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ABSTRACT

How can a robot become aware of its surroundings? How does it create its

own subjective, inner representation of the real world, so that relationships in

the one are reflected in the other? It is well known that structures analogous

to Self-Organising Maps (SOM) are involved with this task in animals, and

this thesis undertakes to explore if and how a similar approach can be success-

fully applied in robotics. In order to study the environment-to-abstraction

mapping with a minimum of guidance from directed learning and built-in

design assumptions, this thesis examines the active audition task in which a

system must determine the direction of a sound source and orient towards

it, both in horizontal and vertical direction.

Previous explanations of directional hearing in animals, and the imple-

mentation of directional hearing algorithms in robots have tended to focus

on the two best known directional clues; the intensity and time differences.

This thesis hypothesises that it is advantageous to use a synergy of a

wider range of metrics, namely the phase and relative intensity difference. A

solution to the active audition problem is proposed based on the Parameter-

Less Self-Organising Map (PLSOM), a new algorithm also introduced in this

thesis. The PLSOM is used to extract patterns from a high-dimensional input

space to a low-dimensional output space. In this application the output space

is mapped to the correct motor command for turning towards the source and

focusing attention on the selected source by filtering unwanted noise. The

dimension-reducing capability of the PLSOM enables the use of more than

just two directional clues for computation of the direction.

This thesis presents the new PLSOM algorithm for SOM training and

quantifies its performance relative to the ordinary SOM algorithm. The

mathematical correctness of the PLSOM is demonstrated and the properties
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and some applications of this new algorithm are examined, notably in au-

tomatically modelling a robot’s surroundings in a functional form: Inverse

Kinematics (IK). The IK problem is related in principle to the active audition

problem - functional rather than abstract representation of reality - but raises

some new questions of how to use this internal representation in planning

and execution of movements. The PLSOM is also applied to classification of

high-dimensional data and model-free chaotic time series prediction.

A variant of Reinforcement Learning based on Q-Learning is devised and

tested. This variant solves some problems related to stochastic reward func-

tions. A mathematical proof of correct state-action pairing is devised.
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LIST OF ABBREVIATIONS AND GLOSSARY

audition - the act of hearing. Audition is to hearing as vision is to seeing.

auricle - see pinna.

dB - deci Bel, a unit of relative intensity. In this thesis dB always refers to

dB Sound Pressure Level (SPL), C weighting. This is defined by the

formula 10 log10(
I
I0

) where I is the intensity and I0 is the threshold of

hearing, defined as 2.0× 10−5 Pa.

FFT - Fast Fourier Transform, transforms a signal from the time domain to

the frequency domain, allowing analysis of the frequency components

of the signal.

foveation - the act of moving one’s body in such a way as to focus the image

of objects of interest on the fovea, the area of the retina with the highest

resolution. Auditory foveation is the act of bringing the front of the

head towards a sound source using sound information.

HRTF - Head Related Transfer Function, describes how a sound with a given

direction of incidence and frequency will be distorted by the head.

This is usually computed from data gathered from a large number of

measurements in an anechoic chamber.

IID - Interaural Intensity Difference is the difference of sound intensity from

one ear/microphone to the other. This is caused by two things; the

difference in distance to the sound source and the damping of any

material in between the ears/microphones. Compare ILD.

ILD - Interaural Level Difference is the difference of sound level (a loga-

rithmic scale relative to a reference level) from one ear/microphone



List of Tables xxiii

to the other. This is caused by two things; the difference in distance

to the sound source and the damping of any material in between the

ears/microphones. Compare IID.

IPD - Interaural Phase Difference, the difference in phase angle between the

two ears or microphones of an audition system. Similar to the ITD,

but limited to one cycle, for example [−π, π] (in radians). The relation

between the IPD and the incidence angle is frequency dependent.

ITD - Interaural Time Difference, the time that elapses from a sound event is

detected at one ear/microphone till it is detected at the other ear/microphone.

Related to the IPD, but is not limited to one cycle and is not frequency-

dependent.

pinna - the visible outer part of the ear, see Figure 3.4.

RL - Reinforcement Learning, see Section 7.4.

SOM - Self-Organising Map, see Section 6.1.

subband - a range of frequencies that are part of the total frequency range

being studied. The FFT extracts information about phase and ampli-

tude for each of a given number of subbands.

PLSOM - Parameter-Less Self-Organising Map, see Chapter 6.

T60 - reverberation time, a property of the environment that indicates the

time it takes for the reverberations of a sound signal to decrease by 60

dB.


