18,098 research outputs found

    Two Kinds of Concept: Implicit and Explicit

    Get PDF
    In his refreshing and thought-provoking book, Edouard Machery (2009) argues that people possess different kinds of concept. This is probably true and important. Before I get to that, I will briefly disagree on two other points

    A Formal Framework for Speedup Learning from Problems and Solutions

    Full text link
    Speedup learning seeks to improve the computational efficiency of problem solving with experience. In this paper, we develop a formal framework for learning efficient problem solving from random problems and their solutions. We apply this framework to two different representations of learned knowledge, namely control rules and macro-operators, and prove theorems that identify sufficient conditions for learning in each representation. Our proofs are constructive in that they are accompanied with learning algorithms. Our framework captures both empirical and explanation-based speedup learning in a unified fashion. We illustrate our framework with implementations in two domains: symbolic integration and Eight Puzzle. This work integrates many strands of experimental and theoretical work in machine learning, including empirical learning of control rules, macro-operator learning, Explanation-Based Learning (EBL), and Probably Approximately Correct (PAC) Learning.Comment: See http://www.jair.org/ for any accompanying file

    Bootstrapping of integer concepts : the stronger deviant‑interpretation challenge (and how to solve it)

    Get PDF
    Beck (Cognition 158:110–121, 2017) presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey (The Origin of Concepts, 2009). According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system (OTS), which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to any account of inductive learning. While the account of Carey and Beck focuses on the OTS, in this paper I want to reconsider the importance of another empirically well-established cognitive core system for treating numerosities, namely the approximate number system (ANS). Since the ANS-based account offers a potential alternative for integer concept acquisition, I show that it provides a good reason to revisit the deviant-interpretation challenge. Finally, I will present a hybrid OTS-ANS model as the foundation of integer concept acquisition and the framework of enculturation as a solution to the challenge.Peer reviewe

    Case Base Mining for Adaptation Knowledge Acquisition

    Get PDF
    In case-based reasoning, the adaptation of a source case in order to solve the target problem is at the same time crucial and difficult to implement. The reason for this difficulty is that, in general, adaptation strongly depends on domain-dependent knowledge. This fact motivates research on adaptation knowledge acquisition (AKA). This paper presents an approach to AKA based on the principles and techniques of knowledge discovery from databases and data-mining. It is implemented in CABAMAKA, a system that explores the variations within the case base to elicit adaptation knowledge. This system has been successfully tested in an application of case-based reasoning to decision support in the domain of breast cancer treatment

    Language as an instrument of thought

    Get PDF
    I show that there are good arguments and evidence to boot that support the language as an instrument of thought hypothesis. The underlying mechanisms of language, comprising of expressions structured hierarchically and recursively, provide a perspective (in the form of a conceptual structure) on the world, for it is only via language that certain perspectives are avail- able to us and to our thought processes. These mechanisms provide us with a uniquely human way of thinking and talking about the world that is different to the sort of thinking we share with other animals. If the primary function of language were communication then one would expect that the underlying mechanisms of language will be structured in a way that favours successful communication. I show that not only is this not the case, but that the underlying mechanisms of language are in fact structured in a way to maximise computational efficiency, even if it means causing communicative problems. Moreover, I discuss evidence from comparative, neuropatho- logical, developmental, and neuroscientific evidence that supports the claim that language is an instrument of thought

    Computational aerodynamics and artificial intelligence

    Get PDF
    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics
    • …
    corecore