537 research outputs found

    Active Audition for Robots using Parameter-Less Self-Organising Maps

    Get PDF
    How can a robot become aware of its surroundings? How does it create its own subjective, inner representation of the real world, so that relationships in the one are reflected in the other? It is well known that structures analogous to Self-Organising Maps (SOM) are involved with this task in animals, and this thesis undertakes to explore if and how a similar approach can be success- fully applied in robotics. In order to study the environment-to-abstraction mapping with a minimum of guidance from directed learning and built-in design assumptions, this thesis examines the active audition task in which a system must determine the direction of a sound source and orient towards it, both in horizontal and vertical direction. Previous explanations of directional hearing in animals, and the implementation of directional hearing algorithms in robots have tended to focus on the two best known directional clues; the intensity and time differences. This thesis hypothesises that it is advantageous to use a synergy of a wider range of metrics, namely the phase and relative intensity difference. A solution to the active audition problem is proposed based on the Parameter- Less Self-Organising Map (PLSOM), a new algorithm also introduced in this thesis. The PLSOM is used to extract patterns from a high-dimensional input space to a low-dimensional output space. In this application the output space is mapped to the correct motor command for turning towards the source and focusing attention on the selected source by filtering unwanted noise. The dimension-reducing capability of the PLSOM enables the use of more than just two directional clues for computation of the direction. This thesis presents the new PLSOM algorithm for SOM training and quantifies its performance relative to the ordinary SOM algorithm. The mathematical correctness of the PLSOM is demonstrated and the properties and some applications of this new algorithm are examined, notably in automatically modelling a robot's surroundings in a functional form: Inverse Kinematics (IK). The IK problem is related in principle to the active audition problem - functional rather than abstract representation of reality - but raises some new questions of how to use this internal representation in planning and execution of movements. The PLSOM is also applied to classification of high-dimensional data and model-free chaotic time series prediction. A variant of Reinforcement Learning based on Q-Learning is devised and tested. This variant solves some problems related to stochastic reward functions. A mathematical proof of correct state-action pairing is devised

    The Parameter-Less Self-Organizing Map algorithm

    Get PDF
    The Parameter-Less Self-Organizing Map (PLSOM) is a new neural network algorithm based on the Self-Organizing Map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighbourhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.Comment: 29 pages, 27 figures. Based on publication in IEEE Trans. on Neural Network

    Calibration of sound source localisation for robots using multiple adaptive filter models of the cerebellum

    Get PDF
    The aim of this research was to investigate the calibration of Sound Source Localisation (SSL) for robots using the adaptive filter model of the cerebellum and how this could be automatically adapted for multiple acoustic environments. The role of the cerebellum has mainly been identified in the context of motor control, and only in recent years has it been recognised that it has a wider role to play in the senses and cognition. The adaptive filter model of the cerebellum has been successfully applied to a number of robotics applications but so far none involving auditory sense. Multiple models frameworks such as MOdular Selection And Identification for Control (MOSAIC) have also been developed in the context of motor control, and this has been the inspiration for adaptation of audio calibration in multiple acoustic environments; again, application of this approach in the area of auditory sense is completely new. The thesis showed that it was possible to calibrate the output of an SSL algorithm using the adaptive filter model of the cerebellum, improving the performance compared to the uncalibrated SSL. Using an adaptation of the MOSAIC framework, and specifically using responsibility estimation, a system was developed that was able to select an appropriate set of cerebellar calibration models and to combine their outputs in proportion to how well each was able to calibrate, to improve the SSL estimate in multiple acoustic contexts, including novel contexts. The thesis also developed a responsibility predictor, also part of the MOSAIC framework, and this improved the robustness of the system to abrupt changes in context which could otherwise have resulted in a large performance error. Responsibility prediction also improved robustness to missing ground truth, which could occur in challenging environments where sensory feedback of ground truth may become impaired, which has not been addressed in the MOSAIC literature, adding to the novelty of the thesis. The utility of the so-called cerebellar chip has been further demonstrated through the development of a responsibility predictor that is based on the adaptive filter model of the cerebellum, rather than the more conventional function fitting neural network used in the literature. Lastly, it was demonstrated that the multiple cerebellar calibration architecture is capable of limited self-organising from a de-novo state, with a predetermined number of models. It was also demonstrated that the responsibility predictor could learn against its model after self-organisation, and to a limited extent, during self-organisation. The thesis addresses an important question of how a robot could improve its ability to listen in multiple, challenging acoustic environments, and recommends future work to develop this ability

    Towards music perception by redundancy reduction and unsupervised learning in probabilistic models

    Get PDF
    PhDThe study of music perception lies at the intersection of several disciplines: perceptual psychology and cognitive science, musicology, psychoacoustics, and acoustical signal processing amongst others. Developments in perceptual theory over the last fifty years have emphasised an approach based on Shannon’s information theory and its basis in probabilistic systems, and in particular, the idea that perceptual systems in animals develop through a process of unsupervised learning in response to natural sensory stimulation, whereby the emerging computational structures are well adapted to the statistical structure of natural scenes. In turn, these ideas are being applied to problems in music perception. This thesis is an investigation of the principle of redundancy reduction through unsupervised learning, as applied to representations of sound and music. In the first part, previous work is reviewed, drawing on literature from some of the fields mentioned above, and an argument presented in support of the idea that perception in general and music perception in particular can indeed be accommodated within a framework of unsupervised learning in probabilistic models. In the second part, two related methods are applied to two different low-level representations. Firstly, linear redundancy reduction (Independent Component Analysis) is applied to acoustic waveforms of speech and music. Secondly, the related method of sparse coding is applied to a spectral representation of polyphonic music, which proves to be enough both to recognise that the individual notes are the important structural elements, and to recover a rough transcription of the music. Finally, the concepts of distance and similarity are considered, drawing in ideas about noise, phase invariance, and topological maps. Some ecologically and information theoretically motivated distance measures are suggested, and put in to practice in a novel method, using multidimensional scaling (MDS), for visualising geometrically the dependency structure in a distributed representation.Engineering and Physical Science Research Counci

    Brain-inspired self-organization with cellular neuromorphic computing for multimodal unsupervised learning

    Full text link
    Cortical plasticity is one of the main features that enable our ability to learn and adapt in our environment. Indeed, the cerebral cortex self-organizes itself through structural and synaptic plasticity mechanisms that are very likely at the basis of an extremely interesting characteristic of the human brain development: the multimodal association. In spite of the diversity of the sensory modalities, like sight, sound and touch, the brain arrives at the same concepts (convergence). Moreover, biological observations show that one modality can activate the internal representation of another modality when both are correlated (divergence). In this work, we propose the Reentrant Self-Organizing Map (ReSOM), a brain-inspired neural system based on the reentry theory using Self-Organizing Maps and Hebbian-like learning. We propose and compare different computational methods for unsupervised learning and inference, then quantify the gain of the ReSOM in a multimodal classification task. The divergence mechanism is used to label one modality based on the other, while the convergence mechanism is used to improve the overall accuracy of the system. We perform our experiments on a constructed written/spoken digits database and a DVS/EMG hand gestures database. The proposed model is implemented on a cellular neuromorphic architecture that enables distributed computing with local connectivity. We show the gain of the so-called hardware plasticity induced by the ReSOM, where the system's topology is not fixed by the user but learned along the system's experience through self-organization.Comment: Preprin

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    Redefining the audio editor.

    Get PDF
    This thesis describes new design principles for audio editing software. This kind of software, also called audio editor, is the digital cutting table for sound and music production in which audio can be loaded or recorded, then selected and edited. First an understanding of the audio editor is established. Then a new approach to audio editing software design is developed, based on research into current software. This new approach consists of a set of design principles that aim at improving coherency, flexibility and creativity in the audio editing process. These principles are formed by carefully rethinking core elements in audio editing such as audio representation, selection and manipulation, editing flexibility, automation and personalisation. As artefact of this research, a concept audio editor called OFFline is presented in a second section. This audio editor demonstrates a possible implementation of the new design principles

    The cartographies of place: Approaches to audio-visual composition incorporating aspects of place

    Get PDF
    Incorporating aural and visual elements of a place in a composition serves as a powerful way of exploring the intersection of time, history and geography associated with a location. The combination of these elements acts as an invitation for deeper engagement by offering multiple perspectives of place. One way of exploring these intersections is through incorporating aspects of place—in the form of field recordings, field footage and cartographical information—into audio and audio-visual work, where spatial and physical information can be situated as a way of representing an individual’s surroundings and subjective realities of place. This practice-led exegesis aims to explore how sound and visual elements can combine and resonate with each other, and how such a practice can highlight the connections between artist and place. As part of this exploration, this exegesis discusses a portfolio of works (submitted as part of the examinable thesis) highlighting the connections between artist, history and place, and how these aspects can inform the creation of new work. Methods explored include framing personal and sono-environmental reflections in terms of looking inwards (as a reflection on the self) and looking outwards (as a reflection on the history, cultural significance and geospatial features of place), composition with original and modified field recordings, sonification of maps using graphical sequencing software, and the creation of audio-visual works that additionally combine field footage and music visualisation. These methods for composition provide a powerful way of highlighting personal associations, emotional catharsis and memories of place, by centring personal experience. Through these methods, this exegesis seeks to demonstrate a number of strategies to show how the ephemerality of sound reflects the ephemerality of being, and the fragility inherent in any relationship with place
    • …
    corecore