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A B S T R AC T

The study of music perception lies at the intersection of several disciplines: percep-
tual psychology and cognitive science, musicology, psychoacoustics, and acoustical
signal processing amongst others. Developments in perceptual theory over the last
fifty years have emphasised an approach based on Shannon’s information theory and
its basis in probabilistic systems, and in particular, the idea that perceptual systems
in animals develop through a process of unsupervised learning in response to natural
sensory stimulation, whereby the emerging computational structures are well adapted
to the statistical structure of natural scenes. In turn, these ideas are being applied to
problems in music perception.

This thesis is an investigation of the principle of redundancy reduction through
unsupervised learning, as applied to representations of sound and music.

In the first part, previous work is reviewed, drawing on literature from some of the
fields mentioned above, and an argument presented in support of the idea that percep-
tion in general and music perception in particular can indeed be accommodated within
a framework of unsupervised learning in probabilistic models.

In the second part, two related methods are applied to two different low-level rep-
resentations. Firstly, linear redundancy reduction (Independent Component Analysis)
is applied to acoustic waveforms of speech and music. Secondly, the related method of
sparse coding is applied to a spectral representation of polyphonic music, which proves
to be enough both to recognise that the individual notes are the important structural el-
ements, and to recover a rough transcription of the music.

Finally, the concepts of distance and similarity are considered, drawing in ideas
about noise, phase invariance, and topological maps. Some ecologically and informa-
tion theoretically motivated distance measures are suggested, and put in to practice in
a novel method, using multidimensional scaling (MDS), for visualising geometrically
the dependency structure in a distributed representation.
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1 . I N T R O D U C T I O N

Listening to music is one of the more rewarding experiences available to humans. We
are capable of extracting much that is meaningful from what is, at one level, nothing
more than two acoustic waveforms. From these superficially unstructured signals, we
are able to perceive richly structured musical forms.

At another, more practical level, audition is one of the avenues by which we come
to a physical awareness of our surroundings and events within it. Again, the processes
of auditory perception, as well as visual and other forms of perception, are attuned to
structures of all kinds in the world.

In audition, the problem of perception has been cast by Bregman (1990) as one of
auditory scene analysis, in direct analogy with the idea that vision is concerned with
scene analysis. Given some sort of sensory ‘image,’ perception involves the production
of a structural description of the scene, in terms of objects, their states and activities,
and their inter-relationships. The difficulty of this task is well communicated by Breg-
man’s analogy for auditory perception, which may be paraphrased as follows: imagine
you are on the edge of a lake on which various events are unfolding; there is a motor
boat towing a water skier, a sailing dinghy, several swimmers off one of the beaches,
children skimming stones, and a dog jumping off the end of a jetty. All of these ac-
tivities create surface waves of one sort or another. Now, on the beach, imagine two
narrow channels dug in the sand, from the edge of the lake and up the beach a little
way, with two corks floating, one in each channel, so that they bob up and down with
the waves. Given only observations of the two corks, you must answer a series of ques-
tions: Can you identify and track the two boats? How many swimmers are there? Can
you say when and where the dog hits the water? Can you count the number of skips
made by the skimming stones? Although it seems improbably difficult, this is a fairly
close analogy for what the auditory system achieves.

This is a description of auditory scene analysis at a very practical level, apparently
far removed from musical experience, which would seem to be about much more than
the number and locations of the instrumentalists. However, Bregman and others (e.g.
Scheirer, 1996) suggest that music perception should indeed be considered a form of
auditory scene analysis, one in which the ‘objects’ we are asked to identify are not just
the physical objects involved in producing the music, but musical constructions such
as chords, melodic and rhythmic phrases, synthetic timbres, and other “chimerical”
objects formed by the fusion of disparate physical sources. The implication is that
whatever principles govern perceptual organisation in the general case could also apply
to music, and when so applied, could explain how and why we hear music the way we
do.



4 1. Introduction

1.1 Three problems and several approaches

In trying to construct artificial systems that display musical intelligence, there are at
least three different problems that one might aim to solve: (a) to understand music per-
ception in humans and to simulate the computational processes occurring in both the
peripheral and central auditory systems, (b) to emulate human performance without
necessarily simulating it in detail—a sort of ‘black-box’ approach—and (c) to imple-
ment an artificial musical intelligence capable of solving arbitrary musical problems,
such as musicological analysis and transcription, without being limited by human ca-
pabilities. The first two have the same end, but try to achieve it by different means. The
third has ends that may overlap with, but are not necessarily limited to, the ends of the
first two. In trying to solve these problems, researchers have taken several approaches,
some of which are listed below:

Auditory modelling aims to follow the processes which are thought to occur in the
human auditory system, beginning with simulations of cochlear filtering and con-
tinuing with models of hair cell transduction, adaptation, masking, and autocorre-
lation (Lazzaro and Mead, 1989; Ellis, 1992; Mellinger, 1991).

The engineering approach is more goal oriented, aiming to solve application domain
problems using a variety of signal processing and other engineering techniques to
represent and analyse sounds. This was described by Leman and Carreras (1996)
as the “sonological approach.” Examples include the works of Dixon (2000, 2001)
and Klapuri et al. (2001).

Perceptual psychology. The Gestalt theory of perception is the basis of much work
on auditory scene analysis, with many of the visual grouping rules finding direct
analogues in the auditory domain, once some sort of ‘auditory image’ has been de-
fined (e.g. Mellinger, 1991; Ellis, 1994). It has also influenced higher level music
theories which operate at the score level, notably that of Lerdahl and Jackendoff
(1983). Another contribution from psychology is Gibson’s ecological approach
(Gibson, 1979) which has informed the work of Leman (1991) and Casey (1998).

Music theory has given researchers a good idea of what sort of structures might be
important at higher levels of music perception (e.g. Lerdahl and Jackendoff, 1983;
Cambouropoulos, 1998).

Connectionist models. A variety of supervised and unsupervised neural network tech-
niques have been applied to musical problems at various levels of representation,
aiming to model percepts such as pitch, tonality and rhythm. (See Todd and Loy,
1991 for a good selection of applications.) Notably, it was in the field of neu-
ral computation that the concept of unsupervised learning was developed (Barlow,
1989), and its significance (as opposed to supervised learning) has been stressed by
Bharucha (1991) and Leman (1991) amongst others.
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1.2 Overview of the thesis

The approach taken in this thesis is a combination of those advocated by, e.g. , Barlow
(1989); Bharucha (1991); Leman (1991), and is based on the idea that the statistical
structure of sound and musical sound can drive the development of adaptive processing
strategies that would otherwise have to be discovered heuristically by a human designer.
The approach is built on three main planks:

Information theory The idea that perception is best understood in the language of in-
formation theory is almost as old as information theory itself. Attneave (1954) and
Barlow (1959) argued that the processing of sensory data in biological systems is
directed towards reducing the redundancy (i.e. increasing the efficiency) of inter-
nal representations whilst maintaining adequate information content about relevant
facets of the external world.

Unsupervised Learning Földiák (1990) states that unsupervised learning “exploits
statistical regularities [in data] by using the large amount of unlabelled examples
readily available to learn a mapping from raw data to a more meaningful internal
representation.” Thus, the central premise is that the data itself determines its own
fate by virtue of its statistical structure; no external ‘teacher’ is required, and the
role of the engineer is to design a system that is capable of learning to perform
the required processing, not actually to pin down the specific processes themselves,
thus avoiding the ‘hand-crafting’ to which Cambouropoulos (1998) objected.

Probabilistic Modelling Probability theory is the formal setting for both information
theory and unsupervised learning. Adopting explicit probabilistic models for the
systems under consideration means that the problems of inference and learning
can be precisely defined, and the solutions quantitatively evaluated. It also allows
a clean split between the model and any approximations required to implement
it. The graphical model formalism (e.g. Frey, 1998) provides a rigorous and
self-consistent framework for organising probabilistic computations in a distributed
system.

The thesis is organised in to two parts. In Part I, some of the methodological issues
touched upon in this introduction are discussed. In Chapter 2, an overview of percep-
tual theory in psychology is given, including the introduction of information theoretic
arguments; it also describes some prevalent theories of music perception, and points
out how these perceptual theories might fit into a formal probabilistic framework. In
Chapter 3, §3.1 some probabilistic models are described in more detail; in particular,
some of the methods that have come out of the neural networks community but can
be interpreted probabilistically. In the same chapter, §3.3 describes some of the time-
frequency methods that are commonly used in audio analysis and suggests that they
should be judged on the same basis as the adaptive representations described in the
section on probabilistic models. Chapter 4 concludes Part I by tying together the many
strands of the previous two chapters and setting out the assumptions and methodology
to be followed subsequently.



6 1. Introduction

Part II describes some experiments, which are only the first steps in applying the
approach described in the first part, yet which yield some interesting results and pro-
vide some initial confirmation of the thesis that musical structures should emerge au-
tomatically even in highly ‘agnostic’ unsupervised learning systems. Chapters 5, 6,
and 7 describe the application of two methods of redundancy reduction to two audio
representations. Chapter 8 describes a way to visualise geometrically the residual re-
dundancy in a representation and then widens the discussion to include concepts of
distance and similarity in general. Finally, Chapter 9 summarises the conclusions of
Part II and suggests possibilities for further work.

1.3 Original contributions

In this thesis, two existing methods of redundancy reduction based on unsupervised
learning are applied to music signals in two forms, yielding some novel results, and
a novel method is developed to analyse and visualise any residual redundancy in the
resulting representations.

ICA of speech and music waveforms Firstly, independent component analysis (ICA)
is applied to raw acoustic data represented as fixed length windowed signals. ICA is
perhaps the simplest form of redundancy reduction, being based on a linear, noiseless
generative model, and resulting in an optimal linear representation of the data. Previ-
ously, Bell and Sejnowski (1996) applied ICA in a similar way, but only a short extract
of a rather singular form of music (the sound of Tony Bell tapping his teeth) was used
as training data. In the present work, two separate and large ensembles of audio data
derived from two radio stations, are used, one consisting mainly of speech; the other,
of music. The result is two quite different but highly structured linear representations
of sound, demonstrating that the sounds themselves are highly structured and that this
structure can be discovered in an unsupervised way. Further analysis of the ICA rep-
resentations using a novel geometric method (see below) reveals that some musically
relevant concepts have been incorporated in to them.

Sparse coding of music spectra The second redundancy reduction method applied
is sparse coding, which is also derived from a linear causal generative model, but a
more general one than that used in ICA, incorporating noise and the ability to develop
an overcomplete representation. The overall function of the system is no longer lin-
ear, requiring a non-trivial inference step involving an iterative optimisation. A novel
‘active-set’ quasi-Newton optimisation algorithm is developed to address some of the
issues specific to sparse coding, yielding faster performance than standard second-order
gradient optimisation algorithms under certain conditions.

An analysis of learning in the sparse coder is undertaken, showing how its perfor-
mance depends on the various details of the model and the data on which it is trained.

The sparse coder is applied to short-term Fourier magnitude-spectra derived from
a piece of polyphonic music. The system detects the redundancy due to the harmonic
spectra of musical notes, and ‘discovers’ that the individual notes are the ‘independent
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causes’ of the polyphonic music spectra. The fact that the system is based on an explicit
probabilistic causal model means that the inference step, in which the note activities
are inferred from the mixed spectrum, is effective enough to drive a transcription and
resynthesis of the music.

Geometric visualisation of dependency using multidimensional scaling While the
author cannot claim to have invented ICA, multidimensional scaling (MDS) or the use
of nonlinear correlations to measure statistical dependence, this is their first application
in the particular combination required to visualise geometrically the dependency struc-
ture of a distributed representation. The representational units are considered as points
in a multidimensional metric space, and a mapping from pair-wise mutual information
to metric distance is proposed on heuristic grounds. Since the working hypothesis here
is that perceptual process are driven by redundancy reduction, the residual dependen-
cies indicate where further processing is required; thus any method of identifying and
localising is likely to be a useful tool in building artificial perceptual systems.

When applied to the ICA representations derived from speech, the wavelet-like
basis becomes embedded in a curved two-dimensional manifold, ordered according to
time and frequency. Thus, a time-frequency perceptual field emerges quite naturally
from the statistical structure of speech. The geometry of the music derived ICA basis
is more complex: the residual dependency structure is found to contain evidence of
the 12-tone chromatic scale used in Western music, and several types of harmonic
relationships. These are harder to visualise in a 2 or 3-dimensional space, but the 3-D
arrangement found by MDS reflects some of these relationships.

Other proposals and demonstrations A distinction between two types of similarity
in distributed representations is made that has not been clearly made before.

A measure of distance based on ecological ideas and generalised noise model is
proposed. The fundamental point here is that a given space is given a metric structure
from consideration of its structure as a probability space.

A link between Wigner Distribution cross-terms and the statistical structure of
phase invariant subspaces is demonstrated. The statistical structure of certain quadratic
representations of sound (including the Wigner Distribution) is shown to be unsuitable
for ICA.

1.4 Notational conventions

Bold type will be used for matrices (A,B, etc. ) and vectors (x,y, etc. ) when they
are to be considered as arrays, but not necessarily for vectors in the abstract, that is, as
elements of a linear space. The matrix transpose of A will be written as AT , and the

determinant as detA. The symbol
def
= will signify a definition, the complex-conjugate

of x will be denoted by x∗, and
√
−1 will be denoted by i and not j.

Although not directly used in the text, the following definitions may help to clarify
the use of random variables and probability density functions. A probability space is
a triplet (Ω,B,P), where Ω is a set of elementary events, B is a σ -algebra or σ -field
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(closed under countable unions and intersections) containing Ω and subsets of Ω, and
P : B 7→ R is a measure that satisfies P(Ω) = 1.

A random variable, then, is a function X : Ω 7→ X such that for each elementary
event ω ∈ Ω there corresponds a value x = X(ω) ∈ X . Where a clear distinction is
required, upper-case symbols (X ,Y , etc. ) will be used to denote random variables
and lower-case (x,y, etc. ) will be used for particular values of them. When the value
of a random variable is being considered, e.g. X = 0 or X ∈ {x1,x2}, X is actually
shorthand for X(ω). Where the intended meaning is clear from the context, lower-case
symbols may be used for both the random variables and their values.

Given a probability space (Ω,B,P) and a random variable X : Ω 7→ X , a corre-
sponding probability space (X ,BX ,PX) is induced, with PX a probability measure de-
fined so that for A ∈ BX , (and hence A⊆X )

PX(A) = P({ω ∈Ω : X(ω) ∈ A}). (1.1)

If, in addition, a volume measure v : X 7→ R is defined on the measurable space
(X ,BX ), then the probability density function p : X 7→ R can be defined as the Radon-
Nikodym derivative dPX/dv. If X is finite or countable, then the simplest measure is
the cardinality function, also called the counting measure: v(A) = |A|, where A ⊆ X
and is therefore countable. In this case, the density function is simply

p(x) = PX({x}) = P({ω ∈Ω : X(ω) = x}). (1.2)

If X is a continuous random variable with X = R
n, then dv can be taken to be the usual

volume element dv = ∏n
i=1 dxi, from which the standard definition of the probability

density function for continuous variables obtains directly.
Hence, following Amari and Nagaoka (2001), a lower-case p will be used in the text

to denote these generalised probability density functions both for continuous random
variables, and, on the few occasions where they are required, discrete random variables.
When several random variables are being discussed, it will usually be clear which
density function is implied from the argument of the function, but if this is not the case,
a subscript will be used, e.g.

pX(a) = p(x)|x=a =
dPX

dv

∣

∣

∣

∣

a
. (1.3)

An upper-case P(A) will be reserved to denote the probability of the event (i.e. set)
specified by A.

The notation E X or E x will be used for the expectation of the random variable X ,
which can be defined in terms of a Lebesgue integral with respect to the measure PX or
the volume measure v discussed previously:

E X =
∫

x∈X
x dPX =

∫

x∈X
xp(x) dv. (1.4)

Again, this applies both to continuous and discrete random variables. If the expectation
is to be taken over a particular distribution, such as a conditional distribution, this will
be indicated as a subscript, e.g. Ex|y X , meaning that the expectation is to be taken over
the conditional density p(x|y).



2 . P E R C E P T I O N

Introduction

The aims of this chapter are two-fold. The first is to present some relevant background
to the problem of music perception. The second, to put it plainly, is to juxtapose
in the reader’s mind four strands of thought: (a) a synopsis of perceptual theory, (b)
that musical experiences are indeed perceptual experiences, which is not necessarily a
truism once we begin to characterise perception more precisely, (c) information theory
as a tool for thinking about perception, and (d) probabilistic modelling and inference
as an analogue for perceptual processes. The formal aspects of probabilistic modelling
will be described in more detail in the next chapter, but it underpins many of the ideas
described in this one, and also provides the basic setting for information theory.

2.1 What is perception?

According to Fodor (1983, p. 40), “what perception must do is to so represent the
world as to make it accessible to thought.” Thus, the central problem of perception
is to construct such a representation from the collection of signals emanating from
sensory transducers. Fodor goes on to say, in more precise terms, that although these
signals are best thought of as representing conditions at the “surface” of an organism,
the representations produced by perceptual systems are “most naturally interpreted as
characterising the arrangements of things in the world.” The process of going from
one to the other is essentially one of inference, where “proximal stimulus” provides
the evidence or “premises”, and the conclusions are “representations of the character
and distribution of distal objects.” Similarly, Barlow (1990) describes perception as
“the computation of a representation that enables us to make reliable and versatile
inferences about associations occurring in the world around us.”

As a conceptual framework for thinking about perception, this is by no means a
recent development. For example, Berkeley, in A Treatise Concerning the Principles
of Human Knowledge (Berkeley, 1734, §18) wrote,

It remains therefore that if we have any knowledge at all of external things, it must
be by reason, inferring their existence from what is perceiv’d by sense.

Notwithstanding his use of the word “perceived,” the gist of it is the same. Helmholtz’s
theories about vision and audition hold up remarkably well even today; with regard to
the former, he suggested that,

such objects are always imagined as being present in the field of vision as would
have to be there in order to produce the same impression on the nervous mecha-
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nism, the eyes being used under normal ordinary conditions. (Helmholtz, 1910,
§26)

This is an early expression of the idea that perception may be concerned with inferring
the worldly causes of sensations, the sensations themselves being incidental. Indeed,
he added that “we are wont to disregard all those parts of the sensations that are of
no importance so far as external objects are concerned.” Addressing the commonplace
observation that perception seems to be a transparent, effortless activity, Helmholtz
argued that this occurs through a process of “unconscious induction.”

More or less the opposite view was expressed by Gibson (1966). He claimed that
“the senses can obtain information about objects in the world without the intervention
of an intellectual process.” He also rejected the idea that transduced sensory signals
form the sole basis for perception (Gibson, 1979, Ch. 4): “The inputs of the nerves are
supposed to be the data on which perceptual processes in the brain operate. But I make
a quite different assumption.” Ostensibly, such statements are difficult to reconcile
with those presented earlier. By “intellectual process”, he almost certainly did not
mean what we might now call a computational process. What he probably objected to
is the need for perceptual inference, because, he maintained, under normal conditions,
there is enough information available to leave no room for uncertainty. This is an
arguable point (discussed further in §2.1.4) but is made more tenable by the idea of
active perception, which is behind the second of his statements quoted above.

Active perceptual systems are engaged not just in the passive analysis of what-
ever stimulation happens to be playing over an organism’s receptors, but in the active
exploration of an “ambient stimulus field”. Thus, the visual system is responsible,
not just for the analysis of retinal data, but also for the control of systematic eye and
head movements designed to extract more information from the available stimulus. It
is this information which removes the ambiguity that would otherwise necessitate an
inferential system. For example, even slight movements of the head provide strong,
unambiguous cues for localisation in 3D for both vision and audition. Biosonar in bats
and dolphins is another good example of an intrinsically active perceptual system.

Incidentally, Helmholtz (1910) touched upon similar ideas while discussing his
thesis that we perceive causes, arguing that, “it is only by voluntarily bringing our
organs of sense in various relations to the objects that we learn to be sure as to our
judgements of the causes of our sensations.” This is a view of active perception as
a kind of experimentation, by which we distinguish causal relationships from mere
coincidences.

Though these ideas will undoubtedly play a role in a more complete understanding
of perception, they are somewhat beyond the scope of the present work and will not be
pursued.

Perception and sensation It is worth clarifying at this point what these terms will
actually mean in the sequel (unless otherwise stated). The colloquial meaning of “sen-
sation” could be defined as a conscious awareness of what something ‘feels’ like, and
is probably what Gibson (1966, p. 99) had in mind when he questioned the idea that
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sensations are somehow more basic than perceptions. In that context, he took “sen-
sation” to mean a form of conscious awareness, but different from “perception.” In
particular, he did not use “sensation” to describe the activities of receptors or trans-
ducers. For Gibson, sensations are conscious experiences directed inwards rather than
outwards, subjective experiences—what something feels like—rather than objective
experiences—what it implies about the world out there.

That will not be the usage here. “Sensation” will describe the operation of sense
organs, or more properly, receptors such as the inner hair cells in the ear or the rods
and cones in the retina, and “perception” will refer both to the “knowledge of external
things,” and the process by which such knowledge is gained. Sensation therefore pro-
vides the raw data for perception, which data will be referred to as “sensory signals” or
“raw sense data.”

2.1.1 Representation and cognition

The central importance of representation has already been noted. The acquisition of
perceptual knowledge can be identified with the formation of representations that fulfil
certain goals, or that make plain relevant or interesting aspects of that which is being
represented. Hence, we will often talk about “developing representations”—for exam-
ple, Fodor (1983, p. 29) states that “contemporary cognitive theory takes it for granted
that the paradigmatic psychological process is a sequence of transformations of mental
representations and that the paradigmatic cognitive system is one which effects such
transformations.” He goes on to an informal definition of representation: (Fodor, 1983,
p. 38) “Any mechanism whose states covary with environmental ones can be thought
of as registering information about the world; . . . the output of such systems can rea-
sonably be thought of as representations of the environmental states with which they
covary.” This notion of covariance can be expressed more precisely in terms of the
information theoretic quantity, mutual information, which measures how much infor-
mation one set of variables carries about another, and reaches a maximum when the two
are related by an invertible mapping. Thus, a representation could be defined as some-
thing which has a relatively ‘high’ mutual information with the representee. Mutual
information and other information theoretic concepts are described further in §2.2.

Representation vs. transmission Fodor’s “paradigmatic psychological process,”
consisting of a sequence of representations each of which is a transformation of the
previous one, can be recast as a sequence of ‘black box’ processing units connected
by communications channels (see fig. 2.1). Marr (1982, p. 3) also notes a duality
between processing and representation. In doing this, our focus is shifted to the char-
acteristics of the potentially imperfect or noisy channels. Information theory tells us
that such channels will have a limited capacity, and that the signals sent down them
(i.e. the representation) should be tailored to the channel in order to make the best
use of the available capacity. This is one of the ideas behind redundancy reduction,
originally proposed by Attneave (1954) and further elaborated upon by Barlow (1959),
which, depending on the channel characteristics can lead to such processing strategies
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Fig. 2.1: A chain of representations X-Y -Z and an equivalent chain of processing units T1,T2
connected by communications channels.

as decorrelation, factorial coding, or topological map formation. All of these can be
seen to result from a drive for efficient transmission of information.

Similarity and distance Richardson (1938) proposed that subjective judgements of
similarity between stimuli be represented as distances between points in the Euclidean
plane. This has since developed into the notion that psychological dissimilarity can be
equated with geometric distance in some metric space. As Davidson (1983) notes, this
is not necessarily a valid identification, as a distance measure should satisfy a number
of constraints to be acceptable as a metric; for example, distances must be symmetric,
whereas psychological dissimilarities need not. With this caveat in mind, the geometric
visualisation of similarity is still a useful and intuitive aid to understanding.

When it comes to computing distances, questions of representation become para-
mount. Distance measures such as the Euclidean or Hamming distances (see §8.2)
operate on pairs of objects as represented—move to a different representation and the
distances change. If we wish an artificial cognitive system to assign distances that agree
with reported dissimilarity ratings, then we would either have to find a representation
such that a simple metric produced the required distances, or we would have to use a
more flexible metric capable of achieving the same result with whatever representation
was available. In either case, the representation will have a great effect on the details
and practicality of the computation.

Shepard’s principle of psychophysical complementarity (Shepard, 1981) addresses
the issue of perceived distance. It says that mental structures should reflect certain
transformational symmetries of the real world objects they represent. If an object can
be subjected to a group of transformations (say, rotations) without changing its essen-
tial identity, this should be mirrored by an isomorphic group of transformations of the
internal representation. These would be implemented, not necessarily as physical rota-
tions, or a physically circular structure, but as a set of states and operators that relate in
the same way, replicating, for example, the composition of large and small rotations,
and the cyclic nature of rotation.
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2.1.2 An ecological perspective

From a biological and evolutionary point of view, the machinery of perception is an ex-
pensive burden—in humans, the brain is responsible for a large fraction of the body’s
energy consumption—and must therefore confer considerable advantages to the crea-
ture that owns it. This view is more or less taken for granted; for example, quoting
Shepard (1999): “The brain has been shaped by natural selection; only those organisms
that were able to interpret correctly what goes on in the external world and to behave
accordingly have survived to reproduce.” Given that there is a limit to the amount of
information that can be processed—or equivalently, that there are costs attached to in-
formation processing—it is reasonable to suppose that available resources are directed
towards the detection and interpretation of events that have some biological relevance,
such as the presence or absence of food, predators, potential mates and so on; in short,
useful information. Moreover, there are environmental regularities that have remained
constant since life appeared, and are bound to be reflected in biological perceptual sys-
tems. This amounts to the ecological approach to perception: one that recognises the
mutual relationship between the organism and its environment.

Though the details were fleshed-out and argued with some force by Gibson (1966,
1979), the basic idea, like perceptual theorising in general, has a long history; for
example, quoting Locke (1706, BII, ch. IX, §12):

Perception, I believe, is, in some degree, in all sorts of animals; though in some
possibly the avenues provided by nature for the reception of sensations are so few,
and the perceptions they are received with so obscure and dull, that it comes ex-
tremely short of the quickness and variety of sensation which is in other animals;
but yet it is sufficient for, and wisely adapted to, the state and conditions of that
sort of animals who are thus made. . .

By Mach’s time, evolutionary ideas were current, and he was able to speculate about
the biological relevance of the “sensations of tone” which “constitute the means by
which we distinguish large and small bodies when sounding, between the tread of large
and small animals,” and also that “the highest tones presumably are of extreme impor-
tance for the determination of the direction from which a sound proceeds.” (Mach,
1886, §13.3.) Of the perception of colour, he thought it “essentially a sensation of
favourable or unfavourable chemical conditions of life. In the process of adaptation to
these conditions, color-sensation has probably been developed and modified.” (Mach,
1886, §6.2.)

Affordance and attensity Gibson mapped out a more complete ecological theory,
stressing that an animal and its environment cannot be considered without one-another.
One of the elements of the theory is the perception of affordances: “The affordances of
the environment are what it offers to the animal, what it provides or furnishes, either for
good or ill.” (Gibson, 1979, p. 127.) He argued that these affordances are apprehended
in a quite direct fashion, that an intrinsic part of the perception of an object is an
appreciation of what can be done with it. An apple says “eat me”, a predator says “run
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away from me”, a chair says “sit on me”.1

As Gibson suggests in his definition, the distinction between positive and negative
affordances (Gibson, 1979, p. 137) is an important part of the perceptual experience
and of great relevance to the animal concerned. Shaw et al. (1974) coined the term
attensity to rate the relevance or usefulness of available information to a particular
organism. Things that offer positive or negative affordances would have a high attensity
but things that offer neutral affordances have a low attensity, and presumably can be
ignored. The relevance or otherwise of information and its possible role in defining
what we mean by ‘noise’ is discussed further in §2.2.5.

Nature and culture The ecological approach has had several more recent exponents
(Marr, 1982; Atick, 1992; Olshausen and Field, 1996; Casey, 1998), and has been
adopted specifically in relation to music by Leman (e.g. Leman and Carreras, 1996). It
may be objected that music is not a ‘natural’ phenomenon, raising the interesting point
that exposure to a musical tradition might constitute an environment of sorts, though
a cultural one rather than a natural one. To the extent that perceptual systems are
shaped by experience rather than by evolution, there should be no difference between
natural and cultural influences; the ontogenesis of the auditory system is likely to be
as responsive to one as to the other. Windsor (1995) discusses the interplay between
natural and cultural factors at some length, and comes to essentially that conclusion.

Another important conclusion to be drawn from all of this is that we should use
‘real’, or ecologically representative data in our experiments, for example, as train-
ing data for learning systems. This data represents the ‘environment’ to which our
would-be perceptual system should be adapted; we would expect it to exhibit different
characteristics in different environments.

2.1.3 The objects of perception

Just what is it that we actually perceive? Bregman (1990, p. 9) put it like this: “The
goal of scene analysis is the recovery of separate descriptions of each separate thing
in the environment. What are these things?” A fairly uncontroversial answer would
be that they are objects. Bregman goes on to discuss how objects serve as foci for
all the perceptual qualities one experiences in response to a scene. This is implicit in
the idea of a ‘property’: it must be a property of something. The object (as a mental
construct) plays a syntactic role, binding together properties pertaining to the same
physical object. Referring to fig. 2.2, I experience my pudding as {green, rhubarb} and
{yellow, custard}, not just a mish-mash of {green, yellow, rhubarb, custard} (school
dinners notwithstanding!)

Syntactic structure aside, what is the phenomenal manifestation of ‘object-ness?’
What aspect of the stimulus triggers the mental organisation? A common observation

1 In fact, as far as my cat is concerned, my record deck also says “sit on me”, but thankfully only when
the lid is down. However, humans are just as capable of making fine distinctions in this area—think of what
a climber (having obeyed the call of the mountain to ‘climb me’) does when he reaches the top: he looks
with a keen eye for a hollow in the ground or a stone that will make a comfortable chair or picnic table.
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Fig. 2.2: On the left, objects as syntactic constructs, a focus for attached properties or qualities,
in this case, of a rhubarb and custart pudding. Contrast this with the unstructured
collection of properties on the right.

is that a reliable association or correlation between a number of features signals the
presence of an object, e.g. , Berkeley (1734, Part 1, §1)

As several of these [sensations] are observ’d to accompany each other, they come
to be marked by one name, and so to be reputed as one thing. Thus, for example,
a certain colour, taste, smell, figure and consistence having been observ’d to go
together, are accounted one distinct thing, signified by the name apple.

Mach (1886), in a similar vein, thought that bodies, as we perceive them, are made
up of “complexes of sensations” with some relative permanence, and, according to
Helmholtz (1910), “experience shows us how to recognise a compound aggregate of
sensations as being the sign of a simple object.”

The prevailing view is that we perceive the world in terms of objects, their qualities,
and their adventures. An object has coherence and continuity, but also variability. The
object, as a mental construct, also serves as a scaffold on which to affix properties that
seem to be ‘hanging around together’ in a suspicious way. These mental objects tend to
agree with external objects because the latter do indeed tend to leave a trail of physical
evidence, like an animal in the woods, that sometimes leaves tracks, spoor, broken
twigs, remnants of its last meal and so on; someone who knows what to look for can
infer the existence of the animal, and learn a lot about it, without directly seeing it.

Gibson’s invariants Gibson (1979, p. 249) took a different position, suggesting in-
variance as a more fundamental construct than objects. Invariants can only be discov-
ered in the context of change, whether in a single thing evolving over time, or con-
ceptually across a set of distinct things: “In the case of the persisting thing, I suggest,
the perceptual system simply extracts the invariant from the flowing [stimulus] array;
it resonates to the invariant structure or is attuned to it. In the case of the substantially
distinct things, I venture, the perceptual system must abstract the invariants.” (Gibson,
1966, p. 275.) In short, invariants represent things that remain constant despite change,
like the shape, size, and indeed the identity of an object as it moves about.
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Gestalt theory The Gestalt psychologists (e.g. Köhler, 1947) were concerned with
organising parts into wholes. These gestalten, these emergent shapes, can have proper-
ties, or gestaltqualitäten that have meaning only for the whole and not its parts. Köhler
gives the example of a musical interval: “fifth-ness” is not a quality possessed by notes,
but by the gestalt, the interval. ‘Major-ness’ or ‘minor-ness’ of chords is another good
example.

Gestalt theory sees perceptual organisation as a grouping process, in which in
which parts of the visual image (and they were defined primarily in the context of
vision) are allocated to one or other object. These have subsequently been adapted
for use in audition, (see, e.g. Bregman, 1990; Deutsch, 1999a) largely via the adop-
tion of auditory ‘images’ which take the form of time-frequency distributions such as
spectrograms and the like. Energy in different regions of the time-frequency plane is
grouped according to such criteria as onset synchrony, proximity in time or frequency,
harmonicity, and the principle of “common fate”, which recognises that sounds that
undergo, for example, common frequency or amplitude modulations, are likely to have
come from the same source. Another component of the theory is the principle of good
prägnanz, which is invoked when there are competing alternative organisations sug-
gested by the other rules, or when there is missing data. It says that ‘good forms’
should be preferred, where ‘good form’ refers to qualities such as simplicity, regularity,
symmetry, or continuity. The possible interpretations of good prägnanz are discussed
further in §2.1.5.

What are sonic and musical objects? To the extent that perception is concerned with
the physical state of the world, auditory objects are just physical objects, just like visual
objects. For example, the sound of a clinking glass implies the same physical glass that
a visual image would (though perhaps the reliability of the inference may be different
in different cases.) A more pertinent question is, what are the auditory manifestations
of physical objects? Bregman (1990, p. 9) advocates the idea of streams: these are indi-
vidual sounds, or collections or sequences of sounds that are heard as a unit. A related
concept is that of a source, that is, a physical object that produces a stream of auditory
events. In music, the situation is more complex: there is much less correspondence
between what might usefully be called ‘musical objects’ (such as chords or phrases;
see §2.3) and any physical objects. Bregman calls these musical objects “chimerical,”
(Bregman, 1990; Scheirer, 1996) seemingly denying them status as first-class objects.
Their underlying causes are ultimately not physical but mental constructs in the minds
of the composer and the performers, but, I think, no less ‘real’ or important for that, and
as such, the idea that we perceive causes is more general than object based perception.

2.1.4 Mental structure vs. stimulus structure

Hochberg (1981) discusses the debate between those who believe that perception is
driven by mental structure and those who believe that it is driven by stimulus structure.
Hochberg defines stimulus structure as intra-stimulus constraints, and mental structure
as intra-response constraints. Shepard (1981) put it more directly: “Does the world
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appear the way it does because the world is the way it is, or because we are the way we
are?”

Gestalt theory holds that perceptual organisation is an achievement of the nervous
system; gestalten do not exist outside the organism. However, Köhler (1947, Ch. 5)
did concede that this interpretation may have an objective value: it may “tell us more
about the world around us”, have “biological value,” and “tends to have results which
agree with the entities of the physical world.”

Mach (1886, §1.13, p. 29) also had mentalist tendencies: “Bodies do not produce
sensations, but complexes of elements make up bodies.” However, he did not seem to
imply that sensations are amalgamated into bodies in some ad-hoc manner, but rather
that there are statistical regularities which are exploited, i.e. that mental organisation
is a response to ecological stimulus structure.

Gibson, with his theory of the “direct perception” of invariants, and the pick-up of
information without an intervening “intellectual process,” believed that perception was
driven by stimulus structure, not mental structure, even if this stimulus structure is only
fully available to an active perceptual system.

Top-down vs. bottom-up Though the argument outlined above was conducted pri-
marily in a psychological context, it does have a practical relevance for artificial per-
ceptual systems. Perception dominated by stimulus structure corresponds roughly with
bottom-up, or data driven processing, which looks for structures in data without refer-
ring to any stored knowledge. Mental structure corresponds with top-down processes,
variously known as knowledge driven or, in Psychology, schema driven processes. A
schema is a structured representation of high level knowledge, such as constraints,
regularities, or archetypal patterns and transitions, the use of which can reduce the am-
biguity that may be present in low level data by creating expectations and narrowing
the range of possible interpretations in a given context.

Bregman (1990, p. 38), discussing auditory scene analysis and stream segregation,
distinguishes “primitive segregation” from “schema-based segregation”. He defines a
schema as “a [mental] system that is sensitive to some frequently occurring pattern.” He
also recognises “hypothesis driven” processes, in which the generation of a hypothesis
prompts a search for confirming evidence.

The use of high-level knowledge in human perception is not in doubt (e.g. , Knill
and Richards 1996.) A more pertinent question is, how does high level knowledge get
to the top in the first place? In a “knowledge engineering” methodology, it is placed
there by a human designer. In unsupervised learning, the acquisition of high level
knowledge is itself a data-driven process: it collects over time, ‘percolating’, as it were,
from the bottom up. For example, Leman and Carreras (1996) contrast “long-term
data-driven perceptual learning with short-term schema-driven recognition.” This is a
sensible distinction to make when there is not enough structure in short spans of data to
enable a fully data driven approach, but there is enough structure in data accumulated
over longer periods; the schema represents this accumulation of experience.

In conclusion, to quote Shepard’s answer to his own question,
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(1) The world appears the way it does because we are the way we are; and (2) we
are the way we are because we have evolved in a world that is the way it is.

I would add that not only have we evolved in a world that is the way it is, but each of us
has been immersed in it since the day he was born, and therefore has had ample oppor-
tunity to build and adapt his mental structures the better to suite whatever environment
he happened to have grown up in.

2.1.5 Dealing with uncertainty

Sensory evidence is sometimes uncertain, inconclusive or ambiguous. Usually, we do
not notice, filling in the gaps or making assumptions based on prior experience of what
is likely; all of this happening below the level of conscious awareness. A good example
of this is the phenomenon of perceptual restoration. For example, in speech, phonemes,
spoken in context, and masked by noise are often subjectively heard without the listener
even noticing that they were missing; this is known as phonemic restoration (Warren,
1970). Similar effects have been reported in music, for example, Deutsch (1999a)
describes how perceptual restoration works for notes in a melodic context, in which
the missing note can confidently be predicted from the surrounding material.

In Gestalt theory, this sort of situation is handled by the principle of good closure,
or prägnanz, which says that the mind tends to complete forms with gaps in them.
However, as (Bregman, 1990, p. 26) observes, we do sometimes see forms with gaps
in them: the principle is really for completing evidence with gaps in it. Its job is to fill
in missing or doubtful data. One may then ask, what does the brain choose to fill-in the
gaps with? What is ‘good’ form?

Probabilistic perception Hochberg (1981) discusses how the Gestalt principle of
good prägnanz can be interpreted as assuming either the simplest (in some sense), or
the most likely resolution of an ambiguity. Can simplicity be identified with likelihood?
Such probabilistic interpretations of perception are quite common in the literature, as
the following few examples show. Helmholtz (1910) believed that the most likely ex-
planations for sense data were arrived at by a process of “unconscious induction”.
Mach (1886, §10.8, p. 213) made the following observation:

If the visual sense acts in conformity with the habits which it has acquired under
the conditions of life of the species and the individual, we may, in the first place,
assume that it proceeds according to the principle of probability; that is, those
functions which have most frequently excited together before, will afterwards tend
to make their appearance together when only one is excited.

Brunswick (as reviewed by Hochberg, 1981) thought that the “Gestalt laws were merely
aspects of stimulus organisation, reflecting the probability that any parts of the visual
field belonged to the same object.” Bregman (1990, p. 24) on the same subject wrote,
“It seems likely that the auditory system, evolving as it has in such a world, has devel-
oped principles for ‘betting’ on which parts of a sequence of sensory inputs have arisen
from the same source.”
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Looking ahead to the next section, Attneave (1954) identified good gestalt with
a “high degree of internal redundancy.” Pomerantz and Kubovy (1981) note that At-
tneave’s economic descriptions (Attneave, 1954) could be interpreted as equating sim-
plicity with economy of coding, though they add, “this interesting approach is unlikely
to bear fruit until we know what coding schemes are used in perception. Changes in
coding schemes can have an enormous impact on the brevity of codes.” In fact, Shan-
non (1948) showed that coding schemes can indeed be optimised for economy and that
this defines a measure of simplicity that equates with likelihood.

2.2 Information and redundancy

Not long after the publication of Shannon’s A Mathematical Theory of Communication
(Shannon, 1948), psychologists began to see potential applications in their own field
(Miller and Frick, 1949; Miller, 1953; Attneave, 1954). Attneave suggested that infor-
mation theory is an appropriate way to understand perception, noting that sensory sig-
nals carry information redundantly and proposing that perceptual systems are engaged
in redundancy reduction. Interestingly enough, Oldfield (1954), without explicitly re-
ferring to Shannon’s Information Theory, proposed what was in all other respects, a
mechanism of adaptive redundancy reduction by successive stages of recoding. Bar-
low (1959, 1961) was another early advocate of redundancy reduction, arguing that it
would benefit other cognitive processes.

The following sections will first examine some of the basic assumptions implicit
in the marriage of perception and information theory, and will then describe what can
come of such a union.

2.2.1 Information theoretic framework

Central to the application of information theory to perception is the idea that sense data
can be treated as a collection of random variables that carry information about the state
of the world. Whether or not these are ‘random’ in some objective sense, there is, from
the point of view of the organism at least, a degree of uncertainty about the signals that
are about to arrive and the physical events behind them—otherwise, there would be no
need for sensation or perception at all. If the random variables representing sense data
are denoted by X , with an associated probability function p(·), then the entropy H(X)

provides a measure of uncertainty in X :

H(X) = E log[1/p(X)] =−E log p(X), (2.1)

where E denotes the expectation operator.

The idea that sense data carries information about the world can be expressed by
postulating that the state of the world can also be described by a collection of random
variables, S, and that the mutual information between X and S is not zero, or equiva-
lently, they are not statistically independent. The most transparent expression for the
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mutual information for our purposes is

I(X ,S) = H(S)−H(S|X)

= E [ log p(S|X)− log p(S)],
(2.2)

which is the expected drop in uncertainty about S on learning X .
This sort of treatment can easily be extended to include the putative internal repre-

sentations computed by cognitive systems. If some internal representation Y is com-
puted from the sense data X , then I(Y,X) and I(Y,S) are further quantities of interest,
measuring the information in Y about the stimulus X and the state of the world S re-
spectively. Indeed, Y can be considered a representation of the stimulus X , or the state
of the world S, precisely to the extent that I(Y,X) or I(Y,S) are ‘high’ in some sense.

Gibson on information Gibson (1966) was also very much concerned with informa-
tion, describing perception as a process of “information pick-up”, but felt that the use
of Shannon’s mathematical framework was inappropriate. He rejected the idea that
information is that which brings about a reduction in uncertainty, falling back on a dic-
tionary definition: “that which is got by word or picture,” which is unfortunately rather
circular considering the subject matter. He also rejected the idea that sense data can
be considered as signals in a communications system: “for these signals must be in
code and therefore have to be decoded; signals are messages, and messages have to be
interpreted.” (Gibson, 1979, p. 63.) In fact, he was quite dismissive about the “vast lit-
erature nowadays of speculation about the media of communication” which he accused
of being “undisciplined and vague.” Barlow (1996) mentions some of these concerns,
advocating the adoption of an information theoretic approach while at the same time
acknowledging that Shannon’s original exposition of the theory as a theory of commu-
nication, with a transmitter, a channel, and a receiver, “is in some ways a poor analogy
for the perceptual brain, partly because we must rid ourselves of the idea that there is
a homunculus to receive the messages.” However, homunculus or no, there is a case
to be made that different parts of the brain are in ‘communication’ with each other,
and even if the terminology may seem a little strained when applied to perception, the
mathematical forms fit very well.

2.2.2 Structure as redundancy

The idea of stimulus structure was introduced in §2.1.4. The discussion there focussed
on its implications for the division between data driven and knowledge driven process-
ing, but did not address the question of what structure is. To do so, we must look at
multivariate data.

Consider an n-tuple of real-valued random variables X = (X1, · · · ,Xn). The indi-
vidual components can represent simultaneous observations from many receptors, or
successive observations from a single receptor, or both. Hochberg’s “intra-stimulus
constraints” (Hochberg, 1981) imply that the observations are confined to some lower-
dimensional subspace or manifold of the full space R

n. In a stochastic system, this
hard constraint can be replaced with a soft one: the distribution of X might not strictly
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occupy a lower-dimensional manifold of R
n, but it will have some sort of ‘shape,’ and

certain sorts of ‘shape’ will imply statistical dependencies between the components of
X . Informally then, one may characterise structure as any departure from statistical
independence, which represents a state, as it were, of ‘pure randomness.’

A consequence of this definition is that if X is unstructured, then it will be im-
possible to predict one component from the others; that is, the conditional probabilities
p(xi|{x j : j 6= i}) will be no different from the marginals p(xi). Conversely, ‘structured-
ness’ implies that it is possible to make some of those predictions, or what Attneave
(1954) calls “better-than-chance inferences,” because some components will carry in-
formation about others, and hence there will be redundancy in the data. In the case of
images, for example, structure implies that some regions of an image can be roughly
predicted from others. This is certainly true for symmetric or periodic data, and accords
with Barlow’s suggestion (Barlow, 1996) that “structure is anything that is regular, re-
peating, or symmetric.”

The principle that redundancy constitutes structure agrees with many examples of
what one would intuitively identify as structure. In images, common patterns or fea-
tures, as well as being distinctive to the eye, will be a source of redundancy because
the parts of the feature tend to accompany one-another: the presence of one half is a
strong indicator that the other half is to be found adjacently. Objects are a source of
redundancy for the same reason. Temporal coherences of many kinds, such as in the
overall brightness of visual scenes, in the overall loudness of auditory scenes, and in
the set of probable notes in tonal music, are all forms of redundancy, in that the present
condition narrows the range of likely future conditions.

Redundancy and Gibson’s perceptual systems The concept of redundancy sheds
some light on Gibson’s ideas about perceptual systems. One of the points he makes
(Gibson, 1966) is that perceptual systems should not be defined in terms of sense or-
gans, (that is, anatomically) but rather that different, possibly overlapping, sets of re-
ceptors work together to form perceptual systems, each dedicated to knowing about
a different aspect of the world; they are outward looking systems rather than inward
looking ones. In the current context, we might say that perceptual systems are defined
by statistical dependencies between receptors. For example, the vestibular and visual
organs together constitute a system for the perception of orientation, because they both
respond in a correlated fashion to changes of orientation. Similarly, olfactory receptors
contribute both to the perception of smells and flavours, depending on whether the sig-
nals are correlated with events at the tip of the nose, such as sniffing actions, or with
tactile sensations in the mouth, chewing actions, and so on.

2.2.3 Redundancy reduction and factorial coding

Redundancy of the sort described above has two direct implications. One is that the
data exhibits some interesting structure that may be worth characterising. The other is
that the given representation is not as efficient as it could be. To address both of these
points, Attneave (1954) proposed that the job of perceptual systems is to “strip away



22 2. Perception

some of the redundancy of stimulation,” and to construct “economic descriptions” of
sense data, through a process of redundancy reduction. Also in support of redundancy
reduction, Barlow (1959) argued that the brain could not possibly process and store the
vast amounts of information that 3 million sensory nerve fibres are capable of carry-
ing (which he estimated to be of the order of 107 bits per second) if it was encoded
naively. He also emphasised the need for an adaptive encoding: there would be some
genetically specified mechanisms of redundancy reduction to deal with ever-present
environmental regularities, but there should also be a learning mechanism to deal with
those conditions and contingencies peculiar to the individual.

As well as the benefit of producing a more concise encoding of sensory data, the
process of identifying and removing ‘structured-ness’ requires that the structure be,
in some sense, ‘understood.’ It involves an implicit probabilistic model of the data,
because in an optimal code, the encoding of a message event A is log2 P(A) bits long.
Thus, in order to decide how much resource to allocate to representing the message,
one must know the probability of its occurrence.

The conclusion of the process would be a completely non-redundant distributed
code Y , whose m elements Yi are statistically independent—a factorial code, so called
because the joint probability density for independent variables factorises:

pY (y) =
m

∏
i=1

pYi
(yi). (2.3)

This is what Harpur (1997) called the “holy grail” of unsupervised learning. It means
that all structure has successfully been identified and accounted for. Barlow (1996)
observed that is also means that in a dynamic environment, new structure can be iden-
tified as “new regularities” or “suspicious coincidences” that “betray the presence of
new causal factors in the environment.”

Barlow (1990) made an argument for factorial coding based on requirements for
versatile and reliable associative learning. In order to identify an association between
some stimulus y and another stimulus z, an organism must notice that y accompanies
z more often than would be expected by chance if y and z occurred independently. To
do this efficiently it must compare p(y,z) with p(y)p(z), and thus requires estimates
of the marginal probabilities p(y) and p(z). Barlow described this in the context of a
single neuron, with a number of synapses representing the elements of Y . In this case,
one can imagine that each synapse is responsible for building up a picture of p(yi)

using locally available information only. If the Yi are statistically independent, eq. 2.3
applies, and these marginal probabilities can then be multiplied in the cell body to yield
the probability of the entire stimulus, p(y).

An important point about Barlow’s argument is that it explicitly recognises the de-
sirability of modelling the probability distribution of the stimulus. Factorial coding is
useful precisely in that it facilitates a particularly simple computation, but other prob-
abilistic models might do equally well. Although a fuller discussion of probabilistic
modelling is deferred to Chapter 3, it is important to bear in mind that building and
using these models might be a large part of what perceptual systems do.
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S X f W Y
noisy

channel
noisy

channel

Fig. 2.3: Atick and Redlich’s schematic perceptual system. S stands for the state of the world
which the system is to represent. X stands for observed sense data, which in general
is some noisy transformation of S. The first stage of processing computes W = f (X),
which is transmitted along a noisy or constrained channel and received as Y .

Quantifying redundancy Attneave’s original expression for redundancy (Attneave,
1959, p. 9) was a measure of the difference between the actual entropy of a represen-
tation (computed from its ‘true’ probability distribution) and a theoretical maximum,
Hmax, computed for that representation under any applicable physical constraints:

RA =
Hmax−H(Y )

Hmax
. (2.4)

For a neural code, an appropriate constraint might be a fixed average spike rate for each
neuron. This is essentially the model that Barlow (1961) adopted in his discussion of
redundancy, in which the elements of a code, Yi are binary with E Yi = α , a constant.
In this case, for an N-bit binary code,

Hmax = N{α logα +(1−α) log(1−α)},

which obtains when the bits are independent. For a real-valued code, the constraint
might be a limited range of values or a fixed average power, under which the maximum
entropy distributions are uniform or Gaussian respectively. In general, if the constraints
apply to each element of the code independently, then the maximum entropy will be
obtained with a factorial code.

2.2.4 Information maximisation

Linsker (1988) pointed out that a high-entropy representation is not necessarily an in-
formation bearing one. Referring back to §2.2.1, if S denotes the state of some relevant
part of the world, then the important quantity is not the entropy of the code, H(Y ), but
the information it carries, I(Y,S). He proposed that one of the organising principles
of perceptual systems is that they should adapt to maximise (under constraint) the mu-
tual information between the internal representations and the environmental states they
purport to represent. This is known as the principle of information maximisation or
“info-max” for short. The constraints generally conspire to restrict the overall repre-
sentational capacity of the system, encouraging the efficient representation of relevant
information and the rejection of noise.

Atick and Redlich (1990) took these considerations into account when they pro-
posed an alternative measure of redundancy based on mutual information rather than
entropy. The representation is treated as a constrained communications channel be-
tween the perceptual system and higher cognitive systems (as previously illustrated in
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fig. 2.1). The constraints act to limit to the capacity of that channel. In the archetypal
system illustrated in fig. 2.3, the maximal information transfer Imax, is determined by
the capacity of the channel between W and Y :

Imax = max
p(w)

I(Y,W )

∣

∣

∣

∣

E Y 2=const.

(2.5)

where the maximisation is over all possible probability distributions of W , with a fixed
power constraint. In these terms, the redundancy is defined as

RAR =
Imax− I(Y,S)

Imax
. (2.6)

Comparing this with Attneave’s measure of redundancy in eq. 2.4, both are a fraction
of wasted capacity, but whereas RA is sensitive only to the statistical structure of the
representation itself, RAR is also sensitive to capacity wasted carrying ‘noise’, that is,
information that is not about interesting things in the world, as encapsulated by S.

There are two approaches to minimising either form of redundancy. One is to
maximise the ‘content’ of the representation, that is, either H(Y ) or I(Y,S), the latter
equating with Linsker’s info-max. In Atick and Redlich’s system, this would by done
by adjusting the transformation f to make the best use of the W -Y channel . The other
is to reduce the ‘capacity’ Hmax or Imax, holding the ‘content’ fixed. This can loosely
be thought of as minimising the cost, whether measured in numbers of spikes or energy
consumption, of coding a given fixed amount of information.

2.2.5 Noise and irrelevant information

Thus far the assumption has been that we know enough about the statistical structure
of S to compute I(S,Y ); that is, we know the difference between signal and noise. Is
this a valid assumption? What are those differences?

Marr’s “fundamental hypothesis” (Marr, 1982) was that perceptual systems will
discard information that is not relevant to the detection of “stable features,” which he
defined as those which tend to co-occur. This can be imagined as a sort of voting system
amongst receptors: if only one unit reports some stimulus, it is likely to be ignored on
the basis that it is probably in error, an aberration peculiar to the internal workings of
that unit. But if many units show concerted activity, it is more likely that this is due to
events in the world.

Marr’s hypothesis amounts to an assumption about the structure, or rather the lack
of structure, in noise, namely, that it affects each receptor independently of the others.
Thus, it determines which features in the input are going to be important: those which
are robust to such noise. It also corresponds exactly with the idea of redundancy: stable
features are encoded redundantly, whereas noise is not. Implicit in this is a certain faith
in the ‘structured-ness’ of the world.

Attneave (1954) also noticed that uncorrelated sensory signals tend to be interpreted
as noise, observing that even though uncorrelated noise has a high entropy, and thus
could potentially carry a lot of information, both visual and auditory white noise have a
dull, uniform, and uninformative texture. Redlich (1993) makes a similar observation:
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“Desirable input information is often encoded redundantly, so redundancy can be used
to distinguish true signal from noise.”

These comments have the status of empirical observations, viz., that noise tends to
appear non-redundantly, to be structureless, implying that any structuring is not noise
and therefore relevant. This is quite a strong statement. The ecological principles
outlined in §2.1.2 suggest that relevance, or attensity, is ultimately something which
cannot be decided without considering the use to which the information will be put.
Atick and Redlich (1990) comment that “neither noise nor signal is a universal concept,
but depend on what is useful visual information to a particular organism in a particular
environment.” It is well to recognise that this kind of “usefulness” is not something
that can be judged in the purely unsupervised framework adopted in this thesis, and to
solve real problems that require judicious selection and rejection of information, some
element of supervision or reinforcement will eventually be needed.

2.3 Musical structure

The purpose of this section is to give the reader some feeling for what is meant by mu-
sical structure, bearing in mind the preceding discussions of structure as redundancy,
and perception as probabilistic inference. Some familiarity with musical concepts is
assumed.

Some types of musical structure are easily identified: for example, the periodicity
that characterises pitched sounds; the hierarchy of importance attached to different
pitches depending on tonality and harmony; the structuring of time due to metrical
regularity and phrasing structure. Other structures, such as those underlying different
elaborations of a common theme, are recognisable but harder to characterise rigorously.

West et al. (1987) discuss this “common sense” level of understanding in terms of
musical objects:

With minimal introspection it is possible to identify quite a few objects in musi-
cal experience—notes, duplets, triplets, phrases, chords, tunes, themes, variations,
movements, choruses, songs, violin parts, rests, crescendos, glissandi and so on.

As well as objects, they also recognise features of objects, (like pitch, timbre, metre,
idiom, loudness, emphasis, tonality, “Wagnerian quality” [sic], richness etc. ) and
functional relationships between objects, such as harmonic progression, prolongation,
anticipation, closure, resolution etc.

These observations may be useful, but introspection is not necessarily a reliable
guide to building an understanding of psychological processes. Lerdahl and Jackendoff
(1983, p. 3) refer to a “musical intuition” guided by “largely unconscious knowledge.”
There is also a distinction to be made between structure as experienced, and structure
as constructed, that is, compositional structure. This is discussed in §2.3.3, but be-
fore moving on, composition, it should be noted, is a psychological process too and
therefore not necessarily accessible to consciousness.
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2.3.1 Lerdahl and Jackendoff’s generative theory

Lerdahl and Jackendoff (1983) took as their goal a description of the “musical intu-
itions” of an experienced listener. They explicitly limited their scope to Western tonal
music, acknowledging that a different theory (at least in the details) would be required
to account for the “musical intuitions” of a listener versed in another idiom. Neither
is the theory concerned with how these intuitions are acquired, though the authors do
expect there to be some learning involved.

Inspired by work in linguistic grammars, the theory is expressed as a formal, gen-
erative, musical grammar: a set of set rules by which all grammatical “utterances”
(that is, well-formed musical passages) can be constructed. These are not intended for
the actual composition of music, but for the assignation of structural descriptions of
how a given example would have been generated by the grammar. The rules fall into
two classes—well-formedness rules and preference rules—and four categories cover-
ing different aspects of musical structure: (a) the grouping of events into a hierarchy
of phrases, (b) metre, (c) “time-span reduction,” a hierarchy of structurally important
pitches, and (d) “prolongation reduction,” which describes the flow of tension and re-
lease in harmony and melody. The well-formedness rules are absolute and indicate
which structural descriptions are permissible. The preference rules are flexible and are
used to help decide between competing descriptions. Lerdahl and Jackendoff make a
point of not giving any quantitative procedure for deciding this competition, citing the
difficulty of assigning numerical weights to the rules. One of the benefits of using a
probabilistic generative model would be a principled way of doing this by choosing the
most likely structures.

An important aspect of the theory is that the four sets of rules set up four paral-
lel temporal decompositions of the music, each of which is strictly hierarchical. Four
inverted trees are built along the same time line, one encoding metre, another phrase
boundaries, and so on. The preference rules encourage trees with parallel structures,
but the music can dictate otherwise. Indeed, Lerdahl and Jackendoff suggest that pieces
giving rise to such commensurate trees elicit a feeling that the music is a little simplis-
tic or boring. It is possible that the tensions set up by conflicting temporal structures
are responsible for some of the satisfying richness in music, for example, in syncopa-
tion, the structure assigned by a metrical analysis conflicts with the local structure of
phenomenal accentuation.

2.3.2 Event hierarchies and tonal hierarchies

Bharucha (1984) describes Lerdahl and Jackendoff’s temporal decompositions as event
hierarchies, contrasting them with tonal hierarchies, which, in tonal music, assign
a hierarchy of relative importance to different pitches which may occur. Krumhansl
(1990, p. 18) also discusses this, citing Meyer (1956, pp. 214–215), who made an
assessment of the tonal hierarchy implied by a major key context. For example, in the
key of in G major, the most structurally stable important tone is the tonic, G, which
serves as the reference point for all the other tones. Next come the remaining notes
of the major triad, D and B, followed by rest of the pitches in the diatonic scale of G
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Fig. 2.4: A tonal hierarchy for the key of G major.

major: A, C, E and F]. Finally, the remaining chromatic notes (G], A], C], D], and
F) are the least stable (see fig. 2.4). Thus, any note can be assigned a position in the
hierarchy on the basis of the the tonality of the context in which it is found. The lower
in the hierarchy it is, the less likely it is to ‘fit,’ or form a comfortable resting point.

Bharucha held that human listeners internalise these relationships in the form of
tonal schemata, and, in a series of experiments, Krumhansl (1990) and her co-workers
showed that this is indeed the case. She also found that, to a good approximation, the
profile of stability ratings assigned to the twelve pitches in the context of a particular
key is strongly correlated with the relative probabilities of those pitches occurring in
that key. This suggests that the subjects had within them a statistical model of the
patterns of pitch use. The obvious first approximation to such a model which would be
a table of relative frequencies (in the sense of counts) of the pitches in each key. The
next level of complexity would be a table of transition probabilities between pairs of
notes, that takes into account the sequence of the notes. The evidence is that human
listeners do achieve at least this level of sophistication, in that our perception of tonality
is affected by a re-ordering of the notes (Deutsch, 1984).

Statistical regularity of the sort implied by tonal structure is precisely what was
discussed in §2.2: namely, a form of redundancy. The implication is that it may be
possible to model pitch perception (including tonal hierarchies) via a process of re-
dundancy reduction. Deutsch (1984) suggested as much when she argued that tonal
hierarchies enable pitch structures to be encoded more efficiently. In terms of redun-
dancy, one might say that tonal schemata encode and exploit the redundancy that results
from being in a particular key.

2.3.3 Structure and learning in music

The perceptual approach attempts to account for the listener’s experience, that is, to
describe musical structures as they are perceived. These need not necessarily agree
with the structures that the composer or performer intended, perhaps working to some
abstruse compositional theory. Leman (1999) points out that music theory tends to
describe structures as they should be (i.e. from a compositional standpoint), but not
necessarily how they are perceived. Raffman (1993, p. 30) discusses this possibility in
terms of alternative grammars, (in the following, “M-grammatical rules” refers to the
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psychologically internalised rules that we use to understand music):

. . . who’s to say the correct analysis of the music isn’t prescribed by a different set
of purely compositional principles? The composer of a tonal work (a fortiori of
an atonal one) may follow compositional rules that are not psychologically real
and hence no bear no significant relationship to the rules that govern listening. In
that case, since an appeal to the compositional rules would likely provide the most
coherent and compelling analysis of the music, one one might reasonable insist
that they, and not the M-grammatical rules, specify the structure of the work.

. . . it is hard to see how experienced listeners could acquire knowledge or under-
standing of a piece just by hearing it; and surely [Raffman’s emphasis] tonal music
is the sort of thing that can be known in the hearing.

The second paragraph seems questionable in the light of the perceptual theory outlined
in the first two sections of this chapter, which points to a situation in which listeners
do attain high-level knowledge (“M-grammatical rules”, schemata) from experience,
not necessarily from listening to a piece once, but from repeated exposure to a genre.
Raffman does acknowledge this alternative, citing Bharucha’s hypothesises (Bharucha,
1984) that familiarity with pieces of music in a given style results in an unconscious ab-
straction of structural relationships in the music. The resulting schemata then facilitate
the subsequent perceptual organisation of music in that style. This suggests that ini-
tially, music in a previously unheard style will be interpreted under some pre-existing
schema, and will probably not be ‘understood’ in the sense that the composer intended;
it may seem ‘difficult,’ and may not be fully appreciated. After becoming acquainted
with the style, one might infer the new compositional rules and thus come to a better
understanding of the work or others cast from the same mould.

2.3.4 The geometric structure of pitch

In this section, we examine the distinction between (non-musical) pitch as a basic
auditory percept—which is generally assumed to be a one-dimensional correlate of
frequency—and musical pitch, which seems to be a more complex, multidimensional
percept. One approach is to suppose that pitches can be represented as points in some,
possibly multidimensional, metric space, so that their relationships are expressed spa-
tially, as described in §2.1.1.

At first blush, it is tempting simply to identify pitch with frequency (or fundamen-
tal frequency for harmonic tones) and think no more of it—imagine the tones as points
arranged according to frequency along a straight line, perhaps with a logarithmic fre-
quency scale, as illustrated in fig. 2.5(a). The problem with this 1-D representation
is that it does not do justice to the generally perceived relationships between pitches
with widely separated fundamental frequencies, such as at the Octave (frequency ra-
tio 1:2) or the Fifth (ratio 2:3). Consider the perceived similarity between the three
C pitches spread over three octaves in fig. 2.5(a): it is not reflected in the rectilinear
configuration, but after a bit of thought (or a leap of insight) one might choose to coil
up the logarithmically scaled line into a helix, as in fig. 2.5(b), so that the frequency
goes up by a factor of two for each turn around the coil. Similarity at the octave is now



2.3. Musical structure 29

C
C]

D
D]

E
F

F]
G

G]
A

A]
B

C
C]

D
D]

E
F

F]
G

G]
A

A]
B

C

�

�

�

�

�

��

�

�

�

� �

�

�

�

�

�

��

�

�

�

� �

�

C

C]

D

D]

E
FF]

G
G]

A
A] B

C

C]

D

D]

E
FF]

G
G]

A
A] B

C
F] C] G] D]

D A E B F]

B[ F C G D A

G[ D[ A[ E[ B[ F

B[[ F[ C[ G[ D[

m
aj

or
th

ir
ds

fifths

m
inor

thirds

(a) (b) (c)

Fig. 2.5: Geometric Pitch Structures: (a) a linear representation of tone height in semitones; (b)
a helical representation combines tone height and similarity by octaves (after Shepard,
1982); (c) a 2-D map arranged by fifths and thirds. If enharmonic equivalence is recog-
nised (e.g. between F] and G[) then the map becomes periodic in both directions and
the grey quadrilateral becomes a repeating cell. The compact region outlined in black
contains the diatonic scale of C major.

expressed by a short displacement parallel to the axis of the helix, while similarity in
frequency is expressed by small rotations around the axis. Let us recognise that this is
quite a clever trick—we have incorporated new information, by jumping from a very
simple geometric arrangement to a more complex one in a higher-dimensional space,
while retaining the benefits of our geometric intuitions.

In a musical context, experienced listeners are aware of other relationships than
the Octave, most notably the Fifth and its inverse the Fourth (frequency ratios, 2:3 and
3:4 respectively) but also major and minor Thirds (4:5 and 5:6) and their inverses, the
minor and major Sixths (5:8 and 3:5). How can these relationships be represented ge-
ometrically? This sort of exercise has been testing the ingenuity of music theorists and
instrument builders since the 19th century. Keislar (1987) reviewed several keyboard
designs from the 16th century onwards, which arrange the keys (digitals) in two di-
mensions in an attempt to bring out their tonal relationships. Ellis, in his appendix to
Helmholtz (1885), described a 2-D map of pitches, with one direction moving in Fifths,
the other in Thirds. Fig. 2.5(c) is an example of this kind. Schoenberg (1969) drew a
similar map to represent key-relatedness (that is, tonal centres, not keys on a keyboard)
with separate entries for the major and minor keys. Longuet-Higgins (1987, ch. 7 & 8)
proposed an elegant explanation for these 2-D maps in terms of the prime factorisation
of the frequency ratio between two notes.

Shepard (1982) explored several geometric representations of pitch, seeking to ac-
commodate melodic (step-wise) relationships in his “melodic map,” and harmonic rela-
tionships in his “harmonic map.” The latter is essentially the same as the ones described
by Ellis, Schoenberg, and Longuet-Higgins. However, Shepard went on to embed this
2D map in a 5D space to accommodate simultaneously four types of similarity: prox-
imity in frequency, in octaves, in fifths, and in thirds.
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These structures are not just theoretical constructs. The experiments of Krumhansl
and Kessler (1982) have shown that musically experienced listeners are able to in-
ternalise the distance relationships implied by the various geometries, so that similar
structures can be recovered from empirical data. From a different perspective, Le-
man and Carreras (1996) produced a 2D map of chords using data-driven unsupervised
learning techniques rather than human subjects. This is important in the current context
because it agrees with the main premise of this report: that musical structure is inherent
in musical data, and that any mental structures that we use to process music are there
in response to the structure of the data.

Summary

Sensory data is structured in a statistical sense, and the concept of redundancy captures
much of this structure. Objects appear as complexes of correlated sensations, and the
redundancy induced by this is what betrays the presence of an object and what triggers
the perceptual system in its task of organising sensory data.

Music is richly structured and an initial inspection suggests that this structure is
indeed captured by the notion of redundancy. Some aspects of music perception are
consistent with the hypothesis that the brain builds statistical models of musical phe-
nomena.

Perception itself seems to be a multifaceted process which can be construed as any
or all of the following: (a) representation of the environment; (b) gaining information
about relevant things in the world; (c) construction of statistical models of sensory data;
(d) probabilistic inference of environmental states from sensory data; (e) construction
of a causal framework for ‘explaining’ sensations in terms of hypothetical external
objects and events; (f) efficient representation of relevant information through a process
of redundancy reduction.

These operations are related in that efficient representation involves a statistical
characterisation of the data, and causal models are often the most appropriate for deal-
ing with data generated by causal processes in the world.

The goal of building statistical models of sensory data is one that can in principle
be achieved by data-driven unsupervised learning; that is, by using models that adapt
to the environment in which they finds themselves. This agrees with the psycholog-
ical concept of schemata which develop through experience over the life-time of the
individual.



3 . C O M P U TAT I O N A L M O D E L S

Introduction

This chapter considers two approaches to auditory modelling and music processing.
The first follows directly on from the previous chapter, putting perception in a prob-
abilistic setting and describing in more detail how efficient statistical models can be
constructed. Several techniques developed in the neural networks and signal process-
ing communities are listed, and their interpretations as statistical models described.

The second approach is the one that has been more prevalent in music processing
until fairly recently, what Cambouropoulos (1998) called the “knowledge engineering”
approach, and consists of the application of signal processing and other engineering
methods combined with musical fore-knowledge on the part of the designer. The focus
will be on linear and quadratic time-frequency representations, and how these relate to
some of the adaptive linear representations to be described in §3.2

3.1 Probability models

Chapter 2 presented two related ways of looking at perception: one is the idea that the
brain is involved in building statistical models of sensory data; the other is that it is
driven by redundancy reduction and the need to deal efficiently with information in the
sense defined by Shannon (1948). Both require a probabilistic characterisation of the
data, so either way we are led to the same problem: given some multi-variate random
variable X , how do we build up a picture of and do computations with its probability
distribution p(x)?

For discrete random variables, this could be done by compiling a contingency table
consisting of the probabilities of observing each distinct state of X . However, the size of
this table grows exponentially with the dimensionality of X : in most cases, storing the
table explicitly would be out of the question. Not only would it require an inordinate
amount of storage, but filling in the probabilities by counting observations (that is,
building a histogram) could be a very lengthy and unreliable process, depending on the
sparsity of observations in different parts of the state space. In effect, we would be
building a parametric model with as many free parameters as there were distinct states
of X . With continuous random variables, the problem is compounded further, since
there are an infinite number of states.

Pearl (1988) argues that the key to probabilistic computation in large data spaces
is to identify which variables are relevant to each other: it allows us to make state-
ments about conditional independence between sets of variables, of the form “X is
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Fig. 3.1: Directed and undirected graphical models. (After Frey, 1998, pp. 10–12.) A factor

graph (a) explicitly represents the factorisation of the joint probability as p(y,x,s,u) =

p(y|x)p(x|s,u)p(s|u)p(u). A undirected graph or Markov random field (b) for the same
system implies only a factorisation of the form p(y,x,s,u) = φ1(y,x)φ2(x,s,u). A di-
rected graph or Bayesian network (c) uses directed edges to represent conditional prob-
abilities, in this case giving p(y,x,s,u) = p(y|x)p(x|s,u)p(s|u)p(u).

independent of Y given that we know Z.” It amounts to making assumptions about the
functional form of p(x,y,z), namely, that it factorises, for example, as φ1(x,z)φ2(y,z).
This results in a model with fewer degrees of freedom, thus making training the model
from the data through unsupervised learning a more realistic proposition.

A graphical model is a particularly convenient and expressive way of codifying
assumptions about conditional independence between random variables. The variables
are drawn as nodes in a graph, and edges linking them signify certain kinds of depen-
dence and therefore relevance. Graphical models come in several flavours, some of
which are illustrated in fig. 3.1. Of these, perhaps Frey’s factor graphs (Frey, 1998)
express the factorisation of the probability function most explicitly, but it is a simple
matter to write down the implied factorisation for a directed graphical model, and only
slightly less so for an undirected one.

Jordan (1998, Preface) succinctly lists the benefits which flow from this approach:
“Graphical models are a marriage between probability theory and graph theory. They
provide a natural tool for dealing with . . . uncertainty and complexity. . . ” They are
fundamentally modular systems, and “probability theory provides the glue whereby
the parts are combined.” Not only is a graphical model a good way to represent a
probability model, it also defines an architecture for parallel distributed computation
on that model, which in part explains the strong ties between graphical models and
neural networks that have developed in recent years: Ghahramani and Roweis (1999)
point out that many algorithms developed under the rubric of neural networks (and in
other fields) have direct interpretations in terms of probabilistic systems and graphical
models; some of these will be examined later in §3.2.

3.1.1 Latent variables and hidden causes

We have seen how a graphical model represents a factorisation of the joint probability
distribution of random variables, yet it may not always be possible to find a factori-
sation sufficient to render the model tractable. If no conditional independencies can
be found, the result will be a complete graph, that is, one with edges connecting all



3.1. Probability models 33

pairs of nodes. Faced with such a problem, Pearl (1988, p. 383) argues that the natural
human response is to hypothesise some underlying cause for the observed correlations,
and that this response is computationally motivated. In a graphical model, this means
that we invent new hidden or latent variables, which though never observed, are able to
account for the observed dependencies using a simpler graph than was possible without
them. In this way, Bishop (1998) observes, a relatively complex joint distribution over
the observed variables can be obtained, by marginalisation, from a simpler distribution
over the expanded set of variables. Letting X stand for all the observed variables, S
for the latent variables, and S for range of S, the model defines the joint distribution
p(X ,S). The observed distribution is then

p(x) =

∫

s∈S
p(x,s) ds. (3.1)

Consider the model illustrated in fig. 3.2. If the central node S went unobserved and
unrepresented, a complete graph might be required to model the resulting dependency
structure. By hypothesising the existence of a sixth unobserved variable, we open up
the possibility that a much simpler graph might be capable of modelling the system.
This particular graph is directly analogous to Pearl’s example (Pearl, 1988, p. 383): if
one were to ask five people in the street what time it was, they would give strongly
correlated answers. Rather than suspecting some conspiracy between them, it is far
more economical to postulate the existence of an underlying ‘correct’ time, upon which
each person independently bases their response.

From a certain point of view, these hidden causes are pure invention; nonetheless,
their ‘reality’ in any physical or metaphysical sense is perhaps of less importance than
the computational advantage which they bring, and it is quite conceivable that many of
the mental constructs and abstractions we entertain as humans have precisely the same
status. Pearl goes as far as to suggest that “these computational advantages . . . give
rise to the satisfying sensation called in-depth understanding, which people experi-
ence when they discover causal models consistent with their observations.” This need
not be confined to the sort of conscious reasoning Pearl is referring to, but could ap-
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Fig. 3.2: How the introduction of latent variables into a graphical model can simplify the depen-
dency structure. Suppose the (causal) model (a) accurately captures the dependency
between a set of observable variables Xi, but the variable S is not observed. An attempt
to model the dependencies without including S would result a graph with many more
edges, such as the undirected model (b).
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ply just as well to unconscious perceptual processes. There are many parallels to be
drawn between the graphical models described here and the discussion of perception
in Chapter 2. If sensory data constitute the observed variables, then the latent variables
represent mental constructs our perceptual systems invent to explain correlations in
sensations: precisely the role ascribed to objects in §2.1.3. It is these latent variables
which constitute a representation of the external world, which we do not experience
directly, yet is the most economical explanation for sensory data. Indeed, in a graph-
ical model, there is no representation at all without latent variables. Add to this their
inherent ability to deal consistently with uncertainty, and their potential computational
efficiency, and we are lead to the conclusion that latent variable models are a promising
computational model of perception.

3.1.2 Inference and learning

Probabilistic inference A typical application of a latent variable model is to infer
likely values of the hidden nodes given a set of values for the visible ones. Probability
theory dictates how this should be done: before observing X , the marginal density of S
is

p(s) =

∫

x∈X
p(x,s) dx, (3.2)

where X is the range of values taken by X . The situation after observing that X = x is
described by the posterior density

p(s|x) =
p(x,s)
p(x)

, (3.3)

where p(x) is defined by eq. 3.1. If the model is causal one specified in the form
p(x,s) = p(x|s)p(s), then the standard form of Bayes’ rule is obtained:

p(s|x) =
p(x|s)p(s)

p(x)
. (3.4)

p(s) is the prior distribution of S, and is now a given, rather than being computed
according to eq. 3.2; it represents what is initially known about S. p(x|s) represents
new information about S, gleaned from the data x, and when considered as a function
of s, is called the likelihood, written l(s|x) ≡ p(x|s).

In some applications, the posterior can be used directly, but in those cases where a
single ‘best’ estimate of S is needed, some additional criterion is required. Common
choices are to minimise the mean square estimation error by picking the mean of p(s|x),
or to pick the single most likely value of S,

ŝ = argmax
s

p(s|x), (3.5)

otherwise known as maximum a posteriori or MAP estimation.
Depending on the structure of the graph, a number of exact and approximate in-

ference algorithms may be applied, some of which take advantage of the graphical
representation of the model to reduce the computations required. Examples include
message passing schemes—variously known as belief propagation (Pearl, 1988), the
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sum-product algorithm and the forward backward algorithm (see Frey, 1998, p. 27)—
the junction tree algorithm (see Cowell, 1998), and variational inference (Jordan et al.,
1998). Many of these have the property that the computations can be done locally on
the graph and thus implemented efficiently in a distributed fashion.

Learning by induction One of the motivations in using a probabilistic model is that
the details of the model can be learned from the data. In a graphical model, there are
two aspects to this: one is that the structure of the graph itself may be induced, includ-
ing the addition of hidden nodes as suggested by data; the other is that any parameters
associated with each node may be adjusted. Pearl (1988, Ch. 8) treats the former, while
Heckerman (1998) reviews work on both aspects. The discussion here will be confined
to parametric optimisation only, and applies to any parametric probability model and
not just graphical models.

A parametric model defines a distribution over the observables X given by p(x|θ ),
where θ stands for all the parameters. Fitting the model means finding the parameters
which best describe the observed data, or, in a Bayesian setting, (see, e.g. Heckerman,
1998) finding the posterior distribution over the parameters given the data:

p(θ |x) =
p(x|θ )p(θ )

p(x)
. (3.6)

The prior p(θ ) represents our state of knowledge about the parameters before the ob-
servation. If the data consists of a set of T independent observations, (a training set)
then the posterior factorises as

p(θ |{x(t) : 1≤ t ≤ T}) = p(θ )
T

∏
t=1

p(x(t)|θ )

p(x(t))
. (3.7)

MAP estimation of θ involves finding the mode of this posterior, but in the case where
the training set is large, the data may be assumed to influence the shape of the distribu-
tion much more than the prior p(θ ); if the prior is dropped, then a maximum likelihood
(ML) estimate can be obtained by maximising the log-likelihood:

θ̂ = argmax
θ

T

∑
t=1

log p(x(t)|θ ). (3.8)

Since we are only interested in the position of the maximum and not its value, we are
free to drop the normalisation factors p(x(t)) and convert products into sums by taking
logarithms. Furthermore, as T → ∞, this sum approximates an expectation:

lim
T→∞

1
T

T

∑
t=1

log p(x(t)|θ ) =

∫

x∈X
p(x) log p(x|θ ) dx≡ E log p(x|θ ), (3.9)

where p(x) is the ‘true’ (i.e. observed) distribution of X . Maximisation of this ex-
pected log-likelihood is formally equivalent to minimisation of the Kullback-Leibler
divergence between the observed distribution and the model distribution, since the two
a related by

D(px‖ px|θ ) =

∫

x∈X
p(x) log

p(x)
p(x|θ )

dx =−E log p(x|θ )−H(X), (3.10)
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where H(X) is the entropy of the data and is therefore independent of θ . Thus, in the
limit of a large training set, MAP estimation, ML estimation, and divergence minimi-
sation are all equivalent.

In the situation where there are latent variables, the procedure is more complicated,
since the model distribution p(x|θ ) is now a potentially intractable sum or integral over
hidden states, as in eq. 3.1. Heckerman (1998) reviews some of the available meth-
ods, including Monte Carlo integration, the expectation–maximisation (EM) algorithm
(Dempster et al., 1977) and the Gaussian approximation. Only the last of these will
concern us here, as it is the method which Lewicki and Sejnowski (2000) apply to the
problem of overcomplete coding—the details are deferred to Chapter 6.

3.1.3 What probabilistic models can do

Chapter 2 presented some of the arguments for a probabilistic approach to perception,
and this section has described some of the formal models that could implement this
approach. These are some of the capabilities that such a model would inherit in terms
of tasks relevant to perception:

Novelty detection The most immediate consequence of building a probability model
is that any stimulus can be assigned a numerical probability, which can be used
to flag those input patterns that seem unlikely according to the model. This could
indicate that something new and interesting is happening, or that the model is inad-
equate and needs to be re-thought.

Regression If part of the input is missing or thought to be unreliable, the model can
be used to supply the most likely completion, in precisely the way that perceptual
restoration (see §2.1.5) is thought to operate.

Creating fantasy data Any probability model can in principle be used to generate
samples from the model distribution using a variety of Monte Carlo methods (see
MacKay, 1998). The perceptual relevance of this is less certain, but one might
speculate that such a process is involved in dreaming.

Inference of latent variables In a latent variable model in which the hidden vari-
ables represent the worldly causes of sensory stimulation, the process of inference
equates to the maintenance of an internal representation of the external world.

Optimal coding In models where the latent variables are independent—which is one
of the goals of causal modelling; see Pearl (1988)—they constitute of themselves an
efficient, non-redundant representation. In other cases, the knowledge of the data
distribution can be used to guide the construction of an optimal code by determin-
ing the code-word length or coding cost for each pattern, according to Shannon’s
(1948) coding theorem .

Learning The potential of suitably constrained probability models to learn by induc-
tion provides a rigorous framework for implementing such aspects of perception as
schemata and Barlow’s adaptive redundancy reduction, and more specifically, the
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(a) (b) (c) (d)

Fig. 3.3: Different data distributions, with structures suited to different probability models: (a)
Gaussian data—use PCA, (b) non-Gaussian data—use ICA, (c) clustered data—use
Gaussian mixture model, and (d) data on nonlinear manifold—use SOM or GTM. (See
text for description of these models.)

acquisition of musical knowledge through listening. The prospect of learning struc-
ture from data, inventing hidden variables to account for dependencies in the data,
is a particularly exciting one as it begins to approach (arguably) what we mean by
intelligence. For example, the perceived harmonic progression of a piece of music
could be represented by hidden variables introduced to account for the redundancy
in patterns of note usage.

Principled comparison with other candidate models (Bishop, 1998) notes that the
adoption of explicit probability models allows a quantitative comparison between
different candidate models of a given data set. Leaving questions of model com-
plexity aside, the best model is the one that assigns the highest likelihood to the
data. The probabilistic formulation also allows modular combinations of models to
built in a principled manner.

Having looked at probabilistic systems in general, we will now focus on some specific
models which will form the background for the methods to be applied in Part II.

3.2 Algorithms for unsupervised learning

This section contains a brief review of some unsupervised learning algorithms and
the models implicit within them. Many of them can be fitted into the framework of
graphical models described in the previous section, and are suited to different forms
of data distribution, some of which are illustrated in fig. 3.3. Ghahramani and Roweis
(1999) conduct a more extensive discussion along these lines, showing how many data
analysis and signal processing methods can be derived from graphical models.

3.2.1 Principal component analysis and whitening

Principal Component Analysis (PCA; see e.g. , Plumbley, 1991) is a well-known tech-
nique for dimensionality reduction, whereby high-dimensional data is projected lin-
early into an M-dimensional subspace whilst maximising the variance of the resulting
projection. That subspace is the one spanned by the M eigenvectors of the data covari-
ance matrix with the largest eigenvalues, and is termed the principal subspace.
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(a) PCA (b) ICA (c) Sparse coder

Fig. 3.4: Graphical models for (a) probabilistic PCA, (b) ICA, and (c) sparse coding. Hidden
nodes are at the top and visible nodes at the bottom. The white nodes are Gaussian,
where as light grey nodes are non-Gaussian. The medium gray nodes are conditionally
Gaussian and are used to model additive noise in PCA and in sparse coding. The dark
grey nodes in the ICA model are deterministic linear functions of the hidden nodes.

In its basic form, PCA is not model based, and might be seen as being a rather ad-
hoc procedure; for example, Plumbley (1991) noted that it is not invariant to arbitrary
rescaling of the data. However, in certain situations, PCA can be shown to be optimal
in a well-defined sense. Linsker (1988) showed that PCA maximises the information
transmitted by a linear system on the assumption that the input data is Gaussian with
additive spherical Gaussian noise. Plumbley (1991) showed that this is not necessar-
ily true for non-Gaussian data, but that PCA does minimise an upper bound on the
information lost in the projection into a lower-dimensional subspace.

PCA relies exclusively on second-order statistics (means and covariances) and, as
the previous comments suggest, is best suited to Gaussian data, like that in fig. 3.3(a).
Tipping and Bishop (1997) formalised this by showing that PCA could indeed be de-
rived from a Gaussian latent variable model which they called “probabilistic PCA.” The
observed variables xi are generated by linear combination of uncorrelated unit-variance
Gaussian latent variables s j using

xi =
M

∑
j=1

Ai js j + ei, 1≤ i≤ N, (3.11)

where the Ai j are fixed combination weights, and M < N for dimensionality reduction.
The ei are uncorrelated Gaussian noise variables of variance σ 2

i . This results in a
Gaussian causal model in which

p(s1, . . . ,sM) =
M

∏
j=1

1√
2π

exp− 1
2 s2

j (3.12)

and p(x1, . . . ,xN |s1, . . . ,sM) =
N

∏
i=1

1
σi

√
2π exp− 1

2σ 2
i

(

xi−∑M
j=1 Ai js j

)2
(3.13)

Thus, the latent variables are marginally independent, and the observed variables are
marginally dependent, but conditionally independent given the latent variables. The
equivalent graphical model is illustrated in fig. 3.4(a). Maximum likelihood estimates
of the parameters Ai j and σi can be obtained using the EM algorithm, but when the
noise is assumed to be isotropic, with the σi all equal, the solution can be obtained in
closed form. Considering the weights Ai j as an N×M matrix A, Tipping and Bishop
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(1997) proved that the data likelihood is maximised when the the M columns of A span
the M-dimensional principal subspace of the N-dimensional data space.

Probabilistic PCA is also related to the technique of sphering or whitening. Plumb-
ley (1991) discusses how data sphering arises naturally from the principle of infor-
mation maximisation when noiseless Gaussian data must be passed through a noisy,
energy-constrained output channel; this is equivalent to redundancy minimisation in
the sense of Attneave and Barlow (see eq. 2.4 in §2.2.3.) Both Plumbley (1991) and
Atick and Redlich (1990) derived the correction to this when input noise is taken into
account; this is equivalent to minimising redundancy as defined in eq. 2.6.

3.2.2 Independent component analysis

Independent component analysis (ICA— Jutten and Herault, 1991) can be thought of
as a generalisation of data sphering to non-Gaussian data vectors x, where the aim is
to find a linear transformation s = Wx which results not just in uncorrelated, but inde-
pendent output components s j . Methods based on second-order statistics are invariant
to a final rotation of the latent variable space since a spherical Gaussian distribution is
spherically symmetric. If the latent variables are non-Gaussian, however, this symme-
try breaks down and ‘special’ directions emerge, as can be seen in fig. 3.3(b).

Restricting themselves to the so-called ‘square’ problem, in which s and x are of
the same dimensionality and hence W is a square matrix, Bell and Sejnowski (1995)
introduced an algorithm based on information maximisation. This was later shown
(Cardoso, 1997; MacKay, 1996) to be equivalent to maximum likelihood estimation in
an explicit probability model, illustrated in fig. 3.4(b). The observed vectors x∈R

N are
generated according to x = As, where s is a vector of independent source components
and A is a square mixing matrix. The s j may be thought of as the coordinates of x
relative to a basis formed by the columns of A, in which case the A may be called a
basis matrix. The independence assumption means that p(s) = ∏N

j=1 p(s j), where p(·)
is a non-Gaussian probability density assumed a priori. Since the mapping s 7→ x is
deterministic, linear, and invertible, the probability model for x is easily derived:

p(x) = detA−1 ps(A
−1x), (3.14)

though writing it in this form obscures the benefit gained from the factorisation of the
prior ps(·). The Bell-Sejnowski algorithm is recovered by parameterising A as W−1

and estimating W by gradient ascent on the log-likelihood. We will return to ICA in
Chapter 5, where it will be applied to audio data.

3.2.3 Sparse coding

In sparse coding, we aim to represent data using a distributed representation in which
only a ‘few’ elements are ‘active’ at a time. This is essentially what Barlow (1961)
was arguing for when he argued for an economy of impulses in a neural representation,
rather than economy of neurons.

One approach to sparse coding is to assume that a code vector s ∈ R
M represents

a data vector x ∈ R
N according to x = As, as in PCA and ICA. The difference is
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that the s j are assumed to be zero with high probability, and we allow M > N. The
representation is therefore underconstrained, with many vectors s representing a given
vector x. This freedom can be used to minimise the number of non-zero elements of s.
Further sparsity can be obtained if small reconstruction errors are tolerated, allowing
components of s with small values to be set to zero. An adaptive sparse coder optimises
the matrix A to produce the sparsest possible coding, choosing for the columns of A
the M vectors that are best suited to representing the data. These vectors are sometimes
called an overcomplete dictionary, or an overcomplete basis.

Field and Olshausen (1996) implemented such a system by minimising an heuris-
tically constructed cost function. When trained on natural images, the resulting over-
complete basis consisted of a number of localised, oriented, band-pass features, sharing
many similarities with the coding found in primary visual cortex. Olshausen (1996)
showed that the same algorithm could be derived as an approximation of maximum
likelihood learning in a certain latent variable model, illustrated in fig. 3.4(c). The
salient features are: (a) there are more hidden nodes than visible ones, (b) the hid-
den nodes are highly non-Gaussian, with ‘sparse’ densities, in a sense to be defined in
Chapter 6, and (c) the visible nodes have added Gaussian noise, so that the model deals
explicitly with noisy data. Inference in this model performs an implicit ‘de-noising’ of
the data, a feature which has been exploited by Hyvärinen (1999).

Lewicki and Sejnowski (2000) used a different and generally more accurate ap-
proximation to exact learning. Further details, including the probability model and the
derivation of the learning algorithm, will be found in Chapter 6.

3.2.4 Clustering algorithms and mixture densities

More versatile probability models can be built by combining other models. One way
of doing this is by constructing mixtures, where the probability distribution is modelled
as a weighted sum of simpler distributions. Data can be generated from such a model
by first choosing one of the source distributions at random, and then drawing a sample
from that distribution. This is a system with one discrete latent variable U , which
encodes the identity of the source distribution that was actually used to generate the
data. The resulting probability model is

p(x) =
M

∑
u=1

p(x|u)p(u), (3.15)

where p(x|u) is the uth source distribution and p(u) its weighting, the probability of
choosing that distribution during the generative process. Bishop (1998) provides a
general description of the procedures for inference and learning in mixture models.

When the source distributions are relatively disjoint, mixture models can provide a
principled way to do clustering analysis and categorisation on data such as that illus-
trated in fig. 3.3(c). Each cluster or category is modelled as one source distribution, so
that inference of the latent variable u given the data x naturally results in a probabilistic
categorisation of the data.



3.3. Sonological methods 41

3.2.5 Topographic maps

The self-organising map (SOM), also known as the topographic feature map or Ko-
honen map (Kohonen, 1982, 1995), is an unsupervised algorithm for finding a low-
dimensional (usually 2-D) nonlinear manifold in high-dimensional data. It maps a
low-dimensional discrete lattice smoothly into the data space in such a way that most
of the data lies near the mapped lattice points. For example, in fig. 3.3(d), a one-
dimensional SOM would fit a string of lattice points along the elliptical arc suggested
by the data. Data is then represented by identifying which lattice point lies nearest
the data point. The algorithm is designed to encourage neighbouring lattice points to
represent to near-by positions in the data space.

Kohonen’s algorithm does not have a direct interpretation in terms of a generative
model, or even as the optimisation of some objective function. Bishop et al. (1998)
addressed this with their generative topographic mapping (GTM), which is essentially
a mixture model in which each lattice point forms the centre of a spherical Gaussian
cluster, but the cluster centres are constrained to lie along a smooth manifold in the
data space. In this model, it is not the distinctness or separation of the clusters that
is the main concern, but their arrangement, which is designed to preserve distance
relationships between points in the lattice after they are mapped into the data space.
Luttrell (1994) developed an alternative probabilistic system for topographic mapping
based on a noisy vector quantiser.

3.3 Sonological methods

In PCA and in ICA, a statistical characterisation of the data and its representation en-
ables us to think about an optimal linear representation, or a ‘best basis.’ This section
describes some of the standard signal processing methods that attempt to deconstruct
the signals linearly in time and frequency. We will see that in many cases, these meth-
ods carry an implicit assumption about what this best basis is, raising the possibility
that the adaptive methods described above might be capable either of arriving at the
same representations in a data driven way, or of finding better representations, at least
according to the statistical criteria of redundancy and independence.

3.3.1 Frequency analysis and filter-banks

That the ear is basically a mechanism for doing frequency analysis is an idea that
goes back to Ohm and Helmholtz (see 1885, p. 34), the theoretical justification for
which was Fourier’s theorem on the decomposition of periodic functions into a sum
of sinusoids. Subsequently, the majority of auditory theories have been built upon a
cochlear model that is functionally a bank of linear band-pass filters, or resonators,
though they may differ in details of implementation. For example, Lyon (1984) used
a cascade of second-order filters to build the desired frequency responses, whereas
Patterson et al. (1988) opted for a set of independently specified “gammatone” filters,
which Slaney (1993) implemented using an eighth-order section for each filter in the
bank. Regardless of these details, the operation performed is a convolution: the output
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of the kth filter is given by

yk(t) =

∫ ∞

−∞
x(t−u)hk(u) du, (3.16)

where x(t) is the original signal and hk(t) is the impulse response of the kth filter. This
is usually assumed to be causal, with hk(t) = 0 for t < 0. The Fourier transform of the
the impulse response gives the frequency response of the filter:

h̃k(ω) =

∫ ∞

−∞
hk(t)e

−iωt dt, (3.17)

where a tilde ( )̃ denotes the Fourier transform of a function. For this to be interpretable
as a frequency analysis, the filter frequency response should be largely concentrated
around a single, nominal centre frequency, ωk. In this case, it will be convenient to
write the impulse response as the real part of the product of a complex exponential and
a slowly varying envelope or window function, Hk(t), so that hk(t) = ℜHk(t)e

iωkt . In
the frequency domain, the Fourier transform of the window function, H̃k(ω), will be
concentrated around zero; multiplication by a complex exponential simply translates it
along the frequency axis, giving h̃k(ω) = H̃(ω−ωk).

Psychoacoustic experiments (e.g. Plomp, 1976; Pickles, 1988; Rasch and Plomp,
1999) have investigated the properties of the effective cochlear filters, one of which is
that the bandwidths are roughly proportional to the centre frequencies, approximating
a constant-Q filter-bank. This bandwidth is called a critical band; depending on the
experimental procedure used to measure it, (see Moore and Sek, 1995) numerical es-
timates vary between 1

7 th and 1
9 th of the centre frequency of a particular filter, down

to a minimum bandwidth of between 20 and 50 Hz at a centre frequency of around
120 Hz. It is well known (e.g. Gabor, 1947) that high frequency resolution (i.e. nar-
row bandwidth) requires a filter with a long impulse response and thus a lower time
resolution. Thus, the cochlear filters trade frequency resolution for time resolution at
high frequencies, but keep a minimum of time resolution even at very low frequencies.

3.3.2 Time-frequency representations

Vector spaces and basis vectors A filter acts as a linear operator on the signal; in
particular, the output at a given time t is, in the terminology of linear algebra, a linear
functional of the signal; that is, a linear mapping from a vector (the signal) to a scalar.
Let us assume that the input signal is a member of a vector space V . A linear functional
h∗ :V 7→R is then a member of the dual vector space V ∗. (This and the following results
can be found in any textbook of linear algebra, e.g. Stoll and Wong 1968.) Now, any
linearly independent indexed set of functionals {h∗α ∈V ∗ : α ∈ A} (whereA is the set
of indices) defines a corresponding linearly independent set of vectors {aα ∈ V} such
that h∗α(aβ ) = δαβ , where δ is the Kronecker delta. These vectors will form a basis of
some subspace S of V , so that any x ∈ S has a unique coordinate expansion of the form

x = ∑
α∈A

ξα aα =⇒ h∗α(x) = ∑
β∈A

ξβ h∗α(aβ ) = ∑
β∈A

ξβ δαβ = ξα ,
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and thus, the functionals give the coordinates of x relative to the basis {aα}. In addi-
tion, if there is an inner product (·,·) defined on V , then for any functional h∗ ∈ V ∗,
there exists a unique vector h ∈ V such that h∗(x) = (h,x) for all x ∈ V . This defines
an isomorphism between V and V ∗, which will be useful when we wish to consider
functionals as signals in their own right, with their own time-frequency structure.

Returning to the filter-bank, if the output of each filter is sampled in discrete time,
and the filters and sampling times chosen to ensure the linear independence of the
corresponding linear functionals, then the system will define a basis of some subspace
of the signal space, and the output of the filter-bank over time will be a representation
of signals within that subspace.

Tiling of the time-frequency plane The preceding discussion demonstrates that a
filter-bank defines a set of linear functionals to be applied to a vector (the signal). If the
functionals are linearly independent, the analysis is equivalent to finding the coordi-
nate expansion of a vector relative to a certain basis. A time-frequency representation
requires some additional structure.

Firstly, the functionals or basis vectors must be assigned a two dimensional topo-
logical structure (separate from that implied by any norm defined on the vector space)
with time and frequency defining the coordinate frame. Depending on whether time
and frequency are to be discrete or continuous, the functionals may form a lattice, a
continuous manifold or a hybrid of both (as in a continuous time filter bank).

Secondly, the notional labelling of each functional with a time and a frequency
must be borne out by the operation it actually performs; that is, it must operate on
the signal within a time-frequency ‘window.’ For a filter, this can be interpreted as
requiring that the impulse response be localised in both time and frequency, but more
generally, the duality between linear functionals and vectors means that we can con-
sider the time-frequency localisation of any functional h∗α by mapping it into the signal
space, using either the mapping h∗α 7→ hα for an inner product space, or h∗α 7→ aα when
the functionals define a basis.

Gabor (1947) discussed the idea of time-frequency localisation in relation to hear-
ing by analogy with the position-momentum uncertainty principle of quantum mechan-
ics. Chui (1997, Ch. 2) also describes the construction of time-frequency windows. If
h(t) is a signal and h̃(ω) its Fourier transform, the mean epoch t0 and RMS (root-mean-
square) duration 2∆t are defined as

t0 =

∫

t|h(t)|2 dt
∫ |h(t)|2 dt

, ∆t =

{∫

(t− t0)
2|h(t)|2 dt

∫ |h(t)|2 dt

}1/2

(3.18)

Similarly, the mean frequency ω0 and RMS bandwidth 2∆ω are defined using

ω0 =

∫

ω |h̃(ω)|2 dω
∫ |h̃(ω)|2 dω

, ∆ω =

{∫

(ω−ω0)
2|h̃(ω)|2 dω

∫ |h̃(ω)|2 dω

}1/2

(3.19)

In short, these are the first and second moments of the signal’s energy distribution in the
time and frequency domains considered separately. Together, they define the size and
position of a window in the time-frequency plane. The uncertainty principle requires
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(a) (b)

(c) (d)

Fig. 3.5: Some alternative tilings of the time-frequency plane (with time horizontal and fre-
quency vertical.) At the two extremes we have (a) the signal in the time domain
with the maximum time resolution (1 sample) but no frequency discrimination and
(b) the (global) Fourier transform with the maximum frequency resolution but no tem-
poral structure. A short-term Fourier transform (c) uses a rectangular lattice, whereas a
wavelet transform (d) uses a frequency dependent tiling, with greater time resolution at
high frequencies and greater frequency resolution at low frequencies. Note that every
tile in this figure has the same area.

that ∆t ∆ω ≥ 1
2 , a limit which is approached by signals with approximately Gaussian en-

ergy profiles in both time and frequency, such as Gaussian windowed sinusoids. Thus,
each functional or basis vector of a linear representation can be thought of as occupying
a certain region of the time frequency plane; if the representation is suitably designed,
they will form a patchwork that covers all relevant regions of the time-frequency plane.

Quadratic, ‘energy-like’ representations We have just seen how the squared modu-
lus of the signal in either the time or frequency domains yields an ‘energy distribution’
in time or frequency. These distributions have the convenient property that, by Par-
seval’s identity, the total energy computed from either is the same. Since the point
of time-frequency analysis is presumably to localise signal activity in time and fre-
quency simultaneously, it would be useful to be able to consider the squared modulus
of a linear time-frequency representation similarly as an energy distribution in time
and frequency. One desirable property of such a distribution is that the energy should
‘add-up’ properly: over the whole distribution to give the correct total, but also across
frequency or time to give energy densities in time or frequency that agree with those
defined by the squared modulus of the signal and its Fourier transform. This question
of having the correct marginal distributions will not concern us here, but is discussed
by Jeong and Williams (1992) in relation to the Wigner distribution (see below).
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The main property of interest here is that the squared modulus of a complex quan-
tity is phase invariant. If the linear representation is defined so that each functional
returns a complex value whose argument encodes the phase of a locally sinusoidal
component of the signal, then the derived quadratic representation will be phase in-
variant in that sense. Of course, this represents a loss of information, but the evidence
from psychoacoustics, beginning with Helmholtz, is that the ear is insensitive to certain
kinds of phase information, and hence a phase invariant representation may be a good
starting point for a computational model of human hearing.

Some examples In a short term Fourier transform, (STFT) the effective filters con-
sist of windowed complex exponentials, with all frequencies sharing the same window.
They all have the same duration and bandwidth, which translates into a uniform rect-
angular tiling of the T-F plane, illustrated in fig. 3.5(c). The quadratic version of the
STFT is the spectrogram or short-term power spectrum.

In a wavelet transform (Chui, 1997) the analysing wavelets (filters) are all dilated
and translated versions of a single prototype and the effective bandwidth is directly
proportional to the centre frequency. Thus, the tiling rectangles are of different aspect
ratios in different parts of the T-F plane as shown in fig. 3.5(d). If the wavelet basis
is orthogonal, the basis vectors are the same as the analysing wavelets; otherwise, the
basis vectors are dilated, translated versions of a single “synthesising” wavelet; this
forms a bi-orthogonal wavelet transform. The quadratic version of a wavelet transform
is sometimes called a scalogram (Flandrin and Rioul, 1990).

3.3.3 The Wigner-Ville distribution and Cohen’s class

The Wigner-Ville Distribution (Cohen, 1989) is a quadratic time-frequency represen-
tation constructed in such a way that the time-frequency uncertainty principle does not
apply: it is not the squared modulus of any filter response or linear function of the
signal. The distribution W (t,ω) is defined as the Fourier transform of an instantaneous
auto-correlation function Rx(t,τ) along the τ direction:

Rx(t,τ) = x(t + 1
2 τ)x∗(t− 1

2 τ), (3.20)

Wx(t,ω) =
∫ ∞

−∞
Rx(t,τ)e−iωτ dτ , (3.21)

where the asterisk (*) denotes complex conjugation. Since the Fourier transform is in-
vertible, any bilinear function of the signal and its complex conjugate can be expressed
as a linear function of the Wigner distribution, and hence it provides a unifying frame-
work for understanding all the quadratic time-frequency representations of real signals.
It is invertible, up to complex phase factor, or in the case of real signals, a factor of±1.
As previously mentioned, it does not force a trade-off between time and frequency res-
olutions, and has many other desirable properties, including having the correct time
and frequency marginals as described above; see Jeong and Williams (1992); Lough-
lin (1991) for a fuller discussion. One of the less desirable properties is illustrated in
fig. 3.6: the so-called ‘interference’ between components of the signal.
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Fig. 3.6: Wigner Distribution of the sum of two sinusoids at approximately 220 Hz and 340 Hz,
the higher frequency component starting at around 38 ms. The cross-terms are centred
at 280, 60 and 0 Hz. The grey scale goes from negative (black), through zero (grey) to
positive (white).

Any spectrogram can be obtained from the Wigner distribution by a 2-dimensional
convolution, that is, by blurring it with a particular kernel (see fig. 3.7). This has
the effect of removing much of the interference and ensuring that the result is strictly
non-negative, but at the expense of a loss of resolution, which, unlike the case of the
linear representations, represents a loss of information. In fact, a broad class of time-
frequency distributions, known as Cohen’s class (Cohen, 1989), can be obtained by
using a general convolution. In a similar way, any scalogram (that is, the squared mod-
ulus of a wavelet transform) can be obtained by smoothing with a position dependent
kernel, which is tall and narrow at high frequencies, and broad and short at low; this
is called affine smoothing (Flandrin and Rioul, 1990), because the kernels at different
positions are obtained by affine transformation in the time-frequency plane of a sin-
gle prototype kernel. Scalograms are not in Cohen’s class because the smoothing is
frequency dependent and hence not a convolution.

3.3.4 Autocorrelation and correlograms

Autocorrelation analysis is a recurring motif in computational models of audition, be-
ginning with Licklider’s Triplex Theory (Licklider, 1959), and continuing, for example,
with Seneff’s Generalised Synchrony Detector (Seneff, 1984), Lyon’s analogue elec-
tronic cochlea (Lyon and Mead, 1988) and models based on it (Lazzaro and Mead,
1989), and the Narrowed Autocorrelation or NAC (Brown and Puckette, 1989).

The autocorrelation function of a complex signal x(·) is defined as

r(τ) =

∫ ∞

−∞
x(t)x∗(t− τ) dt =

∫ ∞

−∞
Rx(t,τ) dt, (3.22)

where R(t,τ) is the instantaneous auto-correlation defined in the previous section. It
is the inverse Fourier transform of the power spectral density of the signal. For sig-
nals with interesting temporal structure, it is more useful to use the short-term auto-
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Fig. 3.7: Comparison of two time-frequency distributions: a snippet of Bach’s 2nd Brandenburg

Concerto, featuring harpsichord, flute and violin sounds.

correlation, which is a moving average of the instantaneous auto-correlation function:

r(t,τ) =
∫ ∞

−∞
A(s)Rx(t + s,τ) ds, (3.23)

where A(·) is a window function determining the time over which averaging takes
place. The autocorrelation can be used for the detection of periodic signals, because
any periodic signal will be strongly correlated with a time-delayed version of itself if
the lag is a multiple of the period.

The direct autocorrelation in eq. 3.23 is linearly and invertibly related to the short-
term power spectrum, and is thus essentially the same object viewed in two different
ways. However, if the short-term autocorrelation is computed for each output channel
of a filter bank, (or possibly a rectified version of it) then a new object, the auditory
correlogram (Duda et al., 1990) is obtained. The correlogram is a representation with
three dimensions: time, frequency and lag. Ellis and Rosenthal (1995) describes why
the extra dimension, the lag, is useful in segregating and grouping sounds with common
periodic variations.

It should be noted that several researchers (e.g. Lyon, 1984; Seneff, 1984) have
used autocorrelation analysis based not on the autocorrelation of filter-bank outputs,
but on rectified or otherwise nonlinearly transformed versions thereof. This is moti-
vated by what is known of the transduction process in the cochlea, by which the the
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filtered signals, represented by motion of the basilar membrane, are converted into
neural impulses in auditory nerve; see, for example, Meddis (1983).

3.3.5 The correlogram and the Wigner distribution

In this section, it is shown that a type of correlogram can be obtained from the Wigner
distribution by means of a linear transformation equivalent to pre-multiplication fol-
lowed by smoothing. This correlogram is computed by forming the short-term au-
tocorrelations of each of the outputs of a filter bank. Using complex arithmetic to
simplify the algebra, the output of the kth channel can be written as

yk(t) =

∫ ∞

−∞
x(t + s)H∗k (−s)e−iωks ds, (3.24)

where ωk is the nominal centre frequency of the filter and Hk(·) is a slowly varying
envelope, as described in §3.3.1. The instantaneous autocorrelation of the filter output
at time t with lag τ is

Ryk
(t,τ) = yk(t + 1

2 τ)y∗k(t− 1
2 τ). (3.25)

After some manipulation and the introduction of new variables, this can be expressed
in terms of the Wigner transform Wx(·, ·) of the original signal x(·), and the Wigner
transform WHk

(·, ·) of the envelope Hk(·):

Ryk
(t,τ) =

∫∫

Wx(s,ν)eiτνWHk
(t− s,ωk−ν) ds dν . (3.26)

This is a multiplication of the original Wigner distribution Wx by a complex expo-
nential in the frequency direction, eiτν , followed by a convolution with a kernel WHk
that is itself another Wigner distribution. For a well-behaved envelope Hk(·), the con-
volution kernel WHk

(·, ·) will be localised around the origin. The correlogram itself
will be obtained by a further short-term averaging; that is, a further convolution in the
time domain, which can be incorporated into the first convolution. Thus, overall, the
correlogram at a particular lag τ can be obtained from the Wigner distribution by a
multiplication and a smoothing.

How can this result be interpreted? It appears that that correlogram at zero lag
(τ = 0) is equivalent to a blurred Wigner distribution, but using a frequency-dependent
kernel, as with a scalogram. At non-zero lags, the Wigner distribution is first mul-
tiplied by a periodic complex exponential before being blurred. Given that blurring
destroys fine structure, this heterodyning has the effect of selecting a different set of
structures, periodic along the frequency axis on a scale determined by 1/τ , to survive
the smoothing process. Now, these variations are characteristic of pitched sounds, with
the spacing along the frequency axis determined by the periodicity of the sound. Thus,
the autocorrelation analysis is able to detect pitch structure even when the individual
harmonics cannot be resolved by the filterbank, perhaps because the lower harmonics
are missing or masked by noise. This information is made explicit in the correlogram,
but the preceding analysis shows that it is also available from the Wigner distribution
using only a linear transformation, suggesting that it may be possible to design useful
phase invariant auditory representations by selecting appropriate linear bases for the
Wigner distributions, rather than for the linear time domain version of the signal.
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Summary

Graphical models provide a powerful and computationally efficient framework for
building and fitting probability models. Latent variable models allow internal repre-
sentations to be constructed within the graphical model formalism, with well-defined
processes of inference and learning. Bayesian networks can be used to model causal
relationships, giving quantitative flesh to the idea that perception is concerned with
building an internal representation of the world and inferring the physical causes of
sensation.

Several of the algorithms discussed in §3.2 have linear generative models and can
be understood as methods that find good linear bases for representing data. Similarly,
linear time-frequency representations carry their own implicit linear bases, whereas the
quadratic representations, including autocorrelation based representations, can be seen
as linear transformations of the Wigner distribution.

Putting these observations together raises some interesting questions about time-
frequency representations. When considered as linear bases, on the same footing as
the adaptive linear bases in PCA, ICA, or sparse coding, one is lead to ask, are these
fixed time-frequency bases optimal with respect to low-redundancy? Perhaps standard
methods such as short-term Fourier transforms and wavelet transforms have been found
to be so useful precisely because they are easily computable approximations to an
optimal linear representation for a wide class of signals. This suggests that, instead
of using a given time-frequency representation, we could use ICA or a related method
to search for a ‘best basis’ for a particular class of signals under consideration. This
procedure could lead to, for example, alternative tilings of the time-frequency plane, or
even representations that cannot simply be interpreted in terms of time and frequency,
but nonetheless yield efficient, non-redundant encodings of the data. In the case of
quadratic representations derived by linear transformation of the Wigner distribution,
one benefit would be that the family of potential bases would include phase invariant
representations like the spectrogram.
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4 . C O N C L U D I N G O B S E R VAT I O N S

The last two chapters presented some of the arguments for a perceptual approach to
music processing, and in turn for an approach to perception based on efficient repre-
sentation in a probabilistic framework. This chapter contains a few observations on
what this implies for the implementation of artificial perceptual systems and how that
relates to what is known about biological perceptual systems.

4.1 On the construction of artificial perceptual systems

Evolution, design and learning

One of the common threads running through notions of redundancy reduction, efficient
representation and transmission of information, and the construction of probabilistic
models is that they are all based on the optimisation of an explicitly given objective
function. Conceptually, this is an appealing way of framing the problem, as it allows
for a clean split between the definition of the objective and the methods used to opti-
mise it. The optimisation procedure may involve various approximations and oppor-
tunistic data processing techniques, but as long as the objective function is defined in a
rigorous and principled manner, the performance of the system as a whole can still be
evaluated objectively, and if the performance is inadequate, it may simply be a question
of identifying which approximations need to be improved.

The optimisation is essentially a search over some parameter space; in all but the
most trivial systems, an exhaustive search would be out of the question due to the size
of the space. For the purposes of the current discussion, we may identify three different
ways to manage this search: through design, evolution, or learning.

In natural systems, the scientific argument has traditionally centred on a dichotomy
between evolution and learning, since we cannot address the question of a designer
without opening up a theological debate. For example, in relation to cognitive pro-
cesses, Fodor (1983, p. 34) favoured the evolutionary approach: “as the operative no-
tion of mental structure gets richer, it becomes increasingly difficult to imagine iden-
tifying the ontogeny of such structures with the registration of environmental regular-
ities. . . There would seem not to be enough ambient information available to account
for the functional architecture that minds are found to have.” He did accept that ar-
tificial perceptual systems might possibly be constructed, but added that “what does
not follow is that there is some way of constructing such systems from the information
given in experience.” Others, from Locke (1706) onwards have argued that there are no
“innate ideas.” In music, Bharucha (1991), Leman (1991) and Cambouropoulos (1998)
have all stressed the importance of perceptual learning from empirical data.
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Although, at one level, these are unquestionably important concerns, at another,
evolution and learning are both just optimisation processes, albeit operating over vastly
different time scales and using different mechanisms. In stark contrast, a designed sys-
tem relies on a designer to perform the search: it is the designer’s intelligence that is
being exercised, often in mysterious ways, relying on leaps of insight, accumulated ex-
perience, hunches and so on. Cambouropoulos (1998) made a similar point, contrasting
the “hand-crafting” of engineered systems with a process of “empirical induction” in
data-driven systems. Though the design approach may ultimately produce usable solu-
tions to engineering problems, it does not really bring us any closer to an understanding
of intelligence itself, and arguably, neither does it result in artificially intelligent sys-
tems.

Computation routes to optimal representation

Having argued that one distinction between different perceptual architectures derives
from how they are developed through some process of optimisation, another arises
when we consider the functioning of the end result. A given objective function may
be optimised by a certain perceptual representation, yet this same high-level represen-
tation may be computable in several different ways, using a different chain of steps or
intermediate representations. The most effective computational route will depend on,
amongst other things, the nature of the hardware available and any constraints thereby
imposed. Nevertheless, if the same objective function is being optimised, we may
reasonably expect the final results to be comparable across different implementations.

In particular, when the goal is audition, we need not regard the peripheral sections
of the human auditory system as an immutable given, to be modelled as the first step
in any artificial auditory system. Nature has had to evolve those particular mechanisms
because of the limitations of the hardware available to it, but those restrictions do not
necessarily apply to an artificial implementation. For example, simulating the firing of
individual neurons is a laborious process that we would like to avoid if possible. Lyon
and Mead (1988) note that, “Nerve impulses are by their very nature a horrible medium
into which to translate sound. They are noisy and erratic, and can work over only a
limited dynamic range of firing rates.” Technologically based solutions to the problem
of optimal auditory representation may or may not match those found in the human
auditory system. The result may not necessarily be a model of human hearing, at least
not at a low level, but if the computational goals are the same, it may well perform
comparably, and if parallels do arise between the biological and artificial processes,
this will shed light on why the biological processes are as they are. The process may
also generalise readily to situations where there is no biological analogue.

A computational view of the peripheral auditory system

To put the preceding comments into a specific context, let us consider what is known
about the functioning of the human auditory system. Can it be understood it as an
optimal solution to the problem of efficient representation, or must we accept it as an
evolutionary ‘accident’ without an explanation?
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The fundamental constraint is the limited capacity of the individual fibres of the
auditory nerve. Nerve fibres can transmit of the order of 100 bits per second (Rieke
et al., 1997), whereas an uncompressed CD quality audio signal requires about 700,000
bits per second. Clearly, the information needs to be spread across a number of fibres—
there are around 30,000 outgoing fibres in the human auditory nerve (Pickles, 1988).
The discussion of §2.2 suggests that the most efficient way to do this for the fibres
to be utilised equally and independently, to minimise the redundancy of the auditory
nerve representation. The following points are speculative only, but indicate possible
interpretations of processes in the inner ear as steps towards this goal.

Cochlear filterbank The acoustic signal is first split into multiple channels in the
cochlea, where an effective filterbank produces a number of band-limited signals.
The goal of non-redundant representation would require that each channel carry
approximately the same quantity of information whilst minimising the statistical
independence of the signals. This may provide an explanation for the characteristic
shapes of the cochlear filters; indeed, the results presented in Chapter 5 indicate
that an optimal linear representation of speech sounds is analogous to a filterbank
with wider bandwidths at high frequencies.

Assuming that an effective cochlear filter is of the order of 100 Hz wide or greater
(Plomp, 1976), this still represents of the order of thousands of bits per second if
coded naively, so further processing to spread the information across many nerve
fibres is required.

Nonlinear compression The signal from the cochlear filterbank undergoes rectifica-
tion and nonlinear compression as part of the neural transduction process in the
inner hair cells. This enables the cell to respond to a wider dynamic range of sig-
nals than would be possible otherwise.

From an information theoretic point of view, compressive nonlinear transformation
emerges as an efficient way to encode a random variable as a bounded value (Nadal
and Parga, 1994). The form of the nonlinearity is related to the probability distribu-
tion of the data and any assumed input noise. For example, it is easily shown that
logarithmic compression is optimal for power-law input distributions of the form
p(x) ∝ 1/x over some range of x.

Population coding of intensity The inner hair cells have a range of firing thresholds,
which means that a group of neighbouring hair cells, experiencing approximately
the same disturbance of the basilar membrane, respond differentially to a signal
at a given level. This could be interpreted as a population code for local cochlear
activity, another case of spreading information across several channels.

Lateral inhibition and adaptation It has already been suggested (Barlow, 1961; Bar-
low and Földiák, 1989) that lateral inhibition and adaptation are a response to spa-
tial and temporal redundancy in sensory data. The activity of the the inner hair
cells may tend to be locally dependent, because of both the structure of natural
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sounds and the mechanics of the cochlea. Lateral suppression would then be an ef-
fective processing strategy. Considerations of local dependency are taken up again
in Chapter 8.

Until more quantitative predictions can be made, these observations have no more than
a certain plausibility. Hence, it is worth pursuing the program of developing artificial
auditory systems, guided by information theoretic concerns, to see if any of the auditory
processes described above emerge spontaneously in an artificial system.

4.2 On the Gestalt approach to perceptual grouping

Much work on computational models of audition (e.g. Bregman, 1990; Ellis, 1994;
Mellinger, 1991) has been based on Gestalt principles, whereby ‘parts’ are grouped into
‘wholes,’ elementary sensations into higher level objects. Bregman (1990) explains the
concept of grouping in the visual domain as a “colouring task”, in which the aim is
conceptually to “colour-in” different parts of the image so that parts belonging to the
same object are the same colour. The grouping rules tend to rely on concepts of locality,
such as proximity and connectedness, and hence presuppose some sort of perceptual
‘field’ with a topological structure, a ‘sensory image’ in which objects produce distinct,
localised regions of activity.

In the visual domain, the input representation already satisfies these requirements
to a large degree and is thus amenable to segmentation and grouping using Gestalt prin-
ciples. Bregman (1990, p. 6) observes that, “In vision, you can describe the problem
of scene analysis in terms of the correct grouping of regions.” This is a convenient fact
about the retinal image: it has regions. Bregman goes on to ask, “But what about hear-
ing? What are the basic parts that must be grouped to make a sound?” This is a very
good question. Those “parts” are not at all apparent in a direct, time-domain repre-
sentation of the acoustic waveform. Bregman does not dwell on this point, and moves
on to a consideration of spectrograms, which, conveniently, are somewhat analogous
to images: “Once we see that the sound can be made into a picture, we are tempted to
believe that such a picture could be used by a computer to recognise speech sounds.”
Whereas regions of activity due to different auditory objects may not be distinct in the
time domain, (or indeed, the one-dimensional frequency domain of a global Fourier
transform) they may become so in the two-dimensional time-frequency plane.

At this point it would be possible simply to accept that the early auditory system
produces an auditory ‘image’ by doing a time-frequency decomposition, and to base
any artificial system on data presented in this form. However, as Bregman (1990, p. 8)
notes, there are still problems with the the direct application of Gestalt rules in the
time-frequency domain. In a spectrogram, different auditory objects can occupy the
same region, forming a superposition without one occluding the other in the way that
visual objects do; the region must therefore be assigned to two objects. The addition of
a new rule, grouping by harmonicity, belies that fact that many sounds produce disjoint
regions of activity: pitched sounds with multiple frequency components are a common
occurrence. The adoption of the three-dimensional auditory correlogram by many re-
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searchers (Licklider, 1959; Duda et al., 1990; Ellis and Rosenthal, 1995; Mellinger,
1991) may, in part, be a response to the need to obtain simultaneously greater separa-
tion between objects and greater locality within objects.

Though these problems are described with specific reference to audition, they could
arise in any application of Gestalt rules to a given representation: the representation
itself may not be suitable for the application of Gestalt rules. The reason why this
has gone relatively unremarked is probably that in vision, which has dominated the
research, we are fortunate to be given at the outset a suitable perceptual field. However,
even this situation may not be an accident.

We have assumed so far that images are the raw material of visual perception,
but the image itself is a product of the visual system: there is no image outside the
eye. Visual information about the environment is encoded in the fluctuations of the
electromagnetic field at the surface of an organism, but the disturbance at a particular
point is a mixture of disturbances caused by all visible objects. The formation of an
image by the lens—essentially the computation of a spatial Fourier transform (Hecht,
1987)—goes a long way towards separating the visual objects by segregating light
coming from different directions.

Thus, we see that the visual image is not a given, but an intermediate represen-
tation, one in which Gestalt principles can successfully be applied. The lens can be
seen as an elegant solution to a computational problem. The question then is, what
is that computational problem: what principles guide the construction of a perceptual
field suitable for Gestalt grouping? Looking ahead briefly to §8.1, it is suggested that
the minimisation, and the localisation of statistical dependency might be the defining
characteristics of such a ‘Gestalt-ready’ perceptual field, but this remains to be seen.

4.3 On previous unsupervised and probabilistic musical systems

This section lists a few examples of music processing systems that demonstrate ele-
ments of the approach advocated here, by using probabilistic models or unsupervised
learning as a solution to musical problems.

Leman (1991) aimed to show that the perception of tonality in Western music could
be learned through exposure to sufficient examples of tonal music. To this end he
implemented a Kohonen map which was exposed to musical examples represented in
a certain way. Once trained, the map was tested by mapping out which regions which
respond to which chords. The result was a well-ordered map of chords, displaying
many of the theoretically expected relationships between chords, such as the circle of
fifths.

This is an interesting result, but perhaps not as significant as one might expect. The
performance of the Kohonen map will be discussed in more detail in §8.1.6, but the
proximity relationships it exposes are fully present in the input data if one assumes a
Euclidean metric. Thus, the structure of the map is determined by the input represen-
tation, which in this case was based on subharmonic templates (see Leman, 1991 for
details), carefully chosen to emphasise the kind of harmonic relationships known to ex-
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ist in music. However, Leman did repeat the experiment using a representation based
on the probabilities of different pitches being part of a given sound. This is a much less
ad-hoc definition, incorporating less prior knowledge and fewer expectations about the
results, and it is therefore significant that similar results were obtained.

Conklin and Witten (1995) addressed the problem of using an explicit probability
model to predict the progression of musical sequences. They used the concept of “in-
stantaneous entropy” to judge how well a particular model predicts a given sequence;
this would more conventionally be identified as the log-likelihood described in §3.1.2.
Hence, Conklin and Witten were engaged in building maximum likelihood models of
music, even though they did not use that term themselves.

As noted in §3.1, building a single giant contingency table is not a practical ap-
proach to constructing a probability model. Conklin and Witten deal with this by
defining a “multiple viewpoint” system. Each viewpoint is essentially a representa-
tion of some restricted aspect of the musical surface, such that the construction of a
contingency table for each viewpoint becomes feasible. The prediction of the entire
system is then formed by combining the predictions of each viewpoint, giving more
weight to the more confident predictions.

In the language of probabilistic modelling, the system is somewhat like a mixture
of experts (Jacob et al., 1991), each of which learns its data distribution in the form
of a contingency table. However, the rule used to combine evidence is not derived
probabilistically. In addition, the representation used for each viewpoint is predefined,
and the selection of viewpoints used has a significant effect on the performance of the
system. Hence, there is still an element of “hand-crafting” involved.

Cambouropoulos (1998) discussed the modelling of musical structure in terms of
the opposition between a “knowledge engineering” methodology and one based on
“empirical induction.” Referring back to §2.1.4, Cambouropoulos is addressing the
acquisition of high-level knowledge in a system where both top-down and bottom-up
processes may occur. In a knowledge engineering methodology, knowledge at the top
is explicitly put in place by the designer of the system, and is therefore more a demon-
stration of human rather than artificial intelligence. The empirical induction approach
holds that this knowledge can be gained from experience, “by making generalisations
on a set of musical phenomena, based on a set of general fundamental principles.” The
cognitive principles which Cambouropoulos sets out, namely, economy and informa-
tiveness, are strongly reminiscent of the principle of redundancy reduction described
in §2.2. Though not expressed in the language of information theory, they can notion-
ally be equated with the terms Imax and I(Y,S) in eq. 2.6, Atick and Redlich’s (1990)
expression for redundancy. To these Cambouropoulos adds a naturalness principle,
which he links to Gibson’s (1979) ecological account of perception, discussed previ-
ously in §2.1.2.

Kashino et al. (1998) use a Bayesian network architecture to integrate different
knowledge sources in a music transcription system. Similar systems (e.g. Gods-
mark and Brown, 1999) have used a blackboard architecture to achieve this goal, but
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a Bayesian network is a more principled way to combine uncertain data. The network
used, however, embodies a certain amount of knowledge about the structure of tonal
music and so cannot be said to learn it through experience.

Raphael’s automatic accompaniment system (Raphael, 2001) is a good example of
what can practically be achieved with an explicit graphical model. A Bayesian network
describing the structure of a specific piece of music is constructed, specifying how per-
formances may be generated from the structural skeleton by variations in timing and
expression. After a number of ‘rehearsals,’ in which the model parameters are opti-
mised to fit a soloist, the system is able to follow the score in real time while the soloist
plays, well enough to play the accompaniment, following the soloist’s expressive vari-
ations in a complementary manner.

Since the structure of the model closely parallels the score, it is not clear how
applicable this system is to general music perception, but, as Raphael notes, there is
great potential in such systems if they can be extended to learn structure as well as
parameters directly from audio data.

Summary

In this chapter, it was argued that the construction of artificial perceptual systems
should be guided by the principles described in Chapter 2, using an optimisation ap-
proach that allows for a divergence between the artificial and biological implementa-
tions. If perception truly is driven by the goal of efficient representation, the fact that
the artificial and biological systems have the same objective should ensure a conver-
gence of the end result, even if the intermediate processes are different. This should
allow different implementations to be tailored to different hardware characteristics. It
was also argued that this remit should be extended to include even those parts of bio-
logical perceptual systems that are genetically specified and are the result of adaptation
over evolutionary time scales.

Until the formation of perceptual representations is more fully understood, theories
based on Gestalt grouping principles will be incomplete and inapplicable in domains
where the appropriate sensory image is not known.

There certainly are precedents for the application of all these ideas in music pro-
cessing systems, but it is only in recent years that a rigorous framework for constructing
complex probabilistic models has arisen in the form of the graphical model formalism.
Though it has been applied to many problems in data analysis, it is only just beginning
to be applied to music, and hence there are many possibilities for research.

To summarise, the methodology to be followed is to let the statistical structure of
sensory (in this case, auditory) data guide the construction of economic representations,
whereby redundancy in the input is identified and removed adaptively in a process of
unsupervised learning using ecologically representative data. To do this effectively will
generally require an explicit probability model, which will therefore form the core of
any artificial perceptual system developed in this way.
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5 . I CA O F AU D I O WAV E F O R M S

Introduction

This chapter investigates the application of perhaps the simplest method of redundancy
reduction, in which we attempt to construct a factorial code using only a linear transfor-
mation of the data: namely, independent component analysis or ICA. The probabilistic
model underlying ICA was described in §3.2.2, and the derivation of a practical algo-
rithm is continued in §5.1.

Previous work has shown that various flavours of ICA, when applied to natural
images, all result in a code made up of elements which respond to broadly similar
localised, oriented band-pass features in the images. For example, Field and Olshausen
(1996) showed that sparse coding, which can be seen as a generalisation of ICA, of
natural images results in a decomposition of the image into a set features localised both
spatially and in spatial frequency. Later experiments with ICA (Bell and Sejnowski,
1997; Hyvärinen et al., 1998) have produced comparable results. These features can be
interpreted as wavelets or edge detectors, providing an alternative interpretation of the
use of wavelet analysis or edge detection in image processing: viz., that these methods
are useful precisely because they result in a less redundant representation of images.
The features also show some correspondence with receptive fields of simple cells in
visual cortex (V1), providing a possible explanation for the development of these cells
(Field and Olshausen, 1996).

Moving to auditory applications, Bell and Sejnowski (1996) used ICA on sound,
but this was limited to Bell’s rendition (on his teeth) of Beethoven’s Für Elise. Casey
(1998) also used ICA, but learning was restricted to one auditory event at a time, not a
long exposure to a representative selection of sounds, or what one might call an audi-
tory ‘environment.’ In this chapter, ICA is applied to such an environment. The data is
drawn from two radio stations: one broadcasting mainly speech; the other mainly clas-
sical music. Many of the resulting basis vectors are quite wavelet-like, in that they are
localised in both time and frequency, and can easily be characterised in terms of their
position and spread in the time-frequency plane. Some of them, however, particularly
from the set trained on music, do not fit that interpretation very well, and an alternative
analysis is required.

5.1 Derivation of an ICA algorithm

Continuing from the ICA model probability model given in eq. 3.14, and parameter-
ising the basis matrix A as the inverse of a matrix W, the objective function to be
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maximised to get a maximum likelihood estimate of W is the expected log-likelihood,

L= Ex log p(x|A) = logdetW+Ex log ps(Wx), (5.1)

where the expectations are taken over the observed data distribution, and ps is the
density function of the components s. The matrix W is sometimes called the weight
matrix, as it gives the connection weights in a linear network to compute s = Wx. The
gradient of the log-likelihood with respect to W is

dL
dW

= (WT )−1 +E
{

[∇s log p(s)]xT} , (5.2)

where s = Wx, and ∇s is the vector gradient with respect to s. Since the prior p(s)
is assumed to be factorial, with p(s) = ∏N

i=1 p(si), this gradient is an element-wise
function of s, and we may define the vector-valued function γ(s) as

γ(s) =−∇s log p(s), with [γ(s)]i = γ(si)
def
= − d

ds
log p(s)

∣

∣

∣

∣

si

(5.3)

For example, with a Laplacian prior p(s) = e−|s|, we simply obtain γ(s) = sgns. A
stochastic steepest-ascent gradient algorithm may be constructed by repeatedly updat-
ing W by adding

∆W = η
[

(WT )−1−〈γ(s)xT 〉
]

, (5.4)

where η is a learning rate parameter, and the angle brackets denote a sample average
over a batch of training data, rather than an idealised expectation. This is the algorithm
first presented by Bell and Sejnowski (1995), though the derivation is modelled on that
of Cardoso (1997). The algorithm requires a matrix inversion and, in common with
steepest-ascent algorithms in general, suffers from slow convergence in some cases,
because it relies only on local gradient information. Amari et al. (1996) proposed
an alteration to the update rule, motivated by considerations of the natural gradient
(Amari, 1998). The net result is that the weight update is post-multiplied by WT W, so
that the new increment is

∆W =η
[

(WT )−1−〈γ(s)xT 〉
]

WT W

=η [I−〈γ(s)sT 〉]W,
(5.5)

which has the effect of rescaling the step taken in parameter space so that larger steps
are taken in directions where the model is insensitive to variation of the parameters.
Both MacKay (1996) and Cardoso and Laheld (1996) also proposed the same modifi-
cation on different but related grounds which we need not go into here.

5.2 Experiments with speech and music

An ICA model was trained online and in real time on several days’ worth of largely
unbroken radio output from two stations: BBC Radio 3, broadcasting mainly classi-
cal music but with some speech and other music, and BBC Radio 4, which outputs
mainly speech. The signal was broken into 512-sample blocks and was passed through
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a slow-acting normaliser, which acted both to remove any DC offset and as an auto-
matic gain control with a large time-constant. The aim was not to produce individually
normalised blocks of samples with zero sum and unit energy, but to compensate for
a fixed or slowly varying DC offset associated with an online audio source (in this
case a tuner) and for the large dynamic variations over medium to long time-scales that
are common in music. This alternation between loud and soft passages was found to
destabilise learning when raw, unnormalised input was used, whereas even very slow
normalisation using a time constant of the order of 10 s was enough to stabilise the
system. The details of normalisation algorithm are not integral to the results presented
here and are given in Appendix A.

The normalised 512-sample blocks were presented to the ICA system as the vectors
x. Experiments were performed with both a Laplacian prior,

p(s) = exp−|s| =⇒ γ(s) = sgns (5.6)

and a Cauchy prior,

p(s) =
1

π(1+ s2)
=⇒ γ(s) =

2s
1+ s2 , (5.7)

producing broadly similar results. Indeed, it has been observed (e.g. Cardoso, 2000)
that ICA is generally quite robust to misspecification of the prior as long as super-
Gaussian priors are used for super-Gaussian sources and sub-Gaussian priors for sub-
Gaussian sources. Since audio signals tend to be super-Gaussian even in the time
domain, and Fourier transforms of audio signals are also highly super-Gaussian, it was
safe to assume that the ICA would discover super-Gaussian components.

The analysis produced two sets of 512 basis vectors, one for Radio 3 and one for
Radio 4, which are examined in the following sections.

5.3 Preliminary analysis of resulting bases

The speech derived BBC Radio 4 basis will be examined first since the interpretation
of the results is clearer than the BBC Radio 3 results.

5.3.1 BBC Radio 4 basis

The basis can be visualised in various ways: in the time domain, in the frequency
domain, or in the time-frequency plane. Fig. 5.1 illustrates time domain plots of some
of the Radio 4 basis vectors, and their corresponding magnitude spectra.

The basis vectors are, on the whole, quite well localised in both domains, suggest-
ing that it might be useful to characterise them by position and spread in the time and
frequency plane. A method for doing this was previously described in §3.3.2, based
on squaring the time and frequency domain representations of a signal to obtain two
energy distributions. These were then treated like probability distributions with a mean
and a standard deviation to describe the position and width of each, essentially fitting
a Gaussian profile to the energy distributions in both time and frequency.
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Fig. 5.1: A random sample of the Radio 4 basis vectors trained with a Laplacian prior. The lower
plot shows Fourier magnitude spectra of the vectors in the upper plot.

When this procedure was carried out with the ICA basis vectors, it did not seem to
adequately capture the time and frequency localisation that was evident in a visual in-
spection of the basis vectors, because their energy profiles in time and frequency were
not sufficiently close to being Gaussian. An alternative characterisation was developed
whereby, rather than measuring the mean and standard deviation of each energy distri-
bution, the median and mean absolute value were measured; this produced results that
more accurately reflected the shape of each basis vector.

Fig. 5.2 is a combined plot of all 512 basis vectors—each one is represented by
an ellipse indicating its position and spread in time and frequency. Fig. 5.3 illustrates
more clearly the relationship between centre frequency and bandwidth.

Several observations can be made from the plots: The basis vectors are fairly evenly
distributed in time and frequency. The spectral widths are not exactly proportional to
the centre frequencies, but there is a general increase in bandwidths at higher frequen-
cies. The very lowest frequencies are not localised in time at all, and cover the full
512-sample width of the input window. In the time domain, these basis vectors consist
of sinusoids truncated at the window edges. There is a reversal of the bandwidth trend
between 1 and 1.5 kHz. There are also a few anomalous features visible in fig. 5.2 at
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Fig. 5.2: Position and spread in time and frequency of all 512 Radio 4 basis vectors. The grey
scale encodes the overall energy (i.e. the 2-norm squared) of each basis vector.
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Fig. 5.3: Frequency domain bandwidth v. centre frequency for Radio 4 basis vectors.
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Fig. 5.4: Marginal histograms of some of the Radio 4 output components. Figure (a) is on a
log-linear scale, but (b) and (c) plot the histogram bin counts logN(s) against |s|α ,
where α is a constant. A straight line would indicate that N(s) ∝ exp−λ |s|α for some
λ , that is, a generalised exponential distribution. These plots show is that a single
value of α does not fit the observed histograms over their entire range, but that two
different values, approximately 0.06 and 0.3, seem to fit for small and large values of
|s| respectively. See fig. 5.8 for an explanation of the anomalous histogram that fits
neither model.

around 2.5 kHz near 17 ms and 37 ms.

Overall, the interpretation in terms of wavelets seems appropriate, though not strictly
accurate since the ‘wavelets’ are not all scaled and dilated versions of a single prototype
as in a constant-Q wavelet transform: the bandwidths are not directly proportional to
the centre frequencies. Neither are the wavelets equivalent to Gabor functions (Gaus-
sian windowed sinusoids).

Fig. 5.4 shows some of the marginal distributions of the resulting components si,
both confirming their expected super-Gaussianity and showing that neither a Laplacian
prior nor a Cauchy prior is an accurate fit.
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Fig. 5.5: A random sample of the Radio 3 basis vectors trained with a Cauchy prior. (see fig. 5.1
for explanation.)

5.3.2 BBC Radio 3 basis

When the music derived basis is examined in the same way, the interpretation is not
so clear. There are many more full-width sinusoids as in a Fourier basis, but some of
the basis vectors appear to be localised neither in time nor frequency, as shown by the
large ellipses in fig. 5.6. Closer examination of the least well localised vectors reveals
that their energy distribution in frequency is not unimodal and and hence the procedure
used to compute position and width does not provide an adequate description of their
time-frequency distribution. In the frequency domain, some of the basis vectors have
more than one well-localised peak—two of these are illustrated in fig. 5.14. Where
these peaks are at multiples of a common fundamental frequency, as it is in those
two examples, it is possible that the basis vector represents the upper harmonics of
an harmonically rich, lower tone, but it is also possible that the algorithm has not
converged properly and has reached a local minimum of the objective function.
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Fig. 5.6: Position and spread in time and frequency of all 512 Radio 3 basis vectors.
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Fig. 5.7: Frequency domain bandwidth v. centre frequency for Radio 3 basis vectors.
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Fig. 5.8: Marginal histograms of Radio 3 output components. The right-hand plot shows that
many of the histograms are well approximated by a generalised exponential distribu-
tion, p(s) ∝ exp−|s|0.3. The anomalous distribution, narrower than the others and with
a more rounded peak, is due to one of three components which respond to 50 Hz, which
is the power supply frequency in the UK. A similar effect can be seen in fig. 5.4.
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Fig. 5.9: Wigner Distributions of one of the Radio 4 basis vectors in its original form (left) and
as an analytic signal (right). An analytic signal is formed by using a Hilbert transform
to cancel out the negative frequency components and thus remove the oscillatory cross
term in the middle.
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5.4 Further analysis using the Wigner distribution

In an effort to gain more insight into what features these basis vectors were encoding,
(especially for the Radio 3 set) they were re-examined in the time-frequency plane
using the Wigner-Ville distribution, described in §3.3.3 and defined for continuous
time signals in eq. 3.21. There are some subtleties involved in defining the discrete
time version; in this instance, a “type II quasi-Wigner distribution” was used, which is
suited to discrete time, aperiodic signals, and produces a time-frequency distribution
which is periodic in frequency; see O’Neill and Williams (1999) for more details.

As described in §3.3.3, the cross-terms are generally a distraction as far as visual-
isation goes. The usual approach to removing them is some sort of smoothing in the
time-frequency plane, which inevitably leads to some loss of resolution (and informa-
tion). However, in the case of real-valued signals, which produce Wigner distributions
that are symmetric in frequency, one set of cross-terms is due to interference between
the positive and negative frequency components. These, at least, are easily removed
by filtering out the negative frequency components using a Hilbert transform to pro-
duce an analytic signal, as recommended by Boashash (1988). This proved to be quite
effective for most of the basis vectors (see fig. 5.9.)

A Wigner distribution was computed for each basis vector, then each Wigner distri-
bution was summarised as one or more contours at 70% of its peak value. These were
then combined into a single figure containing all 512 basis vectors.

The Radio 4 basis vectors all produced well-localised Wigner Distributions, as il-
lustrated in fig. 5.10. The Radio 3 vectors however, seem to fall in to three groups: (1)
many narrow-band features covering most of the width of the window; (2) a number
of compact wide-band features towards the top of the spectrum; and (3) a few features
with fragmented Wigner distributions. This third group corresponds to those basis vec-
tors which appeared as large ellipses in fig. 5.6.

Looking at their spectra jointly with their Wigner Distributions (see fig. 5.14), it
is possible to discern that in many cases, the fragmentation is due to large cross-terms
between the components of a multi-harmonic basis vector. Some of these have com-
ponents whose frequencies are in small integer ratios, which is what one would expect
from the spectrum of a low musical note with multiple harmonics.

This still leaves a few basis vectors that defy explanation: some have multiple
components which are not in small integer ratios, and some are so irregular that it leads
us to suspect that the algorithm has either not converged properly, or has not learned an
optimal solution, but fallen into a local minimum.

5.5 Conclusions and further work

This experiment has shown that ICA can learn interesting representations of audio
signals. The first obvious conclusion to be drawn is that the two sets of results are very
different: that statistical structure of musical sounds seems to demand a very different
analysis from that required by speech. The speech-derived basis is in many respects like
a wavelet basis, with a very clear and regular time-frequency structure. The wavelet
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Wigner Distribution Contours: Radio 4 basis

Fig. 5.10: Combined contour plots of all the Radio 4 basis vector Wigner distributions. Each
one is represented by a contours at 0.6 times its peak value. The grey scale represents
the total energy of each basis vector—not the value of the Wigner distribution.
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Wigner Distribution Contours: Radio 4 basis

Fig. 5.11: Combined contour plots of all the Radio 4 basis vector Wigner distributions on a
logarithmic frequency scale, so that detail at low frequencies is more visible.
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Wigner Distribution Contours: Radio 3 basis

Fig. 5.12: Contour plots of the Radio 3 basis vector Wigner distributions, produced the same
way as in fig. 5.10.
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Wigner Distribution Contours: Radio 3 basis

Fig. 5.13: Contour plots of the Radio 3 basis vector Wigner distributions, on a logarithmic fre-
quency scale.
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Fig. 5.14: Two of the multi-component Radio 3 basis vectors in time, frequency, and time-
frequency. The crosses on the spectral plots are regularly spaced, showing how some
of the components are in small integer ratios. Note that in bottom Wigner plot, the
two components are consecutive rather than simultaneous, corresponding, in musical
terms, to a drop of a Major Third.
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bandwidths generally increase with the centre frequency, but there is an clear reversal
of this trend between 1 and 1.5 kHz.

ICA experiments with visual scenes have produced results that compare favour-
ably with what is thought to occur in the early stages of the human visual system—the
comparison ought to be made between these results and the human auditory system, in
particular, the auditory filter-bank (e.g. Patterson et al., 1988). This will be the subject
of further work, but a cursory investigation suggests that the bandwidths found here are
a little narrower than those in the human auditory system. One possible explanation for
this is that the continuous speech on which our system was trained may not be the
representative auditory environment required to account for the structure of the human
auditory system. A closer match might be obtained by training with an environment
including more non-speech sounds, such as mechanical noises, animal calls, rustling
bushes etc. In this respect, the television may be a better source of training data than
radio!

Another interesting avenue of investigation into the speech derived basis is to dis-
cover how well adapted (if at all) it is to representing speech. Is the shape of the
bandwidth vs. centre frequency plot (see fig. 5.3) significant? Does it yield a more
efficient coding of speech than a wavelet basis, or other methods?

The music derived results are less conclusive. The basis did include many narrow-
band sinusoids covering the whole width of the analysis window, suggesting that a
Fourier basis is not wholly inappropriate for the analysis of music, at least at a time
scale of 50 ms. There were also some wavelet-like features at higher centre frequen-
cies. However there are a significant number of features that are difficult to charac-
terise. Though some consist of harmonically related components, others seem to be
very irregular. This may be the result of poor convergence on the part of the ICA
algorithm, especially considering the large amount of rather varied training data.

On a more encouraging note, preliminary tests involving listening to the basis vec-
tors has revealed some interesting pitch structure, which is currently under investiga-
tion. It appears that there is a periodic variation of bandwidth against frequency with
12 cycles per octave, not visible in fig. 5.7, but which is discernible when the basis
vectors are ordered, (according to either centre frequency or bandwidth) concatenated
into a long signal, and then listened to.

Finally, an analysis of the marginal distributions of the resulting representation, the
components si, suggests that a generalised exponential prior, p(s) ∝ exp−|s|α should
be used in future experiments, with 0.1≤ α ≤ 0.3.
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Introduction

The aim of sparse coding (Földiák, 1990; Field, 1994) is to find a distributed represen-
tation in which “only a fraction of the code elements are actively used to represent a
typical pattern” (Harpur, 1997). Information is represented “in terms of a small number
of descriptors out of a large set” (Field and Olshausen, 1996). The elements of the rep-
resentation may be considered to constitute a dictionary of features, of which, only a
relatively small number need be combined to describe an observed pattern. This could
be taken to an extreme, with exactly one element being activated per pattern, which
would be equivalent to a form of quantisation or categorisation; this is not the intention
in sparse coding since it implies a form of redundancy. The added requirement that the
code be factorial, as well as sparse, discourages this tendency.

As a consequence of having a large dictionary of basic features, it may be possible
to reconstruct the input from a number of different combinations of features; that is, the
dictionary may be overcomplete and the representation underconstrained. In a sparse
code, this freedom is used to minimise the number of active elements.

Why should it be desirable to have more basic features than apparently necessary?
One answer is suggested by the discussion of §3.1.1: an overcomplete dictionary may
be better able to reflect the causal processes behind the observed data. When there
are multiple interpretations for a given observation, a sparse coder formulated as a
probabilistic causal model can infer the most likely explanation for the data in just the
same way that perceptual systems are thought to operate, as discussed previously in
§2.1.5. Consider, for example, the patterns in fig. 6.1, and suppose that we observe
images formed by linear superposition of a small number of these patterns. Treated as
16-dimensional vectors, these 13 patterns span only a 9-D subspace, due to their linear
dependence as the following ‘equations’ graphically demonstrate:

+ + + = 2 +

+ = +

Hence, the 13 vectors form an overcomplete ‘basis’ of a 9-D space, and any vector in
that space has a non-unique representation in R

13. If we now make the assumption that,
in the generative process, the coefficient of each basis vector is statistically independent
of the others, and has a high probability of being zero, then even if the representation of
an observed pattern is non-unique, the most likely decomposition into basis vectors can
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Fig. 6.1: Individual patterns of the modified bars data set.

be identified as the one that requires the least number of non-zero coefficients. There
is a good chance that this will be the correct ‘explanation’ for the data, i.e. one that
agrees with the unobserved generative coefficients. In contrast, a 9-D basis, though able
to represent the data without loss of information, would be incapable of identifying the
13 underlying causes. In a sense, the overcomplete representation can ‘understand’ the
data in a way that the 9-D representation cannot.

The following sections develop the theoretical and practical aspects of the frame-
work outlined above, with the aim of applying it (in the next chapter) to spectrograms
of polyphonic music. In particular, it was felt that the patterns of harmonics generated
by musical notes should be susceptible to this kind of analysis, and that the individual
notes might be identified as the basis vectors, in which case, the resulting representation
would be a useful step towards obtaining a transcription of the music.

6.1 A generative model

The model to be used has already been introduced informally in the previous section:
it is a causal latent variable model in which the observed vectors x ∈ R

n are noisy
linear mixtures of m basis vectors, the mixing coefficients si being randomly drawn
and arranged into a state vector s ∈ R

m. Thus, we have

x = As+ e, (6.1)

where A is an n×m matrix encoding the basis vectors and e is a Gaussian random
vector. An equivalent graphical model is illustrated in fig. 6.2. In practice, the elements
of e will be assumed to be uncorrelated, but for the sake of generality, the analysis will
be carried out in terms of an unconstrained covariance matrix E eeT = Λ−1

e . This gives,
putting e = x−As, the probability density of x given a known basis matrix A and
source components s:

p(x|A,s) =

[

detΛe

(2π)n

]1/2

exp− 1
2 eT Λee. (6.2)

As in ICA, the elements of s are assumed to be independently drawn from a known
continuous density, giving

p(s) =
m

∏
i=1

p(si). (6.3)

The resulting density model for the observed data is

p(x|A) =

∫

Rm
p(x|A,s)p(s) ds. (6.4)
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Fig. 6.2: Graphical model of sparse coder with a three-dimensional latent space.

Given such a model and a number of observations of x, we can ask, what is the basis
matrix A most likely to have produced the data? What configuration s is responsible for
each observation? As discussed previously in §3.1.2, a value of A most likely to have
produced the data can be obtained by maximum likelihood estimation. Then, given a
particular observation x and an estimated basis matrix A, the most probable values for
the latent variables s can be inferred by maximising p(s|Â,x). These estimates can be
taken as a representation of the data, which by a proper choice of prior p(s) can be
encouraged to be a sparse code.

6.1.1 Sparsity in continuous random variables

The introductory discussion described sparse coding in terms of active and inactive
elements, yet, for reasons of computational tractability which will emerge later, the
above model is framed in terms of continuous random variables with finite density
functions. Such variables have an infinitesimal probability of being exactly zero, and
thus can hardly be supposed to constitute a sparse code. We must therefore reappraise
what we mean by sparsity in this case.

In the literature, (e.g. Harpur, 1997; Hyvärinen, 1999) it is usually assumed that
inactive elements are zero or practically zero, that they are insignificantly active. The
difficulty lies in defining what ‘practically zero’ means. The implicit assumption is that
those values which are ‘close to zero’ may be treated as being exactly zero with little
or no loss of useful information. In the absence of a model of ‘usefulness,’ this is not a
precise concept.

Several workers (Olshausen, 1996; Lewicki and Sejnowski, 2000; Hyvärinen, 1999)
equate sparsity with high kurtosis of a representational element s, defined as

κ4(s) = E s4−3(E s2)2.

It is zero for Gaussians, negative for so-called sub-Gaussian distributions, which have
a broader central peak and lighter tails, and positive for super-Gaussian distributions,
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which have in comparison a more concentrated peak at zero and heavier tails, for ex-
ample, the double sided exponential or Laplacian distribution, p(s) ∝ e−|s|.

Harpur (1997) states that “high kurtosis is a good indicator of high sparseness and
low entropy in the unimodal case. Its usefulness in more general cases is less clear.”
The author concurs with this assessment, and would add that such measures based on
high order cumulants can be statistically unsatisfactory. Estimates of kurtosis from a
finite sample size become less and less reliable as the tails of the distribution become
heavier. In fact, for distributions with tails that decay more slowly than s−5, the kurtosis
is not even defined, because the integral for E s4 does not converge.

It may be concluded that kurtosis is not a good way to characterise sparsity, and
that it is better to return to the notion of active and inactive elements. Bearing this
in mind, the following qualitative definition of sparsity is proposed: namely, that the
distribution is strongly and tightly peaked at zero, by which is meant:

1. the peak contains much of the ‘mass’ of the distribution;

2. the peak is narrow in relation to the overall width of the distribution, as char-
acterised by some appropriate measure, the implication being that any value
smaller than the width of the peak may be set to zero without significant loss of
information.

Note that an ‘appropriate’ width measure need not be variance, which may be poorly
defined for some distributions—it could, for example, be a mean absolute value, a
maximum value, or a quantile. Given that a distribution satisfies these criteria, then a
useful measure of sparsity is simply the probability mass of the peak itself, that is, the
probability that a given element is ‘inactive.’

Before moving on, it is worth adding that the model described here does not re-
quire that the prior p(s) be sparse in the sense described above. In fact, the whole
discussion can be framed in terms of low-entropy coding (Harpur, 1997). However,
since the entropy of a continuous random variable is not invariant to scaling, any as-
sessment of ‘low-entropy’ must also be made with reference to the notional ‘width’ of
its probability density function.

6.1.2 Relationship with ICA

The model described above is closely related to the standard ICA model with a super-
Gaussian prior. It is a natural extension of ICA to the non-square case, where there are
more independent components than there are observed mixtures. The inclusion of noise
in the model is closely related to the use of overcomplete bases, since the additive noise
is equivalent to an extra set of n Gaussian ‘independent components.’ That the ICA
model is not uniquely identifiable with more than one Gaussian source (Comon, 1994),
means in this case that the Gaussian sources cannot be unmixed amongst themselves,
but this is not an issue since they are treated as noise to be discarded.
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Fig. 6.3: A neural implementation of the activation dynamics.

6.1.3 Inference and the activation dynamics

If A is known and x is observed, then s can be estimated from the posterior density,

p(s|A,x) =
p(x|A,s)p(s)

p(x|A)
. (6.5)

A maximum a posteriori estimate can then be found at the posterior mode:

ŝ = argmax
s

p(s|A,x). (6.6)

If the posterior is sufficiently smooth, this can be found by gradient ascent on the
logarithm of this function, in which case the conditions for zeroing the gradient are

∂ log p(x|A,s)
∂ si

+
∂ log p(s)

∂ si
= 0 ∀ 1≤ i≤m. (6.7)

It will be useful to define the vector-valued function γ(s) as the gradient of the (neg-

ative) log-prior: γ(s) def
= −∇s log p(s). Since p(s) is factorial, its gradient will be an

element-wise function defined in terms of the prior density p(s):

[γ(s)]i = γ(si), γ(s)
def
= − d

ds
log p(s). (6.8)

Using this and the expression for p(x|A,s) from eq. 6.2, the zero-gradient condition
can be written as

AT Λe(x−As)− γ(s) = 0. (6.9)

Expressed in terms of a dynamic steepest-ascent gradient optimisation, a local maxi-
mum of the posterior can be found as a stable fixed point of

ds
dt

= AT Λee− γ(s), (6.10)

though it cannot be guaranteed to be the global maximum unless the posterior is uni-
modal. These activation dynamics can be interpreted as an error correcting mechanism,
in which the reconstruction error e = x−As induces corrections to s, but where each
element of s is subject to nonlinear decay determined by the function γ(·).



82 6. Sparse Coding

It is interesting to observe that the computation can be implemented locally in a
three-layer neural network, illustrated in fig. 6.3. The units of first layer are clamped
to the input x. The second layer receives feed-forward input from the first layer and
feed-back from the third, with activities given by

zk =
n

∑
j=1

Vk jx j−
m

∑
i=1

Wkisi,

where the matrices Vk j and Wki represent the connection strengths between the layers.
The units of the third layer, in addition to receiving feed-forward input from the second,
each have nonlinear self-inhibitory connections, implementing the effect of the term
γ(s) in eq. 6.10, and are governed by the dynamic equation,

dsi

dt
=

n

∑
k=1

zkWki− γ(si).

If the matrices V and W are chosen so that W = VA and VT V = Λe, (e.g. , V could be
the symmetric square-root of Λe) then it is easily verified that the correct dynamics are
produced at the output layer.

The significance of the connection weights V from the first to the second layer is
that they serve to whiten or decorrelate not the data, as is common in ICA algorithms
(e.g. Karhunen, 1996), but the noise. That is, regardless of the noise covariance
structure on the input, it appears as decorrelated noise of unit variance at the middle
layer. If the noise is decorrelated to begin with, so that Λe is diagonal, then so much
the better: V will also be diagonal.

6.1.4 Learning

To estimate the basis matrix A, the following objective function will be maximised:

L= Ex log p(x|A), (6.11)

where Ex denotes the expectation over the observed distribution of x. This is formally
equivalent to minimising the Kullback-Leibler divergence between the observed data
distribution and that implied by the generative model, given in eq. 6.4. We can gain
an insight into how the learning rule is constructed by casting the derivation into the
language of statistical physics: defining the energy as

E(s) =− log p(x|A,s)− log p(s), (6.12)

the posterior distribution over s can be written as

p(s|A,x) =
e−E(s)

Z , (6.13)

where the partition function Z is defined as

Z =

∫

Rm
e−E(s) ds = p(x|A). (6.14)
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Thus the maximum of the posterior coincides with the minimum of the energy: ŝ =

argmins E(s). To maximise the objective function by gradient ascent, we will need
derivatives of L with respect to the elements of the basis matrix: letting θ stand for
some scalar parameter we wish to optimise (i.e. an element of A), we find that

∂L
∂θ

= Ex
∂ logZ

∂θ
. (6.15)

Using eq. 6.14, the derivative of the partition function can be written as

∂ logZ
∂θ

=
1
Z
∫ ∂

∂θ
e−E(s) ds

=−
∫ ∂E(s)

∂θ
e−E(s)

Z ds

=−
∫ ∂E(s)

∂θ
p(s|A,x) ds,

which has the form of an expectation over the posterior distribution. Using equa-
tions 6.2 and 6.12 and substituting Ai j for θ yields

∂E(s)
∂Ai j

=−
[

Λe(x−As)sT ]

i j . (6.16)

Finally, to obtain an online stochastic gradient algorithm, we replace the expectation
over p(x) in eq. 6.15 with a sample from the data distribution. If A is the current
estimate of the basis matrix, then the update rule is

∆A = ηΛe

∫

(x−As)sT p(s|A,x) ds

= ηΛe Es|x,A esT ,
(6.17)

where η is a learning rate parameter. The core of this update rule is the Hebbian term
esT , but averaged over the posterior density.

6.1.5 Approximations to exact learning

This is an appropriate point to describe the sparse coding algorithms of Field and Ol-
shausen (1996), Harpur (1997), and Lewicki and Sejnowski (2000), and to relate them
to eq. 6.17. The integration over the posterior in eq. 6.17 becomes exponentially in-
tractable as the dimensionality of s grows; an approximation is needed to make the
computation manageable.

Delta approximation Both Field and Olshausen’s (1996) sparse coder and Harpur’s
(1997) Recurrent Error Correction (REC) network can be derived by approximating
the posterior p(s|A,x) as an m-dimensional Dirac delta distribution positioned at the
posterior mode. Setting p(s|A,x) = δ (s− ŝ) in eq. 6.17 means that Es|x,A esT = êŝT ,
where ê = x−Aŝ, leading to an update of the form

∆AREC = ηΛeêŝT . (6.18)
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Left to itself, this would result in the basis matrix growing without limit and the es-
timated components of ŝ tending steadily to zero. An explicit normalisation step is
required to keep this from happening.

Gaussian approximation Lewicki and Sejnowski (2000) instead use a multivariate
Gaussian approximation to the posterior around its maximum, setting

p(s|A,x)≈
[

detH
(2π)M

]1/2

exp
[

− 1
2(s− ŝ)T H(s− ŝ)

]

. (6.19)

By construction, the mean of the Gaussian is ŝ, and its covariance matrix is H−1, where
H is the Hessian of the (exact) log-posterior evaluated at ŝ:

H =− ∇∇T log p(s|A,x)
∣

∣

ŝ = AT ΛeA−∇∇T log p(ŝ), (6.20)

where ∇∇T is the second-order differential operator, [∇∇T ]i j = ∂ 2/∂ si∂ s j . Lewicki
and Sejnowski proceed by using this Gaussian approximation to compute the integral
for p(x|A) in eq. 6.4, which they then differentiate to obtain their update rule. The
method here has been to differentiate the exact cost function and then to approximate,
which seems to be a much simpler procedure. The expectation in eq. 6.17 is trivial to
compute if the posterior is assumed to be Gaussian:

Es|A,x esT = Es|A,x(xsT −AssT ) = xŝT −A(ŝŝT +H−1). (6.21)

This yields a weight update of the form

∆AGauss = ηΛe(êŝT −AH−1), (6.22)

where ê = x−Aŝ. Compared with the delta approximation, this expression has gained
a decay term AH−1 which has the effect of solving the problem of unlimited weight
growth, essentially by taking into account the width of the posterior around its peak. It
means that the basis vectors are automatically normalised so that the marginal distribu-
tions of the state variable match the prior.

Lewicki and Sejnowski actually employ a different update rule which gives faster
convergence and avoids computing any matrix inverses:

∆ALS = ηA[γ(ŝ)ŝT − I]. (6.23)

This can be obtained from eq. 6.22 in the following way. As with the ICA algorithm
in §5.1, considerations of the natural gradient (Amari et al., 1996) and the relative
gradient (Cardoso and Laheld, 1996) motivate the multiplication of the matrix update
by AAT . This, coupled with the observation that, according to eq. 6.9, AT Λeê = γ(ŝ)
at a local maximum of the posterior, gives

AAT ∆AGauss = ηAAT Λe(êŝT −AH−1)

= ηA[γ(ŝ)ŝT −AT ΛeAH−1].
(6.24)
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If we then neglect the Hessian of the prior, ∇∇T log p(ŝ), in eq. 6.20, and approximate
H≈ AT ΛeA, then AT ΛeAH−1 ≈ I. Substituted in to eq. 6.24, this yields the Lewicki-
Sejnowski learning rule in eq. 6.23, which, as Lewicki and Sejnowski point out, is
identical to the natural gradient update rule in the standard noiseless, square ICA prob-
lem, except that it relies on a more complex optimisation of ŝ in order to be valid for
noisy data and a non-square basis matrix. In this case however, because of the additive
noise in the model, it yields only an approximation to the true natural gradient, which
can lead to erroneous convergence in some cases, as we will see in §6.4 and §6.5.

6.2 The form of the prior

Bearing in mind the intended application of this system (in the next chapter), and ob-
serving that the marginal distributions of spectral bands tend to be quite strongly super-
Gaussian, we might suspect that any sparse components discovered will be yet more
super-Gaussian. This constitutes a form of prior information, and one would like to in-
corporate this into any sparse coding algorithm in the form of a strongly super-Gaussian
prior density p(s). It will therefore be useful to investigate how the system copes with
such a prior. A number of observations can be made:

• A Laplacian is the sparsest prior that still guarantees a unimodal posterior. That
this is so can be seen by considering the energy function in eq. 6.12:

E(s) =− log p(x|A,s)− log p(s).

With Gaussian noise, the first term is a positive-definite quadratic form and hence
globally convex. This means it will have have exactly one local minimum. If the
Hessian of log p(s) is positive semi-definite everywhere, a unique minimum of
the energy can be assured. Since log p(s) = ∑i log p(si), this requires − log p(s)
to have a non-negative second derivative everywhere. Now, because the Lapla-
cian log-prior consists of two linear segments, it is on the verge of non-convexity.
If the prior were to become any ‘peakier’, a multimodal posterior would be-
come a possibility. As soon as the posterior becomes multimodal, not only does
the global maximum become harder to find, it becomes less representative of
the distribution as a whole, and less useful for approximating the expectation in
eq. 6.17. In essence, the various approximations described in Section 6.1.4 break
down.

• A gradient discontinuity at zero (as in the Laplacian) is desirable, because it
gives a code with many exact zeros rather than just very small values, because of
the shrinkage effect shown in fig. 6.4(c) and described in §6.2.1. This is closer
to our intuitive concept of sparsity and is more attractive than the alternative
of thresholding small values, because it does not involve an arbitrary choice of
threshold. If a component is forced to zero because of the shrinkage effect,
the ‘error-correcting’ dynamics in eq. 6.10 allows other non-zero components to
compensate.
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• One way of looking at a sparse random variable is to treat it as a mixture of zeros
and continuous values drawn from some density such as a Gaussian or Laplacian.
The resultant (improper) probability density of such a variable will have a Dirac
delta distribution at zero. The posterior will potentially be multimodal and will
have infinite peaks wherever any of the s j are zero. Needless to say, this will pose
problems for any procedure based on maximum a posteriori estimation, which
will always yield ŝ = 0. This is a situation in which MAP estimation is not
appropriate; the correct estimation of such mixed discrete/continuous variable
requires special treatment in which the continuous part is marginalised out.

6.2.1 An approximate sparsified Laplacian prior

In order to allow the use of the relatively simple algorithm described earlier, which
requires a continuous prior, an approximation to a ‘sparsified’ Laplacian density was
constructed, consisting of two Laplacian pieces. The central part forms a narrow peak,
as illustrated in fig. 6.4(a). The parameters µ ≥ 0 and α ≥ 1 control the width and
relative mass of the central peak:

p(s) =

{

Ce−|s| : |s| ≥ µ ,

CKe−α|s| : |s|< µ ,
(6.25)

where C is a normalisation constant, and K = eµ(α−1) to ensure continuity. The width
parameter µ is intended to be small, in keeping with the working definition of sparsity
outlined in §6.1.1, in which case the distribution’s sparsity can be measured as

P(|s|< µ) =
eµα −1

eµα +α−1
, (6.26)
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allowing us to calculate the parameters required for a given level of sparsity. The
associated function γ(s), illustrated in fig. 6.4(b), is given by

γ(s) =

{

sgns : |s| ≥ µ ,

α sgns : |s|< µ ,
(6.27)

This prior results in a thresholding behaviour when computing ŝ. Following Hyvärinen
(1999), we consider the one-dimensional case (N =M =1), in which case, the station-
arity condition in eq. 6.9 gives, at the maximum of the posterior,

1
σ 2 A(x−Aŝ) = γ(ŝ), (6.28)

which can be written as

x/A = g(ŝ) = ŝ+ σ 2

A2 γ(ŝ). (6.29)

If the function g(·) was invertible, ŝ would be obtainable as a function of x: ŝ =

g−1(x/A). In this case, g(·) is not invertible, but a multi-valued ‘function’ can be con-
structed to return all the values of ŝ which satisfy eq. 6.29, i.e. , all the local maxima of
the posterior—see fig. 6.4(c). Where the posterior is bimodal, two local maxima should
be compared to obtain the MAP estimate, but in practice, a gradient based optimiser
like the one described in the next section may find one or other depending on its initial
conditions.

6.3 A modified gradient optimiser

To find the maximum of the posterior—or equivalently, the minimum of the energy
function E(s)—an optimisation algorithm is required. Gradient based methods work
best with functions that are approximately quadratic near the optimum, but we wish
to be able to deal with priors that have a gradient discontinuity at zero, inducing cor-
responding discontinuities in the energy at coordinate zeros. If the minimum of the
energy function occurs at one of these creases, a gradient based optimisation procedure
will have problems converging.

To address this, a modified quasi-Newton optimiser was implemented which explic-
itly recognises the fact that there may be gradient discontinuities at component zeros of
the vector being optimised. In a fashion similar to the quadratic programming method
of Endres and Földiák (1999), the algorithm maintains a set of active dimensions, and
could thus be called an active set quasi-Newton optimiser. In fact, the same modifica-
tion can be applied to any iterative gradient-based optimiser that involves a step length
computation; for example, a conjugate gradient version was also implemented.

Both the quasi-Newton optimiser and the conjugate gradient optimiser were based
algorithms found in (Press et al., 1992) and the function FMINU in the MATLAB op-
timisation toolbox. Details such as step length heuristics, termination conditions and
Hessian approximations can be found in those sources and will not be stated here.

The optimisation is an iterative procedure, involving a current point s ∈ R
m and

two sets I0 and I1 which contain the indices of the inactive and active elements of s
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Fig. 6.5: A Two dimensional illustration of the operation of the modified active set optimiser.
Given the proposed step from s to s′, and the local behaviour of the gradient along the
segments AB and CD, the modified optimiser would truncate the step at the second zero
crossing, and inactivate the first coordinate, s1.

respectively:

I0∩ I1 = /0, I0∪ I1 = {1, . . . ,m}.

Inactive coordinates are set to zero and do not take part in the current optimisation step,
though they may subsequently be activated: i∈ I0 =⇒ si = 0. To determine whether or
not the ith coordinate should be active, a boolean indicator function Q(s, i) is defined,
which, assuming that si = 0, depends on the signs of the gradient of the cost function
on either side of the point si = 0. These gradients are given by

∂+
i E(s)

def
= lim

si↓0+

∂E(s)
∂ si

, ∂−i E(s)
def
= lim

si↑0−
∂E(s)

∂ si
, (6.30)

where the limits are taken tending down to a value just above zero, and up to a value
just below zero respectively. The indicator function is

Q(s, i) =

{

0 : [sgn∂ +
i E(s)][sgn∂−i E(s)]≤ 0

1 : otherwise,
(6.31)

in which sgn0
def
= 0. If Q(s, i) = 0, then the point s represents a local minimum in the

direction of the ith dimension, and so that dimension should be deactivated. (Note that
this definition is correct only because we know that γ(s) has a positive step at zero, and
hence cannot cause a local maximum.)

The algorithm

Initialise by inactivating all coordinates, setting

I0 = {1, . . . ,m}, I1 = /0, s = 0.

Then, for each iteration of the main loop:
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1. Compute proposed new point s′ and step ∆ according to the base quasi-Newton
or conjugate gradient algorithm, so that s′ = s+∆.

2. See if the proposed step would result in any of the components of s changing
sign, by finding the set off all such zero-crossings:

Z = {i ∈ I1|sgnsi 6= sgns′i}

3. See if any of the zero-crossings satisfy the inactivation criterion. First, define
λ (i) as the step size that will take us to the zero crossing in the ith coordinate:

λ (i) =−si/∆i,

so that [s + λ (i)∆]i = 0. Then find the set Z0 of zero crossings that satisfy the
inactivation criterion:

Z0 = {i ∈ Z|Q(s+λ (i)∆, i) = 0}.

4. If there are any such zero crossings, choose one (e.g. , the first, but I have
no rigorous basis for choosing one over the others) and truncate the step there,
otherwise, take the proposed step unmodified. (← denotes assignment.)

λ ∗ =







mini∈Z0
λ (i) : Z0 6= /0

1 : Z0 = /0

s← s+λ ∗∆.

5. Update the active and inactive sets to reflect the new current point s. To do this,
two sets are defined:

I− = {i ∈ I1 : Q(s, i) = 0∧ si = 0}
I+ = {i ∈ I0 : Q(s, i) = 1}.

I− is the set of currently active coordinates that should be deactivated. I+ is the
set of currently inactive coordinates eligible for reactivation. Pick just one of
these. It is not clear how best to choose the one to be released, as the optimiser
may end up in one of several local minima depending on the choice, but the cur-
rent implementation attempts to rate their ‘eligibility’, reassigning I+ to contain
only the coordinate with the highest rating:

I+← {argmax
i∈I+

1
2

∣

∣z+(s, i)+ z−(s, i)
∣

∣}.

All that remains is to transfer the various elements between the active and inac-
tive sets:

I0← (I0\I+)∪ I−
I1← (I1\I−)∪ I+,

where the operator \ denotes set difference.
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6. Perform any book-keeping required by the quasi-Newton algorithm—in partic-
ular update the Hessian approximation using gradient information at the current
point. The important point about this is that we update only the sub-matrix de-
fined by the currently active coordinates.

The main loop is subject to the same termination conditions as the unmodified
optimiser, except that these apply to the currently active coordinates only. In addition,
the main loop terminates if there are no active coordinates.

By inactivating directions in which the local gradient is discontinuous, this algo-
rithm keeps the Hessian approximation from becoming ill-conditioned. Under certain
conditions, the algorithm results in significant speed improvements over the equivalent
unconstrained quasi-Newton optimiser (see the results of the next section) essentially
by exploiting the sparsity we are trying to achieve. Indeed, in use, as the basis con-
verges, the code becomes sparser and the performance improves.

The quasi-Newton version of this algorithm performed better than the equivalent
active set conjugate gradient version. These two were, as far as possible, evenly
matched, using the same termination conditions and the same line search procedure.
It seems that the expense of maintaining a large inverse Hessian approximation is mit-
igated by the fact that only a small number of coordinates is active at any one time.

It should be noted that this optimisation procedure is quite closely related to match-
ing pursuits (Mallat and Zang, 1993), which is an approximate solution to the problem
of sparse decomposition in an overcomplete dictionary. Matching pursuits is equivalent
to a greedy coordinate descent on the quadratic part of the cost function used here (the
error term) and disregarding the sparsity cost. At each iteration, a line minimisation is
performed along the coordinate that will yield the greatest reduction in reconstruction
error. This tends to limit the number of coordinates which become active, but since
their is no explicit sparsity cost corresponding to a prior on the components, the algo-
rithm does not perform the kind of optimal inference that can be done with an explicit
latent variable model.

6.4 The bars problem

The algorithm was tested on the patterns described in the introduction and illustrated
in fig. 6.1, a variation of the bars data set (Földiák, 1990) designed to be more over-
complete than the original bars data set. The mixing coefficients si were drawn from
a ‘sparsified’ Laplacian distribution, that is, a random mixture of Laplacians and zeros
in the proportion z : (1− z). Uncorrelated Gaussian noise of variance σ∗ was added to
the observations x. The parameters z and σ∗ were varied between experiments.

Both a Laplacian prior and the sparsified Laplacian prior from §6.2 were tested us-
ing the modified quasi-Newton optimiser described in §6.3. The sparsified Laplacian
prior was parameterised, as described in eq. 6.25, in terms of µ and α , various combi-
nations of which were tested. The results were compared with those obtained using a
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Fig. 6.6: Average numbers (V ) of non-zero basis vectors learned using modified optimiser with
Laplacian prior, for several sparsities, z, and three values of σ . The vertical axis shows
the average number of iterations, taken to converge to the correct 13 basis vectors.
The values shown have been ‘normalised’ by multiplying by η/0.016, where η is the
learning rate that was used for that trial. This removes the trivial linear dependence
we would expect between learning rate and iterations to convergence, revealing an
underlying tendency for the system to take longer to converge for higher values of z,
until z = 0.1. With z > 0.2, the full basis is not found, so the iterations to convergence
are not plotted.

family of smooth sparse priors:

p(s) ∝ sech1/β β s, (6.32)

γ(s) = tanhβ s. (6.33)

As the ‘sharpness’ parameter β → ∞, this tends to a Laplacian distribution, but for
finite β , the distribution and γ(s) both remain smooth, so that a standard quasi-Newton
optimiser is sufficient to find the maximum of the posterior.

The model noise covariance Λe was set to σ−2I, varying σ between experiments.
Learning was performed using batches of 96 input patterns chosen randomly each time
(i.e. learning was not performed repeatedly on the same batch.) The square (16 by 16)
basis matrix A was initialised to 0.1I, rather than I, at the start of each run, in order to
avoid an initial period during which the weights simply decayed to roughly the right
magnitudes before finding the right directions. The learning rate η was of the order of
0.01, but it was found that smaller learning rates were required for high sparsities.

A number of observations can be made about the results (see figures 6.6–6.8):
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Fig. 6.7: Comparison of learning behaviour using standard and modified optimisers for two val-
ues of β (see eq. 6.32) and two values of α (see eq. 6.25). Setting α = 1 corresponds
to an unmodified Laplacian prior.

Effect of low sparsity Though there were 13 distinct patterns, the basis did not always
converge to 13 vectors. In the case of non-sparsified Laplacian input (z = 1) it
nearly always converged to 9 or 10 basis vectors, which is interesting because the
intrinsic dimensionality of the data set is 9. It seems that a certain level of sparsity
is required for the algorithm to find an overcomplete basis.

Effect of high sparsity Conversely, too high a level of sparsity also resulted in too
few basis vectors being found. The scaling of these vectors is roughly proportional
to z, the proportion of Laplacians in the source mixture density, but as the sparsity
is increased, at a certain point, all the basis vectors collapse to zero. The point at
which this happens depends on the noise parameter σ—the higher the value of σ ,
the higher the critical value of z.

Performance of modified optimiser The performance advantage of the modified op-
timiser with zero-crossing detection becomes apparent only when significant num-
bers of units can be set to exactly zero. The conditions under which this happens
involve a trade-off between the sparsity of the input, the actual noise level σ∗, the
assumed noise level σ , and the form of the prior.

The standard quasi-Newton optimiser using the smooth prior of eq. 6.32 is quite
fast for large β , but slows down as β decreases and the prior becomes more sharply
peaked. (These results are not included here.) Holding the other parameters fixed,
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Fig. 6.8: Performance of standard and modified optimisers under various conditions. These re-
sults were obtained by running the optimiser with the basis matrix A equal to the actual
basis used to generate the data. The speeds are quoted in optimisations per second. The
upper chart (a) shows how the modified optimiser is faster for high sparsities and low
input noise levels, while lower chart (b) illustrates that this effect is more pronounced
at high values of σ , the expected noise parameter. In this particular (rather small)
problem, the modified optimiser outperforms the standard one over only a restricted
range of parameters and is of questionable usefulness. Further experiments with larger
problems have shown it in a more favourable light.
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there will be a value of βc such that if β < βc, the modified optimiser will out-
perform the standard one.

Effect of modified prior The sparsified prior has a more aggressive de-noising effect
on the output, encouraging more of the outputs to remain at exactly zero, reflect-
ing more accurately the actual source distribution. It also results in much faster
performance from the modified optimiser.

However, enforcing this greater degree of sparsity too aggressively seems to disrupt
learning, resulting in too few basis vectors being learned. This is probably because
the shape of the prior admits of a multimodal posterior, with strong local maxima
at coordinate zeros. Units that should be activated fail to be so, which stops them
from participating in the learning process.

Overall, the algorithm is capable of discovering a sparse code to represent the input that
accurately reflects the number of independent basic patterns. The patterns themselves
may be linearly dependent and hence form an overcomplete basis within the subspace
spanned by them. The success of this is, however, dependent on the sparsity of the
input being between certain limits—too low, and an overcomplete basis may not be
found; too high, and the basis vectors decay to zero.

6.5 Analysis of learning in one dimension

In this section we examine the dynamics and stability of the Lewicki-Sejnowski learn-
ing rule (eq. 6.23) when applied to a one-dimensional ‘sparse coder’, if we can still call
it that. An analysis of even this apparently trivial system does shed some light on the
behaviour of the full, multidimensional system.

The focus will initially be restricted to a Laplacian prior. The MAP estimate ŝ
can then be written in closed form, as a function of the input x. We will first assume
noiseless Laplacian data, then we will generalise to the noisy case, and also to the
modified prior introduced in §6.2. We will see that that this prior does not have the
desired effect at all.

The one-dimensional learning task amounts to fitting the prior distribution to the
data distribution by adjusting a single scale parameter A. The continuous time version
of the Lewicki-Sejnowski update rule is

dA
dt

= A(Ex[γ(ŝ)ŝ ]−1), (6.34)

where the expectation is over the observed distribution of x. The quantity γ(ŝ)ŝ will be

of importance throughout the derivation, so we will define Γ(ŝ)
def
= γ(ŝ)ŝ, which, when

the dependence of ŝ on x is taken into account, can be considered to be a function of x
and written Γ(x). The expectation of this quantity will then be defined as

G def
= Ex Γ(x) =

∫ ∞

−∞
Γ(x)p(x) dx. (6.35)

The dynamic equation can then be written as dA/dt = A(G−1). Thus, G can be thought
of as a ‘learning signal,’ which drives A one way if G > 1 and the other if G < 1. Fixed
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Fig. 6.9: Graph (a) is the ‘shrinkage function,’ which gives ŝ as a function of x. Graph (b) is the
function Γ(x). The threshold of activation is a = σ 2/A.

points of the dynamics are to be found at G = 1 but also at A = 0. It will be assumed,
without loss of generality, that A≥ 0 since the priors to be considered are all symmetric
about zero.

6.5.1 Using a Laplacian prior

With a Laplacian prior, we have p(s) = 1
2 e−|s|, and hence γ(s) = d|s|/ds = sgns, (see

eq. 6.8). In this case, ŝ is a piece-wise linear function of x:

Aŝ =















x−σ 2/A : x > σ 2/A,

x+σ 2/A : x <−σ 2/A,

0 : otherwise,

(6.36)

where σ is the model noise parameter. This gives, in terms of x,

Γ(x) = ŝsgn ŝ = max

{ |x|−σ 2/A
A

,0

}

. (6.37)

A graph of this function is illustrated in fig. 6.9.

Noiseless Laplacian input

Let us now assume that the data used to drive the learning actually is Laplacian, with
a scale parameter A∗ distinct from A which is the model scale parameter. The data
distribution is therefore

p(x) = (1/2A∗)e−|x|/A∗ . (6.38)

Substituting this and eq. 6.37 into eq. 6.35 yields

G = (A∗/A)e−σ 2/AA∗ . (6.39)

At this point it will be useful to introduce a dimensionless parameterisation,

θ = A∗/A, λ = σ 2/A2
∗, (6.40)

in which terms the result can be stated very simply:

G = θe−λ θ . (6.41)
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(b) The same behaviour in terms of A rather than of θ . The stable fixed point is now
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input is used. Increasing the sparsity (by reducing z) results in the loss of the two fixed
points. The third curve shows the critical value of z at which this happens. (In these
examples, A∗ = 1 and σ = 0.36.)

In this equation, θ is the dynamic variable, varying inversely with A. From eq. 6.34, it
is clear that fixed points are to be found wherever G = 1. Two such points can be seen in
fig. 6.10(a), one of which is stable. For small values of λ (that is, for σ�A∗) the stable
solution will be near θ = 1, which is the ‘correct’ solution, since θ ≈ 1 =⇒ A ≈ A∗.
If θ is initially beyond the unstable fixed point, it will continue to grow without limit.
This means that A will tend to zero, which, thanks to the additional factor of A in the
dynamic equation (6.34), is also a stable fixed point of the dynamics. As λ increases,
the two fixed points move closer together until a critical point is reached at which they
both disappear. The details of this critical point will be derived in the next section for
the more general case of ‘sparsified’ Laplacian input.

Sparsification of the input

A ‘sparsified’ Laplacian variable can be produced by taking samples from a Laplacian
distribution and setting certain fraction of them, say (1− z), to zero. The resulting
probability density is

p(x) = (z/2A∗)e−|x|/A∗ +(1− z)δ (x), (6.42)

where δ (x) denotes the Dirac delta distribution. This results in a simple modification
to the learning behaviour:

G = zθe−λ θ . (6.43)

The extra factor of z implies that for small λ , the stable solution will no longer be near
θ = 1, but near θ = 1/z, so that A≈ zA∗: the solution is too small by a factor of z. It
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Fig. 6.11: (Left) An example of how a “noisy Laplacian” distribution may be built up from two
“noisy exponentials.” The dotted line shows the original Laplacian. (Right) A noisy
sparsified Laplacian distribution with z = 0.8. (The sparsity was set low to keep the
central peak from visually overwhelming the plot.)

also means that, for a given λ , it is possible to destabilise that solution by decreasing
z to the point where the maximal value of G is 1 (see fig. 6.10). If the critical point is
characterised by the parameters (λc,θc,zc), then

λc = zc/e, θc = e/zc, (6.44)

or in terms of the original parameters,

σc = A∗
√

zc/e, Ac = A∗zc/e. (6.45)

This fixes the maximum (model) noise level σ for a given level of sparsity, or alterna-
tively, the maximum sparsity for a given noise level. Beyond this range, the only fixed
point is at A = 0.

Adding input noise

Next, we consider the case where the data really is noisy. The following definitions
will help to make subsequent expressions more concise:

gss(t)
def
= 1√

2π e−t2/2, erf(t)
def
=

∫ ∞

t
gss(u) du. (6.46)

Taking the original Laplacian input and adding Gaussian noise of variance σ 2
∗ results

in a ‘noisy Laplacian’ probability density given by the convolution of the two original
densities. The convolution evaluates to

p(x) =
1

2A∗

[

ξ
(

x
A∗

,
σ∗
A∗

)

+ξ
(

− x
A∗

,
σ∗
A∗

)]

, (6.47)

where ξ (u,ν) is essentially a ‘noisy exponential’ distribution given by

ξ (u,ν) = eν2/2e−u erf(ν−u/ν) . (6.48)

If, instead, noise is added to a sparsified Laplacian specified in eq. 6.42, there will be
an extra Gaussian term due to the delta distribution at zero:

p(x) =
z

2A∗

[

ξ
(

x
A∗

,
σ∗
A∗

)

+ξ
(

− x
A∗

,
σ∗
A∗

)]

+
1− z
σ∗

gss

(

x
σ∗

)

. (6.49)
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This eventually yields

G =
A∗
A

{

z

[

ξ
(

σ2

AA∗
,

σ∗
A∗

)

+ξ
(

− σ2

AA∗
,

σ∗
A∗

)]

+2
σ∗
A∗

gss

(

σ2

σ∗A

)

−2
σ2

AA∗
erf

(

σ2

σ∗A∗

)}
(6.50)

which can be written in terms of the dimensionless parameters

θ = A∗/A, λ = σ 2/A2
∗, ν = σ∗/A∗, (6.51)

as

G = θ
{

z [ξ (λθ ,ν)+ξ (−λθ ,ν)]+2ν
[

gss
(

λ θ
ν

)

− λ θ
ν erf

(

λ θ
ν

)]}

. (6.52)

This expression has several properties:

• The overall form is that of a function of λθ scaled by 1/λ (i.e. λ−1F(λθ )),
which means that, as λ is varied, the graph of the function scales in both direc-
tions, maintaining its shape and proportions.

• The first term inside the large braces has exactly the form of a noisy Laplacian.
This is to be compared with the factor of e−λ θ in eq. 6.43.

• The second term in the large braces is similarly constructed such that (for fixed
λ ) varying ν results in simultaneous ‘horizontal’ and ‘vertical’ scaling in pro-
portion to ν (which measures the actual ‘noisiness’ of the data.)

One way to visualise the dynamics implied by eq. 6.52 is to graph λG as a function
of λθ for different values of ν and z. A few examples are shown in fig. 6.12. In each
graph, the fixed points of the dynamics for different values of λ (the model noise level
as a dimensionless parameter) can be found by intersecting with a horizontal line at λ .

Several conclusions can be drawn from these graphs, which should generalise fairly
directly to the multidimensional case:

• Increasing the sparsity of the input makes the basis vectors smaller in proportion
to z. (This is exactly what it seen in experiments.) It may also cause the non-zero
solutions to disappear, which explains why in experiments, the weights decay to
zero when the sparsity is increased beyond a certain point.

• Increasing the model noise parameter σ makes it more likely that the input signal
falls under the expected noise level: the outputs will remain, for the most part,
clamped to zero and the basis vectors will again fall to zero.

• If the actual noise is greater than expected (σ∗ > σ ), the scale parameter A may
converge to a value that reflects the input noise variance rather than the data. In
the multidimensional case, it seems likely that the resulting basis vectors will fit
the noise distribution rather than the data distribution, and hence the results will
not be useful.
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Fig. 6.12: Plots of λG against λθ for different values of ν and z. The dashed lines represent the
first major term in eq. 6.52, which scales vertically with z. The dash-dot lines represent
the second term (due to noise) which scales horizontally with ν and vertically with
ν2. The solid line is the sum and gives the overall behaviour. On some of the plots,
the horizontal lines give the fixed points for a certain value of λ . It is possible that in
certain situations, (bottom left) there can be two stable non-zero fixed points for A.

6.5.2 Using the modified prior

As we have seen, one of the effects predicted by the analysis above is that increas-
ing sparsity tends to result in shorter basis vectors, essentially because of a mismatch
between the Laplacian prior and the actual source distributions. This effect is amply
demonstrated in the results in fig. 7.2 (in the next chapter): the various lengths of the
basis vectors reflect the different probabilities of note occurrences.

The modified prior introduced in §6.2 was intended to address this problem, by
making a piece-wise exponential approximation to a sparsified Laplacian density, so it
may be enlightening to analyse the dynamics of learning using this prior. The gradient
of the log-prior is of the form

γ(s) =

{

sgns : |s| ≥ µ ,

α sgns : |s|< µ .
(6.53)

with α > 1,µ > 0. The yields a new shrinkage function which is still piece-wise linear,
but with more segments (see fig. 6.13). A more serious problem is that the activation
dynamics have more than one fixed point, meaning that the shrinkage ‘function’ is
multi-valued. We must decide which of the two branches to use. Referring to fig. 6.13,
a point q could be chosen, somewhere between a and c, to jump between the lower



100 6. Sparse Coding

PSfrag replacements

µ

a b c

s

xs2/A

slo
pe

=1/
A a =

σ2

A
+ µA,

b = α
σ2

A
,

c = α
σ2

A
+ µA.

Fig. 6.13: Shrinkage function for modified prior. The thick solid lines (two disconnected
branches) indicate stable solutions of the activation dynamics, whereas the dashed
line indicates unstable fixed points. The grey area indicates where there are two stable
solutions available for a particular value of x. (Note that both b > a and b < a are
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and upper branches. Letting Γ−(x), (valid for 0≤ x≤ c) denote the lower branch, and
Γ+(x), (valid for x≥ a) the upper, then

Γ(x) =

{

Γ−(x) for |x| ≤ q,
Γ+(x) for |x|> q,

a≤ q≤ c. (6.54)

However, the issue of choosing a particular point q can be avoided with the following
argument: the problem with the un-sparsified Laplacian version was that G was too
small at A≈ A∗, the stable fixed point being at A≈ zA∗. The modification to the prior
is intended to increase the value of G near A = A∗. If we can find an upper bound on the
new G and show that it is still insufficient to make up for the sparsity of the input and
stabilise a solution A≈ A∗, we could conclude that the modified prior does not have the
desired effect. Hence, we will integrate over both branches of the shrinkage function,
this providing an upper bound on the integral regardless of where the discontinuity is
placed. Since p(x) is an even function,

∫ ∞

−∞
Γ(x)p(x) dx = 2

∫ ∞

0
Γ(x)p(x) dx

= 2
∫ q

0
Γ−(x)p(x)dx+2

∫ ∞

q
Γ+(x)p(x) dx

≤ 2
∫ c

b
Γ−(x)p(x)dx+2

∫ ∞

a
Γ+(x)p(x) dx

regardless of where q lies between a and c.
Now, it would be possible to carry out the integration using a noisy sparsified Lapla-

cian input, as done in the previous section, but, in the multidimensional case, any so-
lutions made stable by the addition of noise would most likely reflect the structure of
the noise distribution rather than that of the signal. In view of this, the dynamics of the
modified system will be derived using a noiseless sparsified Laplacian input only. The
result is

G ≤ zθe−λ θ
{

α− (αe−λ θ(α−1)−1)(1+ µ/θ )e−µ/θ
}

(6.55)

It is easier to see what is going on here if we let λ → 0, which corresponds to a low
(model) noise regime. (With the Laplacian prior, an increase in λ tended to reduce the
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Fig. 6.14: Learning dynamics for the modified prior: various plots (solid lines) of the upper
bound on G described in eq. 6.56. On each plot, the two dashed lines indicate the
lines G = αzθ and G = zθ , to which the solid curve tends as θ → 0 and θ → ∞
respectively. The dotted line G = θ shows where the desired fixed point at θ = 1 lies,
at its intersection with G = 1.

value of G at all points, and thus setting λ = 0 represents a ‘best-case scenario.’) We
obtain

G ≤ zθ
{

α− (α−1)(1+ µ/θ )e−µ/θ
}

(6.56)

The factor in braces is approximately α for small θ , tending to 1 for large θ , with a
cross-over scale proportional to µ . Hence, the graph of this upper bound (see fig. 6.14)
makes a transition from zαθ to zθ .

The shape of the curve depends on z and α , with z changing only the vertical
scaling. The overall size (with fixed proportions) then varies with µ . Experimenting
with different combinations of parameters suggests that it is not possible to produce a
stable fixed point near θ = 1 unless one of the asymptotes G = zθ or G = zαθ has a
slope of approximately 1, that is, either z≈ 1 or zα ≈ 1. The former case corresponds
to non-sparse input and defeats the purpose of introducing the modified prior. The
latter requires that µ be of the order of 1 or larger, which means the prior becomes
essentially a Laplacian of width z rather than 1. This contradicts the notions of sparsity
discussed in §6.1.1.

Thus, it appears that the modified prior is actually a rather poor approximation
to a sparsified Laplacian prior and does not solve the problem of incorrect scaling of
the basis and convergence to zero when the data is very sparse. In the true sparsified
density, the peak at zero is either infinitely thin or broadened by noise, and cannot
provide any information about the scaling of the basis vectors.
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6.5.3 Comparison with exact learning

The learning rule we have been using is derived from an approximation to the likeli-
hood p(x|A), and, as we have seen, suffers from a propensity to produce zero length
basis vectors under some conditions. To gain a better understanding, the approximation
may be compared with the exact likelihood computed by the integral

p(x|A) =

∫ ∞

−∞
p(x|A,s)p(s) ds, (6.57)

which is tractable in the one-dimensional case.
There are four relevant quantities to investigate: the log-likelihood, log p(x|A); the

objective functionL= E log p(x|A); the gradient of the log-likelihood ∂ log p(x|A)/∂A,

which provides the stochastic learning signal, and the gradient of the objective function
∂L/∂A = E ∂ log p(x|A)/∂A. In each case, the approximation may be compared with
the theoretically correct value.

The exact value of p(x|A) is actually the distribution of x produced by the system
when treated as a generative model, and is none other than the noisy Laplacian density
stated earlier (eq. 6.47). Thus, we can immediately write

log p(x|A) = log
[

ξ
(

x
A , σ

A

)

+ξ
(

− x
A , σ

A

)]

− log2A, (6.58)

using the earlier definition of ξ (u,ν) (see eq. 6.48).
Lewicki and Sejnowski’s (2000) Gaussian approximation to the integral in eq. 6.4

gives, in one dimension,

log p(x|A)≈ log p(ŝ)− (x−Aŝ)2

2σ 2 − 1
2 log

∣

∣

∣

∣

A2

σ2 −
∂ 2 log p(ŝ)

∂ s2

∣

∣

∣

∣

− logσ . (6.59)

Using a Laplacian prior and eq. 6.36 for ŝ in terms of x yields

− log p(x|A)≈ log2A+ 1
2 log

∣

∣

∣

∣

1+
σ2

A2

dγ(ŝ)
ds

∣

∣

∣

∣

+















x2

2σ 2 , |x|< σ 2

A ,

|x|− σ 2

A

A
, |x| ≥ σ 2

A .

(6.60)

At this point a problem emerges: for a sharply peaked prior like a Laplacian, γ(s) is
discontinuous at s = 0, and therefore dγ(ŝ)/ds is undefined at zero, highlighting the
fact that the Gaussian approximation is a poor one at the sharp peak of the Laplacian
density. The learning rule we have been analysing is the result of ignoring the offending
term, since for a Laplacian, dγ(ŝ)/ds = 0 for s 6= 0. The remainder of the analysis
neglects the term dγ(ŝ)/ds, but preliminary investigations suggest that, when steps are
taken to approximate the effect of the missing term, some of the problems with the
approximation are alleviated.

The exact and approximate log-densities are illustrated in fig. 6.15. The approxi-
mation consists of two linear pieces and a quadratic piece, whereas the exact version
has a shallower curve near x = 0.

The next quantity of interest is the gradient of the log-likelihood, ∂ log p(x|A)/∂A;
it is this that provides the ‘learning signal’, which when averaged over x, drives the
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overall learning behaviour. Exact differentiation of eq. 6.58 gives:

∂ log p(x|A)

∂A
=

Π( x
A , σ

A )−1

A
, (6.61)

where

Π(u,ν) =
u [ξ (u,ν)−ξ (−u,ν)]+2ν gss(u/ν)

ξ (u,ν)+ξ (−u,ν)
−ν2. (6.62)

This should be compared with the approximate version of this obtained by differentia-
tion of eq. 6.60 (ignoring the term in dγ(ŝ)/ds:

∂ log p(x|A)

∂A
=
|ŝ|−1

A
=

Γ(x)−1
A

(6.63)

using the earlier definition of Γ(x). Thus we may tentatively identify Γ(x) as an ap-
proximation to Π( x

A , σ
A ); the two are compared over a range of parameter values in

fig. 6.16. It is clear that the fit is poor when σ is large.

The final step is to compare the exact and approximate versions of the objective
function L and its derivative with respect to A, which are obtained by averaging the
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log-likelihood log p(x|A) and its derivative over the observed distribution of x, which
will be assumed to be a noiseless Laplacian of width A∗ (see eq. 6.38).

The true objective function can be computed by numerical integration, whereas the
approximate version can be computed in closed form, yielding

−L≈ A2
∗

σ2

[

1− exp− σ2

AA∗

]

+ log2A. (6.64)

This and the numerical integration of the exact objective function are illustrated in
fig. 6.17, along with their derivatives with respect to A. The true cost function has a
single optimum near A = A∗, as one would expect, but the approximation has another
at A = 0 because of the log2A term in eq. 6.64.

Summary and Conclusions

In this chapter, the theoretical aspects of sparse coding were considered. A causal
generative model was adopted as the basis for the system, where a sparse code was
defined as a factorial code in which the marginal distributions of the components are
‘sparse,’ that is ‘strongly and tightly peaked’ around zero. A consideration of inference
in the model and the energy landscape of the posterior density p(s|x,A) lead to the
conclusion that the Laplacian prior forms a natural watershed between sparse and non-
sparse distributions, though, of course, Gaussianity and non-Gaussianity still have an
important role to play in ICA related methods, of which sparse coding is an example.

An attempt was made to construct a sparse prior by modifying the Laplacian distri-
bution to add a tight peak at zero. When combined with a modification to the gradient
optimisation procedure used to perform MAP inference of the sparse components s,
this resulted in some performance gains, but at the expense of poor learning in some
circumstances. A more detailed analysis suggested that the modified prior did not have
the desired effect and did not successfully model a ‘sparsified’ Laplacian, that is a
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Laplacian density plus a delta distribution at zero, Though the piece-wise Laplacian
density may appear visually to be a reasonable approximation, it is actually a poor one
for this application.

The analysis (restricted to a simple one-dimensional version of the system) did
however explain some of the behaviour of the learning algorithm in situations where
the actual data distribution does not match the prior.

The modified optimiser itself was shown to be a useful tool for optimising cost
functions with gradient discontinuities at coordinate zero.

One of the more interesting conclusions to be drawn from the experiment with the
bars problem is that a certain amount of sparse structure is required in the input if the
system is to learn a highly overcomplete basis. If this is not the case, the system learns
only enough basis vectors to span the input space.
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7 . S PA R S E C O D I N G O F M U S I C

S P E C T R O G R A M S

Introduction

In this chapter, the methods developed in the previous one will be applied to spectro-
grams of musical sounds. In a spectrogram, such as the one illustrated in fig. 7.3, each
note appears as a regular pattern of harmonics. This structure represents a great deal of
redundancy, which a sparse coder may be able to detect and encode.

7.1 Statistical Structure of Spectra

Previous investigations in to the statistical structure of natural sounds have shown that,
under several commonly used representations, they have extremely non-Gaussian prob-
ability distributions. Attias and Schreiner (1997) analysed speech, music, animal vo-
calisations, and environmental sounds, using linear band-pass filters of varying widths,
and found that, under a wide range of conditions, histograms of the instantaneous
amplitude of the filtered audio signals were far from Gaussian. Iordanov and Penev
(1999), working from television broadcasts, measured second-order statistics of vec-
tors of waveform samples, from which the principal components of each auditory en-
semble were computed. They found that the coefficients of the principal components,
that is, the coordinates of the vectors relative to a basis formed by the principal com-
ponents, had extremely tightly-peaked, heavy-tailed marginal distributions. Moreover,
the principal components were essentially sinusoidal, so the coefficients represented a
sort of spectral analysis.

Heavy-tailed non-Gaussian distributions can also be observed in the marginal his-
tograms of individual spectral bands in magnitude or power spectrogram (see fig. 7.1):
the distributions are strongly peaked toward zero, with tails that decay much more
slowly than a Gaussian, which would appear on a semi-logarithmic scale as a parabola
curving downwards. In fact, in many cases, they decay more slowly than a Laplacian,
which would appear as a straight line of negative gradient.

In fig. 7.1(d), derived from a signal normalised in the same way as the signals used
in Chapter 5 (seen Appendix A for details) some further structure is apparent. The
distributions appear to fall into two classes, one of which is more sparsely distributed
than the other. A preliminary analysis indicates that, as we go up in frequency, the
distributions alternate between the two classes at 12 cycles per octave, suggesting that
the phenomenon is due the frequencies being in or out of tune with the 12 semitones-



108 7. Sparse Coding of Music Spectrograms

0 1000 2000 3000

10−5

100

105

Power S

P
(S

)

(a)

0 5 10

x 10−3

100

102

104

106

Power S

P
(S

)

(c)

0 20 40

10−2

100

102

Amplitude A

P
(A

)

(b)

0 0.05 0.1

100

102

104

Amplitude A
P

(A
)

(d)

Fig. 7.1: Marginal densities of spectral bands. Each line type indicates the distribution (over
time) of activity at a particular frequency. (a) and (b) were taken directly from power
(S) and magnitude (A) spectrograms respectively (with A =

√
S), whereas in (c) and (d),

the audio signal was fed through a long time-constant automatic gain control, to remove
large (time) scale fluctuations in loudness. Even with these variations removed, the
densities can still be considered to be quite sparse. This particular signal was take from
an ordinary audio CD (the Penguin Cafe Orchestra’s Signs of Life), but qualitatively
similar results were obtained from a number of CDs representing a range of musical
styles.

per-octave chromatic scale.

The Use of Spectra as Input Data

The prime motivation for using spectra as input data was that the phase invariance of
the spectrogram would enable the system to detect correlations between the different
frequency components of a harmonic tone even if the phase relationships were not
consistent. The results of Chapter 5 showed that ICA using linear input is not capable
of detecting these dependencies; very few multi-component basis vectors were found
in the music derived basis. Indeed, the results of Chapter 8 will show that there are
dependencies between harmonic components, but these are of a form that cannot be
detected by ICA (or sparse coding) in a linear input representation.

These are some of the factors to consider when using spectrograms:

Noise statistics The sparse coder generative model assumes the presence of additive
Gaussian noise. However, Gaussian noise in the signal does not appear as Gaus-
sian noise in a power spectrogram. In absence of any other signal, it actually ap-
pears as random noise with a (single sided) exponential distribution, of the form
p(u) = λe−λ u,u ≥ 0. (See Appendix B for details.) If, however, the magnitude
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spectrogram is used, by taking the square root of the power spectrogram, that noise
appears with a distribution of the form p(v) = 2λve−λ v2

, where v =
√

u. As well
as noise in the original signal, the spectrogram also contains noise-like activity due
to spectral leakage. Anderson (1997) describes how this is related to an interaction
between windowed harmonic components, and is not phase invariant: thus, phase
‘information’ appears as spectral ‘noise.’

Linearity or otherwise of mixing The sparse coders described the previous chapter
assumed a linear generative model, which means that it will theoretically be capa-
ble of disentangling the independent causes of the input if these causes combine
additively. Power spectrograms do add linearly if the sources are phase-incoherent,
but we do not expect this to be the case for pitched musical instruments that are in
tune with each other. If harmonics from two instruments overlap (which they will
if the notes are consonant) then we may get constructive, destructive or beating
interference, which effects are linear in the time domain (and in the linear Fourier
transform) but nonlinear in the spectrogram.

Phase invariance The concept of phase invariance was mentioned in §3.3.2 and will
be discussed further in §8.3. Some degree of phase invariance seems to be a de-
sirable property for an artificial auditory system and is useful for this particular
application, as indicated above; the approximate phase invariance of the spectro-
gram is therefore an attractive feature.

7.2 Results

The training data was generated from a MIDI encoded piece of music, which was
synthesised using an ordinary PC sound card. The synthesis was carried all the way to
an analogue signal, which was then resampled using the sound card. Bach’s Partita in
A minor for keyboard, BWV827, was chosen because it consists mainly of two or three
relatively independent lines with few block chords. The hope was that the ‘independent
components’ would turn out to be the notes themselves. A number of pieces in a similar
style were also available for testing.

Magnitude spectra were used rather than power spectra in order that the noise be
more approximately Gaussian and to reduce the super-Gaussianity of the marginals
of spectral bands, as illustrated in fig. 7.1. The modified quasi-Newton optimiser de-
scribed in the previous chapter was used with the modified Laplacian prior.

7.2.1 Basis vectors

Starting with 96 basis vectors, the basis converged to 55 non-zero vectors, of which
49 appeared to be harmonic note spectra matching the notes in the piece. In order to
verify this, the spectral profiles were used to filter white noise. Though the resulting
sounds were not realistic reproductions of the harpsichord sound, many pitches were
discernible.
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Fig. 7.2: The 55 non-zero basis vectors obtained from sparse coding synthetic harpsichord mu-
sic. The lower plot show the lengths (2-norms) of the basis vectors, showing that the
basis vectors corresponding to the most structurally important pitches in the key (which
is A minor) had the largest norms.

On the basis of the reconstructed sounds, the basis was manually reordered by pitch.
The result is illustrated in fig. 7.2. The more common notes are represented by longer
basis vectors, in agreement with the findings of the previous chapter. The key of the
piece (A minor) is plainly visible in the pattern of basis vector norms in fig. 7.2.

7.2.2 Conversion to MIDI and Resynthesis

Once the system was trained, the reordered outputs provided a quite faithful ‘piano-
roll’ transcription of the music, some extracts of which are illustrated in fig. 7.3 and
fig. 7.4. Bearing in mind the limited extent of the experiment, it was felt that a rigorous
validation of the transcription was not appropriate at this point, and an aural appraisal
of the results would be sufficient. To this end, a simple threshold-based MIDI note
trigger was added to the system, which, thanks to the modified prior and optimiser,
was able to operate in real time. After some trial and error adjustments of the prior
parameters µ and α , this resulted in a passable rendition of the original piece, perhaps
by a rhythmically-challenged piano student!

Whilst encouraging, this did point out the sensitivity of the procedure to the pa-
rameters of the prior. A large α tended to produce a ‘cleaner’ output, but with some
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Fig. 7.5: Output marginals for various parameter settings. Each line shows the distribution of
activity of a single output unit. See text for discussion.

missing notes. A small α recovered the missing notes, but also allowed many small
activations to triggering notes not present in the music. Imposing a threshold of activity
for triggering notes improved matters, but seemed a little inelegant, especially after the
discussion of §6.2 about the desire for exact zeros to signal inactivity.

7.2.3 Output component distributions

The marginal histograms of the output components (see fig. 7.3(d) and fig. 7.5) revealed
a definite tendency to bimodality, suggesting (accurately in this case) an underlying bi-
nary process, namely, the presence or absence of a note. In this case, the use of a fixed
threshold for note activation in the MIDI resynthesis is probably not optimal since ide-
ally the threshold would be positioned in the valley between the two modes. An unsu-
pervised procedure to position this threshold would therefore be a useful development
of the system.

The distributions in fig. 7.5 also demonstrate the effects of the noise parameter σ
and the sparsified Laplacian parameters µ and α (defined in eq. 6.25). The peak at zero
tends to be more concentrated both when σ is large and when α is large, though the
effect is visibly different in the two cases.
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7.2.4 Learning about temporal structure

One of the system’s weaknesses thus far is a certain lack of temporal coherence in the
output, since the assessment of which notes should be active is made on a moment-by-
moment basis. Noise-like activity in the spectrogram causes long notes occasionally to
be broken up, producing superfluous onsets, and the introduction of false notes that are
not present in the music. These errors are easy for a human observer to spot since we
are able to see the whole spectrogram, not just a one-pixel wide strip.

One approach to dealing with this is to expand this time window so that that the
sparse coder learns time-frequency basis vectors rather than just spectral profiles. More
generally, notes of different instruments have distinctive shapes in the time-frequency
plane, including vibrato and frequency glides. For example, the onsets of some wind
instruments are often played flat and then brought up to the correct pitch. An algorithm
trained on two-dimensional spectrogram patches may thus be able to learn these shapes,
and be more capable of discrimination between different instruments.

Preliminary results were obtained with spectrogram patches four pixels wide; these
are illustrated in fig. 7.6.

The main drawback with this approach that the input vectors are much larger. For
example, if the instantaneous spectra have 256 components, and we choose to train the
coder on strips that are 32 points wide, then the input patterns will have 8192 elements.
Since the optimisation procedure used to estimate the components is approximately
O(N3) in the dimensionality of the system, this represents a considerable computational
burden. (The computation of each step is O(N2), and it was observed that O(N) steps
were required to produce adequate convergence.)

7.3 Conclusions

The main conclusion of this work is that there is enough structure in music (or at least
certain kinds of music) for a sparse coder to learn about and detect notes in an unsu-
pervised way, even when the music is polyphonic. There is no need to bring any prior
musical knowledge to the problem, such as the fact that musical notes have approxi-
mately harmonic spectra. This knowledge is acquired during learning. In addition, the
MAP activation framework using a sparse prior does a reasonably good job of decom-
posing an input spectrum into a sum of notes.

The sparse coding model we used is essentially an extension of ICA, since it at-
tempts to construct a sparse factorial code, so one might conclude that “notes are the
independent components of music.” Clearly, in a wider sense, the notes of a piece of
music are not independent, but, to a first approximation, this assumption proves to be
fruitful.

These are some of the more immediate ways in which the system could be im-
proved, and which could form the basis of further work:

Adaptive thresholding of outputs An obvious development arising from the observa-
tion of bimodality in the output component distributions is that an adaptive thresh-
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Fig. 7.6: Basis trained on 2-dimensional strips of spectrogram. Each strip is four pixels wide.
Many of the basis vectors are clearly attuned to note onsets, and one (bottom row, sixth
from right) seems to represent wide-band onset activity. (In these images, white is
positive and black is negative.)
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old of note activation should be implemented. It may be possible to use a binary
mixture model (see §3.2.4) to achieve this.

A better noise model The sparse coder implemented here assumes additive spherical
Gaussian noise on the input (Λe = σ−2I), which does not appear to be very ac-
curate for audio spectrograms. Even if the original signal is noiseless, the spectro-
gram shows a background of noise-like activity, due to spectral leakage (Anderson,
1997), an artifact of the windowed Fourier transform applied to aperiodic signals.
The activity at a particular frequency is related to the energy in the signal in the
region of that frequency. Since there tends to be more energy at the low end, the
‘noise’ is more pronounced at low frequencies, and slopes off towards the high.
This means that if the noise level σ is set high enough to prevent the system being
distracted by high level noise at low frequencies, it fails to pick up significant low
level details at high frequencies, where the actual noise level is lower. One option
would be manually to set some noise distribution a priori. Another is to estimate
the noise covariance matrix from the data.

Separable time-frequency basis vectors It was noted that extending the system to
use larger input vectors extending over several spectrogram time slots would gen-
erally be prohibitively expensive. The situation is fundamentally different from that
encountered in image coding, where the assumption of position invariance means
that small, square windows can be drawn from anywhere in the image to provide
training data. Sounds are generally not invariant to translation in frequency, and the
lower part of the spectrogram does not ‘look’ like the upper part.

One possible solution would be to restrict the basis to separable 2D patterns, in
which each time-frequency basis vector factorises as a product of a spectral pro-
file and a temporal profile. These patterns could be learned separately: first, the
spectral basis vectors would be learned as in the current system; then the temporal
basis could be learned by training a sparse coder in the time signal of each output
component, essentially producing a set of ‘typical’ note activation profiles. This
might be expected to go a long way towards improving the temporal coherence of
the notes produced for certain instrument types, though it will probably be unable
to deal with non-separable time-frequency features such as vibrato.

More generally, this system in its current form is not proposed as a practical automatic
transcription system. The experiments here have been confined to a very restricted
type of synthetic instrument sounds, which have an artificially regular time-frequency
structure. Real instruments show considerably more spectral variability which the cur-
rent system would have trouble coping with. What this work does demonstrate, I hope,
is the potential of an unsupervised approach, driven by considerations of redundancy
reduction and efficient coding, to solving problems in music processing.



8 . S I M I L A R I T Y

Introduction

Consider the experiments described in Chapters 5 and 7: in both cases, it was helpful
to arrange or order the linear bases developed by ICA or sparse coding. In the sparse
coder, it made sense to arrange the basis vectors according to pitch, whereas in the ICA
system trained on speech (§5.3.1) it was clear that a two-dimensional arrangement
in time and frequency was called for. Similarly, some well-known linear bases come
supplied with an intrinsic ordering of their basis vectors. For example, given a Fourier
basis, one would conventionally arrange the basis vectors in one-dimension in order
of frequency. A wavelet basis, on the other hand, sits naturally in a two-dimensional
space, with time along one axis and frequency along the other. The questions we ask
in this chapter are, what is it about these bases and the data they represent that makes
a given arrangement appropriate and meaningful? By what principle, if any, can these
arrangements be discovered in a framework of unsupervised learning?

Hyvärinen et al. (2001) addressed these questions, and developed the method of to-
pographic ICA (TICA). This fits an ICA basis into a given predetermined arrangement
(such as a two-dimensional sheet or a closed loop) so that neighbouring basis vectors
are related in a way to be described in §8.1. However, it does not discover the appro-
priate topology. The work in this chapter follows a slightly different approach which
focuses not on predefined neighbourhood relationships, but on distances between rep-
resentational units. The result is a geometric picture of the representation, from which
the appropriate topology may, in principle, be deduced.

Two types of similarity Before continuing, it is important to make a clear distinction
between the two types of similarity that will be discussed in this chapter. The first
is similarity between individual elements in a distributed representation. The second
is similarity between states of a representation. The topological relationships repre-
sented in TICA are of the first kind, whereas the similarity judgements of which we
are consciously aware, those between observed patterns of stimulation such as audi-
tory or visual scenes, are presumably of the second type, in that a particular scene is
represented by a pattern of activity in the appropriate mental representation.

Unfortunately, and rather confusingly, the two may coincide for a certain class
of representational map. In a ‘code-book’ quantiser, the representational units, only
one of which is active at a time, correspond directly to observed patterns. It then
becomes possible to assign distances between representational units to reflect directly
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the distances between the patterns they represent.1 In the general case, this will not be
possible since the each unit encodes patterns only in cooperation with other units.

For the sake of brevity, from here on, similarity between representational units
will be called R-similarity, and similarity between patterns will be called P-similarity.
They can both be defined formally as follows. Let s stand for a complete sensory scene
drawn from a set S. P-similarity is then an expression of the topological and metrical
structure of the set S. In contrast, in order to define R-similarity we need to consider
a particular distributed representation of elements of S. Assume that to each s ∈ S
there corresponds an indexed tuple ξ ≡ (ξα ,ξβ , · · · ), where the indices α ,β etc. are
elements of an indexing set A. (In a linear representation, these indices can be the
basis vectors themselves, and the ξα will be the coordinates with respect to that basis.)
For each α ∈ A, let ξα be an element of Ξα , which may be any coordinate space, such
as the real numbers, the non-negative reals, the binary set {0,1} etc. This additional
structure introduces two new aspects to consider. One is the topological and metrical
structure that may be induced on the product space ∏α∈A Ξα by any assumed metrics
on the Ξα , the individual coordinate spaces.2 The other is the possibility of topological
or metrical structure on the indexing setA; that is, α and β , both inA, may be more or
less similar. This is precisely what R-similarity is concerned with, and defined in this
way, is clearly distinct from P-similarity.

Overview §8.1 deals with R-similarity: how it may be defined, and experimental
procedures for visualising it. §8.2 is more discursive in nature and describes several
possibilities for defining P-similarity in terms of the statistical structure of the set S
in the definitions above. Finally, several of these strands are brought together in a
discussion of the concept of phase invariance in §8.3. The general drift of this last
section is towards possibilities for further processing after ICA or sparse coding.

8.1 Topographic and geometric representations

Topographic ICA was introduced by Hyvärinen et al. (2001), who began by observing
that in ICA, the resulting components and the associated basis vectors have no partic-
ular ordering or similarity relationships defined. It would be possible to use ad-hoc
criteria such as non-Gaussianity or contribution to data variance to order them, but,
they assert, the results are usually not very enlightening. They suggested that the lack
of ordering in standard ICA is related to the independence assumption. In practice,
with real data, the resulting components rarely achieve perfect independence, with cer-
tain pairs of components showing a marked dependence though not of the kind that
can be removed by linear transformation. (See e.g. Simoncelli, 1999; Schwartz and
Simoncelli, 2001, and fig. 8.2.) Thus, Hyvärinen et al. proposed that this residual de-

1 If we do have ‘grandmother’ cells, then one’s maternal grandmother cell is probably not too far from
one’s paternal grandmother cell, or indeed one’s ‘grandfather’ cells!

2 This may be different from the metrical structure induced from the metrical structure of S by the map-
ping s 7→ ξ . Indeed, one of the factors influencing the design of the representation may be a requirement to
make these two alternative metrical structures agree.
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pendency be used to decide which units of the representation, and hence which basis
vectors, belong together.

There are sound reasons for bringing together dependent units. One, as we have
seen in previous chapters, is as an aid to visualisation and interpretation. More im-
portantly, however, it may be an aid to further processing. If we take the view that
redundancy reduction is indeed the goal of perception, then any remaining dependen-
cies after a stage of processing are precisely where more work is required. Localising
residual dependency localises any further computations, reducing demands on connec-
tivity in a distributed system. Hyvärinen et al. (2001) described this in terms of wire
length costs (see also Mitchison, 1995) which could be manifested, for example, as
greater energy requirements on long connections, or greater noise.

8.1.1 From mutual information to geometry

Hyvärinen et al. (2001) used the concept of local dependence to guide the construction
of a generative model in which similarity between representational units is encoded as
a predefined system of neighbourhoods. This in turn defines a topology on the set of
units, such as a 2-D sheet or a 1-D closed loop. There is no metric structure as there
are no explicit distances involved.

The method presented here takes a different approach: quantitative estimates of
residual dependency are used directly to define distances and hence a metric on the
representational units. The distance between a pair of units will be small if their mu-
tual dependency is high, zero if they are deterministically related, and infinite if they
are independent. This metric is then used to find a geometric arrangement of the units
such that the assigned distances are accurately represented in a Euclidean space. There
is no prior choice of topology: the dimensionality of the Euclidean embedding space
needs to be chosen, but the method used to find the geometric arrangement (multi-
dimensional scaling, or MDS) does not prevent the units from taking up positions in
a lower-dimensional manifold. Thus, the representation can find its own intrinsic di-
mensionality. In contrast, if a topographic ICA were to be performed on a data set
that required a two-dimensional basis, such the the speech data of §5.3.1, but a one-
dimensional topology was specified, the system would presumably find a good way to
arrange the units on a line, but there would be residual dependencies not explained by
the one-dimensional topology, and without further analysis to detect this, there would
be no hint that a two-dimensional arrangement might be better.

The steps required to go from a given distributed representation to a geometric
picture of it will be described in the remainder of this section. The overall procedure
can be summarised as follows:

1. Obtain a distributed representation by any means available. The present work
is based on ICA, but could easily be repeated with any linear basis, or indeed
any method at all that produces a distributed representation in which pair-wise
dependencies can be measured.

2. Measure the statistical dependency between each pair of units, by estimating
their mutual information or other measure of correlation.
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3. Convert the dependency measures into metric distances in such a way that high
dependency implies proximity.

4. Use MDS to convert the pair-wise distances into a geometric arrangement, that
is, a set of points in some embedding space.

The first step has already been covered in Chapter 5, while the last three follow below.

8.1.2 Measuring residual dependence using nonlinear correlation

Statistical dependence, quantified as the mutual information (MI), is difficult to mea-
sure directly without prior knowledge about the joint distribution of the two variables
being compared. Since residual dependencies exist precisely because the ICA source
model has proven to be incorrect, we cannot rely on the prior joint distribution assumed
for the sources, even if the marginals are a good fit. The simplest form of dependence,
linear correlation, is unlikely to be useful; residual correlations in ICA tend to be small,
and some ICA algorithms force them to be zero. Instead, Hyvärinen et al. (2001) pro-
posed that energy or activity correlations are the primary form of residual dependence,
citing a similar conclusion from Schwartz and Simoncelli (2001), who observed that
when natural sounds or images are represented using a wavelet or Gabor basis, the co-
efficients of similar wavelets tend to be non-zero at the same time even if they are not
linearly correlated.

In fact, for two-dimensional distributions symmetric in both axes, the dependency
is entirely captured by the dependency between the absolute values of the variables: if
X and Y are two random variables, and p(x,y) = p(|x|, |y|) in all four quadrants, then
I(|X |, |Y |) = I(X ,Y ); this can be shown by direct integration.

In general, correlation of energies might not be the best way to characterise the MI
because it involves measuring second-order statistics of the squares—that is, fourth
order statistics—of what may already be highly super-Gaussian variables. For finite
sample sizes, the resulting correlations will tend to have high asymptotic variances,
and thus the estimated dependencies will be very noisy. However, it should be pos-
sible to compute correlations between any nonlinear functions of activity to estimate
the dependence: under certain mild restrictions, this will yield zero for independent
variables, whereas a non-zero correlation implies dependent variables.

Jutten and Herault (1991) used this principle in their ICA algorithm, but specified
that two different odd functions be used. In view of the observations above about
measuring activity dependencies because of the symmetry of the distributions involved,
even functions will be used here. The question is, which particular nonlinear even
functions will give the best estimates of the MI?3

Consider the simplest case in which two random variables U and V are in fact
jointly Gaussian. The dependence between them is fully characterised by their corre-

3 Bach and Jordan (2001) describes an elegant, but relatively computationally expensive method by which
the optimal nonlinearities may be chosen from a given family in an unsupervised way, but this was published
after the present work was completed.
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lation coefficient, which is defined as

corr[U,V ]
def
=

cov[U,V ]√
var U var V

, (8.1)

where cov[U,V ]
def
= E UV − (E U)(E V ), (8.2)

and var U
def
= E U2− (E U)2. (8.3)

The mutual information can then be expressed in terms of the correlation coefficient
only as

I(U,V ) =− 1
2 log

[

1− (corr[U,V ])2] , (8.4)

which is correct for both positive and negative correlations. If U and V are far from
being Gaussian, then the MI estimated with this expression may not be accurate; for ex-
ample, the correlation may be zero even for strongly dependent variables, as illustrated
in the first column of fig. 8.2. However, the MI is invariant to invertible transformations
of the variables, so if f and g are invertible functions, then I(U,V ) = I( f (U),g(V )).
Furthermore, if f and g could be chosen so that f (U) and g(V ) were jointly Gaussian,
then the MI could be computed exactly from this nonlinear correlation. Thus, it may
be conjectured that for any two functions f and g, this nonlinear correlation provides a
lower bound on the mutual information:

I(U,V)≥− 1
2 log

{

1− (corr[ f (U),g(V )])2} . (8.5)

Recent work by Bach and Jordan (2001) suggests that this may be true, though a formal
proof has not been attempted.

Measuring energy correlations, as advocated by Hyvärinen et al. (2001), is equiva-
lent to putting f (u) = g(u) = u2. A cursory look at the distributions of these energies
shows that they are very far from being Gaussian, and hence, energy correlations are
possibly not the best way to measure the residual dependencies.

What is required is a compressive nonlinearity so that f (U) and g(V) have lighter
tails and thus their correlation can be measured more reliably. One possibility is f (u) =

g(u) = logu, which produces joint distributions like those shown in the middle columns
of figures 8.1 and 8.2. Another possibility is f (u) = g(u)=− log p(u), where p(·) is the
prior density used in the ICA model. For a Laplacian prior, this yields f (u) = |u|, but
for a more super-Gaussian prior, such as a Cauchy prior (see eq. 5.7), the nonlinearity
is more compressive. It must be noted that in both cases, f and g are even functions
and hence not invertible, but it still seems a reasonable choice to make given the earlier
comment about distributions with four-quadrant symmetry and our wish to measure
activity correlations.

Several estimates of mutual information are compared in table 8.1. The two meth-
ods used are the nonlinear correlation method presented here, and direct summation
from the joint histogram, though it must be emphasised that both methods are approx-
imations, since the histogram is only a discrete (and often poor) approximation to the
underlying continuous probability density.
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Joint Joint: log s Joint: −log p(s)

Conditional Conditional: log s Conditional: −log p(s)

Fig. 8.1: Joint histograms of a pair of ICA outputs si and s j which are nearly independent. The
three columns contain histograms (on a logarithmic grey scale) of [si vs. s j], [log si
vs. log s j] and [− log p(si) vs. − log p(s j)], where p(s) is the Cauchy prior. The top
row contains joint histograms, whereas in the bottom row, each column of histogram
bins has been independently normalised to the same maximum value. (Obtained from
ICA experiments with BBC Radio 3, see Chapter 5. The corresponding basis vectors
are both sinusoidal with frequencies of 883 Hz and 937 Hz. 82:87.)

Joint Joint: log s Joint: −log p(s)

Conditional Conditional: log s Conditional: −log p(s)

Fig. 8.2: Joint histograms of two strongly dependent components from the BBC Radio 3 ICA re-
sults. The corresponding basis vectors are sinusoidal with the same frequency (937 Hz)
but in quadrature phase. Note how the untransformed components (first column) show
very little correlation, with a circularly symmetric distribution, but after an even, non-
linear transformation (other columns), the correlation is high. See fig. 8.1 for further
explanation.
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s79 vs. s229 (fig. 8.1) s237 vs. s229 (fig. 8.2)

correlation direct correlation direct

f (s) = s 0.0000 0.0457 0.0000 0.3282

f (s) = logs 0.0652 0.0746 0.3228 0.4089

f (s) = log(1+ s2) 0.0419 0.0685 0.4573 0.4022

f (s) = s2 0.006 0.185 0.2663 0.1945

Tab. 8.1: Estimates of MI computed by two methods from the histograms in figures 8.1 and 8.1.
Correlation coefficients were computed from the histograms, not from the original
samples; eq. 8.4 was then used to estimate the MI in bits. The ‘direct’ method con-
sists of computing by direct summation the MI of the discrete probability distribution
implied by the histogram. Note that this is likely to deviate systematically from the
MI of the underlying continuous density: this is the source of the differences between
the direct estimates. Each row is the result of applying the same methods to the joint
histograms of the nonlinearly transformed components, using different nonlinearities.
The last row was derived from joint energy histograms not illustrated here.

8.1.3 Computing distances

The next step is to find a suitable mapping from mutual information to distance. Let
me state at the outset that what follows is a rather heuristic argument in support of a
particular form for the mapping. The guiding principle will be that a ‘Gaussian-like’
noise process, in a sense to be defined later, should result in the familiar Euclidean
distance measure. The reasoning behind this will be described in §8.2.2.

Consider the following thought experiment: a lattice is populated with a number
of ‘particles’ placed at the lattice nodes; these could be photons in an imaging model,
for example. This initial configuration constitutes a ‘noiseless’ image. Then, a noise
process is applied in which each particle undergoes a random displacement relative to
its initial position, according to a certain probability distribution. This noise model will
induce observable statistical dependencies between the numbers of particles at nearby
lattice points, even if the original noiseless images are spatially independent. Thus, it
should be possible to deduce the spatial configuration of the lattice from statistical data
alone. Furthermore, it seems reasonable to design the method to produce a Euclidean
metric on the lattice if the distribution of the random displacements is Gaussian.

A number of simplifications are needed to obtain a useful result. Firstly, the noise-
less images will be assumed to be spatially independent, so that any measured depen-
dencies can be attributed to the noise process. Secondly, the discrete model outlined
above will be replaced with a continuous one, where the lattice spacing tends to zero
and the numbers of particles tend to infinity. In this case, the particle distribution is
described by a particle density function, and the diffusion caused by the noise pro-
cess becomes a convolution or filtering of the density function with a Gaussian kernel.
Thirdly, in order that the entire system be characterised by second-order statistics, the
noiseless images will be assumed to be Gaussian as well as independent. In fact, the
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whole problem becomes very similar to blind deconvolution, except for the crucial
difference that, in blind deconvolution, the geometry of system is known and the con-
volution kernel deduced, whereas here, the kernel is known and the geometry must be
deduced.

After the convolution, the particle densities (or image intensities) at nearby points
will be correlated, and their correlation will be directly related to their distance from
each other—it will be the given by the autocorrelation function of the filtered image.
Since the autocorrelation is the Fourier transform of the power spectral density, which
in this case is the product of the initially white spectrum with the Gaussian spectrum
of the Gaussian kernel, the result may be written down immediately:

corr[Sα ,Sβ ] = exp− 1
2 [d(α ,β )]2, (8.6)

where Sα and Sβ are random variables representing the particle density at two points
α and β , and d(α ,β ) is proportional to the distance between them. Since an overall
scaling of the distance is unimportant, there is no need to relate this to the variance of
the Gaussian step distribution. Thus, I propose that this simply be inverted to define the
(squared) distance as

d2(α ,β )
def
= − log

{

corr[Sα ,Sβ ]
}2

. (8.7)

The next step is to generalise the above result to non-Gaussian variables using the
mutual information rather that the correlation. The MI for two Gaussians was given in
eq. 8.4. Solving this for the correlation coefficient and substituting back into eq. 8.7
gives

d2(α ,β )
def
= − log

{

1− exp
[

−2I(Sα ,Sβ )
]

}

. (8.8)

Clearly, this a somewhat speculative definition, but it will serve for the following ex-
periments, and does produce some interesting results. The important point is that the
distance is monotonically related to the mutual information and has the correct asymp-
totic behaviour: D→ 0 as I→ ∞, and D→ ∞ as I→ 0.

8.1.4 Geometry by multidimensional scaling

The final step is to generate a set of positions in a Euclidean or other metric space which
is consistent with the system of pair-wise distances derived above. Formally, given a
metric space E, a metric dE : E×E 7→ R, and a set of representational unit indices A,
we seek points xα ∈E such that dE(xα ,xβ ) = d(α ,β ) for all α ,β ∈A. This is precisely
the problem that multidimensional scaling (MDS) was designed to solve (e.g. Cox and
Cox, 2001; Davidson, 1983). In practice, it will rarely be possible to make the distances
match perfectly, so MDS is formulated as an optimisation problem in which the aim
is to minimise a certain stress function. In least-squares MDS (Torgeson, 1952), the
following stress function is minimised:

J1 = ∑
{α,β}⊂A

[

dE(xα ,xβ )−d(α ,β )
]2

, (8.9)
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though there are other possibilities; for example, Sammon (1969) proposed the use of

J2 = ∑
{α,β}⊂A

[

dE(xα ,xβ )−d(α ,β )
]2

d(α ,β )
. (8.10)

The extra factor of 1/d(α ,β ) in each term of the sum means that, in comparison to J1,
short distances are given a greater weighting and thus are prioritised in the optimisation:
this is saying that it is more important to get the short distances right than the long.

MDS can be formulated as a statistical inference problem (Cox and Cox, 2001,
p. 107). In maximum likelihood estimation, quadratic error functions are linked to the
assumption of Gaussian noise, and in this case, each stress function can be interpreted
as implying a certain error model for the measured target distances d(α ,β ). The first,
eq. 8.9 implies additive Gaussian noise of fixed variance. This is not necessarily ap-
propriate for measured distances or distances computed from some statistical method:
for example, in some cases one might expect the errors to be larger for long distances.
The second stress function in eq. 8.10 goes some way to addressing this, and implies
additive Gaussian noise with a variance proportional to the actual distance. In fact, one
may go further and propose a stress function in which the standard deviations of the
errors are proportional to the distances:

J3 = ∑
{α,β}⊂A

[

dE(xα ,xβ )−d(α ,β )

d(α ,β )

]2

, (8.11)

All three stress functions were implemented; a steepest-descent algorithm for finding
the optimal xα is given in Appendix C. Fig. 8.3 illustrates the difference between the
results obtained with J1 and J3 in a two-dimensional MDS. A three-dimensional MDS
solution for the same data set produces a curved 2-D manifold embedded in 3-D; the
comparison in fig. 8.3 shows that the stress function J3 is better able to manage the
flattening of the curved manifold into a flat 2-D space.

In fact, none of the three stress functions is theoretically correct for the data used
here: since the distances used here are derived from measured sample correlation coef-
ficients, we can be more specific about the distribution of the error. For a 2-D Gaussian
distribution, the sample correlation coefficient computed from a large sample has a
standard deviation of (1−ρ2)/

√
n, where ρ is the true correlation coefficient and n

is the sample size (Mukhopadhyay, 2000). Consulting eq. 8.6, this suggests that the
following stress function should be used:

J4 = ∑
{α,β}⊂A

[

dE(xα ,xβ )−d(α ,β )

1− exp[−d2(α ,β )]

]2

. (8.12)

Note that the 2-D joint distributions are not in fact Gaussian and so this is still only
an approximation to the ideal stress function. It will be interesting to see if the imple-
mentation of this stress function yields significantly different results; this will be the
subject of further work.
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Fig. 8.3: Two of the two-dimensional MDS solutions obtained for the Radio 4 (speech based)
representation, using the stress functions J1 (left) and J3 (right). The gray scale in-
dicates the nominal centre frequency of each unit as computed in §5.3.1, with low
frequencies in black at the bottom of the figures. Further analysis of this configuration
makes it clear that it is largely a time-frequency representation, with the time-axis hor-
izontal in this figure. The ‘tail’ extending to the left contains low-frequency units that
are not localised in time.

8.1.5 Experimental results with speech and music

The ICA results of Chapter 5 were the starting point for this experiment. An initial
inspection of the ICA outputs suggested that many of the components, especially those
associated with basis vectors of the same frequency but different phases, were strongly
dependent. Figures 8.1 and 8.2 illustrate some measured joint histograms, showing
different degrees of dependence but small linear correlations. Related components
show the characteristic circular distribution reported by Simoncelli (1999), whereas
unrelated components have the more diamond or cross-shaped distribution predicted
by the ICA model.

Also illustrated are equivalent joint histograms of nonlinear (rectified) activity dis-
tributions. Joint energy distributions are not shown, but they are very super-Gaussian
as expected and thus their dependency is not very well characterised by a correlation
coefficient (see table 8.1). In contrast, using logs or log(1+s2) results in joint distribu-
tions which have lighter tails4 and give better mutual information estimates using the
correlation method.

Nonlinear cross-correlation matrices In order to obtain distances between all pairs
of components, the full matrix of nonlinear correlation coefficients is required; this was
computed as

Ri j = corr[ f (si), f (s j)], (8.13)

where the si are ICA output components. The full set of statistics were collected twice,
once with f (s) = |s|, and once f (s) = log(1 + s2), which is related to the log-density

4 Perhaps ‘skirts’ would be a more appropriate term for such two-dimensional distributions.
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Fig. 8.4: Two visualisations of a two-dimensional MDS solution obtained for the Radio 3 (mu-
sic) representation. On the left, the gray scale indicates the centre frequencies of the
units as in fig. 8.3. On the right, however, the gray scale indicates the nominal band-
widths computed in §5.3.2, showing a slight tendency for the wider bandwidth units
(lighter) to lie towards the interior of the configuration. Note that this is a flattened
version of the frustum of cone which appears in the three-dimensional configuration,
and hence the pattern is not very clear.

of the Cauchy distribution. A matrix of pair-wise distances was then computed using

Di j =
√

logR−2
i j

, (8.14)

as derived in §8.1.3.

Multidimensional scaling results An MDS algorithm was then run on the various
distance matrices obtained, using the three different stress functions described in §8.1.4
in embedding spaces of dimension 2 to 8. Lack of dimensions preclude the illustration
on paper of most of these results; figures 8.3 and 8.4 show some of the 2-D results and
figures 8.5 and 8.6 show two of the 3-D configurations for readers who are able to fuse
the stereo pairs.

Interpretation of spatial arrangements The configurations obtained with the BBC
Radio 4 speech data show a clear ordering in time and frequency, similar to those illus-
trated in figures 5.2 and 5.10. This is most apparent when the component activations
are displayed in 2 or 3-D in real time: during speech, sibilants are visible as activ-
ity in the upper region; plosives are visible as temporally localised strips of activity,
and sustained vowel sounds appear as strips of activity localised in frequency. In 3-D,
the time-frequency manifold takes on a folded shape, though at present it is not clear
whether this is because there are non-local dependencies pulling the whole manifold
together, or because the mapping from mutual information to distance has the wrong
asymptotic form for large distances.

The results obtained with music (BBC Radio 3) are very different. The configura-
tion is at first quite difficult to interpret, but interactive experimentation has revealed
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Fig. 8.5: Stereo pair of 3-D MDS results for the Radio 4 basis. The left-eye image is on the
left, so you must stare into the distance to fuse the pairs. The grey scale encodes the
centre frequency of each unit. In three dimensions, the time-frequency plane visible in
fig. 8.3 becomes a curved manifold, viewed edge-on in this figure, so that time axis is
perpendicular to the page.

Fig. 8.6: Stereo pair of 3-D MDS results for the Radio 3 basis. The configuration is approxi-
mately a frustum of cone, with its axis pointing right, slightly down, and slightly out of
the page. High frequencies are at the narrow end.
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Fig. 8.7: Plots of stress vs. dimensionality for Radio 4 and Radio 3 MDS solutions using three
different stress functions. The stresses are in arbitrary units and different stress func-
tions cannot be compared directly.

some of its structure. Unfortunately, this is difficult to illustrate statically, but the re-
sults may be summarised as follows.

Overall, the geometric arrangement is approximately that of a frustum of cone,
with high frequency units towards the narrow end. The units are distributed within the
volume of the frustum, not just on the surface. To learn more about the details of the
arrangement with respect to pitched sounds, a probe tone was applied and the pattern of
activity inspected. The author supplied these probe tones to a real-time implementation
of the system by playing his flute into a microphone attached to the computer.

As the pitch of the probe tone was swept upwards, a locus of activity in the repre-
sentation moved around and up the frustum. Although the arrangement was not perfect,
there was a general tendency for units on the surface of the frustum to respond to chro-
matic notes played in-tune, while the inner units responded to intermediate pitches. In
addition, these inner units seemed to be less sharply tuned than the surface units. When
viewed along the axis of the frustum, the in-tune chromatic notes formed an approxi-
mate circle of Fifths. A idealised schematic of this arrangement is illustrated in fig. 8.8,
which should be imagined as the view down the axis of the frustum.

Choosing the dimensionality of the embedding space The MDS stress functions de-
termine the optimal configuration for a given dimensionality of the embedding space,
but they do not help us choose that dimensionality. By comparison, this choice is a
rather ad-hoc affair. If the distance measurements were noiseless and reflected a real
underlying geometric arrangement, then we would expect the stress to go down to zero
at the correct dimensionality. In practical applications, however, the data will be noisy,
and we will not know if a meaningful embedding space even exists. In the general case,
the stress will not go down to zero until we have about as many dimensions as there
objects. What we are usually looking for is low dimensional arrangement that captures
most of the ‘interesting’ structure—a requirement loaded with subjective assessments.

The conventional practice is to obtain several configurations for different dimen-
sionalities and plot stress vs. dimensionality. If the data set has an ‘intrinsic’ dimen-
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Fig. 8.8: This is an idealised schematic of the pattern of activation generated as a probe tone
gradually sweeps up in pitch (see text). The actual arrangement follows this pattern
from B[ round to E but then becomes more diffuse. However, the correlation structure
which gives rise to this pattern seems to be consistent across a wide range of frequencies
(see fig. 8.9) so it seems likely that the idealised pattern will emerge in MDS solutions
in higher dimensions.

Fig. 8.9: Matrix of non-linear correlation coefficients obtained with the Radio 3 music basis,
reordered and scaled by centre frequency to show strong correlations between frequen-
cies in small whole number ratios. There is also a slight 12-cycle per octave ‘beading’
effect visible.
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sionality, it may be apparent in the stress plot as a ‘kink’, ‘elbow’ or other discontinuity
in the graph. There may be none or several of these, so in the absence of a more prin-
cipled approach, we must examine each case individually.

The graphs in fig. 8.7 do not have any obvious such points, which makes it difficult
to decide which is the appropriate dimensionality. It is possible that an alternative
mapping from correlation to distance may have an effect on this.

Visualisation of cross-correlation matrix The emergence of chromatic relationships
and a circle of fifths suggests that other harmonic relationships might be encoded in
the correlation matrix, but are unable to emerge in a 3-D MDS configuration. It is
in fact possible to observe these directly in the correlation matrix if it is reordered
appropriately: in fig. 8.9, each element is plotted as a rectangular patch at a position
proportional to the centre frequencies of the two basis vectors being correlated. The
diagonal lines that are visible at various slopes show that there are indeed correlations,
not just at frequency ratios of 1:2 and 2:3 but also at many other harmonic ratios.

8.1.6 Conclusions

The method of nonlinear correlation analysis was certainly able to detect a wealth of
residual dependency structure in both the speech and music derived ICA bases de-
veloped in Chapter 5. The combination of long and short range distance information
was used to find not only topological neighbourhoods for each unit in the representa-
tion, as in topographic ICA, but a complete geometrical representation of the depen-
dency structure. One of the clearest conclusions is that, for speech, a two-dimensional
time-frequency representation really is appropriate; in the work presented here, a time-
frequency manifold emerges from the data in a completely unsupervised way. Equally
clearly, this is not the case for music, indicating that a time-frequency picture may be
too simplistic a way of looking at the representation of music signals at this level.

It may be thought that Kohonen’s self-organising map (see §3.2.5) achieves a com-
parable result, but the similarity is only superficial. The Kohonen map finds low-
dimensional manifolds in high-dimensional data, but only for data that already has
a fully specified geometrical structure in a high-dimensional Euclidean space. In con-
trast, the present method requires only system of pair-wise dependency measurements
between entities which need have no pre-existing representation in a metric space.
Also, the resulting system uses distributed patterns of activity to represent data (since
ICA is a multiple case model), rather than the winner-take-all representation of the
Kohonen map, which is effectively a single cause model.

In terms of the introductory section of this chapter, Kohonen’s map implements a
measure of P-similarity, essentially by applying a Euclidean metric to the input space
(though it could be argued that it also implements an alternative metric measured within
the manifold defined by the map, rather than in the original space) whereas the present
geometrical method implements a measure of R-similarity in an abstract space; the
MDS embedding space does not represent distances between patterns, or input vectors
in the case of ICA, but between the resulting components.
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One significant drawback of this method as compared with topographic ICA is its
computational complexity which, because of the need to measure pairwise correlations,
is O(N2) in the number of representational units. However, since the method is based
on the second-order statistics of the nonlinearly transformed unit activities, it should
be possible to apply a Gaussian latent variable model such as PCA or factor analysis to
model what is essentially a large cross-correlation matrix more efficiently.

As an aside, it is interesting to note that both MDS and the method of probe tones
are methods which have been used in experimental psychology (Krumhansl, 1990) on
data gathered from human subjects, but are applied here to an artificial model, an ICA
system, which is in a way, the experimental subject.

8.2 Similarity and distance measures

The previous section was concerned solely with a way of defining R-similarity for
a given distributed representation. We will now consider some general points about
P-similarity, that is, similarity between complete patterns of activity representing a
sensory scene. The focus will be on using metric concepts, that is, distances, to express
the notion of psychologically experienced or perceived similarity between scenes.

In the theory of metric spaces (e.g. Jameson, 1974), distances are subject to a
number of formal constraints. Given a set S, a metric or distance measure is a function
d : S ×S 7→ R. If, for all x,y,z ∈ S, the following conditions are satisfied:

d(x,x) = 0, (8.15)

d(x,y) = d(y,x), (8.16)

d(x,y)+d(y,z)≥ d(x,z), (8.17)

d(x,y) > 0 ∀ x 6= y, (8.18)

then d is a metric on S and (S,d) is a metric space. If 8.18 is not satisfied, and
d(x,y) = 0 for some x 6= y, then d is a pseudometric on S.

The situation with subjective dissimilarity is less clear: assuming that it can be
quantified, one might reasonably impose non-negativity and 8.15 but not necessarily
the other conditions. Davidson (1983) discusses this, pointing out that in some con-
texts, subjective dissimilarity need not be symmetric and need not satisfy the triangle
inequality. That possibility will not be pursued here, and we will assume that psycho-
logical distances are metric or at least pseudometric.

This raises a few questions. Given a representation consisting of one or more real
variables, can the ‘usual’ metrics (see §8.2.1) yield the psychological distances we
wish to reproduce? If not, is there an alternative representation in which the desired
distances can be obtained with one of the usual metrics? Or can a more flexible met-
ric be defined on the given representation that can accommodate them? Finally, and
most interestingly, are there general principles which explain why the psychological
distances are what they are? The hypothesis investigated in this section is that these
distances are related to the statistical structure of the patterns, that is, they can be de-
rived from a probability measure on S. One desirable characteristic of such a procedure
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is that the derived distances can be made representation invariant, rather than defined
in terms of a particular representation as with the usual metrics.

8.2.1 The usual metrics

The distance measures in table 8.2 are defined for pairs of objects represented as n-
tuples, that is, as elements of a product space such as R

n or {0,1}n. In all cases except
the binary Hamming distance, the distance is defined as a sum of coordinate-wise dif-
ferences, or a simple function thereof. This means that they are well suited to normed
vector spaces, that is linear spaces in which vectors can be added and subtracted, and
where each vector has a length. In this case, the distance between two vectors can be
defined as the length of the vector difference. When viewed as a metric space, this im-
poses certain restrictions on the distance function. For example, the distance between
two points must be invariant to translation, that is, the addition of another vector to
both; the distance measure is essentially linear.

Why should this be a problem? If the n-tuple representation of patterns is chosen
ad-hoc, and assumed to be a normed linear space, the resulting distance measure may
be incapable of replicating the subjective distances we would like it to, no matter how
the norm is chosen. A related point is that, for a space to be a vector space, it must
define the operations of addition, negation, and multiplication by a scalar. These op-
erations may not have any meaning for sensory patterns—the assumption that a space
is a normed linear space is much stronger than the assumption that it is a metric space,
and is not necessarily warranted for perceptual representations.

To show that linear spaces are not always appropriate, a simple one-dimensional
example will suffice. It is generally accepted that the frequency of tones is perceived on
a scale that is close to being logarithmic, that is, the distance between two frequencies
f1 and f2 is not | f1− f2|, but | log f1− log f2|.

There are various ways of extending the metrics in table 8.2 to make them more
flexible. One is to weight the contribution of each coordinate; for example, Cam-
bouropoulos (1998, §8.3) uses a weighted Hamming distance to compute the dissimi-
larity between two objects:

d(x,y) =
n

∑
i=1

wiδ (xi,yi). (8.19)

If each binary coordinate encodes a different property, then the weights adjust the
salience of each property in determining distance.

Another possibility in the case of the Euclidean metric is to assume that the co-
ordinate axes are not orthogonal, so that activity in one coordinate might be more or
less equivalent to activity in another. This results in the introduction of a symmetric,
positive definite metric tensor Gi j, with the distance given by

dG(x,y) =

[

∑
i, j

(xi− yi)Gi j(x j− y j)

]1/2

. (8.20)

Thus, the metric is essentially a quadratic form in (x− y). Putting Gi j = δi j recovers
the Euclidean metric. If the coordinates xi are relative to a non-orthonormal set of basis
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Euclidean dE(x,y) =

[

n

∑
i=1

(xi− yi)
2

]1/2

x,y ∈ R
n

Hamming
(between binary tuples)

dH(x,y) =
n

∑
i=1

[1−δ (xi,yi)] x,y ∈ {0,1}n

‘City block’
or ‘Manhattan’

dCB(x,y) =
n

∑
i=1

|xi− yi| x,y ∈ R
n

Minkowski
of exponent p

dp(x,y) =

[

n

∑
i=1

(xi− yi)
p

]1/p

x,y ∈ R
n

Tab. 8.2: Some distance measures.

vectors ai, so that x = ∑i xiai, then Gi j = ai·a j: the metric tensor encodes the pair-wise
dot products of the basis vectors and hence the angles between the coordinate axes.

What this metric does is to involve a form of similarity between the coordinate
axes—which is therefore a form of R-similarity—in the computation of P-similarity,
demonstrating that the two can be related. If two units are R-similar, then two patterns
that differ only in their distributions of activity over the two units should be P-similar.

An example can be found in the spectral representation of tones: if a sound is
represented as the energies in a number of spectral bands, say 10 Hz wide each, and
a straightforward Euclidean metric is used, then tones of 200 Hz and 2000 Hz would
be no more distant than tones of 200 Hz and 220 Hz. If we wished energy in nearby
spectral bands to have similar significance, we might try the following heuristic solu-
tion: before computing the Euclidean distance between two spectral vectors x and y,
convolve them both with a blurring kernel:

x∗ = Ux, y∗ = Uy, (8.21)

where U is a symmetric Toeplitz matrix whose rows are all shifted versions of the
convolution kernel. For example, the following matrix (where 0 < b < 1) will spread
activity from each spectral bin to its immediate neighbours:

U =



















1 b 0 · · · 0

b 1 b
...

0 b 1
...

. . . b
0 · · · b 1



















. (8.22)

In the spectral example, this would result in the 200 Hz and 220 Hz tone vectors being
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brought closer together in the Euclidean sense. Computing the distance using

d2(x,y) = (x∗−y∗)T (x∗−y∗)

= (x−y)T UT U(x−y),
(8.23)

shows that the matrix UT U has taken on the role of a metric tensor. If U has the form
indicated above, then then UT U will also be approximately Toeplitz, with each row
(except the extremal ones) consisting of a shifted version of

( · · · 0 b2 2b 1+2b2 2b b2 0 · · · ).

Thus, the procedure is equivalent to assuming that the spectral vectors are measured
using a non-orthogonal coordinate system, in which each the coordinate axes for neigh-
bouring spectral bins are not orthogonal, but those for widely separated bins are. We
will see shortly that this has an interesting interpretation in terms of noise statistics.

8.2.2 Distance and noise

The previous section examined various increasingly flexible ‘numerical recipes’ for
computing distances in a given representation, with the implicit aim that the metric be
capable of reproducing a given set of subjective psychological distances. We now con-
sider what principles might account for those perceived distances themselves. Taking
an ecological point of view, it would be useful for an organism if it perceived difference
and similarity in relation to the environmental significance of different stimuli; that is,
subjective dissimilarity should be related to the likely significance of difference. This
is intrinsically a subjective notion, because what is important to one organism may not
be to another.

Bearing in mind the conclusion of §2.2.5, which equated irrelevant information
with noise, the central hypothesis here is that sensory patterns are perceived to be sim-
ilar to the extent that the difference between them is likely to be due to noise. The
simplest illustration of this is the case of Gaussian white noise: in many algorithms the
assumption of Gaussian noise results in the use of a mean-square error measure and
may be linked with a Euclidean metric. In this particular case, the distance-squared
has the form of minus the logarithm of a probability, which can be used to guide any
possible generalisations to non-Gaussian or non-additive noise processes; these will be
explored in the next section. In its most general form, it should be possible to apply
this definition to any kind of noise, originating externally in the world, inside sensory
receptors, or inside the cognitive system itself. It is also consistent with previous work
by Mitchison (1995), which deals with map formation—that is, maps of P-similarity—
driven by a number of objective functions, each of which can be interpreted as min-
imising the effect of noise in one space on the geometry in another.

Examples To clarify the points made above, a few examples will be given. Firstly,
the Hamming distance can be derived from a noise process which inverts each bit of a
binary tuple independently with a certain probability, q. The probability that the state
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x is transformed into state y is

P(x 7→ y) =
n

∏
i=1

{

1−q : xi = yi

q : xi 6= yi

(8.24)

The negative logarithm of this is

− logP(x 7→ y) =
n

∑
i=1

{

− log(1−q) : xi = yi

− logq : xi 6= yi

=−n log(1−q)+ log 1−q
q

n

∑
i=1

[1−δ (x1,yi)],

(8.25)

which is essentially the Hamming distance offset by−n log(1−q).
Next, consider an audio signal in additive Gaussian pink noise, that is greater at

lower frequencies than at high. In the frequency domain, the noise will be uncorre-
lated but non-uniform, with a variance that drops off towards high frequencies. In this
case, a weighted Euclidean metric should be used, with a greater weighting at high
frequencies, because differences there are less likely to be due to noise.

d2(x,y) = ∑
i

1
σ2

i

(xi− yi)
2, (8.26)

where σi is the noise variance in the ith element. The reader may have noticed that there
is some inconsistency in the identification of the log probability with either a distance
(eq. 8.25) or a squared distance (eq. 8.26). This is an unresolved issue in the present
work, but we may note that it does not affect the relative orderings of the distances so
obtained.

Finally, consider the example from the last section in which a metric tensor was
used to account for similarity between neighbouring frequency bands. Inspection of
eq. 8.20 shows that it can be derived from a Gaussian noise process with covariance
equal to the inverse of the metric tensor. Inversion of the metric in the example yields a
covariance in which the noise in neighbouring bins is anti-correlated, that is, the noise
tends to transfer activity from each bin to its neighbours. This is an example of the
kind of noise that would lead us to conclude that neighbouring spectral bins should be
considered similar. One may also observe that the pre-multiplication by U in eq. 8.21
has the effect of whitening the noise so that the standard Euclidean metric can be used
on the vectors x∗ and y∗.

The foregoing is somewhat reminiscent of the procedure used to compute the Ma-
halanobis distance, (Mahalanobis, 1936) in which the inverse of a covariance matrix is
also used as a metric tensor. The key difference is that the Mahalanobis distance uses
the covariance of the data, whereas the above method uses the covariance of the noise.

8.2.3 Probabilistic distance measures

In this section, several tentative distance measures are proposed. Rather than basing
them on a noise model which maps the pattern space on to itself, that is, one which takes
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Fig. 8.10: The joint density p(x,s) could be used to induce a metric on the space X by consid-

ering the difference between the conditional densities p(s|x1) and p(s|x2) for pairs
x1,x2 ∈X . A metric on S could be induced similarly. The solid, dashed, and dashed-
dotted graphs indicate sections through the joint density at the corresponding lines.

a notionally ‘noiseless’ pattern and produces a ‘noisy’ version of it, these measures will
be based on a noisy mapping between two distinct spaces. To clarify, let us assume that
X is the space of patterns, andN is a space of noise variables. The former model would
be expressed as a mappingX ×N 7→X , but the latter would be expressed as a mapping
S ×N 7→ X , where S is a space of unobserved underlying states.

We will assume that every element s of S is distinct and can carry a different ‘mean-
ing.’ If we could observe these directly, there would be no need for any concepts of
similarity between them at all—each state would be recognisably and reliably distinct
from all the others, and any difference would be significant. It is the introduction of
noise which creates potential confusion between the elements of S and of X . We will
also assume that the mapping from S×N to X is not invertible because otherwise, we
could simply recover s exactly, and again, there would be no need to consider elements
of X or S to be more or less similar to each other.

If the noise variables are marginalised, then the system becomes non-deterministic
and is summarised by the joint probability distribution of s and x. The distance mea-
sures described below are based on the idea that distances in either S or X should be
chosen to localise the ‘spread’ of p(s,x). Two observations x1 and x2 are to be con-
sidered similar to the extent that they could both have been generated from the same
hidden state s, but one could also consider two states s1 and s2 to be similar to the
extent that they could both generate the same observation x. The general principle is
illustrated in fig. 8.10.

Coincidence likelihood similarity

First, we will consider a rather simplistic implementation of the above principle: how
likely is that two patterns x1 and x2 are due to the same underlying state s? Consider
two independent realisations of the generative model: (s1,x1) and (s2,x2). The problem
is then to compute the probability that s1 = s2 given a particular pair (x1,x2). This can
be done by integrating along the line s1 = s2 in the two-dimensional density function
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p(s1,s2|x1,x2): if ∆s = s2− s1, then the probability density of ∆s evaluated at ∆s = 0 is

p(∆s|x1,x2)|∆s=0 =
1

p(x1)p(x2)

∫∫

δ (s1− s2)p(s1,x1)p(s2,x2) ds1 ds2

=

∫

p(s|x1)p(s|x2) ds.

Though this expression was derived in rather an ad-hoc manner and will not be pursued
any further, it does suggest that we compare p(s|x1) and p(s|x2) using a more principled
measure of dissimilarity between probability distributions, the obvious choice being the
Kullback-Leibler divergence or a related measure.

Distance between probability distributions

The Kullback-Leibler divergence (e.g. Cover and Thomas, 1991) between two proba-
bility densities p and q on the same space X is

D(p‖q) =
∫

x∈X
p(x) log

p(x)
q(x)

dx. (8.27)

Strictly speaking, it is not a metric on the space of distributions because it is not sym-
metric and does not satisfy the triangle inequality. We will overlook the second of these
problems for the time being, and consider several possibilities for symmetrising it:

1. Form a weighted combination of the divergences in both directions:

D(p||q) = αpD(p‖q)+αqD(q‖ p), (8.28)

where αp and αq can either be the same, or chosen according to some scheme
that makes sense in the problem at hand. In particular, if p and q are conditional
probabilities associated with one of two states, one could use the probabilities of
those states to weight the divergences. This is an extension of Kullback’s own
proposed symmetrisation, which had αp = αq = 1 (Kullback, 1968).

2. Use the Kullback-Leibler divergence as a differential distance measure between
densities that are infinitesimally far apart. Given a suitably parameterised family
of densities, this can be shown to induce a Riemannian metric on the differen-
tiable manifold formed by the family (see Amari and Nagaoka, 2001). To com-
pute the total distance between two densities in the family, one would integrate
the infinitesimal distances along a geodesic in the manifold.

3. The following are suggested in the context of a binary mixture density controlled
by a binary random variable U . Suppose that if U = 0, then the distribution of x
is p0(x) ≡ p(x|U = 0), but if u = 1, then it is p1(x) ≡ p(x|U = 1). The variable
U has a certain distribution p(u), so the joint distribution is

p(x,u) = p(x|u)p(u). (8.29)
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A distance between p0(x) and p1(x) can then be obtained by taking one of the
following expectations over this joint distribution:

DA = Ex,u log
p(x|u)

p(x|ũ)
DB = Ex,u log

p(u|x)
p(ũ|x) , (8.30)

where tilde (ũ) denotes binary negation. They can be interpreted as measuring the
average log-odds on correct inference of U given an observation x, using either
maximum likelihood or maximum a-posteriori inference, respectively. They are
essentially a misclassification likelihood: they rate how likely are we to confuse
two the states. The first (DA) is actually equivalent to

P(U =0)D(p0‖ p1)+P(U =1)D(p1‖ p0) (8.31)

and thus has the same form as the symmetrised K-L divergence in eq. 8.28.

Distance measures in X and S

Now that a number of possibilities for measuring distance between probability distri-
butions have been suggested, these can be applied to the model system described at the
beginning of this section, which is fully described by the joint density p(s,x).

The distance between two observations x1 and x2 can be defined as the distance
between the two conditional densities p(s|x1) and p(s|x2). In effect, this measures
the extent to which two observations lead to the same conclusions about s. Similarly,
the distance between two states s1 and s2 can be equated with the distance between
p(x|s1) and p(x|s2), which measures the extent to which two states produce the same
distribution of observations, once noise has been taken into account.

Distance via mutual information

That observations of the random variable X lead to conclusions about another S sug-
gests that distances in the observation spaceX be defined explicitly in terms of a mutual
information. Such an expression can be constructed as follows: consider two elements
x1,x2 ∈ X . The knowledge that X is either x1 or x2 results in a certain posterior dis-
tribution, p(s|x ∈ {x1,x2}). Subsequently, on learning the value of X , the posterior
reduces to either p(s|x1) or p(s|x2), with a concomitant gain of information about S.
Intuitively, one might expect that if very little information is gained about S in this final
step, then x1 and x2 should be considered similar. If this final piece of information is
encoded as a binary variable U which is 0 if X = x1 and 1 if X = x2, then the mutual in-
formation I(U,S) measures the extent to which learning U supplies information about
S. If Q denotes the predicate that X ∈ {x1,x2}, (which is clearly a precondition for the
variable U to have any meaning) then
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I(U,S) = ∑
u∈{0,1}

∫

S

p(u,s) log
p(u,s)

p(u)p(s|Q)
ds

= p(x1|Q)

∫

S
p(s|x1) log

p(s|x1)

p(s|Q)
ds+ p(x2|Q)

∫

S
p(s|x2) log

p(s|x2)

p(s|Q)
ds

= p(x1|Q)D(ps|x1
‖ ps|Q)+ p(x2|Q)D(ps|x2

‖ ps|Q),

where

p(s|Q) =
p(s|x1)p(x1)+ p(s|x2)p(x2)

p(x1)+ p(x2)
.

In contrast with the symmetrised divergence in eq. 8.28, this is a weighted combination
of distances from p(s|x1) and p(s|x2) to a third distribution, p(s|Q).

8.3 Phase invariance

Hyvärinen et al. (2001) identify a relationship between their topographic ICA and the
subspace ICA algorithm proposed earlier by Hyvärinen and Hoyer (1999, 2000), which
was designed to perform a certain kind of invariant feature detection, and which can be
said to model a certain kind of ‘phase invariance.’ This provides a link between phase
invariance and the R-similarity discussed in §8.1.

On the other hand, phase invariance in audition can be thought of as a way of ig-
noring irrelevant information, and is thus related to the P-similarity discussed in §8.2.
Sonological representations which are notionally ‘phase invariant,’ such as the spectro-
gram, model this by transforming the audio signal in a certain way and then discarding
part of the result. This was one of the motivations in using a spectrogram, rather than a
Fourier transform as the raw material for the sparse coder in Chapter 7, and enabled the
system to discover harmonic relationships that the linear ICA in Chapter 5 was unable
to detect.

In this section, the link between these two concepts of phase invariance will be
investigated, and the implications for the use of quadratic representations, of which the
spectrogram and the Wigner Distribution are examples, will be discussed.

8.3.1 Phase invariance in audition

Ohm’s acoustical law (see, e.g. Risset and Wessel, 1999) states that the ear is phase
deaf in the context of periodic tones. Specifically, a listener will be unable to perceive
any difference between two sounds if their Fourier representations differ only in their
patterns of phase relationships, but not in their harmonic amplitudes, even though the
sounds may have very different waveforms. However, it is important to note that in-
sensitivity to phase holds only for periodic tones. Helmholtz also held that ear is phase
deaf under these conditions, and showed that this is indeed true for synthetic vowel
sounds (Helmholtz, 1885).

Subsequent experiments (Risset and Wessel, 1999) have shown that the situation
is not quite as clear cut: under certain conditions, changes in phase relationships (and
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hence the shape of the wave form) are perceptible, however, Risset and Wessel found
that the effect is weak, and not significant in a normally reverberant room, because
multiple reflections disrupt phase relationships. This observation provides a clue as
to why, in ecological terms, the auditory system should discard phase information in
this way. If the perceptual machinery is geared towards the segregation of independent
streams of information, then phase relationships, being dominated by reverberation or
other environmental effects, are likely to be separated off. Any information they can
yield is likely to be concerned with perception of the acoustic environment rather than
the characteristics of the source itself. When it comes to extracting information about
the sound source, phase relationships are likely to be of little use, and can be considered
as noise according to the ecological definition described in §8.2.2, at least in the sort
of reverberant environment that Risset and Wessel referred to.

Phase invariant representations A phase invariant representation is one that discards
‘the phase information’. The problem with this notion is that ‘the phase information’
is different for different representations. At one extreme, in a (non-windowed) Fourier
transform, ‘the phase information’ includes all the timing structure. To give an extreme
example, both Gaussian white noise and and the impulsive delta function have the
same power spectrum, which is constant at all frequencies. Hence, they could be said
to differ only in phase. However, I expect that the reader will agree that, in most
contexts, the differences between them would be much more significant than that! In
general, phase structure is time structure, and time structure is important. It is only
certain classes of signal (such as periodic or constant signals) that are invariant to time
shifts. In a time-frequency representation such as a short-term Fourier transform, or
a wavelet transform, the set of signals that differ only in phase will depend on what
time-frequency tiling is chosen. For example, Hyvärinen and Hoyer (2000) note that
though phase and shift invariance are equivalent in a global Fourier representation, they
are different if phase is computed from a local Fourier transform. The conclusion is
that phase invariance is only defined relative to a particular representation, and thus a
sensible approach might be to find the representation in which the resulting form of
phase invariance is the most ecologically relevant.

8.3.2 Multidimensional phase spaces and complex cells

Independent subspace analysis or ISA (Hyvärinen and Hoyer, 1999, 2000) attempts
to discover a factorial representation by grouping linear components into a number of
subspaces. Within a subspace, the components may be dependent, but each subspace
should be independent of the others. The energy within each subspace is computed by
summing the squares of each component belonging to it, and so these energies should
all be independent of each other. The direction of the activity in each subspace is
discarded; this can be equated with the loss of phase information.

The key feature of a phase invariant subspace in Hyvärinen and Hoyer’s model
is that, within that subspace, the distribution of data is spherically symmetric. For
example, in a 2-D subspace consisting of two components x and y, the probability
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density would be of the form

p(x,y) = h(x2 + y2). (8.32)

Such a distributions are factorial: not in Cartesian coordinates but in polar coordinates.
Thus, the independent components, as it were, of these data are not x and y but r and θ ,
or indeed, r2 and θ . Such data can be generated by multiplying an independently drawn
radius r with an n-tuple of phase variables distributed uniformly on a hypersphere in n-
dimensions. By assuming that phase is unimportant, we imply that the phase variables
are noise; in fact, they have a high entropy, uniform distribution, which is, perhaps,
consistent with that notion. This leaves r2 = x2 + y2, the ‘energy’ within the subspace,
as the quantity of interest, and which, it may be noted, is a quadratic function of (x,y).

Hyvärinen and Hoyer compare the operation of their ISA system with the so-called
complex cells in visual cortex, which seem to behave in an analogous fashion, sum-
ming the activities of a number of cells (the simple cells, which behave approximately
linearly) in the previous layer.

Furthermore, Hyvärinen et al. (2001) note that, since both ISA and topographic ICA
are based on multiplicative models, ISA is a special case of TICA, in which the neigh-
bourhoods form disjoint groups. The complex cell interpretation can still be applied to
TICA, but each complex cell computes a local average over overlapping regions of the
topographic manifold. This computation of average local energies bears a strong re-
semblance to the divisive normalisation procedures of Schwartz and Simoncelli (2001),
though there is an important difference which will be discussed in §8.3.5.

8.3.3 Analysis of a 2-D phase invariant space

We will investigate the simplest possible phase invariant space: the two-dimensional
one described above, and illustrated in fig. 8.11(a). This could represent, for example,
a sinusoidal signal chosen with random amplitude and phase. The idea is that this 2-D
space might be hidden as a linearly transformed subspace in some higher dimensional
input, such as a sequence of samples of an audio signal containing many frequencies.
In §8.3.4, we will project these findings back in to the more familiar acoustic signal
space.

Since we expect that the energy in the subspace will be a quantity of interest, we
will consider the general quadratic reparameterisation

u = x2, v = y2, w = xy
√

2. (8.33)

Thus, any member of the class of quadratic functions of (x,y), of which the energy
r2 = x2 + y2 is one, can be written as a linear function of (u,v,w). This method of
transforming nonlinearly to a higher-dimensional space where we hope the problem
may be simpler to solve is a well-known trick—the new space is known as the kernel
space, and in this case, we are using a quadratic kernel.
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Fig. 8.11: Visualisations of a phase invariant space as (a) a circularly symmetric distribution in
the xy plane; (b) the equivalent density in the uv plane and (c) the conical manifold on
which the distribution lies in uvw space. (The gray scales in (a) and (b) are logarith-
mic.)

Distribution in quadratic kernel space

We wish to examine the probability distribution in the quadratic kernel space uvw. The
first step is to obtain an expression for the probability density of the data in the uv
space. The determinant of the Jacobian of the coordinate transformation is

|J|=
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The density function can then be written directly (including an extra factor of 4 to
account for the fact that all 4 quadrants of the xy plane are mapped on to the first
quadrant of the uv plane):

p(u,v) = 4
p(x,y)
|J| =

h(x2 + y2)

xy
=

h(u+ v)√
uv

. (8.35)

An example of such a density is illustrated in fig. 8.11(b). From this, the distribution in
uvw space can be computed. The three coordinates are constrained by w2 = 2uv, which,
as is shown in Appendix D, defines the surface of a cone with a circular cross-section
and an axis which passes through the origin and points along the direction (1,1,0). The
cone is illustrated in fig. 8.11(c). The entire distribution in uvw space is concentrated on
the surface of this cone, and hence, we cannot properly speak of a probability density,
but we may consider p(u,v,w) to be a density in the surface; that is, a probability mass
per unit area of cone, rather than per unit volume.

The mapping from the xy disc to the uvw cone is not one-to-one: it is quite straight-
forward to show that a rotation of θ around the origin in the xy plane corresponds to a
rotation of 2θ around the axis of the cone in uvw space, and thus a trip once round the
disc in xy maps to a path twice round the cone.

We may also show the distribution is uniform around the axis of the cone. Perhaps
the simplest way of doing this is to consider how p(u,v) can be obtained from p(u,v,w)
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by projecting the surface of the cone on to the uv plane. The details are given in
Appendix D, but the result is that

p(u,v,w) =
h(u+ v)√
2(u+ v)

. (8.36)

That this density is a function of (u+ v) only, that is, the distance from the apex of the
cone, shows that the density on the surface of the cone is uniform around its axis.

Given this conical distribution and our desire to find phase invariant functions, a
sensible linear basis in this uvw space would consist of one vector pointing down the
axis of the cone and two others in a plane perpendicular to this and to each other, e.g.
one in w direction and other in (u,−v) direction. Will an unsupervised method such as
ICA be able to find this basis?

Distribution of linear projection

To answer this question, we will look at the probability density of a general linear
function of (u,v,w), which may be thought of as the dot product of a weight vector
(a,b,c) with a data vector (u,v,w), giving s = au+bv+cw. ICA with a super-Gaussian
prior tends to find such projections that are as ‘peaky’ as possible. In terms of x and y,
we have

s =
(

x y
)

(

a c/
√

2
c/
√

2 b

)(

x
y

)

(8.37)

Though it would be possible to work directly with this quadratic form, it will simplify
matters considerably if we take advantage of the symmetry of the problem. The central
matrix in eq. 8.37 is symmetric, and therefore admits of an eigenvalue decomposition,
so it will always be possible to rotate to new frame of reference in which it is diagonal
and c = 0. Since the probability density p(x,y) is circularly symmetric, we can do this
without a change of variables. In uvw space, this means rotating the vector (a,b,c)
around the axis of the cone until it lies within the uv plane.

To compute the distribution of s, we must integrate the two-dimensional density
p(x,y) along a family of curves defined by the quadratic form. Leaving the details
to Appendix D, the results are summarised below. Variation of the direction of (a,b)

yields a family of distributions. As the direction (a,b) rotates from (1,1)—which
points down the axis of the cone—towards the edge, the (single-sided) distribution
becomes ‘peakier.’ As it crosses the edge of the cone, it becomes double sided but
asymmetric, until finally, it becomes symmetric when (a,b) = (1,−1), perpendicular
to the axis. Because the distributions are asymmetric, measuring non-Gaussianity by
kurtosis is not very meaningful, but it is quite clear that the distribution is at its ‘peaki-
est’ when the direction (a,b) points down the edge of the cone. This suggests that
linear methods that search for maximally non-Gaussian projections, of which ICA is
an example, will not find the phase invariant projections in quadratic kernel spaces such
as this. Preliminary experiments have shown this to be the case: an application of ICA
in this 3-D kernel space results in the basis vectors pointing approximately down the
edges of the cone as predicted.
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(c)

Fig. 8.12: Two alternative bases of the 3-D quadratic kernel space. (a) The two vectors i and
j that span the phase invariant signal space. (b) The matrices iiT , jjT and ijT + jiT ,
which span the quadratic kernel space. (b) The matrices iiT + jjT , iiT − jjT , and
ijT − jiT , which form an alternative basis of the quadratic kernel space.

8.3.4 Relevance to Audio Signals and the Wigner Distribution

How do these low-dimensional phase invariant spaces project in to the high-dimensional
space of acoustic signals? Let us assume that the 2-D space investigated in the previous
section is actually the subspace spanned by two sinusoids of the same frequency but
in quadrature phase. Let us also assume for ease of visualisation that the signals are
sampled in discrete time and are of finite length, n samples, so we may denote them
by r ∈ R

n. The 2-D phase invariant space is now a subspace of R
n. The 3-D quadratic

kernel space, however, is a subspace of a space of dimensionality m = 1
2 n(n + 1), the

space of symmetric matrices rrT . Given a vector r, the matrix rrT consists of all pos-
sible pair-wise products of elements of r, and so any quadratic function of the vector
can be written as a linear function of the matrix. This includes all the quadratic time
frequency representations: the spectrogram and the rest of Cohen’s class.

The 3-D kernel space was parameterised using the three coordinates u, v and w. In
the m dimensional kernel space, these map to three basis ‘vectors,’ (though they are best
visualised as n× n matrices) which we can specify as follows: Let the two sinusoidal
basis vectors be i, j ∈ R

n. These are illustrated in fig. 8.12(a). An input signal r, a
sinusoid of unknown amplitude and phase, may then be written as r = xi + yj, where
x and y are assumed to have a circularly symmetric distribution. This maps to the
quadratic kernel space as

rrT = x2iiT + xy(ijT + jiT )+ y2jjT . (8.38)
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Fig. 8.13: Basis of 3-D quadratic kernel space in the Wigner domain. Note that these are not

the Wigner distributions of any particular signals, but are obtained by rotating the
matrices in fig. 8.12(c) 45◦ anticlockwise and Fourier transforming vertically.

We can see by inspection that the u direction is iiT , the v direction is jjT , and w di-
rection is (ijT + jiT )/

√
2. These are illustrated in fig. 8.12(b). An alternative basis,

which yields the phase invariant energy as one of the coordinates, consists of one vec-
tor pointing down the axis of the cone and two others perpendicular to it. In the full
kernel space, the first becomes iiT + jjT , and the other two could be, for example,
iiT − jjT and ijT + jiT . These are illustrated in fig. 8.12(c).

Why should these be of any interest? It has already been noted that all the quadratic
time-frequency representations can be obtained as linear functions in the quadratic ker-
nel space. The Wigner Distribution in particular is invertibly related to the matrix
rrT , essentially by a one-dimensional Fourier transform along the anti-diagonal of the
matrix. The basis vectors found above, being plane waves, all have trivial Fourier trans-
forms, which are illustrated in fig. 8.13. The phase invariant ‘energy’ direction shows
up as the positive and negative frequency components of a sinusoidal signal, while
the phase varying components appear as two sets of cross-terms in quadrature phase.
Thus, the structure of the cross-terms in the Wigner Distribution is closely related to
the structure of phase invariant spaces discussed here.

Note that this conclusion has been drawn from a particular assumption about what
constitutes a phase invariant subspace, namely, that spanned by two sinusoids in quadra-
ture phase. This is only an assumption: if an ecological analysis, perhaps using ICA
or ISA, reveals that other subspaces exhibit the characteristic spherically symmetric
distributions, then different notions of what constitutes a cross-term in the Wigner dis-
tribution would result.

Why the Wigner distribution is not suitable for ICA

Many of the time-frequency distributions that are in common use, such as the spec-
trogram, the wavelet transform energy or scalogram, the Wigner distribution, and the
correlogram, can all be computed as linear functions of the quadratic object rrT . This
suggests that it ought to be possible to design an unsupervised system that finds an
optimal representation as a linear function in the quadratic kernel space, hopefully re-
sulting in the discovery of the most appropriate ‘phase invariant’ representation for a
given class of signals, however this is defined.

The results of this section show that signals that contain phase invariant subspaces
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have an intricate structure in the quadratic kernel space, and naive applications of linear
methods such as PCA or ICA are unlikely to be successful, and some thought will be
required to design an appropriate algorithm.

The alternative is to avoid moving into the quadratic kernel space at all, which
is precisely what the ISA algorithm is designed to do. The final demonstration of this
section is that any quadratic function of the data can be computed by an ISA-like model
with a layer of linear ‘simple cells’ and a layer of ‘complex cells’ that form weighted
energy averages. Let the quadratic function be

f (x) = ∑
i, j

Ai jxix j = xT Ax, (8.39)

where A is without loss of generality symmetric. Hence, there exists an eigenvalue
decomposition A = UΛUT , with U orthogonal and Λ diagonal. This means that

f (x) = xT UΛUT x. (8.40)

Letting y = UT x, and assuming that both x and y are both n-dimensional, this becomes

f (x) = yT Λy =
n

∑
i=1

λiy
2
i , (8.41)

showing that any such function can be written as a weighted sum or difference of
squares of a suitable set of linear functions of x. This is a sort of generalised ‘complex
cell’, which is allowed inhibitory as well as excitatory connections from the preceding
layer of linear ‘simple cells.’ If many quadratic functions are required, then each ‘com-
plex cell’ requires at most n ‘simple cells’ to feed it. Since these may or may not be
sharable, the initial linear representation may have to be overcomplete.

8.3.5 Relationship with topographic representation

According to the framework adopted in this chapter, the distinguishing feature of phase
invariant subspaces is the spherically symmetric data distribution within them. Inde-
pendent subspace analysis or ISA (Hyvärinen and Hoyer, 2000) is specifically designed
to find these subspaces in high-dimensional data, but the dimensionality of the sub-
spaces must be pre-specified. One way to avoid this requirement is to use the meth-
ods of §8.1, since, unless the variables of a spherically symmetric distribution are
jointly Gaussian, they will be statistically dependent. The two dependent components
in fig. 8.2 show precisely this circular symmetry.

If a linear space does indeed separate into a number of independent subspaces,
then the geometric analysis of residual dependency using MDS should reveal a number
of distinct clusters, each of which defines a candidate phase invariant subspace. The
dimensionality of these subspaces is not predetermined and would emerge from the
analysis. The energy in each subspace would be computed by summing the energies
of the components in the cluster. Since the clusters should be well separated (because
they are assumed to be independent) this can be viewed as a kind of local averaging in
the MDS embedding space.
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This sort of local processing in a topographic representation has been proposed
by Schwartz and Simoncelli (2001), who advocate divisive normalisation, motivated
by the observation that in some distributed representations, a unit’s variance can be
predicted by the energy of its neighbours. This is a form of redundancy which can be
removed by dividing the unit’s activity si by its predicted variance:

φi =
s2

i

σ2
i +∑ j∈Ni

wi js
2
j

, (8.42)

where Ni is the set of indices of the ith unit’s neighbourhood, and the wi j are fixed
weights. The predicted variance has the form of a local average with an extra additive
term, σ 2

i , to model any residual variance not accounted for by the local energy.

Schwartz and Simoncelli present this in terms of a linear representation with a
predefined topology (such as a wavelet transform) so that the neighbourhoods can be
identified. Both topographic ICA and the method presented here provide data-driven
ways of finding a suitable representation in which to do divisive normalisation.

The spherically symmetric distributions of phase invariant subspaces and the lo-
cal activity correlations of topographic ICA can both be modelled by a multiplicative
generative process. Consider the two-dimensional space analysed in §8.3.3. If the
components x and y are generated according to

x = σφx, y = σφy, (8.43)

where σ is a random multiplier, and φx and φy are random with a circularly symmetric
distribution, then x and y will also have a circularly symmetric distribution. The benefit
of this is that φx and φy (which could be called ‘phase variables’) may now be assumed
to have a circular Gaussian distribution, and hence be independent as well circularly
symmetric. The fact that they are Gaussian and uncorrelated is perhaps consistent with
the idea that phase is a form of multiplicative ‘noise.’ Given an appropriate distribu-
tion of σ , a wide class of circularly symmetric non-Gaussian distributions of the sort
illustrated

in fig. 8.2 may be obtained in x and y. This sort of model is called a scale-mixture
of Gaussians, which Wainwright and Simoncelli (2000) use to provide a model-based
justification of divisive normalisation. Similarly, in the generative model behind topo-
graphic ICA, a locally smooth ‘energy profile’ is multiplied by a set of uncorrelated
Gaussian ‘phase variables.’ The local averages computed by the model ‘complex cells’
in ISA and topographic ICA are estimates of the scale factors, while the phase variables
are discarded.

Note that divisive normalisation appears to be doing the opposite of what complex
cells do. The complex cells compute local averages, which are assumed to be useful
because they begin to capture some invariant structure. Divisive normalisation on the
other hand, computes the local averages in order to remove them from the input. The
result of this normalisation is, in present framework, the phase variables, that is, the
‘noise’. Perhaps the real benefit of the divisive process is that it may achieve a fac-
torial split, dividing the representation into two sets of variables (the energies and the
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phase variables) which, it is hoped, are independent of each other. Either set may have
significant non-random structure and thus be an interesting object of further analysis.

Summary

In this chapter, the concepts of similarity and distance were examined from a number
of viewpoints. A distinction was made between two types of similarity. The first, P-
similarity, pertains to complete sensory scenes and the distributed patterns of activity
that might be used to represent them. The second, R-similarity, pertains to the individ-
ual units in a distributed representation. In general, the two are distinct, except in the
case of certain representations such as ‘code-book’ vector quantisers or categorisers.

Topographic representation through dependency analysis and MDS It was pro-
posed that statistical dependencies in a distributed representation be used to define not
just neighbourhood relationships, as in topographic ICA (Hyvärinen et al., 2001), but
a complete metric, by defining a mapping from mutual information to distance. This
idea was applied to the distributed representations arising from the ICA experiments
of Chapter 5. The mutual information between each pair of components was estimated
using a method based on measuring correlations between the nonlinearly transformed
components. The functions used were chosen to bring out the dependence between
pairs of components with symmetric, heavy-tailed joint distributions.

The mutual information estimates were converted into distances using a heuristi-
cally derived mapping based on consideration of a certain kind of Gaussian noise pro-
cess. MDS was then used to to derive low-dimensional spatial representations of the
system of distances, resulting in a geometric visualisation of the relationships between
the ICA components.

The configurations derived from the speech and music results of Chapter 5 were
very different, but both representations had significant residual dependency structure
that gave rise to some interesting geometric forms. This should help guide the design of
subsequent stages of processing in an artificial perceptual system based on the principle
of redundancy reduction as discussed in Chapter 2.

The relationship between distance and noise It was suggested that an ecological
measure of P-similarity should be based on the likely significance of difference, and
hence that a model of psychological distance could be derived from a consideration of
noise. It was shown that several well-known metrics can be derived from an appropriate
noise model; for example, a Euclidean metric arises naturally for a system with additive
Gaussian noise. As a generalisation of this idea, a few methods for inducing metric
structure from probabilistic structure were proposed, mostly based on the Kullback-
Leibler divergence as a measure of distance between probability distributions. Such
methods have the advantage that they are invariant to a transformation of variables since
the Kullback-Leibler divergence is itself invariant to such transformations (Kullback,
1968).
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The structure of phase invariant spaces The discussion of phase invariance was
prompted by the suggestion (Hyvärinen and Hoyer, 1999) that random variables with
a spherically symmetric probability density form a kind of ‘phase invariant’ subspace.
This has implications for the statistical structure of such spaces—in that variables in
the subspace will be dependent and thus amenable to analysis with the methods of
§8.1—and for the sorts of generative model that could give rise to spherically symmet-
ric data distributions, an important example being a multiplicative generative model.
Such a multiplicative model is at the heart of topographic ICA, and also the divisive
normalisation models of Schwartz and Simoncelli (2001) and Wainwright and Simon-
celli (2000); thus all these systems are closely related.

Finally, the structure of a two-dimensional phase invariant space was analysed.
Since the energy in any subspace of any high-dimensional linear space is a quadratic
function of the components, the circularly symmetric 2-D distribution was projected
into a 3-D quadratic kernel space, in which all such quadratic functions become linear.
It was found that this 3-D space has a very particular structure in which there are ‘spe-
cial’ directions suitable for forming a ‘best basis,’ but that these directions are unlikely
to be found by methods which maximise super-Gaussianity, such as ICA with a super-
Gaussian prior. It was found, however, that when the toy two-dimensional system is
projected into a multidimensional space of audio signals, a link between the phase in-
variant structure and cross-terms in the Wigner distribution emerges, suggesting a new
way of looking at these cross-terms, and perhaps a new approach to removing them.
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WO R K

In this final chapter, the conclusions of the previous four are summarised: the experi-
ments with ICA, sparse coding, and MDS in §9.1, §9.2 and §9.3 respectively, along
with any direct consequences in terms of work to be done. The final section suggests
some more open ended ideas for further work to do with ways in which probabilistic
models can deal with temporal structure.

9.1 Independent Component Analysis of Speech and Music

ICA was applied to two audio ensembles drawn from radio broadcasts: BBC Radio 4,
which broadcasts mainly speech, and BBC Radio 3, which broadcasts mainly classical
music. The data was represented as blocks of 512 consecutive samples. The result was
two linear representations, adapted to speech and music respectively, which in many
respects are roughly comparable with Fourier and wavelet representations, but with
different time-frequency tilings. Thus, wavelets and sinusoids do indeed seem to be
the ‘independent components’ of speech and music. Further analysis of the residual
dependencies using MDS revealed some interesting geometric structure in the bases.

On the one hand, the results suggest that wavelet and Fourier transforms are useful
because they are efficiently computable approximations to an optimal linear redun-
dancy reduction for certain types of data. On the other hand, this work demonstrates
that these structures are implicit in the statistical structure of sound: they need not be
assumed a priori and can be discovered through unsupervised learning. It also shows
the importance of the ecological approach, showing that the ‘environment,’ (in this
case, an auditory environment) really does have a large impact on the results obtained
by approximating an optimal ICA representation.

9.1.1 Speech-Derived Results

The speech basis vectors were essentially temporally-localised sinusoids, except at the
lowest frequencies, where the basis vectors spanned the entire 46 ms window visible
to the system. The relationship between the basis vector bandwidths and their centre
frequencies was not quite the simple proportionality found in a constant-Q wavelet
basis—refer back to fig. 5.3 for more details. When plotted as Wigner distribution
contours, the basis vectors formed a fairly complete covering tiling of time-frequency
plane, with little overlap or unoccupied space.
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When the residual dependencies in the representation were estimated using non-
linear correlations and visualised spatially using MDS, the elements took up the form
of a two-dimensional manifold, arranged almost perfectly according to the time and
frequency positions of the basis vectors. Thus, the very notion of a two dimensional
time-frequency representation was found to be inherent in the statistical structure of
speech.

9.1.2 Music-Derived Results

The music basis vectors tended to be less temporally localised, including many sinu-
soids spanning the whole window, similar to those in a Fourier basis, though the fre-
quencies were not distributed as uniformly as in a Fourier basis. In addition, there were
some short-duration, high-frequency wavelets, and some basis vectors that could not
easily be characterised and were not well localised in time-frequency. The distribution
of frequencies and bandwidths showed some evidence of the 12-semitones-per-octave
found in Western music, with more sharply tuned vectors alternating with less sharply
tuned ones at the rate of 12 per octave, though the effect was quite weak.

The residual dependency structure showed clear evidence of this ‘semitone’ effect,
as well as strong dependencies between vectors with centre frequencies standing in
harmonic ratios. When visualised in 3-D, some of this structure was visible. The
overall form was that of a frustum of a cone, with high frequencies at the narrow end,
sharply tuned units (forming the chromatic scale) towards the surface, poorly tuned
‘microtones’ towards the axis, and an approximate circle of Fifths around at least part
of the surface towards the low frequency end.

9.1.3 Future Developments

Application to more data sets An obvious extension to the work here is to apply ICA
to some different ensembles: more percussive music may produce a more wavelet-
like basis; musics from other cultures with different scale structures may produce
alternative geometric structures. More results of this kind would also begin to give
us some idea of how reproducible these bases are; preliminary results suggest that
they are quite reproducible.

As more powerful computers become available, it will become practical to use
longer blocks of audio data: it will be interesting to see at what point the full-width
sinusoids in the music basis become localised wavelets. This will also improve the
frequency resolution at the low end.

Comparative analysis of redundancy A quantitative analysis of entropy and redun-
dancy in Fourier and wavelet representations, as well as those derived by ICA, will
allow a strict comparison between them: presumably, the ICA representation will
have the lowest redundancy, but it is important to confirm this.

Comparison with cochlear filtering The speech basis vectors showed a clear rela-
tionship between centre frequency and bandwidth; which should be compared with
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physiological and psychoacoustic data about filtering and frequency selectivity in
the human auditory system. This may require training an ICA system on a more
environmentally representative ensemble than one composed entirely of speech.

Bandwidth structure in speech basis On a related note, it would be interesting to
investigate what if any significance there may be in bandwidth structure of the
speech basis between 1 and 2 kHz. Does it have anything to do with the structure
of formants in speech?

Model driven normalisation The experiments performed here required a gain control
stage before the ICA module to maintain stability. The method used was chosen
in an ad-hoc manner and was not based on any explicit model of the signal. By
considering a multiplicative model of the signal, in which the ICA mixtures are
multiplied by a slowly varying scale factor, it may be possible to implement a model
based normaliser driven jointly by feedback from the ICA model and a prior model
of scale factor variations.

Mixtures of ICA and PCA to model silence It was observed that, during periods of
silence, the gain control stage would quickly increase the gain. When the next
sound actually arrived, it would be greatly amplified and in some cases would
destabilise learning. One way of dealing with this would be to suppose that during
periods of silence, gain control should be suspended on the basis it contains no
information about the likely loudness of the next sound. The hypothesis is that it
is not silence, but quiet sounds that lead us to expect more quiet sounds, at least
over moderately short periods. This is equivalent to a formal mixture model, where
‘silence’ is modelled separately from non-silence (perhaps as low-level Gaussian
noise) so that the non-silence model (including the gain control stage) adapts only
when the signal is badly modelled as ‘silence.’ Roberts and Penny (2001) intro-
duced the mixtures of ICA model, which should be applicable in this instance.

Faster implementation using a sparse weight matrix The ICA bases contained
many sinusoids and wavelets, and so it may be possible to use a fast, O(n logn),
Fourier or wavelet transform as a preprocessor. Since both are invertible linear
transformations, this should have no effect on the end result, but could allow the
implementation of a sparse ICA weight matrix, and perhaps an improvement on
the current O(n2) performance.

9.2 Sparse Coding

9.2.1 Sparse Coding Algorithm

A modified ‘active set’ quasi-Newton optimisation algorithm was developed to deal
with the discontinuities in the gradient of the objective function used in maximum a
posteriori estimation in the sparse coding model. This was found to yield performance
improvements under certain conditions.



154 9. Conclusions and Further Work

Experiments with a toy data set showed that a certain amount of sparsity is required
to find an overcomplete basis; below this level, only a complete basis is found.

An analysis of learning in a one-dimensional version of the sparse coder yielded
some insights into the behaviour of the multidimensional version. The scaling of the
basis vectors was shown to be related to their sparsity in the input, due to a mismatch
between the assumed prior and the actual distribution of the input. Furthermore, ap-
proximations made in the derivation of the learning rule result in the basis vectors
converging to zero, rather than the correct value, when the sparsity of the input drops
below a certain threshold determined by the assumed noise level.

The analysis also showed that the hybrid ‘sparsified’ Laplacian prior was largely
ineffective in achieving its stated aim, which was to approximate the sources as mix-
tures of zeros and Laplacian random variables. It did not correct the scaling of the
basis vectors, and meant that the posterior distribution of the source given the data
could be multimodal. Neither the gradient optimiser, nor the approximations used in
the derivation of the learning rule, are equipped to handle this situation.

On the other hand, the hybrid prior did enable quite large gains in performance,
though in a somewhat unprincipled way, by forcing many outputs to remain inactive.
This would usually prove detrimental to learning, but if the basis had already been
learned, the performance gains were substantial. In the musical application (see below)
it meant the transcription was ‘cleaner,’ with fewer extraneous notes, and could perform
in real-time.

9.2.2 Application to Music Spectra

The sparse coder was applied to short-term Fourier magnitude spectra derived from
some synthesised harpsichord music. The basis vectors, the ‘independent components,’
were found to be the note spectra, and so the system as a whole, after training, was es-
sentially doing an optimal linear decomposition of the input spectra into a set of atomic
note spectra, but where the atomic spectra were themselves learned from the music in
an unsupervised fashion. Thus, it could form the basis of an automatic transcription
system, and was found to be capable of doing audio to midi conversion even with an
extremely simple final stage. However, this was with a very restricted data set, and it
remains to be seen how it performs with other types of music played on real instru-
ments. The notes produced by the synthetic harpsichord were very consistent, and real
instruments produce much more variable sounds.

Regardless, this was not the main point of the experiment: we do not expect to
build a polyphonic transcription on a simple linear generative model like this. What
it showed was two things. Firstly, there is enough structure in music for musically
relevant aspects to emerge through unsupervised learning; in this case, it was the in-
dependent existences of notes, each with a certain spectral structure. Secondly, given
the limitations of the linear generative model, the system performed quite well, but at a
high computational cost. In general, it seems that probabilistic inference in this sort of
noisy, multiple-cause graphical model is a powerful technique, but cannot be applied
to large amounts of data without some restrictions on the graph topology to allow more
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efficient inference, or preprocessing to reduce the number of variables involved.

9.2.3 Future Developments

Improve noise model The current version assumes white noise in the spectral domain.
Even if a white noise model was appropriate in the time domain, observation of the
Fourier magnitude spectra suggests that the ‘noise-like’ activity is not distributed
uniformly across the spectrum, but tends to be proportional to signal activity—this
is a manifestation of spectral leakage and fundamentally, is due to phase infor-
mation ‘leaking’ into the supposedly phase invariant magnitude spectrum because
of the windowing process. This could be modelled as a multiplicative noise pro-
cess, but since there is generally more activity at the lower end of the spectrum, it
would be much simpler, as an initial step, to assume additive, uncorrelated, but non-
uniform Gaussian noise, with a smaller variance at high frequencies. This would
result in the higher harmonics of musical notes receiving more weight in the sparse
coder. Alternatively, the magnitude spectrum could be abandoned as an input rep-
resentation in favour of a self-organising ‘phase invariant’ representations of the
sort described in §8.3.

Binary categorisation using mixture models It was noted in Chapter 7 that the
marginal distributions of the basis vectors were bimodal, and that this was probably
related to the binary nature of note activation. It may be possible to formalise this
with an explicit mixture model. Olshausen and Millman (2000) developed a sparse
coder using a mixture-of-Gaussians prior, but again, this is at a high computational
cost due to the need to integrate over a multimodal posterior.

Fast redundancy reduction as a preprocessing step As mentioned before, the main
obstacle to using sparse coding is the computational cost. One way of overcoming
this would be to reduce the connectivity of the system considered as a network. It
may be possible to do this by using a more efficient method such as ICA, to do
an initial phase of redundancy reduction, followed by a topographic organisation
to localise the residual dependencies. Then, a sparse coder could be implemented
with less than full connectivity. Hoyer and Hyvärinen (2002) have made steps
in this direction but their algorithm does not exploit the expected locality of the
residual dependencies.

Modelling temporal dependencies The initial experiments with two-dimensional
spectrogram patches suggested that note onsets would be an important feature; the
use of wider patches should result in more reliable note detection by learning the
typical profile of a note in time as well as frequency. The main obstacle to this is
the large amount of data involved in representing a patch. Unlike visual images,
these spectrogram ‘auditory images’ are not translation invariant in the frequency
direction and hence the patches used as input must span the whole frequency range.

Alternative overcomplete representations The sparse coder used in the present work
is not the only system capable of generating overcomplete representations: other,
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possibly less computationally burdensome methods have been proposed: Hyvärinen
et al. (1999) have developed a method based on quasi-orthogonality, and Hinton
et al. (2001) suggested a generalisation of Hinton’s product of experts (PoEs) model
which may be applicable.

9.3 Distance and Similarity

9.3.1 Geometric Representation using MDS

The residual dependencies in the ICA representations developed earlier were estimated
using correlation of rectified activities. A mapping from correlation coefficient to mu-
tual information to distance was proposed, and the resulting distances used to generate
spatial configurations of the representations in 2 and 3 dimensional Euclidean spaces
using multidimensional scaling. (Results already summarised in §9.1.)

The nonlinear correlation technique seemed to be quite effective at capturing the
dependency when compared with direct estimation of the mutual information using
joint histograms, though a more rigorous comparison is required.

9.3.2 Distance and Noise

The relationship between noise and similarity was investigated and a definition of dis-
tance in a noisy probabilistic model was proposed on the basis that distance should be
related to significance of difference, and significance is related to noise, in that noise is
that which is insignificant.

9.3.3 Phase Invariance

The idea that phase invariant spaces are related to spherically symmetric probability
distributions was explored, and the two-dimensional case was analysed. The data was
found to take on a conical distribution in a quadratic kernel space. One of the con-
clusions was that searching for phase invariant functions by using ICA in a quadratic
kernel space (in particular, the Wigner distribution) would be unsuccessful due to the
statistical structure of the data in such a space. However, the analysis did reveal a con-
nection between the structure of the two-dimensional phase invariant subspace and the
cross-terms in the Wigner distribution.

9.3.4 Future Developments

Estimation of mutual information by nonlinear correlation A further investigation
of the relationship between nonlinear correlation and mutual information is re-
quired, and a comparison with other ways of estimating the mutual information.
In particular, a proof or otherwise of the conjecture (eq. 8.5) that the MI is bounded
by the non-linear correlation is needed, and a more rigorous evaluation of estima-
tion procedure with known distributions should be carried out.
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Transformation of target distances Investigation of the effect of a nonlinear trans-
formation of the target distances before the application of MDS. Buja et al. (1998)
use this method to combat what they call ‘indifferentiation,’ which arises when the
distances cluster around a non-zero mode and produce an uninformative spherical
configuration.

Non-Euclidean spaces Attneave (1950) has argued that ‘psychological space’ is in-
trinsically non-Euclidean due to a lack of rotation invariance. He suggested that
the ‘city block’ distance may be more appropriate, and thus may be of use in MDS.

Statistically motivated stress functions The relationship between stress functions and
statistical estimation was pointed out in §8.1.4, and an alternative stress function
derived from considering the expected sampling distribution of the correlation co-
efficient. It remains to implement this stress function and compare the results with
those obtained earlier.

High dimensional configurations Although MDS was performed on the correlation
data in spaces of dimension up to 8, it is difficult to visualise configurations of
dimension above 3. Krumhansl (1990) and Shepard (1982) have both suggested
that at least 5 dimensions are required to visualise the important pitch relationships,
so a careful analysis of the MDS results in high dimensions is required to see if the
geometry agrees with Krumhansl’s and Shepard’s models.

Local processing in MDS embedding space The purpose of the analysis of residual
dependency is not primarily visualisation, but to facilitate further processing by
detecting and localising those dependencies. There are a number of possibilities
that fall under the general heading of ‘local processing in MDS space.’

• MDS space filtering and resynthesis would involve multiplying the ICA activ-
ities by some continuous function of position in MDS space and then inverting
the weight matrix to get back to the input space, in an exact analogue to fre-
quency domain filtering. The end result would, of course, still be a linear
transformation, not necessarily equivalent to convolutive filtering. Another
possibility is nonlinear filtering in the MDS domain. It remains to be seen
whether not this will have any practical applications.

• Schwartz and Simoncelli (2001) advocate divisive normalisation, which in-
volves dividing each (linear) unit activity by a locally averaged (rectified)
activity: they used energies averaged over time and frequency neighbours in
a wavelet basis. In the present context, these averages could be taken over
a neighbourhood in MDS space. Dividing by these local averages accom-
plishes a multiplicative decomposition. Schwartz and Simoncelli imply that
normalised activities are the quantities of interest and the averages are nui-
sance variables, whereas in Hyvarinen’s related multiplicative model for topo-
graphic ICA, it is the local averages which correspond to the hidden sources,
the latent variables of interest, and normalised activities are modelled as a
multiplicative Gaussian noise. It seems likely that both are partially correct,
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and the important point is that the unnormalised variables are decomposed
into two putatively independent sets, thus serving the goal of factorial cod-
ing and redundancy reduction. In principle, one would keep both sets of
variables and look for any remaining structure using another unsupervised
method. Hoyer and Hyvärinen (2002) partially implemented this idea by us-
ing non-negative ICA after topographic ICA; when trained on natural images,
this system learned a form of contour coding.

• Phase invariant subspaces of the sort described in §8.3.2 could be found by
looking for clusters of units in MDS space. The advantage of this approach
over that used in independent subspace analysis (Hyvärinen and Hoyer, 2000)
is that the dimensionality of the subspaces is not predetermined, but judged
by comparing distances.

Note that many of these local processes could be implemented without actually
generating a spatial configuration, and working directly from the distance matrix.

Phase invariance and the Wigner distribution It may be possible to use knowledge
about the structure of the phase invariant subspaces in a signal to develop a new
method for removing the cross-terms in the Wigner distribution based on the rela-
tionship between the cross-terms and the conical distribution found in §8.3.3.

Use of temporal dependencies The method presented here is based on measuring in-
stantaneous correlations, essentially identifying representational units that are ac-
tive together as ‘similar.’ This might be adequate in a universe where each moment
was independent of the previous, but this is clearly not the case in the real world. A
better alternative would be to allow temporal dependencies to influence the charac-
terisation of similarity. For example, in music, the likely succession of notes could
define a sort of ‘horizontal’ or ‘melodic’ relatedness distinct from the ‘vertical’
or ‘harmonic’ relatedness that would emerge from an analysis of simultaneously
sounded notes. That topographic maps could be defined by the temporal flow of
activity was suggested by Licklider (1959), who speculated that the maps in the
brain may “favour the location side by side of maxima of activity produced by
stimuli that frequently occur in close succession.” In the case of auditory maps,
he speculates that “in as much as glissandi are probably the most frequent orderly
variation of stimulation, an ordinal representation of stimulus frequency arises.”

The use of temporal dependencies would naturally give rise to asymmetric similar-
ity relationships, and so the inability of spatial models to accommodate asymmetric
‘distances’ would have to be addressed.

9.3.5 An Ecological Characterisation of Noise

The proposed measures of distance in §8.2.3 depend on an ecological definition of
noise as that part of sensory data which has no biological relevance. It may be possible
to define this operationally in the following way: for any organism, one may suppose
that there are certain intrinsically ‘value-laden’ signals such as those associated with
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hunger or extremes of heat and cold. ‘Relevant’ signals are those which ultimately
correlate with these intrinsically ‘good’ or ‘bad’ signals (or the V -set for short); con-
versely, noise can be defined as any component of sensory data which shows no such
statistical dependency. The signals in the V -set are those which an animal ultimately
‘cares about,’ and noise is that which provides no information about them. The V -set
amounts to a set of reinforcement signals, but unlike in reinforcement learning (Sutton
and Barto, 1998), there is no desired response which brings a reward or punishment—
this is still a form of unsupervised learning which passively learns the relationships
between neutral sensory data and the V -set, using this to decide which data to keep and
what to throw away as noise.

9.4 Time

“All we composers have to work with are time and sound, and sometimes
I’m not so sure about sound.”

—Morton Feldman

The methods implemented in this thesis have all been concerned with redundancy over
a strictly limited temporal span, and only then through the expedient procedure of
windowing the signal into blocks of consecutive samples, converting temporal structure
into ‘spatial’ structure, as it were. One could contemplate dealing with longer-range
dependencies in the same way, by just expanding the windows. However, this ignores
three crucial points: (1) translation invariance through time: there are no special times
and (2) as time-based observers, we cannot have access to data from the future: there is
a horizon which continuously moves forward as time passes. This makes dealing with
temporal redundancy quite different from dealing with spatial redundancy, as found in,
for example, visual images. A visual image is available all at once, whereas auditory
data trickles in bit by bit. There is a horizon, a ‘now’, beyond which no information is
available. West et al. (1987) have commented on the “unfoldingness” of time. The third
point is that the time dimension is not limited in the way that the spatial dimensions of
an image are—temporal dependencies can potentially extend a very long way.

By common agreement, the structuring of time is at the heart of musical experience.
For example, West et al. (1987) comment that,

All information in music is ultimately derived from temporal patterns. This ob-
viously extends beyond the encoding of mere pitch information to temporal or-
ganisation over periods of two hours or more. Therefore, it is fundamental to any
account of music perception to explain how temporal information is encoded.

To deal with this structure using the methods advocated in this thesis would involve
looking at the concepts of redundancy, information, factorial coding and sparsity for
long sequences of patterns. Because of the “unfoldingness” of time, prediction will
probably be an important aspect of the solution (Ellis, 1996).
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9.4.1 Multiscale Temporal Structure

The potentially long range of temporal dependencies has implications for the amount
of memory required to discover and deal with those dependencies. It is very likely that
many natural signals and music contain long-range dependencies, which may require a
multi-scale or hierarchical processing approach.

Schmidhuber’s reduced sequence descriptions (Schmidhuber, 1992b,a) are an ele-
gant and potentially very efficient way of dealing with long range dependencies, work-
ing hierarchically but without an explicit tree structure. The system is built from iden-
tical blocks whose job it is to predict sequences. Each successive stage is driven by
the failures in prediction of the previous one. These are presumed to occur relatively
infrequently, so later stages operate on progressively longer time-scales and are thus
able to see longer range dependencies.

9.4.2 Probability Signals as Meta-data

Rhythmic patterns can be built out of almost any kind of opposition: sound / no sound,
soft / loud, bright / dull and so on. The medium by which difference is expressed
is (arguably) somewhat less important than the timely delivery of discernible differ-
ences. For example, Cambouropoulos (1998) uses a number of variations of the identity
change rule in his local boundary detection model to determine the accentuation struc-
ture of the musical surface. Local discontinuities of any sort signal phrase boundaries
or points of metrical significance such as beats or bar lines.

Loudness, pitch, timbre etc. are all qualities of sound, whereas rhythm is not a
quality of any sound: it is an emergent property, a gestaltqualität. The ‘atoms’ of
rhythm are pure durations, and rhythms are patterns of durations, but in order to delimit
the durations, to outline the patterns, we need timely variations in qualities of sound.

A ‘surprise’ driven system and a visual analogy Imagine that we have a visual sys-
tem consisting of a red paint detector and a green paint detector. Now suppose that we
want to be able to see red or green painted circles. One option would be to attach a new
modules responsible for detecting circles to the red paint detector. This would then be
able to see red circles. However, unless there is a common language or protocol that
both paint modules conform to, a separate circle detector tailored to the green paint
module will be needed to see green circles. Since the two circle detectors are indepen-
dent, and could, for example, be instances of an adaptive shape detection module, they
are not necessarily constrained to agree on what a circle is; the system could not truth-
fully be said to have an abstract concept of ‘circularity’ that is independent of concrete
(that is, red or green) circles. If a new third colour, or a texture was added to the en-
vironment, more independent shape detectors would be required, as the system would
be unable to take advantage of the concepts of circularity it had already developed.
Ideally, we would like a single module that understood circles independently of how
they are rendered. On its own, it would be unable to see circles because, obviously,
real circles have to be painted in one or other colour. However, given any set of paint
detectors, the module would be able to find circles painted in a variety of colours. As
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suggested earlier, what is needed is a common language for communication between
any paint detector and a shape detector. That language could be based on probabilities.

Imagine now that the paint detectors are actually probabilistic systems that model
the appearance of red or green paint respectively, and expect to see contiguous regions
of their own colour. Such a model, when assigning probabilities to regions of an image,
will be ‘surprised’ at the edges of any region of their own paint. Thus, the red paint
module will generate a circular pattern of low probability around any red circle, and
similarly for the green paint module. The pattern of probabilities for a painted circle
will look the same coming from either the red or the green modules, and so the circle
detector will have no trouble seeing both and green circles. This architecture extends
naturally to any kind of texture, as long as a statistical model of that texture is available,
and there is, in principle, no limit to how complex that texture can be—for example,
we might be able to detect circles of one kind of tartan against another.

What can we conclude from this whimsical thought experiment? It is that, given
a system built from a variety of probabilistic models, all specialised to deal with a
certain class of data, the probability signals coming out of the models are a useful form
of meta-data. Looking for patterns and shapes in this meta-data allows the abstraction
of certain concepts one step removed from their concrete manifestations. Rhythm is an
ideal candidate for such an analysis.

Modelling the surprise signal One can envisage a modular system in which each
component produces a probability signal, and where separate modules are responsible
for learning the structures in these new signals. The metrical structure of music will
tend to produce repetitive patterns on several time-scales, and existing beat tracking
algorithms (e.g. Large and Kolen, 1994) could usefully be employed to model these,
but rather than being locked to a particular auditory ‘front-end,’ they would be able to
extract metrical structure from any low level model capable of producing a probability
signal. Regular modulations of pitch, timbre, loudness or any other quality would all
appear identically to the beat tracker, and so the system could usefully be said to have
an abstract concept of rhythm.

Another benefit of this probabilistic approach would be that the components re-
sponsible for learning and predicting the surprise signals could feed their predictions
back to the low level units, telling them when surprises are likely: in effect, when to
‘expect the unexpected.’ This could be used to improve the performance of the low
level components: when no surprise is expected, they can be made more robust to
noise, requiring a lot of evidence to induce a change of state. When a surprise due,
more weight can be given to incoming data so that state changes are facilitated at these
times. Thus, transitions will tend to be quantised to the metrical grid.
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A . AU D I O S I G N A L

N O R M A L I S AT I O N A L G O R I T H M

This appendix describes the normalisation procedure applied to audio signals before
being presented to the ICA system described in Chapter 5. The aim of this process
is to reduce the extent of loudness variations over medium to long time scales, not to
remove short term dynamics.

Let φ(t) be a continuous-time audio signal. This is sampled and the samples are
arranged into blocks of N so that the jth sample of the mth block is

u j[m] = φ(T [mL+ j]), 1≤ j ≤ N, (A.1)

where T is the sampling period and L is the block hop size. The block mean and
standard deviation are computed using:

µ [m] =
1
N

N

∑
i=1

u j[m], (A.2)

σ [m] =

{

1
N

N

∑
i=1

(u j[m])2

}1/2

. (A.3)

Then, low-pass filtered versions of these are updated:

µ̄ [m] = ηµ µ [m]+ (1−ηµ)µ̄ [m−1], (A.4)

σ̄ [m] = ησ σ [m]+ (1−ησ)σ̄ [m−1], (A.5)

where ηµ and ησ are two adaptation rates. Finally, the jth element of the mth input
vector x[m] is computed as:

xi[m] = (ui[m]− µ̄[m])/σ̄ [m]. (A.6)

The adaptation rates ησ was set to 0.01, which, given a sampling rate of 11.025 kHz
and hop size of 512 samples, implies a time-constant of approximately 5 seconds. The
adaptation rate ηµ was set to a much smaller value (10−4) on the assumption that the
DC offset associated with a particular audio source would be essentially constant.
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B . S P E C T R O G R A M S

B.1 Computational Details

The algorithm used to compute the spectrograms in Chapter 7 is as follows. The audio
signal φ(t) is sampled and windowed into blocks of length 2N such that the jth sample
of the mth block is

u j[m] = h( j)φ(T [mL+ j]), 0≤ j ≤ 2N−1, (B.1)

where T is the sampling period, L is the hop size by which window is moved at each
step, and h(·) is the windowing function. In the sparse coding experiments, a Hamming
window was used:

h( j) = 0.54−0.46cos
π j
N

. (B.2)

The complex DFT (discrete Fourier transform) coefficient vk for the kth frequency is
given by

vk[m] =
1√
2N

2N−1

∑
j=0

[

exp
iπ
N

k j

]

u j[m], (B.3)

where i =
√
−1. The power in the kth frequency is obtained by taking the magnitude

squared of the DFT coefficient, but in the experiments, the magnitude was used instead:

xk = |vk|=
√

v∗kvk, (B.4)

where the ∗ operator denotes complex conjugation and the block number r has been
dropped for clarity. For real-valued signals, the DFT coefficients form conjugate pairs,
with vk = v∗2N−k. This implies that the magnitudes xk and x2N−k are the same and thus
only the coefficients for 0≤ k≤N need be retained. The kth frequency itself is k/2NT .

B.2 Noise Statistics

The following analysis is intended to support the statements of §7.1 concerning the use
of magnitude spectra rather than power spectra as input to the sparse coder described
in Chapter 6 and applied to music in Chapter 7.

Consider the DFT of eq. B.3 as a matrix operation on the vector u≡ (u0, . . . ,u2N−1)

yielding the vector v ≡ (v0, . . . ,v2N−1), such that v = Fu. If the window h(·) is rect-
angular (i.e. h( j) = 1 ∀ j), then the matrix F, with components Fk j = exp(−iπk j/N),
is unitary, since F−1 = F†, where F† is the adjoint of F and is defined as F†

k j = F∗jk.
Unitarity is the generalisation of orthogonality to complex-valued matrices, and in this
case means that Gaussian white noise (also known as spherical Gaussian noise) at the
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input u appears as spherical Gaussian noise at the output v. Let v(r) and v(i) denote
the real and imaginary parts of one of the components of the DFT. The energy s at that
frequency is then

s = v2
(r) + v2

(i). (B.5)

If the input were to consist purely of spherical Gaussian noise, then these two compo-
nents would be Gaussian and uncorrelated due to the unitarity of the DFT. Now, for two
identically distributed Gaussian random variables X and Y , both with variance 1/λ , it
is easily shown that S = X2 +Y 2 is another random variable with a probability density
function given by

p(s) = 1
2 λe−

1
2 λ s, s≥ 0, (B.6)

which is an exponential distribution, indicating that a spherical Gaussian signal appears
as exponentially distributed noise in the power spectrogram, as stated in §7.1. This
analysis is not correct if an additional signal is present, but it does suggest that additive
Gaussian noise on the signal will induce super-Gaussian, or heavy tailed, noise in
the power spectrogram. The variable R =

√
S =
√

X2 +Y 2, however, is distributed
according to

p(r) = λ re−
1
2 λ r2

, r ≥ 0, (B.7)

which, though not Gaussian, does decay approximately as a Gaussian for large r. This
suggests that the noise in a magnitude spectrogram will not be heavy-tailed as it was in
the power spectrogram.

Note that this analysis does not apply to non-rectangular analysis windows. It is
only intended as a rough heuristic argument for using the magnitude spectrum rather
than the power spectrum.



C . M U LT I D I M E N S I O N A L S CA L I N G

In this appendix, an algorithm for minimising MDS stress functions (see §8.1.4) will
be given. In the derivation below, a Euclidean metric will be assumed, but other metrics
can easily be treated by substituting a suitable alternative to eq. C.2.

Let A be a set of N objects which we wish to arrange in an M-dimensional Eu-
clidean space (E,dE) by finding points xα ∈ E for each α ∈ A such that, for each pair
α ,β ∈ A, the target distance d(α ,β ) is matched as well as possible by the Euclidean
distance dE(xα ,xβ ). This is done by minimising a stress function which measures the
discrepancy between the two sets of distances. Let us assume the stress function has
the form

J = ∑
{α,β}⊂A

1
2

[

dE(xα ,xβ )−d(α ,β )
]2

wαβ , (C.1)

where the sum is taken over each distinct unordered pair {α ,β} and wαβ is a weighting
factor that controls the contribution of each pair to the sum. If wαβ = 1 ∀ α ,β then we

obtain the stress function J1 defined in eq. 8.9; if wαβ = [d(α ,β )]−1, we obtain Sam-

mon’s stress function J2 defined in eq. 8.10; if wαβ = [d(α ,β )]−2, we obtain the stress
function J3 defined in eq. 8.11. Other functions are permissible, but in this derivation,
wαβ may not depend on the points xα , as we intend to differentiate the stress with
respect to these points.

In order to construct a steepest-descent optimisation algorithm, we will need to
compute the derivative of the distance dE(xα ,xβ ) with respect to the point xα . Assum-
ing that the Euclidean space E is also a normed linear space with the usual 2-norm ‖·‖,
we have dE(xα ,xβ ) = ‖xα− xβ‖ and, assuming xα 6= xβ ,

∂dE(xα ,xβ )

∂xα
=

xα − xβ

‖xα − xβ‖
. (C.2)

Thus, the derivatives of the stress function are

∂J
∂xα

= ∑
β 6=α

xα − xβ

‖xα − xβ‖
[

dE(xα ,xβ )−d(α ,β )
]

wαβ . (C.3)

We then iteratively update each point with the mapping

xα 7→ xα −η
∂J

∂xα
, (C.4)

where η is a positive step length parameter which is gradually reduced as the algorithm
converges.
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D . C O N TO U R I N T E G R AT I O N I N

P H A S E I N VA R I A N T S PAC E

This appendix contains mathematical support for the results in §8.3.3 concerning a
two-dimensional phase invariant space. Consider the circularly symmetric 2-D proba-
bility density

p(x,y) = h(x2 + y2), (D.1)

where h(·) is defines the radial profile of the distribution. Next, consider the projection
of this 2-D density into the 3-D space uvw defined by

u = x2, v = y2, w = xy
√

2. (D.2)

The resulting distribution is confined to a 2-D manifold within the 3-D space, defined
by the constraint w2 = 2uv. This is the equation of a cone, (illustrated in fig. 8.11 in
Chapter 8) which can be shown by writing the constraint as a quadratic form:

(

u v w
)







0 −1 0
−1 0 0
0 0 1













u
v
w






= 0. (D.3)

This is to be compared with equation of what might be called the ‘canonical’ cone
in 3-D: one with a circular cross-section, a 90◦ apex at the origin, and its axis along
the w axis. The canonical cone is defined by u2 + v2 = w2, (which should be clear by
inspection) and translates into a diagonal quadratic form:

(

u v w
)







1 0 0
0 1 0
0 0 −1













u
v
w






= 0, (D.4)

where the eigenvalues (1,1,−1) are the distinctive signature of a circular cone with a
90◦ apex. It is easily verified that the matrix in eq. D.3 can be brought into this form
using an eigenvalue decomposition. The eigenvector with the opposite sign to the other
two indicates the axis of the cone, and in this case, is 1√

2 (1,1,0). Thus, the axis lies
half way between the u and v axes, both of which lie in the surface of the cone.

Distribution in three dimensions

It was shown in §8.3.3 by direction transformation that the probability density in the
uv plane is p(u,v) = h(u + v)/

√
uv (eq. 8.35). To derive the distribution in 3-D, we

will consider how the conical distribution projects down into the uv plane. Since the
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distribution is concentrated within a 2-D manifold, it does not properly have a density,
but we may consider p(u,v,w) to be a surface density; that is, a probability mass per
unit area. A given small area of cone projects down into a smaller area of the uv
plane because of the obliquity of the cone’s surface. Instead of deriving the reduction
factor geometrically, which would necessitate some rather intricate diagrams, we may
proceed algebraically. Differentiating both sides of the constraint w2 = 2uv gives

2wdw = 2udv+2vdu, (D.5)

which may be written as a dot product,

(−v,−u,w)·(du,dv,dw) = 0. (D.6)

This shows that small displacements in the surface of the cone must be perpendicular to
the vector (−v,−u,w) and hence that vector must be the surface normal. On projecting
into the uv plane, the reduction factor is the cosine of the angle between this surface
normal and (0,0,1), which is

(−v,−u,w)·(0,0,1)√
u2 + v2 +w2

=
w√

u2 + v2 +2uv
=

√
2uv

u+ v
. (D.7)

Taking into account an extra factor of 2 because of the two halves of the cone above
and below the uv plane, the final projected density in the uv plane is

p(u,v) = 2 · u+ v√
2uv
· p(u,v,w). (D.8)

Using the previous expression for p(u,v) (eq. 8.35) and solving for p(u,v,w) gives

p(u,v,w) =

√
2uv

2(u+ v)
· h(u+ v)√

uv
=

h(u+ v)√
2(u+ v)

, (D.9)

as stated in eq. 8.36.

Distribution of projection on to line

Consider a general linear function of the point (u,v,w), s = au+bv+ cw. This can be
written in terms of the original variables x and y as a quadratic form:

s =
(

x y
)

(

a c/
√

2
c/
√

2 b

)(

x
y

)

= rT Qr, (D.10)

where Q denotes the the central matrix and r is the 2×1 matrix (x,y)T . Following the
discussion of §8.3.3, we may assume without loss of generality that c = 0.

Each value of s defines a curve in the xy plane. Depending on the determinant of Q,
this will be an ellipse, two parallel lines, or two branches of an hyperbola (see fig. D.1).
To compute the probability density function p(s), we need to consider the area swept
out by these curves as s changes.
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Fig. D.1: Constant s contours in the xy plane for the three cases: (a) a > 0,b > 0, (b) a > 0,b = 0,
and (c) a > 0,b < 0.

Let A(s) denote the region of the x,y plane for which rT Qr < s. Reverting briefly
to a more formal notation in which S is the random variable and s its values, the prob-
ability that S < s is given by integrating the density overA(s):

P(S < s) =

∫∫

A(s)
p(x,y) dx dy. (D.11)

The density function p(s) is the derivative of this integral with respect to its boundary:

p(s) =
d
ds

P(S < s) =
d
ds

∫∫

A(s)
p(x,y) dx dy. (D.12)

The integration can be simplified by a change of variable from (x,y) to (s,θ ), where
θ will be defined later in a way that is convenient for the particular family of curves
defined by the matrix Q. Regardless, if J is the Jacobian,

J =

(

∂x/∂ s ∂x/∂θ
∂y/∂ s ∂y/∂θ

)

, (D.13)

then eq. D.11 can be written as

P(S < s0) =

∫ s0

0
ds
∫

dθ p(s,θ ) (D.14)

=

∫ s0

0
ds
∫

dθ |J|p(x,y), (D.15)

in which form, the differentiation with respect to the limit s0 is trivial. (The appropriate
limits of integration for θ will depend on the details of the transformation.) Note that
for brevity, the notation |·|, rather than det ·, is being used for the determinant in this
appendix. Substituting in p(x,y) = h(x2 + y2) and differentiating with respect to the
limit s0 yields

p(s) =

∫

|J|h(x2 + y2) dθ . (D.16)

This is the general expression to be used for the three classes of curve defined by
|Q| < 0, |Q| = 0, and |Q| > 0, though in each case, a different mapping from s,θ to
x,y will be used.
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Elliptical contours

When |Q| > 0, the curves of constant s are ellipses and the following elliptical-polar
coordinate system is convenient:

x =
√

(s/a)cosθ , y =
√

(s/b)sinθ , (D.17)

with θ ∈ [0,2π). The determinant of the Jacobian evaluates to |J| = 1
2 (ab)−1/2. In

order to evaluate eq. D.16, x2 +y2 must by expressed in terms of s and θ , which can be
done using eq. D.17:

x2 + y2 = s(a−1 cos2 θ +b−1 sin2 θ ). (D.18)

By making the assignments

α =
a+b
2ab

, β =
a−b
2ab

, (D.19)

this may be written as x2 +y2 = s(α−β cos2θ ). Substituting these pieces into eq. D.16
yields

p+(s) =
1

2
√

ab

∫ 2π

0
h(s[α−β cos2θ ]) dθ . (D.20)

Note that this integral sweeps out the same area four times; putting φ = 2θ , changing
the limits and multiplying by four gives the final result,

p+(s) =
1√
ab

∫ π

0
h(s[α−β cosφ ]) dφ . (D.21)

Rectilinear contours

When |Q| = ab = 0, the symmetry of the system means that we may assume without
loss of generality that b = 0. In this case, the lines of constant s will be pairs of straight
lines parallel to the y axis, and a convenient coordinate frame is defined by

s = ax2, θ =
y

x
√

a
. (D.22)

This gives |J| = 1/(2
√

a) and x2 + y2 = s(a−1 + θ 2). Symmetry implies that the in-
tegration can be done in the first quadrant of the xy plane and the result multiplied by
four. The result is

p0(s) =
2√
a

∫ ∞

0
h(s[a−1 +θ 2]) dθ (D.23)

Hyperbolic contours

Finally, when |Q|< 0, a family of hyperbolae is obtained and a hyperbolic trigonomet-
ric transformation is appropriate. However, some care is required since s may now be
negative, and depending on the signs of a, b, and s, the hyperbola may be ‘horizontal’
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or ‘vertical’ (see fig. D.1). We may assume without loss of generality that a > 0 and
b < 0, in which case, the coordinate transformation can be based on the sign of s:

s > 0 : x =
√

|s/a|coshθ , y =
√

|s/b|sinhθ , (D.24)

s < 0 : x =
√

|s/a|sinhθ , y =
√

|s/b|coshθ . (D.25)

In either case, |J|= 1
2 |ab|−1/2. The expression for x2 + y2 is now

x2 + y2 =

{

s > 0 : |s|(a−1 cosh2 θ −b−1 sinh2 θ )

s < 0 : |s|(a−1 sinh2 θ −b−1 cosh2 θ )
(D.26)

which, if we make the same assignments as in the elliptical case:

α =
a+b
2ab

, β =
a−b
2ab

, (D.27)

may be written as

x2 + y2 =

{

s > 0 : s(α−β cosh2θ ),

s < 0 : s(α +β cosh2θ ).
(D.28)

Taking care over the limits and making the substitution φ = 2θ as before, the result is

p−(s) =
1

√

|ab|

∫ ∞

0
h(s[α∓β coshφ ]) dφ . (D.29)

Numerical integration of these density functions over a range of directions (a,b),
using the three forms in eq. D.21, eq. D.23, and eq. D.29, yields a family of distribu-
tions, all of which are strongly super-Gaussian. When |Q| ≥ 0, the distributions are
single sided since s > 0. When |Q|< 0, the distributions are double sided. The ‘peaki-
est’ distribution is obtained when |Q = 0|. The implications of this are discussed in the
main text, in §8.3.3.
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