG), Magnetoencephalography (MEG), Positron Emission Tomography (PET), Single 

Photon Emission Computed Tomography (SPECT), functional Magnetic Resonance Imaging (fMRI), and 

functional Near-Infrared Spectroscopy (fNIRS). All these modalities help to understand the complex brain 

structure and its associated functions. The brain activity measurement methods are divided into two major 

categories which include invasive and non-invasive techniques. The non-invasive techniques measure brain 

activities over the scalp surface without breaking the skin, whereas invasive techniques require surgery to 

open the skull and cutting the membranes that cover the brain to place the electrodes directly on the surface 

of the cortex or inside it as shown in Figure 1.4 [57, 58]. Out of these modalities, EEG, MEG, PET, SPET, 

fMRI, and fNIRS are non-invasive techniques, while ECoG and sEEG are invasive techniques. All these 

techniques characterize different aspects of neural activities and they possess different temporal and spatial 

resolutions as shown in Figure 1.5 [59].  

(a) (b) (c) 

(d) (e) (f) 
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Figure 1.4:  Categories of brain measuring techniques [57] 

 

Figure 1.5: Comparison of spatiotemporal resolution for brain activity measurement methods [59]  

 Non-Invasive Techniques 

This section describes the basic characteristics and applications of all aforementioned non-invasive 

techniques commonly employed to capture brain activities. 

EEG measures, over the scalp, the electrical activities that are generated in various cortical layers of the 

brain. It represents a direct measurement of neural activities. It always measures the cortical potential with 

respect to a specific location on the body (usually a mastoid point behind one of the ears). It has a good 

temporal resolution, typically in the order of milliseconds. However, its spatial resolution is poor as indicated 

in Figure 1.5. The reason for poor spatial resolution is the distortion and attenuation of the electrical signals 

by intervening tissues such as cerebrospinal fluid, skull, and the scalp [59]. 

MEG records the magnetic field induced by the electrical activity of the neurons whilst the patient lays 

or sits in a motionless state. Although EEG and MEG are produced by the same physiological process, MEG 

has better spatial resolution because the magnetic field gets less distorted by intervening tissues. It possesses 

both high temporal and spatial resolutions (see Figure 1.5), however, it is sensitive to movement, is costly, 
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and requires extensive training to operate the equipment. It mainly finds its application in neurosciences 

research to understand the structure of the skull and the brain activities precisely [60].   

PET is an imaging modality that works by detecting changes in sugar glucose levels. During PET scan, 

radioactive tracers (gamma rays) induce in a subject that reaches the parts of the brain through blood flow 

and activates those parts for that time. This creates visible spots of neural activity, which are picked up by 

detectors and projected onto the screen as a video image of the brain performing a certain task [61]. SPECT 

is a similar scanning modality to PET because it also uses tracer material and the detection of gamma rays. 

However, the tracers used in SPECT emit gamma radiation that is measured directly, whereas PET tracers 

emit positrons which, in turn, emit two gamma photons in opposite directions due to their annihilation with 

electrons.  

fMRI is a non-invasive neuroimaging technique that measures small changes in the blood flow 

associated with neural activities. It uses a strong magnetic field to measure neural activities indirectly. It has 

a trade-off between spatial and temporal resolution (see Figure 1.5), yet it possesses low temporal resolution 

compared to EEG and MEG because the blood flow is slower than the transmission of electrical activity. On 

the other hand, it has full-brain coverage, and it is not limited to the activity measurement from the cerebral 

cortex like in EEG and MEG. Having good spatial resolution, fMRI can be used to reconstruct the individual 

skull shape as well as the cortical layers of the subjects. Although fMRI is one of the commonly employed 

modalities for the acquisition of brain activities, yet its use is still limited compared to EEG due to expensive 

equipment, the requirement of stationary laboratory set-up, and intensive operator training [62].   

fNIRS is an optical technique that determines variation in blood flow due to brain activities. In 

particular, the fNIRS relies on the absorption spectrum of hemoglobin varying with its oxygenation status in 

the infrared spectrum range as a result of changes in the level of neural activity in specific brain regions [63, 

64]. It is an indirect way of measuring brain activity similar to fMRI, however, it is a comparatively affordable 

technique with portable equipment.   

 Invasive Techniques 

ECoG and sEEG are the invasive versions of EEG developed to improve the spatial resolution of EEG. 

They directly record the spontaneous or evoked neural activities using electrodes placed on subdural and/or 

depth electrodes. The ECoG records the integrated high-frequency activities of a large number of neurons 

using the electrodes placed on the surface of the cortex. While sEEG uses depth electrodes that penetrate the 

brain tissue to record localized brain activities [59]. 

The advantages of invasive methods include excellent quality of brain signal, good spatial resolution, 

less interface from artifacts as well as a higher frequency range. However, due to the requirement of surgical 

procedures, invasive methods are not very popular in research communities for the measurement of brain 

activities. Such techniques are only suitable when the patient is already scheduled for a medical procedure 

that involves opening the scalp.   
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1.5 EEG and its Movement-Related Patterns 

Among all the aforementioned non-invasive modalities, EEG is the most well-established method to 

measure brain activities in both clinical and research settings [65, 66]. Having high temporal resolution and 

being a safe, cost-effective, and easy method to administrate, makes EEG suitable for clinical and research 

purposes [67]. Moreover, it can be used to record brain activities during a motor task which best suits the 

requirements for this research project. Although, it is more sensitive to different artifacts such as eye and 

muscle movements, there are well-established signal processing techniques in the literature to remove such 

artifacts. Therefore, EEG is selected to measure brain activities during motor tasks performed by both healthy 

subjects and post-stroke patients during the experimental work in this project.  

The brain activity changes when a person moves a limb or even just contracts a single muscle. It can 

also be changed even when one imagines a limb movement. The motor intention is a conscious willingness 

of moving a limb before its actual execution [68]. This can be considered as a part of a motor action planning 

stage. When there is an intention or imagination about limb movement, brain oscillations measured over 

sensorimotor or motor cortices change. These brain oscillations, also termed Sensorimotor Rhythms (SMRs), 

are divided into specific frequency bands and termed as delta band (< 4 Hz), theta band (4-7 Hz), alpha band 

(8-12 Hz), beta band (12-30 Hz) and gamma band (> 30 Hz). The alpha band activity recorded over 

sensorimotor areas is termed as mu activity [57]. The reduction in the amplitude of SMRs, usually in the 

alpha and beta band frequency range, is known as Event-Related Desynchronization (ERD) [69]. On the other 

hand, after the execution of movement, the amplitude of the EEG signal gradually increases. This is called 

Event-Related Synchronization (ERS). The waveform for ERD/ERS pattern is shown in Figure 1.6.  

 

Figure 1.6: ERD/ERS EEG-derived pattern [70] 

Another EEG-derived movement-related pattern is known as Movement-Related Cortical Potential 

(MRCP). MRCP is a slow, time-domain event-related potential that appears in the delta frequency band of 

the EEG signal. It appears as a direct-current shifts up to 2 s prior to cue-based as well as self-initiated 

movements [71]. The waveform of the MRCP pattern is shown in Figure 1.7. The MRCP pattern can be 

divided into three components that convey movement-related information. The first pre-movement 
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component is a slow decrease in the cortical potential that starts around 2 s before movement onset and it is 

termed as Bereitschaftspotential 1 (BP1) [71]. The second pre-movement component is a steeper decrease in 

cortical potential compared to BP1 and starts at about 0.5 s before movement onset, which is named 

Bereitschaftspotential 2 (BP2) [71]. Finally, the lowest potential near the movement onset is the third pre-

movement component of MRCP, termed as Negative Peak (Npeak) [71]. In literature, these MRCP 

components are also termed with various names such as BP1 is termed as Readiness Potential (RP) [71], BP2 

as Negative Slope (NS) [72], and Npeak as Motor Potential (MP) [73]. These pre-movement MRCP 

components i.e., BP1 or RP, BP2 or NS, and Npeak or MP reflect the cortical activity involved in planning 

and preparing to perform a voluntary movement [71]. They also occur when there is an intention to move or 

while imagining movements [71]. In this thesis, these three pre-movement MRCP components will be 

referred as BP1, BP2 and Npeak.   

 

Figure 1.7: MRCP EEG-derived pattern [74]. Here 0 s is the movement onset point. 

Both ERD/ERS and MRCP patterns are also termed as motor intention signals in the literature [75-80] 

because they appear when the subject intends to perform a motor task and disappear when he/she completes 

that motor task. Therefore, both ERD/ERS and MRCP patterns are called intention signals in this thesis.  

1.6 Research Hypothesis, Objectives, and Approach 

Robot-assisted rehabilitation is an efficient method to recover the motor impairments of post-stroke 

patients. However, excessive assistance from a robotic device can have a negative effect on the recovery of 

stroke patients [81]. That is, unnecessary assistance from robots can make patients perform the therapeutic 

training sessions passively. Therefore, monitoring of active participation of subjects during robot-based motor 

training is essential. This research project hypothesizes that it is possible to measure the engagement and 

active participation of post-stroke patients towards the development of an efficient rehabilitation strategy to 

maximize their motor recovery outcomes. Section 1.6.1 describes the research gaps identified after 
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performing a comprehensive literature review. Whereas research aims and objectives developed under the 

light of research gaps are presented in Section 1.6.2. Lastly, the research approach adopted to address the 

designed objectives is described in Section 1.6.3. 

 Research Gaps 

The literature review is performed to determine various applications of EEG for the recovery of post-

stroke motor impairments. The literature confirms that the active participation of stroke patients can be 

ensured by detecting the intention signal (EEG-derived movement-related patterns) during motor training 

tasks [82-84]. Moreover, it confirms the patients’ active participation during training sessions can enhance 

the outcomes of their motor recovery [85-88]. Although intention detection or classification during motor 

tasks is addressed in the literature, there is still a gap to understand the variations of intention signals during 

different robot-assisted training protocols. 

Of the commercially available robotic devices mentioned in Section 1.3, the AMADEO rehabilitation 

device (Tyromotion GmbH, Austria) is developed for patients with fingers and hand motor deficits [89]. The 

studies in the literature demonstrate the usefulness of the AMADEO device for the improvement of fine motor 

skills of different patients [90-94]. However, none of these studies detect the intention signal to estimate the 

engagement level or active participation of subjects during motor tasks. An attempt to ensure the active 

participation of subjects during rehabilitation training using the AMADEO device was made by Xianwei et 

al. [93, 94]. The authors developed a novel algorithm “Assist-As-Needed” and evaluated the algorithm’s 

performance with post-stroke patients. While working along the same path, there is a research gap to estimate 

the active participation of stroke patients with the help of the EEG signal using the AMADEO device. 

Generally, a stroke patient requires multiple sessions of rehabilitation training to recover the lost motor 

activities in the affected limb(s). In literature, the outcomes of such training are usually determined with the 

help of clinical tests or measuring the improvement in the performance of the practiced task [85, 86, 93-97]. 

There is a need to find the effect of multi-session robot-assisted training on the EEG signal which could lead 

to the estimation of the neuroplasticity induction that occurs in the repairing brains of the stroke patients. 

Previous researchers have mainly focused on determining the effect of single-session and multi-session 

training on EEG signals with healthy subjects. There is a requirement to establish the changes in the EEG 

signal acquired from post-stroke patients after they complete a multi-session training strategy. 

Another limitation in post-stroke rehabilitation is the use of fixed rehabilitation training strategy for a 

couple of weeks until patients show recovery in their motor skills. It is challenging for the patient to maintain 

concentration during training sessions that are fixed on each training day. Therefore, it is beneficial to design 

an adaptive and dynamic rehabilitation program that varies according to the patients’ participation level. 

EEG-derived patterns vary with the engagement level of both healthy subjects and stroke patients during the 

motor tasks [84, 98-102]. In particular, the amplitude of these patterns has been reported to increase or 

decrease with the engagement level of subjects while performing motor tasks. These variations in the features 

of EEG-derived patterns can be utilized to design adaptive rehabilitation training. 
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 Research Aims and Objectives 

The research aim of this project is to improve the outcomes of robot-assisted stroke rehabilitation 

programs based on the identified research gaps and limitations during the literature review. More specifically, 

an effort is made in this project to develop an efficient rehabilitation technique that increases the engagement 

of the stroke subjects during motor training sessions and, in turn, enhances the outcome of the developed 

rehabilitation program for post-stroke patients. The following objectives are set to fulfill the research aims: 

a. To identify which EEG-derived pattern can be used to measure the level of the subject’s engagement in 

hand motor tasks. 

b. To understand the changes in the selected EEG pattern during different robot-assisted rehabilitation 

training protocols. 

c. To develop and validate a longitudinal motor training design for hand motor recovery of post-stroke 

patients. 

d. To determine the effect of the designed longitudinal training strategy for hand motor recovery of stroke 

patients on the EEG signal. 

e. To correlate the changes in the EEG signal with the results obtained from commonly employed clinical 

tests and robot-based assessment methods. 

f. To design and implement an adaptive robot-assisted motor training technique for post-stroke patients to 

enhance their rehabilitation outcomes. 

 General Research Approach 

A series of experiments are designed to address the aforementioned research objectives. An ethics 

application for all the experiments performed during this research project was approved by the University of 

Wollongong (UOW) Ethics Committee and the New South Wales (NSW) Health Authority. The Ethics 

application number was 2014/400 which was granted for a year and with the possibility of renewing the 

application for the following years. Furthermore, before the study commencement on both healthy 

participants and stroke patients, written informed consent was read and duly signed by every participant. The 

approvals of the UOW Ethics application and consent form used for all experiments of this project are also 

presented in Appendix 1. 

At Port Kembla Hospital located at Warrawong NSW Australia, a rehabilitation specialist was actively 

engaged in identifying potential subjects for the experiments. The AMADEO robotic device and EEG 

acquisition system were moved to Port Kembla Hospital Physiotherapy Rehabilitation Department. An 

honorary appointment has also been received to conduct experimental work at the physiotherapy 

rehabilitation department. The appointment of an honorary research application is also given in Appendix 1.  

The general research approach for this project is presented in Figure 1.8. In this study, the post-stroke 
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patients are recruited according to well-defined inclusion criteria. The AMADEO hand rehabilitation device 

is selected for fine hand motor skill training of the recruited patients. Before the start of the training, two 

assessment procedures are performed to determine the current impairment level in the hand motor skills of 

the patients. Firstly, clinical tests of the UE are conducted that are normally used at rehabilitation centres. 

Secondly, hand-kinematic parameters using the AMADEO assessment tool are measured.  

Stroke patients participate in a multi-session robot-assisted training of their affected hand on the 

AMADEO device. The EEG measurement is performed during training sessions to monitor the active 

participation level of the participants. After the literature review, the MRCP pattern is selected as an indicator 

of active participation in this project. If the engagement level of the subjects is high or moderate (indicated 

by the variations in the MRCP pattern) then the same training continues. However, if their level of 

engagement is low then the training session is made more challenging. In this way, the patients can maintain 

the level of active participation throughout the designed rehabilitation program. At the end of the training, 

both clinical tests and hand-kinematic parameters measurements were performed again to compare with the 

corresponding pre-training measurements.  



30 

 

 

 Figure 1.8: The overview of the general research approach of this project  

With this approach of post-stroke motor training, the rehabilitation outcomes will be enhanced which 

will improve the quality of life for stroke patients. The overall rehabilitation period of stroke patients will 
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also be reduced that is in the best interest of both patients and rehabilitation centres. Furthermore, the 

outcomes of this research project can be a guideline for rehabilitation centres to implement the developed 

rehabilitation strategies on a large scale.   

1.7 Research Contributions and Outcomes 

 Contribution of the Thesis 

Towards fulfilling the research aims and objectives of this project, the following major contributions 

were made by this study: 

(i) A comprehensive review of the literature was conducted on the various applications of the EEG signal 

for post-stroke rehabilitation. The literature review provided an overview of the major works and trends 

in this area of research, as well as, identifying the research gaps in this field. 

(ii) The difference in intention signal produced during hand motor tasks for two distinct training protocols 

was established with both healthy subjects and stroke patients. Visual-cue protocol was based on simple 

pictures of hand movements while another protocol was one of the interactive 2D games available in the 

AMADEO rehabilitation device. It was found that the intention signal during the interactive 2D game 

was greater in amplitude compared to that during the visual-cue protocol. These results helped in 

designing further experiments of this project. 

(iii) A multi-session robot-based rehabilitation training was designed and conducted for recovery in hand 

motor skills of post-acute stroke patients using the AMADEO device. The effect of the designed 

rehabilitation program on the EEG signal was measured by analyzing the changes in the features of the 

MRCP patterns. Moreover, the improvements in hand motor skills were determined with the help of 

clinical tests and hand-kinematic parameters’ measurements.  These improvements were correlated with 

the variations in the MRCP pattern. The experimental results confirmed that the amplitude of the MRCP 

pattern decreased when the stroke patients achieved competency in performing the required motor tasks. 

Furthermore, the decrease in the MRCP pattern showed a positive relationship with the physical 

improvements in hand motor skills.   

(iv) The multi-session robot-based training was tested on stroke patients with different lesion locations. It 

was found that the variations in the MRCP pattern, length of rehabilitation training as well as 

corresponding improvements in hand motor skills depended on the lesion location.  

(v) A novel “Adaptive Robot-Assisted Rehabilitation Training” program was devised for post-stroke 

rehabilitation using AMADEO robotic device. This training strategy was progressively advanced after a 

stroke patient achieved competency in the current training protocol. In this way, every stroke patient 

underwent specific training on the AMADEO device in accordance with their needs. It was also found 

that the improvements in the hand motor skills were more pronounced in post-stroke patients who 

underwent this adaptive-training strategy compared to those patients who underwent the fixed-training 

strategy implemented earlier in this project. 
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 Dissemination of Research  

The outcomes of the research were systematically disseminated through various publications listed 

below:  

Published  

(1) M. Butt, G. Naghdy, F. Naghdy, G. Murray, and H. Du, “Investigating Electrode Sites for Intention 

Detection During Robot Based Hand Movement Using EEG-BCI System,” in Proceedings of IEEE 18th 

International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 2018, pp. 

177-180. 

(2) M. Butt, G. Naghdy, F. Naghdy, G. Murray, and H. Du, “Investigating The Detection of Intention Signal 

During Different Exercise Protocols in Robot-Assisted Hand Movement of Stroke Patients and Healthy 

Subjects Using EEG-BCI System”, Advances in Science, Technology and Engineering Systems Journal, 

vol. 4, no. 4, pp. 300-307, 2019. 

(3) M. Butt, G. Naghdy, F. Naghdy, G. Murray, and H. Du, “Patient-Specific Robot-Assisted Stroke 

Rehabilitation Guided by EEG – A Feasibility Study,” in Proceedings of IEEE 42nd Annual 

International Conferences of the IEEE Engineering in Medicine and Biology Society (EMBS), Montreal, 

Canada, 2020. 

(4) M. Butt, G. Naghdy, F. Naghdy, G. Murray, and H. Du, “Assessment of Neuroplasticity Using EEG 

Signal in Rehabilitation of Brain Stem Stroke Patients,” in Proceedings of the Annual IEEE Canadian 

Conference of Electrical and Computer Engineering (CCECE), London, Canada, 2020. 

Under Review 

(5) M. Butt, G. Naghdy, F. Naghdy, G. Murray, and H. Du, “Effect of Robot-Assisted Training on EEG-

Derived Movement-Related Cortical Potentials for Post-Stroke Rehabilitation,” submitted to IEEE 

Access on February 01, 2021.  

1.8 Thesis Outlines 

According to the work conducted in this project and the outcomes produced, this thesis is structured as 

follows: 

Chapter 1 – Introduction: As highlighted so far, this chapter provides a brief introduction to the research 

background and the rationale behind the study. It also states research gaps, research aims, and objectives as 

well as the research approach based on the highlighted research gaps. The research contributions and achieved 

outcomes, and the thesis structure are presented at the end of the chapter. 

Chapter 2 – Literature Review: In this chapter, a comprehensive literature review on the various 

applications of EEG signals in the field of post-stroke motor rehabilitation has been presented. This review 
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discusses studies on eight distinct applications of EEG signals involving motor tasks for post-stroke 

rehabilitation. It also identifies research gaps and future research fields in the selected topic. 

Chapter 3 – Experimental Set-Up and Data Processing Details: Chapter 3 describes the complete EEG 

acquisition system, data processing software, AMADEO rehabilitation device, its training programs, and its 

assessment procedures. Lastly, the details on signal processing steps involved in extracting the MRCP pattern 

from the acquired EEG signals for the data analysis of all experiments are explained.  

Chapter 4 – Movement-Related Cortical Potential during Different Exercise Protocols for Single-

Session Hand Motor Training: In this chapter, the intention detection for hand motor tasks during two 

distinct training protocols is performed and validated using healthy and stroke subjects. This chapter 

establishes the concept of EEG signal variations during different training protocols which act as a 

foundational concept for the subsequent experiments. 

Chapter 5 − Quantification of Movement-Related Cortical Potential Associated with Motor Training 

after Post-Stroke Rehabilitation: This chapter explains the experimental protocol to determine the effect of 

multi-session robot-assisted rehabilitation training on the recovery of hand motor skills. The designed 

protocol is validated with post-stroke patients in clinical settings by analyzing MRCP pattern variations. 

These variations in the MRCP pattern are correlated with the results obtained from the clinical tests and the 

measurements of hand-kinematic parameters.   

Chapter 6 – Adaptive Robot-Assisted Stroke Rehabilitation Guided by EEG – Two Case Studies: A 

novel adaptive and dynamic rehabilitation strategy for the motor recovery of post-stroke patients is proposed 

in this chapter. The proposed training strategy is tested on two post-stroke patients. Also, the clinical results 

(clinical tests and hand-kinematic parameters) obtained from the fixed training protocol used in Chapter 5 are 

compared with those obtained during the adaptive-training protocol to evaluate the overall benefits of using 

the adaptive-training protocol for post-stroke rehabilitation.  

Chapter 7− Conclusion and Future Work: This chapter provides a critical review of the outcomes 

produced in this research project, draws some conclusions, and provides some recommendations for future 

works in this field.  
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Chapter 2  

Literature Review 

2.1 Introduction 

Stroke is considered to be one of the main causes of prolonged disability among adults [1]. The most 

common impairment occurs when a stroke survivor has a motor loss of limb(s) on one side of the body causing 

difficulty with walking and affects the ability to perform ADLs. There are many types of post-stroke 

rehabilitation therapies currently being practiced, and others being investigated. One of the therapy types 

being investigated and coming into clinical practice is robot-assisted therapy. During this therapy, the active 

participation of stroke patients while performing motor tasks needs to be monitored. One way to determine 

the active participation of subjects during motor tasks is to acquire their brain activities. Among many 

modalities available to capture brain activities during motor tasks, this project has selected EEG modality to 

acquire brain activities during post-stroke rehabilitation motor tasks. 

A comprehensive literature search was performed to explore how EEG is being deployed in stroke 

rehabilitation research to recover their lost motor functions. This literature search also helps to identify 

research gaps, discover the latest developments in the field, and to explore future trends. The search was 

performed on several databases including Scopus, Web of Science, and IEEEXplore. The keywords or 

phrases used in these database search engines are listed in Table 2.1. 

Table 2.1: Keywords used for literature search 

Keywords / Phrases 

1. “EEG” OR “Electroencephalography” 

2. “Stroke” 

3. “Rehabilitation” 

4. 
intention OR motivation OR anticipation OR cognition OR engagement OR participation OR 

“motor training” OR “motor learning” OR “motor task” OR “motor practice” 

As a result of the search, 834 research articles were identified, which were rigorously and thoroughly 

processed, and the duplicate articles were removed. Initially, the title and abstract of each paper were 

examined to identify the aim and hypothesis of the study. This resulted in 415 papers with sound and relevant 

hypotheses. Furthermore, the following selection criteria were applied to the remaining papers: 

a) The aim, hypothesis, and objectives of the paper were clearly described. 

b) The experimental design in the papers involved some motor tasks imagined or performed by the 

subjects. 

c) Articles involved human subjects. 
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d) The intervention and methodology deployed in the paper were comprehensively explained. 

e) Papers were using EEG as a major diagnostic tool.  

f) Papers discussed ERD/ERS and MRCP as movement-related EEG patterns. 

g) Review papers were excluded. 

The outcome was 171 papers that were selected for in-depth review. The selected papers were 

subsequently structured according to their contents as illustrated in Figure 2.1. 

 

Figure 2.1: Structure of review chapter according to the applications of EEG in post-stroke motor rehabilitation  

The rest of this chapter is organized as follows. Section 2.2 covers studies that use EEG as a motor 

intention signal for classifying various movement types, detecting a particular motor intention, and decoding 

the intention signal. Section 2.3 reviews papers illustrating those applications of the EEG-based Brain-

Computer Interface (BCI) systems that deploy motor intention signal to either control the movement of 

robotic devices or to apply various stimulations. In Section 2.4, different studies demonstrate the effect of 

various motor training protocols on the EEG signal. Finally, a summary of the chapter is provided in Section 

2.5, research gaps in this discipline are discussed, and future trends are identified. 

2.2 Intention Quantification using EEG Signal Analysis 

As mentioned in Section 1.5 of Chapter 1, the EEG movement-related patterns change when a person 

imagines or executes a movement of a limb and therefore, they are termed as an intention signal in the 

literature. MI is the most popular protocol used in experiments involving motor activities [103]. There are 

various techniques developed to classify or detect the intention signal or decode it into various kinematics 

properties. The intention signal classification of various movement types is described in Section 2.2.1. The 

detection and decoding of intention signals are discussed in Sections 2.2.2 and 2.2.3, respectively.  
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2.2.1 Classification of Intention Signal 

In most studies, the classification of intention signals is performed by using machine learning 

algorithms. These intention signals can be associated with the movement of single as well as multiple limbs. 

In a single limb motor task, the classification is performed by studying the kinematics properties within a 

limb, whereas, in the latter case, classification is based on intention signals extracted by different limbs. Table 

2.2 summarizes various techniques proposed for the classification of the intention signal during different 

types of motor tasks.   

Table 2.2: A comparison of studies on the classification of intention signal 

Sr. 

No. 

Author(s) (years) / 

Ref. 
Movement Types 

Classifier Type / 

Classification 

Method 

Average Classification 

Results 

1. 
Deng et al. (2005) / 

[104] 

shoulder-abduction 

versus elbow-

flexion torques 

Time-Frequency 

synthesized Spatial 

Patterns (TFSP) 

algorithm 

89 % accuracy for healthy 

subjects, 76 % accuracy for 

stroke subjects. 

2. 
Zhou et al. (2006) / 

[105] 

shoulder-abduction 

versus elbow-

flexion torques 

Support Vector 

Machine (SVM) 

classifier 

92.9 % accuracy for healthy 

subjects, 84.1 % accuracy 

for stroke subjects. 

3. 
Zhou et al. (2009) / 

[106] 

isometric shoulder-

abduction versus 

elbow-flexion 

torques 

classifier-enhanced 

TFSP 

92 % accuracy for healthy 

subjects, 75 % accuracy for 

stroke subjects. 

4.  
Rodrigo et al. 

(2011) / [107] 

rest, motor 

preparation and 

Motor Execution 

(ME) of right arm 

multi-class Linear 

Discriminant 

Analysis (LDA) 

classifier 

65 % accuracy for 2-class 

classification, 55 % 

accuracy for 3-class 

classification. 

5. 
Antelis et al. 

(2012) / [108] 

unaffected versus 

affected arm 

movement 

SVM classifier 
71 % average accuracy for 

stroke subjects.  

6.  
Ortner et al. (2012) 

/ [109] 

MI of the left hand 

versus right hand 
LDA classifier 

90.4 % accuracy for 3D 

virtual feedback, 89 % 

accuracy for static bar 

feedback with healthy 

subjects. 
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7. 
Lou et al. (2013) / 

[110] 

finger-extension 

versus thumb-

adduction, finger-

flexion, and rest 

LDA classifier 

78.96 %, 81 %, and 78.03 % 

accuracies respectively, to 

distinguish finger-extension 

from thumb-adduction, 

finger-flexion, and rest with 

healthy subjects. 

8. 
Xie et al. (2013) / 

[111] 

knee-extension 

versus knee-flexion 

An extreme learning 

machine algorithm 

based on EEG-

Electromyography 

(EMG) fusion 

features  

98.9 % accuracy for healthy 

subjects, 84.4 % accuracy 

for stroke subjects. 

9. 
Lechner et al. 

(2014) / [112] 

MI of the left hand 

versus right hand 
LDA classifier 

81.16 % accuracy for VR 

feedback, 77.84 % accuracy 

for static bar feedback with 

healthy subjects. 

10. 
Mohanchandra et 

al. (2014) / [113] 

MI of the right hand 

versus right foot 
SVM classifier 

94.2 % accuracy for healthy 

subjects. 

11. 
Taylor et al. (2014) 

/ [114] 

MI versus ME of 

wrist movements 
NeuCube algorithm 

76 % accuracy for healthy 

subjects. 

12.   
Garcia-Cossio et al. 

(2015) / [115] 

active and passive 

walking versus 

baseline 

Logistic regression 

classifier 

Healthy subjects: 94 % 

accuracy for active walking 

versus baseline, 93.1 % 

accuracy for passive 

walking versus baseline, and 

83.4 % accuracy for active 

versus passive walking. 

Stroke subjects: 89.9 % 

accuracy for active walking 

versus baseline. 

13. 
Jochumsen et al. 

(2015) / [116] 

one foot varying in 

movement 

kinematics   

SVM classifier 

70 % accuracy for ME task, 

66 % accuracy for MI task, 

and 63 % accuracy for 

attempted movements of 

stroke patients. 

14. 
Choi et al. (2016) / 

[117] 

gait versus standing 

conditions 
LDA classifier 

73.2 % accuracy for chronic 

stroke patients. 
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15. 
Gunay et al. (2016) 

/ [118] 

two different speeds 

of the right arm (nail 

and cotton 

scenarios) versus 

rest. 

(Note: nail condition 

has higher speed 

than cotton 

condition) 

LDA classifier 

64 % accuracy for nail 

versus rest, 59 % accuracy 

for cotton versus nail, 67 % 

accuracy for cotton versus 

rest, and 56 % accuracy for 

cotton versus nail versus 

rest conditions with healthy 

subjects.  

16. 
Jochumsen et al. 

(2016) / [119] 

palmar, lateral, and 

pinch grasp versus 

idle hand state 

LDA classifier 

75 % accuracy for 2-class 

problem and 63 % accuracy 

for the 3-class problem with 

healthy subjects. 

17. 
Tang et al. (2016) / 

[120] 

MI and ME for left 

versus right hand 

and left hand versus 

both feet 

SVM classifier 

Wearing exoskeleton 

scenario: 84.29 % accuracy 

for MI sessions, and 87.37 

% for ME sessions. 

18. 
Qiu et al. (2017) / 

[121] 

MI of paretic hand 

versus non-paretic 

hand 

SVM classifier Not stated. 

19.  
Wang et al. (2017) 

/ [122] 

MI of 30 % of 

Maximum 

Voluntary 

Contraction (MVC) 

versus 10 % of 

MVC versus rest 

SVM classifier 
70.9 % accuracy for the 3-

class problem. 

20. 
Paul et al. (2018) / 

[123] 

MI of thumb versus 

middle finger versus 

index finger versus 

wrist-extension 

versus wrist-flexion 

versus rest 

SVM classifier 
91.5 % accuracy for healthy 

subjects. 

21.  
Suwannarat et al. 

(2018) / [124] 

MI of hand opening 

versus closing (M1), 

forearm pronation 

versus supination 

(M2), wrist-flexion 

versus its extension 

LDA and SVM 

classifiers 

84.71 % accuracy of M1 

versus M2 task with left 

hand and 84.64 % accuracy 

with the right hand, 88.38 % 

accuracy of M1 versus M3 

task with left hand and 

87.59 % accuracy with the 
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(M3) right hand, 77.59 % 

accuracy of M2 versus M3 

task with left hand and 

80.98 % accuracy with the 

right hand. 

22.  
Karacsony et al. 

(2019) / [125] 

MI of the left hand 

versus right hand (2-

class), MI of the left 

hand versus right 

hand versus rest (3-

class), MI of the left 

hand versus right 

hand versus both 

feet (4-class) 

Deep learning and 

Convolutional Neural 

Network (CNN) 

architecture 

87 % accuracy for the 3-

class problem, 70 % 

accuracy with the 4-class 

problem with healthy 

subjects. 

23.  
Park et al. (2019) / 

[126] 

gait versus stand 

condition and gait 

ready versus stand 

ready conditions 

CNN algorithm using 

spatial-spectral model 

83.4 % accuracy for gait 

versus stand, 77.3 % 

accuracy for stand versus 

gait ready, 77.7 % accuracy 

for gait versus stand ready.  

From Table 2.2, it is noted that LDA and SVM classifiers are the two most commonly employed 

classifiers for the intention signal classification. Recently, an adaptive SVM classifier with Common Average 

Reference (CAR) has been used to classify hand opening and closing tasks by acquiring beta EEG activity 

from both hemispheres [127]. However, the TFSP algorithm, regression classifiers, classification tree, 

NeuCube algorithm, deep learning algorithms as well as convolutional neural network algorithms are also 

deployed in classification problems (see Table 2.2). A unique idea of using a combination of classifier 

algorithms consisting of a deep neural network with a convolutional neural network and recurrent neural 

network is explored in [128] to classify grasp and pour tasks with a robotic arm. MI-based protocols are 

commonly used in the classification problems as shown in Table 2.2. In addition, upper-limb movements’ 

intention classification is more addressed compared to that for lower-limb movements.  

The EEG signal processing for the classification of the intention signal occurs in three stages; pre-

processing, feature extraction, and classification or detection. The pre-processing step usually consists of 

artifact removal, channel selection, and filtering of EEG data to extract a specific-frequency band. While the 

feature extraction stage consists of extracting various features from EEG-derived pattern(s) and selection of 

appropriate features which will then be used by the classifier. Therefore, many studies have discussed the 

effect of pre-processing and feature extraction strategies to enhance the performance of their designed 

classification strategies. For instance, after acquiring an EEG signal from 163 electrodes, Zhou et al. [129] 

devised a  method of optimal channel selection used for feature extraction and proved that similar or even 

better classification results could be obtained using an optimal number of channels. One of the commonly 

used filters for spatial filtering, before the intention classification step, is the Common Spatial Pattern [130, 

131]. However, this filter requires prior knowledge of the appropriate frequency band and suitable channels’ 
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selection [132]. This problem can be solved by applying linear dynamic system modeling for the 

characterization of EEG dynamics as described in [133].  

The training of the classifier model for a particular motor task requires time and effort. The idea of 

developing a generalized classification model, which is trained for one motor task and then can be used for 

the classification of various similar tasks, is attractive. Zhang et al. [134] provided a practical demonstration 

of this idea for the upper limb movement classification problem. The EEG-based classification model was 

trained for the elbow joint MI task and then the trained classifier model was tested on eight other MI tasks of 

the upper limb. The authors concluded that a single-joint motor task could be utilized as a training model to 

classify other MI tasks with reasonable classification accuracy. Furthermore, Kaiser et al. [135] used active 

and passive hand motor tasks to train the LDA classifier and then tested it using the MI hand motor task to 

reduce the training time of classifiers for stroke patients.   

2.2.2 Detection of Intention Signal 

The detection of motor intention signals involves distinguishing a particular limb movement from the 

rest of the brain activities. The motor intention signal indicates the active participation of the subjects 

undergoing the rehabilitation process. The active participation of post-stroke patients is considered to be a 

core reason for neuroplasticity induction inside the brain [18]. The early detection of intention signals is also 

important in robot-assisted motor tasks. Therefore, the detection of motor intention signals has been addressed 

extensively in the literature.  

Niazi et al. [75] detected the intention of self-paced ankle dorsiflexion using features extracted from the 

MRCP pattern and obtained an average True Positive Rate (TPR) of 82.5 % for ME protocol with healthy 

subjects, 64.5 % for MI protocol with healthy subjects as well as 55.01 % for attempted movement by stroke 

patients. Muralidharan et al. [136] extracted the attempted movement of finger-extension versus resting state 

by post-stroke patients using ERD/ERS features. Similarly, Planelles et al. [76, 77] compared the performance 

of various classifiers to detect the intention signal during gait and arm movements using ERD/ERS features. 

Lew et al. [78] detected the intention of a self-paced reaching arm movement with an average TPR of 81 % 

for left hand movement and 79 % for right hand movement. Hortal et al. [137] obtained a TPR of 56.1 % in 

a real-time test for gait movement. Recently, Mahmoodi et al. [138] demonstrated the use of a robust beam-

forming algorithm for intention detection of hand movement with temporal EEG features and obtained a TPR 

of 77.1 %. 

A combination of spectral and temporal features, extracted from ERD/ERS and MRCP patterns 

respectively, have also been explored for intention detection during motor tasks. For instance, the intention 

signal during voluntary arm reaching movement was detected using features obtained from both ERD/ERS 

and MRCP patterns in [139]. The results of the experiment showed that TPR for healthy participants was 74.5 

% while for stroke patients, it was 82.2 %. The TPR of the patient group was reported slightly higher than 

that in the healthy group, however, more delayed intention detection was obtained in the former group 

compared to the latter. Similarly, Sburlea et al. [140] demonstrated the detection of intention to walk in stroke 

patients by using both ERD and MRCP patterns. Nine chronic stroke patients performed a self-initiated walk 
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with the help of auditory cues. The authors used a sparse LDA classifier and obtained an average accuracy of 

64 % to detect the walking intention. Similarly, the researchers in [79] developed a protocol that continuously 

detected the intention of the walking movement of 10 healthy subjects using features from the MRCP and 

ERD patterns. They concluded that their designed protocol was able to continuously detect the intention 

signal with up to 70 % accuracy for intra-session and up to 66 % accuracy for inter-session without 

recalibration of their designed system. Hadsund et al. [141] obtained average detection accuracy between 82 

% to 87 % and 74 % to 80 % for foot and hand motor intention detection respectively. They concluded that 

temporal features contributed more to the foot motor intention detection whereas, spectral features were more 

dominant in the detection of hand motor intention. On the other hand, Kamavuako et al. [142] showed that 

spectral features outperformed temporal features while detecting intention signals for lower limb movements 

with both healthy and stroke subjects.  

A combination of EEG and EMG signals for detection of the intention signal is also being explored to 

increase the reliability of the results. Lopez-Larraz et al. [143] showed that the highest accuracy was achieved 

when features extracted from both EEG and EMG signals were used in detecting the hand motor intention 

signal of stroke patients. An exoskeleton device was triggered after detecting the intention signal of finger 

movement using the EEG signal and by developing coherence between EEG and EMG signals in [144].  It is 

shown in [145] that the appropriate choice of the input signal (EEG or EMG) for detecting the intention signal 

could improve the adaptability of assistive devices with respect to individual user’s needs.  

Multiple efforts have been made to understand the effect of various factors on the intention detector’s 

performance. For example, a comprehensive study was conducted by Xu et al. [146] to determine the effect 

of types of a motor task, selection of EEG patterns as well as the choice of signal processing technique on 

intention detector’s performance. They found that ballistic motor task intention detection using time-series 

analysis of the MRCP pattern was the best option to obtain the highest detection accuracy. Lopez-Larraz et 

al. [147] demonstrated that the detector’s performance could also be influenced by the choice of recalibration 

methods during a multi-session protocol. They observed that the selection of appropriate recalibration 

schemes depends on the selected features (ERD/ERS or MRCP features) used to detect the motor intention 

signal. Moreover, they suggested that the correct recalibration scheme could enhance the performance of the 

detector.   

A personalized rehabilitation device for intention detection could be an important step in providing a 

home-based rehabilitation system for post-stroke patients. Therefore, the novel idea of a personalized 

rehabilitation system used to detect the intention of the pedaling movement was proposed in [80]. The 

designed protocol was tested on five healthy subjects in which epoch window size, algorithms for features 

extraction, and EEG electrode configurations were subjective. The EEG data were acquired with the help of 

a wireless EEG acquisition system and ERD/ERS signals were assessed from mu and beta EEG bands to 

detect the motor intention signal. An average TPR of 76.7 % and detection accuracy of above 55 % were 

achieved by the authors.  

A self-paced motor training system normally requires detection of the motor intention signal for which 

the classifier model should be trained with subject-dependent data at the beginning of the experiment. This 
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could be time-consuming and sometimes frustrating for the participants, especially patients. To solve this 

problem, researchers have explored various techniques by either training the classifier with the ME foot task, 

then testing it for MI task [148, 149], or by implementing a template matching technique [150].  

Due to stroke, the brain area (e.g. contralateral sensorimotor cortex) generating motor intention signal 

could be damaged in some stroke patients. Therefore, the right choice of the brain area and EEG channels 

used for intention detection of the required limb is important. Antelis et al. [151] investigated the possibility 

of using an unaffected brain motor cortex to continuously detect the intention for movements or attempted 

movements of the unaffected and affected hand. The authors recruited six severe chronic stroke patients to 

perform the simple reaching task. EEG signals were continuously acquired over the unaffected brain area to 

extract the ERD features. They concluded that their proposed protocol could detect the intention of the 

affected arm movement continuously using brain signals from the unaffected brain area with significantly 

higher detecting accuracy. Li et al. [152] observed that selecting channels showing prominent ERD instead 

of using channels over the contralateral sensorimotor cortex could significantly enhance the accuracy in 

detecting the movement of paretic hand performed by stroke patients. Whereas, the authors in [153] 

demonstrated that stroke lesion locations could influence the detection accuracy of unaffected and affected 

hand movements. The intention detection accuracy can also be affected by different physiological artifacts 

contaminating the EEG signal. By analyzing the effect of various artifacts removal on the intention detector’s 

performance, Lopez-Larraz et al. [154] showed that rejecting trials containing artifacts could help to capture 

more accurate brain activities which eventually improved the performance of the intention detector.  

Many researchers also explored novel techniques and novel EEG features for intention detection. A 

novel technique using Locality Preserving Projection together with LDA classifier (LPP-LDA) for intention 

detection of dorsiflexion with the right ankle was investigated in [155] using MRCP features. The authors 

compared the performance of their proposed algorithm with that of the Matched Filter (MF) algorithm. The 

experimental results showed that MRCP was detected with approximately 11 % better TPR and 145 ms earlier 

using the LPP-LDA algorithm compared to the MF algorithm. Sburlea et al. [156] tested a novel feature i.e. 

the instantaneous phase of MRCP to evaluate its effect on the classifier’s performance used for gait motor 

intention detection. They concluded that the use of this feature demonstrated the best results for the session-

specific condition. 

2.2.3 Decoding of Intention Signal 

Kinematic and kinetic factors of a motor task can change the features of movement-related EEG patterns 

during both MI and ME motor tasks. Therefore, along with the classification and detection of motor intention 

signals, many researchers have explored the possibility to decode the intention signal into various physical 

parameters including task directions, force, speed, or other kinematics properties.  

Lew et al. [157] decoded the direction of a hand reaching task for self-paced reaching arm movement 

with the help of a haptic device. The movement directions were decoded using MRCP pattern with up to 76 

% accuracy for healthy subjects, and up to 47 % accuracy for stroke patients performing the task with their 

impaired arm as well as on average 312.5 ms before the actual movement onset. Whereas, Jochumsen et al. 
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[158] used only one EEG channel for detecting the motor intention for palmar grasp performed with a 

handgrip dynamometer. Moreover, the detected signal was decoded into the motion force and speed. The 

experimental results demonstrated that about 75 % of all movements were detected 100 ms before the onset 

and about 60 % of the movements were accurately decoded into the force and speed level in accordance with 

the movement tasks. Kim et al. [159] decoded the three-dimensional trajectories of the MI task of arm 

movement when the subjects imagined the movement or observed the movement demonstrated by the 

volunteer’s arm and the robotic arm using both linear and non-linear decoders. They suggested that their 

experimental results were an important step forward towards the development of an accurate decoder for BCI 

applications.   

The concept of decoding the intention signal is also being investigated on the lower limb kinematics 

properties. The intra and inter-limb kinematics during feed-forward and feedback walking tasks on the 

treadmill were decoded in [160]. Six healthy subjects were asked to walk on a treadmill as guided by real-

time visual feedback. The ankle, knee, and hip joints kinematics of the participants were recorded through an 

infrared optical motion capture system while their brain activities were recorded by a 12 electrode EEG 

system. The authors calculated the Pearson correlation coefficient between the known measured signal and 

the predicted output of the decoder to represent the decoding accuracy. They obtained the Pearson correlation 

coefficient of 0.68 with their designed protocol. Luu et al. [161] designed a real-time closed-loop VR-based 

multi-session protocol to decode the joint angles of the lower limb during a treadmill walking task. They 

tested their designed experiment on four healthy subjects. The state-space non-linear adaptive filter called the 

unscented Kalman filter was employed for decoding the walking patterns. The amplitude variations in the 

MRCP pattern were analyzed for decoding purposes. After eight days of training, significant improvements 

in the decoding accuracy of knee, ankle, and hip joints were measured. It is noted that the protocols used for 

decoding of intention signal for lower limb movement were mostly based on treadmill walking.  

2.3 Brain-Computer Interface System 

A brain-computer interface is a computer-based system that acquires brain signals, analyzes them, and 

translates them into commands to an output device to carry out the desired actions [162]. Thus, BCIs do not 

use the brain's normal output pathways of peripheral nerves and muscles. For many years, BCI systems have 

been used to assist people with impairments. After the stroke, the patient is unable to perform ADLs 

efficiently. For stroke rehabilitation, BCI systems can be employed as a communication device or can allow 

patients to control devices like robotic arms, wheelchairs, or orthoses and prostheses, which in turn assist 

them while performing ADLs [163]. Moreover, current robotic devices along with BCI systems allow patients 

to participate in rehabilitation exercises, which require their own mental inputs. Neurophysiological input 

signals can avoid slacking and provide robotic support only when the brain is particularly responsive to 

peripheral input. Such active rehabilitation exercises can induce neuroplasticity and help in the recovery of 

post-stroke patients [164]. Researchers have explored various input modalities for BCI systems used for 

stroke rehabilitation, with EEG-based BCI systems proven to be the most popular.  

The general framework of the BCI system is illustrated in Figure 2.2. For invasive BCI approaches (left 

side of Figure 2.2), ECoG or sEEG signals are used as input into the BCI system. However, this approach is 
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not widely applicable due to the need for surgical procedures. On the other hand, non-invasive BCI 

approaches (right side of Figure 2.2) include EEG, Blood Oxygenation Level-Dependent (BOLD) fMRI, as 

well as fNIRS as an input modality. After the acquisition, brain signals are processed to extract specific 

features according to the aim of the BCI system (such as communication or control) and then classification 

is performed to translate the signal into a control signal that drives the BCI system. There are two main 

categories of BCI system applications; one category is the assistive BCI that is used to help patients with 

communication or performing the movement and the other category is rehabilitation BCI systems used to 

help patients restoring their lost motor functions. The studies discussed in this section are mainly focused on 

rehabilitation-based EEG-BCI systems that utilize one of the movement-related EEG patterns namely 

ERD/ERS and MRCP.    

 

Figure 2.2: General framework of BCI systems [163] 

In rehabilitation, EEG-BCI systems are extensively applied to trigger various robotic devices using the 

intention signal of the participants. Such studies are discussed in Section 2.3.1. Another use of the EEG-BCI 

system in stroke rehabilitation is the application of various electrical stimulations to modulate the brain 

activities of stroke patients to induce neuroplasticity in their brains. The studies describing the application of 

stimulation using EEG-BCI systems are described in Section 2.3.2.  

2.3.1 Robotic Device Control with Intention Signal 

To control the movement of the robotic devices, the motor intention signal is either classified or detected 

using the EEG-BCI system. Some researchers have also explored the decoding of intention signals according 

to the kinematic properties of the selected limb. The decoded intention signal is then used to control the 

movement of a robotic device.  
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Wang et al. [165] detected MI of arm movement to control the movement of the Manus robot and 

achieved 76.05 % average online accuracy for their designed system. A custom-made upper-limb 

rehabilitation robotic device was used by Xu et al. [166] for MI classification of left and right arm of healthy 

subjects and achieved an averaged online classification accuracy of 86 %. Another custom-made mechanical 

hand robot that was operated by MI detection using the EEG-BCI system is proposed in [167]. In this work, 

the hand’s force and angle were fed back to the robotic device to adapt its movement accordingly. The authors 

state that their designed system achieved an accuracy of 89.7 % with an information transfer rate of 0.5099 

bits per second. Nakatani et al. [168] tested the feasibility of their designed pedal-driven wheelchair-based 

rehabilitation system which was operated by detecting the intention signal of leg pedaling movement. They 

achieved approximately 79.8 % accuracy in moving the wheelchair in a forward direction. Luu et al. [169] 

designed a closed-loop EEG-BCI system to control the walking of the virtual avatar by decoding the intention 

signal into lower limb kinematics. Recently, Kotov et al. [97] tested the working of hand exoskeleton 

triggered by the MI classification using the EEG-BCI system for hand motor recovery. The authors observed 

improvements not only in the participants’ clinical tests but also in performing ADL by post-stroke patients 

within the first year of their stroke.   

An EEG driven motorized ankle-foot orthosis-based BCI system was developed by Xu et al. [170] that 

triggered the orthosis on detecting ankle dorsiflexion movement using the MRCP pattern. They achieved a 

TPR of 73 % and stated that neuroplasticity was induced in the subjects after using their designed system for 

only 15 minutes. Another study on triggering robotic devices through the subject’s intention signal was 

performed by Bhagat et al. [171] for elbow joint movement using an asynchronous EEG-BCI robot-assisted 

system. The motor intention signals of four chronic stroke patients were detected by using the MRCP pattern 

which then triggered an exoskeleton device called MAHI-EXO-II. Norman et al. [172] developed an EEG-

BCI paradigm that provided only partial assistance to unimpaired volunteers when they tried to move the 

FINGER robotic exoskeleton device using their index and middle fingers. The partial assistance motivated 

subjects to apply adequate force to complete the task. The study also considered the effect of audio-visual 

stimuli on ERD signals. The authors observed that audio-visual stimuli resulted in better detection of ERD 

patterns when the subject performed voluntary movement or robot-assisted movement. Marghi et al. [173] 

demonstrated the working of a unique EEG-BCI-based control robotic mirror-box therapy for the recovery 

of foot and ankle movements. The designed system was tested for both offline and online sessions and an 

accuracy of 94.5 % and 75 % were achieved, respectively. Most recently, Kapsalyamov et al. [174] 

implemented a novel assist-as-needed technique for elbow-flexion and extension movement using the 

exoskeleton and EEG-BCI system. The authors achieved an accuracy of 78 % and stated that their designed 

protocol kept the subjects involved in the training by providing assistance when required.  

Brauchle et al. [175] tested the feasibility of a system in which the movement of a 3D multi-joint 

exoskeleton device was controlled by MI during reaching arm movements on three healthy subjects. Another 

feasibility test was performed by Nagai et al. [176] where the movement of a 1-Degree of Freedom (DOF) 

robotic device was controlled by the intention signal during flexion of upper limb movement. The authors 

claimed to achieve an accuracy of 79 % for their designed protocol. These feasibility studies are still in their 

developmental stage and need more investigation using actual stroke patients.   
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The concept of using the unaffected hemisphere to control EEG-BCI system-based movements has also 

been explored in the literature. Four chronic hemispheric stroke patients were recruited to control the 1D 

cursor movement using brain signals from their unaffected hemisphere in [177]. Each subject demonstrated 

cortical activations in the unaffected hemisphere associated with the intended movement of the affected hand 

and achieved accuracies were between 68 % and 91 %.  Similarly, ten stroke patients were trained to use their 

unaffected hemisphere for controlling the movement of exoskeleton robotic device with a home-based EEG-

BCI system in [96]. The authors stated the subjects controlled the movement of the exoskeleton device that 

opened and closed their affected hand using brain signals from their unaffected side. After 12 weeks of the 

training, there was an increase of about 6.2 points in the clinical test namely, the Action Research Arm Test 

(ARAT).  

The effect of various feedbacks including haptic and kinematic feedbacks on EEG-BCI performance 

has also been a topic of interest. Gomez-Rodriguez et al. [178] demonstrated that by modulating SMR activity 

using haptic feedback, the online decoding performance of the BCI-operated Whole-Arm Manipulator 

(WAM) robotic arm could be enhanced. Another attempt on studying the effect of haptic feedback on the 

performance of the EEG-BCI system was performed in [179, 180] by controlling the triggering of a haptic 

device (Barrett WAM). In these studies, the mu and beta rhythms of EEG were used by a fuzzy proportional 

derivative position controller to control the movement of the haptic device that was triggered only on correct 

detection of the motor intention signal through the EEG-BCI system. Ivanova et al. [181] demonstrated that 

the motor functions of the arm could be improved by providing kinematics feedback during EEG-BCI system 

robot-based rehabilitation training.  

Researchers have also explored different multimodal set-up in operating EEG-BCI systems. A state-of-

the-art multimodal system consisting of the EEG-BCI system, the eye-tracking system as well as Kinect 

system was developed by Frisoli et al. [182] to decode the intention signal of the arm reaching action into 

each joint movement of Light Exoskeleton device. They tested their developed system on three healthy 

subjects and four chronic stroke patients and achieved an average accuracy of 89.4 %. Another hybrid 

rehabilitation system was designed and tested by Hortal et al. [183] which consisted of the Armeo Spring 

exoskeleton device and FES system. In this system, the motor execution was performed after the EEG-BCI 

system detected the intention signal. The authors achieved an average accuracy of 76.7 % for healthy subjects 

and 71.6 % for stroke patients in the experimental results.  

The EEG-EMG based BCI systems were also explored for robot-assisted motor rehabilitation of post-

stroke patients. For example, Sarasola-Sanz et al. [184] controlled the movement of the 7-DOF exoskeleton 

device after decoding the elbow joint angle using the EEG-EMG hybrid BCI system. In another study, a knee 

exoskeleton device was driven by using both EEG and EMG signals based BCI system [185]. Furthermore, 

Chowdhury et al. [186] developed a BCI system to trigger an orthosis during the upper-limb movement using 

both EEG and EMG signals. The authors achieved an accuracy of 92.81 % for healthy participants and 84.53 

% for stroke patients.  

The efficient control of the robotic device using the EEG-BCI system depends on the reliable detection 

of the intention signal. Therefore, many attempts were made to increase the detection accuracy for EEG-BCI 
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system-based robotic control applications. Shimizu et al. [187] devised a new method for intention detection 

using the EEG signal which could decrease noise interference as well as it could adapt to the needs of the 

individual user. The authors implemented their designed technique on the control of a 1-DOF robotic device 

for arm and elbow movements. A novel control strategy that integrated a VR environment and a low-cost 

motion sensor was developed to detect intention with EEG-BCI system for the movement of the HIT-ULR2 

rehabilitation robot in [188]. In addition, Sarac et al. [98] controlled the movement of the AssistOn Mobile 

device by detecting the intention signal for arm movement using the EEG-BCI system. The authors first 

trained the designed system using offline sessions and then tested it for self-paced asynchronous online 

sessions. Through their designed system, they ensured the active engagement of the subjects during their 

rehabilitation training. A fuzzy template matching technique was proposed in [189] to enhance the intention 

detector’s performance of the EEG-BCI system for ankle dorsiflexion. The authors claimed that their 

designed system could detect the intention signal within several tens of minutes. However, this study design 

needs to be evaluated further with actual stroke patients.  

In order to facilitate the access of robot-based rehabilitation training for the stroke-affected subjects, 

many researchers developed a user-friendly and mobile rehabilitation unit. In this regard, Xiao et al. [190] 

developed an EEG-driven robotic rehabilitation system, consisting of a wireless EEG headset and 4-DOF 

exoskeleton, triggered using the intention signal of the subjects performing UE movements including the 

forearm, elbow, and wrist. Bi et al. [191] tested another robot-assisted EEG-BCI system containing a hand 

exoskeleton device and mobile wireless headset. The movement of the hand exoskeleton was controlled by 

MI detected through the BCI system. The authors reported an estimated time delay range of 1.8 to 2.9 s in 

operating their designed system.  

The effect of robot-based motor training using the EEG-BCI system on the physical outcomes of post-

stroke patients has been studied extensively by clinicians and researchers. The post-stroke patients received 

an exoskeleton-based MI-EEG-BCI system training for hand motor recovery in [85]. An improvement in ball 

grasp, finger pinch grip, and gross arm movements was found for the BCI-exoskeleton group compared to 

the control group. The effect of BCI-driven exoskeleton training compared to the passive movement of 

exoskeleton with fingers was investigated in [86]. The first participants’ group controlled the movement of 

the robotic device with their brain signal while the second group performed the passive movement using the 

same device. At the end of the training, the first group showed a 21.8 % improvement in ARAT and 36.4 % 

in Fugl-Meyer Assessment (FMA) score while there was only a 5.1 % improvement in ARAT and 15.8 % in 

FMA score for the second group. Twenty-six stroke patients were recruited to take part in randomized-

controlled robotic training in [95]. In the Manus group, the subjects performed a robot-aided movement of 

their shoulder and elbow whereas, in the BCI-Manus group, the same robotic movement was triggered by 

intention detection through an EEG-BCI system. The clinical test FMA was performed at multiple intervals 

during the training. Moreover, the revised Brain Symmetry Index (rBSI) was measured to find its correlation 

with FMA improvement. The experimental results showed that the BCI-Manus group outperformed the 

Manus group in regard to motor recovery and rBSI was negatively correlated with the improvement in the 

FMA score. The negative correlation of rBSI with the increase in FMA score suggests that the rBSI can be 

used as a diagnostic predictor for BCI-based stroke rehabilitation. 
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The robot-based motor training using EEG-BCI system in combination with physiotherapy for post-

stroke rehabilitation has also been investigated. Ramos-Murguialday et al. [87] presented a clinical-based 

study in which 32 chronic stroke patients participated in EEG-BCI robot-assisted rehabilitation training 

followed by physiotherapy. The experimental group controlled the movement of orthoses with modulation in 

the EEG SMRs while in the control group, the robotic orthoses movement occurred randomly and did not 

depend on EEG SMRs. Different clinical tests were measured at the start and the end of training including 

motor function scores for upper limb, effects of placebo–expectancy, EMG of hand and arm, FMA, and fMRI 

BOLD tests. A significant improvement in all the clinical tests was measured after the BCI training for the 

experimental group compared to the control group. Ang et al. [88] proposed an MI-based EEG-BCI system 

that included a haptic robotic device namely Haptic Knob (HK) for recovery of wrist and hand movements. 

The experimental set-up was tested on three randomly assigned groups. Group 1 underwent EEG-BCI 

controlled movement with the help of HK followed by 30 minutes of physiotherapy. Group 2 received only 

HK movement-based trials along with the same duration of physiotherapy as for group 1. Lastly, group 3 

received only one and a half-hour of physiotherapy. At equal intervals during and after training, the FMA 

score was calculated to assess the efficacy of the designed rehabilitation program. The results confirmed that 

group 1 showed better motor recovery of UE compared to group 3 while there was no difference measured 

between groups 2 and 3 in regard to gain in the motor ability. 

2.3.2 Stimulation Applications of EEG-BCI System 

In literature, the EEG-BCI system has been used extensively to apply different electrical stimulation 

over the affected limb(s) or the damaged brain area(s). FES is the most commonly employed stimulation for 

such applications, however, some other stimulation types have also been explored.  

Meng et al. [192] used the EEG-BCI system to detect motor intention signals for wrist and hand 

movement tasks which, in turn, triggered the FES electrode placed over the arm muscles. The authors showed 

that their designed multi-session protocol had less than 20 % online error rate and improved the clinical tests 

of the stroke patients. An FES-based EEG-BCI intervention was developed in [193] for upper-limb recovery 

of post-stroke patients. The authors recruited four chronic post-stroke patients to complete eight training 

sessions of arm reaching actions. The motor intention signal was detected using the EEG-BCI system which 

then triggered the application of FES for further assistance to perform the task. They stated that their protocol 

correctly classified about 66 % of the movements and 112±278 ms before the actual movement onset. 

Furthermore, Irimia et al. [194] detected the intention of arm movement which then triggered the FES system 

using an MI-based BCI system. The authors reported an average accuracy of 87.4 % in operating their 

designed system by all subjects. 

The application of stimulation can also enhance the performance of the EEG-BCI systems. For instance, 

Bhattacharyya et al. [195] showed that the classification accuracy of the EEG-BCI system for MI tasks could 

be improved if visual feedback and the electrical stimulation were fed back to the system. Cheng et al. [196] 

obtained improved classification results for distinguishing left and right arm movements using the EEG-BCI-

based FES system.  
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The idea of modulation of the EEG-derived patterns using FES has also been explored. For example, 

Takahashi et al. [197] showed that if the extracted ERD pattern using the EEG-BCI system was modulated 

with FES during ankle dorsiflexion, the range of movement of ankle joint as well as EMG signal amplitude 

of the affected muscle could be significantly enhanced. Hommelsen et al. [198] modulated the mu rhythm 

using FES and then fed back to the EEG-BCI system to improve the classification accuracy of the system for 

upper-limb movements. Recently, Remsik et al. [199] performed a study on the modulation of ERD pattern 

with FES for UE rehabilitation of post-stroke patients. The authors observed an increased ERD pattern over 

the ipsilesional brain area as well as improvement in the clinical tests.  

Along with FES, many other stimulation techniques have been investigated for BCI applications. For 

instance, Tan et al. [200] demonstrated that post-stroke patients were able to trigger Neuromuscular Electrical 

Stimulation (NMES) with the help of an MI-based EEG-BCI system used for wrist-extension and finger-

extension tasks. Similarly, Mukaino et al. [201] showed that if NMES were triggered by observing significant 

MRCP patterns for finger opening tasks, then improvement in muscle tones, as well as clinical tests, could 

be achieved. Most recently, a portable NMES triggered BCI system was designed for subacute stroke patients 

in [202] and the authors observed a significant change in ERD pattern over the damaged hemisphere. In 

addition to NMES, transcranial Direct Current Stimulation (tDCS), Transcutaneous Electrical Nerve 

Stimulation (TENS), and tactile stimulation were also tested for EEG-BCI system-based applications. A tDCS 

based BCI system was used for a randomized control multi-session study for improvement of the affected 

hand in [203]. The authors observed an increase in ERD patterns as well as in FMA test scores after the 

training. Niazi et al. [204] showed that triggering peripheral electrical stimulation on correct detection of the 

intention signal during ankle dorsiflexion using an asynchronous EEG-BCI system could induce corticospinal 

neuroplasticity. Jacob et al. [205] controlled the application of TENS on the arm after the detection of motor 

intention signal through a BCI system. The authors achieved an average accuracy of 87 % for their designed 

system. Finally, Shu et al. [206] showed that by controlling the attempted movement of the wrist with tactile 

stimulation assisted by the EEG-BCI system, the brain activation could be enhanced and detection accuracy 

of 85.1 % could be achieved.      

The control of the robotic device movement and application of stimulation with the help of the EEG-

BCI system are also jointly investigated in some research articles. Resquin et al. [207] controlled the 

movement of the exoskeleton device by intention detection of reaching arm movement using the EEG-BCI 

system and the intensity control of FES. In addition, Ushiba et al. [208] tested the feasibility of their designed 

user-friendly and cost-effective EEG-BCI system that enabled chronic stroke patients to control the 

movement of an exoskeleton device as well as FES stimulation application during finger-extension 

movement. However, these studies are still in their developmental stage and further investigations are 

required.    

2.4 Motor Training Effect Quantified with EEG 

Motor skill acquisition is essential throughout the lifespan including learning new motor skills or re-

learning of movements that are lost after a brain injury such as stroke. Depending on the motor skill, a 

different amount of motor training is required for motor learning. Post-stroke patients re-learn their lost motor 



50 

 

skills as a result of different rehabilitation training strategies. The assessment of motor training during these 

training strategies is an important step in evaluating the overall benefit of any designed rehabilitation program. 

Commonly used clinical assessment tools to evaluate the motor recovery of stroke patients are the FMA scale 

and Motor Assessment Scale (MAS) [209]. These clinical tests provide information on post-stroke recovery 

only at the physical level. However, at the neuronal level, neuroplasticity occurs where new neural pathways 

are established, existing pathways are reinforced and adjacent surviving neuronal tissues assume the role of 

the damaged neuronal tissues [18]. Therefore, there is a requirement to understand the effect of motor training 

on the cortical activities of the brain. 

Researchers have explored different technologies to determine the effect of various motor training on 

brain activities. Examples include EEG [210-220], MEG [221], fMRI [222-225], fNIRS [226, 227], 

Transcranial Magnetic Stimulation (TMS) [228-231], tDCS [232]. Among these technologies, EEG is a low-

cost, safe, and user-friendly method to record brain activities. Different parameters derived from the EEG 

signal could potentially be used as a quantification tool to determine the effect of motor training in post-stroke 

patients during their rehabilitation period.    

Various EEG-derived measurements have been explored in the literature to determine the effect of 

motor training. These measurements include EEG coherence analysis [233-237], EEG source localization 

[238], as well as analyzing changes in EEG-derived movement-related patterns (ERD/ERS and MRCP). The 

sections given below will discuss studies that analyzed the changes in ERD/ERS or MRCP patterns due to 

motor training. Many studies discuss the motor training effect using EEG-derived patterns between skilled 

and non-skilled subjects and such studies are described in Section 2.4.1. Moreover, studies in which the 

effectiveness of motor training protocols are determined by performing assessment procedures at pre and 

post-training periods are reviewed in Section 2.4.2. Lastly, numerous studies that measure the effect of motor 

training on the EEG signal during the actual training protocol are discussed in Section 2.4.3. 

2.4.1 EEG Analysis of Skilled Vs Non-Skilled Subjects 

In this section, the effect of motor skills learned by playing athletic games, gun-shooting training, or 

playing musical instruments has been discussed. For this purpose, various features extracted from both 

ERD/ERS and MRCP patterns have been analyzed.  

In [239], the karate and fencing athletes, as well as non-athletes, participated in simple bipodalic and 

more engaging monopodalic movements while EEG was continuously recorded. A decrease in alpha power 

during the monopodalic condition showed that the athlete group had achieved neural efficiency, which means 

neural activity is reduced in the athlete group, compared to the non-athletes group. Baumeister et al. [240] 

performed the EEG analysis during goal-directed games like golf by dividing the EEG data into different 

frequencies i.e., theta (4.75–6.75 Hz), alpha-1 (7–9.5 Hz), alpha-2 (9.75–12.5 Hz), and beta-1 (12.75–18.5 

Hz) and calculating their performance-related power values. The authors observed higher values of frontal-

midline theta power and higher parietal alpha-2 power in the golfer group compared to the non-golfer group. 

The authors concluded that these higher values of power measured by EEG were associated with the level of 

skill during golf putting task in their study. 
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During a self-paced wrist-extension task, a significantly reduced Bereitschaftspotential (BP) amplitude, 

shorter latency, and contralateral localization of MRCP pattern in the motor cortex have been observed in the 

athlete group compared to the non-athlete group in [241]. In a single session study, the brain activities of the 

kendo players and the control group were compared while they performed brisk handgrip self-paced 

movement with their dominant and non-dominant hands in [73]. This study found the shorter BP onset and 

the larger MP amplitude of MRCP for non-dominant hand movements only. These studies indicate the neural 

circuit of athletes alters through training compared to non-athletes and therefore, the MRCP features showed 

modulation. 

The MRCP features also show variations for professional shooters compared to the control group. For 

instance, ten professional rifle shooters and 12 non-shooters participated in the self-paced movement task 

with their right and left index fingers in [72]. The amplitude of BP and NS decreased, and their latencies 

increased for the only right finger tasks in the shooters group compared to the non-shooters group. In addition, 

the authors in [242] observed a decrease in BP and an increase in skilled performance positivity when the 

shooters and non-shooters groups learned a new motor skill using their index finger of both hands. These 

studies prove that when an expert group learns a new motor skill, the amplitude of MRCP components 

decreases.  

 The variation in brain activities for the experienced musicians versus non-musicians during a motor 

task is also investigated in the literature. Such studies show that experienced musicians exhibit significant 

variations in the amplitude of MRCP components due to their level of skills achieved over years. For example, 

in [243], ten experienced guitarists and ten non-musicians healthy subjects performed the G major scale on 

the guitar while their EEG activity was recorded The results indicated that the BP component of MRCP 

showed no significant change. However, the NS and MP showed a significant decrease in their amplitudes 

and NS had a lag for the experienced guitarists compared to the control group. In [244], six piano players and 

six non-musician subjects participated in a series of force production tasks using their index and ring fingers. 

The MRCP amplitude increased at most electrode sites for ring finger movement only in the musician group 

while no common trend in MRCP features was observed in the non-musician group.   

2.4.2 EEG Acquisition during Pre and Post-Training Periods 

The effect of the designed motor training determined by comparing EEG signal variations before and 

after the motor training is discussed in this section.  

Wright et al. [219] recruited healthy non-musicians subjects who received training in playing guitar for 

five weeks. In weeks 1 and 5, the EEG activity was recorded while the participants were playing the G Major 

Scale on the guitar. The authors observed a reduced amplitude and later onset of MRCP pattern in the post-

training EEG measurements compared to that measured in the pre-training period. Jochumsen et al. [220] 

performed a comprehensive study to determine the effect of their designed training based on laparoscopic 

surgery simulation with a non-dominant hand on the features of both MRCP and ERD/ERS patterns. An 

increase in the amplitude of BP, NS, and MP features of the MRCP pattern, as well as an increase in beta 

band ERD magnitude after single-session training, were observed. NS and MP amplitudes decreased and no 
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change was observed in ERD/ERS patterns after the multi-session motor training.  

The effect of Bimanual Motor Training (BMT) on brain signals is also explored in the literature. Smith 

et al. [218] recruited subjects to undergo short-term bimanual training of the wrist. By comparing the earlier 

and later trials of BMT, the authors found a significant increase in the amplitude of the early component of 

the MRCP pattern while its later component significantly decreased. In the same experiment, the EEG was 

recorded at the pre and post-training periods during unimanual wrist movements. For unimanual tasks, the 

authors found a decrease in the MRCP early component and a decrease in reaction time to the task. Hence, 

the authors concluded that the effect of bimanual motor training could be transferred to unimanual motor 

tasks, and change in MRCP components and task reaction time could be measured. Smith et al. [245] recruited 

ten healthy subjects for in-phase BMT, antiphase BMT and repetitive unimanual training of right wrist-

extension. After completion of training, the results indicated that there was a significant increase in MRCP 

amplitude during the preparation period of in-phase BMT with enhancement in motor performance.  

In the aforementioned studies, the authors used different motor tasks to analyze brain changes induced 

by the designed motor training protocol. For instance, the subjects in [219] learned different notes playing on 

guitar, however, its effect on EEG was determined when they played G Major Scale. Similarly, Jochumsen 

et al. [220] trained participants in a bead formation task with laparoscopic surgery simulator, but a simple 

palmar grasp task was used to assess the training effect on brain patterns. Moreover, the authors in [218, 245] 

recruited subjects for bimanual motor task training. However, their brain activity was recorded during a 

unimanual motor task. The authors stated that during the motor task of the designed training protocol, it was 

difficult to control various factors such as force level, speed level, and cortical activation during actual motor 

training tasks, therefore, the motor tasks used for training and assessment periods were different [220]. 

However, to measure the actual effect of the designed training on the EEG-derived pattern, the motor training 

and the tasks used during pre and post-training assessment periods should be similar.  

The effect on electrophysiological changes due to shooting task training after single-session and multi-

session training designs has also been observed. After a single-session shooting task training,  there was a 

significant decrease in alpha power in the motor execution block when compared to baseline and learning 

control blocks in [212]. Whereas, an increase in the mean value of event-related alpha-2 power (11–13 Hz) 

was observed in the temporal region after a multi-session pistol shooter training of about 12-14 weeks in 

[211].  

The effect of neurofeedback training on cortical activation using the EEG signal was studied in a 

randomized control trial experiment in [246]. The authors found a decrease in the desynchronization of the 

beta EEG band at the training completion in the group who received neurofeedback during each session of 

the training. In [247], the effect of Action Observation (AO) and MI protocol with neurofeedback on the 

modulation of brain activity was also studied. The healthy subjects participated in four training sessions in 

which three were AO+MI+neurofeedback training sessions and the fourth one was only MI session. After the 

training, the experimental group showed increased bilateral cortical activation compared to the control group. 

Another study to understand the effect of neurofeedback on brain activities after the dual-motor task was 

conducted by Lee et al. [248]. The authors found that the group who received neurofeedback during motor 
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training not only improved in regulating their SMR activities but also improved in their dual-task performance 

compared to the control group after completion of the training strategy.  

There are many studies in which EEG is being recorded continuously during motor training tasks. 

However, the EEG data are analyzed in pre-training and post-training fashion. For instance, 61 healthy 

subjects were recruited to study the learning effect of mirror star trace task in a randomized control trial 

experiment in [210]. The authors stated that after the first 10 acquisition trials, the experimental group not 

only showed better results in task performance than the control group, but they also showed higher alpha 

activity compared to the control group. Similarly, the authors in [217] investigated the effect of learning the 

control of the cursor over the screen with the joystick on the EEG signal. The subjects were more accurate in 

task performance in post-training trials compared to pre-training trials. Moreover, the authors observed the 

MRCP associated with movement onset had a larger amplitude and earlier onset in post-training trials 

compared to that in pre-training trials at the centro-parietal electrode sites. Whereas the amplitude of MRCP 

related to cue to move increased initially and then decreased with practice at fronto-central electrode sites. 

The authors concluded that the initial increase in MRCP amplitude might be associated with an early phase 

of learning and the MRCP decreased when the participants achieved competency in the task. 

EEG-BCI systems also find their applications in motor training protocols where they are extensively 

used to understand the effect of various robot-assisted or non-robot-assisted training effects on EEG signals. 

For instance, Shindo et al. [249] conducted an experiment on eight chronic stroke patients suffering from 

hand paralysis in which they were instructed to perform MI tasks with their impaired hands. Only successful 

MI attempts detected using the EEG-BCI system were used to trigger the orthosis device for partial assistance 

to fingers. After a training period of four to seven months, the authors also measured variations in ERD/ERS 

patterns in both parts of the brain as well as enhanced EMG activities in the impaired fingers.  

The effect of EEG-BCI system motor training in conjunction with conventional physiotherapy has also 

been determined. Yilmaz et al. [250] designed an EEG-BCI robot-assisted multi-session training protocol for 

stroke patients where they controlled the movement of the hand exoskeleton using their brain signals. The 

patients also went through physiotherapy sessions following each BCI training session for their paretic and 

non-paretic hands. The authors observed a decrease in MRCP amplitude and its later-onset for paretic hand 

movement compared to the baseline measurement. Hence, they concluded that the patients who underwent 

their designed intervention required less mental effort and shorter motor preparation time before motor 

execution. 

The effect of real-time cortical feedback for MI-based EEG-BCI system enabled training protocol on 

brain activation has been studied in [251]. The experimental group received ERD modulated feedback while 

the control group did not receive such feedback during the training session. The cortical activation using 

ERD/ERS patterns was measured for the wrist-extension task during pre and post-training periods. A 

significant decrease in ERD patterns was observed after the training for only the experimental group. 

Therefore, the authors stated that the cortical activation could be influenced by providing real-time cortical 

feedback during MI-based EEG-BCI training paradigms. Chowdhury et al. [252] developed a multi-session 

robot-assisted EEG-BCI training protocol which incorporated an active physical practice session using the 
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BCI system followed by a mental practice session with feedback. The authors observed an enhanced ERD 

pattern and calculated a 6.38 kg increase in handgrip strength as well as a 5.66 increase in ARAT clinical test 

in four hemispheric stroke patients after completing their rehabilitation training. 

The feasibility of the EEG-BCI-based FES system to quantify the motor training effect for foot 

dorsiflexion was investigated in [253]. The designed EEG-BCI-FES system detected motor intention of 

affected foot performed by nine stroke patients and once that intention was detected, electrical stimulation 

pulses were sent to their respective deep peroneal nerve. At equal intervals, during a 12 session training 

period, the authors measured different parameters of the subjects including speed of gait, Active Range of 

Motion for dorsiflexion (AROM), six-Minute Walk Distance (6MWD), and Fugl-Meyer Leg Motor (FM-

LM) score. A large number of patients showed an increase in their gait speed and AROM scores while a small 

number of patients displayed improvement in 6MWD and FM-LM scores during their post-therapy 

assessment. The subjects who showed improvement in gait speed or 6MWD also displayed a noticeable 

increase in ERD/ERS patterns.  

A multimodal multi-session training protocol was designed by Sale et al. [254] in which MIT-Manus 

robotic movement was controlled using EEG-EMG-EOG (EOG stands for Electrooculography) based BCI 

system and tested on one subacute and one chronic stroke patients. The authors observed improvement not 

only in clinical measurements and robotic control but also observed a decrease in alpha band 

desynchronization in both subjects after the training completion. Another multimodal multi-session training 

for stroke rehabilitation is described in [255]. Five chronic stroke patients underwent robot-assisted 

rehabilitation training for upper-limb using EEG-EMG based BCI system. The variations in EEG signal, 

kinematic variables as well as clinical tests were observed during pre and post-training intervals. The 

participants showed a decrease in the ERD pattern of the beta band, improvement in clinical scores, and 

performed the motor task smoother compared to pre-training measurements.  

2.4.3 EEG Acquisition during Motor Training Protocols 

This section describes the studies in which variations in either ERD/ERS or MRCP patterns are 

observed during the motor training protocol.  

Taylor [214] investigated the effect of skilled motor learning during the training of pressing buttons 

using the index finger of the right hand. EEG signals at Fz, C3, C4, and Cz electrodes were recorded to extract 

MRCP patterns. With the improvement in response time, the BP increased steadily at all selected electrodes. 

However, when the response time reached asymptote, the BP at Fz and C4 decreased and BP at Cz and C3 

remained almost constant. Similarly, the effect of learning of complex motor skills of fingers (to and fro 

movement of match-stick) compared to that during a simple task (pressing the button) on the EEG signal is 

described in [216]. EEG was recorded at five electrodes which include Fz, C1, C2, Cz, and Pz. The authors 

observed a significant decrease in MRCP features at Cz, C1, C2, and Pz but not in Fz during the complex 

task. However, there was a slight inconstant decrease in MRCP features at all electrodes during the simple 

task.  
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Variations in EEG patterns during different training protocols such as MI, passive, active, and robot-

assisted hand training protocols were studied in [82]. It was found that during the subject’s active movement, 

significant ERDs started earlier whereas, in the case of robot-aided movement, longer ERDs were achieved 

that extended towards the end of the movement. Similarly, the brain activities during MI, passive, active, and 

BCI-controlled hand movements were analyzed in [83]. The better ERD patterns were observed in the motor 

cortex of both hemispheres during all the training protocols. However, for BCI-controlled tasks different 

neural activities were observed, suggesting that the unique brain processes occur during BCI aided control 

tasks compared to MI, passive, and active motor tasks. The active engagement of the participants during 

hand-grasping and supination robot-assisted tasks was assessed in [84] using the EEG-BCI system. The 

results showed that during active hand movement, more distinctive ERD patterns were observed in beta and 

mu rhythms as well as BCI system classification accuracy has also improved after the training. These studies 

demonstrate that active robot-assisted training for post-stroke patients is a promising training protocol for 

their rehabilitation. 

There are some studies in the literature in which the effect of multiple parameters of any training 

protocol is explored. For example, the effect of visual tasks on the cortical potential during a task of tracking 

a stimulus on the TV screen was demonstrated in [215]. The authors found an increase in the MRCP pattern 

negativity at F3, Fz, and F4 electrode sites as well as a significant correlation in MRCP features’ changes 

with the learning of visuomotor tasks. In [256], the authors explored the effects of goal-directedness on the 

MRCP by training healthy subjects to perform simple reach and touch tasks with their right hand. They 

observed that MRCP patterns differ during goal-directed and no-goal-directed tasks and the detection 

accuracy of the BCI system improved with goal-directedness in mind. Moreover, it was found that different 

motor areas of the brain were involved in the goal and no-goal tasks.  

Nakano et al. [213] assessed the motor training performance of healthy subjects by dividing them into 

two equal groups of high-motor-learning and low-motor-learning, based on their performance of a clockwise 

rotation of two balls task. For the high-motor-learning group, it was found that the EEG activity in alpha-2 

(10.5–12.0 Hz) and beta-2 (18.5–21.0 Hz) rhythms were significantly decreased at left sensorimotor and 

parietal areas of the brain when compared to the low-motor-learning group. Li et al. [257] used a combination 

of ERD, MRCP, and time-frequency mapping to determine the difference in brain activities during the motor 

intention, preparation, and execution of the unilateral wrist-extension task. The authors found that the motor 

intention phase mainly relied on contralateral activation from sensorimotor cortices whereas the motor 

execution phase activated bilateral cortices. 

Robot-assisted training protocols are a popular choice to understand brain variations during training. 

By analyzing EEG signals during robot-assisted treadmill walking task, Wagner et al. [99] showed that SMRs 

in central midline areas of the brain were suppressed in mu and beta band as well as at C3 site for mu, beta 

and gamma band during active robot-assisted walking task compared to passive condition. Most recently, Liu 

et al. [258] demonstrated the feasibility of robot-assisted gait training using a split-belt treadmill with 

synchronized EEG recording. The author observed that the contralateral brain activities were different during 

affected and non-affected limb movement for their designed protocol. 
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 The effect of various modes of robot-assisted hand movement on brain activity has been investigated 

in [100]. The authors recruited eight healthy subjects to perform eleven unilateral and bilateral tasks during 

active, passive robot-assisted, and MI training modes. They observed a contralateral ERD activation during 

unilateral tasks and the bilateral ERD activation during the bimanual task. Moreover, for active-to-passive 

tasks, the contralateral side was activated when the right hand drove the left hand and bilateral activations 

occurred when the left hand drove the right one. Lastly, no common trend was found during the MI task 

among all subjects.  

There are also some studies on the effect of adaptive robot-assisted motor training on stroke recovery. 

Norman et al. [259] developed a three-phase adaptive robot-assisted protocol for finger-extension motor 

training. During the first phase, features of SMRs related to finger-extension tasks were identified for each 

subject, while in the second phase, the subjects were trained to modulate brain activity during an MI task with 

visual feedback. In the final phase, the subjects performed the cue-based MI task to increase or decrease the 

amplitude of SMR which then triggered the FINGER robotic exoskeleton device. The authors found that 

those subjects who completed all three phases of motor training showed the highest improvement in their 

clinical tests. Zhang et al. [260] tested the feasibility of their linearly progressing multi-session robot-assisted 

rehabilitation program for upper limb motor recovery of one chronic stroke patient. The protocol consisted 

of both mental and physical training of hand and elbow movements for six weeks. By the end of the training, 

the stroke patient was able to control the movement of orthosis by using EEG signals and force sensor signals 

at a higher accuracy. Moreover, the clinical test scores of the patients were improved after the training.  

AO-based training protocols have been widely investigated in the literature where EEG acquisition was 

performed during the training. For instance, Ono et al. [261] developed an AO-based MI protocol to determine 

the effect of appropriate neurofeedback on ERD patterns. After performing multi-session training on healthy 

subjects, the authors found a significant increase in ERD power in the neurofeedback group compared to the 

control group. Tani et al. [262] compared the effect of MI and AO protocols on the brain activity of post-

stroke patients during hand motor tasks. The authors found that the ERD power during the AO-based protocol 

was significantly higher compared to the MI-based protocol. Therefore, the authors suggested that AO could 

be used as an alternative method for the modulation of brain activities. Furthermore, Nagai et al. [263] showed 

that the ERD pattern in the alpha band was the strongest when the subjects performed the hand motor task by 

observing one own’s hand during MI+AO EEG-BCI protocol compared to that when the subjects performed 

AO protocol by observing AO of non-participant’s hand or during only MI protocol.  

The VR-based motor training strategy is widely being employed in stroke rehabilitation. Through the 

VR rehabilitation gaming system for left and right arm movements, Bermudez i Badia et al. [101] concluded 

that large brain areas were actively involved if ME and MI protocols were employed simultaneously during 

VR-based EEG-BCI training. In [264], the cortical activation difference was determined between the rest 

state and bimanual motor tasks using a VR-based EEG-BCI system. The authors found significantly higher 

delta band activations and simultaneous activation of somatosensory and primary motor cortices during 

bimanual tasks compared to the resting state. In another study, the brain activations involved during VR-

based EEG-BCI system training to that during the Augmented Reality (AR)-based EEG-BCI training were 
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investigated in [265]. The smaller alpha activities were found in frontal and temporal regions during both VR 

and AR modes whereas, higher beta activities were measured in frontal and temporal brain areas in AR 

compared to VR mode.  

The EEG analysis of stroke patients can be influenced by the stroke lesion location. For instance, Park 

et al. [266] used ERD/ERS analysis of the EEG signal to show that beta band power decreased significantly 

among stroke patients groups with different lesion locations. Similarly, Ray et al. [267] showed that the 

amplitude of ERD decreased for stroke patients having lesion locations involving the motor cortex. 

Furthermore, by implementing an MI-based EEG-BCI protocol for hand motor recovery, it was shown in 

[102] that ERD amplitude was reduced in the affected hemisphere and when the motor task was performed 

with the affected hand, ERD was lateralized to the ipsilateral (unaffected) hemisphere.    

The difference in EEG-derived patterns can also be influenced by variable motor impairments caused 

by the stroke. Kaiser et al. [268] found that for stronger ERD signals, there was higher impairment in the 

unaffected hemisphere and again stronger ERD signals were observed when higher spasticity was observed 

in the affected hemisphere. Higher impairment and higher spasticity were found to be associated with stronger 

ERS in the affected hemisphere only. In [269], the differences in cortical activation in chronic stroke patients 

having variable sensory-motor impairments and in the healthy control group were observed using a robotic 

wrist manipulator and the EEG-BCI system. The brain activation occurred in contralateral brain areas of 

healthy subjects and chronic stroke patients with no or mild sensory impairments during passive motor tasks, 

while a significant reduction in cortical activation was observed in chronic stroke patients with severe sensory 

impairments. During the active motor task, only chronic stroke patients with mild sensory impairment 

displayed reduced cortical responses.  

 Tangwiriyasakul et al. [270] observed brain activity during hand motor tasks four times over four 

months. A modulation strength (Sm) parameter was calculated using the ERD amplitude and its area. The Sm 

parameter was used to quantify the motor training effect. A significant increase in Sm over ipsilesional brain 

area as well as a decrease in Sm of the contralesional side was observed. The increase in ipsilesional brain 

activity could be due to neuroplasticity occurring throughout stroke recovery while the decrease in 

contralesional brain activity showed less dependency on that side to support the affected hand movements. A 

longitudinal study was performed to understand the cortical variations across sessions as well as their 

relationship with stroke onset time and upper-limb motor recovery in [271]. The authors observed that beta 

band activities had a higher association with stroke onset time as well as motor recovery of upper-limb 

compared to alpha band activities. Whereas, alpha band cortical variation was found to be more related to a 

motor learning effect, an indication of neuroplasticity.  

The assessment of the subject’s engagement level during learning of a motor task for stroke 

rehabilitation applications has become a topic of interest in recent years. Bartur et al. [272] tested their 

developed Brain Engagement Index (BEI) to monitor the level of engagement of post-stroke patients during 

rehabilitation training. BEI monitor displayed real-time value every 10 s by exploring the sampled EEG data 

for the occurrences of an attention-related template. The authors found that there was a clear association 

between BEI and the improvement in functional parameters. Koyanagi et al. [273] used the EEG power 
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spectrum ratio of alpha and beta band i.e. beta/alpha to evaluate the subject’s concentration during passive 

robot-assisted upper-limb movement tasks. The authors observed that the concentration of the subjects 

affected by the scoring system during the training using their developed method.  

A combination of EEG and EMG signal analysis has also be used to determine the level of participation 

of subjects during the motor training protocol. Gandolla et al. [274] monitored the level of engagement during 

the training with EMG-triggering of the muscle and EEG-based biofeedback system. The authors stated that 

the subjects had more attention and participation in operating their designed system compared to other 

standard systems. Whereas, Li et al. [275] investigated the effect of increasing game task difficulty on a 

person’s engagement level during the training. They measured EEG and EMG signals to determine the 

cognitive and motor engagement during the task respectively. It was found that by increasing the game 

difficulty level, both cognitive and motor engagement of the subjects could be increased.  

2.5 Summary, Research Gaps, and Future Trends 

EEG is an easy to administrate and cost-effective way to determine brain dynamics as well as to measure 

cortical activations during post-stroke motor rehabilitation exercises. Therefore, EEG has been used in the 

literature in a variety of ways for motor recovery of post-stroke patients. Out of eight research categories of 

EEG applications in stroke rehabilitation discussed in this chapter, robotic device control using intention 

signal has the highest rate as illustrated in Figure 2.3. The second topmost categories include intention signal 

classification, intention signal detection as well as measuring brain activities during training protocols. The 

application of stimulation assisted by the EEG-BCI system and measuring EEG with pre and post-training 

protocols are the third most active research areas. However, intention signal decoding and comparison 

between the brain activities of skilled versus non-skilled subjects have received the lowest attention in the 

literature.  

 

Figure 2.3: Applications of EEG in post-stroke motor rehabilitation  
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Post-stroke motor rehabilitation includes recovery of both upper-limb and lower-limb. The UE motor 

recovery of stroke patients involves the recovery of arm, shoulder, elbow, wrist, hand, and fingers, whereas, 

LE motor recovery involves foot, ankle, knee, and gait. During any of the upper-limb or lower-limb motor 

imaginations or actual movement execution, specific EEG-derived patterns (ERD/ERS and MRCP patterns) 

emerged in motor and sensorimotor cortices which could be measured and analyzed. The studies included 

discussed more of UE motor recovery compared to LE because of its importance in performing ADLs as well 

as more DOF involved. However, even in UE stroke recovery, more research focus lied on the coarse 

movement of the upper-limb.  

Robot-assisted rehabilitation programs are efficient as well as they can be used for active participation 

of stroke patients during the training which is essential for neuroplasticity induction. Various kinds of robotic 

systems have been developed and tested for both upper-limb and lower-limb motor recovery of post-stroke 

patients. However, very little research is conducted on the development and deployment of user-friendly, and 

commercially available rehabilitation robotic systems for post-stroke patients giving benefit to a large cohort 

of stroke patients. In addition, more research work is required to monitor brain activity especially during 

robot-assisted training which is important to prevent the passive reaction of patients during the training.    

Future research on the topic of EEG applications in post-stroke rehabilitation should focus on the 

following areas: (1) Detecting, classifying, or decoding the intention signal of fine motor skills. (2) 

Developing an EEG activity monitoring system during robot-assisted rehabilitation to avoid passive training. 

(3) Including actual stroke physiotherapy exercises in motor training protocols to ensure EEG dynamics are 

well understood during the training protocols. (4) As stroke affects the brain in various ways depending on 

the location and intensity of stroke, therefore, there is still a research gap to understand the cortical activities 

of stroke patients having different lesion locations. (5) In current literature, EEG analysis is performed during 

rehabilitation training which is pre-defined before the experiment commencement, however, there should be 

a mechanism of changing the rehabilitation training depending on the variations in EEG-derived movement-

related patterns for a particular stroke patient.  
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Chapter 3  

Experimental Set-Up and Data Processing Details 

3.1 Introduction 

The primary purpose of this project is to understand brain activities when post-stroke patients undergo 

hand motor rehabilitation. Therefore, the experimental work of this project is conducted using a state-of-the-

art EEG acquisition system and AMADEO hand rehabilitation device. The EEG acquisition system consists 

of a Grael 4K EEG amplifier, Quick-Cap, and an acquisition software called CURRY 8X developed by 

Compumedics Neuroscan Company. The EEG acquisition system is used to acquire brain activities during 

different experiments. The AMADEO hand rehabilitation device by Tyromotion GmbH Company was 

deployed for fine finger motor skills training of post-stroke patients. The complete experimental set-up used 

in all experiments for this project is shown in Figure 3.1. 

 

Figure 3.1: Complete experimental set-up  

The remaining chapter is organized as follows. The details of the EEG acquisition system and its 

application in this project are discussed in Section 3.2. Section 3.3 describes various training modes and the 

assessment tools available in the AMADEO hand rehabilitation device used in this project. The main EEG 

signal processing steps involved in the data analysis of this project are explained in Section 3.4. 

3.2 EEG Acquisition System 

3.2.1 Grael 4K EEG Amplifier 

In this series of studies, a 40-channel Grael 4K EEG amplifier (Version 1) is utilized for the EEG signal 

acquisition for both healthy and post-stroke subjects. It is a standalone unit that can record EEG, EOG, ECG 

(Electrocardiogram), and respiratory signals received from the electrodes and sensors connected to the human 
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subjects [276]. However, in this study, this amplifier is used to record EEG and EOG signals only. All the 

electrodes and sensors are connected to the Grael 4K amplifier which is powered by a network cable. The 

connection set-up of the amplifier to the host PC is shown in Figure 3.2. 

 

Figure 3.2: Connection of Grael 4K EEG amplifier to host PC 

A single IP connection to the Grael 4K amplifier is provided for both power and data transmission 

purposes. Due to the IP connection option, the IP address of the host PC and Grael 4K amplifier needs to be 

set. The IP addresses for the host PC and the amplifier are given in Appendix 2. The IP address for the host 

PC can be set using the Network and Sharing Centre item of the Control Panel in the Windows Operating 

System. While the IP address for the Grael 4K amplifier can be set using the Network Amplifier Tools present 

in the Acquisition tab of the CURRY 8X software. 

The Grael 4K EEG amplifier is well-suited for EEG-based studies in both clinical and research 

applications. The main specifications of the Grael 4K EEG amplifier (Version 1) are stated in Table 3.1. 

Table 3.1: Specifications of Grael 4K EEG amplifier (Version 1) [277] 

Name of Specification Details 

EEG channels 32 

Bipolar channels 8 

Extra inputs Event button, and oximeter with pleth waveform 

AC/DC DC 

Sampling rate options (Hz) 256, 512, 1024, 2048 
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Bandwidth (Hz) DC to 580 

Resolution 24-bit 

Input range (mV) 300 to 3000 (4 modes) 

Sensitivity (nV) 18 

Trigger  8-bit TTL 

Impedance check option available 

3.2.2 EEG Quick-Cap 

In all the studies conducted in this project, a 32-channel Quick-Cap with two integrated bipolar leads 

for vertical and horizontal EOG is used as shown in Figure 3.3. The Quick-Cap provides a consistent and 

speedy application of electrodes for data acquisition. It is manufactured using highly elastic breathable Lycra 

material with soft neoprene electrode gel reservoirs to enhance the comfort of the patient. It comes in a variety 

of sizes such as infants, small, medium, and large. Small, medium and large caps are used in different 

experiments of this project. The small Quick-Cap is suitable for participants having head circumference 

between 48 – 54 cm. While, for medium and large Quick-Caps, the suitable head circumferences are between 

55 – 59 cm and 60 – 65 cm, respectively.  

 

Figure 3.3: The 32-channel Quick-Cap [278] 

All the electrodes in the Quick-Cap are placed according to the International 10-20 electrode placement 

standard [279]. The 10-20 system is an internationally recognized system for placing the EEG electrodes over 
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the scalp. It ensures equal inert-electrode spacing. The electrode placement is proportional to skull size and 

shape.  This system is based on the relationship between the location of an EEG electrode and the underlying 

area of the cerebral cortex. Figure 3.4 (a) shows the left side-view and Figure 3.4 (b) shows the top view of 

the possible positions of the electrodes in the 10-20 system. The position of each electrode has a letter that 

indicates the lobe and a number or another letter that indicates the location of the hemisphere. The letters Fp, 

F, C, P, O and T stand for pre-Frontal, Frontal, Central, Parietal, Occipital, and Temporal, respectively. 

Although there is no central lobe in the brain, the defined notation of the central lobe is used here for 

identification purposes. The odd numbers refer to the left hemisphere and even numbers refer to the right 

hemisphere. The letter z refers to an electrode that is positioned over the midline. Moreover, the smaller the 

number of an electrode, the closer is the electrode to the midline and vice versa. 

 

                                                  (a)                                                                                       (b) 

Figure 3.4: International 10-20 system for EEG electrode placement [279, 280] 

The position of electrodes according to the 10-20 system for 32-channel Quick-Cap is shown in Figure 

3.5 and the wiring diagram of the 32-channel Quick-Cap by Compumedics Neuroscan is given in Appendix 

3. By default, the ground electrode is set at the Fpz electrode position whereas, CPz is set as the reference 

electrode. However, the position of the reference electrode can be changed using the configuration setting 

available in the acquisition software. The A1 and A2 electrodes (referred to as M1 and M2 in the wiring 

diagram of the 32-channel Quick-Cap) can be used over the mastoid point or ear lobe depending upon the 

requirements of the experimental design. Also, the two electrodes are placed below the left eye and on the 

supraorbital ridge to record Vertical Eye (VE) movements as well as eye-blinks. Moreover, two other 

electrodes placed over the outer canthus of both eyes are used to monitor Horizontal Eye (HE) movements as 

shown in Figure 3.6. These vertical and horizontal electrodes are connected to the positions of the bipolar 

channels available in the Grael 4K amplifier during the data acquisition.  
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Figure 3.5: The 32-channel Quick-Cap electrodes’ position diagram [281] 

 

Figure 3.6: Placement of EOG electrode; A-D records VE movements,  

B-C records HE movements   

3.2.3 EEG Acquisition Software 

The data acquisition software namely CURRY 8X from Compumedics Neuroscan is used in this project 

which supports the acquisition of EEG data with the Grael 4K amplifier.  It is a reliable and easy-to-use tool 

for EEG data acquisition and online/offline data processing. It supports all the features required for data 

acquisition including amplifier configuration setting, impedance checking, online filtering, real-time event 

averaging, online artifact reduction, as well as montage setting. The montage is the way of connecting EEG 

electrode pairs to the amplifier.  

The impedance check before data acquisition is an important step to ensure the high quality of the 

acquired signals. The CURRY 8X allows impedance check in a simple visual display with impedance values 

showing for each electrode. The impedance check can also be performed during the experiments without 

interrupting data acquisition. Figure 3.7 shows an impedance checking screen in CURRY 8X software for a 

32-channel Quick-Cap having a reference electrode at CPz and a ground electrode at Fpz. All impedance 
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values are measured with respect to the set reference electrode. The threshold value of the electrodes’ 

impedance is set at 5 kΩ. The impedance of each electrode is set to less than 5 kΩ before the start of data 

acquisition for all of the experiments.    

In this project, CURRY 8X software is employed to set the amplifier configuration before the data 

acquisition step. It is also used for impedance checks and for sending procedure of digital event marker during 

every data acquisition session. Moreover, some initial signal processing steps are performed in CURRY 8X 

software before importing data into EEGLAB.  

 

Figure 3.7: Impedance-check in CURRY 8X software for a 32-channel Quick-Cap  

3.2.4 EEGLAB 

The EEGLAB is an interactive MATLAB toolbox with Graphical User Interface (GUI) display 

allowing visualization of single-trial or averaged data, time or frequency analysis, artifacts rejection, event-

related statistics as well as Independent Component Analysis (ICA) algorithm. It can be used to process 

continuous event-related EEG, MEG, or other physiological data. 

In this project, all offline EEG data processing is performed primarily in EEGLAB. The acquired data 

files from CURRY 8X software are not compatible with EEGLAB. They need to be converted into other 

formats, such as .edf or .cnt, within CURRY 8X software. Moreover, a freely available loadcurry 2.0 plug-in 

extension needs to be downloaded before importing data files into the EEGLAB. Figure 3.8 shows the 

EEGLAB GUI and epoched EEG data windows where numbered red lines represent event marker triggers 

manually sent to the CURRY 8X software. 
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Figure 3.8: EEGLAB GUI and data scroll window 

3.3 AMADEO Hand Rehabilitation Device 

AMADEO hand rehabilitation device is a 5-DOF distal UE robot used for fine hand motor skill training 

of patients having motor deficits. It provides position-based passive, assistive, and active training modes that 

are based on extension and flexion training of fingers and thumb. The AMADEO finger slides are attached 

to each finger and thumb with the help of a small magnetic disc and cohesive tape. The moving slides can 

then transfer extension and flexion movements to the fingers and the thumb. During the training, the patient 

is positioned directly in front of the AMADEO device in a comfortable and upright posture. The hand-arm 

holding assembly in the AMADEO device can be adjusted to an appropriate position to support the weight 

of the arm and hand during the training as shown in Figure 3.9. 

 

Figure 3.9: Patient while receiving AMADEO training 

AMADEO 

Device 
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3.3.1 AMADEO Standard Training Modes 

The software used to perform AMADEO’s operation is known as GRIPS and it can only be operated in 

combination with the AMADEO device. After entering the patient’s details into the system, the Range of 

Movement (ROM) of the fingers and thumb is set manually by the operator. In order to set the ROM, the 

patient’s hand needs to be attached to the device using a magnetic disc and tape. AMADEO allows four basic 

training modes, as shown in Figure 3.10, which include Continuous Passive Motion (CPM), CPMplus, 

assistive, and active training modes. All these training modes in AMADEO aim to train the affected hand of 

the patient according to the pre-set ROM, thus ensuring safe rehabilitation training for the patient.   

 

Figure 3.10: AMADEO training modes; (A) CPM, (B) CPMplus, (C) Assistive training, 

 (D) Active training (Shootout 2D game) 

(1) CPM training mode – The hand is trained in continuous passive motion. It allows settings for speed, 

ROM, and time offset. 

(2) CPMplus training mode – During CPMplus, the subject is encouraged to apply force during extension 

and flexion actions of hand through biofeedback display. The biofeedback display encourages patients to 

apply force at the end of each flexion and extension motion. It offers additional delay and forces limit options 

compared to CPM. 

(3) Assistive training mode – The hand movement is assisted by the AMADEO control algorithm, depending 

on individual fingers’ functional limitations and abilities. In this training mode, the patients carry out the hand 
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movement actively as far as possible using the fingers’ force. However, when the fingers stop moving 

actively, the system takes over and completes the rest of the hand movement path. 

(4) Active training mode – This mode utilizes 2D interactive games in which the patient actively controls 

the position of virtual objects in various simulated environments. AMADEO contains five 2D games namely 

Shootout, Recycle, Balloon, Firefighters, and Applehunter. A screenshot of the Shootout game is shown in 

Figure 3.10 (D) while the rest of the games are shown in Figure 3.11. At the end of each game, the patient 

receives the score indicating the performance of the hand movement during the game. The achieved score in 

these games indicates the force and the position applied by each finger. This scoring procedure motivates 

patients to perform their best during the training.  

 

Figure 3.11: AMADEO Active training Programs; (A) Recycle, (B) Balloon, (C) Firefighters, (D) Applehunter 

3.3.2 AMADEO Assessment Tool 

In order to evaluate the effect of AMADEO training on patients’ fine hand motor skills, AMADEO 

allows two types of assessment tools i.e. force assessment and ROM assessment. The force assessment tool 

measures the finger force as well as grip force by calculating active force output applied during flexion and 

extension tasks by the patient as shown in Figure 3.12 (A). Whereas the ROM assessment tool measures the 

active range of movement of fingers and thumb in both extension and flexion directions with respect to pre-

set ROM of the patient as shown in Figure 3.12 (B). Hence, both of these assessment parameters in AMADEO 

enable easy and timely assessment of motor skill improvement as a result of the training.  
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Figure 3.12: AMADEO assessment tool; (A) Force assessment, (B) ROM assessment 

To ensure the validity and consistency of the data, both force and ROM assessments are repeated three 

times before and after the designed multi-session training strategies and their average values are chosen as 

the measured score in the further analysis.  

3.4 EEG Signal Processing Steps 

This research project is based on the analysis of the MRCP pattern extracted from the acquired EEG 

data during different motor training protocols for post-stroke rehabilitation. Different signal processing steps 

are involved to extract MRCP patterns from the raw EEG data acquired during experimental work. These 

steps generally include data filtering, the formation of the epoch, channel selection as well as extraction of 

the MRCP features as shown in Figure 3.13.  

 

Figure 3.13: Sequence of steps for EEG signal processing 
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The experimental works conducted in the research project can be divided into two groups. The 

experiments in the first group are designed to detect the motor intention signal using the MRCP pattern during 

robot-assisted hand tasks. Whereas, the second sets of experiments determine the effect of the robot-assisted 

motor training on the MRCP patterns. Sections 3.4.1 to 3.4.4 describes the general EEG signal processing 

steps for extracting the MRCP pattern and how these steps are used in both groups of experiments.  

3.4.1 Data Filtering 

The first signal processing step is to filter the acquired EEG data for the frequency band in which the 

MRCP pattern exists. As mentioned in Chapter 1, the MRCP pattern appears in the delta frequency band (0-

5 Hz) [71]. Different ranges of frequency, within this band, can be used depending upon the type of 

experiment to filter the EEG data. 

For intention detection of motor tasks, the EEG signals are passed through a band-pass filter within the 

narrow range of 0.1-1 Hz [171] as this frequency range best captures the anticipatory based MRCP pattern 

[282] compared to the complete delta band. The exact data filtering step, used for intention detection for the 

hand motor task in this project, is applied in three stages; stage 1: a high-pass filter (4th order Butterworth, 

causal) with cut-off frequency (fc) of 0.1 Hz, stage 2: a CAR filter for re-referencing, and stage 3: a low-pass 

filter (4th order Butterworth, causal) with fc of 1 Hz. The filtered signals are then down-sampled from 2048 

Hz to 20 Hz to increase computational efficiency [171]. 

To determine the effect of the designed motor training on the MRCP pattern, the acquired EEG data are 

first passed through a notch filter (49–51 Hz) to remove any power line noise. It is then low-pass filtered (2nd 

order Butterworth, causal) with fc of 5 Hz. The signal is finally high-pass filtered (2nd order Butterworth, 

causal) with the fc of 0.5 Hz [220, 283]. 

3.4.2 Epoch Formation 

An important step in EEG signal processing is to create epochs by dividing the continuous EEG data 

into small portions with the help of event markers because the MRCP pattern appears only within 2 s before 

actual movement onset. These event markers represent the onset points for the actual movement execution 

performed by the subjects. The epochs help to identify the vicinity in which the MRCP pattern can be found.  

The intention detection is performed by dividing continuous EEG signals into two types of epochs. The 

Move epochs, containing the MRCP pattern, are extracted between -2 s to 0 s with 0 s indicating the instance 

of actual motor execution. While, the No-Move epochs, which do not have an MRCP pattern, are extracted 

from 0.5 s to 2.5 s. The epoch length for both Move and No-Move epochs is fixed at 2 s. After epoch 

formation, all Move epochs are inspected visually for artifacts, for instance, eye-blinks, head movement, and 

other movement-related artifacts, and the epochs containing these artifacts are removed from the data.  

For motor training experiments, epoch formation consists of four steps. First, the filtered EEG data are 

divided into epochs using movement onsets obtained from event markers. The duration of these epochs is set 

from -5 s to 5 s, where 0 s is the movement onset obtained using event marker triggers. These epochs are 
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termed long epochs. Second, the ICA algorithm is applied to the long epochs to remove eye-related artifacts. 

ICA algorithm is usually employed to remove eye-related artifacts from EEG data [284]. It is based on the 

assumption that brain activities and artifacts are separate physiological processes, and this separation is 

reflected in the statistical independence between the signals generated by these processes [285]. Third, an 

automatic voltage threshold detection is also applied to the epochs to remove any remaining eye-blink 

artifacts having a threshold level of 100 µVpp (pp stands for peak-to-peak) in either of the pre-Frontal 

electrodes (Fp1, Fp2). If a peak-to-peak value in either of Fp1or Fp2 electrodes is greater than 100 µVpp in 

any epoch, then that epoch is removed from the final data. Finally, to overcome the human error involved in 

placing the event markers, movement onset correction is performed. MRCP has the lowest potential around 

the movement onset point. Therefore, the minimum point in each cleaned long epoch signal is found and that 

point is considered as the actual movement onset. Short epochs are then be formed starting from -3 s to 1 s 

where 0 s represents the actual movement onset 

3.4.3 Channel Selection 

The selection of appropriate channels for data analysis is an important step. The motor intention 

detection experiment is associated with either right or left hand. Therefore, the channel selection depends on 

the hand in use during the experiment. The selected electrodes for both hand movements are given in Table 

3.2. 

Table 3.2: Choice of electrodes for intention detection experiment 

Hand Movement Type Selected Channels 

For right hand motor intention detection 

C3, FC3, Cz, CP3, T7, and Short Laplacian (SL) 

channel calculated using the formula given as C3-

(FC3+Cz+CP3+T7)/4 [286] 

For left hand motor intention detection 
C4, FC4, Cz, CP4, T8, and SL channel calculated using 

the following formula C4-(FC4+Cz+CP4+T8)/4 [286] 

The above-mentioned channels are selected for both Move and No-Move epochs. The C3 and C4 

channels are selected as suggested by Jochumsen et al. [287] to be the most appropriate electrode site for the 

right hand and left hand motor intention detection respectively using the MRCP pattern. Along-with C3 and 

C4 channels, their four neighboring electrodes, and their linear combination are also explored to find the best 

electrode choice for the designed protocol. 

On the other hand, eight single EEG electrodes are considered for the analysis during motor training 

experiments. These channels include FC3, FC4, C3, C4, CP3, CP4, Cz, and CPz. The selected electrodes are 

located over the motor and sensory cortices of both hemispheres to determine which part of these cortices 

showed the effect of the designed rehabilitation training.  

 



72 

 

3.4.4 Feature Extraction 

MRCP pattern exhibits various features that can convey movement-related information. The main 

MRCP time-domain features include BP1, BP2, and Npeak as explained in Chapter 1. For both groups of 

experiments of this research, the features extracted from the processed global MRCP patterns at the selected 

electrodes are explained as follows. For group analysis in this thesis, global MRCP refers to the averaged 

MRCP signal with respect to the number of participants in the group at a selected electrode site.  

The Npeak and slope features of the MRCP pattern are used for intention detection of hand movement. 

The Npeak of the MRCP pattern is its lowest amplitude that exists near the movement onset and is always 

negative in amplitude, while the slope is calculated by using the two-point slope equation between BP1 onset 

and Npeak onset. The Npeak and slope features of the MRCP pattern are indicated in Figure 3.14 (a). Both 

these features are extracted for each trial of the motor task from both Move and No-Move epochs. 

For motor training experiments, five different time-domain pre-movement features using global MRCP 

patterns namely; BP1 onset, BP1 amplitude, BP2 onset, BP2 amplitude, and the Npeak of MRCP are extracted 

at all the selected electrodes as indicated in Figure 3.14 (b). These features’ extraction is performed using a 

newly developed MATLAB toolbox called ‘visualEEG’ which is specifically designed to extract the pre-

movement features from the MRCP pattern [74].  

 

Figure 3.14: Extracted features from global MRCP pattern; (a) For intention detection protocol, (b) For motor training 

protocol 

3.5 Summary 

This chapter provides detailed information about the two types of equipment used for the experimental 

work of this project. The first equipment is the EEG acquisition system which is used to acquire brain 

activities during hand motor tasks while the second equipment is an AMADEO rehabilitation device which 

is used to improve the hand motor skills of post-stroke patients. This chapter also explains the signal 

processing steps which are applied to extract MRCP pattern from the raw EEG data. Moreover, the details of 

the software used for data analysis are also mentioned in this chapter.  
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Movement-Related Cortical Potential during Different Exercise 

Protocols for Single-Session Hand Motor Training 

4.1 Introduction 

The main aim of this research project is to use EEG brain signals to enhance the effectiveness of the 

rehabilitation processes in post-stroke patients with fine finger motor impairments. This chapter studies how 

the engagement of a subject in the rehabilitation process affects the EEG signals. It is shown that, as attested 

by the previous studies using the AMADEO rehabilitation device [93, 94, 288], the efficacy of the 

rehabilitation process is enhanced when the stroke patients are actively engaged during hand motor training. 

In future chapters of this thesis, the finding of this study is used to design a novel adaptive rehabilitation 

training strategy. 

During the experimental work conducted in this chapter, the MRCP patterns that appear during motor 

tasks are studied. In the experimental work, participants complete a single-session training of their hand 

movements through two distinct protocols. Protocol A is based on a simple visual-cue that guides participants 

to start and stop their hand movements. While protocol B is based on a 2D interactive game that provides the 

subjects with attention-grabbing tasks to move their hands. There are two-fold objectives of this experiment. 

First, the MRCP pattern variations are determined in both healthy and stroke subjects during two different 

training scenarios. Second, the intention signal during a motor task performed for both training scenarios 

using MRCP pattern are detected through an SVM classifier and the classification rates are compared for 

healthy and stroke subjects. The classification process aims at testing the hypothesis that if the intention signal 

is accurately detected, it indicates active participation of the subject during the training protocols.    

The rest of this chapter is organized as follows. Section 4.2 explains the experimental protocol including 

details of the participants, the training protocols, the method of intention detection through the SVM 

algorithm, and its performance evaluation metrics. The results of the MRCP pattern for healthy subjects and 

stroke patients during protocols A and B are described in Section 4.3. Section 4.4 explains the results of 

intention detection during both protocols using the SVM algorithm for healthy and stroke patients. Lastly, 

Section 4.5 outlines a summary of the chapter.  

4.2 Experimental Protocol 

 Participants’ Details 

The subjects participating in this experiment consisted of healthy subjects and post-stroke patients. The 

healthy subjects were four male participants with right hand dominancy and a mean age of 28 years. All 

healthy subjects reported no history of any neurological disorder. Two post-stroke patients both right hand 

dominant were initially assessed through two commonly used clinical tests, namely the MAS and FMA scale 

for hand motor skills. Table 4.1 shows the details of each patient as well as their clinical test scores. Both 
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stroke patients had lesions in their brain stem regions (brain stem pons).  

Table 4.1: Stroke patients’ details and scores of their clinical tests  

Gender Age 

Stroke Onset 

Duration 

(Months) 

Lesion location 
Paretic 

Hand 

MAS-Hand 

Movement 

Test Score 

(0-6) 

FMA-Hand 

Test Score 

(0-14) 

Female 64 7  Left pons Right 2 9 

Male 60 4  
Left ponto-

medullary junction   
Right 2 8 

 EEG Acquisition and Training Exercise Protocols 

Participants were seated upright on a comfortable chair with their right arms attached to the AMADEO 

hand-arm support unit. The EEG signals were acquired at five selected electrodes namely C3, FC3, Cz, CP3, 

and T7 during single-session training with FPz used as a ground electrode and CPz as a reference electrode. 

These five electrodes were selected for signal acquisition because all participants performed motor tasks with 

their right hand only. The selected electrodes used in this study are highlighted in Figure 4.1. Along with 

these five single electrodes, the SL channel, which is the linear combination of the other five selected 

electrodes calculated using the formula [286] mentioned in Equation 4.1, was also used during the data 

analysis.   

 

Figure 4.1: Position of selected electrodes during protocols A and B  

 4/)733(3 TCPCzFCCSL +++−=  (4.1) 

Two distinct training protocols were tested during right hand movement trials as explained below: 

(i) Protocol A: Visual-Cues 

During protocol A, each participant was trained to focus on visual-cues displayed on a computer screen. 

Visual-cues displaying hand-opening and hand-closing pictures as shown in Figure 4.2 to alert subjects to 
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perform these specific hand movements. The hand-closing pictures were displayed every 5 s, followed by the 

hand-opening pictures 1 s later with a 4 s waiting period. This resulted in a 5 s gap between any two hand-

closing visual-cues. Each training block comprised 23 trials of hand movements during this protocol. 

 

Figure 4.2: Visual-cues used in protocol A, (a) Hand-opening cue (b) Hand-closing cue  

(ii) Protocol B: AMADEO 2D Game 

Of the games available in the AMADEO’s active training mode, the Shoot-out was chosen for use in 

protocol B. The playing screen of the Shoot-out game is shown in Figure 4.3. In this game, the subject closed 

their hand to shoot the drum coming out at equal time intervals and re-opened their hand to re-load the gun. 

Subjects had up to 23 trials of hand movements in each block of training. 

(a) (b) 
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Figure 4.3: AMADEO Shoot-out game used in protocol B 

All participants performed 6 blocks consisting of 23 trials (6 x 23 = 138) for both protocols. At each 

hand-closing trial, digital event markers were manually sent to the CURRY 8X software (Compumedics, 

Neuroscan) which was used for EEG acquisition. Protocol B was more interesting and interactive compared 

to protocol A. The objective of this study was to determine whether the participants would be able to produce 

a stronger motor intention signal during protocol B than protocol A and whether it could be better detected 

through the SVM classifier.  

 Detection of Intention Signal Using SVM 

In this study, along with observing variations in MRCP pattern during protocols A and B, the motor 

intention during hand-closing and rest states was also detected for both healthy and stroke subjects.  

SVM is the most commonly employed supervised machine learning algorithm for the intention signal 

classification and detection of various limb movements according to the literature [105, 108, 113, 116, 120-

124]. In this experiment, SVM was used to detect the motor intention of hand-closing trials versus idle state. 

The complete signal processing steps involved in intention signal detection using SVM are illustrated in 

Figure 4.4.  
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Figure 4.4: Signal processing steps involved in intention signal detection  
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MRCP patterns produced at the selected single electrodes during hand movement trials were extracted 

from the raw EEG data using signal processing steps explained in Section 3.4 in Chapter 3. To detect the 

motor intention of hand-closing versus idle state, the continuous EEG data were divided into epochs i.e. Move 

epochs from -2 s to 0 s which contained MRCP pattern while the epochs from 0.5 s to 2.5 s which did not 

contain MRCP pattern was called as No-Move epochs. The Move epochs represent the portion of EEG data 

that contains the intention signal of hand-closing action while the No-Move epochs represent the idle state 

conditions of the subjects. From both of these epochs, two time-domain features which include Npeak and 

slope of MRCP pattern were extracted. The Move epochs have a prominent Npeak and slope of MRCP pattern 

compared to the No-Move epochs. Based on these time-domain features, the SVM differentiates between 

both epochs. However, before applying the SVM, both features were plotted and outliers were removed. This 

prevented biasing the results of SVM due to outliers. In each protocol, an average of 10±2 epochs was rejected 

per subject. Finally, the Move epoch was marked with a label of class ‘1’, and the No-Move epoch was 

marked with a label of class ‘0’. Depending on these input features, the SVM distinguished between classes 

1 and 0. Three-fourths of the dataset was utilized for training data while one-fourth was used as test data for 

intention detection. 

 Performance Evaluation of SVM 

The SVM classifier’s performance was determined based on percentage accuracy, TPR − also known 

as sensitivity and True Negative Rate (TNR) − also called specificity. They were calculated using the 

relationships given in Equations 4.2, 4.3, and 4.4 where True Positive, False Positive, True Negative and 

False Negative were abbreviated as TP, FP, TN, and FN respectively. 

 FN)FPTNTN)/(TP(TPAccuracy ++++=  (4.2) 

 )/( FNTPTPTPR +=  (4.3) 

 )/( FPTNTNTNR +=  (4.4) 

All these performance metrics were compared to find the protocol that produced better detection results, 

indicating stronger motor intention levels in both healthy subjects and stroke patients. In addition, these 

results could show which electrode was the best choice for intention detection during protocols A and B.  

4.3 Results of MRCP Pattern Analysis during Protocols A and B 

This section presents the MRCP patterns produced during hand motor tasks in protocols A and B for 

both healthy participants and stroke subjects. There is an expectation that the MRCP pattern’s Npeak and the 

slope will be more prominent during protocol B for both healthy and stroke subjects.  

 Results for the Healthy Subjects 

Figure 4.5 displays the global MRCP pattern (MRCP pattern averaged with respect to the number of 

trials) produced during hand movement by healthy subjects for both protocols A and B at all selected 

electrodes. The visual inspection of the plots shows that MRCP amplitude at all channels starts to decrease 

around 0.5 s, reaches the maximum negative value around 0 s (movement onset point), and then again starts 
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to increase. Furthermore, the lowest amplitude of the MRCP pattern (termed as Npeak), as well as steepness 

in the decrease of amplitude (termed as the slope of MRCP pattern), varies for protocols A and B. The Npeak 

amplitudes at C3, FC3, CP3, and SL appear to be greater during protocol B. Whereas, Npeak values at Cz 

and T7 electrodes are slightly less in protocol B when compared to that in protocol A. This could be indicative 

of more engagement of the healthy participants in protocol B compared to protocol A according to four out 

of six selected electrodes. The slope of the MRCP pattern is also observed to be varied with the change in the 

training protocols.  

 Results for the Stroke Patients 

The global MRCP pattern at all the six selected channels produced by stroke patients during protocols 

A and B are presented in Figure 4.6. For stroke patients, the Npeak of MRCP pattern is observed to be slightly 

greater during protocol B compared to protocol A at all channels except for Cz. It could be inferred that stroke 

patients are more actively engaged in hand motor tasks during protocol B compared to protocol A. Similar to 

the healthy participants’ group, the stroke patients’ group shows the variation in Npeak and slope due to 

protocol change.  
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Figure 4.5: Global MRCP pattern produced by healthy subjects during protocols A and B  
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Figure 4.6: Global MRCP pattern produced by stroke patients during protocols A and B 
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4.4 Results of Intention Detection during Protocols A and B  

The MRCP pattern analysis of both healthy and stroke groups showed that the Npeak and slope values 

at all six channels varied due to change in training protocols. Therefore, the Npeak and slope of the MRCP 

pattern were extracted from Move and No-Move epochs. They were then used as features for the SVM 

classifier to differentiate between Move and No-Move epochs.  

The MRCP patterns in Figure 4.5 and Figure 4.6 are plotted from -2 s to 0.5 s to get a complete picture 

of the MRCP features variations due to training protocol change. After 0.5 s, the MRCP pattern stays at a 

constant amplitude until the start of the next movement trial. Therefore, the Move epoch length was selected 

from -2 s to 0 s, and the No-Move epoch length was selected from 0.5 s to 2.5 s during the data analysis.  

Six electrodes which include C3, FC3, Cz, CP3, T7, and SL were used for intention detection of hand 

motor tasks during both protocols A and B through SVM. Performance metrics of the SVM classifier 

including classification accuracy, TPR, and TNR, were calculated and described in this section. Sections 4.4.1 

and 4.4.2 present all the results of intention detection for healthy subjects and stroke patients respectively.   

 Intention Detection for the Healthy Subjects  

The results of the SVM classifier accuracy for healthy subjects for protocols A and B are presented in 

Table 4.2. These results for healthy subjects show that protocol B has better accuracy of SVM classifier than 

protocol A at all selected channels except for Cz and T7. This supports our hypothesis that during protocol 

B, subjects are more engaged in performing hand movement and are likely to have greater classification 

accuracy compared to protocol A. From Table 4.2, it is clear that the classifier’s accuracy varies in accordance 

with the selected electrode, and the highest accuracy for the healthy group is obtained at FC3. According to 

the results acquired for FC3, protocol B has an SVM classifier’s accuracy of 98 % while the classification 

accuracy of protocol A is 86 %. Furthermore, it is noted that the two electrodes (Cz and T7) which do not 

show better classification accuracies for protocol B are the same electrodes that showed the smaller Npeak 

amplitude during protocol B in Figure 4.5. This means it is possible to predict the classifier’s performance 

based on visual inspection of the MRCP patterns. 

Table 4.2: Average accuracy of the SVM algorithm across healthy subjects’ group 

Channel 
SVM Classifier’s Accuracy (%) 

Protocol A Protocol B 

C3 64.58 92.86 

FC3 86.25 98.0 

Cz 73.81 70.0 

CP3 57.7 76.3 

T7 63 57.69 

SL 60.0 83.33 
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The accuracy alone cannot justify the performance of the classifier, therefore, sensitivity (TPR) and 

specificity (TNR) parameters are also determined. The TPR and TNR values show whether the extracted 

features from Move and No-Move classes are distinct enough to be classified accurately by SVM [289]. TPR 

and TNR values using data of healthy subjects for protocols A and B are shown in Figure 4.7 and Figure 4.8 

respectively. In the case of protocol A, Figure 4.7 demonstrates that TPR obtained for C3, FC3, and Cz is 

lower than its corresponding TNR, whereas, for CP3, T7, and SL, the reverse is the case. Figure 4.8 shows 

that TPR, for all six electrodes, is higher than its corresponding TNR for protocol B indicating that the Move 

class contains adequate features to correctly detect motor intention signals. 

 

Figure 4.7: Average TPR and TNR values during protocol A across healthy subjects’ group 

 

Figure 4.8: Average TPR and TNR values during protocol B across healthy subjects’ group 
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 Intention Detection for the Stroke Patients 

The performance of the SVM algorithm for the detection of hand motor intention signals produced by 

stroke patients is discussed in this section. Table 4.3 presents the accuracy of the SVM classifier at all six 

selected electrodes for stroke patients during protocols A and B. For protocol A, the FC3 electrode shows the 

maximum accuracy of the SVM classifier of about 72 %. Whereas the same electrode shows classification 

accuracy of 89 % for intention detection when stroke patients perform the hand movement during protocol 

B. All other selected electrodes also demonstrate that better classification results for protocol B except for 

Cz. It is again confirmed from the classifier accuracy results of the stroke group that for both protocols, FC3 

shows the maximum classifier’s performance. Whereas the Cz electrode shows poor classification 

performance during protocol B as expected from the visual inspection of MRCP patterns in Figure 4.6. 

Table 4.3: Average accuracy of the SVM algorithm across post-stroke patients’ group 

Channel 
SVM Algorithm’s Accuracy (%) 

Protocol A Protocol B 

C3 52.88 81.01 

FC3 72.22 88.89 

Cz 70.45 34.56 

CP3 26.25 60.16 

T7 49.29 51.43 

SL 66.33 83.78 

Figure 4.9 shows bar-chart representations of TPR and TNR values obtained using stroke patients’ data 

from protocol A at all six electrodes and that from protocol B in Figure 4.10. For protocol A, Figure 4.9 shows 

that TNR for FC3, Cz, CP3, and SL is significantly lower than its corresponding TPR. On the other hand, 

TNR is slightly higher in the case of C3 and slightly lower for T7. However, for protocol B, TNR is higher 

than TPR for each choice of electrode except for CP3 and T7 as shown in Figure 4.10.  
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Figure 4.9: Average TPR and TNR values during protocol A across stroke patients’ group 

 

Figure 4.10: Average TPR and TNR values during protocol B across stroke patients’ group 

In this way, using percentage accuracy, TPR, and TNR metrics were used to determine the classification 

performance of SVM. The classification accuracy for both protocols A and B at the FC3 channel was found 

to be greater than the C3 channel in the case of healthy and stroke patients’ groups. However, the C3 channel 

was considered to be the most appropriate channel to detect the motor intention of hand movements [287]. 

This could be explained by looking at their corresponding TPR and TNR values. The TNR values for the C3 

channel were higher in all the cases as compared to the corresponding TNR values for the FC3 channel, that’s 

why the classifier’s accuracy for the FC3 channel was found to be more than C3. Hence, the use of TPR and 

TNR parameters along with the classifier’s accuracy is proved to be important in determining the performance 
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of the classifier. These parameters indicate whether good results of the classifier were obtained due to 

detecting either positive or negative classes accurately.  

When the Cz electrode from stroke patients’ data as well as the Cz and T7 electrodes from healthy 

subjects’ data were chosen, protocol A had slightly better classification accuracy than protocol B. There could 

be many possible reasons for this apparent contradiction. The Cz channel is commonly employed to detect 

foot-related motor intention [148, 290], whereas, T7 acquired brain signal over the temporal lobe while 

intention signal occurs best at the motor cortex of the brain. Therefore, these results at Cz and T7 electrodes 

were expected.  

4.5 Summary 

In this chapter, the deployment of the MRCP pattern to observe the variation in intention signal and to 

detect it using a machine learning algorithm for hand motor tasks during two different training protocols were 

performed. These two protocols used in the experimental protocol were based on simple visual-cues and the 

AMADEO 2D game. The motor intention signals for both healthy participants as well as post-stroke patients 

were detected using the SVM classifier by selecting six different electrodes. This was followed by an 

evaluation of the SVM classifier’s performance. It was found that MRCP’s Npeak amplitude was slightly 

higher during protocol B compared to that during protocol A. This Npeak amplitude increase could be 

indicative of the greater active participation of the subjects during protocol B. This was further analyzed using 

the SVM classification approach. The average classification accuracy of 67.56 % for the visual-cue protocol 

and 79.7 % for the gaming protocol was achieved for healthy subjects. Similarly, for stroke patients, the 

average accuracy obtained was 56.24 % and 66.64 % for the visual-cue and the game protocols, respectively. 

Based on the obtained results, the game protocol was found to be a better option in retaining the concentration 

of subjects during the training period and showed better overall classification results for both healthy and 

stroke patients compared to the visual-cues protocol.  

It is inferred from this experiment that more complex interactive and engaging exercises such as games 

available in the AMADEO robot-based rehabilitation device are preferable to promote the active participation 

of the patients. Therefore, it can be employed for significantly enhancing the effectiveness of rehabilitation 

therapy for post-stroke patients.  
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Quantification of Movement-Related Cortical Potential Associated with 

Motor Training after Post-Stroke Rehabilitation 

5.1 Overview  

The study described in this chapter aims to investigate the use of the MRCP pattern as a tool to identify 

the effect of multi-session motor training on restoring the hand functions of post-stroke patients. The training 

effect will be observed after the participants complete their rehabilitation training to improve fine finger motor 

skills. The post-stroke patients underwent multi-session robot-assisted motor training of their affected hand 

for four weeks with an AMADEO rehabilitation device. An EEG acquisition system was used to record brain 

activities. These brain activities were used to extract the MRCP pattern’s features from eight selected 

electrodes. 

According to the literature, a decrease in the amplitude of the MRCP pattern is expected to be associated 

with improvement in hand motor skills due to the repetition of the same training protocol [216, 218-220]. 

The improvements in motor skills were measured with the help of two commonly employed clinical tests 

namely FMA and MAS. In addition, hand-kinematic parameters consisted of hand strength measured during 

flexion (force-flexion), hand strength measured during extension (force-extension), and Hand Range of 

Movement (HROM) were also selected to assess the rehabilitation training outcomes. AMADEO offers an 

in-built assessment tool to measure these hand-kinematic parameters. Furthermore, the variation in the 

features of the MRCP patterns was compared with the results from FMA and MAS clinical tests as well as 

hand-kinematic parameters.  

The rest of the chapter is organized as follows. Section 5.2 describes materials and methods used in the 

experimental work and contains information on inclusion criteria for participants, motor training protocol, 

pre and post-training protocols as well as data processing steps. The EEG data analysis results are described 

in Section 5.3. Results of clinical test and hand-kinematic parameters after a four week study protocol are 

presented in Section 5.4 and Section 5.5 respectively. Section 5.6 presents results from a study of a subgroup 

of participants who were given an additional four week training. Section 5.7 summarizes the chapter. 

5.2 Materials and Methods 

The experimental work was designed to assess the improvements in hand motor skills and 

corresponding changes in MRCP pattern after post-stroke patients underwent multi-session motor training of 

their affected hand on the AMADEO robotic device. The basic design of the experiment is illustrated in 

Figure 5.1. The patients underwent 12 hand motor training sessions on AMADEO over a period of four 

weeks. The physical improvements in hand motor skills and corresponding changes in MRCP pattern were 

measured before the start of the experiment and after completing all 12 training sessions.   
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Figure 5.1: Experimental design of the multi-session hand motor training 

 Patient Inclusion Criteria  

The following inclusion criteria were established before recruiting subjects:  

(a) Range of age: 50–85 

(b) Clinical stroke within 6 months to enrolment and MRI scan evidence of stroke consistent clinical 

presentation 

(c) Major impairment: hand motor (fine finger motor) deficits 

(d) Impairment level: motor abilities suggested by MAS clinical test (Section 7, hand movements, score 

between 1–5)  

(e) Adequate cognition: suggested by widely adopted Rowland Universal Dementia Assessment Scale or 

Mini-Mental State Examination score of 26 (out of 30) or more [291] 

(f) Ability to understand verbal instructions in English 

Based on the inclusion criteria, seven ischemic stroke patients all with right hand dominancy were 

recruited for a robot-assisted motor training study. The characteristics of the stroke patients who participated 

in this experiment are listed in Table 5.1. Participants signed the written informed consent before the 

commencement of the experiments. All patients received standard care at a local hospital, in addition to our 

intervention protocol. 

Table 5.1: Important factor information of each stroke patient 

Stroke 

Patient 

(Gender) 

Age 

(Years) 

Stroke Onset 

Duration 

(Months) 

MAS-Hand 

Movement Test 

Score (0-6) 

Stroke Location 
Affected 

Hand 

SP1* 

(Male) 
82 

3 

 
2 Left motor cortex  Right 

SP2 

(Male) 
81 2 3 

Left thalamic and internal 

capsule  
Right 

SP3 

(Male) 
67 2 2 Left internal capsule  Right 

SP4 

(Female) 
51 1.3 4 Right basal ganglia  Left 

SP5 

(Female) 
64 4 1 Left pons Right 

SP6 

(Male) 
60 3 1 

Left ponto-medullary 

junction   
Right 

SP7 

(Female) 
63 6 1 Right pons  Left 

* SP stands for Stroke Patient 
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 Motor Training Protocol 

In this experiment, an AMADEO standard therapy program was used for motor training of the affected 

hand of all recruited post-stroke patients. In the beginning, the HROM for each patient was set according to 

the AMADEO protocol to the maximum potential range depending on each patient’s hand size. The duration 

of each training session was 30 minutes and patients received the training one session per day for three 

sessions per week for four weeks. The total training duration for each patient was 360 minutes in one month. 

However, patient SP7 completed 10 motor training sessions (300 minutes) instead of 12 due to personal 

circumstances.    

Depending on stroke lesion locations and associated pre-training clinical test values, the patients were 

divided into two groups: group A consisting of four participants (SP1, SP2, SP3, and SP4); and group B 

consisting of three participants (SP5, SP6, and SP7). The patients in group A had a stroke in the supratentorial 

region of the brain and had better baseline finger movements while group B patients had a stroke in the 

infratentorial region and had limited finger movements due to the location of the lesion in their brain stems. 

The brain areas above tentorium cerebelli are known as supratentorial and those below tentorium cerebelli 

are termed as infratentorial areas as shown in Figure 5.2. The designed training strategies for both groups 

were therefore different. The specific training strategy for both groups is presented in Table 5.2. 

 

Figure 5.2: Brain’s areas according to tentorium cerebelli [292]  

Table 5.2: Motor training strategy for group A and group B 

Category Training Strategy 

Group A 

1) CPM training mode for 5 minutes;  

2) CPMplus training mode for 5 minutes;  

3) Assistive training mode for 10 minutes; and 

4) Active training mode (2D interactive games) for 10 minutes.  
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Group B 

1) CPM training mode for 10 minutes;  

2) CPMplus training mode for 10 minutes, and  

3) Assistive training mode for 10 minutes.  

Although the total duration of motor training for group A was the same as for group B, active training 

mode was included only in the group A training protocol because stroke patients in group B were unable to 

play the game with their initial finger movements.  

 Pre and Post-Training Protocols 

Participants were seated on a comfortable chair in an upright posture while baseline measurements were 

taken. Before the commencement of a multi-session motor training study, three baseline measurements were 

recorded in week 0: 

(1) EEG Acquisition: EEG signals were acquired while the subjects were asked to perform self-paced 

simple hand-grasping movements with their affected hand in 8 to 10 blocks of 10 trials each. The FPz 

electrode was used as a ground electrode and a separate electrode was placed on the ipsilateral earlobe 

as a reference. During signal acquisition, patients were asked to focus on a cross-mark in front of them 

to avoid random eye-movement artifacts as shown in Figure 5.3. The event markers on each trial were 

manually sent to the CURRY 8X acquisition software. The time gap between the two trials was randomly 

varied from 8 s to 10 s.  

(2) Clinical Tests: The clinical tests namely the FMA test (wrist and hand sections only) [293] as well as 

the MAS tests [294], for both hand movement and advanced hand movements, were applied to assess 

the current hand motor abilities of patients. The details of the tasks performed during all four clinical 

tests were given in Appendix 4. These clinical tests were denoted as FMA-wrist, FMA-hand, MAS-hand 

movements, and MAS-advanced hand movements’ tests in this thesis.  

(3) Hand-Kinematic Parameters: The force-flexion, force-extension, and HROM parameters for the 

affected hand were measured using the assessment tool on the AMADEO hand rehabilitation device. 

All the above-mentioned measurements in week 0 were repeated in week 4 after completion of 12 

training sessions and the results were compared (see Figure 5.1). 
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Figure 5.3: Patient performing a self-paced hand-grasping task during pre and post-training protocols 

 Data Processing and Statistical Analysis 

The acquired EEG data were processed to obtain a global MRCP pattern (MRCP patterns averaged with 

respect to the number of subjects in a group) as explained in Section 3.4 of Chapter 3. During the EOG artefact 

rejection process, on average, 24 epochs per participant were removed from each pre and post-training data 

value. However, this removal of epochs still resulted in an acceptable number of trials for averaging. Using 

global MRCP patterns, five different time-domain features of the MRCP pattern were extracted namely; BP1 

amplitude, BP1 onset, BP2 amplitude, BP2 onset, and Npeak amplitude using MATLAB toolbox called 

‘visualEEG’ [74].   

The selected EEG channels, located over the sensorimotor and motor cortices of both hemispheres, 

were FC3, FC4, C3, Cz, C4, CP3, CPz, and CP4. In the literature, the C3, Cz, and C4 electrodes are commonly 

used to extract MRCP patterns for hand motor tasks [214-220]. In addition, five other electrodes (FC3, FC4, 

CP3, CP4, and CPz) were also specifically explored in this experiment to get a detailed picture of the MRCP 

pattern for fine finger motor tasks. The positions of all these selected electrodes in 32-channels Quick-Cap 

used for this experiment are shown in red color in Figure 5.4. 

 

Figure 5.4: Positions of selected electrodes for this experiment 

EEG cap 

Monitor with 

Cross-mark 
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 The stroke patients who participated in this experiment received training for either their right or left 

affected hands. All odd number electrodes (FC3, C3, and CP3) would be contralateral channels for those 

patients who performed the movement with their right hand and even number electrodes (FC4, C4, and CP4) 

would be ipsilateral channels. The reverse was true for the patients who performed the left hand movement. 

Therefore, for group analysis, these electrodes were designated as contralateral FC (CLFC), contralateral C 

(CLC), and contralateral CP (CLCP) to indicate the contralateral representation for both right hand and left 

hand movements. Similarly, to represent the ipsilateral side of both hand movements, the electrodes were 

designated as ipsilateral FC (ILFC), ipsilateral C (ILC), and ipsilateral CP (ILCP). The electrodes Cz and 

CPz are central channels and therefore do not need to have their labels based on ipsilateral or contralateral 

positions. Hence, the electrodes used in the analysis were CLFC, CLC, CLCP, ILFC, ILC, ILCP, Cz, and 

CPz.    

Along with EEG data analysis, clinical tests, and hand-kinematic parameters’ measurements were also 

performed. The clinical tests (FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand 

movements) were performed by patients three times by each patient and the best scores were recorded 

according to the general rule of administration for these clinical tests. Whereas hand-kinematic parameters 

were also measured three times using the AMADEO assessment tool and their average values were used to 

ensure the validity and consistency of the results.  

The statistical significance was measured in all the defined three measurement parameters (MRCP 

pattern analysis, clinical tests, as well as hand-kinematic parameters) using a two-tailed paired t-test. The 

significance level of the t-test is reported at the alpha value of p < 0.05.  

5.3 EEG Data Analysis Results  

In this section, results obtained from EEG data analysis for groups A and B are presented. For both 

groups, visible global MRCP patterns were obtained using the post-stroke patients’ data at all eight selected 

electrodes for pre and post-training periods. The global MRCP patterns for all ipsilateral channels (ILFC, 

ILC, ILCP), contralateral channels (CLFC, CLC, CLCP), and central channels (Cz, CPz) obtained from EEG 

data acquired during pre and post-training protocols for group A and group B are shown in Figure 5.5 and 

Figure 5.6 respectively. The MRCP patterns at all electrode sites are plotted for the time interval -1 to 1 s for 

better visualization of the changes that occur in the MRCP patterns during motor training.  

For group A, visual inspection of the global MRCP patterns indicates that the post-training values of 

Npeak of MRCP patterns are prominently decreased at all selected electrodes compared to their 

corresponding pre-training values. Whereas global MRCP patterns for group B show that the post-training 

Npeak is considerably increased at ipsilateral electrodes (ILFC, ILC, ILCP), slightly decreased at 

contralateral electrodes and one of the central electrodes (CLFC, CLC, CLCP, CPz) but remains the same at 

Cz central electrode. The individual features of the MRCP pattern and their statistical analysis for both groups 

are discussed in Sections 5.3.1 to 5.3.3.  
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Figure 5.5: Global MRCP patterns for group A at all channels after 12 motor training sessions. Legend Week 0 represents the pre-training period, and legend Week 4 shows the post-

training period in all figures. 
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Figure 5.6: Global MRCP patterns for group B at all channels after 12 motor training sessions. Legend Week 0 represents the pre-training period, and legend Week 4 shows the post-

training period in all figures.  
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 Bereitschaftspotential 1 (BP1) Amplitude and Onset 

The BP1 amplitude was calculated as the absolute amplitude difference between the BP1 amplitude and 

BP2 amplitude. Figure 5.7 shows the mean absolute values of BP1 amplitude using column charts with error 

bars for each electrode position for group A. The error bars were calculated using the Standard Deviation 

(SD) values across subjects for each of the eight electrodes. The post-training BP1 amplitude values are found 

to be decreased at all electrodes with respect to their corresponding post-training values. The paired t-test 

shows that the changes between pre and post-training values in BP1 amplitude at all electrodes are not 

statistically significant (p > 0.05). Table 5.3 shows the BP1 onset for group A in the form of the mean (± SD) 

for its pre-training and post-training values. The mean BP1 onset before training was -1.48 (± 0.364) s 

compared to -1.559 (± 0.375) s after completion of training for the participants in group A. Application of 

paired t-test shows that the change between the pre and post-training values of BP1 onset for group A is not 

statistically significant (p > 0.05). 

 

Figure 5.7: Mean absolute BP1 amplitude at week 0 and week 4 for group A. The error bars represent SD values 

across subjects for each electrode. 

Table 5.3: Mean values for BP1 onset at week 0 and week 4 for group A (Mean (± SD))  

 

Channels 

 

BP1 Onset for group A  

BP1 Onset values 

at Week 0 (s) 

BP1 Onset values at 

Week 4 (s) 

ILFC -1.562 (± 0.253) 

 

-1.158 (± 0.138) 

 

ILC -1.336 (± 0.281) -1.528 (± 0.641) 

 

ILCP -1.393 (± 0.238) 

 

-1.483 (± 0.545) 

 

CLFC -1.652 (± 0.431) 

 

-1.429 (± 0.184) 

CLC -1.172 (± 0.206) 

 

-1.189 (± 0.137) 

CLCP -1.418 (± 0.552) 

 

-1.842 (± 0.471) 

 

Cz -1.743 (± 0.319) -1.783 (± 0.549) 

 

CPz -1.562 (± 0.631) -2.059 (± 0.338) 

In the case of group B, the mean absolute values of BP1 amplitude for all electrodes are shown in Figure 
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5.8. It is observed that post-training BP1 amplitude is higher at all electrode positions except at ILFC and 

ILCP compared to pre-training values. Table 5.4 presents the pre and post-training values of BP1 onset for 

group B. For this group, the mean BP1 onset was found to be -1.466 (± 0.504) s for pre-training and -1.467 

(± 0.185) s for post-training periods. When the paired t-test was applied, no statistically significant change 

was found between the pre and post-training values of both BP1 amplitude and BP1 onset for group B (p > 

0.05). 

 

Figure 5.8: Mean absolute BP1 amplitude at week 0 and week 4 for group B. The error bars represent SD values 

across subjects for each electrode. 

Table 5.4: Mean values for BP1 onset at week 0 and week 4 for group B (Mean (± SD)) 

 

Channels 

 

BP1 Onset for group B 

BP1 Onset values 

at Week 0 (s) 

BP1 Onset values at 

Week 4 (s) 

ILFC -1.378 (± 0.344) 

 

-1.405 (± 0.122) 

 

ILC -1.202 (± 0.232) -1.33 (± 0.151) 

ILCP -1.253 (± 0.406) -1.568 (± 0.158) 

CLFC -1.535 (± 0.561) -1.423 (± 0.109) 

CLC -1.636 (± 0.579) -1.548 (± 0.047) 

CLCP -1.497 (± 0.617) -1.613 (± 0.15) 

Cz -1.744 (± 0.62) -1.455 (± 0.395) 

CPz -1.484 (± 0.676) -1.393 (± 0.351) 

 Bereitschaftspotential 2 (BP2) Amplitude and Onset 

The mean absolute values of BP2 amplitude for group A, calculated as an absolute difference of the 

amplitude between BP2 and Npeak amplitudes, are shown in the form of a column chart in Figure 5.9. The 

BP2 amplitude at all electrodes is considerably higher than the BP1 amplitude. Moreover, it is noted that the 

BP2 amplitude is decreased in all channels after the training for group A participants. The pre and post-

training values of the BP2 onset for the participants of group A are shown in Table 5.5. The average value of 

BP2 onset for group A was calculated to be -0.233 (± 0.079) s before the commencement of the training 

0

2

4

6

ILFC ILC ILCP CLFC CLC CLCP Cz CPz

A
m

p
li

tu
d

e 
(µ

V
) 

Electrode Label

Week 0 Week 4



97 

 

sessions and was reduced to -0.197 (± 0.042) s after completion of 12 training sessions. However, when the 

paired t-test was applied, it did not show statistical significance between pre and post-training values of BP2 

amplitude and onset for group A (p > 0.05).  

 

Figure 5.9: Mean absolute BP2 amplitude at week 0 and week 4 for group A. The error bars represent SD values 

across subjects for each electrode. 

Table 5.5: Mean values for BP2 onset at week 0 and week 4 for group A (Mean (± SD)) 

 

Channels 

 

BP2 Onset for group A 

BP2 Onset values at 

Week 0 (s) 

BP2 Onset values at 

Week 4 (s) 

ILFC -0.187 (± 0.021) -0.229 (± 0.095) 

ILC -0.251 (± 0.109) -0.217 (± 0.067) 

ILCP -0.226 (± 0.049) -0.203 (± 0.044) 

CLFC -0.206 (± 0.039) -0.186 (± 0.025) 

CLC -0.233 (± 0.138) -0.181 (± 0.04) 

CLCP -0.22 (± 0.098) -0.2 (± 0.031) 

Cz -0.222 (± 0.079) -0.176 (± 0.022) 

CPz -0.236 (± 0.099) -0.183 (± 0.015) 

For group B, the mean absolute values for BP2 amplitude and pre and post-training values for BP2 

onset for all eight electrodes are presented in Figure 5.10 and Table 5.6 respectively. The post-training BP2 

amplitude is increased at ILFC, ILC, and ILCP, whereas, it is decreased at CLFC, CLC, CLCP, Cz, and CPz 

when compared with the corresponding pre-training values. The mean BP2 onset before the start of motor 

training was found to be -0.199 (± 0.074) s which then slightly decreased to -0.156 (± 0.021) s after training 

completion. When the paired t-test was applied, no statistical significance was found for both BP2 amplitude 

and onset at any electrode’s position for group B (p > 0.05).  
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Figure 5.10: Mean absolute BP2 amplitude at week 0 and week 4 for group B. The error bars represent SD values 

across subjects for each electrode. 

Table 5.6: Mean values for BP2 onset at week 0 and week 4 for group B (Mean (± SD)) 

 

Channels 

 

BP2 Onset for group B 

BP2 Onset values 

at Week 0 (s) 

BP2 Onset values at 

Week 4 (s) 

ILFC -0.3 (± 0.161) -0.144 (± 0.017) 

ILC -0.182 (± 0.036) -0.167 (± 0.036) 

ILCP -0.241 (± 0.121) -0.141 (± 0.022) 

CLFC -0.159 (± 0.017) -0.173 (± 0.031) 

CLC -0.206 (± 0.111) -0.154 (± 0.015) 

CLCP -0.138 (± 0.019) -0.165 (± 0.023) 

Cz -0.226 (± 0.111) 

 

-0.149 (± 0.01) 

CPz -0.143 (± 0.019) -0.155 (± 0.01) 

 
 Negative Peak (Npeak) Amplitude  

Figure 5.11 shows the column chart representation of the mean absolute pre and post-training values of 

the Npeak features of the MRCP pattern for group A. The Npeak amplitude at all eight electrode positions 

decreased compared to pre-training values. The application of paired t-test on Npeak amplitude revealed that 

its post-training decreases were statistically significant at ILC (p=0.005), ILCP (p=0.03), CLFC (p=0.035), 

CLC (p=0.027), CLCP (p=0.019), Cz (p=0.035) as well as CPz (p=0.014) compared to pre-training values as 

indicated by a ‘*’ sign in Figure 5.11. However, the decrease in post-training Npeak amplitude is statistically 

not significant at ILFC (p=0.118) according to paired t-test. Hence, it can be concluded that group A 

participants show a statistically significant decrease in Npeak amplitude in seven of eight selected electrodes 

after completion of the rehabilitation training strategy.  
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Figure 5.11: Mean absolute Npeak amplitude at week 0 and week 4 for group A. The error bars represent SD values 

across subjects for each electrode. The symbol ‘*’ indicates a significant decrease in Npeak amplitude at week 4 

compared to that at week 0.   

For group B, Figure 5.12 displays the bar-chart representation for mean absolute pre and post-training 

values for Npeak amplitude. An increase in all ipsilateral electrodes (ILFC, ILC, and ILCP) for post-training 

Npeak amplitude values are observed compared to their pre-training values. On the other hand, Npeak 

amplitudes at all contralateral and central electrodes (CLFC, CLC, CLCP, Cz, and CPz) are either remained 

constant or decreased after the training. However, these changes were not statistically significant at any 

electrode position with respect to the paired t-test (p > 0.05).     

 

Figure 5.12: Mean absolute Npeak amplitude at week 0 and week 4 for group B. The error bars represent SD values 

across subjects for each electrode. 

The EEG data analysis revealed that all participants in both groups A and B were able to generate 

MRCP patterns during the self-paced motor task of their affected hand at all eight selected electrode positions. 

Five features of the MRCP pattern namely; BP1 amplitude, BP1 onset, BP2 amplitude, BP2 onset, and Npeak 

amplitude were investigated for group A and group B separately to explore whether a significant change in 

the MRCP pattern’s features occurred after the completion of 12 motor training sessions by the stroke 

patients. Npeak amplitude of group A participants showed a statistically significant decrease in Npeak 

amplitude after four weeks of training. Group B participants did not show a statistically significant change in 

Npeak. BP1 and BP2 amplitudes for all eight electrodes in both groups did not change significantly with 

training. BP1 and BP2 represent the preparation phase of voluntary movement [71]. In this experiment, they 

have smaller amplitudes compared to Npeak amplitudes, and hence detecting a significant change in the BP1 

and BP2 amplitudes are less expected. The pre and post-training values of BP1 onset for both groups A and 
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B lie between -2 s to -1.1 s consistent with the previous work [71]. Similarly, the pre and post-training values 

of BP2 onset for both groups are less than -0.5 s which is also consistent with the results reported in [71].  

5.4 Clinical Test Results 

FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movements’ tests were 

executed on week 0 and week 4 of the designed robot-assisted training for each stroke patient in group A and 

group B. These clinical tests were used to determine the physical improvements in the hand motor abilities 

of the patients due to the training. 

Table 5.7 shows the average values for four clinical tests of group A in the mean (± SD) form. There is 

an average increase of 1.8 in the FMA-wrist test, as well as an average increase of 3.7 obtained for the FMA-

hand test. For MAS-hand movement and MAS-advanced hand movement tests, the average increase is 1.7 

and 1.0 respectively. The paired t-test was applied between pre and post-training values of all four clinical 

tests. The significant change is indicated by bold values and a ‘*’ sign on the values in Table 5.7. For group 

A, FMA-wrist (p=0.006), FMA-hand (p=0.043) as well as MAS-hand movements (p=0.035) clinical tests 

showed statistically significant improvement after the completion of 4-weeks of hand motor training. 

However, the MAS-advanced hand movement clinical test did not show statistically significant improvement 

according to paired t-test (p=0.252).     

   Table 5.7: Average clinical test results for group A after four weeks of motor training (Mean (± SD)). The symbol ‘*’ 

indicates a significant increase in clinical test results at week 4 compared to that at week 0.   

Assessment 

Period 

FMA-Wrist 

Score (0-10) 

FMA-Hand 

Score (0-14) 

MAS-Hand 

Movements 

Score (0-6) 

MAS-Advanced 

Hand Movements 

Score (0-6) 

Week 0 6.5 (± 2.4) 8.3 (± 2.6) 2.8 (± 1) 3.3 (± 2.8) 

Week 4 8.3 (± 2.1)* 12 (± 1.2)* 4.5 (± 1.3)* 4.3 (± 1.5) 

For group B, the average clinical test results are presented in Table 5.8 in the form of the mean (± SD). 

The average increase in FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand 

movements’ clinical tests are calculated to be 1.4, 3.0, 0.3, and 0 respectively for this group. The paired t-test 

was applied and the significance level is indicated as bold values and a ‘*’ sign on the values in Table 5.8. 

The paired t-test revealed that only the FMA-hand test (p=0.035) showed statistically significant 

improvement for the patients in group B. Whereas, the FMA-wrist test (p=0.27), MAS-hand movements test 

(p=0.423), and MAS-advanced hand movements test did not show any statistically significant improvements 

in their post-training values compared to their corresponding pre-training values.  
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Table 5.8: Average clinical test results for group B after four weeks of motor training (Mean (± SD)). The symbol ‘*’ 

indicates a significant increase in clinical test results at week 4 compared to that at week 0.   

Assessment 

Period 

FMA-Wrist 

Score (0-10) 

FMA-Hand 

Score (0-14) 

MAS-Hand 

Movements 

Score (0-6) 

MAS-Advanced 

Hand Movements 

Score (0-6) 

Week 0 1.3 (± 1.2) 2.7 (± 1.5) 0.7 (± 0.6) 0.3 (± 0.6) 

Week 4 2.7 (± 2.5) 5.7 (± 2.1)* 1 (± 1) 0.3 (± 0.6) 

Hence, according to the results of clinical tests obtained after four weeks of robot-assisted hand training 

sessions, group A showed statistically significant improvement in three out of four clinical tests whereas, 

group B revealed improvement in only one clinical test.  

5.5 Results of Hand-Kinematic Parameters 

The AMADEO assessment tool allows the measurement of force-flexion, force-extension, and HROM 

of fingers and thumb. Therefore, these hand-kinematic parameters were measured at the pre and post-training 

periods for group A and group B.  

For group A, Table 5.9 shows the mean (± SD) values of force-flexion, force-extension, and HROM 

obtained during pre and post-training protocols. It is noted that patients in group A achieved an average 

increase of 20.2 N in force-flexion and an average increase of 12.7 N in force-extension. The HROM 

parameter shows a mean increase of 36.6 % after the completion of 12 motor training sessions. The statistical 

significance levels between pre and post-training values of all three hand-kinematic parameters were 

calculated using the paired t-test. The pre and post-training values of all these hand-kinematic parameters 

(force-flexion, p=0.028; force-extension, p=0.048; HROM; p=0.039) for hand movement recovery showed 

statistically significant improvement as a result of the 12 motor training sessions. 

   Table 5.9: Average hand-kinematic parameters for group A after four weeks of motor training (Mean (± SD)). The 

symbol ‘*’ indicates a significant increase in hand-kinematic parameters at week 4 compared to that at week 0.   

Assessment 

Period 

Force-Flexion 

(N) 

Force-Extension 

(N) 

HROM  

(%) 

Week 0 38.9 (± 14) 6.9 (± 8) 52.8 (± 34.9) 

Week 4 59.1 (± 8.4)* 19.6 (± 8)* 89.4 (± 15.9)* 

Table 5.10 presents the average force-flexion, force-extension, and HROM values obtained from the 

AMADEO assessment tool for group B in the mean (± SD) form. The participants of this group showed an 

average increase of 16 N in force-flexion, 3.5 N in force-extension, and 27.8 % in HROM parameters. 

Application of paired t-test between pre and post-training values of all three hand-kinematic parameters 

showed that improvements in any of these parameters were not statistically significant (p > 0.05). 
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Table 5.10: Average hand-kinematic parameters for group B after four weeks of motor training (Mean (± SD)) 

Assessment 

Period 

Force-Flexion 

(N) 

Force-Extension 

(N) 

HROM  

(%) 

Week 0 15.1 (± 15.9) 2.1 (± 2.6) 11.9 (± 18.3) 

Week 4 31.1 (± 30.3) 5.6 (± 6.4) 39.7 (± 34.4) 

The results of hand-kinematic parameters showed that post-stroke patients in group A gained significant 

improvements in the force-flexion, force-extension, and HROM parameters after completion of four weeks 

of the motor training. However, group B stroke patients did not show significant improvement in any of the 

hand-kinematic parameters after a similar amount of training to group A.  

5.6 Extended Training for Group B 

The results discussed in Sections 5.3 to 5.5 revealed that, apart from the FMA-hand score, four weeks 

of motor training did not have a significant rehabilitation effect on post-stroke patients in group B. They 

neither showed a statistically significant change in the features of the MRCP pattern, nor substantial 

improvements in the other three clinical tests or any of the hand-kinematic parameters. Therefore, it was 

decided to extend the training period for all participants in group B for another four weeks (12 sessions) to 

determine whether the extension of the hand motor training has any effect on the MRCP pattern’s features, 

clinical tests, and hand-kinematics parameters.  

 Extended Training Protocol 

All three brain stem stroke patients in group B underwent another phase of motor training that consisted 

of 12 sessions (three sessions/week) of advanced training protocols using the AMADEO device. The 

complete training protocol consisting of two training phases I and II for stroke patients in group B is shown 

in the form of a flowchart in Figure 5.13. During this extended training (phase II mentioned in Figure 5.13), 

patients received four levels of training each day consisting of CPM training mode for 5 minutes, CPMplus 

training mode for 5 minutes, assistive training mode for 10 minutes, and Active training mode for 10 minutes. 

During the active training mode, subjects played 2D interactive games using their affected hand. In this way, 

group B participants received two-phases of training using the AMADEO device in which phase II of training 

was slightly more intense compared to phase I as it included training on active training mode.    

The same three assessment procedures were conducted at the end of eight weeks (week 8) of the 

designed robot-assisted training of hand as performed during the beginning of training (week 0) and at the 

end of phase I of training (week 4) (see Figure 5.13). The three assessment procedures consisted of EEG 

signal acquisition during self-paced simple hand-grasping movements using the affected hand to extract 

MRCP pattern, conducting FMA-wrist, FMA-hand, MAS-hand movement, and MAS-advanced hand 

movement clinical tests, and measuring the force-flexion, force-extension, and HROM parameters of the 

affected hand using AMADEO assessment tool.  
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Figure 5.13: Flow diagram of a complete motor training strategy for group B and assessment periods  

 Results  

In this section, the results obtained from the data analysis on week 8 will be compared to those obtained 

during week 0 and week 4 to measure the effect of extending the training on MRCP pattern changes and 

physical improvement in hand motor skills. 

Figure 5.14 shows the global MRCP pattern plots at all eight electrodes, extracted from EEG data 

acquired during the self-paced hand-grasping task for infratentorial stroke patients (brain stem stroke patients) 

of group B. This figure represents the MRCP plots for the pre-training period before the start of any 

rehabilitation training session (week 0) and after the completion of both phases (phases I and II) of training 

(week 8). Visual inspection of the plots reveals that the Npeak amplitude of the MRCP pattern is decreased 

at week 8 with respect to the corresponding value at week 0 for all electrode positions. Whereas, as described 

in Section 5.3, the Npeak amplitude for group B at week 4 is increased at ipsilateral electrodes, slightly 

decreased at contralateral and CPz electrodes and remains the same at the Cz electrode compared to week 0. 

In order to assess the significance of these variations, individual MRCP features are analyzed.   
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Figure 5.14: Global MRCP patterns for group B at all channels after 24 motor training sessions. Legend Week 0 represents the pre-training period before the beginning of any training 

session, and legend Week 8 shows the post-training period after the end of 24 training sessions in all figures.
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As observed in Section 5.3, of five features of the MRCP pattern, only Npeak amplitude showed a 

significant change in group A. Therefore, for extended study results analysis for group B, only Npeak 

amplitude of the MRCP pattern is analyzed. Figure 5.15 shows the bar-chart representation of average Npeak 

amplitudes at all eight electrodes for group B. A consistent decrease in the Npeak amplitude was observed 

for all selected electrodes after a total of eight weeks of training when it is compared with week 0. When the 

paired t-test was applied, a significant change in Npeak was obtained at CLC (p=0.01) and CPz (p=0.04) 

electrode positions. The significance level is indicated by a ‘*’ symbol in Figure 5.15.  

In contrast to these results, the change in Npeak amplitude at all eight electrodes was not consistently 

decreased after the first four weeks of motor training compared to week 0 (see Figure 5.12). These results 

suggest that four weeks of rehabilitation is not a sufficient time to obtain consistent MRCP patterns’ changes 

for the brain stem stroke patients in group B. This outcome is consistent with clinical observations that 

patients with brain stem strokes are typically slower to recover motor function than patients with 

supratentorial strokes [295].  

  

Figure 5.15: Mean absolute Npeak amplitude at week 0 and week 8 for group B. The error bars represent SD values 

across subjects for each electrode. The symbol ‘*’ indicates a significant decrease in Npeak amplitude at week 8 

compared to that at week 0.   

Table 5.11 shows the average results of FMA-wrist, FMA-hand, MAS-hand movements, and MAS-

advanced hand movement tests. The two-tailed paired t-test was applied to clinical test results obtained at 

week 0 and week 8. The results are presented in the form of the mean (± SD) and the significant change 

between these tests is indicated by bold values and a ‘*’ symbol on the values. It is observed earlier that only 

the FMA-hand test shows a significant change in all patients when they complete phase I (four weeks) of the 

intervention protocol (see Table 5.8). However, after phase II (eight weeks) of training, the patients show 

statistically significant improvement in two clinical tests i.e., FMA-hand and MAS-hand movements’ tests. 
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 Table 5.11: Average clinical test results for group B after eight weeks of training (Mean (± SD)). The symbol ‘*’ indicates 

a significant increase in clinical test results at week 8 compared to that at week 0.   

Assessment 

Period 

Clinical Test Results 

FMA-Wrist 

Score (0-10) 

FMA-Hand 

Score (0-14) 

MAS-Hand 

Movements 

Score (0-6) 

MAS-Advanced 

Hand Movements 

Score (0-6) 

Week 0 1.3 (± 1.2) 2.7 (± 1.5) 0.7 (± 0.6) 0.3 (± 0.6) 

Week 8 3.7 (± 2.3) 8 (± 2.6)* 2.3 (± 0.6)* 1.3 (± 0.6) 

Table 5.12 shows the average values of the hand-kinematic parameters which include force-flexion, 

force-extension, and HROM for group B obtained at week 0 and week 8. The values are presented in mean 

(± SD) and the statistical significance change is indicated by bold values and a ‘*’ sign on the values. 

According to Table 5.10, none of the hand-kinematic parameters show any significant change after motor 

training in phase I (four weeks). Whereas Table 5.12 shows that a statistically significant improvement in all 

the force-flexion, force-extension, and HROM parameters is observed when the patients completed their eight 

weeks of training (phases I and II).  

Table 5.12: Average hand-kinematic parameters for group B after eight weeks of training (Mean (± SD)). The symbol 

‘*’ indicates a significant increase in hand-kinematic parameters at week 8 compared to that at week 0.    

Assessment 

Period 

Hand-Kinematic Parameters 

Force-Flexion 

(N) 

Force-Extension 

(N) 

HROM  

(%) 

Week 0 15.1 (± 15.9) 2.1 (± 2.6) 11.9 (± 18.3) 

Week 8 42.2 (± 24.9)* 13.9 (± 6.8)* 64.6 (± 24.8)* 

The results of clinical tests and hand-kinematic parameters show that group B patients regained 

significant hand motor functions after eight weeks of extended training. As mentioned before, these outcomes 

are consistent with clinical observations for this category of patients [295].  

5.7 Summary 

The main purpose of this study was to investigate possible changes in the features of the MRCP pattern 

when post-stroke patients gained improvements in motor skills of their impaired hands after robot-assisted 

rehabilitation training on the AMADEO device. The reported results reveal that the Npeak amplitude of the 

MRCP pattern is decreased consistently in patients with supratentorial strokes (group A) after four weeks of 

training and decreased consistently in patients with brain stem strokes (infratentorial stroke) after eight weeks 

of training. These results suggest that four weeks of rehabilitation is not sufficient time to induce significant 

MRCP signal changes for the infratentorial stroke patients. The clinical evidence about infratentorial stroke 

rehabilitation also demonstrates that the recovery speed of such patients is slower compared to supratentorial 
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stroke patients [295].  

The changes in MRCP patterns are also associated with improvements in clinical tests and hand-

kinematic parameters. According to the results of clinical tests obtained after four weeks of robot-assisted 

training, group A showed statistically significant improvement in three out of four clinical tests. Whereas 

group B showed improvement in only one clinical test after the first four weeks of training and two clinical 

tests after eight weeks of training. Whereas the analysis of hand-kinematic parameters showed that post-

stroke patients in group A gained significant improvements in all force-flexion, force-extension, and HROM 

values after the completion of four weeks of the training program. Group B showed significant improvement 

in all the hand-kinematic parameters only after completing eight weeks of training. 

The decrease in MRCP’s Npeak amplitude after the designed robot-assisted motor training reflects that 

neurological pathways become more established so that fewer cortical resources are needed for motor 

planning and execution of tasks. This hypothesis is also supported by studies in healthy participants available 

in the literature [216-220]. However, further investigations are required to validate the occurrence of 

neuroplasticity.  

To the best of our knowledge, this study is the first attempt to use the MRCP pattern as an assessment 

tool to determine the effect of the rehabilitation training strategy on the brain activities acquired from the 

actual stroke patients. The results of this study also indicate that EEG has future potential clinical utility in 

post-stroke rehabilitation. 
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Chapter 6  

Adaptive Robot-Assisted Stroke Rehabilitation Guided by EEG − Two 

Case Studies 

6.1 Introduction 

In Chapter 5, the effect of motor training on the features of the MRCP pattern was established. The 

post-stroke patients were engaged in robot-aided training on the AMADEO device for a couple of weeks. A 

simple palmar grasping task was deployed for EEG acquisition during pre-training and post-training periods 

to measure the effect of the training using the MRCP pattern. It was shown that the Npeak amplitude of the 

MRCP pattern was significantly decreased post-rehabilitation training with the improvements in clinical tests 

and hand-kinematic parameters. The motor training strategy used in that experiment comprised an 

amalgamation of four training modes and remained constant throughout the experiment. Although this 

rehabilitation training proved to be beneficial, the question of the degree of engagement of the patient during 

the protocol was still unanswered. The effect of individual training mode on hand motor skills should also be 

determined. Therefore, the need for an intelligent, adaptive, dynamic, and more engaging training regime is 

warranted. This would require a regime that changes the training modes according to the degree of subjects’ 

engagement during the training sessions as measured by variations in the features of the MRCP pattern.  

It was assumed in Chapter 5 that reduced Npeak amplitude represented the reconnection of the 

neurological pathways, automatic performance of the task, and less intentional engagement of the subject. 

This, in turn, lessened the number of cortical resources required to plan and execute motor tasks. In this 

chapter, this assumption is further validated, and it is shown that making the rehabilitation training more 

challenging for a subject requires the more intentional engagement of the subject during the training sessions, 

resulting, in turn, an increase in the Npeak amplitude. 

The training strategy, used in the experimental work described in this chapter, deploys a chain of 

training modes that advances to more challenging tasks as the Npeak amplitude decreases. According to our 

findings so far, this represents that the motor skills associated with the task are restored through 

neuroplasticity phenomena, requiring less engagement from the subject during training sessions. Moving to 

the next challenging level of training mode demands once again higher engagement of the subject making 

Npeak amplitude more pronounced. Such a training strategy should result in a more effective and time-

efficient rehabilitation process for post-stroke patients. 

The work presented in this chapter represents the conceptual framework of a feasibility study for an 

adaptive and dynamic robot-assisted rehabilitation strategy. The efficacy of the proposed training strategy is 

also verified through the measurement of the hand-kinematics parameters and clinical tests. The organization 

of the chapter is as follows. Section 6.2 describes the characteristics of the patients, EEG acquisition process, 

adaptive motor training strategy details, as well as hand-kinematic parameters and clinical test measurement 

methods. All experimental results for case study 1 are presented in Section 6.3 and that for case study 2 in 
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Section 6.4. A comparison between hand-kinematic parameters and clinical test results for the fixed-training 

strategy (described in Chapter 5) with that for the adaptive-training strategy is explained in this chapter in 

Section 6.5. Finally, a summary of the results and their implications is provided in Section 6.6.  

6.2 Materials and Methods 

 Participants’ Characteristics 

This study was conducted on two right hand dominant stroke patients. The patient inclusion criteria 

were the same as described in Section 5.2.1 of Chapter 5. Based on the inclusion criteria, two patients who 

experienced a supratentorial stroke were identified and their stroke-related details are listed in Table 6.1. Both 

patients received standard care at a local hospital in addition to the adaptive robot-based rehabilitation training 

for their affected hands. The participants gave their written informed consent before the experiment 

commencement. 

Table 6.1: Details of stroke patients 

 EEG Acquisition Process 

The EEG signals were measured over eight electrode sites of FC4, C4, CP4, Cz, CPz, FC3, C3, and 

CP3 during each training day using 32-channel Ag/AgCl Quick-Cap (Compumedics-Neuroscan) according 

to the 10–20 electrode positioning system. The electrodes FC4, C4, and CP4 are contralateral channels, Cz 

and CPz are central channels, as well as FC3, C3, and CP3 are ipsilateral channels for both patients because 

they used their left affected hand during training. Whereas, FPz electrode and ipsilateral mastoid point were 

used as ground and reference electrodes respectively. The Grael 4K EEG amplifier was set to a sampling 

frequency of 2048 Hz and the impedance of each electrode was set below 5 kΩ before the signal acquisition. 

At each hand closing movement during training, digital event markers were manually sent to the data 

acquisition software, CURRY 8X (Compumedics-Neuroscan). The acquired EEG data were processed to 

extract the MRCP pattern as explained in Section 3.4 of Chapter 3. The extracted MRCP patterns were 

averaged out with respect to the number of trials to obtain a global MRCP pattern at all selected electrodes. 

Those global MRCP patterns were then used to extract the Npeak amplitude feature. Only Npeak amplitude 

is considered for this experiment because based on the experimental results presented in Chapters 4 and 5, 

Npeak amplitude is the only component of MRCP that shows considerable changes after training.   

 Adaptive Motor Training Strategy 

The training strategy consisted of 30 minutes of robot-assisted hand therapy three days a week for four 

Stroke Patient 

(Gender) 

Age 

(Years) 

Onset Duration 

(Months) 
Lesion Location 

Affected 

Hand 

SP1 

(Female) 
62 3 

Right striatocapsular 

infarct 
Left 

SP2 

(Male) 
73 2 

Right middle cerebral 

artery infarct 
Left 
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weeks resulting in 12 training sessions overall. The patients received training for their affected hands using 

the AMADEO device. AMADEO offers four training modes with increasing intensity; Mode 1: CPM; Mode 

2: CPMplus; Mode 3: Assistive training; and Mode 4: Active training. The active training consists of 2D 

games, the most interactive training mode available in AMADEO, which requires the maximum engagement 

of the patient. The Shoot-out game was chosen during the active training mode. The EEG acquisition process 

during each AMADEO training mode of subjects SP1 and SP2 is shown in Figure 6.1 and Figure 6.2 

respectively.  

 

Figure 6.1: Hand motor training of SP1 with EEG acquisition during each AMADEO training mode; (A) CPM, 

(B) CPMplus, (C) Assistive training, (D) Active training    
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Figure 6.2: Hand motor training of SP2 with EEG acquisition during each AMADEO training mode; (A) CPM, 

(B) CPMplus, (C) Assistive training, (D) Active training    

The training during each day was executed in three blocks of 10 minutes; each termed as T1, T2, and 

T3. The EEG data were acquired for all three blocks of training to extract the Npeak amplitude of MRCP 

patterns at all selected electrodes. One minute of rest was given to the subject between the training blocks. 

Each subject started motor training with CPM for two consecutive days. Equation 6.1 was developed for this 

experiment as a condition to change training mode for each stroke patient in which T3Npeak denotes the 

Npeak during the T3 period at any given electrode. More specifically, the Npeak amplitude of the MRCP 

pattern was compared for any two consecutive training days at each selected electrode by calculating the 

difference as depicted in Equation 6.1. As all Npeak values are negative in amplitude, if T3Npeak on the 

current training day is decreased or remained the same compared to the previous training day then their 

difference will be positive and the condition in Equation 6.1 will be true. When this condition is true at all 

selected electrodes, the training mode is progressed to the next level (i.e. CPMplus). This process is repeated 

until the end of 12 training sessions for each stroke subject. In this way, they performed a specific number of 

days on any training mode in accordance with their level of engagement. 

 
0
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−
−

n
day

Npeak
n

day
Npeak TT  (6.1) 

 Measurements of Hand-Kinematic Parameters and Clinical Tests  

To determine the effect of the designed adaptive rehabilitation training strategy on hand motor skills, 

hand-kinematic parameters measurements, and clinical tests were performed. Hand-kinematic parameters that 

include force-extension, force-flexion, and HROM for fingers and thumb, were measured after each training 

session. Three measurements of each of these hand-kinematic parameters were taken and their average values 

were used during analysis. Clinical tests comprised FMA-wrist, FMA-hand, MAS-hand movement as well 
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as MAS-advanced hand movement tests. These clinical tests were conducted during pre and post-training 

periods and demonstrated the overall effect of the designed motor training strategy on hand motor skills.   

6.3 Case Study 1: Experimental Results 

This section presents all the experimental results of subject SP1.  

 Selection of Training Mode Based on MRCP’s Npeak Amplitude 

The SP1 started training of the affected hand on the CPM mode for the first two days of the training. 

Once the Npeak amplitude values of the MRCP pattern for day 1 and day 2 of CPM training were obtained, 

the difference in Npeak amplitude during their T3 periods was calculated using Equation 6.1. Figure 6.3 

shows the values of the T3Npeak difference between any two consecutive days at all electrode positions.  

The condition in Equation 6.1 is not true on day 2 of the training. This indicates that the patient is still 

learning the CPM training mode and the same training is continued on day 3. On day 3, the condition is true 

for all electrodes (see the second set of column-bars in Figure 6.3) which means it is time to progress to the 

second training mode, i.e. CPMplus on day 4. The same comparison method is applied to Npeak values on 

day 4 and further on to determine when the condition in Equation 6.1 holds. It is found that the condition is 

true on day 7, day 10, and day 12 of the training strategy after spending four training days on CPMplus, three 

days on assistive training, and two training days on active training respectively.  

In this way, the number of training days on any AMADEO training mode for SP1 was determined by 

the Npeak amplitude comparison according to Equation 6.1 at all selected electrode sites. In total, the patient 

SP1 received 360 minutes of AMADEO training for four weeks in which the SP1 spent 90 minutes on CPM, 

120 minutes on CPMplus, 90 minutes on assistive training, and 60 minutes on active training. 
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Figure 6.3: Progression of training modes based on the difference of Npeak amplitudes between any two consecutive days for SP1 
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 Variations in MRCP’s Npeak on Progression of Training Mode 

After executing the adaptive-training strategy, the effect of the progression of the training mode on the 

Npeak amplitude was also observed. This was done by calculating the difference between Npeak amplitudes 

during T3 of the last day of one training mode and that during T1 of the first day of the next training mode at 

all electrode sites as represented in Equation 6.2. 

 
n

day
Npeak

n
day

Npeak TTdiffNpeak 13
1

    −
−

=  (6.2) 

The 
diff

Npeak  values are shown in Table 6.2 when SP1 progressed over four training modes. All the 

diff
Npeak  due to the progression of training modes are found to be negative at all electrode sites which 

shows an increase in Npeak amplitudes. This means that when the patient SP1 is introduced to a new training 

mode, Npeak amplitudes increase which is, in turn, an indication of an increase in the engagement of the 

subject. Furthermore, during the game playing mode (active training mode), the subject has the maximum 

engagement that is shown by the maximum negative difference at all electrode positions in the third column 

of Table 6.2.  

Table 6.2: Effect of training mode progression on MRCP’s Npeak for SP1 

Electrode 

label 

diff
Npeak values due to Training Mode Progression (V) 

CPM to CPMplus CPMplus to Assistive Assistive to Active 

FC4 -0.712 -1.147 -4.488 

C4 -1.633 -1.489 -4.662 

CP4 -2.677 -2.052 -4.566 

Cz -2.881 -2.324 -6.136 

CPz -2.158 -2.041 -4.912 

FC3 -0.57 -1.37 -4.613 

C3 -2.183 -1.364 -5.556 

CP3 -2.598 -2.986 -4.873 

 Analysis of Npeak Amplitude based on Electrode Position 

The analysis of Npeak amplitude based on selected electrode positions was also performed to determine 

whether the amplitude of Npeak varies at different electrode locations. Figure 6.4 shows the Npeak 

amplitudes during the T3 block of all 12 training days for SP1. It is noted that the Npeak amplitude values at 

contralateral channels (FC4, C4, and CP4) are larger than the corresponding ipsilateral channels (FC3, C3, 

and CP3) for any training day. Moreover, both central channels (Cz, and CPz) also show higher values for 

Npeak amplitudes compared to the ipsilateral channels (FC3, C3, and CP3) for a training day. This confirms 

the primary origin of Npeak is the contralateral (with respect to the movement) side of the brain [71, 220].  



115 

 

 

Figure 6.4: MRCP’s Npeak amplitudes during T3 block of each training day at all eight electrode sites for SP1 
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 Outcomes of Hand-Kinematic Parameters due to Individual Training Mode 

In order to measure the effect of adaptive-training strategy on the physical improvements in hand motor 

skills, three hand-kinematics parameters which include force-extension, force-flexion, and HROM, were 

measured for SP1 after every training session. These parameters were obtained using the AMADEO 

assessment tool. The effect of individual training mode on all hand-kinematic parameters was measured by 

calculating the percentage change and cumulative change. 

After completing three days of training on CPM, the force-extension, force-flexion, and HROM average 

values for SP1 were found to be 7.33 N, 17.77 N, and 71.13 % respectively. The percentage change in all 

these parameters after completing training on CPMplus, assistive, and active training modes were calculated 

and presented in Table 6.3. The maximum percentage change in force-extension, force-flexion, and HROM 

values is achieved by the patient after completion of active training. This is expected because, when the active 

training mode is introduced, the patient SP1 has maximum engagement which is indicated by the maximum 

increase in Npeak amplitude (see column 3 of Table 6.2). It is inferred that the stroke patient can gain 

maximum improvement in hand motor skills when he/she has maximum engagement during training. 

Table 6.3: Percentage change in hand-kinematic parameters due to individual training mode for SP1 

Training Modes  Force-Extension (%) Force-Flexion (%) HROM (%) 

CPMplus 9.14 5.63 5.16 

Assistive training 17.88 40.81 5.21 

Active training 37.86 39.42 9.02 

The average cumulative change in all the hand-kinematic parameters was also calculated for SP1 and 

shown in the form of a bar-chart in Figure 6.5. It is noted that force-extension, force-flexion and HROM 

values for SP1 are progressively increasing till the active training mode. This shows that the subject continues 

to improve in the hand-kinematic parameters until the end of the adaptive-training strategy.  

 

Figure 6.5: Cumulative change in hand-kinematic parameters with respect to training modes for SP1 
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 Clinical Test Results 

The four clinical tests were conducted pre and post-adaptive hand motor training for SP1. The bar-chart 

representation of the pre and post-training values for FMA-wrist, FMA-hand, MAS-hand movements, and 

MAS-advanced hand movements tests are shown in Figure 6.6. It is observed that all four clinical tests show 

a prominent increase in their post-training values which demonstrates that patient SP1 gains considerable 

improvement in the hand movements after completing the adaptive rehabilitation training strategy.  

 

Figure 6.6: Clinical test results for SP1 

6.4 Case Study 2: Experimental Results 

In this section, all the experimental results for SP2 are presented. 

 Selection of Training Mode Based on MRCP’s Npeak Amplitude 

Similar to SP1, the patient SP2 started the training on Mode 1 i.e. CPM for the first two days. The same 

condition expressed in Equation 6.1 is used to compare Npeak amplitudes between two consecutive days for 

the progression of training modes for SP2. The difference of T3Npeak values between any two consecutive 

training days at all selected channels for SP2 is shown in Figure 6.7. It is found that SP2 shows a decrease in 

Npeak amplitudes (positive T3Npeaks difference) after two days of training on CPM, four days of training 

on CPMplus, and four days of training on assistive training. In this way, SP2 completes 10 days of the total 

training strategy. Finally, Mode 4 (active training mode) is selected for training on day 11 and the patient SP2 

spends the last two training days (day 11 and day 12) on active training mode.  

Out of 360 minutes, SP2 spent 60 minutes on CPM, 120 minutes on CPMplus, 120 minutes on assistive 

training mode, and the last 60 minutes on active training mode. 
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Figure 6.7: Progression of training modes based on the difference of Npeak amplitudes between any two consecutive days for SP2 
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 Variation in MRCP’s Npeak on Progression of Training Mode 

The training mode progression effect on Npeak amplitude for SP2 was calculated using Equation 6.2 

and the results are presented in Table 6.4. The 
diff

Npeak values due to progression between any two training 

modes are found to have negative values at all electrode positions which indicates that the Npeak amplitude 

is increased when the new training mode is introduced to the subject SP2 similar to the SP1. The maximum 

Npeak amplitude increase is found when the patient SP2 starts training on active training mode (see column 

3 of Table 6.4). Hence, SP2 also shows maximum engagement, and in consequence maximum increase in 

Npeak during active training mode similar to SP1.  

Table 6.4: Effect of training mode progression on MRCP’s Npeak for SP2 

Electrode 

label 

diff
Npeak values due to Training Mode Progression (V) 

CPM to CPMplus CPMplus to Assistive Assistive to Active 

FC4 -1.581 -0.768 -2.223 

C4 -0.263 -1.097 -1.874 

CP4 -1.486 -0.374 -1.624 

Cz -0.277 -0.866 -2.174 

CPz -1.324 -0.074 -1.517 

FC3 -1.425 -1.043 -2.677 

C3 -0.878 -0.749 -2.14 

CP3 -1.214 -0.534 -1.76 

 Analysis of Npeak Amplitude based on Electrode Position  

Figure 6.8 presents the average Npeak amplitudes during the T3 blocks of all training days for SP2. It 

is noted that for any training day, Npeak amplitudes at contralateral channels (FC4, C4, and CP4) as well as 

central channels (Cz and CPz) are greater in magnitude compared to that at ipsilateral channels (FC3, C3, and 

CP3). Hence, the Npeak amplitude analysis of SP2 also confirms that MRCP’s Npeak primary origin is the 

contralateral side of the brain with respect to the movement. 
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Figure 6.8: MRCP’s Npeak amplitudes during T3 block of each training day at all eight selected electrode sites for SP2
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 Outcomes of Hand-Kinematic Parameters due to Individual Training Mode 

When the subject SP2 completed two days of training on CPM, the hand-kinematic parameters i.e. 

force-extension, force-flexion, and HROM values were calculated to be 7.35 N, 12.35 N, and 72 % 

respectively. Table 6.5 shows the percentage change in all hand-kinematic parameters when the patient SP2 

completed training on CPMplus, assistive training, and active training modes. It is noted that the highest 

percentage change in force-extension, force-flexion, and HROM values of SP2 is obtained when the patient 

undergoes the active training mode similar to SP1. 

Table 6.5: Percentage change in hand-kinematic parameters due to individual training mode for SP2 

Training Modes Force-Extension (%) Force-Flexion (%) HROM (%) 

CPMplus 2.45 30.36 9.72 

Assistive training  7.3 36.21 9.18 

Active training 17.57 40.67 9.8 

For SP2, the cumulative average change in all three hand-kinematic parameters (force-extension, force-

flexion, and HROM) is presented in the bar-chart form in Figure 6.9. A steady increase in all these parameters 

during training on Mode 1 through Mode 4 is observed which indicates that the patient continues to improve 

throughout the training strategy. 

 

Figure 6.9: Cumulative change in hand-kinematic parameters with respect to training modes for SP2  

 Clinical Test Results 

The results for all four clinical tests obtained before the commencement and after completion of the 

adaptive-training strategy of SP2 are shown in the form of a bar-chart in Figure 6.10. Considerably high post-

training values of all FMA-wrist, FMA-hand, MAS-hand movement and MAS-advanced hand movements 

tests compared to their corresponding pre-training values are observed. The clinical test results prove that 

SP2 also gains prominent physical improvement in the hand motor skills after completing this adaptive 

rehabilitation program similar to SP1.  
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Figure 6.10: Clinical test results for SP2 
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In Chapter 5, group A consists of supratentorial stroke patients who completed four weeks of motor 

training on AMADEO which remained fixed throughout the rehabilitation training strategy. While in this 

chapter, two other supratentorial stroke patients underwent adaptive-training strategies where training modes 

of AMADEO were changed based on MRCP’s Npeak variations. In this section, the comparison between 

fixed-training and adaptive-training strategies is made on hand-kinematic parameters and clinical test results. 

 Comparison of Hand-Kinematic Parameters 

The average hand-kinematic parameter results for group A patients after a fixed-training strategy are 

re-produced in Table 6.6 from Table 5.9 in Chapter 5.  

Table 6.6: Average hand-kinematic parameters for group A after four weeks of fixed-training strategy (Mean) 

Assessment 

Period 

Force-Extension 

(N) 

Force-Flexion 

(N) 

HROM  

(%) 

Pre-training  6.9  38.9  52.8  

Post-training  19.6  59.1  89.4  

 While, the average values of hand-kinematic parameters for two subjects who performed adaptive-

training strategy, as explained in this chapter, are calculated and presented in Table 6.7. 

  Table 6.7: Average hand-kinematic parameters after four weeks of adaptive-training strategy (Mean) 

Assessment 

Period 

Force-Extension 

(N) 

Force-Flexion 

(N) 

HROM  

(%) 

Pre-training  5.5  11.15  53.15  

Post-training  15.7  33.15  91  
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The percentage change between pre and post-training values of all three hand-kinematic parameters for 

fixed-training participants as well as that for those who underwent adaptive-training strategy is calculated 

using mean values given in Table 6.6 and Table 6.7, respectively. These values of percentage change for all 

three hand-kinematic parameters are presented in Table 6.8. These results provide preliminary evidence that 

the adaptive-training strategy may provide some benefits beyond those obtained through the fixed-training 

strategy, particularly in relation to the force-flexion parameter. This suggests that stroke patients are more 

responsive to adaptive-training strategy. However, further research is required.  

      Table 6.8: Percentage change in hand-kinematic parameters  

Training Type Force-Extension (%) Force-Flexion (%) HROM (%) 

Fixed-Training 184.06 51.93 69.32 

Adaptive-Training 185.45 197.3 71.21 

 Comparison of Clinical Test Results 

For group A in Table 5.7 of Chapter 5, the average clinical test values at pre and post-training periods 

of fixed-training strategy are re-produced in Table 6.9. While the average clinical test results for the patients 

who participated in adaptive-training are calculated and present in Table 6.10. 

Table 6.9: Average clinical test results for group A after four weeks of fixed-training strategy (Mean) 

Assessment 

Period 

FMA-Wrist 

Score (0-10) 

FMA-Hand 

Score (0-14) 

MAS-Hand 

Movements 

Score (0-6) 

MAS-Advanced 

Hand Movements 

Score (0-6) 

Pre-training  6.5  8.3  2.8  3.3  

Post-training  8.3  12  4.5  4.3  

    

Table 6.10: Average clinical test results after four weeks of adaptive-training strategy (Mean) 

Assessment 

Period 

FMA-Wrist 

Score (0-10) 

FMA-Hand 

Score (0-14) 

MAS-Hand 

Movements 

Score (0-6) 

MAS-Advanced 

Hand Movements 

Score (0-6) 

Pre-training  4.5  5.5  2  2  

Post-training  7.5  12  4  3  

Using the mean values of clinical test results for fixed-training and adaptive-training groups from Table 

6.9 and Table 6.10, the percentage changes in their pre and post-training values are calculated and given in 

Table 6.11. Similar to hand-kinematic parameters, the percentage change of the clinical tests for the adaptive-

training group is higher compared to that for the fixed-training group. Therefore, the results of both physical 

hand improvement parameters (hand-kinematic parameters and clinical tests) show the advantages of 
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implementing the adaptive-training strategy for post-stroke rehabilitation.  

   Table 6.11: Percentage change in clinical test results  

Training Type FMA-Wrist 

Test (%) 

FMA-Hand 

Test (%) 

MAS-Hand 

Movements 

Test (%) 

MAS-Advanced 

Hand Movements 

Test (%) 

Fixed-Training 27.69 44.58 60.71 30.30 

Adaptive-Training 66.67 118.18 100 50 

6.6 Summary 

The feasibility of a patient-specific and adaptive robotic-based training strategy for stroke rehabilitation 

was explored in this chapter. Two post-stroke patients underwent 12 training sessions (three days per week) 

on AMADEO robotic device for their affected hand while brain activities were recorded by an EEG 

acquisition system. The analysis of the EEG signals clearly showed a decrease in the Npeak amplitude of the 

MRCP pattern at all selected electrodes when the patient mastered a specific training mode on AMADEO. 

When the new training modes were introduced to both patients, the Npeak amplitude was increased at all 

selected electrodes indicating the enhanced engagement of the patients. In this way, by observing MRCP’s 

Npeak variations, the AMADEO training modes were changed.  

The physical improvements in hand motor skills were determined by measurements of hand-kinematic 

parameters and clinical tests. The hand-kinematic parameters which include force-extension force-flexion 

and HROM were measured at the end of each training session. During the active training mode of AMADEO, 

patients showed a maximum improvement in all three hand-kinematic parameters compared to all other 

training modes. This indicates that the selection of appropriate training mode at the correct time, not only 

maintains the concentration of the patient during the training sessions but also influences the hand-kinematic 

parameters. Lastly, results of clinical tests showed a noticeable improvement in hand motor skills achieved 

by patients after completing the adaptive rehabilitation training strategy.  

The comparison of hand-kinematic parameters and clinical tests for supratentorial stroke patients 

performed 12 sessions of fixed-training strategy with the patients who underwent 12 sessions of this adaptive-

training strategy was also made. It was revealed that the adaptive-training group achieved better 

improvements in both hand-kinematic parameters and clinical tests than the fixed-training group.  Based on 

these preliminary results, the adaptive-training group showed accelerated motor recovery in comparison to 

the fixed-training group for the same duration of 12 sessions. This could be because the current training mode 

was moved to the more challenging mode when the patient attained competency in the current task. This was 

also verified by the variation in MRCP’s Npeak during the training. After all, patients are more fully engaged 

and so progress to the higher training levels more quickly. Therefore, this adaptive-training strategy is a 

preferable training strategy because it can provide patient-specific training that is more time-efficient. 

However, further investigations are required with larger sample size.   



125 

 

The proposed adaptive rehabilitation training strategy has many practical implications in clinical 

settings. EEG set-up is a user-friendly, cost-effective, scalable, and practical method compared to other 

methods such as fMRI for monitoring brain activities during rehabilitation exercises. Therefore, this adaptive 

rehabilitation training strategy could potentially be utilized by therapists as an aid to prescribing 

individualized exercises that can continuously challenge patients, keeping them engaged for more of the time. 

Furthermore, this training strategy can guide therapists to decide the optimum time to move to more advanced 

training exercises during the rehabilitation period of post-stroke patients. Ultimately, it is likely to promote 

faster motor and functional recovery of post-stroke patients which is in the best interests of both patients and 

rehabilitation centres.  
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Conclusion and Future Work 

7.1 Overview 

Stroke generally diminishes the ability of the brain to send commands to the affected limb(s) to perform 

a required motor task. Therefore, clinical and research activities in the field of post-stroke rehabilitation are 

applying reverse engineering to address this problem. There is an ongoing effort to apply therapeutic training 

to the affected body limb(s) of stroke patients so that the damaged area of the brain can recover using the 

neuroplasticity phenomenon. The study reported in this thesis was a contribution to this area of research for 

post-stroke rehabilitation. 

The project was focused on the recovery of motor disabilities of stroke-affected hands and the primary 

aim was to establish the relationship between the MRCP pattern, the engagement level of patients, and the 

rehabilitation outcomes. More specifically, this thesis aimed to enhance the outcomes of robot-assisted 

rehabilitation for post-stroke patients by maintaining their active engagement throughout the training 

sessions. Towards achieving this aim, a series of training strategies were designed, conducted and the results 

were validated clinically.  

The major contributions of this study were three-fold: 

(1) The application of the MRCP pattern as a motor intention signal was established by designing a single-

session motor training strategy. It was validated on both healthy and stroke-affected subjects.  

(2) The effect of a designed multi-session training strategy on the MRCP pattern and the corresponding 

physical improvements in hand motor skills for post-stroke patients were determined.  

(3) A novel adaptive-training strategy that maximizes the rehabilitation outcomes by monitoring the 

variations of the MRCP pattern throughout the training period was proposed and validated on post-stroke 

patients. 

As a conclusion to this work, this chapter reviews the major achievements of the research and presents 

its generic outcomes with potential benefits to others who work in this field. Several suggestions for future 

work are also provided in this chapter. The rest of the chapter is organized as follows. The major findings of 

the literature review and the adopted research design based on the research gaps are summarized in Section 

7.2. The major contributions of the work are covered in Sections 7.3 to 7.6.  Recommendations for future 

work are detailed in Section 7.7.  

7.2 Comprehensive Literature Review and Research Design  

The study was informed by a comprehensive literature review conducted on various applications of 

EEG-derived patterns (ERD/ERS and MRCP) for motor rehabilitation of post-stroke patients as described in 

Chapter 2. This literature review also identified research gaps in the discipline which helped in formulating 
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the research design. 

Three distinct research fields were identified in the literature search, which was further categorized into 

sub-fields. The first category includes intention signal classification during different or same limb 

movements, intention signal detection, and intention signal decoding into various kinematic properties of the 

limb. The second category consists of EEG-BCI applications for motor rehabilitation and contains studies 

that utilize EEG-derived patterns to either control the movement of robotic devices or apply different 

stimulations using the EEG-BCI system for motor recovery of post-stroke patients. The last category contains 

literature that determines the effect of motor training on EEG-derived patterns by either comparing these 

patterns’ variation between skilled and non-skilled subjects or by studying such variations during pre and 

post-training periods or during the actual training period.  

It is found after a comprehensive review of the literature, the most commonly used upper limb for 

movement classification and detection problem is the hand [109, 112, 119, 121, 123, 124, 135, 136, 138, 287, 

296-298]. The reason for this preference of hand tasks for intention classification and detection problem is 

that the hand plays the most vital role in our daily life activities as well as it has greater complexity of 

movements as compared to other upper limbs. Therefore, keeping the importance of hand motor recovery in 

stroke rehabilitation, this project targeted the rehabilitation training for hand and finger impairments of stroke 

patients using AMADEO rehabilitation device. 

Another aspect of post-stroke rehabilitation investigated in this project is to determine the effect of the 

designed training protocol on the MRCP pattern. There are conflicting reports in the literature about the 

changes in the features of the MRCP pattern resulted from the achievement in task competency due to motor 

training. The studies, investigating the effect of motor skill acquisition through training, reported different 

variations in the features of the MRCP pattern. Furthermore, all these studies investigated the effect of 

learning of simple motor tasks on the MRCP pattern for healthy subjects in non-clinical applications. These 

research gaps were addressed in Chapter 5 by determining the effect of re-learning of lost fine motor skills of 

fingers and hand through a specific rehabilitation training strategy for the post-stroke patient on the MRCP 

pattern. As well as by designing and validating the novel and adaptive rehabilitation strategy for the post-

stroke motor recovery of hand in Chapter 6.   

7.3 Measurement of Subject Engagement Level through MRCP  

Robot-assisted rehabilitation training promises to provide task-oriented, high-intensity, and repetitive 

treatments to patients with motor deficits [40]. However, the effectiveness of such rehabilitation training 

mainly depends on the active participation of the subjects. This is because robot-assisted devices can provide 

excessive assistance to the patients that may have a negative effect on the re-learning of their motor skills. 

Moreover, active participation of post-stroke patients is considered to be a core reason for neuroplasticity 

induction [18]. Therefore, at the first stage of this research project, a single-session experiment was designed 

for the intention signal detection for hand motor tasks during two distinct training protocols as explained in 

Chapter 4.  
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The knowledge from available literature was used to detect the selected hand motor task related to this 

research project. This project requires the understanding of intention signal detection during hand-grasping 

tasks using the AMADEO device, therefore, the hand closing action was detected using features of the MRCP 

pattern and SVM algorithm. Moreover, this detection of intention signal was used as a tool to determine the 

active participation of both healthy subjects and post-stroke patients. The experimental results revealed that 

the Npeak amplitude of the MRCP pattern was more pronounced when subjects performed hand motor tasks 

using a 2D game training protocol compared to that during the visual-cue protocol. The greater Npeak 

amplitude depicted better engagement of subjects during game-based training protocols. Moreover, when the 

features of the MRCP pattern were fed to the SVM classifier, the intention detection for motor tasks during 

the 2D game had greater classifier accuracy compared to that performed during the visual-cue protocol. The 

average classification accuracies for the visual-cues protocol were 67.56 % for healthy subjects and 56.24 % 

for stroke patients, whereas the accuracies for the game protocol were 79.7 % for the healthy participants and 

66.64 % for the post-stroke patients. These results helped in understanding the MRCP pattern variations due 

to different exercise protocols and it was then used in designing further robot-assisted training strategies for 

this research project. 

7.4 Decrease in MRCP’s Npeak with Achievement in Task Competency 

In Chapter 5, it was shown that after multi-session robot-assisted training, the MRCP’s Npeak amplitude 

decreased. This decrease in Npeak amplitude means that patients required fewer cortical resources for the 

planning and execution of the motor tasks when the participants achieved competency in the practiced motor 

task. With the achievement in task competency, the hand motor skills of stroke patients were also improved. 

The improvements in hand motor skills were verified by two methods. The first method was the use of the 

commonly employed clinical tests which include FMA (wrist and hand sections) and MAS (hand movements 

and advanced hand movements sections) tests. While the second method was the measurement of hand-

kinematic parameters (force-flexion, force-extension, and HROM) using the AMADEO assessment tool. This 

study advanced the literature by performing and evaluating a longitudinal study with post-stroke patients and 

determining the decrease in MRCP’s Npeak amplitude when the patients achieve competency in task 

performance. Moreover, the training protocol used for the stroke patients was carefully designed to improve 

their hand strength as well as the range of movements of their fingers and thumb.  

The aforementioned training protocol was validated with seven post-stroke patients. A larger number 

of participants and the inclusion of the control group in the study would have strengthened our confidence in 

the result. However, the number of potential participants was limited by the clinical availability of suitable 

participants within the time frame of the study. Participants in the study were relatively heterogeneous with 

regard to the level of impairments as well as the time length from stroke onset to the intervention 

commencement among the recruited stroke patients. It may be the case that with a more homogeneous group 

of participants more uniform and statistically significant data could have been extracted. However, our 

inclusion criteria had to be wide; otherwise, clinical availability would have not allowed us to recruit a 

sufficient number of participants.  
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7.5 Training Strategy Design and its Outcomes Based on Lesion 

Location 

Many authors, in the literature, concluded that the post-stroke recovery of motor skills depends upon 

the stroke lesion location. For instance, Shelton and Reding [299], demonstrated that the probability of 

isolated upper limb recovery decreased progressively with lesion locations from cortex to corona radiata, and 

the posterior limbs of the internal capsule. Similarly, Schiemanck et al. [300] showed that stroke patients 

having lesion locations in internal capsules have the lowest probability of isolated motor recovery compared 

to lesion locations at the cortex, sub-cortex, and corona radiata after one-year post-stroke. After performing 

a longitudinal study on stroke patients, Feydy et al. [301] concluded that their motor recovery was subjected 

to whether the primary motor cortex was involved in the lesion location or not. Moreover, some authors 

reported the effect of stroke lesion location on brain activities. For example, Park et al. [266] used ERD/ERS 

analysis of the EEG signal to show that the hemispheric asymmetry and topographic characteristics of the 

beta band power significantly varied among stroke patients’ groups with different lesion locations. Similarly, 

in [267], the authors showed that the amplitude of ERD decreased for stroke patients having lesion locations 

involving the motor cortex. The authors in [299-301] demonstrated that stroke recovery depends on stroke 

lesion location and the studies described in [266, 267] show how ERD/ERS pattern differs due to variable 

stroke lesion locations. However, there is no consensus on how MRCP patterns vary as a result of motor 

training in post-stroke patients with variable lesion locations. This was found from the experimental results 

presented in Chapter 5.  

The multi-session robot-based training strategy, explained in Chapter 5, was tested for stroke patients 

having lesion locations in the supratentorial or infratentorial region of their brain. The supratentorial and the 

infratentorial stroke patients took part initially for four weeks of the designed rehabilitation training strategy. 

The supratentorial stroke patients demonstrated a significant recovery in their hand motor skills as well as the 

corresponding decrease in the MRCP’s Npeak amplitude. Whereas, the infratentorial stroke patients could 

not obtain significant results after the first four weeks of training and their training was extended for a further 

four weeks. When the results of the extended training strategy were analyzed for the infratentorial stroke 

group, a significant decrease in the Npeak amplitude of the MRCP pattern and substantial improvement in 

hand motor skills were obtained. Hence, it was inferred from the experimental results that the intensity of the 

rehabilitation training strategy (training protocol design and its duration) should be formulated according to 

the lesion locations of the stroke patients included in the study. 

7.6 Novel Adaptive Rehabilitation Training Strategy 

A novel strategy for a patient-specific and adaptive robot-based stroke rehabilitation was explored in 

Chapter 6. This strategy started with a simple training mode available in AMADEO and progressed to its 

more advanced training modes based on the patient’s level of engagement. AMADEO offers four modes of 

rehabilitation training with increasing intensity; Mode 1: CPM; Mode 2: CPMplus; Mode 3: Assistive 

training; and Mode 4: Active training. It has been learned from the literature and confirmed by the 

experimental results described in Chapter 4 that MRCP’s Npeak amplitude varies based on the patient’s level 

of engagement while performing motor tasks during different training protocols. Moreover, it is also found 
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from the experimental results in Chapter 5 that the Npeak decreases when the patients achieve competency 

in the current training mode. Therefore, the patient’s engagement was monitored constantly in the adaptive 

rehabilitation training strategy and when the patient gained competency in the current training mode, the next 

training mode was selected.  

This adaptive rehabilitation technique was tested on two post-stroke patients with supratentorial lesion 

location who underwent four weeks of training (three training sessions per week) on the AMADEO device 

for their affected hands. This experiment revealed the following results; firstly, a decrease in the Npeak of 

MRCP pattern was observed when the patient mastered a specific training mode on AMADEO. This 

determined the number of days for which a patient underwent a particular training mode. Secondly, when any 

new training mode was introduced to the patient, the Npeak was increased indicating the enhanced 

engagement of the patient during the training session. Thirdly, the maximum improvement in all hand-

kinematic parameters was gained by the patients during the active training mode when they had maximum 

engagement level.  

Using this rehabilitation technique, the number of days for each training mode was determined by the 

patient’s MRCP pattern variations. In total, both patients received 360 minutes of adaptive robot-assisted 

training as follows: one patient spent 90 minutes on CPM, 120 minutes on CPMplus, 90 minutes on assistive 

training, and 60 minutes on active training while the other patient spent 60 minutes on CPM, 120 minutes on 

CPMplus, 120 minutes on assistive training, and the last 60 minutes on active training.   

A comparison of the motor skill improvements between the fixed-training strategy performed in Chapter 

5 and the adaptive-training strategy proposed in Chapter 6 revealed noteworthy outcomes. It shows that the 

hand-kinematic parameters and clinical tests for supratentorial stroke patients who performed the fixed-

training strategy were inferior to those supratentorial stroke patients who underwent the adaptive-training 

strategy. The adaptive-training group achieved 145.37 %, 1.39 %, and 1.89 % more improvements in force-

flexion, force-extension, and HROM respectively compared to the fixed-training group. While the percentage 

improvement in the FMA-wrist, FMA-hand, MAS-hand, and MAS-advanced hand movements’ clinical tests 

were 38.98 %, 73.6 %, 39.29 %, and 19.7 % respectively. It is, therefore, concluded that the adaptive 

rehabilitation training strategy is more effective because it provides patient-specific training resulting in a 

significantly better enhancement in hand-motor skills.    

The implementation of adaptive-training strategy at rehabilitation centres can provide valuable 

guidance to therapists on when it is appropriate to stimulate patients with more challenging tasks to keep them 

engaged. It is likely to promote rapid neuroplasticity changes leading to a faster functional and motor recovery 

of the patients. In future work, this approach needs to be applied to a large cohort of post-stroke patients to 

investigate the efficacy of the method. 

7.7 Future Work Recommendations 

There can be an exploration of various other training strategies to enhance the outcomes of stroke 

rehabilitation along with the strategies demonstrated in this thesis. This includes the use of more immersive 
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technologies for motor training with wearable robotic devices, the design of an online EEG-BCI system for 

active stroke rehabilitation, neuroplasticity measurement using fMRI as well as utilizing stimulation 

techniques to augment neuroplasticity for stroke recovery. These promising advances and plausible future 

directions of the developments in the field of stroke rehabilitation are described in this section. 

 Use of VR Games and Wearable Hand Robotic Devices  

VR is a computer-based technology that provides real-time simulation of activity, environment, or 

scenario that allows users to interact by providing augmented sensory feedback in a safe, ecological, and 

individualized 2D or 3D environment. The patients then perform specific actions or motor tasks to achieve a 

goal using these environments [302]. Moreover, such VR interventions can provide patients with enjoyable 

exercises and games towards their rehabilitation which, in turn, increases their motivation level [14]. 

It is confirmed from the experimental work of this project that the active participation of stroke patients 

is one of the essential elements for a fast recovery of lost motor skills. However, there is still room for future 

research to enhance the engagement level of patients during rehabilitation exercises. In Chapter 4, it was 

demonstrated that stroke patients showed better engagement levels during 2D games compared to visual-cue 

protocol. This engagement level can be further enhanced by the use of VR-based games and simulated 

environments. This could be confirmed by comparing the variations in EEG-derived patterns during hand 

motor tasks using VR-based 2D and 3D games with that during a simple 2D game(s). 

Furthermore, AMADEO is an end-effector-based stationary system for hand physiotherapy whereas, 

there are other 5-DOF hand robotic devices that are more portable and work well with the VR-based 

rehabilitation gaming system. These devices include CyberGrasp by CyberGlove Systems LLC [303], Hand 

of Hope by Rehab-Robotics Company, and Gloreha by Idrogenet srl. Therefore, these more portable devices 

can also be incorporated while designing hand-based rehabilitation strategies for post-stroke patients in the 

future.  

 Online EEG-BCI System Design for Active Post-Stroke Training  

Various BCI systems have been explored extensively in the field of stroke rehabilitation. They can 

provide direct communication and control paths between the brain and the external devices without using the 

peripheral nerves or muscles [57]. MRCP pattern can be used as feedback to the closed-loop BCI system as 

mentioned in Section 2.4 of Chapter 2. Therefore, an online EEG-BCI system for active rehabilitation training 

of post-stroke patients could be designed in the future.   

In an adaptive rehabilitation training strategy proposed in this project, the decision to progress to the 

next AMADEO training mode was made based on offline EEG data analysis, and the new training mode was 

implemented on the next training day. If the intention signal is measured continuously during the training 

session through online analysis of the EEG data, then it is possible to progress to the next training mode as 

soon as the patient achieves competency in the current training mode. For such protocol, a closed-loop EEG-

BCI system needs to be designed in which the MRCP pattern is used in the feedback loop as a measure of the 

engagement level of the patient. This training scheme will ensure the active participation of the patient 
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throughout the training period, therefore increasing the recovery speed as well as reducing the required overall 

duration for post-stroke rehabilitation.   

 Neuroplasticity Measurements using fMRI  

Recent advancements in non-invasive technologies lead to a more profound understanding of 

neuroplasticity and its relationship to post-stroke recovery [26, 304-306]. Many novel stroke rehabilitation 

strategies, such as the adaptive rehabilitation training strategy developed in this research project, envisage 

triggering changes in the neural pathways of the brain due to the neuroplasticity phenomena. However, the 

use of EEG alone cannot measure the neuroplasticity changes occurring during stroke recovery. Therefore, 

the use of other modalities is required for quantifying these neuroplasticity changes.  

fMRI is one of the modalities that is being explored for measuring the neuroplasticity effect during and 

after the stroke recovery period [307-310]. fMRI is a non-invasive technique used to map human brain 

activities by measuring changes in the blood flow that occurs as a result of an increase in neural activity [311, 

312]. Recently, authors in [313] determined brain activations during the hand-grasping task using fMRI with 

healthy subjects. This builds the confidence of developing a similar protocol for the hand motor recovery of 

the actual stroke patients. Therefore, for future work, fMRI measurement can be used as an assessment 

method for rehabilitation training strategies. In this way, the neuroplasticity phenomena underlying this 

recovery mechanism in stroke patients as a result of rehabilitation can be verified.  

 Augmentation of Neuroplasticity using Stimulation Techniques 

The neuroplasticity in the affected brain of the post-stroke patients can be augmented using various 

types of stimulation techniques [314-316]. One of these techniques is transcutaneous neuromuscular 

stimulation also called FES which is commonly applied in the stroke rehabilitation period. FES application 

can strengthen muscles, improve motor control of the affected limb, decrease pain, reduce spasticity as well 

as increase the range of movement of the affected limb(s) [317-319]. Furthermore, researchers have explored 

FES application based on intention detection using EEG-BCI system for wrist and hand movements [192], 

for arm [194, 320] or they use FES signal in the feedback to improve the performance of EEG-BCI systems 

[195, 196]. Different brain activities are also being modulated using FES application for both UE and LE 

recovery of post-stroke patients [197-199, 207, 208]. However, there is still a research gap of how to use FES 

for augmentation of fine finger motor skill improvement of stroke patients to induce neuroplasticity.  

The other category of stimulation techniques is Non-Invasive Brain Stimulation (NIBS) which includes 

repetitive TMS and tDCS. Such stimulation techniques improve the motor deficits in the patients by either 

increasing the cortical excitation of the affected hemisphere or by decreasing the excitation of the unaffected 

hemisphere [321-323]. Furthermore, the increase in motor cortex excitation appears to be linked to the re-

learning of the lost motor functions in post-stroke patients [324, 325]. Also, the combination of rehabilitation 

training coupled with NIBS protocols can have better rehabilitation outcomes when compared to the effect 

of motor training or stimulation alone [326-328]. Although the use of TMS and tDCS application for stroke 

rehabilitation has been demonstrated in the literature [228-232], the application of NIBS at different stroke 

rehabilitation stages, as well as the most effective protocols for NIBS applications, can be explored in future.  
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Appendices 

Appendix 1 

1. Ethics Application Approvals  

(i) From March 2017 to March 2018 

Dear Professor Naghdy, 

Thank you for submitting the progress report. I am pleased to advise that renewal of the following 

Human Research Ethics application has been approved. 

 

Please note that, as this can only take effect from the date of approval and as the previous 

approval expired on 10 November 2016, if any data was collected between 10 November 2016 

and 8 march 2017 it was collected without ethics approval. This is in breach of your obligation as 

a researcher to maintain approval from appropriate ethics committees (Australian Code for the 

Responsible Conduct of Research 2007). 

 

Ethics Number: 2014/400 

AuRed 

Number: 
HREC/14/WGONG/91 

Project Title: Robotic-assisted upper extremity rehabilitation for post-stroke patients 

Researchers: 
Butt Maryam; Carmody John; Du Haiping; Huang Xianwei; Murray Geoffrey; 

Naghdy Golshah; Ros Montse; Naghdy Fazel 

Renewed 

From: 
07/03/2017 

New Expiry 

Date: 
08/03/2018 

 

Please note that approvals are granted for a twelve month period. Further extension will be 

considered on receipt of a progress report prior to the expiry date. 

 

This certificate relates to the research protocol submitted in your original application and all 

approved amendments to date. Please remember that in addition to completing an annual report, 

the Human Research Ethics Committee also requires that researchers immediately report: 

• proposed changes to the protocol including changes to investigators involved 

• serious or unexpected adverse effects on participants 

• unforeseen events that might affect continued ethical acceptability of the project 

A condition of approval by the HREC is the submission of a progress report annually and a final 

report on completion of your project. This progress report must be submitted by accessing the 

IRMA system prior to the expiry date. 

 

Yours sincerely, 

Susan Thomas 

Dr Susan Thomas, 

Chair, UOW & ISLHD Health and Medical Human Research Ethics Committee 

The University of Wollongong and Illawarra and Shoalhaven Local Health District Health and 

Medical HREC is constituted and functions in accordance with the NHMRC National Statement 

on Ethical Conduct in Human Research. The processes used by this HREC to review multi-centre 

research proposals have been certified by the National Health and Medical Research Council. 
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1. Ethics Application Approvals  

(ii) From March 2018 to March 2019 

 

Dear Professor Naghdy, 

 

Thank you for submitting the progress report. I am pleased to advise that renewal of the following 

Human Research Ethics application has been approved. 

 

Ethics Number: 2014/400 

AuRed Number: HREC/14/WGONG/91 

Project Title: Robotic-assisted upper extremity rehabilitation for post-stroke patients 

Researcher/s: Huang Xianwei; Naghdy Golshah; Ros Montse; Naghdy Fazel; Murray 

Geoffrey; Butt Maryam; Carmody John; Du Haiping 

Renewed From: 09/03/2018 

New Expiry Date: 08/03/2019 

 

Please note that approvals are granted for a twelve month period. Further extension will be 

considered on receipt of a progress report prior to the expiry date.  

 

This certificate relates to the research protocol submitted in your original application and all 

approved amendments to date. Please remember that in addition to completing an annual report, 

the Human Research Ethics Committee also requires that researchers immediately report: 

• proposed changes to the protocol including changes to investigators involved 

• serious or unexpected adverse effects on participants 

• unforeseen events that might affect continued ethical acceptability of the project 

A condition of approval by the HREC is the submission of a progress report annually and a final 

report on completion of your project. This progress report must be submitted by accessing the 

IRMA system prior to the expiry date.  

 

 

 

Yours sincerely,  

 

Susan Thomas 

 

Dr Susan Thomas, 

Chair, UOW & ISLHD Health and Medical Human Research Ethics Committee  

 

The University of Wollongong and Illawarra and Shoalhaven Local Health District Health and 

Medical HREC is constituted and functions in accordance with the NHMRC National Statement 

on Ethical Conduct in Human Research. The processes used by this HREC to review multi-centre 

research proposals have been certified by the National Health and Medical Research Council.  
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1. Ethics Application Approvals  

(iii) From March 2019 to March 2020 

Dear Professor Naghdy, 

 

Thank you for submitting the progress report. I am pleased to advise that renewal of the following 

Human Research Ethics application has been approved. 

Ethics Number: 2014/400 

AuRed Number: HREC/14/WGONG/91 

Project Title: Robotic-assisted upper extremity rehabilitation for post-stroke patients 

Researchers: 
Butt Maryam; Carmody John; Du Haiping; Huang Xianwei; Murray 

Geoffrey; Naghdy Golshah; Ros Montserrat; Naghdy Fazel 

Renewed From: 09/03/2019 

New Expiry 

Date: 
08/03/2020 

 

Please note that approvals are granted for a twelve month period. Further extension will be 

considered on receipt of a progress report prior to the expiry date. 

 

This certificate relates to the research protocol submitted in your original application and all 

approved amendments to date. Please remember that in addition to completing an annual report, 

the Human Research Ethics Committee also requires that researchers immediately report: 

• proposed changes to the protocol including changes to investigators involved 

• serious or unexpected adverse effects on participants 

• unforeseen events that might affect continued ethical acceptability of the project 

A condition of approval by the HREC is the submission of a progress report annually and a final 

report on completion of your project. This progress report must be submitted by accessing the 

IRMA system prior to the expiry date. 

 

Yours sincerely, 

Susan Thomas 

Dr Susan Thomas, 

Chair, UOW & ISLHD Health and Medical Human Research Ethics Committee 

 

The University of Wollongong and Illawarra and Shoalhaven Local Health District Health and 

Medical HREC is constituted and functions in accordance with the NHMRC National Statement 

on Ethical Conduct in Human Research. The processes used by this HREC to review multi-centre 

research proposals have been certified by the National Health and Medical Research Council. 
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2. Participation Consent Form 

 

 

 

 

CONSENT FORM 

 
TITLE:  BCI Integration in Robot-Assisted Rehabilitation for Post Stroke Patients 

RESEARCHER'S NAME: Maryam Butt 

SITE: University of Wollongong (UOW)/Port Kembla Hospital 
 

 

I have been given information about “BCI Integration in Upper Extremity Robot-Assisted 

Rehabilitation for Post Stroke Patients” and discussed the research project with Mrs Maryam 

Butt who is conducting this research as a part of PhD project supervised by Associate Prof. Golshah 

Naghdy in the School of Electrical, Computer and Telecommunications Engineering at University 

of Wollongong.   

 

I have been advised of the potential risks and burdens associated with this research, which includes 

up to 2 hours of my time, the possibility of feeling tired during training. I have had the opportunity 

to ask Mrs Maryam Butt any question I may have had about the research and my participation.  

 

I understand that my participation in this research is voluntary, I am free to refuse to participate 

and I am free to withdraw from the research at any time. My refusal to participate or withdrawal 

of consent will not affect my relationship with the Faculty of Informatics or my relationship with 

the University of Wollongong, Wollongong Hospital, or Port Kembla Hospital. 

 

If I have any enquiries about the research, I can contact Maryam Butt on  or Prof. 

Golshah Naghdy on  or if I have any concern or complaint regarding the way the 

research is or has been conducted, I can contact the Ethics Officer, Human Research Ethics 

Committee, Office of Research, University of Wollongong on 02-4221 4457. 

 

By signing below I am indicating my consent to participate in the project.  I understand that my 

information will be kept confidential.  

 

I understand that the data collected from my participation will be used for a PhD thesis and will 

be used in summary form in journal or conference papers, and I consent for it to be used in that 

manner. 

 

Signed       Date 

 

.......................................................................  ......./....../...... 

Name (please print) 

.....................................................................  
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3. Honorary Research Appointment Application Approval 
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Appendix 2 

1. IP Addresses 

(i) The IP address for the host PC is 192.168.10.1 

(ii) The IP address for the Grael 4K amplifier is 192.168.10.201  
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Appendix 3 

1. Wiring Diagram of 32-Channel Quick-Cap by Compumedics Neuroscan 
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Appendix 4 

1. Fugl-Meyer Assessment Upper Extremity (FMA-UE) 

(i) FMA-Wrist Clinical Test 

WRIST support may be provided at the elbow to take or hold the position, 

no support at wrist, check the passive range of motion prior testing 
none  partial full 

Stability at 15° dorsiflexion 

elbow at 90°, forearm pronated 

shoulder at 0° 

less than 15° active dorsiflexion 

dorsiflexion 15°, no resistance is 

taken 

maintains position against resistance 

 

0 

 

1 

 

2 

Repeated dorsiflexion / volar flexion 

elbow at 90°, forearm pronated 

shoulder at 0°, slight finger flexion 

cannot perform volitionally 

limited active range of motion 

full active range of motion, smoothly 

 

0 

 

1 

 

2 

Stability at 15° dorsiflexion 

elbow at 0°, forearm pronated 

slight shoulder flexion/abduction 

less than 15° active dorsiflexion 

dorsiflexion 15°, no resistance is 

taken  

maintains position against resistance 

 

0 

 

1 

 

2 

Repeated dorsifexion / volar flexion 

elbow at 0°, forearm pronated 

slight shoulder flexion/abduction 

cannot perform volitionally 

limited active range of motion 

full active range of motion, smoothly 

 

0 

 

1 

 

2 

Circumduction 

cannot perform volitionally 

jerky movement or incomplete 

complete and smooth circumduction 

 

0 

 

1 

 

2 

Total B (max 10)  

(ii) FMA-Hand Clinical Test 

HAND support may be provided at the elbow to keep 90° flexion, no 

support at the wrist, compare with unaffected hand, the objects are 

interposed, active grasp 

none  partial full 

Mass flexion from full active or passive 

extension 
 

 

0 

 

1 

 

2 

Mass extension from full active or passive 

flexion 
 

 

0 

 

1 

 

2 

GRASP 

A – flexion in PIP and DIP (digits II-V) 

extension in MCP II-V 

cannot be performed can 

hold position but weak 

maintains position against 

resistance 

 

0 

 

1 

 

2 

B – thumb adduction 1-st CMC, MCP, IP at 

0°, scrap of paper between thumb and 2-nd 

MCP joint 

cannot be performed can 

hold paper but not against 

tug can hold paper against a 

tug 

 

0 

 

1 

 

2 
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C - opposition pulpa of the thumb against the 

pulpa of 2-nd finger, pencil, tug upward 

cannot be performed can 

hold pencil but not against 

tug can hold pencil against a 

tug 

 

0 

 

1 

 

2 

D – cylinder grip cylinder shaped object 

(small can) tug upward, opposition in digits I 

and II 

cannot be performed can 

hold cylinder but not against 

tug can hold cylinder 

against a tug 

 

0 

 

1 

 

2 

E – spherical grip fingers in 

abduction/flexion, thumb opposed, tennis 

ball 

cannot be performed can 

hold ball but not against tug 

can hold ball against a tug 

 

0 

 

1 

 

2 

Total C (max 14)  

 

2. Motor Assessment Scale (MAS) 

(i) Hand Activities 

1. Sitting at a table (Wrist Extension): Affected forearm resting on table. Place cylindrical object in palm of 

patient’s hand. Patient asked to lift object off table by extending the wrist – no elbow flexion allowed. 

2. Sitting at a table (Radial Deviation of Wrist): Therapist should place forearm with ulnar side on table in 

mid-pronation/supination position. Thumb in line with forearm and wrist in extension. Fingers around 

cylindrical object. Patient is asked to lift hand off table. No wrist flexion or extension. 

3. Sitting (Pronation / Supination): Affected arm on table with elbow unsupported at side. Patient asked to 

supinate and pronate forearm (¾ range acceptable). 

4. Place a 5 inch ball on the table so that the patient has to reach forward with arms extended to reach it. Have 

the patient reach forward with shoulders protracted, elbows extended, and wrist in neutral or extended, pick 

up the ball with both hands and put it back down in the same spot. 

5. Have the patient pick up a polystyrene cup with their affected hand and put it on the table on the other side 

of their body without any alteration to the cup. 

6. Continuous opposition of thumb to each finger 14 x in 10 seconds. Each finger in turn taps the thumb, 

starting with the index finger. Do not allow thumb to slide from one finger to the other or go backwards. 

Task No. 1 2 3 4 5 6 

Score 
      

Total MAS- Hand Movements Score          / 6 

(ii) Advanced Hand Activities 

1. Have the patient reach forward to pick up the top of a pen with their affected hand, bring the affected arm 

back to their side and put the pen cap down in front of them. 

2. Place 8 jellybeans, (beans), in a teacup an arm’s length away on the affected side. Place another teacup an 

arm’s length away on the intact side. Have the patient pick up one jellybean with their affected hand and 
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place the jellybean in the cup on the intact side. 

3. Draw a vertical line on a piece of paper. Have the patient draw horizontal lines to touch the vertical line. 

The goal is 10 lines in 20 seconds with at least 5 lines stopping at the vertical. 

4. Have the patient pick up a pen/pencil with their affected hand, hold the pen as for writing, and position it 

without assistance and make rapid consecutive dots (not strokes) on a sheet of paper. Goal: at least 2 dots a 

second for 5 seconds. 

5. Have the patient take a dessert spoon of liquid to their mouth with their affected hand without lowering the 

head toward the spoon or spilling. 

6. Have the patient hold a comb and comb the back of their head with the affected arm in abduction and 

external rotation, forearm in supination. 

Task No. 1 2 3 4 5 6 

Score 
      

Total MAS- Advanced Hand Movements Score          / 6           
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