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Abstract 

The aim of this research was to investigate the calibration of Sound Source Localisation 

(SSL) for robots using the adaptive filter model of the cerebellum and how this could be 

automatically adapted for multiple acoustic environments. The role of the cerebellum has 

mainly been identified in the context of motor control, and only in recent years has it been 

recognised that it has a wider role to play in the senses and cognition. The adaptive filter 

model of the cerebellum has been successfully applied to a number of robotics 

applications but so far none involving auditory sense. Multiple models frameworks such 

as MOdular Selection And Identification for Control (MOSAIC) have also been 

developed in the context of motor control, and this has been the inspiration for adaptation 

of audio calibration in multiple acoustic environments; again, application of this approach 

in the area of auditory sense is completely new. The thesis showed that it was possible to 

calibrate the output of an SSL algorithm using the adaptive filter model of the cerebellum, 

improving the performance compared to the uncalibrated SSL. Using an adaptation of the 

MOSAIC framework, and specifically using responsibility estimation, a system was 

developed that was able to select an appropriate set of cerebellar calibration models and 

to combine their outputs in proportion to how well each was able to calibrate, to improve 

the SSL estimate in multiple acoustic contexts, including novel contexts. The thesis also 

developed a responsibility predictor, also part of the MOSAIC framework, and this 

improved the robustness of the system to abrupt changes in context which could otherwise 

have resulted in a large performance error. Responsibility prediction also improved 

robustness to missing ground truth, which could occur in challenging environments where 

sensory feedback of ground truth may become impaired, which has not been addressed in 

the MOSAIC literature, adding to the novelty of the thesis. The utility of the so-called 

cerebellar chip has been further demonstrated through the development of a 

responsibility predictor that is based on the adaptive filter model of the cerebellum, rather 

than the more conventional function fitting neural network used in the literature. Lastly, 

it was demonstrated that the multiple cerebellar calibration architecture is capable of 

limited self-organising from a de-novo state, with a predetermined number of models. It 

was also demonstrated that the responsibility predictor could learn against its model after 

self-organisation, and to a limited extent, during self-organisation. The thesis addresses 

an important question of how a robot could improve its ability to listen in multiple, 

challenging acoustic environments, and recommends future work to develop this ability.  
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Chapter 1 Introduction 
 

1.1 Background 
The main motivation for this thesis was to develop a system that could support a robot in 

locating sources of sound in its environment, in particular a rescue robot that is attempting 

to locate survivors in the aftermath of a disaster. Typically, vision is used as the primary 

sense in the field because it is generally considered to be the most reliable and robust 

sense available to a robot [1]. However, in extreme or challenging environments such as 

a disaster site, vision could be impaired by, for example, particles in the air, or the vision 

sensor(s) could even become impaired through damage. In these situations, other senses, 

such as audio, could take over, or at least play a more prominent role, until the more 

reliable sense once again becomes available. 

The thesis focuses on Sound Source Localisation (SSL), and in particular, determining 

the azimuth direction of arrival of sound. The distance to the sound source and its 

elevation (which, together with the direction of arrival define the location of a sound 

source in 3 dimensional space; see Figure 4) are not considered. However, as discussed 

below and later in this thesis, the proposed system should lend itself to including more 

extensive schemes such as those estimating distance and elevation. 

SSL techniques are well established [2] with some quite sophisticated and robust 

techniques now available. The thesis adopts a basic approach using Interaural Time 

Difference (ITD) of arrival of sound, which is described in Section 2.3. There are a 

number of different approaches to SSL and the thesis specifically adopts binaural SSL 

for reasons outlined in Section 2.3. Such a basic approach is sufficient to demonstrate the 

utility of the proposed system introduced in the thesis, and the design of the system is 

such that a more sophisticated SSL algorithm could be easily substituted for the one used. 

A problem with established SSL techniques is that they are generally designed to operate 

in well-defined and controlled environments. For a robot operating in the field, especially 

in disaster situations such as inside a collapsed building, errors will be introduced into the 

SSL process, due to complex environmental acoustics that are not easily determined, and 

this error may depend on the azimuth sound source position, perhaps in a non-linear 

fashion. Even where an SSL system is designed to cope with such errors, they are 

generally only designed to do so in a particular environment. If the robot moves to a 
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different environment, it is likely that the SSL system designed to compensate for errors 

introduced by the first environment will be unable to compensate for the errors introduced 

by the new environment which could display quite different acoustic properties. 

There has been growing acceptance that the brain makes use of internal models for motor 

control and that they are likely to be located in the cerebellar cortex [2, 3], and also that 

they play a role in non-motor functions, including in perceptual processes [4, 5].  Despite 

this, there has been no investigation, to the knowledge of the supervision team, into the 

use of cerebellar models in robot audition. The thesis develops a model of the cerebellum 

that adapts, or calibrates, the output of an SSL system to compensate for errors introduced 

by the acoustic properties of the environment that the robot is operating in. A cerebellar 

model has to learn, through repeated operation in the given environment, with a teaching 

signal based on its performance error, to calibrate the output of the SSL system. The 

adaptive filter model of the cerebellum is a type of NN (although later, in Chapter 8, a 

distinction is made between “standard” NNs and the cerebellar models developed in this 

thesis). Like a NN it learns through the updating of synaptic weights. It learns to calibrate 

the SSL system through repeated stimulation by sound from random azimuths, estimating 

the direction of arrival of the sound, comparing this to the true direction, then updating 

the synaptic weights (in this case, parallel fibre-Purkinje cell weights as described in 

Chapter 3) in such a way as to reduce the error in estimation.  

The project specifically builds on previous work at Bristol Robotics Laboratory (BRL) 

and the University of Sheffield; the Bioinspired Control of Electro-Active Polymers for 

Next Generation Soft Robots (Bella) project [3]. That project used an adaptive filter model 

of the cerebellum to calibrate a somatosensory (whisker) map on a robot using visual 

input [4, 5]. The basic thrust of the current project is to add audio input to such a system, 

and to extend the approach to multiple cerebellar models. The project however does not 

use the Bella robot (known as Bellabot), although software from that project has been 

adapted for use in the current project; rather, a version was developed which replaces the 

whisker sensor system with audio. This is explained in more detail in Chapter 4. 

Regarding the multiple-models approach to calibrating the SSL for multiple acoustic 

environments, there is a problem of how to select the appropriate set of models in a 

particular acoustic environment. There are a number of approaches, mainly developed in 

the context of motor control as mentioned above, and the one this thesis focuses on is 
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MOdular Selection And Identification for Control (MOSAIC) [6]. MOSAIC is based on 

the existence of multiple models, internal to the brain of an animal (or processing unit of 

a robot) that represent the external world, allowing the prediction of the consequences of 

some action by the animal or robot. The MOSAIC system refers to modules rather than 

models, with each module containing separate, specialised models for prediction and 

control. The system uses the prediction errors, determined through sensory feedback, to 

select the best modules for future control. This can be applied to the SSL calibration 

system, so that the best calibration model, or set of models can be selected in a given 

acoustic environment, based on how well each is able to calibrate the SSL estimate in that 

environment. The calibration effort of the models can then be combined in proportion to 

how well each model is able to calibrate the SSL output. A model with a much smaller 

prediction error (and hence which appears to be the “best” model by a good margin) will 

tend to dominate control (or rather calibration, in the context of this thesis), with some 

contribution from the next best model and so on. An environment that elicits a less 

distinctive response from the models will see control/calibration more equally shared 

between models. Hence, the focus of the thesis is on developing a system which is able 

to adapt between environments, rather than show a particular performance in a single 

environment. The system takes a SSL estimate as one of its inputs (in the case of 

responsibility prediction, covered in Chapter 8, contextual signals form a second input) 

and as such the performance of the system will depend on the reliability of the underlying 

SSL system. SSL systems are particularly vulnerable to environmental acoustics, 

especially noise and reverberation, and the error in the SSL estimate could be so severe 

that even calibration as proposed in this work may break down. The decoupling of the 

system from the underlying SSL system however, means that a different, perhaps more 

robust system can be “plugged in” as such systems develop.  

An early motivation for this work was audio-visual integration, along with a biomimetic 

modelling of the auditory periphery. The focus moved away from this and towards a 

multiple-models inspired approach to SSL calibration. Sensor fusion is still in the 

background, even though it is not used in this thesis; vision is (potentially) used as a 

means of determining the ground truth sound source position. Full modelling of the 

auditory periphery was not considered necessary, with a simple SSL algorithm being 

sufficient to demonstrate the overall idea. A more full modelling of the auditory periphery 
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could of course be re-introduced, particularly in the context of substituting more 

sophisticated SSL, and as mentioned in Section 2.2.1 could be included in future work. 

1.2 Novelty of the thesis 
Two key concepts are presented in the thesis as the basis for novelty. The first is 

calibration of SSL using an adaptive filter model of the cerebellum, and the second is the 

development of a multiple-models inspired approach (“borrowed” from the field of motor 

control) to selecting an appropriate set of adaptive filter models of the cerebellum, each 

of which has learned to calibrate the SSL system in a particular acoustic environment, or 

context, to suit the context that the robot finds itself in. A further, secondary area of 

novelty that emerged later in the project is the development of a Responsibility Predictor 

(RP) that is also based on the adaptive filter model of the cerebellum, rather than the more 

conventional function fitting Neural Network (NN, Section 8.5.5) found in the literature.  

1.3 Aims 
The main aim of the thesis is to develop a system capable of calibrating an SSL system 

for multiple acoustic environments using multiple adaptive filter models of the 

cerebellum.  

A secondary aim of the thesis is to further demonstrate the utility of the so-called 

“cerebellar chip” [7-9] in a new area. 

1.4 Objectives 
1. Development of a binaural SSL algorithm 

2. Development of cerebellar calibration of SSL 

3. Development of a multiple-models approach to cerebellar calibration 

a. Development of a context estimation sub-system 

b. Development of a multiple model based SSL calibration sub-system 

c. Development of a responsibility prediction sub-system 

d. Investigation of de-novo learning of the cerebellar models 

4. Design and performance of SSL experiments based on each developed system or 

sub-system. 

1.5 Research questions 
1. Is it possible to apply cerebellar calibration to SSL? 
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2. Is it possible to implement a multiple-models inspired architecture that will select 

an appropriate cerebellar calibration model, or set of models, in different acoustic 

contexts? 

3. Can a multiple-models inspired audio calibration system self-organise? 

1.6 Proposed system and structure of the thesis 
The thesis draws on three key areas, robot audition, cerebellar models and multiple 

models. Chapter 2 introduces robot audition with an emphasis on SSL; Chapter 3 covers 

the cerebellum with an emphasis on the adaptive filter model of the cerebellum; Chapter 

5 is a treatment of multiple models with an emphasis on the MOSAIC scheme. Chapter 

4, Chapter 6, Chapter 7 and Chapter 8 describe the work carried out to develop the 

proposed system, which is depicted in Figure 1. In this figure, the main elements are 

emphasised using blue tint boxes which also indicate the chapters that cover those 

elements.  SSL calibration (Chapter 4) using the adaptive filter model of the Cerebellum 

addresses research question 1 and the model developed is an adaptation of that used in a 

previous study to calibrate whisker input to a robot platform [4]. This aspect of the system 

learns to compensate for errors in the SSL estimate in particular acoustic environments. 

Figure 1 shows multiple models for completeness, although Chapter 4 itself is based on 

a single model, as was presented in [4]. Responsibility estimation is covered in Chapter 

6 and Chapter 7, and is a fundamental aspect of the development of the work of Chapter 

4 into a multiple-models inspired system. Chapter 6 focuses on the use of the 

responsibility estimator to identify the acoustic context while Chapter 7, the key chapter 

of the thesis, combines the multiple model outputs to improve the SSL calibration in 

multiple acoustic environments. Chapter 8 does not strictly address the research questions 

and was added as the author wished to investigate responsibility prediction, mainly for 

completeness, although this turned out to produce a quite important finding in terms of 

missing ground truth. The same can be said for Chapter 9, de-novo learning of the models, 

which, although it addresses one of the research questions, was included for 

completeness. A weak area of the thesis is how the system could be moved towards a real 

world environment, and Chapter 10 starts to investigate this as a possibility, and issues 

identified are discussed in Chapter 11 where future work is identified. 
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Figure 1. The overall architecture of the proposed system. The blue boxes indicate key 

components to which a chapter is wholly or partly dedicated.   
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1.7 Publications from the thesis 
The work in Chapter 6 was published in Towards Autonomous Robotic Systems: 18th 

Annual Conference, TAROS 2017.  

The work in Chapter 7 and part of the work in Chapter 8 and part of the work in Chapter 

10 was published in IEEE Robotics and Automation Letters.  

A further part of Chapter 8 was published in Biomimetic and Biohybrid Systems: 8th 

International Conference, Living Machines 2019. 
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Chapter 2 The auditory system and robot audition 
 

2.1 Introduction 
There is a need for autonomous mobile robots to use a variety of senses to navigate or 

locate entities in unstructured environments. Typically, vision is used to locate objects in 

the robot's environment, however, this can break down where vision is obscured. This is 

a particular issue in disaster situations such as those described in Section 1.1. A number 

of attempts have been made to allow a robot to navigate by sound alone [2], however 

these systems are typically set up in a specific acoustic environment and can break down 

when the robot moves to a new environment. 

2.2 The biological auditory periphery 
The structure of the animal auditory periphery will be referred to at various points 

throughout the thesis, and, although only simplified aspects of the auditory system are 

included, in particular, those concerned with SSL, a brief treatment is useful to set part of 

the context in which the thesis is positioned. The system described here is mainly based 

on the mammalian biology, as both the avian and reptilian auditory pathways possess 

some significant differences. Treatment of the mammalian auditory pathway however, 

brings out some basic concepts that are relevant to Robot Audition, discussed in Section 

2.3. 

The primary organ of the inner ear is the cochlea which appears early in the auditory 

pathway. The basilar membrane that runs the length of the cochlea holds the auditory 

nerve, which consists of rows of hair cells which transduce the basilar membrane 

vibration (itself caused by vibration of the tympanic membrane, that is, the “eardrum”, 

and the ossicles due to variations in air pressure caused by sound) into an electrical 

waveform. There are two distinct types of hair cell known (because of their orientation) 

as Inner Hair Cells (IHC) and Outer Hair Cells (OHC). The former plays the major part 

in the conversion process [10].  A low or high frequency stimulus will cause a peak in 

vibration amplitude toward the apex and base of the basilar membrane respectively. This 

in turn will give rise to a peak nerve fibre response to each component at a place along 

the basilar membrane that is frequency-specific. The function of the cochlea seems to be 

to analyse the audio stimulus into a number of frequency bands (many thousand in the 

mammalian cochlea), a function often known as the auditory filter.   
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A somewhat simplified schematic of the auditory pathway is shown in Figure 2. The 

auditory nerve connects to the Cochlear Nucleus (CN). The CN includes the Dorsal 

Cochlear Nucleus (DCN1), which appears to be linked to Inter-aural Level Difference 

(ILD, Section 2.3) processing and the Ventral Cochlear Nucleus (VCN) which appears to 

be linked to Inter-aural Time Difference (ITD, Section 2.3) processing. The outputs of 

the CN connect to the Inferior Colliculus (IC), with some outputs connecting via the 

Superior Olivary Complex (SOC), which plays a key role in sound localisation, and itself 

includes the Medial Superior Olive (MSO), which is linked with ITD processing to 

determine azimuth, and the Lateral Superior Olive (LSO) which is associated with ILD 

processing to also determine azimuth. There are connections from the IC to the Superior 

Colliculus (SC), which plays a key role in the integration of the senses, but with most 

connections going to the auditory cortex via the Auditory Thalamus. 

 

Figure 2. The auditory pathway. DCN1 is Dorsal Cochlear Nucleus, VCN is Ventral 

Cochlear Nucleus.  

 

2.2.1 Modelling the auditory periphery 

Although the auditory periphery was not modelled as part of the thesis (except on a very 

limited scale to implement an SSL algorithm), it is quite possible that this could be 

included in future work, and it is dealt with here briefly, for completeness. The auditory 

filter in particular has been extensively modelled, mainly for speech processing, but also 

more recently for Robot Audition, notably in the Auditory Toolbox [11] and the 

Auditory Modelling Toolbox [12], both of which provide Matlab libraries (and Octave in 

the case of [12]) for the simulation of this and other functions of the auditory pathway. 

                                                 
1 DCN is used elsewhere in the thesis with different meaning 
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The place coding of the basilar membrane can be modelled electronically as a bank of 

filters. Models fall predominantly into two categories: a series of electronic filters 

proposed by Lyon [13] and a parallel bank of filters [14], the latter based on gammatone 

filters, so called because of the filter impulse response that resembles a gamma-

modulated tone, and is widely accepted to reflect the response of the auditory filter; 

Figure 3 shows the simulated impulse response of a gammatone filter in Simulink. 

Filters toward the high frequency end of the bank are characterised by higher frequency 

tones and shorter decay times versus lower frequency tones and longer decay times 

toward the low frequency end.  

 

Figure 3. Impulse response of gammatone biquad filter in Simulink. 

Approaches to modelling the auditory periphery fall into analogue or digital 

implementations. Digital implementations are of course commonplace [15-17]. Lyon’s 

own implementation of his model was analogue [18] and analogue implementations 

continue to enjoy popularity [19-21], especially with the development of neuromorphic 

engineering, proposed by Mead in 1989 [22] in which Very Large Scale Integration 

(VLSI) circuits mimic cells in the central nervous system. Initially these were based on 

analogue devices but neuromorphic systems now also include digital technologies. An 

example of this is the SpiNNaker Project, a large scale, parallel, spiking NN computing 
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platform [23]. There have been a number of examples of neuromorphic auditory 

modelling [24-28]. 

2.3 Robot Audition 
Robot Audition is a relatively recent area of research (around 18 years old at the time of 

writing) focusing on robot hearing [29], and has developed from, and is related to other 

areas such as Computational Auditory Scene Analysis (CASA) [30], and speech 

recognition. The newness of this area of research is indicative of the fact that robot vision 

has dominated research in robot senses, which is understandable given the large amount 

of data available from devices (image capture devices such as cameras) which are 

generally low cost and straightforward to use (but which can require significant 

computing resources to process). Also, the format of the information available through 

vision sensors makes tasks such as navigation and object localisation relatively 

straightforward compared to, for example, performing the same task using sound. This is 

because the sensing array associated with a vision sensor such as a camera has elements 

that map directly on to positions in the visual scene. This is not possible with audio, 

especially with the biological auditory system which uses two sensors (ears) and codes 

sounds from the early stages of the auditory pathway on the basis of frequency content. 

However, the growing need for robots to operate in the field, that is, in unstructured and 

unpredictable environments makes the reliance on vision alone sometimes infeasible, 

especially in extreme environments such as in a disaster situation, and taking into account 

the processing overhead associated with visual input on a mobile robot which may have 

limited computing resources. 

Robot Audition consists of three key functions:  SSL, separation of the sound sources in 

the audio scene and source recognition [31]. SSL is a low level function forming the basis 

for higher level functions of source extraction, source recognition and lastly scene 

reconstruction which is a high level description of the auditory scene [32]. So, although 

the quite narrow focus of this thesis is on locating sound sources in the robot’s 

environment, as an end in itself, successful calibration of this task could have significant 

impact on dependent, higher level functions of Robot Audition. 

These functions underpin a number of tasks that a robot might be required to undertake 

such as speaker and emotion recognition. Much of this research (and hence the tasks 
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focused on) have been motivated by the desire to improve human-robot interaction, and 

in particular to make this seem more natural.  

Robot navigation by sound alone has been well researched [33-36], however the systems 

described have typically been tested in a specific acoustic environment. Although there 

are examples of SSL systems that can adapt to different acoustic environments [19, 37-

42] it is not clear how well they would perform in a new environment that has not been 

previously experienced by the robot.  

Figure 4 shows the 3D audio map of the robot defined by azimuth θ, elevation α and 

distance to source. SSL is the process of estimating these parameters that will locate the 

source of a sound in 3D space, with respect to the robot head, which is located at the 

centre of a sphere. The thesis considers only 2D (azimuthal) SSL. For convenience, it also 

only considers sounds that emanate from in front of the robot, rather than behind. 

Front/back confusion is a particular problem in SSL, and is considered here to be a 

problem that might be resolved by the appropriate design of the underlying SSL system 

rather than the system that is the subject of this thesis. As the proposed system includes 

an adaptation of a previously developed system that calibrated a 2D whisker map, it ought 

to be possible to extend the SSL calibration system to 2 dimensions, e.g. azimuth and 

elevation.  

The SSL field has been very active over the last 20 years and SSL systems have become 

quite robust and sophisticated. However, this is largely at the cost of simplicity and size, 

usually with systems utilising an array of multiple microphones. The thesis specifically 

eschews microphone arrays and focuses on binaural robot audition. As mentioned in 

Section 1.1 the system developed here is intended to sit on top of an underlying SSL 

system. The motivation therefore is towards simplicity, low cost and low computational 

load, so that a basic binaural system is sought. The SSL approach used in this thesis is 

based on passive binaural localisation using Inter-aural Time Difference (ITD) of arrival 

of sounds [43], with microphones mounted in free field, corresponding to Auditory 

Epipolar Geometry (AEG) [2]. The head related transfer function of the robot head is 

ignored. If a modular approach is taken, so that the SSL system is not integrated then it 

should be a simple matter to “plug in” a more sophisticated system (which could even 

include those utilising microphone arrays, rather than being binaural). The primary 

auditory cues used in the passive, binaural localisation of sound sources are ITD and 
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Inter-aural Level Difference (ILD) [43]. ILD relies on acoustic shadowing caused by the 

head of the animal (or robot); as such it is frequency dependent, and is effective for higher 

frequencies (greater than around 1500 Hz). On the other hand, ITD cues are limited to 

lower frequencies due to phase ambiguity as the period of the sound wave becomes 

comparable to the maximum ITD available for a given sensor or ear separation [43]. 

Sound from a source to either side of the median plane will reach one or other sensor or 

ear at different times (e.g. a sound originating from a source to the right of the median 

plane will reach the right ear or sensor before the left). The ITD has a maximum value of 

around 660μs at an azimuth of 90o in humans [43], representing an inter-aural distance of 

around 15cm. This is subject to uncertainty due to environmental influences such as 

obstruction of the sound source, the acoustic properties of surfaces or damage to or 

displacement of audio sensors. There are a number of attempts of SSL [20, 26, 44-52], 

mostly using ITD. Modelling of the ITD is most commonly carried out using the Jeffress 

model [53].  

 

Figure 4. Audio map of sound source location in head-centric space. Reprinted from 

[54]. © 2018 IEEE. 

SSL systems have typically used arrays of multiple microphones [35, 36, 55], however 

this thesis adopts a binaural approach with a view to the limited resources available on a 

mobile platform including size, computation and power constraints point to lower 
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numbers of microphones [32], with two microphones being the minimum number to 

allow the one-dimensional location of a sound source (i.e. the direction of arrival or 

azimuth of the sound source in one plane). Those adopting a binaural approach have 

mostly been under controlled, limited conditions [25, 56-61]. Among those approaches 

that do use a binaural approach, many use active, rather than passive SSL, where the robot 

has to move to improve SLL robustness [29, 31, 32]. 

Other approaches could have been adopted such as Scattering Theory (ST) [25, 56-59], 

where the robot head is modelled as a sphere. By focusing on AEG the thesis has side-

stepped the need to consider the Head Related Transfer Function (HRTF). The HRTF is 

the characteristic response of the acoustic environment that intervenes between the sound 

source and the inner ear (or microphone) [10].  It will include the acoustic properties of 

the animal’s or robot’s head and pinnae. Including the HRTF would involve considerable 

effort not directly relevant to the central research questions of this thesis. However, the 

HRTF is still problematic, especially as it needs to be taken into account in the robot’s 

context (or an extensive HRTF database needs to be used) with concomitant inflexibility; 

the potential for cerebellar calibration to compensate for variation in HRTF among other 

things may be a rich source of future work. 

ITD is the difference in time of a sound reaching each of a binaural sensor array (such as 

a pair of microphones or an animal’s ears). If the sound is at zero azimuth, then as shown 

in Figure 4, the sound source is directly ahead of the robot and the sound will reach both 

sensors at the same time, resulting in a value of zero for the ITD. If the sound source 

changes position to the right of zero azimuth sound from that source will reach the right 

sensor before the left, as it will have a lower distance to travel o that sensor, resulting in 

a non-zero ITD. The greater the displacement of the source from zero azimuth, the greater 

the value of the ITD.  

A cross-correlation algorithm has been developed in Matlab to determine the ITD from 

two microphones and provide an estimate of the azimuth of the location of a sound source. 

The algorithm uses the Matlab xcorr function, which returns the cross correlation 

between the right and left channels as a function of time difference between the channels, 

shifting the timebase of one channel with respect to the other by varying amounts. The 

cross correlation is given by  
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𝑟𝑟𝑙𝑙𝑙𝑙 = �𝑅𝑅(𝑘𝑘)𝐿𝐿(𝑘𝑘 − 𝜏𝜏)

𝑛𝑛

𝑘𝑘=0

 (1) 

where R is the right- and L the left channel audio signal, k is the sample number, n is the 

current sample and τ is the time lag between left and right channel (the cross correlation 

is actually found recursively so that the calculation uses the current audio samples and 

the previous value for r, otherwise it would need to be calculated for all samples at each 

time step which would quickly become unmanageable). The algorithm finds that time 

difference which results in maximum similarity between the two channels (maximum 

correlation value), which corresponds to the time difference of arrival. This is then 

transformed into an estimated azimuth (Figure 5) by  

 𝜃𝜃 =  
180
𝜋𝜋

sin−1 �
𝑐𝑐𝜏𝜏
𝐷𝐷𝑓𝑓𝑠𝑠

� (2) 

where c is the velocity of sound (ms-1), τ is the estimated ITD (s), D is the inter-aural 

distance (m) and fs is the audio sampling frequency (Hz). By convention, azimuth values 

to the right of zero are treated as positive and those to the left are treated as negative. 

Results are limited by the resolution of the SSL unit, which varies from +/-1.7o at zero 

azimuth to +/-5o at +/-70o azimuth. The resolution is affected by the sampling frequency 

(44100 Hz in this thesis) and inter-microphone distance (0.16m and 0.25m in this thesis- 

figures above for resolution are for the .25m inter-microphone distance). 

A problem with single direction of arrival estimation techniques is that they can break 

down in noisy or reverberant environments. One approach that is commonly used and 

which has some robustness to reverberation is GCC-PHAT. Knapp and Carter describe 

the Generalized Cross Correlation (GCC) method [62], which is a cross correlation 

between the two signals carried out in the frequency domain, with a weighting function.  

Generalized Cross Correlation with Phase Transform (GCC-PHAT) uses a weighting 

function that is the inverse of the cross-correlation which normalizes the magnitudes of 

peaks in the cross-correlation. This tends to separate out the peaks due to multiple sound 

sources, providing some robustness in noisy and reverberant environments, making it a 

commonly used technique. However, GCC-PHAT was not used in this thesis, apart for 

the purposes of comparison in Chapter 7 and to check that the proposed system could be 

used with a different SSL algorithm to that used in the thesis. 
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Figure 5. Determining azimuth 𝜃𝜃 from Inter-aural Time Difference of arrival. c is the 

velocity of sound, τ is the ITD and D is the inter-aural distance. A planar sound wave is 

assumed. 

2.4 Adaptive SSL systems 
A key claim of this thesis is that the proposed system can calibrate an underlying SSL 

algorithm in multiple environments and select a set of models and blend their outputs to 

improve the SSL estimate as the robot moves between environments.  There are a number 

of systems that can learn the audio map of a robot, however, there is very little in the 

literature about systems that will select these learned models from environment to 

environment [41, 58, 63-65]. There are robot audition systems that use Acoustic Scene 

Classification (ASC- see Section 8.2), sometimes also referred to Environmental Sound 

Recognition (ESR) [66], however these focus on the classification problem itself, and 

although it has been stated that a robot could switch its mode of operation based on 

recognition of its acoustic environment [67-70], it is not clear from the literature how 

ASC or ESR systems are actually used to adjust robot audition functions such as SSL in 

multiple acoustic environments, as the robot moves between the environments. Indeed, 

there is no reference whatsoever in the literature to the blending of the adjustment or 

calibration of robot audition functions based on the recognised environment as proposed 

in this thesis. The thesis draws on work in ASC in the development of an RP. 

D 
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Chapter 3 The cerebellum 
 

3.1 Introduction 
The cerebellum is a densely populated part of the hindbrain of vertebrates and appears to 

take part in a wide range of functions ranging from fine-tuning of motor control to 

providing a subconscious sense of agency and self [9]. It has a highly regular structure 

that turns out to be very versatile in terms of function.  

A number of models of the cerebellum have been proposed and that used in this thesis is 

based on the adaptive filter model of the cerebellum [71, 72], which has proven to be a 

versatile and robust algorithm in a variety of robotics applications [4, 7, 8].  

 

3.2 Structure of the cerebellum 
The cerebellum consists of two main regions, the Cerebellar Cortex and the Deep 

Cerebellar Nuclei (DCN2) [9]. The cortex consists of two key cell types, the granule cells 

and Purkinje cells, and is organised into three layers, the granular layer, the Purkinje cell 

layer and the molecular layer (Figure 6).  

 
Figure 6. Basic structure of the cerebellar cortex. Reprinted by permission from 

Springer Nature: Nature, Nature Reviews Neuroscience [73] © 2005. 

 

                                                 
2 DCN is used elsewhere in the thesis with different meaning 
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The granular layer consists mainly of granule cells, which receive input from mossy 

fibres, which in turn provide one of two main afferent pathways to the cerebellum. 

Granule cells in fact form the bulk of the cells within the cerebellum. There are a variety 

of sources of this input, including cerebral and sensory, and the latter is the most 

significant for this thesis. Purkinje cells form their own layer between the granular layer 

and the molecular layer. Axons of the granule cells form parallel fibres which synapse 

onto the Purkinje cells, and make up the molecular layer. Parallel fibre input to the 

Purkinje cell is excitatory, but it also receives inhibitory input from basket and stellate 

cells, which are both interneurons. The molecular layer also includes Stellate cells which 

receive input from the parallel fibres, synapsing onto the Purkinje cells. Basket cells are 

found within the Purkinje cell layer and form an inhibitory loop from output to input of 

the Purkinje cell. Granule cells also receive inhibitory input from Golgi cells that are 

found in the granular layer and receive input from both mossy and parallel fibres, and this 

may contribute to the richness of the analysis and filtering of the sensory input to the 

cerebellum as discussed later in Section 3.5.  

 

The second main afferent pathway is the climbing fibres that also synapse onto the 

Purkinje cells. Climbing fibres are the axons of cells that appear in the inferior olive, 

which in turn appear to receive input from the superior colliculus [74]. The firing rate of 

the climbing fibres is orders of magnitude lower than that of the Purkinje cells so that it 

has no direct influence on the sensory signal yet does influence the weights of the parallel 

fibre-Purkinje cell synapses [75]. There are a large number of granule cells for each 

Purkinje cell, on the order of 105. Axons of the Purkinje cells carry output from the 

cerebellar cortex into the DCN3, and in fact, this is the only output pathway from the 

cerebellar cortex. Neurons in the DCN form the actual output from the cerebellum. These 

neurons are inhibited by the Purkinje cells, and also receive input directly from the mossy 

and climbing fibres, which is excitatory.  

 

3.2.1 The “cerebellar chip” 

The notion of the so-called cerebellar chip has arisen from the evidence that the regular 

structure of the cerebellum consists of a large number of microzones of identical 

“circuitry” whose function depends on external connectivity [8]. The analogy is one of 

                                                 
3 Deep Cerebellar Nuclei. DCN is used elsewhere in the thesis with different meaning 
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an integrated circuit (or “chip”, to use the popular terminology), consisting of large 

numbers of identical circuits. Treating the cerebellum as a single, large NN would mean 

overlooking the diverse range of functions that are carried out. The smallest possible 

functional unit might be based around a single Purkinje cell and its associated inputs 

formed by mossy fibres/granule cells along with climbing fibre input, although the 

microzone in the mammalian cerebellum is taken to be a group of Purkinje cells that 

corresponds to an identifiable function. One such possible function is akin to an adaptive 

filter, which is described in Section 3.5, and which operates on inputs, carrying out some 

sort of processing, to produce an output. The relationship between input and output 

characterizes the function of the microzone.  

 

As mentioned in Section 3.2, there are both excitatory and inhibitory cells in the input 

sections of the “chip”. The role of inhibitory cells may be to act like the inverting input 

to a differential amplifier; differential inputs to the cerebellum thus transmit the salient 

sensory input and reject the common-mode noise signal [9]. 

 

3.3 Subsumption architecture and the cerebellum 
Subsumption architecture is a hierarchical robotics control paradigm in which higher 

level behaviours are divided in to lower level sub-behaviours (Figure 7), referred to as 

modules and described as levels of competence [76]. Examples of levels of competence 

from [76] include obstacle avoidance at the lowest level, aimless wandering at the next 

highest level and exploring at the level above that, with each layer utilising the 

competence below it. This approach allows the development of a robot system from the 

bottom-up, starting with low level competences and adding higher levels as more 

sophisticated behaviour is required. Input is typically from sensors and output is to 

actuators or is used in the suppression or inhibition of Input/Output (I/O) to lower layers. 

Through this I/O manipulation higher level competences can subsume lower level 

competences. An advantage claimed of this approach is increased robustness in that if a 

high-level competence cannot react quickly enough to a changing situation, it will then 

fail to suppress its lower level competence which can then resume more control (the 

assumption of course is that the lower level functions can operate more efficiently or with 

greater speed, which is not unreasonable).  
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Figure 7. Hierarchical layers in subsumption architecture. Reprinted with permission 

from [77]. © 1999 Massachusetts Institute of Technology, published by the MIT Press. 

 

Montgomery and Bodznick [9] suggest that the role of the cerebellum could be akin to a 

higher level module that sits over lower level functions of the brain and subsumes those 

functions as required by the task at hand, providing short term adaptation until the lower 

level function is able to adapt over a longer term, when the cerebellum can then “step 

back” and allow the lower level module to regain more control.  This does not seem to be 

fully true to the subsumption architecture in that the latter builds higher level competences 

that remain in operation permanently, however, it is an interesting and informing analogy 

nonetheless. The analogy as it applies to this thesis would be that the SSL unit acts as a 

low-level competence (one could extend the analogy and think of further, lower level 

competences such as the audio capture subsystem), which can provide an accurate 

azimuth estimate under normal circumstances, that is, in an anechoic environment free 

from interfering noise sources, but which may produce erroneous estimates in non-ideal 

environments. The cerebellar calibrator described in this thesis sits on top of this and 

subsumes the SSL function by interjecting a calibrating signal. This very nicely reflects 

the subsumption architecture, in which low level modules are unaware (so to speak) of 

the interference of the high-level module, which is the case here as the calibration signal 

is added to the output of the SSL unit. In other words, the calibrator does not alter the 

operation of the SSL unit itself, but interjects a calibrating signal at the output. 
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3.4 The role of the cerebellum in cognition 
Montgomery and Bodznick [9] provide a very nice review of the role of the cerebellum 

in providing a sense of self and agency. This is facilitated in part through the function of 

the cerebellum as an adaptive filter (see Section 3.5) that monitors the efferent (outgoing) 

signals from the brain (e.g. motor commands) along with the re-afferent (resultant 

incoming sensory) signals, and where they correlate, cancelling the resulting sensation 

that would otherwise be perceived as being generated by a different agent [78]. There has 

been recent recognition that the cerebellum plays a role in perceptual processes [79], with 

auditory input to the cerebellum as well as other sensory input such as vision. Much of 

the research concerning the role of the auditory cerebellum however seems to be in the 

area of speech production. This makes sense given the cerebellum’s historically perceived 

role in motor control as speech production is partly a motor problem. 

 

3.4.1 The cerebellum and cerebellar-like structures in auditory processing 

Until recently, the cerebellum was considered to mainly be involved in motor control but 

there is increasing evidence that it plays a role in non-motor functions, and especially that 

it plays a role in perceptual processes [9, 79, 80]. The role of the cerebellum in auditory 

processing in particular was recognised several decades ago [81], although it is only 

relatively recently that this aspect of cerebellar function has received much attention [82-

86]. Work in this area has mainly focused on speech perception and production- there is 

very little on the role of the cerebellum in auditory localisation. The DCN4 appears early 

in the auditory pathway (Figure 2) and has a cerebellum-like structure that takes part in 

the spectral localisation of higher frequency audio using ILD. There is no mention in the 

literature of the role of the cerebellum in ITD, however, it is an intriguing thought that 

there might be such a role given the universality of the “cerebellar chip” and the role of 

the cerebellum in temporal aspects of auditory processing [87, 88] and event timing [89], 

albeit on timescales much larger than those involved in ITD. As such, there is currently 

no biological plausibility for the approach taken in this thesis, and it can as yet only claim 

a new demonstration of the universal utility of the “cerebellar chip” in robotics. 

 

                                                 
4 Here, DCN is Dorsal Cochlear Nucleus 
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An intriguing insight into the role of the cerebellum in auditory processing, but at a high 

level, interfacing with conscious thought, is the differentiation between external sounds 

and those generated internally through a person’s thoughts. In the same way that the 

cerebellum has been shown to have a role in cancelling the self-generated tickle sensation, 

it has been shown that patients who suffer from episodes of hallucinatory audio also suffer 

from an inability to distinguish self-generated tactile sensations [78, 90]. 

 

3.5 Adaptive filter model of the cerebellum 
 

3.5.1 Introduction 

 

The adaptive filter model of the cerebellum has been used successfully in studies 

including a variety of robotics applications, although these are quite limited in number, 

despite it being a powerful and versatile algorithm. These have included   [4, 5, 91-93]. 

 

A general filter is a system that receives a time varying signal as input, applies a transform 

and produces a time varying output that depends on the input in a way that is characterised 

by the transform, and as the name suggests, in so doing usually removes an undesirable 

feature of the input such as unwanted noise. The transform is usually characterised by a 

set of parameters (these could be, for example, the coefficients of a difference equation 

in a discrete-time filter, where the output of the filter depends on the weighted sum of 

past and present inputs), and the filter design problem is one of arriving at a set of 

parameters to achieve the desired filter transform.   

 

An adaptive filter is one which has adjustable parameters, whose values are determined 

through some algorithm that typically is designed to optimise the performance of the 

filter, often by minimising performance error. An example might be the Least Mean 

Square (LMS) algorithm [94], which is a gradient descent algorithm intended to optimise 

filter coefficients by iteratively finding the gradient of the Mean Squared Error (MSE) to 

minimise the same. Adaptive filters have applications in engineering where the desired 

characteristics of the filter cannot be known a-priori, for example in acoustic noise 

cancellation, where the nature of the unwanted signals to be removed will depend on the 

acoustics of the environment and the nature of the sources of noise. 
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The adaptive filter model of the cerebellum was proposed by Fujita [71] as a variation on 

the Marr-Albus model [95, 96]. This model emphasises the resemblance of the cerebellar 

microcircuit to an adaptive filter [8, 72, 97, 98].  The cerebellar microcircuit and the 

adaptive filter model are shown in Figure 8 A and B respectively. The model is 

characterised by a very rich set of inputs/basis filters [9] (note, however, that the models 

in this thesis do not have basis filters). This richness is a result both of the very large 

number of granule cells (and hence parallel fibres) and of additional processing carried 

out within the granule cell network itself, which is enhanced by Golgi cells in the granular 

layer (Section 3.2), and contributes to the power of the adaptive filter function by 

providing a massive signal analysis capability. The large number of mossy fibres also 

allows input to the cerebellum from very diverse areas of the brain and sensory systems. 

Sensory input is to granule cells via the mossy fibres. Granule cell axons form parallel 

fibre inputs to Purkinje cells. The granule cells (along with their parallel fibre axons) form 

basis functions/filters that may include, for example, delay functions. In this thesis, and 

the precursory work that the cerebellar calibrators were based on [4], basis filters were 

simply unity gains. Hence, the (mossy fibre) input is analysed into multiple filter 

pathways and synthesized at the Purkinje cell with weights that are affected by the 

climbing fibre input to the Purkinje cell. Whereas the parallel fibres convey sensory input 

signals, the climbing fibre conveys a teaching signal.  Learning is based on the covariance 

learning rule [8, 9, 72, 97-101]. This rule serves to de-correlate input signals that 

contribute to error. As Purkinje cell output is inhibitory, parallel fibres that correlate with 

Purkinje cell activation will have their synaptic weights reduced by the learning rule. 

Purkinje cell activation coincides with error (e.g. retinal slip in the vestibulo–ocular 

reflex) and de-correlation learning drives Purkinje cell activity towards zero. Activation 

of the Purkinje cell has an inhibitory effect on the appropriate deep cerebellar neurons, 

counteracting the error. Those parallel fibres that are active in a way that is uncorrelated 

with Purkinje cell activation will have their weights increased. If a parallel fibre is 

inactive, the covariance learning rule means that its synaptic weights will be unchanged. 

 

3.5.2 Implementation of the adaptive filter model of the cerebellum 

In this thesis Matlab was used to implement an adapted version of the model used in the 

Bella project (Section 1.1) on a desktop PC/laptop, and this is described in detail in 
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Chapter 4. As mentioned in that chapter, a Zynq System on Chip (SoC) could be a 

potential candidate for in-the-field implementation. More details are given in Section 4.2. 

As mentioned in Section 2.2.1, neuromorphic engineering provides a potential low power 

consumption solution and examples exist of neuromorphic implementations of the 

cerebellum [102, 103] and specifically the adaptive filter model of the cerebellum [92]. 

3.6 The cerebellum in motor control 
The motor control role of the cerebellum may not seem relevant to his thesis, however, 

as the thesis “borrows” a multiple models approach to selecting models for motor control, 

described in Chapter 5, a brief treatment of this role is undertaken here. 

 

Models of the cerebellum have increasingly been used as adaptive controllers [104]. 

Internal models contain a paired forward and an inverse model. In the context of motor 

control, input to the forward model is the motor command but could also include sensory 

input [74]  and the output is a prediction of the consequences of the action given the 

current state and motor command as input as the forward model learns the dynamics of 

the controlled plant [6, 105]. In this way, the forward model overcomes the problem of 

large delays in sensory feedback. On the other hand, an inverse model of the system acts 

as a controller, providing feedforward control [104] as it produces the required motor 

command for a given desired state. Another way of viewing this is that the inverse model 

acting in series with the controlled plant together form an identity such that the output is 

identical to the input provided the inverse model is accurate. 

 

Forward models can be learned through experience, adjusting for example synaptic 

weights in response to an error signal obtained from the difference between desired state 

and actual state ascertained through feedback. 

 

Inverse (controller) models are more problematic to learn, as the teaching signal is not 

usually directly available. Two key solutions to this have been proposed: distal supervised 

learning [106] and feedback-error-learning [107, 108]. In the latter, the feedback error 

signal is provided in motor coordinates (in the cerebellum this is via the climbing fibre 

inputs). In this scheme, the feedback error signal is in task-oriented coordinates (e.g. 

desired arm trajectory) or body-oriented coordinates and is transformed into motor 

coordinates by an approximate inverse model of the plant, which is used to teach a feed-
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forward adaptive element such as a cerebellar model. Porrill et al. eliminated the need for 

such an approximate inverse model by applying the teaching signal instead to a recurrent 

adaptive element [7]. 

 

 
Figure 8. Adaptive filter model of the cerebellum. (a) Cerebellar microcircuit. (b) 

Adaptive filter equivalent. Adapted with permission by Royal Society from [7]. 
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Chapter 4 Cerebellar calibration 
 

4.1 Introduction 

4.1.1 Adapted model- whisker map calibration 

The cerebellar calibration model is an adaptation of that used in a previous study to 

calibrate whisker input to a robot platform [4, 5], which draws on the adaptive filter model 

of the cerebellum to calibrate a 2-dimensional topographic map of the whisker sensory 

space [71]. That study also drew on the concept that animal collicular maps receive 

information about target locations from multiple modalities [109], and that saccades in 

particular can be controlled based on sensory input to, for example, bring the target onto 

the fovea in primates. Accuracy can be relearnt following artificial mis-calibration where 

the Cerebellum is intact, suggesting a role for the latter in calibration of collicular maps 

[110]. An array of 20 whisker-like tactile sensors were mounted on the “head” of a robotic 

manipulator, with a camera mounted centrally to the whisker array (Figure 9). The model 

was implemented in Matlab and cerebellar connections are shown in Figure 10, with the 

topographic map representing the superior colliculus. Input to the model were coordinates 

of the sensed whisker contact location in head-centric space, and represented by a 2-

dimensional Guassian on the topographic map. Granular layer processing is limited to 

coarse coding (with 64 parallel fibres in an 8 x 8 2D array) and normalisation, so that 

there is no explicit basis filter. The performance of the system using artificial distortion 

(in software) is shown in Figure 11. 

 

 



39 
 

 

Figure 9. Bellabot platform. Reprinted from [4]. © 2016 IEEE. 
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Figure 10. Architecture of the whisker map calibration system. Unimodal sensory 

signals, corresponding to target locations (xd, yd), are written into the map, which 

because of the distortion provides an inaccurate estimate of target location (xg, yg) that 

is used to generate a correspondingly inaccurate orienting response. The map output is 

also sent to the cerebellum, where it is converted into a coarse-coded, normalised set of 

PF signals. These are sent to two cerebellar microzones, each represented in the 

diagram by a single Purkinje cell, that receive climbing fibre inputs that initially signal 

errors (xd-xg, yd-yg) in the orienting response. These errors are used to alter PF-PC 

synapses, generating cerebellar output that shifts the map so that the orienting response 

is now made to the new location (xa, ya). This process is repeated until the error 

(xd−xa, yd-ya) becomes zero. Figure and caption adapted from [5] under the Creative 

Commons Attribution License. 
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Figure 11. Recalibration of a single target map with curvilinear distortion. a) The left 

hand panel shows an initially accurate map (green line) in the superior colliculus (SC), 

with artificially induced curvilinear distortion (red line) (details in Methods). The shifts 

in the map to correct for the distortion are dependent on the location in the map, and 

are indicated by black arrows. The learnt cerebellar recalibration of the distorted grid 

(teal line) is shown in the middle panel. The right hand panel shows the combined 

learnt weights in the x- and y-directions corresponding to each coarse coded parallel 

fibre signal (weights initially zero). b) Time course of recalibration, showing how RMS 

errors in orienting responses change with number of target presentations. c) Example of 

learnt dynamic cerebellar recalibration. The left-hand panel shows the shift in the map 
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(red arrow) required to produce an accurate orienting response to the inaccurate target 

location provided by the distorted map. The centre panel shows the coarse-coded, 

normalised parallel fibre signals produced by the inaccurate target location. The right 

hand panel shows that after learning the parallel fibre signals now shift the map by just 

the required amount to produce an accurate response. Figure and caption reprinted 

from [5] under the Creative Commons Attribution License. 

The Purkinje cell in the model synthesizes the parallel fibre signals modulated by the 

synaptic weights into a collicular x-y map-shift shift signal that is applied as a bias to the 

output from the whisker array. The amount of bias is the weighted sum of the parallel 

fibre inputs: 

 
𝛿𝛿𝛿𝛿 = �𝑤𝑤𝑥𝑥𝑥𝑥𝑝𝑝𝑥𝑥

𝑛𝑛

𝑥𝑥=0

 (3) 

 
𝛿𝛿𝛿𝛿 = �𝑤𝑤𝑙𝑙𝑥𝑥𝑝𝑝𝑥𝑥

𝑛𝑛

𝑥𝑥=0

 (4) 

Where wx and wy are the parallel fibre-Purkinje cell weights associated with the x and y 

direction respectively. Weight updates are based on the covariance learning rule [8, 9, 72, 

97-101]: 

 Δ𝑤𝑤𝑥𝑥𝑥𝑥 = −𝛽𝛽𝑒𝑒𝑥𝑥𝑝𝑝𝑥𝑥 (5) 

 Δ𝑤𝑤𝑙𝑙𝑥𝑥 = −𝛽𝛽𝑒𝑒𝑙𝑙𝑝𝑝𝑥𝑥 (6) 

Where β is the learning rate, ex and ey are the x and y target position errors respectively. 

A limitation of the implementation in [4] and [5] is that there is no stopping criteria during 

learning. The number of weight update trials used in [4] is not discussed in that paper but 

from the results presented appears to be between 110 and 140 trials. The number of trials 

used in [5] was 3000 although no rationale is given for the choice of this figure. 

Another limitation of this implementation is that the compensating shift produced by the 

cerebellar circuit is a global map shift, based on the simplification that only a single target 

is considered. Wilson et al. assert that it is likely that separate cerebellar microzones 

would be required to calibrate different areas of the collicular map should multiple targets 

be used. 
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4.1.2 Adaptation to SSL calibration 

The software that was adapted for this thesis was not that used on the Bellabot but rather 

a demonstration version, which used artificially generated whisker output data in software 

(the Bellabot software itself would have been too unwieldy for the purposes of the thesis, 

consisting mainly of control and communication routines specific to the Bellabot 

platform). Otherwise, the calibration model is the same as that described in section 4.1.1, 

with some modifications that are described in this section.  

The adapted system is shown in Figure 12, adapted for audio input. The key changes 

made to that software are that it was adapted to represent a 1-dimensional case and with 

inputs that are generated from the SSL input rather than whisker input, otherwise the 

model remained largely unchanged. This was done as, at the time, it was envisaged that 

the system proposed in the thesis could form another modality in the Bellabot system 

itself, so it was considered prudent to adapt the software as little as possible. Input was 

the SSL estimate (azimuth) transformed into distance from centre (directly ahead of the 

robot head) along a circa 2.5m arc (see below), so that the inputs were between 0 and +/-

1.25m (representing an azimuth of +/- 90o, although inputs were restricted to +/-45o). The 

map stores a probabilistic representation of sound source azimuth in robot head-centric 

space, but using a 1-dimensional Guassian rather than 2-dimensional as in Bellabot. 

Otherwise, the Guassian parameters remained the same. A course-coded version of the 

map, as with Bellabot, transmits activity at each place on the map to the cerebellum via 

the parallel fibres. The weights wi of the parallel fibre-Purkinje cell synapses are updated 

in the same way as in Bellabot by the covariance learning rule. 

 

Figure 12. Cerebellar calibration using the adaptive filter model of the cerebellum. 

Reprinted from [54]. © 2018 IEEE. 
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An audio stimulus results in activation of the SSL unit, which provides an estimate of the 

azimuthal position of the sound source. This is represented internally in the robot system 

as the length of the arc from the centre position of a circle that encompasses and is centred 

on the robot head to the point on that circle occupied by the sound source (Figure 13). 

This was done rather than converting to an azimuth internally in order to stay close to the 

implementation of the system in [4]. The conversion from azimuth to arc length is given 

by 

 2𝜋𝜋𝜋𝜋𝜃𝜃
360

 
(7) 

where 𝜋𝜋 is the distance from the robot head to the sound source and 𝜃𝜃 is the azimuth of 

the sound source in robot head-centric space. It is the length of the arc from the centre 

position that is input to the cerebellar model. 

 

Figure 13. Internal representation of azimuth.  

This internal representation is divided into a regular grid with activity in each cell of the 

grid forming one input (i.e. the mossy fibre/parallel fibre) into the cerebellar model, and 

is course-coded for computational convenience as described in [4], so that the activity on 

a single parallel fibre is a probabilistic representation of a number of azimuthal positions 

(in this case the azimuth range is divided into 8 regions (with 8 parallel fibres), following 

the approach in [4], each representing approximately 10o segments). For the 1-
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dimensional SSL work carried out in this thesis, this course coding may not have been 

necessary, but could become so if the system is extended to two dimensions (e.g. elevation 

as well as azimuth) or more (e.g. distance to sound source). The Purkinje cell, represented 

by the summing element in Figure 12, synthesizes the parallel fibre signals modulated by 

the synaptic weights into a (positive- toward the right, or negative- toward the left) 

azimuth shift signal that is applied as a bias to the output from the SSL unit. The amount 

of bias is the weighted sum of the parallel fibre inputs, adapted from equation (3): 

 
𝛿𝛿𝜃𝜃 = �𝑤𝑤𝑥𝑥𝑝𝑝𝑥𝑥

𝑛𝑛

𝑥𝑥=0

 (8) 

where n is the number of parallel fibres, wi is the ith synaptic weight and pi is the activity 

on the ith parallel fibre.  

The weights wi of the parallel fibre-Purkinje cell synapses, initially zero, are learned 

using the covariance learning rule [111], equivalent to the LMS algorithm in an 

adaptive filter, and updated as in [4], adapted from equation (5): 

 Δ𝑤𝑤𝑥𝑥 = −𝛽𝛽𝑒𝑒𝑝𝑝𝑥𝑥 (9) 

where β is the learning rate, pi the activity on each parallel fibre and e is the orient error, 

that is, the difference between the ground truth azimuth of the sound source and the 

calibrated SSL output (in fact, arc length is used rather than azimuth, as mentioned 

above).   

Figure 14 shows plots of parallel fibre activity, at 0o ground truth azimuth, for two 

different models which have learned with an azimuth error applied within the algorithm 

(by simply adding a constant shift to the SSL estimate). Line charts have been used for 

clarity although the functions plotted are not continuous, but rather are discrete with 

integer index values. The blue curve represents the weights of a model that has learned 

with an azimuth error of -20o (somewhat exaggerated errors were introduced for the 

purposes of demonstrating the effect), while the orange curve shows the weights of a 

different model that has learned with a +20o error. This is at 0o ground truth azimuth (that 

is, with the sound source located dead ahead of the robot head). The orange curve is for 

an azimuth error of +20o and the blue curve is for a -20o azimuth error. Lower parallel 

fibre indices represent activity to the left and higher values to the right (index values 4 

and 5 span the 0o ground truth azimuth position). The shape of the curves reflects the 
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Gaussian function that has been applied to the parallel fibre inputs as described above.  

Higher value parallel fibre indices represent (a set of) azimuths toward the right and lower 

value indices toward the left with respect to the centre position which is directly ahead of 

the robot.  

Figure 15 shows plots of cerebellar weights for the same models whose parallel fibre 

signals are shown in Figure 14. Again, line charts have been used for clarity although the 

functions plotted are not continuous, but rather are discrete with integer index values. The 

orange curve is for an azimuth error of +20o and the blue curve is for a -20o azimuth error. 

Lower value weight indices represent Purkinje cell synapses with input corresponding to 

azimuth positions toward the left and higher values toward the right (index values 4 and 

5 span the 0o azimuth position). It is clear that the models have learned to calibrate in 

opposite directions (for example, the model that has learned with a +20o azimuth error 

produces a negative compensatory bias). 

 

Figure 14. Parallel fibre activity for two different azimuth errors.  
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Figure 15. Cerebellar weights for two different azimuth errors. Weight values are 

dimensionless.  

The calibration is carried out in one plane only, that is, it is based on calibrating a 1-

dimensional single direction of arrival SSL paradigm as categorised by [112]. The system 

could be extended to two-dimensional SSL (azimuth and elevation); indeed, in terms of 

the cerebellar calibration this would be quite straightforward, as the work in [4] is a two 

dimensional whisker map. Achieving this with the basic SSL technique used in this thesis, 

however, might be problematic if a binaural approach is to be favoured. Either 

microphone arrays of at least three (preferably 4) microphones would be required to do 

so based on ITD, or an asymmetrical head/pinnae arrangement would be needed to do so 

with ILD.  

The cerebellar model is shown in situ in Figure 16. In the full system, the calibrated output 

from the audio-motor map is used to orient the robot head toward the sound source, and 

a visually derived error after orientation is used as a teaching signal to adjust the weights 

of parallel fibre/Purkinje cell synapses, which are initially set at zero, although, as 

described in Section 4.2.2, the odometry of the experimental apparatus was used in this 
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thesis. Post learning, the cerebellar model applies a shift, according to Equation (8) to 

compensate for errors in the SSL algorithm output. Through repeated updating of the 

cerebellar weights according to Equation (9), with the SSL algorithm presented with 

sound from sources of randomly selected azimuth, the cerebellum learns to compensate 

for errors introduced into the SSL estimate. As described in Section 4.2, this was done by 

placing the sound source at random azimuths with respect to the robot head. Of course, 

this raises the question of how this learning would take place in the field, and the 

assumption is that the robot would move around in a random fashion to achieve the same 

effect. 

  

Figure 16. Cerebellar model in learning mode. Adapted by permission from Springer 

Nature [113] © 2017. 

4.2 Method 
Matlab was used to control experiments and for implementation of algorithms, on a desk 

based PC/laptop, which were connected to various apparatus described below. 

Although not ultimately used, a gammatone filter bank (Section 2.2.1) was implemented 

on the Zedboard Zynq SoC development board. The Zynq SoC combines an ARM core 

and Field Programmable Gate Array (FPGA) on the same fabric which can be used 

independently or together [114]. Because it was not used in the project, it is mentioned 

only in passing here, however, such a system could be a candidate solution for in-the-

field implementation in future work. 

Two microphones (Audio-Technica ATR-3350 omnidirectional condenser lavalier) were 

mounted in free field at the extremities of a horizontal bar (Fig. 6), with an inter-

Estimated 
position of SSL 
(uncalibrated) 

Corrected estimation 
by cerebellum model 
(calibrated) 
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microphone distance of 0.16m and were connected to a computer using a M-Audio 

MobilePre USB audio capture unit with a sampling rate of 44100Hz. Sound pressure level 

at the microphones was measured using a Max Measure MM-SMB01 sound level meter 

and was maintained at approximately 70dBA with the sound source directly facing the 

robot head. 

A low-cost USB Webcam (TeckNet) was mounted on the robot head centrally between 

the microphones with a view to using visual sensory feedback to ascertain the ground 

truth location of the sound source position in future work. This was not used in the thesis, 

as explained in Section 4.2.2, apart from a pilot experiment, described in Section 4.3.3. 

A sound source (Logitech Z150 Speaker) was positioned at a fixed distance from the 

robot head (Figure 17) and was connected to the computer sound card. A 1 second 

duration Gaussian noise signal was fed to the speaker to generate audio stimuli (with the 

exception of one experiment, where a 500Hz pure tone was used- see also Section 4.3.4). 

For the work described in this chapter, the sound source position itself was fixed, and the 

robot head was instead rotated to generate stimulus from various azimuths. This is 

because the sound source would need to be placed manually which does not easily allow 

the conduct of reproducible trials with many data points. This seemed a reasonable initial 

approach, allowing automated running of experiments, and crucially made a number of 

exploratory pilot experiments feasible. There are precedents for this approach, e.g. [115], 

although there are limitations to this technique. The most obvious is that it is not a true 

reflection of what would happen in a real situation. As the robot head rotates to mimic 

the displacement of the sound source, the environment “moves” with the source in this 

arrangement- that is, the sound source’s position in the environment would remain 

unchanged (it would simply change in position with respect to the robot head). Later on, 

apparatus was constructed to allow the automatic placement of the sound source in the 

environment, and this is described in Chapter 6, and was itself replaced by a re-designed 

apparatus described in Chapter 7.  

The robot head was placed on a commercial Pan-and-Tilt Unit (PTU), an eMotimo TB3. 

The PTU was connected via USB to the computer and controlled using Matlab. The 

apparatus is shown in Figure 17.  

For all of the SLL calibration model experiments, the learning rate β was fixed at unity 

as it was in the software provided by the Bellabot project (although the value is not 
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mentioned in [4] and [5]). Different values were required for satisfactory functioning of 

the RP models, and these are described in the relevant sections. 

4.2.1 SSL error 

As the motivation for this study was to calibrate a distorted SSL estimation, various means 

were used to introduce distortion, beyond that introduced by imperfections in the 

environment. Simply relying on the acoustic characteristics of the experimental 

environment was not sufficient- any SSL error was small and not reliably reproducible. 

In any case, there was a need (in later chapters) to introduce errors for different acoustic 

environments. 

Methods used included artificial distortion post-estimation within the computer 

algorithms (this was the method used to generate the plots in Figure 14 and Figure 15); 

moving one or both microphones from the correct position; masking one of the 

microphones with a physical object. For the work described in subsequent chapters, a 

means of automatically introducing error in a more reproducible way was developed, and 

this is described in those chapters where it was used (Chapter 6, Chapter 7, Chapter 8 and 

Chapter 9). The artificial error in SSL described in this chapter was introduced by 

multiplying the input to the model (which is a displacement around the semi-circular 

track) by a constant factor (1.3), which introduces an azimuth-dependent error in the SSl 

estimate. 

4.2.2 Ground truth 

Learning of the models requires the availability of the ground truth sound source position, 

from which an error signal can be derived. In the MOSAIC framework [6] (see Chapter 

5), this is provided by sensory feedback, and the work in [4], on which the cerebellar 

model described in this thesis is based, uses visual feedback to provide the ground truth 

position of the target. In this thesis, sensory feedback was not used (apart from in one 

pilot experiment described below and in Section 4.3.3), and the odometry of the 

experimental apparatus was used instead. This was done for convenience and allowed a 

wide range of experiments throughout the thesis to be conducted using recorded audio 

signals. It is assumed that the odometry is sufficiently accurate for this to be treated as 

providing the ground truth.  It is envisaged that a robot operating in the field, however, 

would use sensory feedback to ascertain the ground truth sound source position, as in 

MOSAIC, and in [4], and that typically this would be vision (we assume that vision is 
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good enough to be treated as providing the ground truth). For this reason, the apparatus 

was designed such that the ground truth could be determined using vision at a later stage. 

With this setup, the robot head would orient toward the calibrated estimated position, to 

bring the sound source into the field of view of the camera. A pilot experiment was 

conducted to check that the system using vision would learn in a similar way to that using 

the odometry for ground truth. As this was not a focus for the thesis, it is reported only in 

passing here, for completeness. An image from the camera was captured into Matlab 

(after orientation) and used to ascertain the horizontal position in the image of the sound 

source. Displacement of a known point on the sound source from the centre of the image 

could be used to derive an error value. There are a number of ways that this could be 

done, but for convenience, a light source attached to the sound source was detected 

visually and transformed into an error signal. Image processing to ascertain the error was 

carried out in openCV using C++ wrapped in a MEX function in Matlab, rather than using 

native Matlab functions, to make it easier to transfer the code to a different platform at a 

later stage should this be required (especially if the system is to be implemented on a 

mobile robot platform). At this stage, image processing simply finds the horizontal 

location of the brightest pixel (after blurring of the image to minimise the occurrence of 

erroneous readings). It is envisaged that rather more sophisticated object recognition may 

be called for in a real-world scenario. No attempt was made to draw up a trigonometric 

transform between the image pixel index and the ground truth azimuth; rather, a look-up 

table was used to map a pixel index output from the image processing algorithm to an 

azimuth value, with the entries determined empirically. 
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Figure 17. Experimental apparatus for the cerebellar calibration pilot experiments. 

4.2.3 Performance measurement 

There are a number of ways to measure performance of the proposed system, which fall 

into two broad approaches. First is to focus on accuracy of performance such as MSE (in 

this case, in SSL estimation). The other is to focus less on accuracy and more on the 

qualitative behaviour of the system, that is, whether a robot using this system behaves in 

a useful way. This thesis uses a mixture of both, with an emphasis on measures of 

accuracy, with a shift towards behaviour as the studies come to an end and there is a focus 

on further work, and the possibility of the system being used in a real world context. Two 

approaches have been used for accuracy measurement: MSE in the SSL estimation and 

accuracy rate. MSE is calculated as the mean squared difference between the estimated 

value (calibrated SSL estimate in the case of the calibration models) and the ground truth 

value 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =  

1
𝑛𝑛
�(𝛿𝛿𝑡𝑡 − 𝛿𝛿𝑥𝑥)2
𝑛𝑛

𝑥𝑥=1

 (10) 

where xt is the ground truth value (in the case of the SSL calibrators this will be an azimuth 

value), xi is the ith estimate and n is the number of trials (estimates). In Figure 20 and 

Figure 23, the Root Mean Squared (RMS) error is plotted, which is the square root of the 

MSE. 

Sound 
source  

Microphones 

Camera 
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Accuracy rate is the percentage of SSL errors that fall within a certain range, and was 

inspired by Li et al. [34]. Li et al. used a criterion of percentage errors less than 15o, 

however, in this thesis, that threshold usually resulted in a 100% accuracy rate, making 

comparisons meaningless, and so a threshold of 5o error was used instead. Accuracy rates 

were still quite high, especially for multiple models with RP, which typically were around 

98% to 100% and so it may also be worth investigating the use of lower threshold values, 

although there comes a point where the threshold value approaches the resolution of the 

SSL algorithm. Accuracy rate is calculated by counting the absolute error values (absolute 

value of the difference between calibrated estimate and ground truth) that fall below the 

threshold value and calculating this as a percentage of the total number of trials 

(estimates). On reflection, the usefulness of this measure is questionable, as it simply 

categorises errors as either below a threshold or not; it may mask nuances in the 

performance. It may have been more straightforward and clearer to only use the MSE 

which appears to be standard practice in the literature. 

A more qualitative approach has also been used, for example, visually inspecting plots of 

responsibility signals (covered in Chapter 6-Chapter 10), to observe whether the system 

behaves as expected. 

In order to confirm that models developed in the thesis perform significantly better than 

other techniques with which they have been compared, some post- model learning 

experiments were conducted and Student’s t-test applied [116]. The t-test (specifically, 

here, the paired-sample t-test) is a hypothesis test that compares the means of two sets of 

trials or experiments conducted on a pair-wise basis under the same conditions. For 

example, in section 4.3.2, the mean of the errors in SLL estimation produced by the single 

cerebellar calibration model across a set of azimuths (here, the azimuths are uniformly 

distributed) is compared to the mean of the errors produced by the un-calibrated SSL 

algorithm, in a pairwise manner, across the same set of azimuths.  The null hypothesis is 

tested, that the two sets of errors come from the same population- that is, there is no 

significant difference between the performances of the two techniques being compared. 

If the null hypothesis is rejected, we can be confident, to a degree (typically to a 95% 

confidence level), that the systems developed are producing significantly better 

performance than those techniques with which they being compared (e.g. cerebellar 

calibration versus un-calibrated SSL). The matlab ttest() function was used, which 

defaults to a 95% confidence level. This produces an h- value which is either 0 or 1.  A 
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value of 0 indicates that the null hypothesis is not rejected, and a value of 1 that it is. The 

test also produces a t-value whose value indicates the size of the difference between the 

means relative to the variation in the differences between the means. A value close to zero 

indicates that the case to reject the null hypothesis is weak.  The sign of the t-value 

indicates which of the samples has the smaller error; in this thesis, a negative t-value 

indicates that it is the proposed approach that has the smaller error than that with which 

it is being compared. 

4.3 Results 

4.3.1 Error introduced by a physical object 

Results of one experimental run are shown in Figure 19 in which one microphone is 

obscured by an object (a box file), and it assumed that this will disrupt the time of arrival 

of sound at the right microphone (the experimental arena is shown in Figure 18). This 

causes a leftward bias in the estimated azimuth of the source (shown in red in Figure 19). 

This particular experiment was run over 50 iterations with the cerebellar weights (parallel 

fibre/Purkinje cell synapse weights) updated on each iteration. By inspection the 

calibrated position estimates (shown in green) appear broadly similar to the ground truth 

(shown in blue), although it is difficult to match up individual data points from this plot.  

It is worth noting that this data represents performance during learning, so that in this and 

other similar plots, there will be green data points from early in the learning that show 

poor performance, and others from later in the learning cycle that show better 

performance; also, the radial offsetting of the red and green data points (for the purposes 

of clarity) does make the data appear rather better than it actually is. Learning is 

successful within a few iterations, as shown in Figure 20. Figure 21 shows the results of 

using the learned weights post-learning with a fresh set of positions generated on a 

linearly spaced grid. This also demonstrates some generalisation as the leftmost ground 

truth point in Figure 21 represents data that was not used in training yet there is clearly 

appropriate correction.  

4.3.2 Error introduced with artificial distortion of the SSL output 

In order to quantify the performance of the cerebellar calibration compared to that of the 

un-calibrated SSL, a new experiment was run using artificial distortion as described in 

Section 4.2.1. Note that this experiment was actually run at quite a late stage in the project, 

and the recorded audio from Chapter 7 was used, as the setup described in Section 4.3.1 

was no longer readily available. In this experiment, 60 iterations were used to train the 
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model then 50 post-training trials were performed with randomly selected sound source 

azimuth (each SSL output artificially distorted using the same algorithm as during 

training), to compute the MSE in the SSL estimate with and without calibration. The MSE 

of the artificially distorted, un-calibrated SSL was 14.8 degrees2 and that of the calibrated 

output of the cerebellar model was 1.14 degrees2, suggesting that the SSL performance 

with cerebellar calibration is markedly superior to that without. As described in section 

4.2.3, the experiment was repeated with 81 uniformly selected azimuth values from, and 

a paired-sample t-test carried out on the calibrated and uncalibrated results, using the 

Matlab ttest() function. The h value was 1, suggesting that the null hypothesis (that 

the difference between the means of the calibrated and uncalibrated samples is zero) is 

rejected, and the improved performance of the calibration model can be treated as 

significantly better than that of the uncalibrated SSL estimate at the 95% confidence level. 

The standard deviation of the difference in mean errors was 1.9o. The t-value was -13.4: 

the negative sign indicates that the calibrated errors were smaller than the uncalibrated 

errors and the value is not close to zero (the closer to zero, the weaker the case to reject 

the null hypothesis).  

4.3.3 Performance with visual feedback 

Figure 22 shows the results of training the model using sensory feedback (vision) to 

derive the ground truth, as discussed in Section 4.2.2, using artificial distortion as 

described in Section 4.2.1, with learning taking place over 50 iterations. The positioning 

of the green data points indicate that learning has taken place and this is confirmed by the 

decrease in error shown in Figure 23. Figure 24 shows an image taken from the camera 

during the experiment. The underlying assumption in using vision as providing the 

ground truth is that it is perfect, which of course, in the real world it is not. It may be 

realistic assumption however, that investigating this further as a sensor fusion problem, 

may yield improvements in successful robot behaviour. 

4.3.4 Performance with pure tone 

An experiment was carried out using a 500Hz pure tone (sine wave) for the audio source 

rather than the Gaussian noise used throughout the remainder of the thesis, to check that 

the system will deal with other types of sound. Artificial distortion was introduced as 

described in Section 4.3.2, and calibration models learnt over 60 iterations. Performing 

SSL with pure tones is difficult, especially for the simple SSL algorithm used in the thesis 

(indeed, many of the azimuth data points resulted in an invalid ITD value meaning that 
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azimuths were restricted to the range of -13o to 30o for this experiment); nonetheless, the 

performance of the calibrated system is impressive with an MSE of 6.6 degrees2 

compared to 200.5 degrees2 for the un-calibrated SSL output. 

 

 

Figure 18. Experimental arena with obstruction. 

Sound 
source  

Obstruction (places 
right microphone in 
acoustic shadow) 

Microphones 
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Figure 19. Results of cerebellar calibration in learning mode. One microphone is 

obscured. Estimated position (red) and calibrated (green) are offset in the y direction 

for clarity. Calibrated positions show learning (update of cerebellar parallel 

fibre/Purkinje cell weights) over 50 iterations. 

O Ground truth sound source location 

O Estimated position of SSL (uncalibrated) 

O Corrected estimation by cerebellum model (calibrated) 
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Figure 20. Error in target estimation during learning. y axis units are metres: distance 

along azimuthal arc from 0o.  
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Figure 21. Results of cerebellar calibration post-learning. Axes show x,y distance in 

metres with robot head at the origin. Green points show calibrated estimates of source 

azimuth with learned weights applied to a new set of regularly spaced positions.  

O Ground truth sound source location 

O Estimated position of SSL 
(uncalibrated) 
O Corrected estimation by cerebellum 
model (calibrated) 
 

Robot head 
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Figure 22. Results of cerebellar calibration in learning mode using vision. The SSL 

estimate is artificially distorted by multiplying SSL estimates by a factor of 1.3. 

Estimated position (red) and calibrated (green) are offset for clarity. Calibrated 

positions show learning (update of cerebellar parallel fibre/Purkinje cell weights) over 

50 iterations.  

 

 

 

 

 

 

 

O Ground truth sound source location 

O Estimated position of SSL (uncalibrated) 

O Corrected estimation by cerebellum model (calibrated) 
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Figure 23. Error in target estimation during learning, using vision. y axis units are 

metres: distance along azimuthal arc from 0o.  

 

Figure 24. Image capture from camera during visual ground truth experiment.  
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4.4 Chapter summary 
This chapter has demonstrated the basic SSL calibration technique based on the adaptive 

filter model of the cerebellum. The proposed system was able to learn to compensate for 

azimuth-dependent errors introduced into the SSL estimate due to imperfections 

introduced into the acoustic environment, and to do so with a relatively low number of 

learning trials (typically 20-60).  

This was an important initial result as it forms the basis of the work in subsequent 

chapters, especially the multiple-models approach to SSL calibration. 

The system also appeared to display generalization, successfully calibrating SSL 

estimates for sound source positions that were not included in training. The method of 

generating audio stimulus of various azimuths however is unrealistic (rotation of the robot 

head rather than displacement of the sound source itself) and so a means of automatically 

positioning the sound source itself, rather than mimicking this by rotating the robot head, 

is required. This is addressed initially in Chapter 6 with new experimental apparatus, and 

the apparatus is further redesigned for improved reliability and portability in Chapter 7. 

Although Gaussian noise has been used as a sound source throughout the thesis, a limited 

experiment was performed to check that a different and more challenging type of sound, 

a pure tone, could be successfully calibrated, with remarkably successful results. 

Finally, throughout the thesis the ground truth sound source azimuth is determined 

through the odometry of the experimental apparatus and it is proposed that a robot 

operating in the field could do so through the use of sensory feedback, in particular, 

vision. A pilot experiment showed that the calibration technique developed will 

successfully learn using visual feedback to generate a teaching signal. 
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Chapter 5 Multiple models and internal models 
 

5.1 Internal models 
Internal models simulate some aspect of a system in order to estimate or predict the 

response of that system to some stimulus or action. The internal model has come about in 

the context of motor control and forms part of a control system that generates some 

output, usually a motor command. There has been growing acceptance that the brain 

makes use of internal models for motor control and that they are likely to be located in 

the cerebellar cortex [74, 105, 117-121]. Models of the cerebellum have increasingly been 

used as adaptive controllers [104], and the role of the cerebellum in motor control is 

discussed in Section 3.6. In the context of motor control, internal models contain a paired 

forward and an inverse model. Input to the forward model is the motor command but 

could also include sensory input [74] and the output is a prediction of the consequences 

of the action given the current state and motor command as input as the forward model 

learns the dynamics of the controlled plant [6, 105]. In this way, the forward model 

overcomes the problem of large delays in sensory feedback. On the other hand, an inverse 

model of the system acts as a controller, providing feedforward control [104] as it 

produces the required motor command for a given desired state. Another way of viewing 

this is that the inverse model acting in series with the controlled plant together form an 

identity such that the output is identical to the input provided the inverse model is 

accurate. Forward models can be learned through experience, adjusting for example 

synaptic weights of a NN in response to an error signal obtained from the difference 

between desired state and actual state ascertained through sensory feedback. Inverse 

(controller) models are more problematic to learn, as the teaching signal (the desired 

motor command) is not usually directly available, otherwise there would be no need for 

an inverse model. Solutions to this problem are discussed in Section 3.6.  

5.2 Multiple models 

5.2.1 Introduction 

As mentioned in Section 1.1 and 5.1 it is increasingly becoming accepted that the brain 

possesses internal models of the external world. These models allow the prediction of the 

way in which the world will behave, such as predicting the consequences of an action. A 

single model would not be able to capture the range of contexts encountered in real world 
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situations [122] and there have been a number of proposals that the animal’s central 

nervous system makes use of multiple modules (containing models), each specialised for 

a specific context [6, 122-130]. That is, a module will contain models that have learned 

to make predictions about the external world and then take control of some activity in a 

specific situation, or context. Three key advantages are claimed for modularity [6]; first 

is the modular nature of the world that an animal (or robot) inhabits with objects and 

environments “parcelled up” into discrete contexts. Second, modularisation allows 

different modules to participate in learning without affecting the behaviours already 

learned by other modules, allowing new learning while retaining existing behaviours with 

little or no effect on those behaviours. Third, rather than learning a new behaviour afresh 

for each new context, the animal (or robot) can, for many such contexts, combine existing 

learned behaviours to cope with the new one. This could be achieved by a system that 

combines the outputs of modules in proportion to how well those models are suited to the 

new context.  

There have been a number of such modular systems proposed, including Modular 

Selection and Identification for Control (MOSAIC) [6]  and Hierarchical attentive 

multiple models for execution and recognition of actions (HAMMER) [131] and these 

were preceded by the mixtures of experts architecture [123]. These frameworks were 

developed in the context of motor control and action imitation. MOSAIC and HAMMER 

are similar to each other in that they are based on forward/inverse model pairs, and that 

the suitability of each to control in a particular context is determined through comparison 

of a state prediction with the actual state. A key difference is MOSAIC’s RP that predicts 

its modules’ suitability based on contextual signals, and this is lacking in HAMMER. 

Narendra et al. proposed a multiple model architecture in which the models were selected 

individually rather than having their outputs combined, that is, the model outputs were 

switched [126].  

The MOSAIC framework was chosen in this thesis as it has a number of advantages 

including proportional combination of module outputs along with both prior and posterior 

contribution to the production of responsibility signals.  

In this framework, a module consists of a forward model, which receives the efference 

copy of the motor command and makes a prediction about the consequences of it, 

concurrently with the forward models in the other modules. A separate Responsibility 
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Estimator (RE) operates across all modules and transforms the array of predictions into a 

set of signals, called responsibilities, one for each module, which represents the 

likelihood that each module is appropriate for the context and should be responsible for 

control. Each module in MOSAIC also contains an inverse model, which learns to 

produce an appropriate motor command in the context for that module, which forms the 

main output from the module. The other output from the module is the likelihood that the 

module is responsible for control in a particular context, which is computed using a 

prediction error generated using sensory feedback, and is input to the RE. The motor 

output from a module is modulated by its responsibility signal, provided by the RE and 

then summed with the other module outputs. The result is an overall motor command 

output from the system which is a combination of module outputs in proportion to each 

module’s ability to control in the current context. 

Frameworks such as MOSAIC were developed in the context of motor control and all 

examples in the literature reflect this. This makes the application of such frameworks to 

audio localisation somewhat problematic, and hence the thesis takes a multiple-models 

inspired approach rather than a faithful reproduction of such a system. Nevertheless, this 

chapter describes the MOSAIC system in its original context of motor control, and the 

adaptation of the approach to audio localisation is covered in later chapters. 

The system needs to select the module appropriate to the context by switching the outputs 

of inverse models on or off (or modulating rather than switching if appropriate). This 

switching involves two processes [6]: first, is the generation of motor commands through 

the selection of the most appropriate controller (inverse model) for the estimated context 

based on sensory input. A second switching process uses sensory feedback of the 

consequences of the action to select a more appropriate model if necessary. 

In MOSAIC, the inverse models’ contribution is determined through a responsibility 

signal. This is derived through two further processes [6]: first, each forward model’s 

prediction of the next state of the controlled system can be compared to the actual state 

through sensory feedback, but only after the action has taken place (or during action). The 

second process estimates responsibility from sensory contextual information, providing 

the potential to select modules before action.  
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5.2.2 MOSAIC system 

The MOSAIC system was developed in the context of motor control and is introduced in 

[6]. The application of the systems in the thesis is in the context of cerebellar calibration 

of a robot’s SSL algorithm, to which there is not a direct mapping- this will be covered 

in the discussion and for now MOSAIC will be described in its original context of motor 

control. There have since been a number of extensions including Hidden-Markov 

MOSAIC [122], Hierarchical MOSAIC [132] and Multiple Reward MOSAIC [133]. 

MOSAIC consists of an array of modules each of which could have influence or control 

in a particular context and is shown in Figure 25. Each module consists of a forward 

model, inverse model and a responsibility predictor. There is a single responsibility 

estimator that operates across all modules.  

5.2.2.1 Input/output 
The inputs to this system are (Figure 25): 

• Efference Copy 

• Desired Trajectory 

• Sensory Feedback 

• Feedback Motor Command 

• Contextual Signal 

Efference copy is a copy of the motor command currently sent to the motor system. This 

will be used in part (by the forward models within the modules) to predict the 

consequences of that command after action has taken place. 

Desired Trajectory is the desired next state of the system and is used by each module to 

generate a motor command that would be appropriate for its context.  

Sensory feedback provides the ground truth current state of the system under control. It is 

a means by which the MOSAIC system can ascertain the consequences of the previous 

motor command. This is used to determine how well each module was suited to provide 

that motor command, by comparison with the module’s prediction of the current state. It 

is also used along with the efference copy by each module to make a prediction of the 

next state of the system under control. 

Feedback Motor Command is the teaching signal for the component within each module 

(the inverse model- see Section 5.2.2.4) that generates the motor command for its context. 
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As mentioned in Section 5.1 the desired motor command is unavailable and some other 

means is required to generate a suitable teaching signal. This is not directly relevant to 

the approach taken in this thesis. 

Contextual Signal conveys information about the environment. It is used to make a prior 

prediction about the suitability of each module to control in the current context. The signal 

is used to identify the current context before sensory feedback becomes available. 

There is a single output from the MOSAIC system which is an overall motor command. 

 

Figure 25. MOSAIC framework. Reprinted from [6] © 1998, with permission from 

Elsevier. 

5.2.2.2 Forward model 
There is no direct correspondence between the forward model (or indeed the inverse 

model, covered in Section 5.2.2.4), however, it is covered here for completeness, as it is 

part of the MOSAIC framework. There is an indirect analogy, in that the role of the 
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forward model is to predict the consequences of a motor command, assuming it is 

operating in a particular context, and the calibration model in this thesis is used predict 

the location of a sound source, assuming it is operating in a particular context. The 

forward model receives an efference copy- a copy of the efferent, or out-bound- motor 

command (the Efference Copy in Figure 25), and learns to predict the consequences of 

that motor command (i.e. it generates a prediction of the next state of the system). If the 

forward model is based on some sort of NN, then this learning would be through the 

updating of its synaptic weights through some learning rule, which would use the error in 

prediction. This error would be determined through sensory feedback of the actual 

consequences of action (the Sensory Feedback in Figure 25), and is transformed into the 

likelihood that the module is responsible for control in that context. This aspect of the 

module is shown in Figure 26.  

 

Figure 26. Multiple models showing only forward models. Reprinted from [6] © 1998, 

with permission from Elsevier. 

5.2.2.3 Responsibility estimator 
The Responsibility Estimator (RE) is a single unit that takes as input the likelihood values 

of all the modules. The set of likelihoods are used to make a decision about which module 

(if the outputs of modules are to be switched) or set of modules (if the outputs of modules 
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are to be combined) is best suited to control in a particular context by identifying the 

forward model(s) with the highest likelihood(s). The computation of  likelihoods relies 

on sensory feedback about the true state of the system under control as mentioned in 

Section 5.2.2.2 and Haruno et al. refer to this as feedback selection of modules [122]. The 

likelihoods are derived from the prediction errors of the models, based on sensory 

feedback of the ground truth response of the system. 

The likelihoods are normalised across all modules, using a softmax function, producing a 

responsibility λi for the ith module: 

 
𝜆𝜆𝑥𝑥 =  

𝑒𝑒−|𝑥𝑥𝑡𝑡−𝑥𝑥𝑖𝑖|2/𝜎𝜎2

� 𝑒𝑒−|𝑥𝑥𝑡𝑡−𝑥𝑥𝑗𝑗|2/𝜎𝜎2
𝑛𝑛

𝑗𝑗=1

 (11) 

where xt is the true state, xi is the estimate produced by the ith model, n is the number of 

models and σ is a scaling factor which is equivalent to the standard deviation assuming a 

Gaussian distribution of predictions. The responsibility signal λi has a value between 0 

and 1 for each module which sum to unity across all modules. The value of σ determines 

the distribution of responsibilities across modules. Large values of σ will cause more even 

sharing of the responsibilities across modules, whilst a smaller value will accentuate those 

modules with the highest likelihoods causing them to dominate control. It might be 

tempting to use a small value of σ to switch to the module with the highest likelihood and 

have that module dominate control, but this would diminish the system’s ability to 

generalize to novel contexts, so a trade-off needs to be found between too low a value of 

σ at the expense of generalisation, and too high a value that might result in near-equal 

sharing of responsibilities (which would then be no better than having a single module).  

The responsibility values are used in two ways. First, across the modules, the 

responsibility values are used to sum module outputs (motor commands) in proportion to 

the responsibility values to produce an overall output (motor command)- covered in 

Section 5.2.2.4. In the context of this thesis, this will be a calibration signal. This 

combination of modules (rather than simply the identification of the best module) in 

proportion to their ability to control allows the system to cope with novel contexts whose 

features that lie intermediate to those of the contexts in which each model has been 

trained. As such, modules should be able to be combined such that the system can deal 

with more contexts than there are modules [6]. However, MOSAIC can only interpolate 
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to novel contexts, that is, cope with contexts whose characteristics lie intermediate to 

familiar contexts. The system cannot extrapolate to contexts whose characteristics lie 

outside the learned state space. Second, the teaching signal for the forward model is 

modulated by its module’s responsibility signal, so that those models with higher 

responsibility values receive more of the teaching signal. This is significant for two 

reasons. First, it allows a de-novo system to divide up experience through the competitive 

learning of the modules. Second, if the system encounters a context that is only slightly 

different from one encountered before (rather than a completely novel context), it allows 

“tuning” of the models best suited to that context (whilst others remain unchanged). This 

does leave a question, unanswered in the literature covering MOSAIC, as to when a 

module should adapt to a novel context (that is similar to a familiar one) and when a new 

module should be produced to learn afresh in the new context. 

As the prediction error cannot be found until sensory feedback becomes available, the 

responsibility computed using (11) is posterior. This is fine as long as the context remains 

the same or perhaps changes only slowly. However, if the context changes abruptly, this 

could result in a relatively high performance error, as the “wrong” responsibilities will be 

used until they are updated through sensory feedback, at which point the system will 

adjust the blend of responsibilities to mitigate the error. 

5.2.2.4 Inverse model 
As with the forward model, there is no direct correspondence between the calibration 

models developed in this thesis and the inverse model in MOSAIC, but again, there is an 

indirect analogy in that the inverse model learns to control in a particular context, whilst 

the calibration model developed in this thesis learns to calibrate in a particular context. 

This aspect of the module is shown in Figure 27. 
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Figure 27. Multiple models showing only inverse models. Reprinted from [6] © 1998, 

with permission from Elsevier. 

The input to the inverse model is the desired next state of the system and it learns to 

produce the motor command to achieve that state through comparison of its motor 

command with the desired motor command. This, of course, is biologically implausible 

as the desired motor command would be unavailable, and if it were, there would be no 

need for the inverse model. Wolpert et. al suggest that feedback-error-learning, in which 

a feedback controller (a linear approximation of the inverse model) uses negative 

feedback to produce a motor error [134]. As described in Section 5.2.2.3, the inverse 

models’ outputs are summed in proportion to the modules’ responsibility values to form 

an overall motor output. As with the forward model, the teaching signal for the inverse 

model is modulated by the responsibility signal for its module. 

5.2.2.5 Responsibility predictor 
As mentioned in Section 5.2.2.3 the responsibility values computed by the RE are 

posterior, that is, they are based on sensory feedback of the consequences of action. This 

causes a potential problem, mentioned in the same section, that rapid changes in context 

will not be detected until sensory feedback becomes available. This means that the system 

would still be using the responsibility values from the previous context so that there could 

be a large performance error as the system fails to adapt quickly to the new context (a 
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potentially catastrophic situation). Wolpert and Kawato propose a responsibility predictor 

(RP) in [6],  which learns to predict its module’s responsibility value based on contextual 

cues, producing a prior probability of responsibility λpi for the ith module. This is shown 

in Figure 28.  

 

Figure 28. Multiple models showing only responsibility predictors. Reprinted from [6] © 

1998, with permission from Elsevier. 

The RP output is combined with the posterior responsibility, to give an overall 

responsibility:  

 
𝜆𝜆𝑥𝑥 =  

𝜆𝜆𝑝𝑝𝑥𝑥𝑒𝑒−|𝑥𝑥𝑡𝑡−𝑥𝑥𝑖𝑖|2/𝜎𝜎2

� 𝜆𝜆𝑝𝑝𝑗𝑗𝑒𝑒−|𝑥𝑥𝑡𝑡−𝑥𝑥𝑗𝑗|2/𝜎𝜎2
𝑛𝑛

𝑗𝑗=1

 (12) 

This enables the system to correct itself a-posteriori if the error due to the RP is large. 

Conversely, if there is a large error in posterior prediction, perhaps due to an abrupt 

change in context as discussed in previous sections, this is mitigated by the prior 

responsibility. Indeed as discussed in Section 10.4, the sensory consequences of action 

could in some situations be unavailable (although this is not covered in the MOSAIC 
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literature), making the computation of posteriors impossible, so that the system can fall 

back on the RP which uses contextual signals that may still be available.  

The approach is akin to a Bayes filter and a somewhat passing reference is made to this 

in [122]. The responsibility value would be analogous to the posterior probability in a 

Bayes filter, the RP output would be the prior and the RE output would be the evidence. 

Contextual signals could be of any nature that allows a prior prediction of the 

responsibility of each model and in the context of motor control would typically be visual. 

For example, if we are about to lift an object, we can visually identify it as being light or 

heavy, preselecting appropriate modules. In Chapter 8, the audio stream itself is used to 

derive contextual signals, in the form of audio features.  

5.2.3 Hidden-Markov MOSAIC 

Haruno et al. introduce a Hidden-Markov Model (HMM) in [122], so that unequal state 

(context) transition probabilities are taken into account (in the article, it is implicit that all 

state transitions are equally probable) and it is claimed that this improves switching of 

modules, especially for low-frequency switching of contexts. HMMs were developed in 

the context of speech recognition and the technique is summarised in [135]. This version 

of MOSAIC takes the probability of a particular sequence of contexts into account, rather 

than treating contexts as isolated, unrelated states. Rather than compute the likelihood 

that a module is responsible for a particular context, the likelihood that the module is 

responsible for a particular sequence of contexts is computed as 

 
𝐿𝐿(𝑋𝑋 | 𝜃𝜃) =   � �𝑎𝑎𝑠𝑠𝑡𝑡−1𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠𝑡𝑡

𝑇𝑇−1

𝑡𝑡=0𝜉𝜉
(𝑋𝑋(𝑡𝑡) | 𝑤𝑤𝑠𝑠𝑡𝑡 ,  𝜎𝜎𝑠𝑠𝑡𝑡) (13) 

Where θ is the model parameters (e.g. NN weights), st represents a module selected at 

time t, ξ is all the possible sequences of responsible modules, 𝐿𝐿𝑠𝑠𝑡𝑡 is the likelihood that the 

module selected at time t generates the sequence of states and 𝑎𝑎𝑠𝑠𝑡𝑡−1𝑠𝑠𝑡𝑡 is the probability of 

transition from state st to st-1. A potential advantage of this approach is that it allows the 

automatic determination of the scaling factor, which is hand-tuned in the original 

MOSAIC, but in HMM-MOSAIC is determined through the Expectation-Maximisation 

(EM) algorithm. EM is a two-step iterative process. In the first step of an iteration, known 

as the E step, an initial guess is made of the parameters of the likelihood function and the 

observed data (in this case, the sequence of contexts) computed using this guess. In the 
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second step of the iteration, known as the M-step, new parameters are computed based 

on the estimates given the observed data. The Iteration continues until convergence. For 

practical reasons of computational tractability (due to the large number of possible 

sequences of contexts), the likelihood is reduced to  

 
𝐿𝐿(𝑋𝑋 | 𝜃𝜃) = �α𝑡𝑡𝐻𝐻(𝑖𝑖)β𝑡𝑡𝐻𝐻(𝑖𝑖)

𝑛𝑛

𝑥𝑥=1

   (14) 

where n is the number of modules, α𝑡𝑡𝐻𝐻(𝑖𝑖) is forward probability, the probability of the 

observed sequence to time t, and β𝑡𝑡𝐻𝐻(𝑖𝑖) the backward probability, which is the probability 

of the sequence observed from t+1 to the end of the sequence. The responsibility of a 

module is now 

 
𝛾𝛾𝑡𝑡(𝑖𝑖) =

α𝑡𝑡𝐻𝐻(𝑖𝑖)β𝑡𝑡𝐻𝐻(𝑖𝑖)
∑ α𝑡𝑡𝐻𝐻(𝑖𝑖)β𝑡𝑡𝐻𝐻(𝑖𝑖)𝑛𝑛
𝑥𝑥=1

   (15) 

The original MOSAIC was used as an inspiration in this thesis, as a “proof of concept”, 

however, HMM-MOSAIC may be a fruitful area of investigation for future work, with 

the promise of automatic determination of the softmax scaling factor being particularly 

compelling. 

5.3 Chapter summary 
A weakness of the original MOSAIC is that the scaling factor σ in Equations (11) and 

(12) is tuned by hand, and the distribution of responsibilities is sensitive to its value. One 

could hand tune the value for a given set of contexts, but there is then the question as to 

how a system would operate autonomously. HMM-MOSAIC could be a way to 

automatically calculate this, and this may prove a fruitful area for future work. 

A key issue not addressed in the MOSAIC literature is that the number of modules is 

chosen manually (based on the number of contexts), and so is fixed for a given set of 

contexts. Although the literature describes how the system can adapt to novel contexts 

(the best suited modules will receive more of the teaching signals and will adapt), it does 

not address how a decision is made as to when a new module needs to be created. 

Despite the weaknesses identified in the basic MOSAIC described in [6], since the thesis 

represents a fundamentally different area of application, it would seem sensible to use 

this basic version of MOSAIC, recognising its limitations, to demonstrate the concepts of 

the thesis, and extensions and refinements to MOSAIC could inform future work.  
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Chapter 6 Acoustic context estimation using parallel cerebellar 

models 
 

6.1 Introduction 
This chapter represents the first experiment using multiple, parallel cerebellar models, 

and focuses on the use of the models to detect the acoustic environment (henceforth 

referred to as the context) in which the robot is operating. This work was published in the 

Proceedings of the 18th Towards Autonomous Robotics (TAROS) conference [113]. The 

main contribution of this chapter is the development of responsibility estimation as 

applied to the proposed system. 

The work in this chapter benefits from a significant development of the experimental 

apparatus as a summer intern project at Bristol Robotics Laboratory. Whereas in Chapter 

3 the sound source remained stationary, and the robot head rotated to mimic displacement 

of the sound source, here, apparatus was constructed (some of it as part of the intern 

project mentioned above) to allow automated positioning of the sound source in a more 

realistic way in relation to its environment, as explained in section 4.4. In addition, a 

means of rotating the sound source (loudspeaker) on its vertical axis was developed, in 

order to introduce SSL errors in a more reproducible way and under computer control. 

By orienting the sound source away from the robot head (Figure 31), the direct path to 

the robot head is less likely to be dominant, with indirect paths becoming more prominent, 

in a manner which should depend on the angle at which the sound source is oriented. For 

example, if the sound source is oriented at an angle ϕ of 45o in Figure 31, the sound wave 

front will be directed toward, and reflect off, the screen surrounding the arena. The 

smaller the value of ϕ, the more direct the path that will tend to be taken by sound waves 

to the robot head. The nature of the reflections will be unpredictable due to imperfections 

in the construction of the arena and also due to the front of the arena being open, so that, 

to an extent the arena acoustics will be affected by the room acoustics in which it is 

situated. This is in fact desirable, because in a real-world scenario, the error in SSL 

estimation is likely to be dependent on the sound source azimuth, as the path taken by the 

sound wave to the robot head would change depending on the azimuth.  

The system is shown in Figure 29. This is a simplification of the multiple models 

framework, implementing only the models and the RE, which simply attempts to identify 



76 
 

the most appropriate model for a given context. The RE generates a set of outputs (1 

output for each model), which represent the individual likelihoods that models are 

responsible for a particular context (i.e., that a model is the most suitable for that context). 

Identification of the context per se is not the focus of the overall system (rather, it is the 

improvement in the localisation performance using multiple models) but is the focus in 

this chapter to test whether the system is able to differentiate between the different 

contexts. 

Each cerebellar model, having learned in a particular context, produces a calibration 

signal based on the output of the SSL algorithm (as explained in Chapter 4), according to 

Equation (8), which should depend not only on the azimuth of the sound source (assuming 

that the error introduced is azimuth-dependent, which it may or may not be but generally 

was found to be in this thesis), but also on the context within which the model has learned. 

Each calibration signal is then added to the estimated position produced by the SSL 

algorithm to produce a calibrated estimate of the sound source location- one estimate for 

each model. Hence, a set of azimuth estimates are produced from a single SSL estimate, 

and the idea is that the characteristics of the different environments in which the models 

learned will be reflected in the different estimates produced. The problem is then one of 

how to identify the correct context. It is assumed that the model that has learned in the 

current context will produce the lowest error in azimuth estimation (of course, this is not 

always the case, as discussed in Section 6.3. Each calibrated azimuth estimation is 

compared to the ground truth position, which is already known from the positioning of 

the sound source. Although, of course, in the real system, the ground truth cannot be 

found until the robot head orients toward the sound source, it has been used here merely 

for convenience to test the efficacy of the approach, and would ultimately be used with 

visual feedback on a mobile platform. The resulting prediction error is treated in a similar 

way to the MOSAIC errors and Equation (11) is adapted using azimuth rather than plant 

state in MOSAIC, so that the responsibility of each model is calculated as 

 
𝜆𝜆𝑥𝑥 =  

𝑒𝑒−|𝜃𝜃𝑡𝑡−𝜃𝜃𝑖𝑖|2/𝜎𝜎2

� 𝑒𝑒−|𝜃𝜃𝑡𝑡−𝜃𝜃𝑗𝑗|2/𝜎𝜎2
𝑛𝑛

𝑗𝑗=1

 (16) 

where θt is the ground truth azimuth, θi is the estimate produced by the ith model, n is the 

number of estimates (models) and σ is a scaling factor which is equivalent to the standard 

deviation assuming a Gaussian distribution of estimates, and is set to unity in this specific 
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configuration. The maximum soft-max value (responsibility) determined through this 

computation corresponds to the lowest error in estimation and is assumed to correctly 

identify the context. The value of σ determines the distribution of responsibilities across 

models and has no effect on this identification, and so its value is not important in this 

particular study (however, it will be important where the outputs of models are to be 

combined in some way such as described in Chapter 7). 

 

Figure 29. Multiple-models- inspired context estimation. For a given context, each 

model provides an estimate of source position. Each estimate is then compared to the 

ground truth source position and the RE classifies the acoustic context based on the 

estimation errors. Reprinted by permission from Springer Nature [113] © 2017. 

 

6.2 Method 
Algorithms were implemented in Matlab, and this was also used to control the running of 

experiments. The microphone setup was as described in Section 4.2, although with a 

larger inter-microphone distance of 0.25m. The inter-microphone distance was increased 

from that used in Chapter 4 to improve the SSL resolution. 

 

The sound source was mounted on a motorised platform that could traverse a curved track 

such that it could be placed (under computer control) at any azimuth between -90o (left 

with respect to the robot head) and +90o (right with respect to the robot head) at a constant 

distance from the robot head (Figure 30). A curved photographic dolly system was used 

to constrain the path of the sound source to an arc, with the sound source itself mounted 

on a plywood platform fixed to the dolly mechanism. The rear of the platform engaged 

via a cog fixed to a stepper motor with a toothed belt which was fixed along the length of 

a semi-circular Perspex structure. A geared stepper motor was used in order to produce 
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enough torque to move the platform and this also allowed the source to be placed with a 

high resolution. 1o increments were used in this thesis although results are limited by the 

resolution of the ITD module, which varies from ±1.7o at zero azimuth to ±5o at ±70o 

azimuth. The motor was controlled via an auxiliary connection to the motor control 

circuitry in the PTU that was used in Chapter 4. The apparatus was quite difficult to use, 

with frequent adjustment of the relative positions of the two tracks and tensioning to 

arrive at a workable trade-off between sufficient tension to maintain satisfactory 

engagement between the motor’s cog and the toothed belt, and the ability of the motor to 

drive the platform (too great a tension would result in the motor stalling). 

 

The sound source was also mounted on a further stepper motor such that it could be 

rotated about its vertical axis through an angle ϕ as shown in Figure 31. This allowed the 

alteration of the acoustic context by rotation of the sound source so that it might face 

away at angle ϕ with respect to the robot head. This was a low current stepper motor that 

was controlled via an Adafruit motor controller board hosted on an Arduino board. This 

was controlled via USB from Matlab. The sound source could be placed at an orientation 

with respect to the robot head in 1.8o increments, the resolution of the stepper motor. The 

experimental arena was surrounded by a semi-circular screen that, combined with 

different orientations of the sound source, produced different acoustic contexts. 

 

The cerebellar models were trained in different acoustic contexts. During learning, the 

robot head was presented, in each context (that is, for a constant value of source angle  

ϕ), with audio stimulus from randomised positions along the circular track, such that the 

direction of arrival of sound was from various azimuths (θ in Figure 31). 60 iterations 

were used to train a model. Post learning, all models were presented with the same set of 

audio stimuli at azimuths from -40o to +40o in 10o increments. For each stimulus, all 

models produce a calibration signal from which a set of errors are derived by computing 

the difference between each calibration signal (added to the SSL output) and the ground 

truth azimuth, and the soft-max of the likelihood for each model computed using Equation 

(16). Following the MOSAIC framework, the maximum soft-max, assumed to correspond 

to the minimum error, is used to identify the context. 
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Figure 30. Experimental apparatus using track-mounted sound source. Adapted by 

permission from Springer Nature [113] © 2017. 

 

 

Figure 31. Plan view of the experimental apparatus. The source can be placed at 

various azimuths θ with respect to the robot head. The sound source can also be rotated 

at an angle ϕ on its axis. Reprinted from [54]. © 2018 IEEE. 
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6.3 Results 
Seven cerebellar models were trained, as described in Section 6.2  with the sound source 

facing away from the robot head at a different angle (ϕ in Figure 31) for each model (135o 

left; 90o left; 45o left; 0o;  45o right, 90o right and 135o right with respect to the robot 

head). After training, the robot head was presented with sound source azimuths (θ in 

Figure 31) of 45o (left with respect to the robot head) to +45 o (right with respect to the 

robot head) in 15o increments in each of the seven contexts. Therefore, an overall set of 

49 (7 contexts, ϕ each with 7 azimuths, θ) different configurations where explored. For 

each source azimuth/context combination, the seven cerebellar models generated 

estimates of the context as described in Section 6.1, and the model with the lowest error 

was used to identify the context. Table 1 shows the rate of context identification. Each 

row in Table 1 represents seven different source azimuths in the same context.  

Table 1. Context identification with multiple models. Adapted by permission from 

Springer Nature [113] © 2017. 

Context Context  

(source orientation ϕ) 
Correct identifications  

(n=7 azimuths θ) 
1 135o left 85.7% 

2 90o left 71.4% 
3 45o left 42.9% 
4 0o facing the robot 14.3% 
5 45o right 71.4% 
6 90o right 100.0% 
7 135o right 100.0% 

 

Figure 32 shows plots of sound source azimuths along with SSL estimates and 

cerebellar calibration by each of the seven models in one case in which context 

identification was correct (Figure 32a) and one case where context identification was 

incorrect (Figure 32b). The context is that the sound source is rotated (ϕ in Figure 28) 

135o to the left away from the robot. The sound source azimuth (θ in Figure 28) is 30o 

left with respect to the robot head in Figure 32a and 30o right with respect to the robot 

head in Figure 32b. The context is the same for both plots, and so it should be the same 

model (model 1 in this case) that gives the lowest error. Blue circles represent the 

ground truth azimuth and red circles represent the un-calibrated SSL estimate. The 

green circle represents the estimate for the model that has learned in the given context. 
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The black circles represent the estimates of the remaining six models (those that had 

learned in the other contexts). It can be observed in Figure 32a that the estimate of the 

model that had trained in that context (model1) is the closest in value to the ground 

truth, leading to a correct identification, whilst in Figure 32b, a different model, model 

2, is closer, so that the context was misidentified as that in which model 2 has learned. 

(a) 

 

(b) 
 

 
Figure 32. Plots of sound source azimuth. (a) Correct identification. (b) Incorrect 

identification. Adapted by permission from Springer Nature [113] © 2017. 
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6.4 Chapter summary 
This chapter has presented a context estimation system which is able to identify the robot's 

acoustic context (albeit in a highly constrained way) with a degree of success, correctly 

identifying the acoustic context in 69.4% of 49 cases tested. Perhaps more importantly, 

however, the chapter demonstrates the basic utility of adopting the MOSAIC-inspired 

approach to SSL calibration, although that was not the focus of this chapter. Table 1 

shows that the majority of contexts were correctly identified, and, where mis-

classification occurred, this was mostly of a neighbouring (similar) context. The 

performance of the RE varies with the nature of the context. Mis-identification of the 

context more often occurs where there is little error in the SSL estimate and hence little 

difference between the model estimates. This is evident where the sound source directly 

faced the robot head (ϕ=0o), so that all models produced similar estimates. The 

identification rate in this case was only 14.3%, no better than chance (the probability of 

selecting one of the 7 contexts, assuming that each has an equal chance of selection). 

Confusion can also occur where an “incorrect” model (that is, one that has not learned in 

the presented context) happens to produce a smaller error than the “correct” model (that 

is, the one that has learned in the presented context) as seen in Figure 32b. Success was 

greatest where the sound source faced away from the robot head, and there was a clearer 

distinction between contexts. In terms of localisation of the sound source, however, this 

may not matter, as the overall goal in the thesis is to identify the most appropriate model- 

even if that model did not learn in the presented context, and this is the subject of Chapter 

7. Although the apparatus described in this chapter allowed the automated placement of 

the sound source, it proved to be unreliable, with frequent adjustment of the sound source 

locomotion mechanism and its tension being necessary during experiments. For 

subsequent chapters this apparatus was abandoned in favour of a redesign which is 

described in Chapter 7. 
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Chapter 7 Audio localisation using multiple models 
 

7.1 Introduction 
This chapter builds on the work developed in Chapter 6 to combine the outputs of the 

parallel cerebellar models. The work in this chapter was published in IEEE Robotics and 

Automation Letters [54]. 

The outputs of the models are combined in such a way as to improve calibration of the 

SSL in different acoustic contexts. This is a key chapter in that it demonstrates that the 

combination of the outputs of multiple adaptive filter models of the cerebellum, in the 

same way that the MOSAIC framework combines the outputs of multiple inverse models, 

can improve the overall calibration of the SSL estimate. The approach allows a robot that 

has learned to calibrate its SSL output in different environments, to select an appropriate 

set of calibrators as it moves between the different acoustic environments, combining 

their calibration effort in proportion to how well they are able to calibrate in a particular 

environment (regardless of which environment those models learned in). 

This chapter focuses on whether combining the outputs of multiple models improves the 

performance of SSL calibration, compared to that using a single model.  The performance 

of the multiple models system was also compared to GCC-PHAT as a popular SSL 

algorithm, although this latter comparison is of limited value since the system is designed 

to calibrate the output of an SSL algorithm, rather than perform as an SSL system in its 

own right. Indeed, the multiple models system proposed in this chapter could have been 

used to calibrate the output of the GCC-PHAT algorithm itself. 

As important as the accuracy of SSL in this thesis (perhaps more so, as a proof of concept) 

is whether the system can successfully adapt to different environments, having learned in 

each of those environments, and to what extent the system can adapt to novel 

environments using existing learned models. The main point is that the system sits 

alongside an SSL unit, which in principle could use any SSL algorithm. Hence, robustness 

to background noise, multiple sound sources and so on comes from the underlying SSL 

mechanism, and the system which is the subject of this chapter calibrates the SSL output 

for different environments. 
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Whereas in the previous chapter, the system attempted to identify the context based on 

the model that gave the lowest error, this is not really the motivation of the system 

presented in this thesis, although it does point to an interesting potential application in 

context identification. Identifying the context of course has its uses however, in this 

chapter, the motivation is how to select a set (because it could be more than one) of models 

that improves the calibration performance in different acoustic contexts. It should not 

even matter what SSL algorithm is used- the system should find the best set of models 

that can improve the performance regardless of the underlying localisation technique used 

(although changing the SSL algorithm would probably demand re-learning of the 

models). Also, it should not really matter whether the “correct” model is selected (the 

function of the system described in Chapter 6 relied on the model that had learned in a 

particular context being selected); what matters is that the best set of models is selected, 

that is, the combination of models that results in the lowest overall error in azimuth 

estimation. The input to the system is a SSL estimate, and the purpose of the multiple 

models calibration system is to “fine-tune” the estimate in the face of errors introduced 

in a variety of acoustic contexts. 

The system that was developed in this chapter is shown in Figure 33. The SSL unit 

produces an estimate of the sound source azimuth assuming no acoustic distortion or 

interference. This is analysed into parallel fibre signals (as described in Chapter 4) for 

each of the adaptive filter models of the cerebellum. Each model produces a calibration 

signal at its output assuming that it is operating in the context in which it learned to 

calibrate the SSL output. A copy of the SSL output is summed with each cerebellar output 

to produce a set of calibrated estimates of the sound source azimuth. Each of these is 

compared to the ground truth sound source azimuth (when it becomes available, which, 

in the field, it is envisaged would be via sensory feedback of the sound source position in 

the environment), and an error generated for each model, which is transformed into the 

likelihood that each model is the best suited, or is responsible for calibrating the SSL 

output (the likelihood that each was responsible for the context). Each of these likelihood 

values is fed into the RE, which uses a softmax function to normalize the likelihoods 

across models to produce a set of responsibility signals, one for each model. Each 

responsibility signal is multiplied by a copy of the calibration signal from the 

corresponding cerebellar model and the set of results is summed to produce an overall 

calibration signal which is added to a copy of the SSL output to form the system output, 
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a calibrated azimuth estimate. In this way, all models contribute to the calibration of the 

SSl estimate, but in proportion to how well each is suited (based on sensory feedback of 

the ground truth azimuth) to do so. This is the equivalent in the MOSAIC framework of 

the outputs of the inverse models being modulated by the modules’ responsibility and 

summed to produce an overall motor command. 

 

 

Figure 33. Multiple-models- inspired audio localisation. For a given context, each 

model provides an estimate of source position. The RE produces a responsibility signal 

for each model, based on the posterior likelihood calculation. The overall map shift is 

produced from a summation of model map shifts in proportion to their responsibility. 

Reprinted from [54]. © 2018 IEEE. 
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7.1.1 Responsibility estimation 

Each model produces a calibration signal based on the underlying SSL estimate which is 

added individually to that estimate to produce a calibrated azimuth estimate for each 

model. The estimate derived from each model is compared to the ground truth sound 

source position. How the ground truth is determined is described in Section 7.2. A robot 

operating in the field could determine the ground truth through sensory feedback of a 

different modality, such as vision. This is entirely consistent with the MOSAIC 

framework in which sensory feedback is used to determine the prediction error of each 

forward model, after action has taken place or at least commenced. In this case, the robot 

would orient its vision sensor (if this is the sense being used) toward the estimated sound 

source (an overall estimate based on the predictions of the models). Although the 

experimental apparatus was designed to allow such visual input, the ground truth was 

taken from the odometry of the apparatus used. This was to allow a wide range of 

experiments to be carried out under similar experimental conditions, using recorded 

audio. Relying on visual feedback to determine the ground truth would have severely 

restricted the scope of the investigations. Because the experiments used pre-recorded 

audio it was possible to immediately know the ground truth without waiting for action or 

orientation, however this is not how the system would work in the field, where the ground 

truth would not be available until after orientation, and so this delay of one trial was built 

into the experiments.  

As described in Section 5.2.2.3, in MOSAIC, the prediction error is transformed into a 

likelihood that the module of which the forward model is a part is responsible, that is, the 

forward model (as it is in the MOSAIC framework) produces the lowest prediction error. 

Here, again, the system is inspired by MOSAIC rather than being a faithful reproduction. 

The model itself does not directly estimate the source position (analogous to the next state 

in MOSAIC) but rather produces a calibration shift to compensate the error introduced 

into the un-calibrated estimate of source position. This error is normalised, by the RE, 

across all modules to produce a responsibility signal for each module. 

7.1.2 System output 

The overall output of the system is a calibrated estimate for the sound source azimuth. 

Whereas each model’s calibration output is individually added to the un-calibrated 

estimate of azimuth in order to compute the responsibilities, those same calibration shift 

values are summed, in proportion to each model’s responsibility, to produce an overall 
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calibration shift, which is finally added to the un-calibrated SSL output, to produce a 

system output which is a calibrated estimate of azimuth. 

7.2 Method  

7.2.1 Experimental setup  

A similar setup as described in 6.2 was used, although the sound source motion control 

system was redesigned for improved reliability and portability. As explained in section 

6.4, the previous setup proved to be unreliable, with frequent adjustment of the sound 

source locomotion mechanism and its tension being necessary during experiments. The 

sound source was suspended from a counterweighted tripod-mounted beam (Figure 35). 

A geared stepper motor (controlled via an auxiliary connection on the PTU) was used to 

move the beam to place the sound source at various azimuth positions with respect to the 

robot head. Another advantage of this arrangement is that it is more portable, being more 

mechanically robust than the arrangement described in Chapter 6 and allowing the 

possibility of conducting experiments away from the laboratory. Figure 34 shows the 

robot head. 

 

Figure 34. Robot head based on PTU. A horizontal bar with a microphone mounted at 

each extremity is mounted on a stepper motor to allow the head to orient toward the 

estimated azimuthal position of a sound source. Reprinted from [54]. © 2018 IEEE. 
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Figure 35. Experimental apparatus using tripod-mounted sound source. The sound 

source is suspended from a counterweighted beam, which rotates about the axis of the 

robot head. Reprinted from [54]. © 2018 IEEE. 

7.3 Results 
Each experiment consisted of a sequence of trials in which he robot head was presented 

with audio stimulus (a 1 second duration Gaussian noise). The trials were grouped into a 

sequence of environmental contexts, with 5 trials per context and a randomly selected 

sound source azimuth in each trial, as though the robot were moving from one 

environment to another, experiencing 5 audio stimuli in each context, with the azimuth 

of the sound source in each trial randomly selected (of course, this is a somewhat artificial 

scenario- the equivalent of the sound source moving about the environment at random; 

however, this artificial, random selection of sound source azimuth was considered to be 

more challenging than what would happen in a real scenario and is therefore a valid 

approach). It is assumed that with a robot operating in the field, a trial would consist of 

the robot first receiving audio input, then, having made a calibrated SSL estimate, orient 

its vision (or whatever) sensor toward the sound source, at which point the ground truth 

could be determined (assuming, of course, that vision is taken to be good enough to 

provide the ground truth sound source position). Localisation performance was calculated 
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from 10 runs of each experiment of 15 trials, so that statistics were based on 150 data 

points. 

Due to the posterior nature of the responsibility calculation, in any one trial, the 

responsibility value used is based on the model’s estimation of sound source azimuth 

during the previous trial.  In each trial, an overall calibration signal is generated by 

summing the individual models’ outputs in proportion to their responsibility. In the field, 

this would be used to orient the robot head toward the sound source in order to determine 

the ground truth. In this thesis, the ground truth was known from the odometry as 

explained in Section 7.1.1 and in order to simulate the behaviour of the system in the field 

was not made available until the next trial. This posterior calculation of the responsibility 

results in a delay of one trial for the system to respond to a change in context, such as 

would be caused by the robot moving to a new environment. This is because the ground 

truth cannot be found until after action has taken place. 

7.3.1 Contexts in which the models were trained 

7.3.1.1 Multiple models versus best single model 
There is a question of whether combining the model outputs in proportion to their 

responsibilities is better than switching to the single best model in each context (in a 

similar fashion to Narendra et al. [126]). An experiment was conducted in which the MSE 

of the combined models was compared to that of the system which switches to the best 

single model (that showing the lowest error) in each context. Table 2 shows that the 

performance is better where the model outputs are combined, with a considerably lower 

MSE than with switched (best single) models.  

Table 2. Performance of multiple models versus best single model.  

Method 
MSE  

(degrees2) 

1. Best single model in each context 12.00 

2. Combined models 3.01 

 

7.3.1.2 Multiple models versus a general single model 
It is claimed in Section 5.2.1 (following the MOSAIC literature) that a single model 

would be unable to capture the range of contexts encountered by a robot or organism, and 

so the performance of the combined models was compared to a single model that had 

learned in all the contexts encountered. This was seen as a key benchmark against which 
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to test the performance of the multiple models approach. The single model learned using 

randomly selected data from across the contexts, rather than being trained in a sequence 

of contexts in order to avoid the model adapting best to a single context. The model 

learned over 60 iteration of weight updates in each context. Of course, this is also a 

somewhat artificial situation as a real robot might visit the three contexts in a more 

uniform way, spending more time in a context before moving to the next. Also, it is not 

clear how the sequence of contexts experienced might affect the model’s relative 

performance in those contexts, if the context experience were sequential. In order to 

compare to an existing benchmark Generalized Cross-Correlation [16] with Phase 

Transform (GCC-PHAT) was also included as it is a widely used SSL algorithm, although 

it has to be borne in mind that comparing against an un-calibrated SSL algorithm is not 

necessarily useful. 

Figure 36 shows the responsibility signals of each model. Line charts have been used for 

clarity although the functions plotted are not continuous, but rather are discrete with 

integer index values. The plots show that it is the model that has learned in a given context 

that dominates the responsibility. Where there is sharing of the responsibility, it is mostly 

with the adjacent model (the third model typically showing zero or near zero 

responsibility). The result of the ground truth only being available in the next trial 

(simulating the effect of the system having to wait for the robot head to orient toward the 

sound source to determine the ground truth) results in a delay of one trial before the 

system responds to a change in context. This delay in adapting to a new context can result 

in large errors in SSL calibration until the RE has been able to update the responsibility 

signal after action, and this was a motivation for going on to investigate the use of the RP 

in chapter 8. Table 3 shows that the performance of the multiple-models system is better 

than that of a single model that has learned in all contexts, as well as GCC-PHAT. 
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Figure 36. Responsibility signals as the system progresses through the 15 trials. In each 

trial the system is presented with stimulus of various azimuths in three different 

contexts, indicated by the coloured regions, labelled with the context number. Context 1 

(blue region) is ϕ=90o left; context 2 (red region) is ϕ =0o; context 3 (green region) is 

ϕ=90o right. Reprinted from [54]. © 2018 IEEE. 

 

Table 3. Localisation performance of multiple models. N=150. Accuracy rate is percent 

less than 5o absolute error. Adapted from [54]. © 2018 IEEE. 

Method Accuracy rate 
MSE  

(degrees2) 

1. Single model trained in all contexts 79% 13.5 

2. GCC-PHAT 77% 13.6 

3. Combined models 92% 5.8 

4. Single model trained in novel contexts 88% 11.8 

5. GCC-PHAT  in novel contexts 86% 10.9 

6. Combined models in novel  contexts 91% 8.8 
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As described in section 4.2.3, the experiment was repeated with 81 uniformly selected 

azimuth values from, and a paired-sample t-test carried out on the calibrated and 

uncalibrated results, using the Matlab ttest() function. The h value was 1, suggesting that 

the null hypothesis (that the difference between the means of the calibrated and 

uncalibrated samples is zero) is rejected, and the improved performance of the calibration 

model can be treated as significantly better than that of the uncalibrated SSL estimate at 

the 95% confidence level. The standard deviation of the difference in mean errors was 

2.5o. The t-value was -15.7: the negative sign indicates that the calibrated errors were 

smaller than the uncalibrated errors and the value is not close to zero (the closer to zero, 

the weaker the case to reject the null hypothesis). 

 
7.3.2 Novel contexts 

As discussed in section 5.2.2.3, the MOSAIC literature claims that the framework is able 

to adapt to novel contexts whose characteristics lie intermediate to two experienced 

contexts, and this was the motivation for conducting this experiment. 

The same 3 models that had learned in contexts associated with values of ϕ of 90o left; 0o 

and 90o right were tested in 2 new contexts having values of ϕ of 72o left; and 72o right. 

These fall intermediate, in terms of defining characteristic (assumed to be value of ϕ), to 

the contexts in which the models have learned. 

Figure 37 shows plots of the responsibilities in this experiment. The models that have 

learned in contexts closest in characteristics to the novel contexts (models 1 and 3) tend 

to dominate, but less distinctly than in the experiment described in 7.3.1, where models 

were presented with contexts in which they had learned. There is more sharing between 

adjacent models, however Table 1 shows that the performance is still an improvement 

over that of a single model that had learned in the 3 previous contexts, and is similar to 

that of the GCC-PHAT SSL method. It is slightly worse than that of the models operating 

in the contexts in which they learned. 
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Figure 37. Responsibility signals in novel contexts. In each trial the system is presented 

with stimulus of various azimuths in two different contexts, indicated by the coloured 

regions, labelled with the context number. Context 1 (blue region) is ϕ=72o left; context 

2 (red region) is ϕ =72o.  Reprinted from [54]. © 2018 IEEE. 

7.4 Chapter summary 
This chapter has described a multiple-models-inspired cerebellar calibration system for 

an SSL algorithm which was able to automatically select an appropriate set of models and 

combine the outputs of those models, in proportion to their a-posteriori determined ability 

to calibrate the robot's SSL algorithm in different acoustic contexts, to improve the overall 

SLL estimate in multiple acoustic environments. The performance error of the combined 

models was better than that of a single model trained in all contexts, in both novel contexts 

and contexts in which the models had learned. It also outperformed the best performing 

single model in each context. This represents the most significant result of the thesis, 

demonstrating the basic idea of multiple models calibration. 
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Chapter 8 Responsibility prediction  
 

8.1 Introduction 
Part of the work in this chapter (specifically Sections 8.2, 8.4, 8.5.5, 8.6.2.2, 8.6.3.2 and 

8.6.4, that is, those sections that relate to the cerebellar implementation of the RP only) 

has been published as a full paper to the Biomimetic and Biohybrid Systems: 8th 

International Conference, Living Machines 2019 conference. The work in Section V-D 

was published in [54]. 

As discussed in Section 6.1 and 7.1.1, the MOSAIC-inspired multiple models system is 

unable to calculate the responsibilities of the models until after the ground truth sound 

source location becomes available. For a robot operating in the field, this would be 

through sensory feedback such as vision, so that the ground truth could only be 

determined after the robot has oriented its vision sensor(s) toward the estimated sound 

source position. The MOSAIC framework mitigates this by introducing an RP (see 

Section 5.2.2.5) which makes a prior prediction of the posterior responsibility (this is the 

final responsibility output by the RE) of the model to which it is attached, based on 

contextual input signals. As mentioned in section 7.3.1.2, there is a delay of one trial as 

the robot moves to a new context before the RE updates responsibility signals which can 

result in a large error in SSL at the changeover between contexts. This was one motivation 

for investigating the use of the RP in this chapter. Because the RP is excited by contextual 

signals, and not feedback in response to action, which has a necessary delay, it can 

produce a response immediately. This is referred to in MOSAIC as feedforward module 

selection. Also, not covered in the MOSAIC literature, is the possibility in challenging 

environments that ground truth may not be available at all through sensory feedback, 

where, for example, vision could become obscured. This is where the RP could play a 

more prominent role, mitigating performance of the system until the ground truth can be 

established again. 

There are multiple RPs, one for each model, whereas there is one RE, which computes 

the responsibilities for all models. The RP learns to predict the responsibility of its 

associated model in a particular context. As with the cerebellar models discussed so far, 

the RP is pre-trained in this thesis. Ultimately, the RP would learn, or update its learning, 

alongside the calibration model as the model itself learns. For the purposes of this chapter, 
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the calibration models are pre-trained, then the RPs trained against the responsibility 

signals generated as the models act in different environments. The RP in this case needs 

an already trained model so that it can learn to predict the posterior responsibilities. The 

actual posterior responsibility outputs of the cerebellar calibrator to which it is attached 

become the teaching signal for the RP. For convenience, NN implementations of the RP 

(Section 8.5.3) did not use the posterior responsibilities as teaching signals, which would 

have required the RP to learn in adaptive mode (rather than the default batch mode in the 

Matlab NN Toolbox), but instead used RE outputs which had not been produced through 

a combination of RP output and likelihood values, that is, the normalized likelihood 

values alone were used, Equation (16). Cerebellar implementations (Section 8.5.5) did 

however use the combined final responsibilities as teaching signals as computed using 

Equation (17), as was intended in MOSAIC. 

8.2 Contextual signals 
As mentioned in Section 5.2.2.5, the RP takes contextual signals as input. These are any 

signals that are derived from the environment and that allow a prior estimate of 

responsibility, without the need for the ground truth. Hence these signals could be of any 

form, auditory, visual, tactile, and so on, that allow such a prediction. In this thesis, the 

audio stream itself is used to derive the contextual input to the responsibility predictor, 

through the extraction of audio features. There is no reason that vision could not have 

been used, or, indeed that audio and visual contextual signals could not have been 

combined, and this may be a fruitful area for future work focusing on audio-visual 

integration. The rationale for choosing audio, however, was the original motivation to 

develop a system that could come to rely more on sound where other senses such as vision 

become unavailable. 

In order to train the RP, and for subsequent functioning, a set of features needs to be 

extracted from the environment, in this case, from the audio stream. There are a number 

of features that could be used, such as zero crossing rate, energy within auditory filter 

bank channels and so on. Acoustic Scene Classification (ASC) is a recent area of research 

concerned with the classification of environments based on sounds generated within those 

environments and is related to CASA (Section 2.3) [136-138]. Features used in ASC have 

included low-level time- or frequency domain features (e.g. zero crossing rate, spectral 

roll-off), frequency band energy (including the use of auditory filter banks), cepstral  

features (see Section 8.4) and spatial features (including ITD and ILD). There is little 
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literature concerning the application of ASC to robotics. Chu et al.  use spectral features 

of sounds (such as bandwidth and spectral flatness) and zero-crossing rate to classify 

environments for mobile robot navigation [67]. 

8.3 RP as part of the overall framework 
Figure 38 shows the RP developed in this thesis as part of the overall system. The teaching 

signal is derived from the RP prediction error which is a comparison between the overall 

responsibility (for the RP’s associated model) and the RP output. As explained in Section 

8.1, for convenience, with the NN implementations and for the simulations, the 

responsibility signal was taken directly as the RE output without combination with the 

RP output. For the cerebellar RP, however, the teaching signal was as shown in Figure 

38. 

 

 

 

 

 

 

 

 

Figure 38. Responsibility Predictor in the context of the overall system. The grey broken 

line indicates that in this thesis it is the audio stream itself that forms the contextual 

signal.  

 

8.4 Audio features 
Audio features representing the different acoustic contexts were generated using an 

adaptation of  the methods outlined in Introduction to audio analysis: a MATLAB 

approach [139]. This text provides a Matlab library of functions that extract a number of 

features from an audio signal, the Audio Analysis Library (AAL). The library computes 

35 features, explained in more detail below, which are zero crossing rate, energy, entropy 
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of energy, spectral centroid, spectral spread, spectral entropy, spectral flux, spectral roll-

off, 13 Mel-Frequency Cepstrum Coefficient (MFCC) features, harmonic ratio, 

fundamental frequency and 12 chroma vector features. For each of these features, 6 

different statistics are computed (mean, median, standard deviation, standard-by-mean- 

the ratio of standard deviation to mean, maximum and minimum), resulting in 210 

features overall. The audio features are extracted on a frame-by-frame basis (where a 

frame consists of a number of audio samples, usually 1024; processing individual audio 

samples would be inefficient and currently impractical, especially for a mobile robot 

platform, in real-time)- so-called short-term feature extraction. Feature statistics are 

computed over a number of audio frames (so-called mid-term feature extraction).  

Zero crossing rate and energy are time-domain features. Zero crossing rate is the number 

of times the signal crosses zero (assuming no DC bias of course) divided by the number 

of samples in the frame, and provides a rough and indirect indication of the frequency 

content of the signal (so will tend to be higher where higher frequencies dominate, 

especially “noisy” signals). As will be seen later, this very simple feature on its own 

turned out to be remarkably successful in signalling the acoustic context. The energy is 

calculated from the sum of the square of the absolute sample amplitudes over the frame 

(actually, it is the power rather than the energy that is computed in the AAL), and tends 

to be used to differentiate speech from other signals.  The entropy of energy feature 

indicates rapid changes in energy level between successive frames. It can be used, for 

example, to signal the onset of sounds. It is not clear how it would be useful in identifying 

the environment. 

The remaining features listed above are frequency-domain features. The spectral centroid 

feature indicates the central positioning of the frequency spectrum of the signal, while 

spectral spread is a measure of the deviation of frequency components about the centroid. 

Intuitively, these features ought to convey useful information about the acoustic 

environment (and indeed turned out to do so as seen later). Spectral entropy is the entropy 

of energy computed in the frequency domain- a measure of the spectral power distribution 

or “flatness” of a signal, and can be used to differentiate between speech and other sounds. 

Spectral flux is simply the rate of change of (the square of) the amplitude of the spectral 

components between frames. Again, this feature is useful for discrimination between 

speech and other sounds. Spectral roll-off is an indication of the (near to-) maximum 

frequency content of the signal (effectively, this is approximately the bandwidth of the 
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signal). Again, intuitively, this ought to tell us something significant about the acoustic 

environment. However, for the (somewhat artificial) contexts used in this thesis, this did 

not emerge as a particularly successful feature. MFCC features use a cepstral 

representation of the signal (where the Discrete Fourier Transform (DFT) is taken of the 

spectrum of a sound) based on a multi-channel filter whose bands are distributed 

according to the Mel-scale (on which frequencies are perceptually equally spaced). 

MFCCs are heavily used in speech processing, and did not emerge as successful features 

here. Chroma vector is a set of DFT coefficients such that the sound is categorised into 

classes based on pitch. This feature was developed in the context of music discrimination, 

and on the face of it will not be particularly relevant here, although, interestingly, one 

class of the Chroma vector did emerge as a successful feature. Fundamental frequency 

relates to periodic or quasi-periodic signals such as voiced sounds (a normal human voice 

will possess a fundamental frequency that determines the “pitch” of the voice). In the 

narrowly defined acoustic contexts here, this is unlikely to be a strong feature, and so it 

turned out. Harmonic ratio is related to fundamental frequency and is computed as the 

maximum of the auto correlated signal. This is another example of a feature that can be 

used to discriminate speech and non-speech signals, and interestingly, emerges as a 

successful feature here. 

Just because features did not stand out as particularly successful in this thesis, does not 

mean that they will not be useful more broadly in more realistic acoustic environments, 

where a variety of sound types might be present, with a range of characteristics, and the 

robot might be required to carry out a variety of tasks apart from SSL such as 

discriminating between human sounds and other types of sound. 

8.5 Method 

8.5.1 Generation of training data 

Training data for the RP was generated using the recorded audio (Section 7.1.1), to 

generate a set of audio features using the AAL, which were used as training inputs for the 

RPs developed in this chapter. 

For each audio segment in the data set (representing a sound source azimuth and an 

acoustic context), the trained calibration models together with an RE were used to 

generate responsibility values, along with likelihood values for the generation of final 

posterior responsibility targets as described in Section 8.5.5, for the cerebellum based RP. 
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For the simulations of the RP (Section 8.5.2) and for the NNs (Section 8.5.3), the 

responsibility signals were used without combination with the RP output. This was done 

for convenience, since for batch training, the RP output would be required for each 

training iteration, which was not straightforward using the Matlab NN toolbox. A possible 

approach here was to batch train the NN repeatedly using a training data set that is 

increased by one data point after each training iteration so that the RP output could then 

be used to generate the next training point. This approach was not used although it was 

attempted in a pilot experiment with some success, which is not reported in the thesis. In 

the case of the cerebellar RP, it was more straightforward to train the RP with the target 

signals generated using the RP’s own output. This required the generation of a set of 

target likelihood values using the trained calibration models, as described above, so that 

these could be combined with the actual RP output during training using a revised form 

of Equation (16)  based on Equation (12): 

 
𝜆𝜆𝑥𝑥 =  

𝜆𝜆𝑝𝑝𝑥𝑥𝑒𝑒−|𝜃𝜃𝑡𝑡−𝜃𝜃𝑖𝑖|2/𝜎𝜎2

� 𝜆𝜆𝑝𝑝𝑗𝑗𝑒𝑒−|𝜃𝜃𝑡𝑡−𝜃𝜃𝑗𝑗|2/𝜎𝜎2
𝑛𝑛

𝑗𝑗=1

 (17) 

In this way, training data was generated during learning, from the likelihood values, using 

the partially trained RP. 

8.5.2 RP simulation 

This work was published as Section V-D in [54]. During the work that was carried out in 

Chapter 7, the presence of an RP was simulated, to see whether there would be any 

improvement in performance, i.e. whether it was worth going on to develop an actual RP.  

This simulation was quite crude, and the actual posterior responsibilities (without 

combination with the RP itself) were simply used as though an RP were present that could 

perfectly predict those values. This approach was therefore quite simplistic and not 

strictly true to MOSAIC, nevertheless it was felt it was worth testing the idea. This was 

the rational for developing the algorithms and models in this chapter- to test the 

performance of the system in the presence of an actual implementation of an RP (albeit 

in software). 

8.5.3 Function fitting Neural Network implementation 

A function fitting NN was developed using the Matlab Neural Network Toolbox 

fitnet() function which creates a network with an input layer of neurons equal in 
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number to the number of audio features, and a hidden layer with 10 neurons by default 

(Figure 39). The rationale behind this choice was the ready availability of the NN in 

Matlab, and that this is the predominant approach used in the MOSAIC literature. The 

NN was trained to predict the responsibility values of the cerebellar models using offline 

data as described in Section 8.5.1. To start with, all 210 features generated using the AAL 

were used as input to the NN. 

 

Figure 39. The RP NN structure. As graphically represented by the Matlab NN Toolbox. 

 

A number of training algorithms were tested and Resilient Backpropagation was chosen 

as producing good results with a short training time.  

8.5.4 Feature set reduction 

Using the 210 different audio features produced using the functions of the AAL is clearly 

computationally inefficient and indeed may be far from optimal. Too many features can 

lead to overfitting, reducing the ability to generalise [140]. There are a number of ways 

to select the most appropriate features to use as input to the Neural Network.  

8.5.4.1 Feature Selection 
Feature selection is a technique that generates a subset of features. The particular 

approach used was sequential feature selection. There are two types, forward selection in 

which features are added, and backward in which features are removed. Sequential 

forward selection is a procedure in which an empty feature set is added to, one new feature 

at a time [141]. As each feature is added to the existing set, a criterion function is 

evaluated (based on the performance of the network) and if a feature increases 

performance according to the value returned by the function it is retained in the feature 

set. The algorithm terminates when the addition of a new feature decreases the 
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performance of the network. A disadvantage of the approach is that it does not remove 

features from the set if they subsequently become redundant. It is computationally less 

demanding than the backward version, sequential backward selection (in which the full 

feature set is the starting point and features are removed one by one), as it operates on a 

smaller feature set. Preliminary trials showed that the feature set was typically reduced 

(from the 210 produced by the AAL) to between 3 and 8 features.  The Matlab Statistics 

and Machine Learning Toolbox includes a function, sequentialfs(). The function 

takes as arguments predictor and target data (which had been generated from the recorded 

data set used in Chapter 7) along with a handle to a criterion function that returns a 

performance measure based on data generated by the algorithm. This criterion function is 

user generated; it created a function fitting NN (described in Section 8.5) based on the 

data passed to it by the algorithm and returned the performance of the trained network 

(MSE).   

8.5.4.2 Manual Feature reduction 
As part of an investigation into how influential each feature generated by the AAL could 

be on the performance of the RP, an attempt was made to manually select features. 

Features were generated from the audio dataset using the AAL and then box plots 

generated for each feature in each of three contexts (ϕ=-90o, ϕ=0o and ϕ=90o). Each plot 

was visually inspected and chosen based on how distinct the features were, that is, a 

feature was rejected if there was considerable overlap of the boxes. As an example Figure 

40 shows the box plots for the mean of zero crossing rate. The bottom edge of the boxes 

indicates the 25th percentile and the top indicates the 75th percentile; the red line indicates 

the median value; the whiskers indicate the data extremes not considered outliers and the 

red crosses indicate outliers (the plots were generated using the Matlab Statistics and 

Machine Learning Toolbox boxplot() function). Figure 40 shows that there was no 

overlap between the feature in the three contexts at the 25th and 75th percentiles. This was 

chosen as the feature used to test the performance of the RP with a single feature input, 

although there were other candidate features that may have been just as suitable. 
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Figure 40. Box plot of the mean of zero crossing rate feature in different contexts. 

 

8.5.5 Cerebellum based RP 

A sub- theme of this thesis is to further demonstrate the utility of the “cerebellar chip”, 

where identical cerebellar circuitry can perform multiple functions, which are determined 

by the context in which it is embedded and its external connectivity.  

This connectivity is determined by the way that the cerebellar output (from the Purkinje 

cell) is used, how the climbing fibre signal (the teaching signal) is derived and how the 

parallel fibre inputs are derived and connected.  

It seems a reasonable approach to investigate a cerebellum-based RP, from two points of 

view. First, the authors of MOSAIC suggest that the cerebellum is a strong candidate for 

internal models [120, 132], yet implementations of the RP itself have used more 

conventional NNs rather than models of the cerebellum [122, 142]. Second, it would seem 

pragmatic to pursue an approach that makes use of repeated patterns of identical circuitry 

to perform different functions (in this case, cerebellar calibration and cerebellar RP) in 

order to facilitate successful migration of the system to a real world implementation on a 

mobile robot. To this end the same model was used for the RP as for the calibrators. 

Figure 41 shows the RP based on the adaptive filter model. Features are extracted from 
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the audio input stream (in this case, just one feature, the mean zero crossing rate was used) 

and analysed into parallel fibre signals.  

The output of the adaptive filter (the Purkinje cell in Figure 41) is a prediction of the 

associated model's responsibility, �̂�𝜆 , and is the sum of the parallel fibre signals (the 

feature value) multiplied by the parallel fibre-purkinje cell weights 

 
�̂�𝜆𝑥𝑥 = �𝑤𝑤𝑥𝑥𝑝𝑝𝑥𝑥

𝑛𝑛

𝑥𝑥=0

 (18) 

where �̂�𝜆𝑥𝑥 is the prediction for the ith model and n is the number of parallel fibres. 

The weights are updated in the same way as the calibrators, using Equation (9). As 

predictions can exceed the valid bounds of 0 and 1 for responsibility, a sigmoid function 

is included in the output of the RP to limit the output to between 0 and 1. 

 

Figure 41. Cerebellar implementation of the responsibility predictor. 

 

Training of the cerebellar RP was somewhat more involved than that of the NN RP. As 

explained in Section 8.1 and Section 8.5.1, cerebellar calibration models were trained as 

in previous chapters and used to generate target likelihood values using randomly selected 

samples of the recorded audio data, with corresponding audio features extracted from the 
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same audio samples, using the AAL, in each of three different acoustic contexts. Because, 

in MOSAIC, the RP is trained with the final posterior responsibility value as a teaching 

signal (that is, a combination of the posterior likelihoods and RP prior), at each training 

iteration, the partially trained RP was itself used to make a prediction of the responsibility, 

given the training input, which could then be combined with the target likelihood values 

that were pre-generated as part of the training data, using Equation (17) to generate a 

target responsibility. The RP used a learning rate of 16 and was trained over 32000 

iterations. 

8.5.5.1 Parallel fibres  
The basic function of the cerebellum as an adaptive filter relies upon the analysis of the 

inputs into a number of signal paths and the transmission of those signals via the parallel 

fibres to the Purkinje cell where they are synthesised into cerebellar output. In the first 

instance, a parallel fibre configuration close to that used in the calibration model was 

used, that is, the feature was assigned to a parallel fibre based on its value (much in the 

same way as that in the calibrating cerebellar model, where it is the azimuthal position of 

the sound source that determines parallel fibre activity). Each audio feature (in the thesis 

only one feature was used, chosen through the use of the NN version of the RP as a 

successful feature). The features were grouped into bins based on value, each bin 

corresponding to a parallel fibre. With the approach adopted here, a low value of the 

feature would activate a parallel fibre toward one end of the array (with the value of the 

feature), while a high value would activate a fibre toward the other extreme of the array. 

This approach was chosen to be close to the use of the cerebellar model that calibrates the 

SSL estimate (as well as that used in the precursory study [4]). With that calibration 

model, the parallel fibre model reflects azimuthal audio activity, so that stimulus toward 

one end of the limits of the azimuth range would activate parallel fibres toward one 

extreme while stimulus toward the other extreme of the azimuth range would activate 

fibre(s) toward the other extreme of the fibre array. Like the calibration model, the RP 

model therefore has no basis filters. However, investigating basis filter configurations to 

further process the audio features could a potentially fruitful area of further investigation. 

In each RP configuration, 50 parallel fibres were used; this number was arrived at through 

trial and error. A more structural approach to arriving at a number of parallel fibres should 

be considered in developing the model further. 
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8.6 Results 
The NN implementation of the RP was tested with a variety of feature sets ranging from 

all 210 features produced by the AAL to just one feature. The cerebellar implementation 

of the RP used just one feature. With the NN implementation, the neither number of 

features nor which features were selected appeared to have much impact on the 

performance of the overall system using the RP. 

The cerebellum-based RP typically required larger values of learning rate and learning 

iterations for satisfactory performance compared to the cerebellar calibration models. Key 

parameters affecting performance were learning rate, number of iterations, number of 

parallel fibres and the shape of the sigmoid output function. Typically, a learning rate of 

8 to 16 was found necessary for satisfactory performance. Using the standard form of the 

sigmoid function, several thousand learning iterations were required (typically 16,000 to 

32,000), however with careful choice of learning rate and/or sharpness of sigmoid 

function, this could be reduced to as little as 100 iterations with respectable performance. 

Compared to the standard NN implementation in Matlab, the cerebellum based RP is 

somewhat naïve, and it could be that further development of the model would improve 

performance, with more automated training. 

8.6.1 RP simulation 

The results of this simulation are shown in Figure 42, where earlier switching of 

responsibility can be observed between contexts. The localisation performance was 

improved, with a MSE of 1.5 degrees2 and 100% accuracy rate (accuracy rate was 

percentage of estimate errors less than 5o), compared to 5.8 degrees2 and 92% respectively 

for the multiple models without RP (Table 4).  

Table 4. Performance of multiple models with simulated RP.  

Method Accuracy rate 
MSE  

(degrees2) 

1. Combined models without RP 92% 5.8 

2. Combined models with RP 100% 1.5 
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Figure 42. Responsibility signals with simulation of an RP. In each trial the system is 
presented with stimulus of various azimuths in three different contexts, indicated by the 
coloured regions, labelled with the context number. Context 1 (blue region) is ϕ=90o 
left; context 2 (red region) is ϕ =0o; context 3 (green region) is ϕ=90o right. Reprinted 
from [54]. © 2018 IEEE. 

 

8.6.2 Performance in contexts in which the models had been trained 

8.6.2.1 Neural network implementation 
The NN worked well for contexts in which the models had been trained. Figure 43 shows 

the output of the RP with all 210 features from the AAL. Visually, there seems to be a 

good match between the RP output (orange curve) and the responsibility signals without 

RP (blue curve). The red broken curve is the overall responsibility computed using 

Equation (17). Because it is a prediction, the RP output is in advance of the RE output. 

Accuracy rate was 99% (less than 5o error), and MSE 2.1 degrees2. This compares with 

results from the simulated RP of 100% accuracy rate and MSE 1.3 degrees2. 



107 
 

 

Figure 43. NN RP output using all AAL  features. The orange curve is RP output, the 
blue curve is posterior responsibility, the red broken curve is the combined 
responsibility 

 

Figure 44 shows the RP performance with just one audio feature (mean zero crossing 

rate). Even with just this one feature, the prediction visually appears remarkably good. 

Comparing Figure 43 and Figure 44 it seems that a larger number of features produces a 

slightly more faithful prediction of the responsibility curve, perhaps capturing more of 

the variations, although this is unlikely to have a significant impact on performance. This 

configuration achieved an accuracy rate of 99% and MSE of 2.3 degrees2, which 

compares well to the network that used all the AAL features, suggesting that there is little 

advantage to using such a large number of features (at least, for the contexts used in this 

thesis- it may be a different matter for more realistic real-world situations). 



108 
 

 

Figure 44. RP output with 1 audio feature (mean zero crossing rate). The orange curve 
is RP output, the blue curve is posterior responsibility, the red broken curve is the 
combined responsibility. 

 
Figure 45 shows the RP output using 6 manually selected features as described in Section 

8.5.4.2. The features chosen were maximum of energy, standard deviation of energy, 

standard-by-mean of energy, mean of zero crossing rate, median of zero crossing rate and 

maximum of zero crossing rate. Accuracy rate was 98% and MSE 2.65 degrees2. Note 

that this is a slightly worse performance than that using the single feature alone. 
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Figure 45. RP output with 6 audio features manually selected. The orange curve is RP 
output, the blue curve is posterior responsibility, the red broken curve is the combined 
responsibility. 

 
Figure 46 shows the RP output using 7 features selected using sequential feature selection 

as described in Section 8.5.4.1. The features selected by the algorithm were mean of 

spectral centroid, mean of spectral entropy, mean of MFCC feature 11, median of spectral 

spread, median of harmonic ratio, median of chroma vector feature 10 and median of 

chroma vector feature 11. Accuracy rate was 99% and MSE 2.27 degrees2. 
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Figure 46. RP output with features selected using sequential feature selection. The 
orange curve is RP output, the blue curve is posterior responsibility, the red broken 
curve is the combined responsibility. 

 
8.6.2.2 Cerebellar implementation 
The cerebellar implementation of the RP only used one feature, mean zero crossing rate.  

Figure 47 shows the responsibility signals of the system as it progressed through trials 

(each the result of 1 run of the same experiment) in contexts in which the calibration 

models had been pre-trained. By definition, the RPs had also been trained to predict the 

responsibilities of the calibration models in the same contexts. The blue curves show the 

responsibilities without RP involvement, that is, the posterior responsibilities alone 

(generated after the ground truth becomes available), derived directly from the likelihoods 

using Equation (16). These posterior responsibilities show the models dominating the 

responsibility in the context in which they learned (for example, model 1 learned in 

context 1). It can be observed that there is a delay of one trial before the responsibility 

estimator responds to a change in context, as the responsibility values cannot be updated 
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until after the ground truth becomes available in the next trial. Solid orange curves show 

the outputs of the RPs. It can be observed from this figure that the RP output is similar in 

shape to the RE, but because the RP is driven by contextual signals derived from the audio 

stream, it can update its prediction in response to a change in context before the ground 

truth becomes available. The broken red curve shows the overall responsibility computed 

using Equation (17). The performance of the cerebellar RP was impressive with 100% 

accuracy rate and MSE 1.1 degrees2 (over 10 runs).  

 

Figure 47. Cerebellar RP output in familiar contexts. The orange curve is RP output, 
the blue curve is posterior responsibility (without RP), the red broken curve is the 
overall combined responsibility according to Equation (17). 

 

As described in section 4.2.3, the experiment was repeated with 81 uniformly selected 

azimuth values from, and a paired-sample t-test carried out on the calibrated results with 

and without cerebellar RP, using the Matlab ttest() function. The h value was 1, 

suggesting that the null hypothesis (that the difference between the means of the samples 
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is zero) is rejected, and the improved performance of the multiple models with RP can be 

treated as significantly better than that of the multiple models without RP at the 95% 

confidence level. However, the t-value was smaller than that elsewhere in the thesis at -

2.7, suggesting that although the improvement is significant, the case for being confident 

of this is somewhat weaker than that of the calibration method versus other techniques. 

This is perhaps to be expected given that the thesis claims a significant improvement 

using the multiple models alone. 

8.6.3 Performance in novel contexts 

8.6.3.1 Neural network implementation 
Using all 210 features produced by the AAL produces fairly poor results, in terms of 

distinctiveness of dividing up the experience (Figure 48). 

 

Figure 48. NN RP output in novel contexts using all AAL features. 
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Figure 49 shows the RP output in novel contexts with a single feature (mean zero crossing 

rate) as input to the RP and shows a reasonable performance visually. This might be 

expected, perhaps due to overfitting with a large number of features, as explained in 

Section 8.5.4.  

 

 

Figure 49. NN RP output in novel contexts using one feature. 

 

8.6.3.2 Cerebellar implementation 
The performance of the cerebellar implementation was comparable with that of the NN 

implementation in novel contexts. One has to be careful in making a comparison, 

however, as the cerebellar implementation uses the final responsibility signal, which is a 

combination of transformed posterior likelihoods and RP prior, as a teaching signal, 

whereas the NN implementation used a simplified version without RP involvement. 

Figure 50 shows the responsibility signals of the responsibility estimator and the RPs. As 

in Chapter 7, the system without the RP is able to generalize to the novel contexts, and 
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the RPs also appear to be able to generalize (or, rather, predict the generalization of the 

calibration models) quite well. The RP output shows earlier switching of responsibility. 

However, in this case, the overall responsibility shown by the red broken curve more 

closely follows the responsibility without RP involvement rather than the RP output itself. 

The accuracy rate was 95% and the MSE was 5.7 degrees2, which is an improvement on 

the system without RP (90% and 9.3 degrees2 respectively, using the same data set). 

 

Figure 50. Cerebellar RP output in novel contexts.  

 

8.6.4 Misclassification of the context by the RP 

Haruno et al. simulated an RP error and showed that in the next time step of the 

simulation, the RE corrected for the error introduced by the RP once the ground truth had 

become available through sensory feedback [122]. In that work, RPs were trained by 

presenting a visual pattern corresponding to a context. After training, an incorrect 

pattern/pairing was presented, and a performance error observed as an inappropriate 

module was selected a-priori, but then corrected a-posteriori as the RE output dominated.  
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In this section of the thesis, RPs (based on the cerebellar implementation as described in 

Section 8.5.5) were trained against their models in each context, however, in the post-

training trials, in context 2, the RPs alone were presented with audio stimulus for context 

3 instead of context 2. The calibration models however, were presented with the correct 

audio from context 2.  Figure 51 shows that the RPs do indeed mis-classify the context, 

as would be expected. Because they are presented with the audio from context 3 during 

context 2, during that context, the RP for model 3 predicts dominance in context 2 as well 

as context 3 as shown by the orange curve. The output of the RP for model 2 remains low 

throughout the trials.  The RE (blue curve) does correct the overall responsibility when 

the ground truth becomes available, shown by the red broken curve, which is the overall 

responsibility, closely following the blue curve during context 2 from trial 7. Similarly, 

the RE dominates the overall responsibility for model 3, overriding the erroneous high 

value of the RP in this context. Of course, this relies on the ground truth always becoming 

available through sensory feedback, and, as mentioned elsewhere in this thesis, this may 

not always be the case. 
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Figure 51. RE posterior correction of RP error. 

8.7 Chapter summary 
The RP is able to successfully predict the responsibility values of the cerebellar SSL 

calibration models in the acoustic contexts presented, using features extracted from the 

audio stream, especially in contexts in which the cerebellar calibrators had been trained. 

Performance of the NN RP was poor in novel contexts, but was much improved with a 

reduced feature set. The RP based on the adaptive filter model of the cerebellum 

performed quite well, better than the NN version with many features, but perhaps not 

quite as well as the NN version with just one feature. A direct comparison between the 

NN and cerebellum implementations may not be useful- they were trained in quite 

different ways and the NN implementations in Matlab are somewhat more sophisticated 

than the cerebellar RPs developed in this thesis, which might benefit from further 

development. 
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An RP that can successfully predict the posterior responsibilities of the proposed system 

will allow the system to update the responsibilities of the models before the ground truth 

becomes available, reducing the performance error where the context changes but the RE 

has not yet updated the responsibilities to reflect this. The number of features chosen 

seems to have little effect on the overall performance of the RP (this was only tested with 

the NN implementation), except in novel contexts, and indeed an RP using a single 

feature, for example the mean zero crossing rate of the audio stream, performs well. This 

may not be the case, however, in different and more challenging real-world environments, 

where perhaps more, and perhaps different, features will be required. 

Last, it was shown that where the RP itself makes an error, misclassifying the context and 

pre-selecting an inappropriate set of models, the RE corrects for this a-posteriori, when 

the ground truth becomes available, as is claimed in MOSAIC. However, this relies on 

the ground truth becoming available through sensory feedback, which may not always be 

the case. 

The main significance of this chapter is that it demonstrates the mitigation of missing 

ground truth, on which MOSAIC relies. Although MOSAIC includes an RP to mitigate 

errors due to a change in context before the ground truth becomes available through 

sensory feedback, the literature does not deal with the possibility of the ground truth 

availability being disrupted, a real possibility in challenging environments, and this is 

addressed in this chapter. Relying on the RP alone in these circumstances allows the 

system to perform in a comparable to fashion to when the ground truth is available. 
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Chapter 9 De-novo learning of multiple models 
 

9.1 Introduction 
The ultimate goal is for a robot operating in the field to be able to move from environment 

to environment, adjusting its SSL calibration in environments it has previously 

encountered, but adapting to new environments as it comes across them. As discussed in 

Section 5.2.2.3, a certain amount of adaptation to novel contexts is inherent in the 

MOSAIC system, where the characteristics of those environments fall intermediate to 

those of environments the system has experienced, and this has been displayed in this 

MOSAIC-inspired system (Sections 7.3.2 and 8.6.3), using existing trained models. There 

must come a point, however, where this form of adaptation is insufficient to deal with 

completely new contexts. As discussed in Section 5.2.2.3, a weakness of the MOSAIC 

system is that generalisation to novel contexts only works with interpolation, and the 

system cannot extrapolate to novel contexts whose characteristics lie outside the bounds 

of those of the contexts in which the models learned. In these situations, it seems 

reasonable to assume that the system would need to learn a new model when confronted 

with such a situation. Alternatively, if the characteristics of the novel environment are not 

too different from those of a known environment, perhaps the corresponding models 

would adapt through learning. This seems to be the approach suggested in the MOSAIC 

literature, in which the learning of modules is modulated by the responsibility signals so 

that it is the modules best suited to the new environment that can re-learn in the new 

environment. The MOSAIC literature does not appear to address how new models would 

be generated, and there is a question as to how we know when this would happen, or 

alternatively, when existing models would re-learn to adapt to the novel environment, and 

how this would be implemented. The thesis side-steps this question by concentrating on 

the de-novo case, and this was the approach used by the authors of MOSAIC [122], where 

the number of models was pre-ordained to match the number of contexts to be 

experienced. As such, this approach is not actually self-organisation, as the models pre-

exist, one for each context to be experienced. Models started from randomly selected 

initial conditions (model parameters, i.e. neural network weights), and the models then 

learned competitively, with the teaching signal of each model modulated its 

responsibility. Of course, this still leaves the question of how we would determine the 

required number of models beforehand, in a real situation, we would want to “release” a 
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naïve robot, with no models at all into a variety of environments and have generate models 

as required and have its multiple models calibration system divide up the experience 

between the different models as they learn. This question of how the required number of 

models would be automatically determined from a tabula rasa state, is left to future work 

(Section 11.3.8), but seems a very interesting problem. Escobar-Juárez et al. [143] used a 

Self-Organising Map (SOM) based architecture to generate models, and this may be a 

potential are to investigate. 

The motivation in the de-novo case though is to be able to present a set of untrained 

models with audio stimuli from the same number of contexts as there are models and have 

each model emerge as the dominant model in a particular environment (insofar as it 

displays the greatest responsibility of all the models in that context). In this sense, the 

although system is not learning from a truly tabula rasa state, as the models already exist, 

they are untrained, whereas previously in the thesis, they have been trained each in their 

own context.  

The cerebellar models used in previous chapters were initialised with zero weights, an 

approach inherited from the software adapted from the precursory project (Bella), and 

one which reflects the “silent synapses” of the cerebellum. However, this would be 

unsuitable for de-novo training of the models, as all models would learn in an identical 

fashion (and indeed, pilot trials, not reported in the thesis, showed this to be the case), so 

that all models would behave in an identical way and there would be no advantage over 

using a single model. Another issue is that it is anticipated that the models may not equally 

divide up the experience and that one model may dominate in each new context learned, 

so that a means to bias the learning may need to be used. This could easily be done by 

manually adjusting the responsibility signals during training (in fact, it could be that the 

system, when coming across a new context, which could be signalled by a large overall 

error, would generate a new model and enable the teaching signal for this model only). In 

the event, this domination by one model in all contexts did not happen, as shown in 

Section 9.3. 

The approach taken was to randomly initialise the weights of a pre-existing set of 

calibrator adaptive filter models of the cerebellum. The range of the weight values was 

chosen somewhat arbitrarily and seemed to have little effect on the outcome of the 

learning. The exception to this appeared to be where contexts were similar in 
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characteristics and one model dominated in each context, but that this was mitigated by 

varying the range of initial weights (Section 9.3.1, page 123, and in particular Figure 56 

and Figure 57). 

By modulating the teaching signal of each model with its responsibility signal as 

described in Section 5.2.2.3, it is envisaged that cerebellar models will competitively 

learn in each context. Pilot experiments showed that the models were still able to learn to 

calibrate the audio map with weights initialised in this way, rather than with zero weights 

as in previous chapters.  

A model that happens to display a smaller error during training will receive a larger share 

of the teaching signal, so that Equation (9) can be re-written as 

 

 Δ𝑤𝑤𝑥𝑥 = −𝜆𝜆𝑥𝑥𝛽𝛽𝑒𝑒𝑝𝑝𝑥𝑥 (19) 

 

where 𝜆𝜆𝑥𝑥 is the responsibility as calculated using Equation (16). 

Of critical importance to the success of this approach is the value of σ in Equation (16) 

used to calculate the responsibility. Too large a value and there would be little 

discrimination between the models and all models would learn equally; too small and the 

value of responsibility calculation easily exceeds the precision of the machine running 

the algorithm as the exponential term in Equation (16) becomes very small. It was found 

that a considerably smaller value of σ was required for successful dividing up of 

experience (a value of 0.003 produced good results compared to a value of 2 when the 

system was in operation). It should be noted that a clear distinction is made here between 

learning and operation of the models. During operation, the teaching signal is removed, 

although the MOSAIC system does allow for adaptation during operation as described in 

Section 5.2.2.3. The approach to de-novo learning taken in MOSAIC [122] is to initialise 

the models to particular starting points.  

9.2 Method 
The initialised models were presented with a sequence of contexts and allowed to train 

concurrently in each context. On each iteration, the error of each model was computed 

and multiplied by the models’ current responsibility value before the weights of each 



121 
 

model were updated. The same number of models were trained as the number of contexts 

presented which was varied from 2 contexts (and 2 models) to 4 contexts (and 4 models).  

9.3 Results 

9.3.1 Two contexts with two models 

Figure 52 shows plots of the parallel fibre-Purkinje cell weights after training during 

context 1, corresponding to a value of ϕ of -90o (this was the first context presented). In 

this context, the sound source is facing to the left from the point of view of the robot head. 

This will tend to cause an error in SSL estimation to the left, which by convention is a 

negative shift in the estimated azimuth, which in turn would require a positive 

compensatory shift to be produced by the models. The weight values are distance around 

the azimuthal arc, from centre (straight ahead of the robot) in metres. Very little learning 

has taken place in model 1 while model 2 appears to have dominated the learning.  

Figure 53 shows the weights after learning in context 2, corresponding to a value of ϕ of 

+90o (which was presented after context 1). The weights of model 2 appear mostly 

unchanged while model 1 has now dominated the learning. Here, the sign of the weights 

is opposite to that of model 2 which has learned in context 1. This is to be expected as the 

error introduced by the sound source facing in the opposite direction to that in context 1 

will tend be of the opposite sign (that is, having the sound source facing right with respect 

to the robot head will tend to introduce an azimuth error towards the right). Also, the 

weight index represents a region on the azimuthal arc: index numbers of 5 or greater 

represent parallel fibre inputs for sounds coming from the right while those of value 4 or 

lower represent sounds coming from the left. For this reason, model 2’s peak in weights 

occurs at around index number 5 while model 1’s is around index number 4 (we would 

not expect a large difference between the two as the parallel fibres are set up to accept 

sounds from a 360o azimuth range, so that an index of 1 corresponds to a sound at azimuth 

of -180o while an index of 8 represents a sound at azimuth +180o). 

Figure 54 shows the responsibility signals of the two models, post learning. The 

experience has been distinctively divided up between the two models, with model 2 

dominating in context 1 and model 1 dominating in context 2. 
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Figure 52. Cerebellar weights after training in context 1 of two contexts. ϕ1=-90o. 

 

 

Figure 53. Cerebellar weights after training in context 2 of two contexts. ϕ2=90o 
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Figure 54. Responsibility signals post- de-novo training. ϕ1=-90o, ϕ2=90o. 

 

It should be noted however that the two contexts chosen are quite distinct in 

characteristics (value of ϕ). Choosing contexts that are closer in characteristics leads to 

less distinct dividing up of the experience. For example, choosing a value of ϕ for context 

2 of 0o instead of +90o leads to a very slightly less distinct sharing of responsibilities 

(Figure 55), although the difference is hardly noticeable, but with closer characteristics 

(ϕ=-45o in context 2), one model appears to dominate in both contexts (Figure 56). In this 

case model 1 has learned in context1, and then appears to have adapted in context 2. 

However, it seems that judicious selection of parameters (in this case, choosing a much 

smaller range for the initialised weights, on the order of 10-7 rather than 10-3 used in all 

other experiments where weights were randomly initialised) results in some distinctive 

dividing up of experience (Figure 57). This points to successful de-novo learning being 

sensitive to a number of factors: the distinctiveness of the contexts experienced, the 

choice of the value of σ, and the range of the initialised weights. 
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Figure 55. Responsibility signals after training in slightly less distinct contexts.        
ϕ1=-90o, ϕ2=0o. 
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Figure 56. Responsibility signals after training in less distinct contexts. ϕ1=-90o,       
ϕ2=-45o. 
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Figure 57. Responsibility signals after training in less distinct contexts with lower range 
of initial weights. ϕ1=-90o, ϕ2=-45o. 

 

9.3.2 Three contexts with three models 

Figure 58 shows the responsibility signals of three models that have learned from an 

initialised state. The experience has been quite distinctively divided up between the three 

models, but less so than in the case of two models and two contexts. In this case model 2 

dominates in context 1, model 3 in context 2 and model 1 in context 3. Contexts 1 and 3 

are the same as contexts 1 and 2 respectively in Section 9.3.1, and context 2 is zero 

azimuth, that is, sound source directly facing the robot head. So, in this experiment, the 

previous two contexts were retained and a third, intermediate context added. Interestingly, 

in this new context, in which the sound source directly faces the robot head, model 1 

appears to dominate by default rather than by learning, with very little learning having 

taken place compared to the other two models as shown in Figure 59. 
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Figure 58. Responsibility signals post de-novo learning: 3 models. ϕ1=-90o, ϕ2=0o 
ϕ3=90o. 

 

 

Figure 59. Cerebellar weights post de-novo learning: 3 models. 
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9.3.3 RP learning post- de-novo learning 

This was the most straightforward manifestation of the “complete” system, that is, a self-

organising system that includes RPs. In simulations of MOSAIC [122] the RP does not 

appear to have learned alongside the models but learned against pre-trained models. For 

one experiment, this approach was adopted, such that the RPs learned against models 

after the latter had self-organised, using the following algorithm: 

for each context 
begin 

train all models 
end 
 
for each context 
begin 

train all RPs 
end 

In this situation, the models learned in each of contexts 1, 2 and 3 in turn, and then the 

RPs learned against their models in the same sequence of contexts. Figure 60 shows that 

the RPs were able to learn the responsibilities of the self-organised models. Accuracy rate 

was 98% (MSE 4.0 dregrees2) compared to 92% (MSE 6.3 degrees2) for the models alone. 

RPs were trained with 100 iterations. The value of this result seems a little limited 

however, as one might expect from the results of Chapter 8, that the RP would 

successfully learn against its model, regardless of whether that model was manually 

trained or self-organised. 

In another experiment, the RPs were trained against models after the latter had trained in 

each context. So, for example, models would learn in context 1, then the RPs would train 

against their models, before the models moved on to learning in context 2, using the 

following algorithm: 

for each context 
begin 

train all models 
train all RPs 

end 
 

It was felt that this was somewhat closer to a situation where the RP learns immediately 

alongside (or rather, immediately following, as model learning must precede RP learning) 

its model. However, it is not clear from the MOSAIC literature that RPs would learn in 

this way. In [122] RPs were trained on pre-trained models. Another question that is not 
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clear from the MOSAIC literature is whether the learning of models is modulated by the 

responsibility with or without the influence of the RP. In Tidemann et al. it does appear 

that learning of the models includes the RP output [144]. In this thesis models learned 

using the responsibility signal without RP influence. Again, the value of this results seems 

rather limited and it seems to point to the need for further work in this area. 

 

Figure 60. Responsibility signals including RP, post de-novo learning. 

 

9.4 Chapter summary 
This chapter has shown that the proposed system has the potential to self-organise, with 

some limitations, in particular that this is from a de-novo state, with a pre-ordained 

number of models, so that it is not true self organisation. Although this addresses the third 

research question, Can a multiple-models inspired audio calibration system self-

organise? this was included almost as an afterthought to satisfy the author’s curiosity 

about this aspect of the MOSAIC framework, and yet, this has possibly highlighted the 
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most fruitful and important area of future work, especially in terms of how the RP would 

learn alongside its calibrator model, rather than post learning of that model, and this could 

be significant in other areas that draw on a multiple models approach, not just robot 

audition. In the literature, de-novo learning in MOSAIC based systems has been carried 

out under quite constrained conditions, and often with difficulty, and compared to this 

benchmark, the system developed here has performed remarkably well. De-novo learning 

worked very well (in terms of the dividing-up of experience) with two models (provided 

that the presented contexts were not too close in characteristics), however, the 

distinctiveness with which the experience is divided up appears to decrease with the 

number of models/contexts. However, the SSL calibration performance does not appear 

to deteriorate with the number of models (this is dealt with in Section 10.3.2).  

The chapter has also shown that the RP can learn, to a limited extent, alongside the 

calibration models from a de-novo state. This has not been addressed at all in the 

MOSAIC literature, where RPs were trained against their models post-de-novo learning 

of those models. Initially, this was the approach taken in the thesis, so that the calibrator 

models were first allowed to train competitively (in all acoustic contexts), and then the 

RPs allowed to train against their calibrator model. The system performance was 

somewhat improved in the presence of the RPs. A (somewhat limited) move towards 

having the RPs learn alongside the models was attempted, in that the RPs were trained 

against their models after those models had trained in a particular context. That is, in each 

context experienced, the calibration models were trained and then the RPs trained against 

them, before moving on to the next context and training of the calibration models 

competitively in that context. In general, this led to an improvement in performance in 

the presence of the trained RP, although this was variable.  It was particularly difficult to 

achieve distinctive training of the RPs in this situation; in most cases the RPs generated 

roughly equal responsibilities to each other. 

This chapter set out to show that the proposed system had the potential to learn from a 

de-novo state. Although this potential has been demonstrated, there are a number of 

questions raised that remain unanswered. The thesis uses the same number of models as 

expected contexts (as is done in the MOSAIC literature), however this is a somewhat 

artificial scenario- a robot operating in the field with little human intervention ought to 

be able initialise itself in any set of environments without a-priori knowledge of what the 

number of environments will be, and hence, how many models will be required. There is 
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still the question of how we know when the existing models should adapt, that is, re-learn, 

and when a new model should be instantiated, although the investigation of SOMs may 

prove fruitful here. A particular issue that is not well answered here, and also is not 

addressed at all in the MOSAIC literature, is how RPs would learn alongside their models 

either from a de-novo or from a tabula rasa state. 
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Chapter 10  Towards real world environments: bringing it together 
 

10.1 Introduction 
Parts of the work in this chapter have been published in IEEE Robotics and Automation 

Letters (specifically Section 10.2, Section 10.3.1 and Section 10.4.1) and other parts have 

been submitted to Biomimetic and Biohybrid Systems: 8th International Conference, 

Living Machines 2019 (specifically Section 10.4.2). 

The system proposed in this thesis has been tested under quite constrained conditions, 

and there is a question of how well the system would perform in real-world, unstructured 

conditions. The problem with real world environments is the presence of background 

noise, other sound sources and reverberation, and the changing nature of acoustic 

environments. 

10.2 Performance in domestic environments 
This work was published as Section V-G in [54]. The experiments conducted so far in the 

thesis have been carried out under quite constrained, controlled conditions, in an 

office/laboratory environment (background sound pressure level of around 30dBA), but 

with the difference between contexts produced by varying the angle ϕ of the sound source 

on its vertical axis. However, ultimately this system needs to be of practical use in a robot 

operating in the field, which means coping with real world, unstructured environments. 

To this end, some limited experiments were carried out in a domestic household situation. 

The key factors here as far as SSL is concerned are reverberation and interference from 

sound sources in the environment other than the one of interest. As discussed in Chapter 

2, such environments pose a challenge to SSL schemes, especially the basic ITD scheme 

used in this thesis.  

The same apparatus as used for the work in Chapter 7 was used, and indeed, the tripod 

mounted motion control system was developed so that experiments could be conducted 

in real situations away from the office or laboratory.  

The experiments were conducted in a domestic kitchen/diner with a hard floor and little 

furniture, providing a challenging acoustic environment with significant levels of 

reverberation. The experiment was conducted in different locations in the room, and at 

different distances between sound source and microphones. The maximum distance was 
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constrained due to limitations of the apparatus, so that a 1m distance to source was the 

maximum practical distance that could be used (as the tripod mounted motion control 

system needed to be counterbalanced, the experiment needed at least a 2.5m diameter 

clear area which was a challenge in a domestic situation). The dimensions of the room 

were 3.9m x 3.1m. 

Trials were conducted in two contexts, each in the same room: in the middle of the room, 

with a distance to source of 1m and sound source angle ϕ set to 90o right, and in the corner 

of the room, with a distance to source of 0.5m and ϕ set to 135o left. Cerebellar models 

were trained with 100 iterations due to the more challenging conditions. Although 

performance was poorer than in more constrained conditions, the system still 

outperformed the single model trained in all contexts as well as the GCC-PHAT algorithm 

(Table 5). 

Table 5. Localisation performance in domestic contexts. N=150. Accuracy rate is 
percent less than 5o absolute error. Reprinted from [54]. © 2018 IEEE. 

Method Accuracy rate 
MSE 

(degrees2) 

1. Single model in domestic  contexts 33% 60.0 

2. GCC-PHAT  in domestic contexts 53% 64.0 

3. Combined models in domestic  contexts 76% 22.1 

 

 

10.3 Number of models 

10.3.1 Redundant models 

This work was published as Section V-C in [54]. The number of models elsewhere in the 

thesis, as in MOSAIC, is the same as the number of contexts. For the robot operating in 

the field, this means it would possess one model per environment it is expected to operate 

in. In this thesis, the models are pre-trained each in their own context.  

The number of models used throughout the thesis has been limited to 3 (although 4 were 

also used in Chapter 9). There is however, a question as to how the system will perform 

if the number of models is increased, such that there are more models present than the 

number of contexts experienced. In a real-world situation it could be that a robot would 

build up a number of models as it experiences new contexts that cannot be dealt with by 

the system without generating new models. 
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The experiments were run with the same number of contexts (and with corresponding 

models trained in those contexts) as before (3 contexts), but with 4 additional models 

trained in other contexts. The responsibility values are shown in Figure 61. It can be seen 

that the models trained in a particular context do show larger responsibility values in the 

main, but that the relative magnitudes are now diminished as they are shared among more 

models. One might expect the additional models, which have not been trained in any of 

the contexts, to show either zero or very low responsibility values throughout the trials. 

Indeed, this is largely the case, but they do display some significant responsibility values 

in some contexts. Due to the nature of the distortions introduced by the acoustics of the 

environment, the responsibility is quite variable, so that models that were not trained in a 

particular environment can display smaller errors than those that are. It can be observed, 

however, that the performance is still better than that of a single model trained in all 

contexts. The experiments described in section 7.3.1.2 were repeated in the domestic 

contexts described above. In the presence of redundant models, the accuracy rate was 

92%, the same as that without redundant models (i.e. that found in section 7.3.1.2), and 

the MSE was 5.6 degrees2, compared to 15.8 degrees2 for the single model. Introducing 

the additional models, whilst diminishing the share of the responsibility of the models 

that we would expect to be responsible on the basis that they were the ones that had 

learned in those contexts, does not appear to greatly alter the performance of the system. 

10.3.2 Performance as a function of number of models and contexts 

An experiment was conducted to investigate the variation in performance with the number 

of models. This is subtly different, but related to, the problem investigated in Section 

10.3.1. In this case, the number of models matched the number of contexts experienced, 

as elsewhere in the thesis, that is, there were no redundant models as described in Section 

10.3.1. A number of runs were conducted in which the range of contexts (value of ϕ, the 

angle of the sound source on its vertical axis) was varied. The reason for this is that as the 

number of models/contexts is varied, the difference in the value of ϕ between contexts 

varies too, which will affect the performance. 
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Figure 61. Responsibility signals where redundant models are present. 

 

For each run, a range of angles were set symmetrically about 0o, with the range divided 

into equal increments. For example, with a range from ϕ=-90o to ϕ=90o; for two 

models/contexts these extremes correspond to the two contexts; for three contexts the 

values were ϕ=-90o, ϕ=0o, ϕ=90o whereas for four models ϕ=-90o, ϕ=-45o, ϕ=45o, ϕ=90o, 

for five models ϕ=-90o, ϕ=-45o, ϕ=0o, ϕ=45o, ϕ=90o and so on. This range represents the 
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widest used, and a variety of narrower ranges were tested. The number of models/contexts 

was varied between two and ten. Each model was trained in its corresponding context.  

Figure 62 shows that for a narrow range in contexts (e.g. ϕ=-36o to ϕ=36o), there is little 

variation in performance with the number of models. For wider ranges, where there is 

greater distinction between contexts, the performance increases rapidly with increasing 

models/contexts for a small number of models followed by a gentler increase in 

performance as the number of models increases further. Also, the performance overall 

seems to decrease with distinctiveness between contexts. It needs to be borne in mind that 

this performance is measured over all contexts, not a restricted number as in Section 

10.3.1, where only a subset of models had trained in the contexts presented. Figure 63 

confirms similar results post de-novo learning (this also shows that post de-novo 

performance is somewhat worse than that of models that have been manually trained). 

 

Figure 62. Performance versus number of models/contexts. Parameter is the range of 
contexts. 
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Figure 63. Performance versus number of models/contexts: de-novo models. Context 
range is ϕ=-90o to ϕ=90o (blue curve) and ϕ=-45o to ϕ=45o (orange curve). 

 

10.4 Unavailability of the ground truth 
The MOSAIC framework relies on ground truth becoming available, through sensory 

feedback, in order for the posterior responsibility values to be calculated, after a 

prediction has been made. However, the MOSAIC literature does not address the problem 

of how this would happen should the sensory feedback be disrupted for some reason, so 

that the ground truth becomes unavailable, so that it is not clear exactly how the system 

should function in the absence of the ground truth. A disruption of sensory feedback is 

quite possible in a real-world situation, especially a challenging one such as a disaster 

situation, and this appears to be an important omission. It was initially decided to use the 

most recently known ground truth (section 10.4.1) on the assumption that the ground truth 

would not change very much. However, on investigation it became clear that this was an 

unrealistic assumption and so investigation the mitigation of the missing ground truth 

using the responsibility predictor alone was then investigated (section 10.4.2). 
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10.4.1 Performance with ground truth missing in one trial 

The work in this section was published as Section V-E in [54].  

The experiment described in Section 7.3.1 was repeated but with the ground truth missing 

in one trial (trial 6). As mentioned above, it is not clear what should happen in this 

situation, but here, the last known ground truth was used. The ground truth was made 

unavailable during one trial (trial 6). Of course if the position of the sound source 

changing during the trial in which the ground truth is missing, the assumed value could 

be quite different from the actual value. Figure 64 shows plots of the responsibility signals 

of each model, with blue curves representing the output of the RE without RP 

involvement. In this case the dominance of model 1 is extended into context 2, where 

dominance of model 2 would have been expected, since that was the context in which 

model 2 had learned, but since the last known ground truth is from the previous context, 

this continued dominance by model 1 will increase the performance error. The ground 

truth was made available again in trial 7, and the system adjusts the responsibilities 

accordingly. The performance deteriorated slightly compared to the experiment where the 

ground truth always became available. The accuracy rate was 91% and MSE 6.4 degrees2. 

However, it is reasonable to assume that prolonged absence of the ground truth will lead 

to further deterioration in performance. It is assumed that the RP would play a key role 

in mitigating this problem and this was investigated in Section 10.4.2. 
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Figure 64. Responsibility signals with unavailable ground truth. In each trial the system 
is presented with stimulus of various azimuths in three different contexts, indicated by 
the coloured regions, labelled with the context number. Context 1 (blue region) is 
ϕ=90o left; context 2 (red region) is ϕ =0o; context 3 (green region) is ϕ=90o right. 
Reprinted from [54]. © 2018 IEEE. 

 

10.4.2 Performance with ground truth missing in the presence of an RP 

The work in this section was submitted to Biomimetic and Biohybrid Systems: 8th 

International Conference, Living Machines 2019. 

The performance of the system was tested with an RP present and with ground truth 

missing from trial 6 and for the remainder of the experiment (so the ground truth is 

available until roughly half way through the experiment and then remaining unavailable), 

to investigate how the system would perform with prolonged absence of the ground truth. 

This seems a more probable scenario than that used in Section 10.4.1 in challenging real- 

world environments, where vision, for example, could become obscured through some 

obstruction, or the vision sensor could even become damaged. Two approaches were 

adopted here. First, the most recent available ground truth was used to compute the 

likelihood values. Second, The RP was used on its own to provide the responsibility 
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signals using contextual signals only (so that likelihood values are ignored while ground 

truth is unavailable). 

Figure 65 shows responsibility signals using the first approach, where the most recently 

available ground truth is used to compute likelihood values. This is the same approach as 

adopted in Section 10.4.1. The likelihood values (reflected in the blue curve) fluctuate 

markedly, because the presented azimuth positions are randomly selected, whereas the 

most recently available ground truth will reflect the azimuth position presented in the trial 

in which it was determined. It should be borne in mind that a randomly fluctuating sound 

source position is unlikely to be encountered in a real world situation (unless, of course, 

the robot is moving in a random fashion). However, even if the sound source location is 

only slowly moving (even if it is stationary, if the robot moves, the sound source position 

will change with respect to the robot head), this assumed value of the ground truth could 

rapidly diverge form the actual value, meaning that this may not be a practical approach 

to take. While the RP output (solid orange curve) more closely follows the responsibility 

pattern we would have expected were the ground truth available, the overall responsibility 

(red broken curve) is strongly influenced by the likelihood values. The accuracy rate using 

this approach was 83% and MSE of 14.5 degrees2. This compares to 71% and 19.9 

degrees2 respectively without the RP (using the same data set), so there is a modest 

improvement in performance.   

Figure 66 shows the responsibility values where the RP alone provides the responsibility 

values based on the extracted audio feature. In this case the overall responsibility (red 

broken curve) now exactly follows the RP output, as expected. Using this approach, the 

accuracy rate was 99% and MSE was 1.7 degrees2, a marked improvement compared to 

that without RP (and where the most recent available ground truth was used) and is 

comparable to the performance of the system in the presence of an RP where the ground 

truth is available throughout the experiment (accuracy rate 100% and MSE 1.12 degrees2 

using the same data set). 
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Figure 65. Responsibility signals with unavailable ground truth: using most recent. 

Ground truth becomes unavailable from trial 6, and the most recently available value is 

used to calculate the responsibility. In each trial the system is presented with stimulus of 

various azimuths in three different contexts, indicated by the coloured regions, labelled 

with the context number. Context 1 (blue region) is ϕ=90o left; context 2 (red region) is 

ϕ =0o; context 3 (green region) is ϕ=90o right.  
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Figure 66. Responsibility signals with unavailable ground truth: RP only. Ground truth 

becomes unavailable from trial 6. The RP only is used to provide responsibility signals 

when the ground truth becomes unavailable. In each trial the system is presented with 

stimulus of various azimuths in three different contexts, indicated by the coloured regions, 

labelled with the context number. Context 1 (blue region) is ϕ=90o left; context 2 (red 

region) is ϕ =0o; context 3 (green region) is ϕ=90o right.  

 

10.5 Improving robustness: using other SSL algorithms 
As explained in Section 1.1 the system sits on top of an SSL algorithm, which in this case 

was a quite basic algorithm that is not robust to background noise, reverberation, multiple 

sources and so on. It ought to be possible to “plug-in” a different SSL algorithm, and if 

the system performs as expected from this thesis, it should learn/adapt with the new 

algorithm. In this sense, the system relies on the robustness of the underlying SSL 
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algorithm and the potential of the system calibrate what could be a sophisticated, robust 

SSL algorithm in multiple unstructured environments.  

The basic cross-correlation algorithm used in previous chapters was replaced by the GCC-

PHAT SSL algorithm. GCC-PHAT is a popular SSL algorithm as it is considered to be 

robust to reverberation [145]. Models were retrained (3 models, 3 contexts) using GCC-

PHAT. The accuracy rate of the combined models post-learning improved from 92% with 

the basic cross-correlation algorithm to 95% with GCC-PHAT as the SSL algorithm. The 

MSE improved slightly from 5.8 degrees2 with basic cross-correlation to 5.6 degrees2 

with GCC-PHAT.  Clearly, this is not a great improvement in performance, however, it 

does demonstrate the flexibility of the proposed system in that a different SSL algorithm 

can be successfully substituted. It would be interesting to see how the system with GCC-

PHAT would perform in more challenging environments such as those investigated in 

Section 10.2, or indeed, how this might improve with an even more sophisticated SSL 

algorithm, including multiple microphone arrays, active SSL and so on.  

10.6 Chapter summary 
This chapter demonstrates the weakness of the basic system insofar as it is based on the 

original MOSAIC framework and a simple SSL algorithm. Nevertheless, the performance 

of the system is respectable and in some situations (such as with missing ground truth, 

with the RP alone providing responsibility signals) quite impressive, and the chapter 

demonstrates that even with a quite unsophisticated underlying SSL algorithm, the system 

improves on the performance of that SSL alone. The system was taken out of the 

experimental arena, and still performed relatively well in a more challenging domestic 

environment (although the conditions were still quite constrained). The chapter has shown 

that the system performs well when the number of models (and hence, the number of 

experienced contexts) increases, although this was tested only up to 10 models/contexts. 

This held true for models that learned de-novo, although the distinctiveness with which 

the models divided up experience deteriorated with the number of models/contexts. The 

chapter also demonstrated that the underlying SSL algorithm can be substituted for a 

different one, which led to a slight improvement in performance. However, there are now 

a wealth of SSL techniques that could be used, in principle.  
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Chapter 11  Conclusions and future work 
 

11.1 Conclusions 
This thesis has demonstrated two key novel concepts, and 2 secondary concepts.  

First, it has demonstrated that an adaptive filter model of the cerebellum can be 

successfully applied to the calibration of a SSL algorithm in a particular acoustic context, 

learning an azimuth-dependent error in SSL caused by the acoustic properties of the 

environment (Chapter 4). Specifically, Chapter 4 demonstrated the basic SSL calibration 

technique, including a pilot experiment to confirm that vision could be used to generate 

a teaching signal, although the odometry of the experimental apparatus was used to 

determine the ground truth azimuth throughout the remainder of the thesis. The calibrated 

SSL outperformed the un-calibrated SSL by a considerable margin (Section 4.3.2). This 

specifically addresses research question 1: Is it possible to apply cerebellar calibration 

to SSL? The chapter also demonstrated that the system performed well when a pure tone 

was used rather than the Gaussian noise used throughout the thesis; this is significant as 

pure tones are somewhat difficult to localise.  

Second, the thesis has demonstrated that a multiple-models inspired approach 

(specifically, inspired by the MOSAIC framework), although developed in the context of 

motor control, can be successfully re-purposed, with adaptation, to select a set of 

calibration models for different acoustic environments (Chapter 6 and Chapter 7), and 

this approach appears to be completely unique in robot audition. This specifically 

addresses research question 2: Is it possible to implement a multiple-models inspired 

architecture that will select an appropriate cerebellar calibration model, or set of models, 

in different acoustic contexts? Specifically, the combined models approach outperformed 

the un-calibrated SSL estimates and a single model trained in all contexts (which latter is 

in agreement with the claim made for MOSAIC that a single general model that could 

operate across multiple contexts would be too complex). This is, perhaps, the most 

significant outcome of the thesis. 

Third, the thesis has demonstrated the utility of responsibility prediction, proposed in the 

MOSAIC literature, in improving the robustness of a multiple models framework to the 

unavailability of ground truth, which is not covered in the MOSAIC literature, where the 

ground truth is assumed to always become available through sensory feedback. This 
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aspect of the thesis emerged at a later stage in the project, after the research questions 

were drawn up, yet it appears to be a particularly significant result. 

Last, the utility of the so-called cerebellar chip has been further demonstrated through 

the development of a new audio application that makes use of the adaptive filter model 

of the cerebellum as well as through the development of an RP that is also based on the 

adaptive filter model of the cerebellum, rather than the more conventional function fitting 

NN used in the literature. 

The work in Chapter 6 demonstrated the application of a multiple-models approach to 

identifying the acoustic environment, and the system was able to correctly identify the 

acoustic environment in 69.4% of the 49 cases tested (7 different azimuths in 7 different 

acoustic contexts- see section 6.3), which although not particularly high is considerably 

better than chance (around 14%). Because the system used the calibration error of each 

model, the performance of the system was poor where there was little difference between 

the different models’ estimates; often this was where there was little error introduced into 

the SSL estimation, so that models trained in similar contexts were confused. Although 

there may be further work that could be done with identification of the environment this 

is not the main thrust of the thesis, and chapter 6 was more a demonstration that the system 

identifies the context based on the model that produces the lowest error in its estimate of 

the sound source location, even if a model is selected that did not learn in the given 

environment, leading to a misidentification of the environment. The question arises as to 

whether the system could select the most appropriate model (or even set of models) for 

calibration, so that Chapter 7 focuses on improving the SSL calibration in a particular 

environment by combining the outputs of all the models, in proportion to how well each 

model is able to calibrate the SSL estimate in a particular environment.  Chapter 7 showed 

that combining the outputs of multiple models in this way improved the SSL estimate 

with a MSE of 5.4 degrees2 compared to 15.8 degrees2 for a single model that had been 

trained in all contexts. The chapter also showed that combining the outputs of models in 

combination with their responsibilities was also an improvement compared to switching 

to the single best model (in fact, the switched version was not much better than a general 

single model, with an MSE of 12 degrees2). As such, Chapter 7 perhaps represents the 

most significant outcome of the thesis. 
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Chapter 8 demonstrated that prior prediction based on the inclusion of an RP improved 

the performance of the system, particularly during transitions between acoustic contexts, 

where the context has changed but the responsibility values have not yet updated. This is 

in line with the MOSAIC literature, but the thesis goes further, to address the problem of 

the ground truth through sensory feedback becoming unavailable, which is a realistic 

prospect in challenging real world environments such as the aftermath of a disaster. This 

latter result is significant as it suggests a way forward in dealing with unreliable sensor 

input in challenging environments. The chapter also showed, in line with the MOSAIC 

literature, that a misclassification of the acoustic context by the RP is corrected a-

posteriori by the RE when the ground truth becomes available. However, there is still a 

question of how this would work if sensory feedback is disrupted in a challenging 

environment and the ground truth does not become available. 

The system has been based on the original MOSAIC framework, and it could be that more 

sophisticated approaches, such as HMM-MOSAIC, could point towards a more practical 

system. Nonetheless, this use of multiple models, and specifically an adapted version of 

MOSAIC, which was developed in the context of motor control, has not previously been 

used for audio applications, making this approach unique.  

Addressing research question 3: Can a multiple-models inspired audio calibration system 

self-organise? Chapter 9 showed that the proposed system has the potential to self-

organise, from a de-novo state, that is, with a pre-determined number of models (hence, 

although this follows the approach taken in the MOSAIC literature, it is not true self 

organisation). This was a somewhat secondary research question, which the author added 

out of curiosity, and since it was also a claim of the MOSAIC framework. The 

distinctiveness with which the models divide up the experience appears to decrease with 

the number of models, although, as with the manually trained models, the SSL calibration 

performance does not decrease with the number of models. Chapter 9 also demonstrated 

a “complete” system as it were, with RPs learning alongside (to an extent) the calibration 

models. This worked particularly well were the RPs learned post-de-novo learning of the 

models, as was the case in the MOSAIC literature. An attempt to move somewhat towards 

a situation in which the RPs learned in batches “alongside” the models proved much more 

difficult. It may be that a more sophisticated approach to training the RPs may be required 

(for example, there is no stopping criterion, with the training iterations set through trial 



147 
 

and error), or a more sophisticated version of the MOSAIC framework as discussed 

above. 

Chapter 10 made a preliminary investigation of a number of issues that might occur as 

the system moves towards being used in real-world environments. Key findings were that 

the system performed respectably in a more challenging environment away from the 

experimental arena (albeit with a reduced performance), considerably outperforming a 

single model; that the system was able to cope with missing ground-truth, especially with 

the use of the RP providing responsibility signals where the absence of ground truth is 

prolonged- although this depended on RPs that had been pre-trained; SSL calibration 

performance appeared largely independent of the number of models and contexts used 

(up to 10 models/contexts were tested); it was possible to substitute a different SSL 

algorithm for the one used in the remainder of the thesis. Although these experiments 

were somewhat preliminary and limited in scope, the chapter does indicate that it is worth 

investigating the real world performance of the system, perhaps with more sophisticated 

approaches (e.g. to SSL and multiple models selection) than those investigated in this 

thesis. The chapter highlighted the limitations of the proposed system in more challenging 

environments, but that it was still able to perform, and the indication is that a more 

sophisticated system could be developed with greater robustness. 

11.2 Limitations of the work 
There are two key limitations of the thesis and the methods employed. First, as mentioned 

in section 4.1.1 the cerebellar calibration model lacks a stopping criteria during learning 

and the literature that describes the model does not offer a rationale for choice of learning 

trial number. This is also true for the RP as mentioned in section 8.7 and both the 

calibration model and the RP implementation is somewhat crude when compared to more 

well-established neural networks, for example, lacking a stopping criteria during training. 

Other parameters could be investigated such as tuning the learning rate and investigating 

different configurations of parallel fibre and basis filters- this is especially true of the RP 

model which it is suspected is far from optimal in its implementation, being a proof-of-

concept model. In this thesis, the cerebellar models were seen as proof of concept, and 

future work will need to develop these models into more practical implementations. 

Second, as mentioned section 9.4, the thesis has adopted the same approach to de-novo 

learning as described in  Haruno et al. [122], which is not true self organisation. As such 
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research question 3 can a multiple-models inspired audio calibration system self-

organise? has only been partially answered. This can be justified because as mentioned 

in section 11.1, this was a somewhat secondary research question which was formulated 

later in the project, and to fully answer this question would have distracted from 

answering the two main research questions. A fuller answer to that research question is 

left for future work. 

11.3 Future work 
This thesis has posed a number of questions that still need to be answered, such as, how 

will such a system create new models and under what circumstances (i.e. how would it 

truly self-organise); how would the system perform under real-world conditions, such as 

multiple sound sources, background noise, reverberation and so on; is the system 

transferable to a mobile platform with the concomitant lack of resources and power, along 

with the need to operate in real-time; how would calibration models and RPs learn in a 

real-world scenario (as mentioned in section 11.2, the thesis has assumed that the robot 

is able to pre-train in “ideal” conditions). The thesis has touched on sensor fusion and has 

highlighted the potential for this in future work. 

11.3.1 Development of a practical framework 

As mentioned in Chapter 10 and in section 11.2, the system proposed in this thesis has 

been tested under constrained conditions and using cerebellar models that are quite crude 

in implementation. Also, there are a number of questions about how a practical system 

would operate, especially about how the system would self-organise and evolve in a real 

world situation. As mentioned in Section 3.3, there is a potential tie-in to the subsumption 

architecture and this might be a fruitful approach to investigate. HMM-MOSAIC may be 

a potential area for investigation, especially in light of the claim that it allows automatic 

computation of the responsibility scaling factor σ. 

11.3.2 Implementation on other platforms 

11.3.2.1 Hardware implementations 
As mentioned in Section 11.3, real-world implementations of the proposed system are 

likely to require real-time operation with low power consumption. As mentioned in 

Section 4.2 a Zynq SoC was used to implement a gammatone filter bank at an early stage 

(although this was not used) and this type of device, that allows an arbitrary design split 

between hardware and software on the same fabric could be a candidate for compact, real-
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time operation.  Neuromorphic engineering, mentioned in Section 2.2.1, provides a low 

power consumption, spike based potential solution, and it would be an interesting 

question as to how the multiple models calibration system could be transferred to such a 

platform.  

11.3.2.2 Mobile platforms 
Implementation of the system on a mobile platform was eschewed in the thesis, although 

the system was developed with eventual migration to a mobile platform in mind 

throughout the thesis. This would be particularly useful in investigating sensor fusion 

approaches using this system in more realistic situations, and how the system might 

perform as the robot moves toward the target sound source. In the thesis, the performance 

of the system was measured on a stationary platform, with the sound source presented in 

many experiments from random directions. It is unlikely in a real world scenario that the 

sequence of sound source azimuths would evolve in such a way, and a mobile platform 

would be the only realistic way of testing such a scenario.  

11.3.3 Extension to 2 or 3 dimensional SSL 

As mentioned in Section 2.3 it ought to be possible to extend the SSL system to 2 

dimensions, as a 2D map has already been successfully calibrated in precursory work [4]. 

If this were to include extension to estimation of elevation, it would require the 

investigation of other binaural cues such as ILD and techniques such as asymmetrical 

pinnae. This does lead, however, to further questions such as will the cerebellar 

calibration system be able to compensate for manufacturing imperfections in, or damage 

to the artificial pinnae for example. In fact, cerebellar calibration ought to be well suited 

to do just this. Full 3- dimensional SSL would include an estimation of distance to source. 

This is somewhat more problematic than azimuth or elevation estimation, and techniques 

are not well established, although they have been investigated for binaural systems [146], 

and this could be a particularly interesting area of investigation for application of such a 

system. 

11.3.4 Unavailability of ground truth 

The problem of the ground truth becoming unavailable was discussed in Section 10.4. 

This issue is not discussed in the MOSAIC literature; it is assumed that sensory feedback 

will always become available, and it is not clear how a robot would deal with this 

situation. In this thesis, two approaches were investigated- the last known ground truth 

being used and falling back on the RP only when ground truth becomes unavailable. The 
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approach using last known ground truth provided a reasonable performance where the 

ground truth was only missing for one trial (Section 10.4.1), but was poor with prolonged 

absence of the ground truth (Section 10.4.2). This is perhaps to be expected as the ground 

truth could differ markedly from the assumed value as the robot navigates its 

environment, so this would not seem to be a particularly practical approach. Performance 

where the responsibilities were provided by the RP alone was impressive with prolonged 

absence of the ground truth, although this does rely on the RP having previously learned 

against its model. That is to say, ground truth would need to be available during the 

learning of the RPs. Approaches to the unavailability of ground truth seems a fruitful area 

for further investigation, especially as it is not covered in the literature on MOSAIC, and 

may be linked to work on sensor fusion. 

11.3.5 Application of cerebellar calibration to other areas of Robot Audition 

Other areas that the approaches covered in this thesis could be applied to are: 

• ego-noise cancellation in multiple contexts 

• emotion recognition (especially recognising multiple types of emotion or those 

of different people) 

• sound source recognition 

• non-binaural and active SSL 

The adaptive filter model of the cerebellum ought to be particularly well suited to ego-

noise cancellation. Ego-noise cancellation in itself is not new, but the use of multiple 

models to adapt to different contexts shows promise where various aspects of ego noise 

could be adapted to (as the robot could generate acoustic noise in a variety of ways in 

different situations). With emotion and sound source recognition, for example, one could 

imagine a system which discriminates between different sound sources and attends to the 

one of most interest. Possible questions here could include whether different sound 

sources would represent different contexts, and whether the system would focus on a 

sound source based on responsibility signals, or whether the discrimination would be 

carried out by a subsystem. The thesis has eschewed active SSL in favour of passive, 

binaural SSL. The basic system used in the thesis is certainly not robust and it could be 

worth investigating the proposed system with more up-to-date SSL algorithms, including 

active SSL in which the robot itself emits sounds or orients its sensors (much in the same 

way as an animal might re-orient its head to aid in the localisation of sound). 
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11.3.6 Improving robustness in real-world situations 

A small step in this direction has been taken by substituting a different SSL algorithm for 

the one used. It would be interesting to see to what extent the system enhances the 

performance of a more robust and sophisticated SSL algorithm in real, challenging 

situations (use of the system developed in this thesis with a basic SSL algorithm in 

domestic contexts resulted in a quite poor performance, although the system performed 

considerably better than a single model).  

11.3.7 Sensor fusion 

This thesis has touched on sensor fusion, but only to a limited extent in the sense that 

vision was considered as a potential means of providing sensory feedback about the 

ground truth position of the sound source. This was confirmed as a valid approach in a 

pilot experiment described in Section 4.2.2, but no further investigation was carried out.  

The proposed system described in the thesis offers the potential for a future focus on 

sensor fusion, and indeed this could go beyond audio-visual integration, and include other 

senses such as touch and olfaction, both of which would potentially be powerful 

candidates for sensory input in a disaster situation or in challenging and extreme 

environments, either in providing the ground truth for the RE, or in providing contextual 

signals for the RP. This fusion could be with other sensory modalities providing 

contextual signals for the RP, or alternative localisation schemes. One could imagine 

“cerebellar chips” with a rich set of inputs (inspired by the richness of inputs to the real 

cerebellum) with many types of inputs of differing modalities, adapting to many different, 

challenging situations. 

11.3.8 Self-organisation 

It has already been discussed (Section 9.1) that the cerebellar models can learn from a de-

novo state (with a fixed number of pre-initialised models). Although this replicates what 

was done within MOSAIC, this is not true self-organisation, as the models do not emerge 

from a tabula rasa state. A robot operating in a real world scenario ought to be able to 

learn from experience rather than by pre-ordained design, and further work will be 

required in this area, perhaps including SOMs as a potential basis for investigation of this, 

although there may of course be other approaches. 
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Appendix 1 Selected audio maps and data sets 
 

A1.1 Calibrated versus uncalibrated SSL 

 

 

Figure 67. Results of cerebellar calibration post-learning: cerebellar calibration (green 

circles) versus uncalibrated SSL estimate (red circles). Blue circles are ground truth 

sound source position. Axes show x,y distance in metres with robot head at the origin.  

 

 

 

 

 



162 
 

Table 6. Data set: cerebellar calibration versus uncalibrated SSL. 

Ground 
truth 

azimuth, 
degrees 

Uncalibrated 
SLL, degrees 

Calibrated SLL, 
degrees 

-40 -48.37 -43.49 
-39 -48.37 -43.49 
-38 -45.58 -40.58 
-37 -45.58 -40.58 
-36 -42.86 -37.77 
-35 -42.86 -37.77 
-34 -42.86 -37.77 
-33 -40.21 -35.06 
-32 -40.21 -35.06 
-31 -37.61 -32.44 
-30 -37.61 -32.44 
-29 -35.06 -29.90 
-28 -35.06 -29.90 
-27 -32.55 -27.45 
-26 -32.55 -27.45 
-25 -30.09 -25.08 
-24 -30.09 -25.08 
-23 -27.65 -22.79 
-22 -27.65 -22.79 
-21 -25.25 -20.56 
-20 -25.25 -20.56 
-19 -22.88 -18.39 
-18 -22.88 -18.39 
-17 -20.53 -16.28 
-16 -20.53 -16.28 
-15 -18.20 -14.23 
-14 -18.20 -14.23 
-13 -15.88 -12.23 
-12 -15.88 -12.23 
-11 -13.59 -10.27 
-10 -11.30 -8.36 
-9 -11.30 -8.36 
-8 -9.03 -6.47 
-7 -9.03 -6.47 
-6 -6.77 -4.61 
-5 -6.77 -4.61 
-4 -4.51 -2.78 
-3 -4.51 -2.78 
-2 -2.25 -0.96 
-1 -2.25 -0.96 

 

Ground 
truth 

azimuth, 
degrees 

Uncalibrated 
SLL, degrees 

Calibrated 
SLL, degrees 

0 0.00 0.86 
1 0.00 0.86 
2 2.25 2.67 
3 2.25 2.67 
4 4.51 4.49 
5 4.51 4.49 
6 6.77 6.32 
7 6.77 6.32 
8 9.03 8.17 
9 9.03 8.17 

10 11.3 10.05 
11 11.3 10.05 
12 13.59 11.96 
13 15.88 13.90 
14 15.88 13.90 
15 18.20 15.89 
16 18.20 15.89 
17 20.53 17.92 
18 20.53 17.92 
19 22.88 20.00 
20 22.88 20.00 
21 25.25 22.15 
22 25.25 22.15 
23 27.65 24.35 
24 27.65 24.35 
25 30.09 26.62 
26 30.09 26.62 
27 32.55 28.95 
28 32.55 28.95 
29 35.06 31.37 
30 35.06 31.37 
31 37.61 33.86 
32 37.61 33.86 
33 40.21 36.43 
34 40.21 36.43 
35 42.86 39.09 
36 42.86 39.09 
37 45.58 41.85 
38 45.58 41.85 
39 45.58 41.85 
40 48.37 44.71 
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A1.2 Multiple models calibration versus general single model calibration 

 

 

Figure 68. Results of cerebellar calibration post-learning: multiple models (green 

circles) versus a single general model which has learned in all contexts (red circles). 

Blue circles are ground truth sound source position. Axes show x,y distance in metres 

with robot head at the origin. Context is ϕ=-90o. 
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Table 7. Data set: multiple models versus single general model, ϕ=-90o. 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
single general 

model, degrees 

Calibrated 
SLL, multiple 

models, 
degrees 

-40 -36.98 -39.62 
-39 -36.98 -38.89 
-38 -39.24 -40.72 
-37 -39.24 -38.9 
-36 -36.98 -36.36 
-35 -36.98 -36.59 
-34 -34.77 -34.05 
-33 -32.62 -32.08 
-32 -30.52 -30.83 
-31 -30.52 -31.94 
-30 -30.52 -31.01 
-29 -30.52 -30.01 
-28 -30.52 -29.57 
-27 -30.52 -29.44 
-26 -30.52 -29.42 
-25 -28.46 -27.19 
-24 -26.43 -25.01 
-23 -26.43 -25.04 
-22 -24.44 -22.84 
-21 -24.44 -22.87 
-20 -22.48 -20.69 
-19 -18.64 -16.47 
-18 -18.64 -19.46 
-17 -18.64 -17.61 
-16 -18.64 -16.65 
-15 -16.74 -14.36 
-14 -16.74 -14.53 
-13 -14.87 -12.26 
-12 -14.87 -12.43 
-11 -13.01 -10.16 
-10 -13.01 -10.32 
-9 -11.16 -8.07 
-8 -11.16 -8.22 
-7 -9.33 -5.99 
-6 -9.33 -6.13 
-5 -7.51 -3.91 
-4 -7.51 -4.04 
-3 -5.69 -1.84 
-2 -5.69 -1.95 
-1 -3.89 0.23 

 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
single general 

model, degrees 

Calibrated 
SLL, multiple 

models, 
degrees 

0 -3.89 0.13 
1 -2.09 2.29 
2 -2.09 2.20 
3 -0.29 4.35 
4 -0.29 4.28 
5 1.50 6.40 
6 1.50 6.34 
7 3.29 8.45 
8 3.29 8.40 
9 5.07 10.49 

10 5.07 10.45 
11 6.86 12.53 
12 6.86 12.49 
13 8.64 14.56 
14 8.64 14.53 
15 10.43 16.58 
16 12.22 18.58 
17 12.22 18.10 
18 12.22 18.58 
19 14.01 20.61 
20 14.01 20.60 
21 14.01 20.61 
22 15.80 22.61 
23 17.61 24.61 
24 17.61 24.60 
25 19.42 26.60 
26 19.42 26.60 
27 21.23 28.59 
28 21.23 28.58 
29 23.06 30.57 
30 23.06 30.57 
31 24.91 32.55 
32 24.91 32.54 
33 24.91 32.55 
34 26.76 34.52 
35 26.76 34.52 
36 26.76 34.52 
37 28.64 36.50 
38 28.64 36.50 
39 28.64 36.50 
40 30.53 38.48 
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Figure 69. Results of cerebellar calibration post-learning: multiple models (green 

circles) versus a single general model which has learned in all contexts (red circles). 

Blue circles are ground truth sound source position. Axes show x,y distance in metres 

with robot head at the origin. Contexts is ϕ=0o. 
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Table 8. Data set: multiple models versus single general model, ϕ=0o. 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
single general 

model, degrees 

Calibrated 
SLL, multiple 

models, 
degrees 

-40 -36.98 -36.27 
-39 -36.98 -38.89 
-38 -34.77 -36.29 
-37 -34.77 -36.81 
-36 -32.62 -34.28 
-35 -32.62 -34.77 
-34 -32.62 -34.36 
-33 -30.52 -31.79 
-32 -30.52 -32.33 
-31 -28.46 -29.86 
-30 -28.46 -30.31 
-29 -26.43 -27.93 
-28 -26.43 -28.31 
-27 -24.44 -26.00 
-26 -24.44 -26.32 
-25 -22.48 -24.08 
-24 -22.48 -24.35 
-23 -20.55 -22.16 
-22 -20.55 -22.39 
-21 -18.64 -20.24 
-20 -18.64 -20.44 
-19 -16.74 -18.33 
-18 -16.74 -18.50 
-17 -14.87 -16.42 
-16 -14.87 -16.58 
-15 -13.01 -14.52 
-14 -13.01 -14.66 
-13 -11.16 -12.62 
-12 -11.16 -12.74 
-11 -9.33 -10.72 
-10 -7.51 -8.94 
-9 -7.51 -9.08 
-8 -5.69 -7.04 
-7 -5.69 -7.17 
-6 -3.89 -5.14 
-5 -3.89 -5.26 
-4 -2.09 -3.25 
-3 -2.09 -3.36 
-2 -0.29 -1.36 
-1 -0.29 -1.46 

 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
single general 

model, degrees 

Calibrated 
SLL, multiple 

models, 
degrees 

0 1.50 0.53 
1 1.50 0.44 
2 3.29 2.42 
3 3.29 2.34 
4 5.07 4.31 
5 5.07 4.23 
6 6.86 6.20 
7 6.86 6.13 
8 8.64 8.10 
9 8.64 8.02 

10 10.43 9.99 
11 10.43 9.92 
12 12.22 11.89 
13 14.01 13.73 
14 14.01 13.35 
15 15.80 15.64 
16 15.80 15.28 
17 17.61 17.55 
18 17.61 17.21 
19 19.42 19.47 
20 19.42 19.14 
21 21.23 21.40 
22 21.23 21.07 
23 23.06 23.34 
24 23.06 23.01 
25 24.91 25.29 
26 24.91 24.95 
27 26.76 27.26 
28 26.76 26.91 
29 28.64 29.24 
30 28.64 28.87 
31 30.53 31.25 
32 30.53 30.84 
33 32.45 33.27 
34 32.45 32.83 
35 34.40 35.31 
36 34.40 34.82 
37 36.38 37.39 
38 36.38 36.84 
39 36.38 37.32 
40 38.40 39.67 
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Figure 70. Results of cerebellar calibration post-learning: multiple models (green 

circles) versus a single general model which has learned in all contexts (red circles). 

Blue circles are ground truth sound source position. Axes show x,y distance in metres 

with robot head at the origin. Contexts is ϕ=90o. 
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Table 9. Data set: multiple models versus single general model, ϕ=90o. 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
single general 

model, degrees 

Calibrated SLL, 
multiple 

models, degrees 
-40 -32.62 -35.25 
-39 -30.52 -37.63 
-38 -30.52 -37.63 
-37 -28.46 -35.62 
-36 -28.46 -35.62 
-35 -26.43 -33.62 
-34 -26.43 -33.62 
-33 -24.44 -31.63 
-32 -24.44 -31.63 
-31 -22.48 -29.65 
-30 -22.48 -29.65 
-29 -20.55 -27.67 
-28 -20.55 -27.68 
-27 -18.64 -25.7 
-26 -18.64 -25.7 
-25 -18.64 -25.7 
-24 -16.74 -23.7 
-23 -16.74 -23.73 
-22 -14.87 -21.72 
-21 -14.87 -21.76 
-20 -13.01 -19.74 
-19 -13.01 -19.78 
-18 -11.16 -17.76 
-17 -11.16 -17.81 
-16 -9.33 -15.78 
-15 -9.33 -15.84 
-14 -7.51 -13.79 
-13 -7.51 -13.86 
-12 -5.69 -11.79 
-11 -5.69 -11.88 
-10 -3.89 -9.79 
-9 -3.89 -9.89 
-8 -2.09 -7.79 
-7 -2.09 -7.9 
-6 -0.29 -5.77 
-5 -0.29 -5.91 
-4 1.5 -3.75 
-3 1.5 -3.92 
-2 3.29 -1.72 
-1 5.07 0.08 

 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
single general 

model, degrees 

Calibrated SLL, 
multiple 
models, 
degrees 

0 5.07 0.05 
1 5.07 0.08 
2 6.86 2.35 
3 6.86 2.09 
4 8.64 4.40 
5 8.64 4.10 
6 10.43 6.45 
7 10.43 6.12 
8 12.22 8.50 
9 12.22 8.14 

10 12.22 8.56 
11 14.01 11.98 
12 14.01 10.62 
13 15.80 14.01 
14 15.80 12.68 
15 17.61 16.03 
16 17.61 14.73 
17 19.42 18.04 
18 21.23 18.80 
19 21.23 18.32 
20 21.23 18.84 
21 23.06 22.05 
22 23.06 20.89 
23 26.76 26.07 
24 26.76 24.39 
25 28.64 26.61 
26 28.64 26.48 
27 28.64 26.61 
28 28.64 27.06 
29 30.53 30.07 
30 32.45 31.25 
31 32.45 30.85 
32 34.40 33.37 
33 34.40 33.00 
34 36.38 35.51 
35 36.38 35.19 
36 36.38 35.46 
37 38.40 38.28 
38 40.46 39.92 
39 42.58 42.04 
40 42.58 41.98 
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A1.3 Multiple models with and without RP  

 

Figure 71. Results of cerebellar calibration post-learning: multiple models with RP 

(green circles) versus multiple models without RP (red circles). Blue circles are ground 

truth sound source position. Axes show x,y distance in metres with robot head at the 

origin. Context is ϕ=-90o. 
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Table 10. Data set: multiple models versus multiple models with RP, ϕ=-90o. 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
multiple 

models, degrees 

Calibrated 
SLL, multiple 
models with 
RP, degrees 

-40 -39.62 -40.58 
-39 -38.89 -38.98 
-38 -40.72 -40.86 
-37 -38.9 -39.06 
-36 -36.36 -36.43 
-35 -36.59 -36.81 
-34 -34.05 -34.14 
-33 -32.08 -31.67 
-32 -30.83 -29.47 
-31 -31.94 -29.74 
-30 -31.01 -29.49 
-29 -30.01 -29.43 
-28 -29.57 -29.41 
-27 -29.44 -29.41 
-26 -29.42 -29.41 
-25 -27.19 -27.19 
-24 -25.01 -25.00 
-23 -25.04 -25.00 
-22 -22.84 -22.84 
-21 -22.87 -22.84 
-20 -20.69 -20.69 
-19 -16.47 -16.44 
-18 -19.46 -16.68 
-17 -17.61 -16.47 
-16 -16.65 -16.44 
-15 -14.36 -14.33 
-14 -14.53 -14.33 
-13 -12.26 -12.23 
-12 -12.43 -12.23 
-11 -10.16 -10.14 
-10 -10.32 -10.14 
-9 -8.07 -8.05 
-8 -8.22 -8.06 
-7 -5.99 -5.97 
-6 -6.13 -5.98 
-5 -3.91 -3.9 
-4 -4.04 -3.9 
-3 -1.84 -1.85 
-2 -1.95 -1.83 
-1 0.23 0.22 

 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
multiple models, 

degrees 

Calibrated 
SLL, multiple 
models with 
RP, degrees 

0 0.13 0.04 
1 2.29 2.28 
2 2.20 2.13 
3 4.35 4.34 
4 4.28 4.35 
5 6.40 6.41 
6 6.34 6.40 
7 8.45 8.45 
8 8.40 8.35 
9 10.49 10.49 

10 10.45 10.49 
11 12.53 12.53 
12 12.49 12.46 
13 14.56 14.56 
14 14.53 14.56 
15 16.58 16.58 
16 18.58 18.6 
17 18.1 18.59 
18 18.58 18.6 
19 20.61 20.61 
20 20.6 20.61 
21 20.61 20.61 
22 22.61 22.61 
23 24.61 24.61 
24 24.6 24.59 
25 26.6 26.6 
26 26.6 26.59 
27 28.59 28.59 
28 28.58 28.58 
29 30.57 30.57 
30 30.57 30.56 
31 32.55 32.55 
32 32.54 32.54 
33 32.55 32.55 
34 34.52 34.52 
35 34.52 34.52 
36 34.52 34.52 
37 36.5 36.5 
38 36.5 36.5 
39 36.5 36.5 
40 38.48 38.48 
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Figure 72. Results of cerebellar calibration post-learning: multiple models with RP 

(green circles) versus multiple models without RP (red circles). Blue circles are ground 

truth sound source position. Axes show x,y distance in metres with robot head at the 

origin. Context is ϕ=0o. 
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Table 11. Data set: multiple models versus multiple models with RP, ϕ=0o. 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
multiple 

models, degrees 

Calibrated 
SLL, multiple 
models with 
RP, degrees 

-40 -36.27 -36.27 
-39 -38.89 -38.81 
-38 -36.29 -36.64 
-37 -36.81 -36.64 
-36 -34.28 -34.52 
-35 -34.77 -34.52 
-34 -34.36 -34.52 
-33 -31.79 -32.43 
-32 -32.33 -32.43 
-31 -29.86 -30.37 
-30 -30.31 -30.37 
-29 -27.93 -28.35 
-28 -28.31 -28.35 
-27 -26.00 -26.34 
-26 -26.32 -26.34 
-25 -24.08 -24.36 
-24 -24.35 -24.36 
-23 -22.16 -22.39 
-22 -22.39 -22.39 
-21 -20.24 -20.44 
-20 -20.44 -20.44 
-19 -18.33 -18.5 
-18 -18.5 -18.5 
-17 -16.42 -16.57 
-16 -16.58 -16.57 
-15 -14.52 -14.65 
-14 -14.66 -14.65 
-13 -12.62 -12.74 
-12 -12.74 -12.74 
-11 -10.72 -10.83 
-10 -8.94 -8.93 
-9 -9.08 -8.93 
-8 -7.04 -7.03 
-7 -7.17 -7.03 
-6 -5.14 -5.14 
-5 -5.26 -5.14 
-4 -3.25 -3.24 
-3 -3.36 -3.25 
-2 -1.36 -1.35 
-1 -1.46 -1.35 

 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
multiple models, 

degrees 

Calibrated 
SLL, multiple 
models with 
RP, degrees 

0 0.53 0.54 
1 0.44 0.54 
2 2.42 2.43 
3 2.34 2.42 
4 4.31 4.32 
5 4.23 4.32 
6 6.20 6.21 
7 6.13 6.21 
8 8.10 8.10 
9 8.02 8.10 

10 9.99 10.00 
11 9.92 10.00 
12 11.89 11.90 
13 13.73 13.80 
14 13.35 13.80 
15 15.64 15.71 
16 15.28 15.71 
17 17.55 17.63 
18 17.21 17.62 
19 19.47 19.55 
20 19.14 19.55 
21 21.4 21.48 
22 21.07 21.48 
23 23.34 23.43 
24 23.01 23.42 
25 25.29 25.39 
26 24.95 25.37 
27 27.26 27.36 
28 26.91 27.36 
29 29.24 29.35 
30 28.87 29.35 
31 31.25 31.37 
32 30.84 31.37 
33 33.27 33.41 
34 32.83 33.41 
35 35.31 35.49 
36 34.82 35.49 
37 37.39 37.60 
38 36.84 37.60 
39 37.32 37.60 
40 39.67 39.75 
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Figure 73. Results of cerebellar calibration post-learning: multiple models with RP 

(green circles) versus multiple models without RP (red circles). Blue circles are ground 

truth sound source position. Axes show x,y distance in metres with robot head at the 

origin. Context is ϕ=90o. 
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Table 12. Data set: multiple models versus multiple models with RP, ϕ=90o. 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
multiple 

models, degrees 

Calibrated 
SLL, multiple 
models with 
RP, degrees 

-40 -35.25 -39.47 
-39 -37.63 -37.63 
-38 -37.63 -37.63 
-37 -35.62 -35.62 
-36 -35.62 -35.62 
-35 -33.62 -33.62 
-34 -33.62 -33.62 
-33 -31.63 -31.63 
-32 -31.63 -31.63 
-31 -29.65 -29.65 
-30 -29.65 -29.65 
-29 -27.67 -27.68 
-28 -27.68 -27.68 
-27 -25.70 -25.70 
-26 -25.70 -25.70 
-25 -25.70 -25.70 
-24 -23.70 -23.73 
-23 -23.73 -23.73 
-22 -21.72 -21.76 
-21 -21.76 -21.76 
-20 -19.74 -19.79 
-19 -19.78 -19.79 
-18 -17.76 -17.82 
-17 -17.81 -17.82 
-16 -15.78 -15.84 
-15 -15.84 -15.84 
-14 -13.79 -13.86 
-13 -13.86 -13.87 
-12 -11.79 -11.89 
-11 -11.88 -11.89 
-10 -9.79 -9.90 
-9 -9.89 -9.90 
-8 -7.79 -7.92 
-7 -7.90 -7.92 
-6 -5.77 -5.93 
-5 -5.91 -5.93 
-4 -3.75 -3.94 
-3 -3.92 -3.94 
-2 -1.72 -1.95 
-1 0.08 0.04 

 

Ground 
truth 

azimuth, 
degrees 

Calibrated SLL, 
multiple models, 

degrees 

Calibrated 
SLL, multiple 
models with 
RP, degrees 

0 0.05 0.04 
1 0.08 0.04 
2 2.35 2.04 
3 2.09 2.04 
4 4.40 4.04 
5 4.10 4.04 
6 6.45 6.05 
7 6.12 6.05 
8 8.50 8.06 
9 8.14 8.05 

10 8.56 8.06 
11 11.98 10.09 
12 10.62 10.07 
13 14.01 12.10 
14 12.68 12.08 
15 16.03 15.83 
16 14.73 14.62 
17 18.04 17.86 
18 18.80 18.17 
19 18.32 18.17 
20 18.84 18.17 
21 22.05 20.24 
22 20.89 20.22 
23 26.07 24.37 
24 24.39 24.35 
25 26.61 26.44 
26 26.48 26.47 
27 26.61 26.58 
28 27.06 26.95 
29 30.07 29.90 
30 31.25 31.15 
31 30.85 30.82 
32 33.37 33.27 
33 33.00 32.97 
34 35.51 35.43 
35 35.19 35.16 
36 35.46 35.38 
37 38.28 38.14 
38 39.92 39.86 
39 42.04 42.02 
40 41.98 42.07 
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