806 research outputs found

    Phenotypic landscape inference reveals multiple evolutionary paths to C4_4 photosynthesis

    Get PDF
    C4_4 photosynthesis has independently evolved from the ancestral C3_3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4_4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3_3, C4_4, or intermediate C3_3-C4_4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4_4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4_4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4_4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait

    Gene expression patterns in anterior pituitary associated with quantitative measure of oestrous behaviour in dairy cows

    Get PDF
    Intensive selection for high milk yield in dairy cows has raised production levels substantially but at the cost of reduced fertility, which manifests in different ways including reduced expression of oestrous behaviour. The genomic regulation of oestrous behaviour in bovines remains largely unknown. Here, we aimed to identify and study those genes that were associated with oestrous behaviour among genes expressed in the bovine anterior pituitary either at the start of oestrous cycle or at the mid-cycle (around day 12 of cycle), or regardless of the phase of cycle. Oestrous behaviour was recorded in each of 28 primiparous cows from 30 days in milk onwards till the day of their sacrifice (between 77 and 139 days in milk) and quantified as heat scores. An average heat score value was calculated for each cow from heat scores observed during consecutive oestrous cycles excluding the cycle on the day of sacrifice. A microarray experiment was designed to measure gene expression in the anterior pituitary of these cows, 14 of which were sacrificed at the start of oestrous cycle (day 0) and 14 around day 12 of cycle (day 12). Gene expression was modelled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model on data from day 0 cows alone (analysis 1), day 12 cows alone (analysis 2) and the combined data from day 0 and day 12 cows (analysis 3). Genes whose expression patterns showed significant linear or non-linear relationships with average heat scores were identified in all three analyses (177, 142 and 118 genes, respectively). Gene ontology terms enriched among genes identified in analysis 1 revealed processes associated with expression of oestrous behaviour whereas the terms enriched among genes identified in analysis 2 and 3 were general processes which may facilitate proper expression of oestrous behaviour at the subsequent oestrus. Studying these genes will help to improve our understanding of the genomic regulation of oestrous behaviour, ultimately leading to better management strategies and tools to improve or monitor reproductive performance in bovines

    Medical Statistics - Current Developments in Statistical Methodology for Genetic Architecture of Complex Diseases

    Get PDF
    [no abstract available

    Learning from data: Plant breeding applications of machine learning

    Get PDF
    Increasingly, new sources of data are being incorporated into plant breeding pipelines. Enormous amounts of data from field phenomics and genotyping technologies places data mining and analysis into a completely different level that is challenging from practical and theoretical standpoints. Intelligent decision-making relies on our capability of extracting from data useful information that may help us to achieve our goals more efficiently. Many plant breeders, agronomists and geneticists perform analyses without knowing relevant underlying assumptions, strengths or pitfalls of the employed methods. The study endeavors to assess statistical learning properties and plant breeding applications of supervised and unsupervised machine learning techniques. A soybean nested association panel (aka. SoyNAM) was the base-population for experiments designed in situ and in silico. We used mixed models and Markov random fields to evaluate phenotypic-genotypic-environmental associations among traits and learning properties of genome-wide prediction methods. Alternative methods for analyses were proposed

    Expression QTLs Mapping and Analysis: A Bayesian Perspective.

    Get PDF
    The aim of expression Quantitative Trait Locus (eQTL) mapping is the identification of DNA sequence variants that explain variation in gene expression. Given the recent yield of trait-associated genetic variants identified by large-scale genome-wide association analyses (GWAS), eQTL mapping has become a useful tool to understand the functional context where these variants operate and eventually narrow down functional gene targets for disease. Despite its extensive application to complex (polygenic) traits and disease, the majority of eQTL studies still rely on univariate data modeling strategies, i.e., testing for association of all transcript-marker pairs. However these "one at-a-time" strategies are (1) unable to control the number of false-positives when an intricate Linkage Disequilibrium structure is present and (2) are often underpowered to detect the full spectrum of trans-acting regulatory effects. Here we present our viewpoint on the most recent advances on eQTL mapping approaches, with a focus on Bayesian methodology. We review the advantages of the Bayesian approach over frequentist methods and provide an empirical example of polygenic eQTL mapping to illustrate the different properties of frequentist and Bayesian methods. Finally, we discuss how multivariate eQTL mapping approaches have distinctive features with respect to detection of polygenic effects, accuracy, and interpretability of the results

    Bayesian Model-based Methods for the Analysis of DNA Microarrays with Survival, Genetic, and Sequence Data

    Get PDF
    DNA microarrays measure the expression of thousands of genes or DNA fragments simultaneously in which probes have specific complementary hybridization. Gene expression or microarray data analysis problems have a prominent role in the biostatistics, biological sciences, and clinical medicine. The first paper proposes a method for finding associations between the survival time of the subjects and the gene expression of tumor microarrays. Measurement error is known to bias the estimates for survival regression coefficients, and this method minimizes bias. The latent variable model is shown to detect associations between potentially important genes and survival in a breast cancer dataset that conventional models did not detect, and the method is demonstrated to have robustness to misspecification with simulated data. The second paper considers the Expression Quantitative Trait Loci (eQTL) detection problem. An eQTL is a genetic locus that influences gene expression, and the major challenges with this type of data are multiple testing and computational issues. The proposed method extends the Mixture Over Marker (MOM) model to include a structured prior probability that accounts for the transcript location. The new technique exploits the fact that genetic markers are more likely to influence transcripts that share the same location on the genome. The third paper improves the analysis of Chromatin (Ch)-Immunoprecipitation (IP) (ChIP) microarray data. ChIP-chip data analysis estimates the motif of specific Transcription Factor Binding Sites (TFBSs) by comparing the IP DNA sample that is enriched for the TFBS and a control sample of general genomic DNA. The probes on the ChIP-chip array are uniformly spaced on the genome, and the probes that have relatively high intensity in the IP sample will have corresponding sequences that are likely to contain the TFBS motif. Present analytical methods use the array data to discover peaks or regions of IP enrichment then analyze the sequences of these peaks in a separate procedure to discover the motif. The proposed model will integrate enrichment peak finding and motif discovery through a Hidden Markov Model (HMM). Performance comparisons are made between the proposed HMM and the previously developed methods

    Connecting QTLS to the G-Matrix of Evolutionary Quantitative Genetics

    Get PDF
    This is the peer reviewed version of the following article: Kelly, J. K. (2009), CONNECTING QTLS TO THE G‐MATRIX OF EVOLUTIONARY QUANTITATIVE GENETICS. Evolution, 63: 813-825. doi:10.1111/j.1558-5646.2008.00590.x, which has been published in final form at http://doi.org/10.1111/j.1558-5646.2008.00590.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Evolutionary quantitative genetics has recently advanced in two distinct streams. Many biologists address evolutionary questions by estimating phenotypic selection and genetic (co)variances (G matrices). Simultaneously, an increasing number of studies have applied quantitative trait locus (QTL) mapping methods to dissect variation. Both conceptual and practical difficulties have isolated these two foci of quantitative genetics. A conceptual integration follows from the recognition that QTL allele frequencies are the essential variables relating the G-matrix to marker-based mapping experiments. Breeding designs initiated from randomly selected parental genotypes can be used to estimate QTL-specific genetic (co)variances. These statistics appropriately distill allelic variation and provide an explicit population context for QTL mapping estimates. Within this framework, one can parse the G-matrix into a set of mutually exclusive genomic components and ask whether these parts are similar or dissimilar in their respective features, for example the magnitude of phenotypic effects and the extent and nature of pleiotropy. As these features are critical determinants of sustained response to selection, the integration of QTL mapping methods into G-matrix estimation can provide a concrete, genetically based experimental program to investigate the evolutionary potential of natural populations

    Milk protein polymorphisms in dairy cattle

    Get PDF
    • 

    corecore