Active Audition for Robots using Parameter-Less Self-Organising Maps

A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in October, 2005.

Erik Johan Berglund berglund@itee.uq.edu.au School of Information Technology and Electrical Engineering University of Queensland.

July 2, 2006

Acknowledgements

The candidate would like to thank the following:

Mamma and Pappa.

Dr. Gordon Wyeth for help, support and keen insights.

My associate supervisor A. Prof. Joaquin Sitte for guidance, ideas, motivation and help in providing equipment.

The Government of Norway for a stipend of 16,000 AUD received in 2002.

The Queensland University of Technology for a top-up scholarship of 2,700 AUD received in 2003.

The University of Queensland for a 9,418 AUD research scholarship received in 2005.

Dr. Frederic Maire for help with my many mathematical troubles.

Dr. Steffen Log for believing in me at a time of my academic career when I needed it.

Dr. Kazuhiro Nakadai for input and feedback.

Dr. Thomas Voegtlin for background information and source code for the Recursive SOM.

Mr. Fabrice Miras for kindly donating the Wacom Digitizer II graphics tablet used for many of the illustrations.

A. Prof. Janet Wiles for help in editing my thesis.

My brother and sisters.

All my colleagues and friends.

Various anonymous reviewers for helpful input.

Publications by the Candidate Relevant to the Thesis:

- E. Berglund and J. Sitte: "The Parameter-Less SOM algorithm", Proceedings of the Eighth Australian and New Zealand Intelligent Information Systems Conference, 2003, Sydney, Australia. Pages 159-164.
- E. Berglund and J. Sitte: "The Parameter-Less Self-Organising Map algorithm", IEEE Transactions on Neural Networks, to appear in March, 2006.
- E. Berglund and J. Sitte: "Sound source localisation through active audition", Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton Canada, 2-6 August 2005. Pages 509-514.

Awaiting editorial decision:

• E. Berglund, J. Sitte and G. Wyeth: "Active audition and directional filtering using the Parameter-Less Self-Organising Map", submitted to Autonomous Robots, Springer.

Additional Publications by the Candidate Relevant to the Thesis but not Forming Part of it:

• A. Campbell, E. Berglund and A. Streit: "Graphics Hardware Implementation of the Parameter-Less Self-Organising Map", Proceedings of the Sixth International Conference on Intelligent Data Engineering and Automated Learning, Brisbane Australia, 6-8 July, 2005. Pages 343-350. Lecture Notes in Computer Science 3578, Springer.

Candidate's Statement of Originality

I, Erik Johan Berglund, declare that the work presented in this thesis is, to the best of my knowledge and belief, original and my own work, except as acknowledged in the text, and that the material has not been submitted, either in whole or in part, for a degree at this or any other university.

Candidate's signature:

Date:

ABSTRACT

How can a robot become aware of its surroundings? How does it create its own subjective, inner representation of the real world, so that relationships in the one are reflected in the other? It is well known that structures analogous to Self-Organising Maps (SOM) are involved with this task in animals, and this thesis undertakes to explore if and how a similar approach can be successfully applied in robotics. In order to study the environment-to-abstraction mapping with a minimum of guidance from directed learning and built-in design assumptions, this thesis examines the active audition task in which a system must determine the direction of a sound source and orient towards it, both in horizontal and vertical direction.

Previous explanations of directional hearing in animals, and the implementation of directional hearing algorithms in robots have tended to focus on the two best known directional clues; the intensity and time differences.

This thesis hypothesises that it is advantageous to use a synergy of a wider range of metrics, namely the phase and relative intensity difference. A solution to the active audition problem is proposed based on the Parameter-Less Self-Organising Map (PLSOM), a new algorithm also introduced in this thesis. The PLSOM is used to extract patterns from a high-dimensional input space to a low-dimensional output space. In this application the output space is mapped to the correct motor command for turning towards the source and focusing attention on the selected source by filtering unwanted noise. The dimension-reducing capability of the PLSOM enables the use of more than just two directional clues for computation of the direction.

This thesis presents the new PLSOM algorithm for SOM training and quantifies its performance relative to the ordinary SOM algorithm. The mathematical correctness of the PLSOM is demonstrated and the properties and some applications of this new algorithm are examined, notably in automatically modelling a robot's surroundings in a functional form: Inverse Kinematics (IK). The IK problem is related in principle to the active audition problem - functional rather than abstract representation of reality - but raises some new questions of how to use this internal representation in planning and execution of movements. The PLSOM is also applied to classification of high-dimensional data and model-free chaotic time series prediction.

A variant of Reinforcement Learning based on Q-Learning is devised and tested. This variant solves some problems related to stochastic reward functions. A mathematical proof of correct state-action pairing is devised.

CONTENTS

1.	Intr	oduction	1
	1.1	Audition and robots	1
	1.2	Thesis overview	4
	1.3	Thesis contribution	4
2.	Phy	sical considerations regarding sound and binaural audition \ldots	6
	2.1	Distance considerations	6
	2.2	Phase	7
	2.3	Frequency, bandwidth and subband	11
	2.4	Reflection or echo	12
	2.5	Refraction	12
	2.6	Speed of sound	13
	2.7	Sound recording	15
	2.8	Ultrasound and infrasound	15
3.	Bina	aural audition in biological systems	17
	3.1	The Barn Owl	17
	3.2	Hearing in bats	18
	3.3	Ears of humans and other mammals	20
	3.4	Sound processing in the mammalian brain	22
	3.5	Human hearing	26
		3.5.1 Precedence effect	27
		3.5.2 Acuity	27
	3.6	Summary	30

		Contents	viii
4.	Earl	lier works	32
	4.1	Head-Related Transfer Function	34
	4.2	Barn owl simulation	34
	4.3	SIG Humanoid	35
	4.4	Cocktail party effect	37
	4.5	Elevation detection	39
	4.6	Summary	39
5.	Ove	rview of proposed system	42
	5.1	Feature selection rationale	43
	5.2	Data association strategy and possible obstacles to implemen-	
		tation	43
	5.3	How this work differs from previous works	45
6.	The	Parameter-Less Self-Organising Map	46
	6.1	Self-Organizing Maps	46
		$6.1.1 \text{Overview} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	48
		$6.1.2 \text{Details} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	49
	6.2	Map calibration and labelling	51
	6.3	Parameter selection schemes for SOM	51
		6.3.1 Previous works	52
	6.4	Parameter-Less Self-Organising Map	53
		6.4.1 Algorithm	54
	6.5	Experiments with the PLSOM	56
		6.5.1 Comparison of SOM variants to the PLSOM	56
		6.5.2 PLSOM analysis	66
		6.5.3 Application to Inverse Kinematics	71
		6.5.4 Application to classification of the ISOLET data set	75
		6.5.5 Recursive PLSOM	76
	6.6	Discussion	83
	6.7	Conclusion	85
7.	Act	ive Audition With PLSOM	86
	7.1	Brief system overview	86

Contents

	7.2	Preprocessing
	7.3	PLSOM
	7.4	Reinforcement Learning
		7.4.1 Q-Learning
		7.4.2 Reinforcement Learning Algorithm Variation 92
	7.5	Directional filtering
		7.5.1 Description of directional filtering system
	7.6	Conclusion
8.	Expe	eriments and Results
	8.1	Experimental setup
		8.1.1 List of data sets used throughout this thesis 103
	8.2	Horizontal direction detection
		8.2.1 Simple reference system
		8.2.2 SIG system
		8.2.3 PLSOM system
		8.2.4 Comparison of SIG and PLSOM systems 106
		8.2.5 Further tests with the PLSOM system, and discussion . 106
	8.3	Horizontal source localisation
	8.4	The cone of confusion
	8.5	Front-back resolution
	8.6	Distance resolution
	8.7	Limits to response time
	8.8	Effect of source elevation on accuracy
	8.9	Taking advantage of the cone of confusion for elevation esti-
		mation
	8.10	Robustness
	8.11	Directional filtering
	8.12	Conclusion
9.	Disc	ussion $\ldots \ldots 137$
	9.1	Implementation design considerations
	9.2	System software architecture

		Contents	X
	9.3	Responsiveness	43
	9.4	Implicit versus explicit data representation	44
	9.5	Summary	46
10		$clusion \dots \dots$	
AĮ	opend	lix 1	50
Α.		of of guaranteed ordering of a PLSOM with 3 nodes and 1-dimension at and output	
В.	Proc	of of convergence of learning neighbourhood-algorithm 1	59
С.	Over	rview of accompanying compact disc	61

LIST OF FIGURES

2.1	Schematic head seen from above, with incidence angle (θ) and sound paths from the sound source to the two microphones	
	Ml and Mr drawn in. The path the sound would follow if it	
	were not for the damping of the robot head is indicated by the	
	dotted line from the sound source to the left microphone Ml .	9
2.2	Effect of frequency on the phase difference. 12 cm between	
	the microphones and actual angle $=\frac{3\pi}{4}$. Observe that wile the	
	phase difference increases with increased frequency, so does	
	the time of non-overlapping phase.	11
2.3	Angle calculated according to Equation (2.12) vs. time for a	
	440 Hz sound with 12 cm between the microphones. Actual	
	angle: $\frac{3\pi}{4}$. Note that the estimation gives a complex value; the	
	plot represents the real part.	12
2.4	Speed of sound in air vs. air pressure at 20°C and 50% relative	
	humidity.	13
2.5	Speed of sound in air vs. relative humidity at 20° C and 101.325	
	kPa	14
2.6	Speed of sound in air vs. temperature at $101.325~\mathrm{kPa}$ and 50%	
	relative humidity	14
3.1	The ear canal inlets on the face of a Barn Owl (grey), showing	
	the asymmetry. (Original drawing.)	18
3.2	Frontal view of an insectivore bat (Big eared townsend bat,	-
	Corynorhinus townsendii). Note the large ear size, especially	
	compared with the small eyes. (Original drawing.)	19

3.3	The major sound processing centres in a bat brain. Observe	
	the widening of the frequency-sensitive area around 61 kHz,	
	the frequency this bat species (<i>Pteronotus parnellii</i>) uses for	
	echolocation. Adapted from [1]	20
3.4	The human pinnae, right side. Showing helix (A), scaphoid	
	fossa (B), triangular fossa (C), tragus (D), concha (E), anti-	
	tragus (F) and the opening of the ear canal (G). (Original	
	drawing.) \ldots	21
3.5	A stylised human ear. Shown are the eardrum (A), the ossicles	
	(hammer(B), anvil(C) and stirrup(D)), the labyrinth(E) and	
	the cochlea (F). (Original drawing.) $\ldots \ldots \ldots \ldots \ldots$	22
3.6	Primary auditory cortex (1) of the human brain. The en-	
	larged area shows the frequency-dependent structure. (Origi-	
	nal drawing.)	23
3.7	Schematic view of the main auditory pathways in human brain.	
	Shown are the Cochlear Nucleus (CN), the Superior Olivary	
	Complex (SOC), the Nuclei of the Lateral Lemniscus (NLL),	
	the Inferior Colliculus (IC), the Superior Colliculus (SC), the	
	Medial Geniculate Body (MGB) and the auditory cortex. (Orig-	
	inal drawing.) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	24
3.8	Schematic view of neurons responsible for detecting ITD. The	
	excitation of the neurons is inversely proportional to the time	
	difference between the delayed signals from the left and right	
	ear	25
3.9	Average error of localisation vs. sound frequency (from [2]).	28
3.10	Minimum audible angle vs. sound frequency for various initial	
	sound source positions (from [3]).	28
3.11	Sound source direction estimation error as a result of a phase	
	measurement error of 0.1 radians vs. angle between the sagit-	
	tal plane and the incidence vector, according to Equation (2.12) .	29
4.1	The SIG Humanoid auditory direction detection system, from	
	$[4]. \ldots \ldots$	36

4.2	The SIG Humanoid auditory direction pass filter system, from [5]	36
5.1	A simplified diagram of the proposed system.	42
6.1	SOM training sequence. Each line intersection represents the position of a weight vector.	47
6.2	Plot showing the effect of different ϵ values on the neighbour-	11
	hood function	55
6.3	Three different 20-by-20 node SOM algorithms mapping the	
	same uniformly distributed input space	57
6.4	Graph of the decrease of uncovered space as training pro-	
	gresses for the PLSOM, the SOM and the Matlab SOM im-	
	plementation. Note the quick expansion of the PLSOM and	
	that it consistently covers a larger area than the SOM variants.	58
6.5	Graph of the average skew for the PLSOM, the SOM and the	
	Matlab SOM implementation. For the first 24000 iterations	
	the PLSOM is more ordered, before the SOM variants nar-	
	rowly overtake it	59
6.6	Graph of the average skew for the PLSOM, detail	59
6.7	Graph of the absolute mean deviation of cell size for the PL-	
	SOM, the SOM and the Matlab SOM. The PLSOM is more	
	regular up until around iteration 10000	60
6.8	Graph of the absolute mean deviation of cell size for the PL-	
	SOM, the SOM and the Matlab SOM, excluding the edge cells.	
	Compare Figure 6.7. The PLSOM outperforms the Matlab	
	SOM in both adaptation time and accuracy, and the SOM	
	needs until iteration 30000 to reach the same level of ordering.	60
6.9	SOM first trained with inputs ranging from 0 to 0.5 for 50000	
	iterations shown after 20000 further training iterations with	
	inputs ranging from 0 to 1.0	61

6.10	PLSOM first trained with inputs ranging from 0 to 0.5 for	
	50000 iterations shown after 20000 further training iterations	
	with inputs ranging from 0 to 1.0 . Note the difference between	
	this and Figure 6.9.	62
6.11	PLSOM first trained with inputs ranging from 0 to 1 for 50000	
	iterations shown after 20000 further training iterations with	
	inputs ranging from 0 to 0.5 . Note that while the weights	
	have a higher density in the new input space, the same area	
	as before is still covered, which means none of the old input	
	space has been left uncovered	63
6.12	Response of the SOM and PLSOM to 150000 normal distrib-	
	uted inputs with a mean of 0 and a standard deviation of 0.3 .	
	The inputs include 1068 mild outliers and no extreme outliers.	
	The top left-hand corner of the frame is at [-1,-1] and the bot-	
	tom right-hand corner is at $[1,1]$. Inputs may fall outside the	
	frame	64
6.13	The same PLSOM as in Figure $6.12(b)$ before and after a mild	
	outlier at $[0.809488, 0]$	64
6.14	The same PLSOM as in Figure 6.12(b) before and after an	
	extreme outlier at $[1.416529, 0]$	65
6.15	PLSOM after 5000000 normal distributed inputs including 11	
	extreme outliers. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	65
6.16	Maps after 100000 iterations of normally distributed input	
	with mean 0.5, standard deviation 0.2, clipped to the $[0, 1]$	
	interval. See also Figure $6.23 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	66
6.17	Update size x likelihood for a corner node v of a 20x20 node	
	ordinary SOM algorithm. The position of v in the input space	
	is marked by a vertical white line. The position of v in the	
	map is $(1,1)$	68

6.18	Update size x likelihood for a corner node v of a 20x20 node	
	Matlab SOM algorithm. The position of v in the input space	
	is marked by a vertical white line. The position of v in the	
	map is $(1,1)$. Note that the shape of this update function	
	is very similar to the one pictured in Figure 6.17, indicating	
	that neighbourhood function shape has limited influence on	
	the update function.	68
6.19	Update size x likelihood for a corner node v of a 20x20 node	
	PLSOM. The position of v in the input space is marked by a	
	vertical white line. The position of v in the map is $(1,1)$	69
6.20	The expected displacement vectors for the edge nodes along	
	one edge of an ordinary SOM. Note that the vectors are chang-	
	ing direction abruptly from node to node, causing the warping.	69
6.21	The expected displacement vectors for the edge nodes along	
	one edge of a Matlab SOM. The effect that was noted in Figure	
	6.21 is even more pronounced here	70
6.22	The expected displacement vectors for the edge nodes along	
	one edge of a PLSOM	70
6.23	Weight density vs. distance from centre for the SOM and the	
	PLSOM. The 2-dimensional input was normal distributed with	
	a 0 mean and 0.2 standard deviation. Observe that although	
	the PLSOM has less correlation between input density and	
	weight density, it has far less variance and covers a larger area.	
	See also Figures $6.16(a)$ and $6.16(b)$	71
6.24	Convergence of some IK algorithms. Please note that the Ja-	
	cobian methods can be improved by choosing different scaling	
	variables based on the distance from the target. Here a con-	
	stant scaling variable which is large without causing too much	
	oscillation has been used	73
6.25	Error after 500 iterations of some IK algorithms. Please note	
	that the transpose Jacobian does not converge to one final	
	value, but oscillates close to it	74

6.26	Average execution speed of one iteration of some IK algo- rithms. Note that adding nodes does not induce delays in the	
	PLSOM method.	75
6.27	Part of the Mackey-Glass chaotic time series used in this ex-	
	periment.	79
6.28	Comparing the Recursive SOM and the Recursive PLSOM	79
6.29	The prediction error E vs. the function value $x(\tau)$	81
6.30	The 3-beacon navigation mapping by the SOM and the PL-	
	SOM in the unit square. Both maps have a neighbourhood	
	size of 17. Beacons were positioned at $(0.3,-0.3),(1.3,0.5)$ and	
	(-0.5, 0.8). The origin is in the upper left-hand corner of the	
	square that circumscribes the input space	84
7.1	Active audition system layout	87
7.2	Directional filtering system layout. The subband selection al-	
	gorithm picks the subbands that match closely to the weight	
	vectors of nodes near the middle of the PLSOM. All other	
	subbands are muted. Compare Figure 7.1	96
8.1	The Sony Aibo ERS-210. Note that the artificial auricles are	
	mounted separately from the microphones	99
8.2	Directional response of the Aibo microphones. Test conducted	
	with speaker playing 79 dB white noise at 1 metre in a room	
	with a background noise of 50 dB and $T60 = 0.4$ seconds.	
	Note the increased sensitivity around $\pm 60-70^{\circ}$	99
8.3	Aibo sensitivity response at 100 cm to 800 Hz sine wave. Note	
	that the sensitivity is switched along the central axis compared	
	with that for white noise, see Figure 8.2. This is caused by	
	the sound source interfering with itself in the near field	100
8.4	Plot showing the input position each node is most sensitive	
	to on average, relative to the head. The semi-circle represents	
	300 cm, the larger circle represents 50 cm	102

8.5	A typical recording setup. The tape measure is extended to
	1 metre for scale. This particular picture shows the recording
	of data set H, see Section 8.1.1
8.6	The grey area is one standard deviation, scaled to match the
	axis units. For an explanation of the different units along the
	vertical axes, please refer to Section 9.4
8.7	The estimated angle of a labelled PLSOM vs. the actual angle.
	An idealised straight line has been inserted for reference. The
	grey area represents one standard deviation
8.8	The grey area is one standard deviation, scaled to match the
	axis units. For an explanation of the different units along the
	vertical axes, please refer to Section 9.4
8.9	The direction detection results for the three different sounds
	presented above overlaid in one graph. \ldots . \ldots . \ldots
8.10	Average winning node vs. actual angle using the PLSOM
	method with 36×10 nodes. The grey area is one standard
	deviation
8.11	The absolute difference between the robot head direction and
	the direction from the robot to the sound source using Q-
	Learning and Reinforcement Learning variant algorithms 113
8.12	The cone of confusion can be seen as a cone with its vertex
	between the microphones obtained by rotating the vector to
	the sound source around the tilt axis. The actual position
	of the sound source may lie anywhere on the cone. (Original
	drawing.) $\ldots \ldots 114$
8.13	Aibo dealing with front/rear ambiguity. Seen from above.
	Adapted from [6]

8.14 Average winning node vs. source distance with one standar	d
deviation for various angle ranges. The stronger the correl	ì-
tion between distance and winning node is, the better. No	ce
that this map has only been trained with inputs from a di	S-
tance of 50-300 cm, which partly explains the poor correspon	1-
dence over 300 cm. Note that the nodes are not explicit	y
labelled with the distance they represent, see Section 9.4 fe	or
discussion. \ldots	118
8.15 Estimated source-robot distance vs. actual source-robot di	3-
tance with one standard deviation. These points represent	nt
cases where the source is located 60-70° to the left or right	nt
of the median plane of the robot head. An idealised line has	ıs
been inserted for reference	119
8.16 The effect of a relative measurement error of 1% on the calc	1-
lated intensity difference vs. distance in arbitrary units	120
8.17 Average winning node vs. source angle for different speak	er
and head elevations. Note that when the head is also el	9-
vated, the deviation from the non-elevated case is small, ind	i-
cating that internal harmonics in the robot and echoes fro	n
the ground play a limited role. For an explanation of the uni	ts
on the vertical axis, see Section 9.4	122
8.18 μ is the elevation of the sound source above the horizont	al
plane expressed as an angle around the tilt axis	123
8.19 The geometric relations of ν , ν' , ψ and ψ'	124
8.20 Elevation each node is sensitive to vs. node index with or	ie
standard deviation. The map is $5x2$ nodes and the neighbou	r-
hood size is $4.27.$	125
8.21 Estimated elevation vs. actual elevation with one standar	d
deviation. An idealised line has been added for reference. The	ie
map is $5x^2$ nodes and the neighbourhood size is $4.27.$	126
8.22 Elevation each node is sensitive to vs. node index with or	ie
standard deviation. The map is $20x8$ nodes and the neighbor	1-
bourhood size is 9	127

8.23	Estimated elevation vs. actual elevation with one standard
	deviation. An idealised line has been added for reference. The
	map is 20x8 nodes and the neighbourhood size is 9
8.24	The effect of reversing the output of the PLSOM on the RL
	weights. Each square represents the weight of a state-action
	pair in the RL grid, where black equals 0 and white equals
	1. States are along the horizontal axis and actions along the
	vertical axis. Note the strong but opposite correspondence
	both before and after the switch
8.25	The directional error of the Q-Learning and Reinforcement
	Learning variant algorithms during direction reversal of the
	PLSOM. The reversal of the PLSOM occurs at iteration 5000. 130
8.26	Signal spectrogram. A female voice utters the phrase "she had
	your dark suit in greasy wash-water all year" from a speaker
	120 cm straight in front of the robot. The phrase is repeated
	continuously. \ldots \ldots \ldots \ldots \ldots \ldots 132
8.27	Noise spectrogram. White noise from the left and a male voice
	that utters the phrase "the bungalow was pleasantly situated
	near the shore" from the right. Observe that the white noise
	covers the entire spectrum, as is the nature of white noise 132
8.28	Signal and noise spectrogram. White noise, male speaker and
	female speaker all recorded at once
8.29	Recovered signal spectrogram
0.20	
9.1	Execution time for 100, 1000, 10000 and 100000 iterations
	of pseudo-random input for the default Matlab SOM and a
	Java implementation of the SOM. Note that while Matlab
	pre-computes the input data outside of the timing loop, Java
	computes the input on the fly, resulting in a number of calls to
	the random number generator for each iteration. This explains
	why the Java implementation seems to slow down relative to
	the Matlab implementation as input dimensions increase 141

9.2	Time required for 100 000 iterations of the FFT transform vs.
	input size on different language platforms
9.3	UML class diagram of the main components of the audio
	processing pipeline. Shown are the PipelineElement and
	SoundObject interfaces, and the convenient basic implementa-
	tion of the PipelineElement interface; PipelineElementImpl.
	143
9.4	The data is transferred between subsystems in explicit, human-
	readable form
9.5	The data is transferred between subsystems in implicit, non-
	human-readable form. No conversion is necessary
A.1	The unordered subspace U . All other unordered states are
	mirrors or inversions of states in this subspace
A.2	All unordered states in the volume of all possible states. \ldots . 155
A.3	All ordered states in the volume of all possible states 155
A.4	Evolution of the weight positions of a 64-node 2D PLSOM
	initialised to a difficult position. Neighbourhood size is 11,
	minimum neighbourhood size is 0. To simulate what will hap-
	pen if this configuration appears late in training, an r value of
	0.65 is enforced. \ldots

LIST OF TABLES

6.1	Recursive PLSOM prediction compared to random guess	81
6.2	The mean percentage of winning node movements in the pre-	
	dominant direction and standard deviation for some input se-	
	ries to the Recursive PLSOM	83

LIST OF ABBREVIATIONS AND GLOSSARY

audition - the act of hearing. Audition is to hearing as vision is to seeing.

auricle - see pinna.

- dB deci Bel, a unit of relative intensity. In this thesis dB always refers to dB Sound Pressure Level (SPL), C weighting. This is defined by the formula $10 \log_{10}(\frac{I}{I_0})$ where I is the intensity and I_0 is the threshold of hearing, defined as 2.0×10^{-5} Pa.
- FFT Fast Fourier Transform, transforms a signal from the time domain to the frequency domain, allowing analysis of the frequency components of the signal.
- foreation the act of moving one's body in such a way as to focus the image of objects of interest on the *fovea*, the area of the retina with the highest resolution. Auditory foreation is the act of bringing the front of the head towards a sound source using sound information.
- HRTF Head Related Transfer Function, describes how a sound with a given direction of incidence and frequency will be distorted by the head. This is usually computed from data gathered from a large number of measurements in an anechoic chamber.
- IID Interaural Intensity Difference is the difference of sound intensity from one ear/microphone to the other. This is caused by two things; the difference in distance to the sound source and the damping of any material in between the ears/microphones. Compare *ILD*.
- *ILD* Interaural Level Difference is the difference of sound level (a logarithmic scale relative to a reference level) from one ear/microphone

to the other. This is caused by two things; the difference in distance to the sound source and the damping of any material in between the ears/microphones. Compare *IID*.

- IPD Interaural Phase Difference, the difference in phase angle between the two ears or microphones of an audition system. Similar to the ITD, but limited to one cycle, for example $[-\pi, \pi]$ (in radians). The relation between the IPD and the incidence angle is frequency dependent.
- ITD Interaural Time Difference, the time that elapses from a sound event is detected at one ear/microphone till it is detected at the other ear/microphone. Related to the IPD, but is not limited to one cycle and is not frequencydependent.
- pinna the visible outer part of the ear, see Figure 3.4.
- RL Reinforcement Learning, see Section 7.4.
- SOM Self-Organising Map, see Section 6.1.
- subband a range of frequencies that are part of the total frequency range being studied. The FFT extracts information about phase and amplitude for each of a given number of subbands.
- PLSOM Parameter-Less Self-Organising Map, see Chapter 6.
- $T60\,$ reverberation time, a property of the environment that indicates the time it takes for the reverberations of a sound signal to decrease by 60 dB.