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ABSTRACT 

Xavier, Alencar. Ph.D., Purdue University, August 2016. Learning from Data: Plant 
Breeding Applications of Machine Learning. Major Professor: Katy Martin Rainey. 

 

Increasingly, new sources of data are being incorporated into plant breeding pipelines. 

Enormous amounts of data from field phenomics and genotyping technologies places data 

mining and analysis into a completely different level that is challenging from practical and 

theoretical standpoints. Intelligent decision-making relies on our capability of extracting 

from data useful information that may help us to achieve our goals more efficiently. Many 

plant breeders, agronomists and geneticists perform analyses without knowing relevant 

underlying assumptions, strengths or pitfalls of the employed methods. The study 

endeavors to assess statistical learning properties and plant breeding applications of 

supervised and unsupervised machine learning techniques. A soybean nested association 

panel (aka. SoyNAM) was the base-population for experiments designed in situ and in 

silico. We used mixed models and Markov random fields to evaluate phenotypic-

genotypic-environmental associations among traits and learning properties of genome-

wide prediction methods. Alternative methods for analyses were proposed. 
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CHAPTER 1: PHENOTYPIC, GENETIC AND ENVIRONMENTAL 

ASSOCIATIONS AMONG SOYBEAN TRAITS 

ABSTRACT 

Soybean yield components and agronomic traits are connected through physiological 

pathways and tradeoffs are imposed by genetic and environmental constrains. The main 

goal of this study is to assess the interdependence of soybean traits by stratifying the 

phenotypic associations into environmental and genetic associations using unsupervised 

machine learning techniques. Phenotypic data was collected from 2012 to 2015 in West 

Lafayette, Indiana, from a soybean nested association panel containing 40 families. 

Phenotypic associations were measured by Pearson and Spearman correlations. Genotypic 

and environmental correlations were obtained through mixed model solved by MCMC. 

Relationships among traits were evaluated using principal component and undirected 

graphical models computed from phenotypic, genotypic and environmental correlation 

matrices. Results indicate that (1) high phenotypic correlation occurs when traits display 

simultaneously genetic and environmental correlations; (2) length of reproductive period, 

node number and average canopy closures could be further exploited by breeders to 

improve yield; (3) environmental associations indicate optimal yield production under 

growing conditions that favor faster canopy closure and extended reproductive length; and 

that (4) the nature of the yield compensation in soybeans was captured by environmental 

correlation among yield components.  
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1.1 Introduction 

All traits are somehow connected through physiological pathways that imply tradeoffs 

imposed by genetic and environmental constrains (Recker et al. 2014). The understanding 

of these interactions is important to overcome yield limitations (Lynch and Walsh 1998) 

from both genetic and agronomic standpoint (Panthee et al. 2005, Wortman et al. 2013). 

Identifying and managing tradeoffs of traits such as yield, maturity and protein, is a major 

concern in soybean breeding and production (Mansur et al. 1993, Chung et al. 2003). 

Whereas most studies focus on interaction among genotypes, environment and 

management (Concibido et al. 2003, Pedersen and Lauer 2004, Zhang et al. 2010, Board 

and Kahlon 2011, Hu et al. 2011), few studies are dedicated to the investigation of 

interaction among traits. 

Soybeans have an attainable yield of inferred 8 Mg/ha (Specht et al. 1999). To achieve high 

yield standards, an optimization of every yield-affecting biotic or abiotic factor is required 

(Carpenter and Board 1997), including a favorable environment, good genetic and proper 

management practices. Increases in soybeans yield are either associated to seed quantity or 

seed size (Board and Kahlon 2011). While the contribution of seed size has provided 

controversial results (Ball et al. 2000, Soares et al. 2013), seed quantity is considered the 

most reliable traits for yield improvement in soybeans (Sudaric et al. 2003). Seed quantity 

is measured in terms of seed.m-2 and can be further divided into four subcomponents 

(Lesoing and Francis 1999), such as plants.m-2, nodes.plant-1, pods.node-1 and seeds.pod-1. 

The first factor refers to the population density and is most determined by management 

practices and environmental conditions (Fehr et al. 1973) with some contribution of genetic 

factors to germination and emergence (Spear and Fehr 2007). The three others, nodes.plant-
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1, pods.node-1 and seeds.pod-1, are known as yield components along with seed weight (Hu 

et al. 2011). Thus, yield components are inter-correlated and highly dependent on genetics, 

management and environment. 

Grain yield is, therefore, a composite trait, sensitive to interactions among its components 

(Board and Tan 1995, Board and Kahlon 2011, Recker et al. 2013, Recker et al. 2014) and 

interactions among environment, management and genetics (Carpenter and Board 1997, 

Yan and Rajcan 2003, Pedersen and Lauer 2004, Piepho et al. 2008). Yield components 

can exchange resources (i.e., photosynthates) which confers yield compensation and stable 

production, even under seasonal stresses during the reproductive period (Ball et al. 2000, 

Board 2000, Pedersen and Lauer 2004). 

A better understanding of these interactions is essential to learn about the tradeoffs that 

occur at physiological level (De Jong and Van Noordwijk 1992) and necessary to uncover 

new breeding and managements trends for yield improvement. The main goal of this study 

is to assess the interdependence of soybean agronomic traits and yield components through 

phenotypic, genotypic and environmental correlations. Connection and association among 

agronomic traits and yield components were evaluated from the correlations and 

investigated through unsupervised methods for multivariate analysis (Friedman et al. 

2001), more specifically, principal component analysis and undirected graphical models. 

1.2 Materials and Methods 

1.2.1 Population 

The SoyNAM population (soynam.org) is a nested association mapping panel that 

comprises nearly 5600 recombinant inbred lines (RILs), including determined, 

undetermined and semi-determined genotypes with maturity ranging from late MG II to 
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early MG IV, derived from 40 biparental populations. Each biparental population 

approximately contains 140 individuals and all families share IA3023 as standard parent. 

From the other 40 founder parents, 17 lines are elite public germplasm from different 

regions, 15 have diverse ancestry and 8 are plant introductions. The SoyNAM population 

was designed with the purpose of dissecting the genetic architecture of complex traits and 

mapping yield-related genes using a diverse panel. 

SoyNAM represents a particularly useful population for genetic association analyses of 

agronomic traits, yield, and yield components, provided that genetic resources for yield 

improvement in soybean is mostly associated to exotic elite cultivars (Kabelka et al. 2004, 

Guzman et al. 2007, Palomeque et al. 2009a), to germplasm from different regions (Orf et 

al. 1999a 1999b, Reyna and Sneller 2001) and with diverse background (Concibido et al. 

2003, Wang et al. 2004, Kim et al. 2012). 

Lines were genotyped with a 5k SNPchip especially designed for these populations, where 

5305 single nucleotide polymorphism (SNP) markers were called from the genomic 

sequencing of the parental lines. Missing loci were imputed using random forest 

(Stekhoven and Buhlmann 2012) and SNPs with minor allele frequency lower than 0.15 

and redundant markers were removed. A total of 5555 lines were genotyped and 196 lines 

were identified as having high genomic similarity (�95% identical). The computation of 

the quality control of genotypic data was performed using the R package NAM (Xavier et 

al. 2015). 

1.2.2 Experimental design 

Phenotypic data was collected from the SoyNAM population in 2012, 2013, 2014 and two 

locations in 2015 in West Lafayette, Indiana. The experiment was conducted as a modified 



5 
 

augmented design from 2012 to 2014 and as augmented complete block design in both 

location of 2015, with two replications each. Lines were planted May 17, 20, 24, and 23 in 

2012, 2013, 2014 and 2015, respectively, at the Purdue University Agronomy Center for 

Research and Education (ACRE). The second growing site of 2015 was located at 

Throckmorton Purdue Agricultural Center where the experiment was planted on May 22. 

Experimental units were based on two-row plots, 0.76m × 2.90m, at a density of 

approximately 35 plants.m-2. All 6400 SoyNAM entries were grown from 2012 to 2014 

and just the six families with the highest mean and variance of yield components were 

grown in 2015. The experimental fields of 2012 and one location of 2015 were subject to 

partial drought and flood damage, respectively. 

Phenotypic measurements were collected as follows. Grain yield was collected from 2012 

to 2015 and measured in grams per plot adjusted to 0.13 g.kg-1 seed moisture. Lodging was 

scored in a scale from 1 to 5 right before harvest, where one represents erect and five means 

all plants down. Seed size was collected in 2012 and 2013, measured in term of mass of 

100 seeds, sampling and weighting 350 seeds. 

Flowering and maturity were collected twice a week in terms of days after planting (DAP), 

back and forward scoring plots that flowered and matured between the intervals. The 

criterion for a plot to achieve flowering (R1) and maturity (R8) was 50% of the plants with 

open flowers on the main stem and 95% of mature pods, respectively (Fehr et al. 1971). 

Flowering was collected in 2013 and 2014 and maturity in all environments. Length of the 

reproductive period was obtained by subtracting DAP to flowering from DAP to maturity. 
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Yield components were collected in two SoyNAM families in 2012, in all families in 2013 

and 2014, and in six families from both locations of 2015. Number of reproductive nodes 

(i.e., nodes with at least one pod) and pods from the main stem were counted during R7-

R8 (first to full physiological maturity), measuring from 3 representative plants per plot in 

2012 and 2013, 6 representative plants in 2014 and 4 representative plants in 2015. Pods 

per node were obtained by the ratio. 

Leaflet shape and plant height were measured during R4-R5 (full pod to first seed) and R6-

R7 (full pod to first physiological maturity), respectively, three plants per plot with a 

barcode ruler. In 2015, plant height was collected from four plants per plot with a regular 

ruler. Leaflet shape was collected in 2013 and 2014, calculated as the ratio between length 

and width of the central leaflet, thus higher values represent narrower leaflets. Plant height 

was collected in all environments and measured as the distance from the base of the stem 

to the apical meristem. Internode length was obtained by ratio between plant height and 

node number. 

Canopy closure was collected in 2013 and 2014, measured weekly through ground-based 

images from the second week after emergence until flowering in accordance to Hall (2015) 

and Purcell (2000). Two phenotypes were obtained from the digital image analysis, the 

average value of canopy closure (%) across sampling dates, and rate of canopy closure 

(%.day-1) as the slope from regressing canopy closure by days after planting. For the 

statistical analysis, observations of all traits were normalized by environment. 

1.2.3 Multivariate analysis 

Evaluation of associations among soybean agronomic traits and yield components were 

based on phenotypic, genetic and environmental correlations. Statistical significance of 
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correlation coefficients was inferred by single-tailed asymptotic t-statistics with � � 2 

degrees of freedom. The number of pairwise observations in this study used to calculate 

correlations is shown in Table 1. After computing phenotypic, genetic and environmental 

correlations, we used two methods of unsupervised machine learning to assess the 

correlations, principal component analysis (PCA) and undirected graphical models. 

Phenotypic correlations were calculated though pairwise Pearson correlation and 

Spearman correlation. While Pearson correlation is traditionally used to quantify linear 

association, Spearman correlation is a non-parametric measure that evaluates a monotonic 

function between variable based on the rank order, which is not necessarily linear. 

Simultaneous analysis of both types of correlations enable the investigation of the nature 

of association. Pearson and Spearman correlations were computed by build-in functions in 

R (R Core Team 2015). 

Genetic and environmental correlations were inferred from the covariance components 

calculated through a multivariate mixed linear model computed in Bayesian framework 

(Sorensen and Gianola 2002). The model fits � traits simultaneously, for each traits the 

linear model is described by �� = ���� + ��	� + 
�, where � is the vector of observations 

of the ��� trait, �� and �� are the incidence matrices of fixed effects and random effect (ie. 

genotypes), �� is the vector of regression coefficient of fixed effects, 	� is the polygenic 

effect associated to each line and 
� is the residual term. 

Regression coefficient of the random term are normally distributed 	�~N(0,���
� ), where 

 is the relationship matrix and ���
�  is the additive genetic variance associated to the ��� 

trait. Genetic correlations were based on the additive genetic term while environmental 
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correlation were computed from the residuals. Trait heritabilities were computed as �� =

��
�

��
����

�. The model was solved by MCMC with the Gibbs sampler implemented in 

GIBBS3F90 (Misztal et al. 2002) that uses genomic information to describe the genetic 

relationship among genotypes. 

Principal component analysis (PCA) was used to identify patterns through the orthogonal 

transformations of relationship matrices, reducing the dimensionality of complex 

interactions for visual interpretation. Principal components were computed as the 

Eigenvectors of each correlation matrices corresponding to phenotypic (Pearson and 

Spearman), genetic and environmental correlations. We used the R build-in function eigen 

for the Eigendecomposition (R Core Team 2015). Each soybean trait is represented by an 

axis and the interpretation of PCA is based on the length and direction of the axes. 

Variables with similar properties are likely to be projected in the same direction while 

antagonistic variables would appear in opposite sense. In this study, PCA provides 

directionality and an indication of tradeoffs observed in the phenotype and imposed by 

genetic and environmental causes. 

Undirected graphical models were required to analyze causal structure learning, in other 

words, the structure and dependence among soybean traits at phenotypic, genotypic and 

environmental level (Fig1). For this study we chose to use Gaussian graphical model based 

on neighborhood selection with the least absolute shrinkage and selection operator 

(LASSO) algorithm as proposed by Meinshausen and Bühlmann (2006) and implemented 

by Zhao et al. (2012). The use of Meinshausen-Bühlmann algorithm used in this study aims 

to generate sparsity among variable by minimizing the LASSO loss function, which 
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provides a robust but not necessarily unique network. Graphical models, also known as 

Markov random fields, are commonly used to generate networks for the identification of 

patterns of relationships (Pellet and Elisseeff 2008). This approach is especially useful 

when all variables, in this case the soybean traits, are highly correlated but conditionally 

independent (Friedman et al. 2001).  

1.3 Results 

1.3.1 Correlation analyses 

Phenotypic correlations in terms of Pearson and Spearman coefficients is presented in 

Table 2. The phenotypic correlations express the product of multiple interactions among 

genetics and environment through the observed phenotype. Similar values between 

Pearson and Spearman correlations indicate that relationships work mostly in linear 

fashion, likewise non-linear association is observed in cases where Spearman correlation 

is greater than Pearson. For example, the correlation between lodging and yield is inferred 

as non-linear because it is only significant in the Spearman correlation. 

Yield appears mostly correlated to maturity, length of reproductive period, average canopy 

closure and reproductive nodes (Table 2), which supports the relevance of these traits for 

both breeding and management aiming to increase yield. However, whether the 

improvement should be associated to breeding or management (or both) depends on the 

strength of genetic and environmental correlations. 

Genetic and environmental correlations are presented in Table 3. Genetic association 

among traits can be interpreted as a measure of pleiotropy (Sorensen and Gianola 2002, 

Ramachandra et al. 2015). Analysis of genetic correlations is relevant from the breeding 

stand point to determine the indirect response of traits to selection (Recker et al. 2014). 
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Genetic interdependency among traits imply that extra care is necessary for breeders to 

deal with tradeoffs (Johnson el at 1955, Herbert and Litchfield 1982, Board et al. 1997). 

Environmental correlations may be deflated in this study due to the lack of environmental 

contrasts, where most discrepancies are due to field plot variation and macroenvironment 

(ie. year and location). The field plot variation, or microenvironmental variation, is due to 

naturally occurring soil variability, which has been reported to be a major source of yield 

variation in soybean (Vieira and Gonzalez 2003). This variation of soil properties has been 

reported to impact soybean growth, development, yield and yield components (Harper 

1974, Sinclair 1986, Coale and Grove 1990, Board and Tan 1995, Gan et al. 2003, Malik 

et al. 2006, Pettigrew 2008, Fernández et al. 2009). 

The number of pairwise environmental associations with statistical significances in Table 

3 indicates that the existing field variability trigger sufficient environmental stimuli for the 

evaluation of environmental relationships. Some correlations between traits are even 

stronger in environmental terms than genetic terms, such as reproductive period with 

flowering and leaflet shape with yield. However, we recognize that the exposure of this 

population to distinct management practices could induce more environmental stimuli for 

the study of environmental relationship among traits, which would allow for studies of 

higher order interactions, such as genotype by environment by management. 

1.3.2 Multidimensional and graphical associations 

The result of the principal components biplot is presented in Figure 2. Together, the first 

two principal components explain 35%, 37%, 62% and 37% of the total variation for 

phenotypic Pearson and Spearman, genetic and environmental correlations, respectively. 

These relatively low values indicate interactions with high complexity among traits and the 
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use of additional principal components would be necessary to better represent the 

interactions among soybean traits. A three-dimensional version of principal component 

analysis is presented in the Figure 4. 

Into the multidimensional plane, the overlap of the axis in phenotypic principal components 

shows a strong phenotypic association between yield and reproductive period (Fig.2 a-b) 

and a similar trend is observed in both genetic and environmental analysis (Fig.2 c-d), 

indicating that strong phenotypic associations are observed when traits display both genetic 

and environmental associations. 

PCA of genetic correlation provides a good insight of genetic tradeoffs faced by breeding 

soybeans aiming to improve multiple traits simultaneously. Some traits appeared strongly 

associated in genetic terms (Fig.2c). Yield overlaps with length of reproductive period in 

terms of direction and magnitude. In this PCA biplot, yield is located between two clusters 

of traits, one with yield components and another with canopy traits, lodging, maturity and 

height. This trend indicates that the genetic enhancement of these traits are favorable to 

yield and this information could be exploited through approaches such as selection index 

or indirect selection. 

Flowering, seed size and internode length appear as a cluster of traits in phenotypic and 

genetic biplots (Fig.2 a-c) and leaflet shape seems unconnected to any cluster but with 

negatively affecting plant height and maturity. Whereas in environmental terms appear 

correlated to flowering and seed size while internode length does not. In all instances, 

internode length is negatively associated to the yield components pods, nodes and pods per 

node. The remaining yield component, seed size, is positively associated to internode 
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length whereas it displays the shortest axis in all cases which indicates poor influence of 

this trait over the others.  

Principal components of environmental correlations are relevant for better understanding 

how agronomic practices could optimize the productivity by changing the environment 

where plants grow through management. It is observed in Figure 2d that yield appears in a 

cluster of agronomic traits with strong overlap, including reproductive length, canopy 

traits, lodging, height and maturity. 

Undirected graphical models are presented in Figure 3. This analysis can identify nodes or 

‘bubbles’ of interdependent traits (Pellet and Elisseeff 2008). Since all phenotypic 

interaction are rooted into genetic and environmental causes, when nodes of interactions 

are observed in the phenotypic networks they are also likely to appear in either genetic or 

environmental network, or both, according to the original nature of the interaction. 

1.4 Discussion 

1.4.1 Canopy closure 

A relevant relationship shown in all graphical models (Fig.3) is the connections between 

yield and canopy closure. Indicating that canopy closure along with reproductive period 

are likely to be the most impactful to yield, with potential to be exploited in agronomic 

practices and for the genetic improvement through plant breeding. 

Yield and canopy closure traits were linked together in all graphical analysis (Fig.3) and 

that is commonly attributed to the increase in light interception (Wells 1991, Board and 

Harville 1993) that causes a positive balance in the source-sink ratio. Thus, more energy 

captured across the growing season reflects into stronger sources of photosynthates that 



13 
 

can be allocated into the grain yield (Board and Tan 1995, Board et al. 1997, Purcell 2000). 

From the agronomic standpoint, higher light interception during the vegetative stages (ie. 

prior to flowering) results in increased number of nodes (Board et al. 1992) and pods 

(Board and Tan 1995), whereas stresses associated to light interception during the 

reproductive period (R1-R7) mostly reduce yield through the number of pods per 

reproductive node (Board et al. 1997). 

Genetic gains in soybean yield have been historically associated to intercepting more 

radiation by the plant canopy (Board and Kahlon 2012, Koester et al. 2014) and 

photosynthetic process associated to the canopy development, more specifically growth 

rate and net assimilation rate (Dornhoff and Shibles 1970, Gay et al. 1980, Larson et al. 

1981, Frederick et al. 1989, Board and Kahlon 2011). The improvement of canopy traits is 

considered one of the most feasible strategies to increase the source capacity in soybean 

(Richards 2000, Borrás et al. 2004, Ramachandra et al. 2015). 

1.4.2 Associations with yield 

The most genetically correlated traits to yield were reproductive period, maturity, average 

canopy closure and reproductive nodes on the main stem. Except for maturity, these traits 

were also the traits genetically connected to yield in genetic graphical model (Fig3c). High 

heritability of these traits also make them interesting targets for breeders to exploit for yield 

improvement. The feasibility of phenotyping canopy closure, flowering and maturity in 

large scale is expected from forthcoming phenomic technologies such as drone-based 

images (Ghanem et al. 2014, Giglioti et al. 2015), however node number still lacks in high-

throughput phenotyping methods. 
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Breeders often perform indirect selection to complex trait by its subcomponents, so-called 

trait dissection. Trait dissection is a common strategy to improve yield (Paterson 1995, Cui 

et al. 2008, Board and Kahlon 2011) and, in fact, most agronomic traits and yield 

components display positive genetic correlation to yield (Table 3). Once heritabilities and 

genetic correlation are estimated, breeders have a valuable insight for indirect selection. 

In this study, we observed that yield is moderately heritable and length of reproductive 

period is more heritable (0.716) and highly correlated to yield (0.798), indirect selection 

of yield through the length of reproductive period (��
���� = 0.716 × 0.798 = 0.571) is 

almost as effective as selecting for yield itself (��
� = 0.632). However, that would imply 

in breeding for earlier flowering and later maturity but changes in maturity are usually 

undesirable in soybean breeding. Alternatively, the indirect selection for yield through the 

average canopy closure does not imply in any tradeoff and it is also represents a relatively 

efficient indirect selection (��
���� = 0.726 × 0.729 = 0.529). 

The traits most environmentally correlated to yield were observed to be maturity and 

average canopy closure, followed by plant height, reproductive period and node number 

(Table 3). In environmental terms, the strong associations among canopy closure with yield 

shown in Figures 2 and 3 indicate that management practices for a faster canopy closure 

can play an important role to increase these traits together (Board and Kahlon 2012, Kahlon 

and Board 2012). Wells (1991) described that the combination of population density and 

row spacing have direct influence on how fast the canopy closes. Early closure reflects into 

increases in growth rate during vegetative and early reproductive periods, which results in 

reproductive nodes per area (Board et al. 1992). Likewise, changes on soybean 

phenological stage are controlled by photoperiod and temperature (Board and Hall 1984, 
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Cober et al. 2001). Thus planting date is used to manage the number of days to flowering 

and maturity by enhancing the reproductive window, which allowed more time for node 

production prior to flowering (Rowntree et al. 2014). In addition, faster canopy closure 

combined with extended reproductive period may be particularly beneficial to late planted 

soybeans and greater light interception during grain fill periods. 

Environmental associations to yield are relevant for agronomic practices because, at 

farming level, the maximization of production is attained by providing soybean the most 

favorable environment for development and growth. Management practices that have been 

reported to influence agronomic traits and yield components include planting date (Board 

et al. 1997, Pedersen and Lauer 2004, Rowntree et al. 2014), density and row spacing 

(Wells 1991, Board et al. 1992, De Bruin and Pedersen 2008, Epler and Staggenborg 2008), 

application of chemical inputs (Swoboda and Pedersen 2009), crop rotation (Lesoing and 

Francis 1999), irrigation (El-Mohsen et al. 2013), tillage (Elmore 1990, Frederick et al. 

2001, Pedersen and Lauer 2004) and fertilizer application (Wilson et al. 2014). However, 

physiological traits, plant architecture, source capacity and sink strength are not 

manageable at agronomic level (Ramachandra et al. 2015). 

1.4.3 Association among yield components 

Despite the significant correlation in both Spearman and Pearson correlations, yield 

components do not seem directly connected to yield in the phenotypic graphical model 

(Fig.3 a-b).  However, this association is observed in the genetic network (Fig.3c) and in 

the phenotypic and genetic principal components (Fig.2 a-c). Among the yield components, 

reproductive nodes has the highest correlation to yield (Table 2), and it has been described 

as good yield indicator from the physiological standpoint because it shares genetic basis 
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with yield (Simpson and Wilcox 1983, Zhang et al. 2004) and have similar response to 

different stresses (Board and Harville 1993, Board and Tan 1995, Board et al. 1997). 

Many consensus QTL of agronomic traits have reported in the past two decades (Hu et al. 

2011), but it is remarkable that few genetic studies were performed on yields components 

or their interaction (Board and Kahlon 2011). Yet, the heritability and genetic control of 

any complex traits, such as yield, is due to the combination of simpler and more heritable 

traits (Mansur et al. 1993). The idea of decomposing soybean yield into more heritable 

traits is not new but it has not been exploited (Johnson et al. 1955). The number of pods 

per node has been reported as good yield estimators based on genetic associations, once it 

is less sensitive to environmental stimuli (Board and Tan 1995, Board et al. 1997). In 

accordance to the literature, Table 3 shows that the associated between pods per node and 

yield is almost twice as large in genetic terms than in environmental terms. 

In agreement with Board et al. (1997), the phenotypic graphical model in Figure 3 (a-b) 

indicates that pods per node and pod number are directly connected. In the Pearson 

correlation of phenotypes (Fig.3a), pod number appears as the link between pods per node 

and reproductive nodes, showing these two traits as conditionally independent in terms of 

observable phenotype in linear terms. 

The fact that the phenotypic correlation pods and yield is weaker than reproductive nodes 

and yield could be attributed to the indirect effect of branch pods as an alternative allocation 

of resources (Herbert and Litchfield 1982, Frederick et al. 2001, Zera and Harshman 2001), 

although similar results were also reported by Kahlon and Board (2012). Remarkably, seed 

size does not appear connected to any other yield component or agronomic trait in the 

graphical models (Fig.3) nor seems to impact yield or other traits on multidimensional plant 
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represented by principal components (Fig.2). Nevertheless, this negatively correlation to 

the other yield components is significant and it may suggest another possible mechanism 

of yield compensation (Table 2). 

There exist an interdependency among pods, node and pods per node (Fig.3 b,d). The three-

way interaction among yield components observed in Spearman and environmental 

networks supports that the compensation among yield components is not linear and occurs 

at environmental levels. Malausa et al. (2005) observed similar findings that yield 

compensation at yield components level would act mostly by environmental forces. This 

interaction among yield components can represent a mechanisms of yield compensation at 

pod level (Ball et al. 2000) that confers physiological flexibility to seed production (Ball 

et al. 2000, Board 2000, Pedersen and Lauer 2004), also captured by the path analysis 

presented by Board et al. (1997). 

Genotypes with extreme values for any given yield component may have a compromised 

compensation ability by losing the plasticity of reallocating resources (De Jong and Van 

Noordwijk 1992). Yield plasticity is intrinsic to the physiological response to 

environmental stimuli (Zera and Harshman 2001) and hence can be better exploited from 

the agronomic standpoint. 

Some yield components, such as seeds per pod and pods per node, are less sensitive to 

environmental stresses and management (Board et al. 1997), while number of nodes.m2 is 

the causative of yield drag during biotic and abiotic stresses, reducing the number of pods 

and consequently the number of seeds per m2 (Herbert and Litchfield 1982, Pedersen and 

Lauer 2004, Board and Kahlon 2011). Board and Tan (1995) described the improvement 

of pods per node as a breeding strategy that would be stable across environments. 
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Environmental correlations (Table 3) and environmental PCA (Fig.2d) indicate weak 

association between yield and pods in the main stem, suggesting that environmental stimuli 

may affect the amount of pods located on branches. 

1.4.4 Association in agronomic traits 

Principal components analysis indicate a strong association between maturity, height and 

lodging (Fig.2 a-d), connection also captured by all networks (Fig.3 a-d), and nonetheless 

graphical models indicate that maturity and lodging are conditionally independent. 

Associations among these three agronomic traits have been reported to have both 

morphological and physiological origins with influence of growth habit (Wilcox and 

Sediyama 1981, Lee et al. 1996a 1996b, Mansur et al. 1996). High values of phenotypic 

correlation (Table 2) are observed in traits related physiological role (De Jong and Van 

Noordwijk 1992), often sharing genetic and environmental origins. 

Maturity displays a high genetic correlation to plant height, flowering and length of 

reproductive period, similar to results reported by Wu et al. (2015). These agronomic traits 

have been also reported to share similar genetic basis possibly related to growth habit (Lee 

et al. 1996a 1996b, Mansur et al. 1996), and to be relevant to yield, protein and oil seed 

content (Simpson and Wilcox 1983). Height, maturity and lodging are moderately-high 

correlated to reproductive nodes and average canopy closure in phenotypic, genetic and 

environmental terms (Table 2 and 3), which supports that agronomic traits also indirectly 

affect yield through these two traits. 

Over the years, soybean breeding has attempted improving grain yield while keeping 

maturity constant (Ustun et al. 2001, Jin et al. 2010). Because of the strong relationship 

between the length of reproductive period and yield, there exist a major tradeoff in soybean 
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breeding regards yield and maturity. A possible solution to overcome this issue is to focus 

on traits that do not imply in major tradeoffs, such as the number of pods on the main stem 

and pods per node as suggested by Board and Kahlon (2011). These two traits are 

genetically correlated to yield (Table 3) without sharing genetic basis with maturity, height 

and lodging as shown be the 90� angle in the PCA (Fig.2) and lack of connection in the 

graphical models (Fig.3). 

Maturity has a moderate genetic association to yield within the SoyNAM maturity range 

(II to IV) and similar results were reported in random mating populations (Recker et al. 

2014). Patterns in the Pearson phenotypic graphical model (Fig.3a) and environmental 

model (Fig.3d) indicate direct phenotypic association between maturity and yield, which 

could be attributed to environmental causes or through the indirect effect of maturity in 

length of reproductive period. Our results supports that yield and maturity could be 

genetically improved independently, supporting other studies where similar yield can be 

achieved across different maturity groups (Egli 1993, Edwards and Purcell 2005). 

1.4.5 Leaflet shape 

Leaflet shape does not display moderate values (� 30%) of correlation to most traits 

(Table 2), it is not connected to any trait through any graphical model (Fig.3) and it does 

nod display large magnitude in the principal component anlysis (Fig.2), in accordance to 

the results reported by Mandl and Buss (1981) and Mansur et al. (1996). Many traits are 

significantly correlated to leaflet shape but results from PCA and graphical models indicate 

the lack of causation. 

The strongest phenotypic correlations (Spearman) with leaflet shape were found to be with 

yield (0.151) and lodging (-0.141). The association to yield might due to the contribution 
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to light intercept (Board and Kahlon 2012). Stronger correlation were observed in genetic 

terms, where leaflet shape is negatively correlated to height, lodging and canopy closure 

traits. Higher values of leaflet shape indicate elongated or lanceolate leaves, thus, our data 

supports that round leaves are more related to canopy closure. The negative associations 

with lodging and height through genetics may be attributed to the existence of genetic 

material in the SoyNAM population with diverse background that is prone to be taller, 

lodge and have round leaves (Rincker et al. 2014, We et al. 2015) and, therefore, leaflet 

shape could be an indicator of diversity and less adapted background. 

It has been observed that the association between leaflet shape and yield varies among 

families (data not shown), we speculate that is may be due to the existence of a major gene 

called Ln found to be segregating in some families. Further investigation in this 

subpopulations would be required for more consistent associations. Ln gene is known for 

increasing the number of seeds per pod, although tradeoff with other yield components has 

been reported (Dinkins et al. 2002). 

1.5 Conclusions 

Yield improvement has been associated to different agronomic traits and yield components 

over the years, including pod number, pods per node, flowering and maturity (Hu et al. 

2011, Palomeque et al. 2009a, 2009b, Kahlon and Board 2011, 2012, Wu et al. 2015). In 

this study we attempted to identify patterns of association among soybean traits that could 

provide an insight of the tradeoffs imposed by genetics and environmental factors, 

emphasizing associations that could lead to yield improvement. At phenotypic level, the 

strength of associations was found to be a function of both genetic and environmental 

causes. 
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Days to maturity, length of reproductive period, average canopy closure and the number of 

reproductive nodes were the most correlated traits to yield at phenotypic, environmental 

and genetic level. The high genetic correlations to yield indicate that, length of reproductive 

period, average canopy closure and reproductive nodes have a great potential to be 

exploited by breeder, while maturity is more associated to yield through environmental 

factors and can be kept static as yield increases. 

Environmental associations support that environmental forces may be the driving factor of 

soybean yield plasticity (Zera and Harshman 2001, Pedersen and Lauer 2004). The strong 

environmental association of average canopy closure and reproductive period with yield 

indicate that management practices that improve canopy closure (i.e., row spacing and 

planting density) and extend reproductive period (i.e., early planting date) can have a good 

potential to increase yield. 
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CHAPTER 2: WALKING THROUGH STATISTICAL BLACK BOXES IN 

PLANT BREEDING 

ABSTRACT 

Intelligent decision making relies on our capability of extracting useful information from 

data that may help us to achieve our goals more efficiently. Many plant breeders and 

geneticists perform statistical analyses without knowing the underlying assumptions of the 

methods and their strengths or pitfalls. In other words, they treat these statistical methods 

(software and programs) like black boxes. Black boxes represent complex pieces of 

machinery with contents that are not fully understood by the user. The user sees the inputs 

and outputs without knowing how the outputs are generated. By providing a general 

background on statistical methodologies, the objectives of this review are (1) to introduce 

basic concepts of machine learning and its applications to plant breeding; (2) to link 

classical selection theory to current statistical approaches; (3) to show how mixed models 

are solved and to extend their application to pedigree-based and genomic-based prediction; 

and (4) to clarify how the algorithms of genome-wide association studies work, including 

their assumptions and limitations. 
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2.1 Introduction 

Inferences and models can be of empirical or experimental design. Empirical methods work 

best for well-characterized phenomena, for which the solution can be found analytically, 

whereas experimental methods are necessary to make inferences from data and use 

algorithms to identify patterns in the data. The science that studies these algorithms is 

known as machine learning. Machine learning also includes the area of artificial 

intelligence dedicated to building and studying algorithms that are capable of learning from 

data, endeavoring to find an optimal solution that minimizes a given loss. This makes these 

machine learning algorithms much more flexible than logical algorithms. 

Genetics widely exploits two particular branches of machine learning, so-called supervised 

and unsupervised learning. Supervised techniques help solve problems for which we have 

explanatory and response variables. This commonly applies to quantitative genetics for 

prediction, selection, and classification. Unsupervised procedures are used when no 

response variable exists. Population genetics often uses unsupervised procedures for 

problems associated with clustering genotypes and to find admixture in populations. 

Due to the quantitative nature of most traits of interest, Gaussian process (GP) is the most 

employed type of supervised learning algorithm in plant and animal breeding (Rasmussen 

2004, Lynch and Walsh 1998). Fisher's infinitesimal model, which forms the basis of the 

principles of breeding, states that an infinite number of stochastic processes control the 

observed phenotype (Orr 2005, Farrall 2004), which converges to a Gaussian distribution 

according to the central limit theorem. GP represents the basis of selection theory, breeding 

values, and association studies (Sorensen and Gianola 2002). 
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Classification procedures are important for the genetic improvement of categorical traits 

and decision making. For instance, breeding programs develop products specifically for 

different markets (Acquaah 2009, Cleveland and Soleri 2002) and classification models 

determine the boundaries of the qualities that define these market niches (Lim 1997). In 

soybeans, adaptation zones define which maturity group (MG) can be cultivated in each 

region according to the latitude, soil, and climate; in other words, they determine the target 

environment for breeders (Dardanelli et al. 2006). For example, Zhang et al. (2007) suggest 

that soybean adaptation zones have misclassification issues because the growing zone for 

MG IV to MG VI is much larger than originally thought. 

The main goal of this paper is to reveal the inner workings of the black boxes of statistical 

analysis in plant breeding by explaining the theory and applications of machine learning in 

statistical genetics, focusing on widely applied mixed linear models designed for 

prediction, selection, and inference. 

2.2. Gaussian Process 

In one way or another, quantitative traits follow a distribution pattern. For example, 

categorical traits with two classes follow a binomial distribution, as with the color of 

flowers in soybeans, which are either white or purple. If a third flower color existed, the 

trait would follow a multinomial distribution. Counting (ie. discrete) traits, such as the 

number of days until flowering, could be modeled using a Poisson distribution. Traits like 

grain yield and plant height are continuous and often follow a normal distribution. The 

heritability of the traits, discussed later in this review, can assume any value between zero 

and one, thus a beta distribution is often best to characterize this process. Variance 

components discussed in the coming section should always have positive values on a 
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continuous scale, and thus they can be described in terms of a gamma distribution or chi-

squared distribution. 

In general terms, all distributions have two very important coefficients derived from their 

moment generation function: these coefficients are expectation (E[X]) and variance 

(E[X�]� (E[X])�). The normal distribution has a sigmoidal shape, like a bell. The 

expectation of any normal random variable is its mean, notated by the Greek letter mu (�), 

and the deviance from the expectation is the variance, notated by the square of Greek letter 

sigma (��). The square root of the variance is the standard deviation �, which represents 

the deviance in the same scale as the observations. The proper notation of a random variable 

(y) normally distributed is �~N(�,�). 

In plant and animal breeding, it is very important to know how to handle a normal 

distribution, since most quantitative genetic theory assumes normality. For example, the 

equation by which one can calculate the probability of finding a plant that yields x bu/ac 

from a given population is called a probability density function (PDF, �), and the 

probability of finding any plant with yield equal or lower than x is called a cumulative 

density function (CDF, �). The probability density function is, therefore, the first 

derivative of the cumulative density function. The function that defines the normal PDF is 

�(x) = (�	)(
�.�)�
exp(�0.5�
�(x� �)�). A description of a Gaussian distribution is 

shown in Figure 5. 

The so-called standard normal, which is notated as �, is a special case of normal 

distribution with a mean of zero and variance of one. The following transformation can 
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standardize any normal: Z = (x� �)/�. The sum of � squared standard Gaussians (Z�) is 

called a chi-squared (��) distribution with � degrees of freedom. 

There are several methods to estimate parameters of a distribution. These include 

likelihood methods, such as maximum likelihood (ML) and restricted maximum likelihood 

(REML), and Bayesian procedures. What differentiates these methods is their so-called 

loss function. For example, the least square procedure aims to minimize the squared error 

while likelihood methods maximize the likelihood function. For now, we will focus on 

likelihood methods. 

Since each observation contains some information about the unknown parameters, more 

data can provide more accurate and precise estimates of mean and variance. Likelihood 

methods search for the parameters that maximize either the likelihood (L) or log-likelihood 

(�). The normal PDF defines the joint probability p(	;
), where 	 represents the observed 

data and the Greek letter theta (
) represents one or more unknown parameters, here 
 =

(�,��). Thus, assuming Gaussian data, the marginal log-likelihood for each observation is 

given by �(�, y�) = �0.5ln()� 0.5ln(��) � (2��)��(y� � �)�. 

The ML estimator for each element of 
 adjusts iteratively by means of a gradient that is 

the vector of the first-order partial derivatives of the log-likelihood for each element (ie. 

mean and variance), here notated as the S(�|y) that satisfies S(�̂|y) = 0. Estimation of the 

mean and variance of a normal random variable is the simplest example because the 

conversion is satisfied in the first iteration. In this case, these estimators are said to have a 

closed-form solution: 

S(�|	) = �L/ �� = 0 � �̂ = �y/n 



34 
 

S(��|�) = �L/ ��� = 0 � �̂� = �(y� �)�/n 

Multidimensional problems are solved using linear algebra (ie. matrix framework). In this 

case, parameter estimation requires the second derivative of the log-likelihood, called the 

Hessian matrix. The negative expectation of the Hessian matrix yields the Fisher 

information matrix. Hessian and Fisher information matrices are further discussed in later 

sections. 

2.3. Infinitesimal Model and Selection Theory 

For a normally distributed trait in a population, directional selection occurs when a breeder 

induces the mean to move in the desired direction over generations (Fig6). To achieve that, 

the breeder must impose a selection threshold. The breeder selects individuals above this 

threshold as the progenitors of the next generation under the assumption that those 

individuals provide better genetic properties. In self-pollinated species, male-sterility is a 

common tool that makes directional selection possible (Recker et al. 2014). 

The genetic properties that affect the phenotype involve alleles with positive and negative 

effect. Alleles are versions of genes that represent the genetic effect over a given trait. 

Alleles can interact within the locus, across loci, and by external stimuli; these phenomena 

are called gene action, epistasis, and expression, respectively. The number of alleles 

carried by a locus depends on the ploidy level of the individual. This review focuses on 

diploid organisms, those with two alleles at each locus. 

Selection intensity (i) represents the number of standard deviations that defines the cutoff 

of the population, known as the truncation point, above which selected individuals remain 

in the breeding population as progenitors. The population of selected individuals 
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characterizes a one-sided truncated normal distribution. It is possible to estimate the 

expectation of this distribution (��) using the mean (�) and standard deviation (�) of the 

original distribution and, of course, the truncation point (t = �̂ + i�̂) (Wricke and Weber 

1986). The expected mean of a selected population is estimated as E[��|t] = �+

�[�(�)/(1��(�)], where �, � and � represent the normal PDF CDF, and the 

standardized truncation point (� = (t� �)/�), respectively, as shown in Figure 7. 

Breeders obtain larger short-term genetic gains by increasing selection intensity; however, 

this practice sacrifices long-term gains unless, of course, breeders continuously introduce 

exogenous sources of genetic variability into the breeding population. 

The next generation will not have the expected mean ��, since the phenotype is not 

exclusively due to genetic factors (Nyquist and Baker 1991). Despite the fact that alleles 

interact in a very complex fashion, their expression is a function of environmental stimuli 

(aka. genotype by environment interaction). This is called realized heritability (h�	): the rate 

between the observed mean of the new generation (�(
��)) and its expected mean (��) based 

on the selected progenitors. 

Fisher (1918) proposed that, for a given quantitative trait, there are an infinite number of 

genes with minor additive contributions affecting the phenotype, the so-called infinitesimal 

model. In selection theory, the general goal of breeders is to increase the frequency of 

desirable alleles in a population over time, under the assumption that allele effect works in 

additive fashion. Exceptions to this include the gains associated with heterosis as exploited 

by programs that develop hybrids (eg. maize), or by clonally propagated species (eg. 

potato). According to Fisher's model, the outcome of each gene is additive and is measured 
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by the effect of an allelic substitution. In this sense, the model matches the definition of a 

Gaussian process that consists of normally distributed random variables as elements of 

some infinite-dimensional space (aka. Hilbert spaces) or, in other words, a multivariate 

normal with an infinite number of kernels. 

When applied to finite breeding populations, Fisher's model is confronted with population 

genetic issues. For example, finite populations can maintain only a limited number of 

alleles (Kimura and Crow 1964). Furthermore, multiple evolutionary forces will be acting 

simultaneously, such as various types of selection and long-term random genetic drift, 

which triggers continuous bottlenecks (Wright 1930). This extension of the infinitesimal 

model is called the Wright-Fisher Markov Chain model. The selection pressure applied 

over generations in a finite population implies a major trade-off between the response to 

selection and genetic gains over time (Fig8). 

From the standpoint of statistical genetics, most field crops breeding populations follow 

the definition of a stochastic Fisher-Wright process (Imhof and Nowak 2006): finite 

populations with non-overlapping generations, diploid behavior, and ongoing frequency-

dependent selection. Frequency-dependent selection occurs when breeders endeavor to 

improve fitness-related traits, breeding populations where the main goal is to increase grain 

yield or resistance to pests and disease. 

Crow and Kimura (1970) pointed out that the fluctuations that Fisher defined as noise, 

Sewall Wright defined as (a slow) evolution. The stability of genetic gain over time relies 

on selection intensity, mutation rate, and total (�) and effective (N�) population size. 

Effective population size is a major limiting factor for efficient selection in plant breeding 
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programs, with serious implications for traditional and genomic-based selection techniques 

(MacLeod et al. 2014). According to Zeng and Hill (1986), the optimal selection intensity 

occurs when new haplotypes arise at the same frequency with which alleles undergo 

fixation (known as a convergence rate), such that the population does not exhaust its 

diversity. 

Self-pollinated species are more likely to run out of genetic resources due to their 

reproductive nature. For example, the effective population size of soybeans in the United 

States is equivalent to 27 lines (St. Martin 1982) and, not surprisingly, soybean production 

is reaching a yield plateau (Egli 2008a) that is nearly half of the field potential (Specht et 

al. 1999) due to these limited genetic resources (Egli 2008b). However, new breeding tools 

in the "omics generation" are bringing hope to this currently limited scenario (Rincker et 

al. 2014). 

2.4. Variance Decomposition and Parsimony 

The phenotype of a quantitative trait is in a non-deterministic state. Therefore, it requires 

a stochastic model to approximate an infinite population; in other words, a model with 

random variables defining which variance components are of interest. The first model to 

express variation in the phenotype was the infinitesimal model, in which the phenotypic 

variance (��
�) is a function of genetics (��

� ) and environmental variances (��
�), so that ��

� =

��
� + ��

� . 

Variance component analysis (VCA) is a very common practice in plant breeding and 

agronomic studies. Two of the most common methods to perform variance decomposition 

are the analysis of variance (ANOVA) and restricted maximum likelihood (REML). 

Studying the variance due to genotype and environment in soybeans, Carvalho et al. (2008) 
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suggest that both methods provide similar variance components under a balanced 

experimental design, but that under unbalanced conditions, the ANOVA method becomes 

biased while REML still provides consistent variance components and the best linear 

unbiased predictions (BLUPs) (Henderson 1975). This makes REML procedures the most 

deployed method for VCA in breeding studies with BLUPs used for variety selection 

(Piepho et al. 2008). 

For Fisher, all variation not explained by genetics was due to environment. In plant 

breeding in which replications allow us to measure the variation due to environment, the 

variance of the phenotype can be further decomposed. Thereby it is possible, for example, 

to estimate the interaction between genotype and environment (��×�
� ) and isolate the pure 

error (��
�). Each term can undergo further decomposition. Environmental variance can 

include year (��
�), location (��

�), and management (��
� ), which reflects the controllable 

environment. In soybeans, Yan and Rajcan (2003) conducted a genotype by environment 

analysis, decomposing ��
�  into ��

�  and ��
� with all possible interaction terms (ie. 

��×�×�
� ,��×�

� ,��×�
� ). They concluded that most variance associated with environment is 

due to year rather than location. 

If genotypic information is available by genotyping with co-dominant molecular markers, 

such as single nucleotide polymorphism (SNP), then breeders and geneticists are able to 

subdivide genetic variance terms. The first decomposition of genetic variation yields the 

additive genetic variance (�	
� ), the dominance genetic variance (�


� ), and epistasis (��
�). 

Likewise, the epistasis represents the interaction among loci that comprises the following 

terms: additive-by-additive (�		
� ), additive-by-dominant (�	


� ), and dominant-by-

dominant (�


� ). 
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At this point, it is very important to introduce two concepts: narrow- (h�) and broad-sense 

(H) heritability (Acquaah 2009). In statistical terms, heritability is known as the intra-class 

correlation coefficient, a term that refers to the amount of total variation due to one of its 

components. Broad-sense heritability is the amount of variation due to genetics (H =

��
�/���), also known as repeatability (Nyquist and Baker 1991). It illustrates ‘nature-

versus-nurture’, distinguishing between what is due to genetics and what is due to 

environment. Narrow-sense heritability is the fraction of phenotypic variance due to the 

additive genetic variance only (h� = ��
�/���) associated with the variance transmitted over 

generations. The latter is the most important for breeding quantitative traits because it 

describes how accurately breeding values, generated from the additive relationship 

between individuals, correspond to the phenotype. Because of this, narrow-sense 

heritability is used to predict the offspring performance. 

Genetic variance component estimation typically starts with building Wright's numerator 

relationship matrix (aka. kinship or kernel) and then proceeds by solving the Henderson's 

equation (Henderson 1984). The Henderson's equation refers to a generalized mixed linear 

model for genetic prediction purposes. This model treats controllable elements, such as 

those imposed by experimental designs, as a fixed effect and treats the term that defines 

genetic components as a random effect with non-independent observations. The 

interdependence among observations is expressed by the so-called kernel matrix. 

There are multiple types of kernel matrices used to represent the relationship among 

genotypes, including: the pedigree matrix (A) as originally proposed by Wright (1922); the 

genomic relationship (G) expressed as a linear kernel obtained by the cross product of the 

genotypic matrix containing the marker information (���); and distance-based kernels, 
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such as the Gaussian (exp[���/�]) and exponential kernels (exp[��/�]) that use 

Euclidean distance � to describe the genetic distance among individuals based on 

molecular markers and a bandwidth parameter �. The term support vector machine (SVM) 

is often used to define GP that use regularized kernels for prediction or classification. 

The dimensions of a genotypic matrix depend on the number of markers (�) for the columns 

and the number of individuals (�) for the rows. Therefore, each cell in this matrix 

represents a locus of an individual. Xu (2013) coded {AA, Aa, aa} using {1, 0, -1} to build 

a linear kernel that describes the additive-relationship matrix with molecular data and {0, 

1, 0} to build the dominance-relationship matrix. Although there are many other ways one 

can code the molecular genotype of an allele (Strandén and Christensen 2011, VanRaden 

2008). The resulting cross product of genotypic matrices is always a square symmetric 

matrix (� × �) where each cell describes the relationship between individuals in the 

corresponding row and column. Although it is possible to add as much complexity to the 

variance decomposition model as the geneticist or breeder desires, there are two principles 

that one must take into account: the hierarchical principle and the sparsity principle. The 

first states that lower order terms are generally more important than higher order ones. In 

other words, epistasis may contribute little to the total genetic variance and at a high 

computational cost. The second principle reinforces the statistical parsimony in which a 

few terms explain most variation. In practical terms not all of the genome contributes to all 

traits, but rather a reduced number of regions contribute most. These regions are known as 

quantitative trait loci (QTL). Lander and Botstein (1989) defined the phenotypic variance 

of a quantitative trait as a Gaussian process after figuring out that the phenotypic 
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distribution considered to comprise a single normal distribution was actually a mixture of 

distributions associated with combinations of QTL (Fig9). 

The identification of QTL occurs by comparing the log-likelihood of two models (Yan et 

al. 2014). The first is the null model, which contains the polygenic term corresponding to 

the effect of background genetics, often computed through a kernel regression (Xu 2013, 

de los Campos et al. 2010). The second is the full model. It is a mixture model including 

the polygenic term and the candidate genomic fraction, which is a marker or an interval 

between markers. The statistical test is called the likelihood ratio test (LRT). The 

hypothesis testing supporting the association between any point in the genome being and 

the trait in study can be expressed in terms of LRT itself, as p-values (LRT~����
� ) or as a 

logarithm of odds (LOD score) by dividing LRT by 4.61 (Lynch and Walsh 1998). 

The practice of QTL mapping occurs in both experimental and random populations. There 

are two major methods to find QTL: linkage mapping and association mapping. Linkage 

mapping is a method of tracking QTL as a map function of known genetic distance between 

markers. It is commonly performed in experimental populations designed for this purpose, 

with no need for kinship in either the full or reduced model. Association mapping, also 

known as linkage disequilibrium mapping, is a test of single markers across the whole 

genome for experimental or random populations with extra scrutiny for the existence of 

subpopulations. In both methods, undetected regions will bias the number of QTL 

downward and the average effect of QTL upward due to a phenomenon called the Beavis 

effect. This is because the precision and accuracy of finding real QTL relies extensively on 

the population size (Beavis 1998) and implicit assumptions associated with the population 

type (Xu 2003a, Nyquist and Baker 1991). 
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2.5. Breeding Values, Kinship and Regression 

Breeders select only a fraction of the breeding population to develop into the release of a 

commercial line. They base their selection of top-ranked genotypes either on the values of 

one trait at a time (ie. tandem selection), multiple quantitative traits simultaneously (ie. 

independent culling), or on the combination of traits (ie. index selection). Nonetheless, 

there are four possible values they use to select a quantitative trait: phenotypic value, 

genetic value, estimated breeding value, or direct genomic value. While selection based on 

phenotypic values uses the phenotypes in a straightforward manner, the estimation of the 

latter three requires the implementation of mixed linear models with various relationship 

matrices. 

Mixed model theory is the life’s work of the geneticist Charles Henderson, who was 

motivated to implement and apply Wright's pedigree-based kinship matrix to breeding and 

selection, a technique which later expanded to generalized expressions and to the genomic 

level. A mixed model occurs when the response variable (�) is a function of a fixed effect 

term (��) and one or more random effects (��) other than the residuals (�). Random effects 

have a mean of zero. The correlation between their observations is expressed by the 

variance-covariance matrix (�), which is a function of the residual correlation (�), residual 

variance, one or more kinship matrices (	), and the variances associated with each random 

effect (� = 
�	���
 + ���

). Random terms can be independent as well, and if so, any 	 

and/or � are replaced by an identity matrix I. 

In linear algebra terminology, capital letters express matrices while lowercase letters are 

vectors and scalars. Vector and matrices are written in bold letters and constant scalars are 

written in italic. The common notation of a mixed model is given by the linear model � =
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�� + ��+ �. The � and � matrices are � × � incidence matrices of fixed and random 

effects, respectively, while b and u are the regression coefficients of each fixed and random 

parameter. Likewise �	
 and ��
 are the random effect and residual variances, and � and  

are the kernels of random effects and residuals used to define the relationship among 

observations. 

The simplest case in breeding is the so-called animal model. The animal model is an 

implementation of Fisher's variance decomposition that attributes everything that is not due 

to the genetic term to error, since it is possible to include controllable environmental factors 

in the model as fixed effects. A random effect shrinks based on its regression coefficient 

by the factor of a regularization term notated by lambda (�), which is the ratio between 

error variance and random term variance (� = ��
/�	
). Henderson further simplified the 

mixed model equation (MME) by assuming that residuals are uncorrelated ( = �). This is 

known as Henderson's method III, reducing it to a �� = � problem, thus: 

���� ���
��� ���+ ����� �

�
�� = �������� � ���� ���

��� ���� �
����� = ������ � �� = � 

The kernel relationship matrix � will define what type of value the model yields for 

selection purposes. If � is an identity matrix then � is a vector of genetic values. If � is 

Wright's numerator matrix built with pedigree information then � is a vector of estimated 

breeding values, and if � is based on molecular information then � is a vector of genomic 

direct values, also known as genomic enhanced breeding values. In order to avoid 

conflicting terminology, from this point the term “breeding value” denotes the random 

effect coefficients �. 
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If ��
� and ��

� were known quantities, finding the coefficients � and � would not be a 

problem. However it is necessary to estimate coefficients and variance components from 

the data simultaneously. The parameters estimated by Henderson's method are Empirical 

Bayes estimators because the prior estimation depends directly on the data (Zhou and 

Stephens 2014, Gianola et al. 1986). Sorensen and Gianola (2002) showed the Bayesian 

nature of the model by expressing ��� as an additional random effect (��� + 	
��) that 

does not undergo regularization (ie. shrinkage) due to the prior knowledge of �
� � �, 

which results in a null shrinkage (	 = ��
�/�

� = ��
�/� = 0) with independent terms 

(	
�� = 0 × 
�� = 0). Under the frequentist framework, the probabilistic description of 

� is defined as �~N(��,�
���� + ���
�), whereas under the Bayesian framework it becomes 

�~N(�� + ��, ����). 

To simplify the notation, let � represent the design matrices [�,�], and � represent the 

regression coefficients [�,�], and � represent the matrix of covariances that would 

accommodate 	
�� in the position ���. Thereby � = ��� + � and � = ���. 

If there is a known residual correlation between observations that can be described by a 

� × � residual relationship matrix �, then it is possible to build the model with a minor 

modification to accommodate heteroskedasticity: � = ������ + � and � = ������. 

For genotype prediction ��, breeders must estimate the properties of a non-existent 

distribution based on observed populations and, in this case, they will have to fit stochastic 

models for events that are yet to occur (Sorensen and Gianola 2002). In cases such as these, 

when the computation of breeding values requires estimation of 	, there are several 

approaches that can help to find an optimal value for 	. 
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This raises a question: how can one find the � that provides a robust prediction? The main 

tool of supervised machine learning is its use of cross validation to find the tuning 

parameters � that provide the best prediction. Cross validation works by dividing the 

dataset into � subsets and testing the predictability for a wide range of values for �. The 

predictability can be computed as the mean square prediction error (lower is better) or the 

correlation between the predicted and observed (higher is better). A three-fold cross 

validation would work as follows: 

1. Divide the observed data into three groups (A, B, C); 

2. Propose a value for �; 

3. Use AB to predict C, AC to predict B, and BC to predict A; 

4. Compute the mean predictability for this given value of �; 

5. Repeat the previous two steps for a wide range of �; 

6. Use the value of � that provides the highest predictability. 

The � parameter controls the complexity of the model and, consequently, the tradeoff 

between bias and variance. Increases in � mean that bias is being added to reduce the 

complexity of the model, which often creates a more consistent prediction. 

As an alternative to cross validation, it is possible to compute � to provide the best linear 

unbiased prediction. There are three popular kinship-based methods used for estimating 

variance components in order to obtain a robust value of � as ��
�/��

� (Robinson 1991): 

restricted maximum likelihood (Patterson and Thompson 1971), Bayesian Gibbs sampling 

(BGS) (Wang et al. 1993), and an alternative re-parameterization by reproducing kernel 

Hilbert spaces (RKHS) (Gianola et al. 2006). The next section will present some whole-
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genome regression methods that do not require explicit kernels to provide an equivalent 

BLUP solution. 

2.5.1 REML Algorithm 

REML is probably the most employed method for general-purpose estimation of variance 

components and regression coefficients. It is relatively unbiased when the number of 

observations is greater than the number of parameters (� > �) and much work has been 

done to make computationally feasible algorithms (Zhou and Stephens 2014, Kang et al. 

2008, Lee and van der Werf 2006, Misztal et al. 2002). 

There are a variety of algorithms to compute the REML variance components. This can be 

seen as a numerical optimization problem in which the main goal is to find the variance 

components and regression coefficients that maximize the restricted maximum likelihood 

of the data. Popular algorithms include the derivation-free algorithm (Meyer 1989); first-

derivative methods, such as expectation-maximization (EM) (Dempster et al. 1977); and 

second-derivative or Newton-type methods, such as Newton-Raphson (NR), Fisher 

Scoring (FS), and Average Information (AI) (Gilmour et al. 1995). First- and second-

derivative methods have an iterative-analytical solution but can be also solved numerically 

via Monte Carlo (Matilainen et al. 2013). 

As previously mentioned, the restricted log-likelihood function is expressed by � =

�0.5[log|�| + log|�| + n�log(�	
) + nlog(��
) + ���] (Searle 1979), in which n� is the 

length of �, � is from the simplified MME representation (�� = �), and � is the 

parametrization matrix that corresponds to the covariance matrix (�) adjusted by the 

number of degrees of freedom of fixed effects. The parameterization matrix is computed 

as � = ��� � ����(�����)������. 
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The derivation-free approach implemented by Meyer (1989) finds the variance components 

and coefficients by minimizing the restricted log-likelihood through a heuristic method of 

minimization called the simplex method (Nelder and Mead 1965). This method is 

considered inefficient for complex models with large data. Despite the obsolescence of the 

simplex method, Kang et al. (2008) reintroduced the use of alternative numerical 

optimizers to efficiently solve mixed models in the so-called efficient mixed model 

association (EMMA) algorithm. 

Henderson (1984) presented the expectation maximization (EM-REML) solution based on 

the EM-ML algorithm of Dempster et al. (1977), using the first derivative of the restricted 

log-likelihood as simplified by Searle (1979). The principle of EM is to iteratively update 

residuals, variances, and coefficients as follows: coefficients � are obtained by solving the 

MME as � = ���� and residuals as � = � �	�. The residual variance is obtained by 


�
� = n�[���+ tr(	���	�)
��] and the random effect variance is calculated as 
�

� =

n��[������ + tr(������)
��], where ��� represents the ��� term from ���. EM is a very 

consistent algorithm, but it converges slowly and it requires the inversion of � every round 

to find the regression coefficients. Some numerical strategies can help with solving the 

MME, such as Cholesky decomposition and Gauss-Seidel algorithm (Legarra and Misztal 

2008). 

Newton-type methods work by using the gradient S(�|�) of the second derivative, as 

described in the first section. This gradient is generated by a Taylor series converging 

toward the direction in which the parameters maximize the log-likelihood (Hofer 1998). 

All Newton-type methods have a similar framework to update parameters ��� = �� +

H�S�. The parameters being updated (���) here are the variance components (� =
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[���,���]), while H� (�|�) is the hessian matrix at the time �. The hessian matrix is employed 

for NR-REML. It represents the observed matrix information (H = 	�
/ 	� 	��). 

In the FS-REML, the hessian is replaced by its negative expectation, the so-called Fisher 

Information matrix I(�|y) = E[�H(�|�)]. The average of the observed information and 

expected information AI(�) = 0.5(H(�) + E[H(�)]) provides the AI-REML proposed by 

Gilmour et al. (1995). The iterative algorithm AI-REML uses to find variance components 

in the animal model is: 

��
�

����
���

= ��
�

����
�
+ 0.5 tr(������������)��

� tr(��������)���
tr(�������)��� tr(����)��� �

��
tr(����)� ��������

tr(�)� ����� � 

The AI-REML is computationally demanding, but it converges within a few iterations to a 

consistent result. This algorithm has been widely implemented for breeding applications 

(Gilmour et al. 2009, Meyer 2007, Misztal et al. 2002). The most time-consuming 

operation for this method is to update the � matrix because it involves inversion of the 

covariance matrix. However, it is possible to substantially reduce this computational 

burden through the spectral decomposition or Eigendecomposition of � to speed up the 

inversion of � (Kang et al. 2008, Lippert et al. 2011). Any positive-definite square matrix 

can be Eigendecomposed into eigenvectors (�) and eigenvalues (�), thus � = ����. 
Then, one can obtain ��� = ��[� × (�������) + 1]���������� and the only inversion 

required is the vector of Eigenvalues. 
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2.5.2 BGS Algorithm 

Bayesian Gibbs sampling (BGS) is a Monte Carlo Markov Chain (MCMC) algorithm 

proposed by Gelman and Gelman (1984) to generate posterior distributions by sampling 

from the conditional probability distribution of each parameter. The main idea is to 

generate samples based on the expectation and deviance of one parameter at a time and 

then use the mean, median, or mode of the distribution as the final parameter estimate. 

The posterior distribution is especially useful for making inferences about the parameters. 

Iterations of Gibbs samplers converge to a point with "stable randomness" called entropy 

(a term named in accordance with its meaning in thermodynamics). The term burn in 

denotes the removal of iterations prior to entropy. Wang et al. (1993) proposed the first 

Gibbs sampler algorithm to solve mixed models in the breeding context, where coefficients 

follow a normal distribution (N�,�) and variance components follow an inverse Gamma 

(��,�
��) distribution, ensuring positive values for variance components. Nowadays, variance 

components are more commonly described in terms of a scaled inverse chi-squared 

distribution (��,�
�	), regulated by degrees of freedom (
) and scale (S). This is simply a 

special case of inverse gamma. 

The sampling process from ��,�
�	 works by dividing the sum of squares by a sample of chi-

squared distributions. In this case, ��
	 = (���� + S�
�)/(������

	 ) and ��
	 = (���+

S�
�)/�����
	 , where S� and 
� represent the priors (García-Cortés and Sorensen 1996, 

Sorensen and Gianola 2002). Regression coefficients � have a closed form (ie. do not 

depend on priors). They are sampled from a normal distribution, one at a time, as g�~N(� =
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g�
�,�� = ��

�
���
�	), where g�

� = (r� 
 ��,��g��)����	. As opposed to REML procedures, there 

is no need for inversion of �. 

Flat priors are used to express the total unawareness about the expected response based 

upon Laplace's principle of uniform ignorance. Flat priors are often used to provide results 

equivalent to those of frequentist analysis. For that, one can set S� = 0 and �� = 
2. It is 

important to point out that flat priors can be improper, which means that they do not 

integrate out to one. However, improper priors often yield proper posteriors. 

As opposed to its use in REML methods, the term update applies differently to BGS 

iterations because it is necessary to store the value of all coefficients and variance 

components from each round to generate the posteriori distribution of each parameter. 

Once the posteriori distribution is calculated, it is easy to infer credibility intervals (CI) by 

simply computing the percentiles that correspond to the boundaries of interest -- usually 

0.025 and 0.975 based on the two-sigma rule (95% CI). 

2.5.3 RKHS Algorithm 

The reproducing kernels Hilbert spaces (RKHS) algorithm is another alternative to solve 

mixed effect models with known covariance structure (eg. animal model) that also yields 

the BLUP solution. The idea of this method is to replace the random term Zu with 

u~N(0,���) by a straight solver of kernels, comparable to a ridge regression of 

Eigenvectors. 

Because they capture different levels of interaction among individuals, for the purpose of 

omic prediction, it is preferable to use Gaussian kernels (exp [
�
�/�]) over the linear 

kernel that commonly describes the genomic relationship matrix (Gianola et al. 2006). 
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Besides the Euclidean distance among genotypes �, Gaussian kernels also require a 

bandwidth parameter � that can be defined through cross validation or replaced by a 

normalizing factor, such as the mean of the distance matrix. To avoid the cross validation 

step, González-Camacho et al. (2012) used three Gaussian kernels computed with distinct 

bandwidth parameters. 

The example with the animal model will help to illustrate the RKHS algorithm proposed 

by de los Campos et al. (2010). The first step is the spectral decomposition of the 

relationship matrix, � = ����. The incidence matrix of random effect (�) will be replaced 

by the Eigenvector matrix �, or �� in the case of replicated trials. The precision matrix 

previously computed as the inverse relationship matrix ��	 is replaced by the diagonal 

matrix of inverse Eigenvalues ��
. The model is solved with a BGS algorithm and the 

variance of the random effect is sampled from ��,
�� as (����	� + S���)/(������

� ). 

The computational advantage of RKHS with a linear kernel in comparison to the ridge 

regression procedure comes from not having to regress the markers individually. This is 

especially important when there are more markers than observations and it also provides a 

nice framework to solve problems with multiple kinships. In addition, two computation 

strategies can help speed up the computation of the regression coefficients: (1) After ��� 

yields an identity matrix, it is possible to sample a given regression coefficient u� from a 

normal distribution with mean ��
�(y � ���b��)/(1 + �/��) and variance ��

�/(1 + �/��) 

or (2) one can employ strategies like Gauss-Seidel algorithm (Legarra and Misztal 2008)  

for solving linear equations. 
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The major pitfall of RKHS is the computational burden associated with the re-

parameterization of the relationship kernel into Eigenvalues and Eigenvectors, especially 

for problems with multiple kernels and a large number of observations. This limitation can 

be overcome if just a partial number of Eigenpairs is considered sufficient. Then 

computational strategies such as the Lanczos algorithm become feasible. The Lanczos 

algorithm is an adaptation of power methods implemented in the Fortran package 

ARPACK. 

2.5.4 WGR algorithm 

As previously discussed, it is also possible to obtain BLUP estimates of breeding values 

and variance components without kinship matrices This is especially useful when omic 

information is available (de los Campos et al. 2013; VanRaden 2008) for a more reliable 

inference of breeding values (Bernardo and Nyquist 1998). These are called whole-genome 

regression (WGR) methods. Methods used for WGR are flexible so that they can 

accommodate high-dimensional problems; in other words, models with more parameters 

than observations. 

In the WGR framework, the additive value of each marker is computed and breeding values 

are obtained by taking the sum of all marker values. The breeding value � of the ��� 

genotype can be represented by u� = ��b, where �� represents a vector containing the 

marker information of the individual �, and � is the value of each marker. If markers are 

coded as {-1, 0, 1} or {0, 1, 2} representing {AA, Aa, aa}, then the vector of regression 

coefficients 	 represents the additive value of each allele substitution (Xu 2013). 

The simplest WGR model is called ridge regression (RR) or Tikhonov regularization, a 

Gaussian process compressing 
 stochastic processes, where 
 is the number of parameters 
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(ie. markers) in the model, that provides a result equivalent to kernel methods when using 

an genomic relationship. 

The loss function that most WGR methods attempt to minimize is represented by 

argmin(���+ ����). Notice that this loss function comprises two terms: the sum of 

squares (���) and the complexity term ����. The squared penalization of coefficients 

(����) is called L� penalization, while L� penalization denotes the use of the absolute sum 

(�||�||). The latter is also known as least absolute shrinkage and selector operator (LASSO) 

loss (Tibshirani 1996). 

Let us begin by recalling the simplest univariate solution: the ordinary least squared (OLS). 

For a given model � = �b + �, the OLS solution for the regression coefficient is b =

cov(x, y)/var(x) or, in algebraic notation, b = ���/���. The ridge regression solution for 

the same problem is given by b = ���/(���+ �), where � can be defined through cross-

validation or by 	

�/	�

�, as previously shown. Thus, the role of � is regularization through 

shrinkage. 

The LASSO univariate solution works slightly differently. It starts by finding the OLS 

solution b�� = ���/(���). When b�� is positive, we compute b���� = b�� � �/(���) and 

if this regression coefficient turns out to be negative, it is set at zero. When the b�� is 

negative, we compute b���� = b�� + �/(���) and if this regression coefficient turns out 

to be positive, it is set at zero. Thus, LASSO performs variable selection in addition to 

shrinkage, whereas the ridge is incapable of yielding null regression coefficients. 

It is important to introduce the univariate solution of ridge and LASSO in order to 

understand how the multivariate problems are solved by coordinate descent. The idea of 
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coordinate descent is simple: to reduce the regression to a univariate version and solve one 

coefficient at a time until convergence. To do so, it is necessary to fit all but the one variable 

that is being updated. Thus the ridge solution becomes: b� = ���(� � ���	��)/(����� + 
). 

Legarra and Misztal (2008) provided a nice framework to prevent the recalculation of 

���	�� for every parameter, the Gauss-Seidel residual update (GSRU) algorithm. It starts 

by computing the residuals (� = � � �	). In order to update each coefficient b� from the 

iteration at a time � to a time � + 1, the algorithm replaces the response variable () with 

an adjusted residual term computed as �� = � + ��b�
� and updates the coefficient as b�

��� =

�����/(����� + 
). The next step before moving on to the next coefficient b��� is to update 

the residuals: � = ��� � ��b�
���. 

It is important to keep two particular characteristics about ridge regression and LASSO in 

mind: (1) Fixed effects and intercepts do not undergo regularization (
 = 0); and (2) it is 

highly recommended to centralize predictors that will undergo regularization. 

The Bayesian counterpart of ridge regression (BRR) is a Gibbs sampler with closed form 

(de los Campos et al. 2013). Here, we will use a simple linear model � = � + �	 + � to 

illustrate how the algorithm of BRR, containing just the overall mean (�) and the genotypic 

information (�). We want to estimate the marker effects (	) and variance components (��
� 

and ��
�). 

The intercept (�) is sampled from a normal distribution with mean �(� � �	)/n and 

variance ��
�/n. The computation of the marker effects is analogous to the GSRU algorithm. 

Each b� is sampled from a normal distribution with mean �����/(����� + 
) and variance 

��
�/(����� + 
). Remember that �� corresponds to the residual of all parameters except the 
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one being updated and � is calculated as ��
�/��

�. Variance components are sampled from 

��,�
	�, as �


� = (���+ S�)/(������
� ) and ��

� = (���+ S�)/�����
� . 

Pioneering in the use of regression models to generate breeding values, Meuwissen et al. 

(2001) proposed the use of a non-Gaussian process. They proposed a Bayesian shrinkage 

regression (BSR) in which each marker would have its own variance characterizing a t-

process, so-called BayesA. The algorithm is almost identical to BRR described above, but 

each marker has a different � for which the individual marker variance (���
� ) is computed 

as (b�
� + S�)/(1 + �). 

BayesA has some interesting characteristics. Marker effects follows a t distribution (tick 

tails) that allows SNPs to pursue large effect. Breeding values from BayesA are usually 

more accurate than BRR but they may be biased if allele coding is not centralized. Notice 

that the computation of variance components for each marker becomes sensitive to the 

prior specification (Lehermeier et al. 2013). To overcome this limitation, it is possible to 

conjugate the prior S from a Gamma distribution (Gianola 2013). 

Another BSR that has become very popular is the Bayesian LASSO proposed by Park and 

Casella (2008). It is a very consistent algorithm that assigns a double exponential 

distribution to marker effects (Fig10) in a fashion similar to the original LASSO (Tibshirani 

1996). This causes a strong shrinkage (Gianola 2013) with low sensitivity to the prior 

specification (Lehermeier et al. 2013), but it does not perform variable selection as opposed 

to its non-Bayesian counterpart. 

The Bayesian LASSO (BL) also assigns a variance to each marker, as does BayesA. 

However, BL computes ���
�  as a function of the residual variance and a scale parameter 
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(��), thus: ���
� = ��

���
�. The scale parameter ��

�� is sampled for each marker i from an 

inverse Gaussian distribution centered at ��	/
� and with a shape 	�. The smoothing 

parameter 	� can be sampled from a gamma distribution (de los Campos et al. 2009) with 

rate ���
�/2 + r� and shape p + s�, where r� and s� are the hyperpriors of rate and shape. 

Regression coefficients and residual variance are sampled as in BRR and BayesA. 

Several algorithms estimate variance components and breeding values either by expressing 

the relationship among individuals through kinship or by directly regressing molecular 

markers; furthermore the accuracy of different algorithms changes according to the genetic 

architecture of the trait (de los Campos et al. 2013). The algorithm with the best learning 

properties provides the most accurate prediction, which may require breeders and 

geneticists to evaluate models through cross-validation for each trait. 

One may believe that not all markers have a contribution to the trait of interest and that 

shrinkage does not eliminate markers from the model. In this case, some have proposed 

adding a variable selection term into the model, which would allow markers to pursue null 

effect. Indeed, each model presented earlier has an alternative version with variable 

selection: BayesA becomes BayesB (Meuwissen et al. 2001), BRR becomes BayesC 

(Habier et al. 2011), and BL has an expanded version proposed by Legarra et al. (2011b). 

Meuwissen et al. (2001) proposed the first WGR with variable selection using the 

Metropolis-Hasting algorithm, which proposes that markers be included into the model at 

random. The proposed changes are accepted only if the model improves. Meuwissen's 

approach is robust at a high computational cost. Alternatively, there are the following 
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feasible variable selection algorithms that have been incorporated in the Gibbs sampler 

(O'Hara and Sillanpää 2009): 

1. Stochastic search variable selection (George and McCulloch 1993); 

2. Unconditional prior (Kuo and Mallick 1998); 

3. Gibbs variable selection (Dellaportas et al. 2002). 

We showed the computation of breeding values through kernel and regression methods for 

the purpose of selection, once these values were free of environmental noise. We also 

showed that the use of a Gaussian process to estimate breeding values fails to capture the 

effect of large effect QTL, as opposed to BayesA and BL. 

The procedures of screening the whole-genome for large effect QTL by testing one marker 

at a time conditional to a polygenic term are called genome-wide association studies 

(GWAS). The polygenic term is used as an efficient way to avoid false-positives by 

controlling the population structure. 

Non-Gaussian WGR methods are capable of capturing major effect alleles and, therefore, 

can be directly used to perform GWAS. LASSO and BayesC� have been widely used for 

detecting QTLs (Colombiani et al. 2012, Fang et al. 2012, Li and Sillanpää 2012, Yi and 

Xu 2008). Furthermore, a comparison study performed by Legarra et al. (2015) pointed out 

the superiority of these methods over the traditional mixed models (ie. marker + polygene). 

2.6. Data Quality Control and Association Analysis 

Understanding the underlying genetics of quantitative traits provides basic knowledge for 

strategies of crop improvement (Sonah et al. 2014). The most common procedure to 

associate genetics and phenotypes with molecular tools is to find the markers associated 
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with phenotypes through either linkage or association mapping. Regardless of the genetic 

resource (ie. type of population), association studies have four fundamental steps: 

phenotyping, genotyping, mapping, and validation. Validation consists of performing the 

first three procedures of phenotyping, genotyping, and mapping upon an experimental 

population specially designed for this purpose (eg. near isogenic lines). Therefore, we will 

emphasize only the three initial steps. 

2.6.1 Phenotyping 

When traits are governed by many loci, sensitivity to environmental variation increases. It 

happens because the external stimuli affect the genetic expression of different loci at 

different levels. In soybeans some complex traits, like yield and drought tolerance, are 

highly variable across the genome regarding genetic expression (Guimarães-Dias et al. 

2012, Le et al. 2011). In the context of minimizing environmental noise in phenotypes, 

research on field phenomics aims to generate or improve high-throughput and high-

precision phenotyping techniques. This omic-integration has primarily helped to improve 

abiotic stress (Deshmukh et al. 2014). 

It is possible to further reduce noise due to field variation through a Gaussian process using 

spatial statistics, such as kriging (Basso et al. 2000) that allows adjustment for spatial 

correlation among field trials (Banerjee et al. 2010, Zas 2006). Lado et al. (2013) was able 

to improve accuracy of genomic prediction in wheat by controlling field variation through 

spatial adjustments using a simple mixed model with a moving-mean covariate structure. 

Kriging methods to control field variation can be used to compliment experimental design 

and unreplicated trials (Banerjee et al. 2010, Lado et al. 2013). Phenotypic data contains 
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the actual genetic information, the micro- and macro-environmental variation, and the 

interactions between environmental and genetic factors. 

For this application of kriging, we can employ the following mixed effect model: � = ��+

�� + �� + �, where the observed phenotype (�) is a function of some fixed effect (��), 

like block or environment, the genetic effect (��) that allows specification of the 

association among individuals given �~N(0,	
��), the field variation (��) term in which 

the spatial relationship (ie. distance between plots in the field) is defined by an exponential 

or Gaussian kernel () such that �~N(0,
��), and the residual term (�) that contains 

random errors and higher-order interactions. The design matrix of the field variation is an 

identity matrix because each plot is observed once. According to Zas (2006), it is possible 

to obtain adjusted phenotypes (��) by subtracting the field variation component from the 

observed phenotype: �� = � � �. 

Adjusted phenotypic values provide robust results and many measures can help to evaluate 

such improvements (Table 4). With reduced environmental noise, genotypes tend to have 

a more stable performance across environments, which can be measured using a Pearson 

or Spearman correlation. Another measure of improvement is the increase in broad- and 

narrow-sense heritabilities, once that more variance is expected to be due to genetic factors. 

2.6.2 Genotyping 

High-throughput genotyping techniques have become very popular in plant breeding 

(Jarquín et al. 2014, Sohan et al. 2014), often with poor genotyping quality and a large 

amount of missing data (Halprin and Stephan 2009) that makes mapping and selection 

challenging (Jarquín et al. 2014, Poland and Rife 2012). Thus, the accurate imputation of 
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missing loci and good correction of SNP miscalls becomes essential for robust downstream 

analyses (Marchini and Howie 2010). 

Two popular methods of genotypic imputation in plant breeding are random forest and 

hidden Markov models (HMM) (Swarts et al. 2014, Rutkoski et al. 2013). Random forest 

is a non-parametric method of prediction, classification, and imputation of mixed data 

types. It establishes a combination of decision-tree predictors, in which decision trees are 

bootstrapped to generate random independent vectors that constitute training forests. This 

is particularly useful for imputing unordered markers. Rutkoski et al. (2013) reported 

random forest as a promising method to impute genotyping-by-sequencing (GBS) data in 

wheat. 

HMM are commonly employed in genetics and genomics for stochastic modeling of 

Markov processes, such as the computation of haplotypes. Assuming ordered markers, the 

HMM estimates the most likely path of states (ie. genotype) based on the transition 

probability of marker m� to change state given the previous marker m���. In genetic terms, 

the three possible states for a diploid organism with two alleles for a given locus m are: 

M�M�, M�M�, and M�M�, disregarding linkage phase. HMM is the most common method 

for imputation of missing genotypes. In addition, Marchini and Howie (2010) showed that 

HMM can boost power and resolution of genome-wide association studies. 

Other quality parameters with a major impact on analysis are the minor allele frequency 

(MAF) of molecular markers (Tabangin et al. 2009) and the marker ability of carrying a 

gene. The latter is estimated from the marker heritability (Forneris et al. 2015) when 
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markers are seen as molecular phenotypes and it used to identify markers that do not follow 

Mendelian segregation due to biased inheritance of alleles (Glémin 2010). 

Minor alleles are very important for population stratification. Wen et al. (2008) found as 

many as nine subpopulations when evaluating the structure of 393 landraces and 196 native 

populations of soybeans in China. However, low MAF has two major drawbacks in 

association analysis: (1) it may increase the rate of false discoveries if one disregards the 

existence of subpopulation; and (2) even if an allele has major effect but it is only present 

in a low frequency (Fig11), this particular gene will become undetectable due to the lack 

of power associated with the low signal-to-noise ratio (Tabangin et al. 2009). 

2.6.3 Gene Mapping 

Recapitulating general ideas of association mapping previously discussed, the procedure 

starts with estimating the breeding values using a mixed model and testing the increase in 

likelihood that each marker provides when it is set as a covariate in the model. 

Yu et al. (2006) proposed one of the first algorithms for GWAS in the mixed model 

framework: the unified mixed model (UMM) also known as the K + Q method. The 

principle of UMM is to use some fixed effect that would contribute to control population 

structure (�) besides the polygenic term. This usually entails a kernel method using 

pedigree, genomic data or both to estimate the kinship matrix (�). The fixed effect could 

be some principal components (Eigenvector of the kinship) or another set of categorical 

variables that indicates to which population individuals belong. However, solving the 

mixed model for every marker has a great computational burden. 
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Aulchenko et al. (2007) proposed an approximated method to avoid computing the mixed 

model every round, the genome-wide association using mixed model and regression 

(GRAMMAR) algorithm. The authors proposed to fit the animal model first and analyze 

the residual term as un-structured phenotypes, since the animal model is a Gaussian process 

incapable of capturing major genes. Although conveniently faster, the original 

GRAMMAR approach provides biased estimates of SNP effects. A modification of the 

GRAMMAR algorithm was proposed by Svishcheva et al. (2012) to address this limitation. 

Kang et al. (2008) proposed the EMMA algorithm to provide a computational solution for 

the K + Q model, finding the variance components as an optimization problem that 

maximizes the restricted log-likelihood (Dempster et al. 1981). EMMA includes some 

computing tricks, using the Eigen decomposition of the kinship matrix to speed up 

calculations and alternatives to classical kinship with reduced dimensions. 

Even EMMA would be impractical for large datasets and teams have proposed two 

equivalent approximation methods that do not require the calculation of variance 

components every round in order to overcome this computational limitation: (1) Kang et 

al. (2010) proposed EMMA expedited (EMMAX). It generates an empirical relationship 

matrix to comprise multiple levels of relatedness with no need for principal components; 

and (2) Zhang et al. (2010) proposed the population parameter previously determined 

(P3D) algorithm that clusters individuals and estimates variance components first, then 

finds the optimal values for clusters, fixed effect, and marker for each locus under 

evaluation. 
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With efficient incorporation of Eigen terms for the optimization of the likelihood function 

and factorized markers in the kinship matrix, two newer implementations provide an even 

more efficient exact method to handle large data. Lippert et al. (2011) proposed the factored 

spectrally transformed (FaST) algorithm that factorizes markers and Zhou and Stephens 

(2012) proposed the genome-wide efficient mixed model association (GEMMA) 

algorithm. 

In general, mixed models can increase power and prevent false positives at a reasonable 

cost, but this approach also presents some pitfalls, as summarized by Yang et al. (2014), 

such as the loss of power in case-control studies and double-fitting markers into the model. 

Double-fitting involves using markers both to build the kinship and as a covariate when 

the marker is being evaluated. 

The use of WGR as a GWAS method could easily satisfy the limitation of double-fitting 

once each marker effect is inferred from a full conditional distribution that takes into 

account all other parameters. As shown in Figure 12, three other tricks were proposed by 

Wang (2015) and implemented by Xavier et al. (2015) to further increase power and 

resolution of GWAS: (1) Treat markers as a random effect (ie. empirical Bayes algorithm) 

to shrink the background noise to zero; (2) Use a sliding window to overcome double-

fitting markers, removing the local markers from the polygenic term; (3) If any 

stratification factor is known a priori, then markers can be treated as the interaction marker 

× subpopulation. 

2.7. Conclusions 

The various models and algorithms all make important assumptions. Knowing how the 

computations work may help breeders to optimize statistical analysis and make better 
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decisions. Most statistical procedures in breeding theory are based on Gaussian process 

and can be computed through mixed models using kernels and regression models. We have 

presented here the flexibility possible by utilizing principles of machine learning and mixed 

models for selection, prediction, and mapping, as well as inferences of variance 

components. 
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CHAPTER 3: RELEVANT FACTORS FOR GENOMIC PREDICTION IN 

SOYBEANS 

ABSTRACT 

Economically relevant traits in plant breeding usually have complex genetic architectures. 

A large number of genes control the quantitative nature of these traits, each with a small 

contribution to the phenotype. For these traits, genomic selection seems to have attractive 

features and promises to boost genetic gains. Our goal was to evaluate genome-wide 

prediction of soybean (Glycine max) agronomic traits and yield components using machine 

learning approaches to evaluate different scenarios for implementing genomic selection. 

Novel multi-parent experimental populations known as next-generation populations have 

statistical and genetic properties ideal for association studies and prediction, which make 

these populations a great resource for supervised-learning experiments. We assessed a set 

of factors known to influence the accuracy of prediction using a nested association mapping 

population. These factors included training population size, genotyping density, prediction 

model, and phenotypic adjustment. Our overall model choice was a combination of the 

kernel and additive models, RKHS+BayesB. Higher genotyping density marginally 

improved prediction ability. Our study finds that breeding programs seeking efficient 

genomic selection would best allocate resources by increasing training-population size in 

combination with methods to improve quality of the phenotypic data.  
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3.1 Introduction 

An increasing need for food quality and production requires fast and efficient genetic 

improvement of plants and animals. Nonetheless, traits that are relevant to meeting global 

food demands have complex genetic architecture, sensitive to environmental factors; in 

other words, low heritability. A large number of genes control the quantitative nature of 

these traits, each with a small contribution to the phenotype. Hence the use of genomic 

information for breeding purposes represents an important boost of genetic gains in low-

heritability traits (Muir 2007). 

Many breeding techniques designed for animal improvement have been successful for 

plants too (Cowling et al. 2015). Among those, the introduction of genomic selection (GS) 

into the plant breeding pipeline is promising and has attractive features (Heffner et al. 2009; 

Jannink et al. 2010; Nakaya and Isobe 2012). Plants provide an excellent framework for 

testing theory and applications related to GS because of the large number of offspring 

possible, their ability to be cloned and inbred easily, the short life-cycles of annuals, and 

their potential genomic properties favorable to GS, such as high levels of linkage 

disequilibrium (LD) (Hyten et al. 2006 2007). Yet GS must take many aspects into account 

to optimize genetic gains by using genomic data to best allocate resources (Meuwissen et 

al. 2001; Poland 2015).  

In silico supervised machine learning experiments can determine which factors are relevant 

for this process using real and simulated data through cross-validation by testing different 

scenarios and letting the data "speak for itself", thereby indicating the combinations of 

methods and parameters that would provide the most satisfactory results. Credible 

inferences on complex traits require thorough evaluation of genetic architecture (Wimmer 
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et al. 2013). Consequently, designing a robust genome-wide prediction (GWP) system is a 

major concern. Most prediction models differ with respect to the assumptions they make 

over the behavior of marker effects (Kärkkäinen and Sillanpää 2012; Gianola 2013). The 

assumptions that best correspond to the real genetic architecture of the trait are likely to 

provide more reliable predictions (de los Campos et al. 2013). Without performing learning 

experiments to evaluate different assumptions, it is not possible to determine which model 

would offer the most consistent prediction (Habier et al. 2011; Okser et al. 2014). 

Genomic enhanced breeding values (GEBVs), estimated through whole-genome 

regression, can help breeding programs to speed up the breeding process and save resources 

in multiple ways (Heffner et al. 2009; Endelman et al. 2014). Selection based on GEBVs 

is more reliable than phenotypes alone or the traditional Quantitative Trait Loci (QTL) 

pyramiding (Nakaya and Isobe 2012). Muir (2007) has shown in simulated studies that 

GEBVs also provide more genetic gains over the long term when compared to pedigree-

based breeding values. In the plant breeding pipeline, GEBVs can help to: select un-

phenotyped material (Heffner et al. 2008), which is particularly useful when the 

phenotyping process is somehow challenging; perform more accurate selection of 

advanced lines by adding the information of relatives (Endelman et al. 2014); identify and 

incorporate useful germplasm into the breeding pipeline (Chung et al. 2014); and elect 

parents for crosses with higher chances of transgressive segregation based on breeding 

values and genomic distance (Mohammadi et al. 2015). Yet studies of GWP are important 

because the methodology for GEBV estimation is not fully understood and the outputs may 

vary from trait to trait and crop to crop. According to Wimmer et al. (2013), the 

contribution to the prediction models of heritability, genotyping, and phenotyping when 
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applied to real data is not clear. In this study we attempt to evaluate the importance of a set 

of parameters that contribute to prediction of six complex traits in soybean. These 

parameters include genotyping density, training population size, phenotypic adjustment, 

environment, and combinations of prediction models. 

Prediction studies often provide conflicting results that vary according to the genetic basis 

of the population under evaluation (de los Campos et al. 2013). Morrell et al. (2012) suggest 

using next-generation populations (NGPs) to maximize statistical properties of genomic 

studies, such as the power and resolution of genome-wide association mapping. NGPs are 

generated through controlled crosses to have reduced population structure and 

ascertainment bias. It is possible to further optimize genotypic information in NGPs by 

taking advantage of known haplotypes (Xu 2013b; Xavier et al. 2015). The two most 

common NGPs are nested association mapping (NAM) and multi-parent advanced 

generation intercross (MAGIC) populations. NAM is also seen as a subset of a MAGIC 

population in which multiple founders are crossed to a single standard parent as opposed 

to random inter-mating. Development of NAM panels seeks to capture "useful diversity" 

for the dissection of the genetic architecture of complex traits (Yu et al. 2008). 

Guo et al. (2012) performed the first published study of GWP using a NAM population by 

analyzing three maize traits using individual bi-parental families as opposed to the NAM 

population as a whole. What NAM represents goes far beyond bi-parental populations 

(Hamblin et al. 2011) and thus, in this study we are treating NAM as a large population 

with complex genomic structure (Jannink et al. 2010), what provide an ideal scenario to 

study learning properties, in other words, how well statistical models learn from data and 

it affects prediction. The main objective of this study was to evaluate which factors have 
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the greatest impact on genomic prediction in soybeans using real data from a NAM 

population through supervised machine learning experiments. 

3.2 Materials and Methods 

3.2.1 Genetic material 

To evaluate GWP we used SoyNAM, a soybean nested-association panel. The SoyNAM 

population (soynam.org) contains 5555 recombinant inbred lines (RIL) with maturity 

ranging from late maturity group II to early IV, derived from 40 biparental populations that 

share IA3023 as a common parent. Among the 40 founder parents, 17 lines are U.S. elite 

public germplasm, 15 have diverse ancestry, and eight are plant introductions. Lines were 

genotyped in the F5 generation with a 5k Single-Nucleotide Polymorphism (SNP) chip. 

The SNP chip was specially designed for this population, which called SNPs from the 

parental sequencing data to minimize the ascertainment bias associated to the nature of the 

genotyping technology (Daetwyler et al. 2013; Heslot et al. 2013). 

After removing non-segregating SNPs, we coded alleles as 012 (Strandén and Christensen 

2011) and imputed missing loci using random forest implemented in the R package 

missForest (Stekhoven and Buhlmann 2012). To reduce excess rare variants, we removed 

markers with a minor allele frequency (MAF) lower than 0.15 (Heslot et al. 2013). We also 

removed redundant markers so that the genotypic data would represent natural bins (Xu 

2013b). The genotypic data contained 6.12% of heterozygous loci, slight lower than the 

expectation for an F5 generation (ie. 6.25%). Pairwise linkage disequilibrium between 

SNPs was phased via expectation-maximization (Asmussen et al. 1996) measured in terms 

of �� to illustrate the configuration of linkage blocks in this population, the LD heat map 

is shown in Figure 13. 
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We performed quality control using the NAM package by Xavier et al. (2015). To evaluate 

the impact of genotypic coverage on GWP, we tested subsets of the genotypic data as 

proposed by Meuwissen et al. (2001), with the whole panel, half panel, and quarter panel, 

corresponding to the 4077, 2039, and 1020 SNP markers respectively. The subsets 

containing half and a quarter of the whole panes were obtained by systematically picking 

one every two and four markers, respectively. 

Afterwards, 196 lines had nearly identical genotypes (>95%) but remained in the prediction 

analysis. The relationship among lines in shown in Figure 14, where it is notable that the 

overall relationship within family is slightly higher than between family, since all 

individuals are either full- or half-siblings.   

3.2.2 Phenotypes 

Phenotypic data was collected from the SoyNAM population in 2013 and 2014 in West 

Lafayette, Indiana. In both years, lines were planted during the third week of May in two-

row plots, 2.9m × 0.76m, at a density of approximately 36 plants/m2. 

Collection of phenotypic measurements proceeded as follows: Grain yield was measured 

in grams per plot adjusted to 13% of moisture. Days to maturity was collected three times 

a week, with back and forward scoring of plots that matured in the intervals. Number of 

reproductive nodes and pods in the main stem were counted in R7-R8, measuring 3 and 6 

plants per plot for 2013 and 2014 respectively, with the count of pods per node (P/N) being 

the ratio of these data points. 
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3.2.3 Prediction Models 

Two main types of prediction method are widely used in GWP; these are parametric and 

non-parametric prediction. Parametric methods are based on estimating the additive effect 

of allele substitution to molecular markers, and breeding values are computed as the sum 

of marker values of genotyped individual. Non-parametric methods work in non-linear 

fashion (Peréz-Rodríguez et al. 2012), which is particularly useful for the prediction of 

highly epistatic traits (Howard et al. 2014). Non-parametric methods include neural 

networks, random forest and kernel regressions.  

Kernel regression is the most popular non-parametric method. Molecular markers are used 

to estimate genomic relationship among all genotypes, also known as kinship, and the 

breeding values are computed as the additive genetic-value that each individual contributes 

to its relatives. Kernel methods are Gaussian process that follow the Fisher’s infinitesimal 

model, they do not assign values to markers and, therefore, are not capable of recognize 

large-effect QTLs (Sorensen and Gianola 2002). For this reason, genome-wide association 

studies use kernels to control the effect of genetic background (Bernardo 2013). Kernel 

methods were used in plant and animal breeding prior to the existence of molecular 

markers, applying pedigree information to generate the kinship among individuals 

(Bernardo 2010), the so-called animal model (Henderson 1984). 

We tested the prediction performance of five additive models (parametric), two kernel 

models (non-parametric), and each combination of both on each of the six soybean traits. 

The combination of additive and kernel methods is a strategy of ensemble learning that 

seeks to use the kernel to account for polygenic background and the additive model to 

capture the marker effects (Kärkkäinen and Sillanpää 2012). This practice has commonly 
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been used to incorporate pedigree information into prediction models (Muir 2007, de los 

Campos et al. 2009, Heffner et al. 2009), but we used the molecular data to represent the 

relationship among genotypes instead (Howard et al. 2014). 

The models we evaluated were BayesA, BayesB, BayesC, the Bayesian best linear 

unbiased predictor (BLUP), the Bayesian least absolute shrinkage and selection operator 

(BLASSO), and two kernel models, the reproducing kernel Hilbert spaces (RKHS) and the 

genomic best linear unbiased predictor (GBLUP). We represent the general model that 

describes the prediction employing both parametric and non-parametric terms in this study 

as 

� = � + ���+� + � 

where � is the response variable with � observations, � is the intercept, � is an � × 	 

design matrix containing 	 markers, � is the vector with length 	 of marker effects 

identically distributes as normal, 
 or double-exponential distribution according to the 

model’s prior assumption, � is a vector of zeros and ones binomially distributed that 

indicates which markers are included into the model, � is the polygenic term of the � 

observations, assumed to be normally distributed as �~N(0,��
�) where K represents the 

kinship among lines, and � is the vector of residuals with length �, assumed to be normally 

independently distributed �~N(0, I���).  

From the Bayesian standpoint, the parametric models BLUP, BayesA, BayesB, BayesC, 

and BLASSO (Meuwissen et al. 2001; Park and Casella 2008; Habier et al. 2011) differ in 

their assumptions over the prior distribution of marker effects (��). BLUP assumes that 

marker effects are normally distributed with the same variance, while BayesA assumes that 
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marker effects are t distributed as an infinite mixture of normals with independent 

variances. BayesB and BayesC, so-called slab priors, are equivalent to BayesA and BLUP 

with a variable selection (O'Hara and Sillanpää 2009) that allows markers to have zero 

effect with a probability of 1 � �, characterizing the prior distribution of marker effects as 

a mixture of binomial with t (BayesB) or normal (BayesC). BLASSO assigns a double-

exponential density to marker effects that causes a strong shrinkage of effects toward zero 

but does not assign a zero effect, unlike the original LASSO (Tibshirani 1996). 

Why does that matter? Double-exponential and t distributions have thick tails that allow 

markers to have large effect, which is a valid assumption for traits controlled by major 

genes (Kärkkäinen and Sillanpää 2012). BLUP and kernel-based procedures are Gaussian 

processes, meaning that they may not capture the existence of large-effect QTL (Sorensen 

and Gianola 2002). Due to the independent variance assigned to each marker by BayesA 

and BayesB, these models are sensitive to prior specification, and are considered weakly 

regularized and prone to overfit the data (Gianola 2013), however, to our knowledge, no 

literature have observed this trend. 

With regard to the kernel models, we defined RKHS based on the kernel average model 

proposed by de los Campos et al. (2010). It utilizes three Gaussian kernels expressed as 

exp(���/�), where � represents the genetic-distance among genotypes computed as the 

Euclidean distance. The three kernels differ by the bandwidth parameter �, which 

represents three extreme values that the bandwidth could take, thus dismissing the need for 

calibration (González-Camacho et al. 2012). The GBLUP model is based on a single linear 

kernel (Xu 2013a) known as a realized genomic relationship matrix (GRM). 
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When the model included additive and polygenic term, both markers and kernels were 

fitted together. The regularization of markers and of each kernel occurs independently. The 

linear model was solved via Markov chains Monte Carlo (MCMC). The use of Gibbs 

sampling algorithm reduces the problem dimensionality by computing each term of the 

model, one at a time. Computing all parameters many times generates their distribution a 

posteriori, and the final estimator of each parameter is obtained by averaging out this 

distribution. 

We used the R package BGLR to fit the genomic prediction models (Pérez and de los 

Campos 2014). The in-depth theoretical bases for the model building, algorithms and 

hyper-parameters are described elsewhere (Sorensen and Gianola 2002; Kärkkäinen and 

Sillanpää 2012; Gianola 2013; de los Campos et al. 2013; Pérez and de los Campos 2014). 

3.2.4 Phenotypic Adjustment 

Accounting for field variation in the phenotypic BLUPs can increase the genomic 

predictability and the response to selection (Lado et al. 2013). This pre-adjustment of 

phenotypic data is performed by the use of checks or blocks, or by removing the 

autocorrelation associated with plot-by-plot variation among field trials (Zas 2006). This 

study compared three scenarios, including no adjustment and two phenotype correction 

methods that use spatial statistics known as kriging. The general model computing spatial 

coefficients can be described as 

� = � +� + �(�) + � 

where � is the observed phenotype, � is the intercept, � is the polygenic term defining the 

genetic relationship among lines, �(�) is a function that describes the microenvironmental 
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relationship among field trials and � is the residual term. A genetic term must be jointly 

fitted with the spatial variation term (Cappa and Cantet 2008) to avoid undesirable 

consequences such as bias and heterogeneous variance (de los Campos et al. 2013). We 

computed the adjusted phenotypic values as �� = � � �(�) (Zas 2006). 

The kernel defining the field relationship among entries was based on the Euclidean 

distance � between plots in field, expressed as an exponential kernel �(�) = exp(��/�) 

with a bandwidth parameter � = 3.5 found through cross-validation. For this given kernel, 

the relationship among plots is presented in Figure 15, where the horizontal correlation 

with neighbor plots is higher than vertical because field plots are rectangular. 

The two models under evaluation differ by the polygenic term 	 that accounts for the 

genetic relationship among lines. Thus, we tested raw phenotypes with no adjustment 

(NO), the use of a linear kernel (LK) and the use of three Gaussian kernels (GK) to describe 

the kinship (Piepho 2009), the same kernels used for genomic prediction in the models 

GBLUP and RKHS. We hypothesized that estimation of the genetic term with multiple 

kernels would provide a more accurate distinction between the variation due to field and 

genetics than using regularized processes (Okser et al. 2014). We computed coefficients 

using the algorithm previously described by de los Campos et al. (2010) to solve kernel-

based models. 

Data adjusted by GK presented distribution nearly identical to the raw values. When the 

traits were adjusted with LK the distribution of phenotypes was observe slightly shrunken 

towards the mean, which could generate upward bias in subsequent prediction analysis. 
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3.2.5 Predictive Ability 

Predictive ability (PA) is a standard measure to evaluate the robustness of a prediction. 

Lehermeier et al. (2013) defined PA as the correlations between predicted (�̂) and observed 

values (�) and accuracy as PA divided square-root of heritability (��,�̂/�). The prediction 

parameters are computed through k-fold cross validation. 

To evaluate the effect of training population size, we sampled subsets of 250, 500, 1000, 

2000, 3000, and 4000 lines at random as a training set to predict a validation set of 500 

lines not included in the training set. This study, therefore, evaluated data with �-fold 

scheme where � = {0.5,1,3,5,9}. We performed 20 cross validations for each combination 

of the six population sizes (ie. value of � above), six traits, two years, seventeen prediction 

models, three phenotypic adjustments, and three densities of marker coverage. 

3.2.6. Trait Heritability 

We estimated heritability (��) for each combination of trait, year, and phenotypic 

adjustment by restricted maximum log-likelihood (REML) using the EMMA algorithm 

(Kang et al. 2008) as implemented by Xavier et al. (2015) to solve a mixed model with a 

genomic covariance structure. The mixed model is defined in probabilistic terms as 

�~�(�,	
	��� + ��
�), where � is the phenotype of a given trait by year, � is the overall 

mean, 	 is the incidence matrix of genotypes, 
 is the GRM, ��
� is the additive genetic 

variance, and ��
� is the residual variance. We computed heritabilities as �� = ��

�/(��� +

��
�/�) with � = 1 replication. 

We limit the scope of the study to the impact of multiple factor on heritability, PA and 

accuracy of GWP. Yet, we recognize that other suitable measures of prediction properties 

for comparison studies were suggested by Hastie et al. (2005) and Daetwyler et al. (2013) 
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could have been used to identify problems with model fit, including mean squared 

prediction error and prediction bias. 

3.2.7 Statistical Inference 

In a practical scenario, statistical significance does not always reflect relevance. Hence we 

are approaching the statistical analysis of GWP using principles of Bayesian decision 

theory. This method leads to a simple interpretation of the statistical inference, indicating 

the probability of a given level to be highest or overperform another level. The inferences 

on data were based on predictive ability using a hierarchical Bayesian model, one factor at 

a time, with a posterior distribution shaped as 

�(�,� � �) � �(� � �,�)�(� � �)�(�) 

where � = (�	,�
, . . . ,��) and � = (�	
,�

, . . . ,��
) for a factor with  levels. The 

distribution of the ��� level is ��� = �(�� ,��

), in which the parameter ��  is normally 

distributed as �(�, �
) and the variance ��

 is inverse-Gamma distributed ��(�,�). We set 

the prior of � as normal distribution with the mean and variance of the overall data (� =

0.379 and �
 = 0.016), and the inverse-Gamma prior of each �
 had a rate � = 3 and 

shape � = 2. Uninformative priors had little, if any, contribution to the posterior 

distribution of the parameters due to the large number of observations. 

We computed statistical inferences based on the posterior distribution of �. Comparison 

between two factor levels or the combinations of levels followed �(�� > �� � �), which 

computes as the proportion of Markov chains whose sample from �� is greater than the 

sample from ��. Comparison among all levels of a given factor had the following risk 

function computed in each Markov chain: 1 when the level represented the largest effect 
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and 0 otherwise, such that we were able to compute the posterior probability of each level 

to provide the highest predictive ability. The level of choice was, therefore, the one that 

minimized the expected risk a posteriori. 

3.3 Results 

3.3.1 Environmental factors 

The environmental factors represented by field variation as the microenvironment (Fig16) 

and year as the macroenvironment (Fig17) affect the signaling of genetic effects. Different 

traits may not necessarily display the same sensitivity to environmental changes (Cappa 

and Cantet 2008). Consequences of the environmental noise are captured by changes in 

heritability, which is inversely proportional to the variance due to environmental factors. 

It is possible to notice the influence of microenvironmental variation in Figure 16 by 

comparing the results using no phenotypic adjustment (NO) and those of two different 

methods (LK and GK). Likewise, one notices the macroenvironmental variation in Figure 

17. 

Unreplicated field designs, like the one used in this study, often cause deflated heritability 

and predictive ability (Endelman et al. 2014), although unreplicated trials are still preferred 

in GWP and mapping studies (Jannink et al. 2010). According to the complexity of the 

population structure, genome-based heritability estimates can be lower than pedigree-based 

estimates (Dekkers 2012) and nevertheless, results indicate that even low heritable traits 

still provide reasonable accuracy. Muir (2007) pointed out that traits with low heritability 

display more potential to be exploited and, therefore, low heritability estimates do not 

always affect accuracy. On the other hand, the accuracy, as defined by Lehermeier et al. 

(2013), can be interpreted as the amount of genetic gains that genomic selection can exploit 
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and, consequently, less heritable traits may provide high accuracy by displaying a 

predictive ability comparable to more heritable traits. 

Figures 16 and 17 also illustrate how the phenotypic adjustment of field trials and year 

affected heritability, PA, and accuracy in different soybean traits. The analysis of 

phenotypic adjustment indicates that the posterior probability of GK to provide the model 

with the highest PA across traits is 100%. In marginal terms, the posterior mean of PA 

increased by 18.89% (from 0.350 to 0.416) and mean heritability increased by 35.78% 

(from 0.341 to 0.603) when adjusting phenotypes with GK compared to no adjustments. 

Yield was the trait most sensitive to phenotypic adjustments; the gains in PA reached 

32.45% using GK (from 0.411 to 0.544) and heritability increased 42.03% (from 0.452 to 

0.642). Maturity displayed the highest increase in heritability when adjusting phenotypes 

with GK (71.39%, from 0.346 to 0.593) and height was the only trait that adjustments using 

linear kernel provided the highest predictive ability. This last result indicates that 

adjustment of phenotypes can be sensitive to interaction between environment and genetics 

(de los Campos et al. 2013) and that not all quantitative traits are equally responsive to 

phenotypic adjustment. All three yield components displayed the highest PA and 

heritability under the GK approach. The control of environmental noise for yield 

components is critical. Previous studies summarized by Board and Kahlon (2011) show 

that these traits are very sensitive to various environmental stimuli. 

The two environments, 2013 and 2014, showed similar results (Fig17) which indicates a 

stable level of genetic control across seasons, with the exception of height which showed 

a remarkable drop in PA and heritability in 2014. It is possible that when the field variation 

was calculated for height in 2014 using GK, the model was incapable of distinguishing 



88 
 

between field and genetic variation causing overfitting. According to Cappa and Cantet 

(2008), not fitting field and genomic covariance matrices jointly may harm the quality of 

breeding values. Nevertheless, our results indicate that model overfitting may occur even 

when employing multiple kernels. Pods, nodes, and pods per node (P/N) had a slight 

increase in PA from 2013 to 2014, averaging 5.07%. We attribute this increase in PA, 

heritability, and accuracy on yield components to the number of plants used to represent 

each field plot, which doubled from 2013 to 2014. Interestingly, doubling the observations 

per plot provided very little increase in the prediction parameters. 

Most strategies that account for field variation include the use of checks, neighbor plots, 

and a well-planned experimental design (Heffner et al. 2009; Endelman et al. 2014; Lado 

et al. 2014). Our findings support that the use of sophisticated techniques based on multiple 

kernels effectively controls field variation. Likewise, improvements of phenotypic 

measures are not trivial to genome-wide prediction and field variation must not be ignored. 

Most traits showed similar values of heritability and PA across years, indicating some level 

of stability in the genetic control and predictability of traits under evaluation. 

3.3.2 Training population size 

Training population is the most impactful factor on PA (Fig20) and can define the success 

of GWP. Two main properties of the training set are critical to GWP, its relatedness to the 

validation set (Habier et al. 2007), and the population size (Nakaya and Isobe 2012). Good 

training sets must be somehow related to the germplasm under evaluation to capture the 

population structure and have a population size sufficient for an accurate estimation of 

allelic effects (Jannink et al. 2010). As with any real dataset, SoyNAM is a finite population 

with constrained structure. Thus the model calibration becomes more accurate as the 
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training set increases. The remaining question regards what population size is required for 

a sufficiently good prediction. 

Quantitative traits are mostly controlled by alleles of small and medium effect, so that 

larger training sets will increase the signal-to-noise ratio (Muir 2007) and provide better 

learning properties (Okser et al. 2014), which potentially results in more accurate allelic 

effect estimates by minimizing the so-called Beavis effect at the whole-genome level (Xu 

2003). Increasing the size of the training set can increase predictive ability as much as 80% 

(from 0.252 to 0.454) and accuracy 82% (from 0.404 to 0.734) across traits. The posterior 

mean of PA also increases across traits by 27.29% as the training set increases from 250 to 

500 individuals, 18.49% from 500 to 1000 individuals, 12% from 1000 to 2000 individuals, 

4.86% from 2000 to 3000 individuals, and 2.03% from 3000 to 4000 individuals. Our 

results indicate that a population containing between 1000 and 2000 would be an effective 

training set as gains become relatively marginal for populations greater than 2000 

individuals (Fig18). 

Besides the quantity of the training population, the quality also determines the success of 

prediction and long-term breeding (Bastiaansen et al. 2012). The quality of the training set 

with regard to its genetic variability depends on the effective population size (��), which 

is always smaller than the total number of genotypes. Soybean and other self-pollinated 

species often suffer from reduced effective population size because of their reproductive 

nature (Cowling et al. 2015; Hamblin et al. 2011). This issue is not as severe in this study 

due the variability of the NAM populations (Yu et al. 2008), but it must be considered in 

breeding populations restricted to the narrow bases of elite germplasm. 
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It is also necessary to point out that a minimal, and perhaps optimal, population size is 

required when the ultimate goal is to perform selection of unphenotyped material to save 

resources (Heffner 2009). On the other hand, when the training set is part of a breeding 

population that is being phenotyped and selected over generations, increasing the 

population size is always beneficial from the breeding perspective to increase genetic gains 

(Bastiaansen et al. 2012; Hamblin et al. 2011; Muir 2007). 

Population size may be also critical for the choice of prediction model (Bastiaansen et al. 

2012). For example, combined models (kernel+additive) keep improving the PA as the 

population size increases while other methods are more robust with smaller population 

sizes. The posterior probability of each model to provide the highest PA changed as the 

training population size increased (Table 6). In the next section, we discuss the how 

prediction models respond to various scenarios. 

3.3.3 Prediction Model 

The posterior distribution of PA among different models is shown in Figure 19 ranging 

from 0.376 to 0.384 and thus, it was possible to obtain an increase of 2.16% in PA by 

selecting an appropriate model. This is equivalent to increasing the population size from 

3000 to 4000 individuals. Also, it must be kept in mind that we base these inferences on 

marginal terms, pooling all other variables, and increases in PA due to prediction model 

can be higher for specific combinations of trait, population size, marker density, and 

environment. 

Combined methods, have a 92.8% posterior probability of displaying higher predictive 

ability than additive methods alone, while additive methods have a 100% probability of 

being better than kernel methods alone. Interestingly, BLUP and GBLUP model are two 
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model considered to be equivalent (Habier et al. 2007), but they did not appear to have the 

same learning properties. Here, the posterior probability of BLUP to overperform GBLUP 

was 83.8%, while the probability of the combination of both to overperform BLUP is 

55.86%. According to Gianola et al. (2014), some weak learning properties of the GBLUP 

model can be overcome by resampling techniques such as bootstrapping aggregation. 

The decision to include kernels (pedigree or genomic) in the prediction model depends on 

many factors, such as the marker density (Heffner et al. 2009), availability and complexity 

of pedigree data, and genetic architecture of the trait (de los Campos et al. 2013). Our 

results indicate that there is no advantage in utilizing RKHS or GBLUP alone (Tables 5 

and 6) in contrast to reports from simulated studies of wheat and maize (González-

Camacho et al. 2012; Pérez-Rodríguez et al. 2012; Howard et al. 2014). Bernardo (2014) 

suggests that kernel-based methods can be very effective when major QTLs exist, are 

known a priori and are included as fixed effect in the prediction model. 

We observed the importance of kernel methods when combined with additive methods to 

boost the predictive ability. Results indicate that RHKS is a better complimentary method 

than GBLUP. Even though both kernel methods are somewhat additive, RKHS accounts 

for different levels or relationships among individuals through the use of non-linear kernels 

(de los Campos et al. 2010; González-Camacho et al. 2012). In addition, Habier et al. 

(2007) pointed out that markers can inform the relationship matrix and contribute to kernel 

methods regardless of actual linkage to any QTL, while this would harm any additive 

model unable to perform efficient variable selection. 

Regarding the distribution of marker effects for the SoyNAM dataset, the posterior 

probability of t models (BayesA and BayesB) to display higher PA than Gaussian models 
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(BLUP and BayesC) was 99.4%, and there was a 77.3% probability of Gaussian models 

having higher PA than double-exponential models (BLASSO). These findings show non-

regularized additive methods (BayesA and BayesB) displaying better predictive abilities 

than regularized additive methods (BLUP, BLASSO and BayesC). Nevertheless, the 

probability that BLASSO provides higher PA increases with the population size (Table 6) 

and it is possible that this could overcome the PA of BayesA and BayesB when larger 

training sets are available, in agreement with Wimmer et al. (2013) and Okser et al. (2014). 

Efficient prediction models often rely on consistent variable selection (Okser et al. 2014) 

and the implementation of variable selection appears to be feasible strategy in soybeans. 

The posterior probability of variable selection models (BayesB and BayesC) to increase 

predictive ability was 86.4% when compared to the 'all-included' counterpart models 

(BayesA and BLUP). Cultivated soybeans have a small genome, large LD blocks, and 

restricted diversity (Hyten el al 2006 2007; Chung et al. 2014). These are genomic 

properties that would contribute to the efficient selection of markers linked to QTL, along 

with the genetic properties of the nested association panels in which all individuals are 

related. Our results are based on various scenarios and traits, with a diverging number of 

makers (�) and observations (�) that range from � << � to � >> �. However, this result 

regarding variable selection may not extend to other plants. Wimmer et al. (2013) analyzed 

datasets of rice, wheat, and Arabidopsis thaliana, concluding that variable selection does 

improve plant breeding, even in the presence of major effect genes. To Wimmer et al. 

(2013), robust regularization and variable selection require a large population size, while 

our results indicate that the better performance of variable selection holds across traits 

(Table 5) and populations sizes (Table 6). 



93 
 

Pérez-Rodríguez et al. (2012) compared the performance of parametric and non-parametric 

genomic prediction models on two wheat traits across several environments, showing that 

each combination of trait and environment had an ideal model. Analyzing the data across 

environments, they found that the parametric model BayesB better predicted one trait while 

the non-parametric model RKHS better predicted another trait. Similarly, Zhong et al. 

(2009) also noticed that GBLUP and BayesB each predicted different barley traits better 

than the other. Our results show that the combination of both is beneficial. The posterior 

probability of the RKHS+BayesB model to show the highest PA across traits was 57.8%. 

Kärkkäinen and Sillanpää (2012) also report this synergy for a model of BayesB with the 

polygenic term expressed by kernels, perhaps because kernels account for structure while 

BayesB is relatively insensitive to the genetic relationship between the training and 

validation sets (Habier et al. 2007). But these properties are not always advantageous. In 

the absence of admixture, Guo et al. (2012) found that BLUP would be more suitable than 

BayesB for within-family selection in NAM populations. The higher performance of the 

combined RKHS+BayesB in our experiment can be viewed from a simple perspective of 

ensemble learning: While RKHS accounts for different degrees of relationship among 

individuals or "hidden heritability" (Okser et al. 2014), BayesB captures QTLs in 

disequilibrium with markers in an additive fashion. 

Despite the marginal contribution of the choice of prediction model to the overall predictive 

ability (2.16%), the genetic architecture of a trait determines which prediction model works 

best (Bastiaansen et al. 2012; de los Campos et al. 2013). Conversely evaluating different 

prediction models provides insight into the true genetic architecture (Dekkers 2012). 

Nonetheless, from the perspective of model flexibility, we see that the combination of a 
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non-parametric term with an additive variable selection method can account for different 

genetic interactions. Kernel methods enable the model to capture some level of epistasis 

(González-Camacho et al. 2012; Howard et al. 2014) with no assumptions about additive 

inheritance (de los Campos et al. 2009; Gianola 2009) and BayesB allows markers to have 

large and/or null effect (Habier et al. 2011). However, BayesB is not always effective to 

learn the genetic architecture of traits (Gianola 2013; Wimmer et al. 2013). It will depend 

on the proportion of markers and observations. Dekkers (2012) suggested that, with 

sufficient data, BayesB could be used to fine map causative mutations and, in spite of 

having very influential priors and restricted Bayesian learning (Gianola 2009; Lehermeier 

et al. 2013), our results show BayesB to be an outstanding method with respect to its 

prediction ability in a variety of scenarios, particularly when combined with kernels. 

3.3.4 Genotyping Density 

The posterior probability that all SNPs would provide the best PA was 85.5%. However, 

the increase in the posteriori mean of PA associated with the number of SNPs was 0.64% 

(from 0.378 to 0.38). Higher genotyping density often does not provide a substantial 

increase in predictive properties (VanRaden et al. 2011) and subsets of the genotypic data 

sometimes overperform the entire dataset (Erbe et al. 2012). Xu (2013b) observed that 

artificial bins that compress genotypic information into fewer parameters could provide 

more accurate results than natural bins. 

For the SoyNAM population, 1020 markers would be enough to provide a consistent 

prediction while higher density genotyping would provide only marginal gains in PA. This 

result is likely due to soybean’s genomic properties, such as the existence of large 
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disequilibrium blocks presented in Figure 13 also reported by Hyten et al. (2007), and 

uneven distribution of SNPs in clusters reported in Li et al. (2014). 

SoyNAM is a group of biparental populations without intercross generations comprising 

elite and non-elite germplasm; nevertheless the importance of larger SNP panels grows 

when the population structure is unknown, the number of generations increases and the LD 

between QTL and marker decays (Bastiaansen et al. 2012; Daetwyler et al. 2013). In 

agreement with VanRaden et al. (2011), our results support the preference for increased 

population size over higher genotyping density. 

3.4 Conclusions 

By comparing the gains associated with each factor across traits, we showed that training 

population size and phenotypic adjustments were the most relevant parameters with regard 

to predictive ability in the SoyNAM dataset (Fig20). Thus the resources that best optimize 

prediction are related to the size and quality of the training set. However, it is important to 

recall that the other factors in study also contribute to GWP and should be optimized as 

well. 

The application of spatial statistics substantially improved the quality of our phenotypic 

data (Cappa and Cantet 2008), as reflected in higher estimates of heritability, predictive 

ability, and accuracy (Lado et al. 2014). Increasing the training population size also 

enhanced these prediction parameters. Nevertheless, the rate of improvement decreased 

rapidly above 2000 individuals, suggesting that an optimal population size exists and it was 

between 1000 and 2000 for the dataset in study. Yet, for the best allocation of resources, it 

is better to prioritize a larger population over high density genotyping (VanRaden et al. 

2011; Bastiaansen et al. 2012). 
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We showed that comparison among prediction models plays two important roles: (1) it 

helps us to learn, understand, and quantify the genetic architecture (Bastiaansen et al. 2012; 

Dekkers 2012; Gianola 2013) and (2) it is necessary to decide which model or combination 

of models would provide the most reliable breeding values (Habier et al. 2007; Lehermeier 

et al. 2013). The best overall model choice was RKHS+BayesB, which combines methods 

to provide a more robust prediction (Kärkkäinen and Sillanpää 2012), but further research 

on variable selection, kernels, and regularization is necessary (Piepho 2009; de los Campos 

et al. 2010; Wimmer et al. 2013). 

Reinforcing previous studies, we recognized the value of next-generation populations to 

exploit new genomic frontiers through machine learning procedures not limited to genome-

wide associations (Guo et al. 2012; Gianola 2013; Okser et al. 2014; Poland 2015). NGPs 

have interesting statistical properties valuable for in silico experiments (Yu et al. 2008; 

Hamblin et al. 2011). Results from machine learning experiments based on real data, such 

as the present study, are fundamental for resource allocation, planning, and decision 

making in breeding programs that aim to optimize genetic gains (Muir 2007; Lehermeier 

et al. 2013; Endelman et al. 2014; Lado et al. 2014). 
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Table 1. Number of times that each pairwise combination of traits was observed together. Main 
diagonal represent the total number of observation for each trait (bold). 

 
† Yld, grain yield; Flo, flowering; Mat, maturity; Rep, length of reproductive period; Hgt, plant height; Ldg, lodging score; Acc, average canopy closure; 
Rcc, rate of canopy closure; LSh, leaflet shape; Node, number of reproductive; Pod, pods in the main stem; P/N, pods per node; SW, 100-seed weight; Int, 
internode length. 

 

 

Table 2. Phenotypic correlation: Pearson’s correlation (upper-right diagonal) and Spearman’s correlation 
(lower-left diagonal). 

 
* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Yld, grain yield; Flo, flowering; Mat, maturity; Rep, length of reproductive period; Hgt, plant height; Ldg, lodging score; Acc, average canopy closure; 
Rcc, rate of canopy closure; LSh, leaflet shape; Node, number of reproductive; Pod, pods in the main stem; P/N, pods per node; SW, 100-seed weight; Int, 
internode length. 

 

 

 

 

 

Trait† Yld Flo Mat Rep Hgt Ldg Acc Rcc LSh Node Pod P/N SW Int

Yld 15643 9992 15638 9990 15640 11082 11061 11059 11096 11331 11331 11331 10058 11331

Flo - 10005 10000 10003 10002 9993 9970 9968 10005 10005 10005 10005 4426 10005

Mat - - 19012 10001 19009 14451 11070 11068 11105 14700 14700 14700 10063 14700

Rep - - - 10004 10001 9994 9969 9967 10004 10004 10004 10004 4424 10004

Hgt - - - - 19014 14449 11072 11070 11107 14702 14702 14702 10065 14702

Ldg - - - - - 14452 11060 11058 11095 14452 14452 14452 5518 14452

Acc - - - - - - 11075 11073 11075 11075 11075 11075 5529 11075

Rcc - - - - - - - 11073 11073 11073 11073 11073 5528 11073

LSh - - - - - - - - 11110 11110 11110 11110 5529 11110

Node - - - - - - - - - 14705 14705 14705 5762 14705

Pod - - - - - - - - - - 14705 14705 5762 14705

P/N - - - - - - - - - - - 14705 5762 14705

SW - - - - - - - - - - - - 10065 5762

Int - - - - - - - - - - - - - 14705

Trait† Yld Flo Mat Rep Hgt Ldg Acc Rcc LSh Node Pod P/N SW Int

Yld - -0.059*** 0.312*** 0.313*** 0.134*** 0.013 0.311*** 0.134*** 0.12*** 0.198*** 0.177*** 0.063*** 0.072*** -0.056***

Flo -0.048*** - 0.21*** -0.533*** 0.194*** 0.07*** -0.008 0.02* -0.063*** -0.001 -0.038*** -0.057*** 0.046** 0.128***

Mat 0.299*** 0.302*** - 0.591*** 0.418*** 0.166*** 0.179*** 0.048*** -0.003 0.205*** 0.101*** -0.072*** 0.032** 0.145***

Rep 0.405*** -0.235*** 0.747*** - 0.207*** 0.095*** 0.132*** 0.034*** 0.02* 0.216*** 0.133*** -0.01 -0.022 0.006

Hgt 0.123*** 0.231*** 0.399*** 0.296*** - 0.352*** 0.442*** 0.249*** -0.047*** 0.337*** 0.276*** -0.012 -0.024** 0.417***

Ldg 0.03** 0.051*** 0.182*** 0.133*** 0.379*** - 0.302*** 0.214*** -0.134*** 0.19*** 0.193*** 0.07*** 0.002 0.114***

Acc 0.298*** -0.005 0.175*** 0.172*** 0.426*** 0.307*** - 0.533*** -0.133*** 0.303*** 0.238*** 0.06*** 0.087*** 0.094***

Rcc 0.121*** 0.045*** 0.059*** 0.025** 0.241*** 0.225*** 0.502*** - -0.049*** 0.205*** 0.139*** 0.019* 0.026* 0.05***

LSh 0.151*** -0.03** -0.001 -0.003 -0.045*** -0.141*** -0.105*** -0.042*** - -0.032*** -0.029** -0.014 -0.028* -0.028**

Node 0.195*** -0.011 0.229*** 0.299*** 0.387*** 0.243*** 0.29*** 0.197*** -0.049*** - 0.508*** -0.033*** -0.009 -0.266***

Pod 0.177*** -0.052*** 0.104*** 0.177*** 0.276*** 0.21*** 0.232*** 0.145*** -0.013 0.597*** - 0.778*** -0.056*** -0.203***

P/N 0.07*** -0.063*** -0.059*** -0.018* 0.016* 0.084*** 0.06*** 0.029** 0.023** 0.031*** 0.768*** - -0.064*** -0.042***

SW 0.075*** 0.08*** 0.054*** 0.01 -0.013 0.007 0.103*** 0.023* -0.05*** -0.017 -0.057*** -0.059*** - 0.06***

Int -0.052*** 0.159*** 0.148*** 0.007 0.429*** 0.119*** 0.095*** 0.049*** -0.027** -0.315*** -0.205*** -0.04*** 0.063*** -
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Table 3. Genetic correlation (upper-right diagonal), environmental correlation (lower-left 
diagonal) and heritabilities (main diagonal, bold letters). 

 
* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level. 
*** Significant at the 0.001 probability level. 
† Yld, grain yield; Flo, flowering; Mat, maturity; Rep, length of reproductive period; Hgt, plant height; Ldg, lodging score; Acc, average canopy closure; 
Rcc, rate of canopy closure; LSh, leaflet shape; Node, number of reproductive; Pod, pods in the main stem; P/N, pods per node; SW, 100-seed weight; Int, 
internode length. 

 

 

 

Table 4. Correlation between two years of SoyNAM phenotypic data (2013 and 2014) and narrow-sense 
heritability before kriging (BK) and after kriging (AK) for six soybean traits: plant height (Height), days to 
flowering (Flower), days to maturity (Mature), number of nodes (Nodes) and pods (Pods) and average 
canopy closure (ACC). 

 
  

Trait† Yld Flo Mat Rep Hgt Ldg Acc Rcc LSh Node Pod P/N SW Int

Yld 0.632 -0.291*** 0.692*** 0.798*** 0.553*** 0.503*** 0.726*** 0.53*** 0.081*** 0.58*** 0.435*** 0.153*** 0.089*** 0.08***

Flo -0.051*** 0.7 0.205*** -0.536*** 0.385*** 0.322*** 0.038*** -0.07*** -0.326*** -0.065*** -0.122*** -0.211*** 0.127*** 0.42***

Mat 0.344*** 0.131*** 0.822 0.714*** 0.863*** 0.71*** 0.613*** 0.29*** -0.142*** 0.465*** 0.187*** -0.17*** 0.207*** 0.487***

Rep 0.248*** -0.64*** 0.535*** 0.716 0.454*** 0.376*** 0.496*** 0.3*** 0.102*** 0.476*** 0.256*** -0.011 0.107*** 0.084***

Hgt 0.269*** 0.13*** 0.469*** 0.163*** 0.881 0.891*** 0.765*** 0.522*** -0.288*** 0.394*** 0.216*** -0.07*** 0.206*** 0.666***

Ldg 0.088*** 0.026** 0.225*** 0.108*** 0.351*** 0.658 0.831*** 0.649*** -0.424*** 0.573*** 0.454*** 0.152*** 0.068*** 0.407***

Acc 0.355*** -0.056*** 0.177*** 0.125*** 0.459*** 0.285*** 0.729 0.896*** -0.359*** 0.536*** 0.429*** 0.165*** 0.207*** 0.312***

Rcc 0.197*** -0.011 0.06*** 0.046*** 0.209*** 0.143*** 0.497*** 0.604 -0.319*** 0.381*** 0.303*** 0.117*** 0.163*** 0.195***

LSh 0.096*** -0.046*** -0.018* 0.009 -0.058*** -0.153*** -0.147*** -0.032*** 0.594 -0.024** -0.039*** -0.035*** -0.077*** -0.265***

Node 0.219*** -0.003 0.224*** 0.15*** 0.361*** 0.224*** 0.309*** 0.187*** -0.049*** 0.823 0.831*** 0.382*** -0.066*** -0.422***

Pod 0.197*** -0.043*** 0.099*** 0.096*** 0.2*** 0.192*** 0.228*** 0.09*** -0.028** 0.625*** 0.837 0.83*** -0.23*** -0.478***

P/N 0.077*** -0.062*** -0.062*** 0.002 -0.047*** 0.057*** 0.045*** -0.024** 0.003 0 0.775*** 0.746 -0.321*** -0.406***

SW 0.021* -0.099*** -0.071*** -0.065*** -0.005 -0.031* 0.044** -0.009 0.001 -0.045*** -0.039** -0.015 0.394 0.266***

Int 0.047*** 0.119*** 0.226*** 0.033*** 0.573*** 0.117*** 0.141*** 0.04*** -0.012 -0.541*** -0.377*** -0.062*** 0.028* 0.854

Parameter Height Flower Mature Nodes Pods ACC

BK 0.67 0.2 0.54 0.22 0.21 0.21

AK 0.71 0.2 0.55 0.26 0.25 0.35

BK 0.9 0.49 0.82 0.74 0.82 0.74

AK 0.94 0.56 0.88 0.76 0.88 0.79

Correlation

Heritability
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Table 5. Posterior probability of each model to provide the highest predictive ability of each trait and 
across traits (overall). 

 

 

Table 6. Posterior probability of each model to provide the highest predictive ability for different sizes of 
training population set. 

  

Height Maturity Nodes Pods P/N Yield Overall

BayesA 0.041 0.11 0.042 0.04 0.03 0.06 0.015

BayesB 0.074 0.211 0.066 0.08 0.04 0.1 0.063

BayesC 0.011 0 0.046 0.03 0.05 0.06 0.001

BLASSO 0.003 0 0.001 0 0 0.02 0

BLUP 0.002 0 0.009 0.01 0.02 0.02 0

GBLUP 0 0 0.001 0 0 0.01 0

GLUP+BayesA 0.035 0.069 0.058 0.04 0.07 0.07 0.019

GLUP+BayesB 0.065 0.202 0.085 0.09 0.1 0.1 0.07

GLUP+BayesC 0.01 0 0.045 0.02 0.06 0.04 0

GLUP+BLASSO 0.004 0 0.004 0.01 0.01 0.02 0

GLUP+BLUP 0.003 0 0.016 0.01 0.02 0.02 0

RKHS 0.002 0 0 0 0 0 0

RKHS+BayesA 0.245 0.133 0.155 0.23 0.19 0.14 0.244

RKHS+BayesB 0.347 0.276 0.284 0.31 0.27 0.21 0.578

RKHS+BayesC 0.091 0 0.132 0.07 0.1 0.08 0.01

RKHS+BLASSO 0.036 0 0.012 0.02 0.01 0.02 0

RKHS+BLUP 0.031 0 0.045 0.03 0.04 0.03 0

250 500 1000 2000 3000 4000

BayesA 0.04 0.03 0.08 0.09 0.07 0.05

BayesB 0.19 0.15 0.15 0.1 0.06 0.03

BayesC 0.03 0.02 0.02 0.01 0.01 0.01

BLASSO 0 0 0 0.02 0.03 0.03

BLUP 0 0 0 0 0 0

GBLUP 0 0 0 0 0 0

GLUP+BayesA 0.06 0.05 0.07 0.09 0.07 0.04

GLUP+BayesB 0.16 0.16 0.16 0.11 0.08 0.04

GLUP+BayesC 0.03 0.02 0.01 0.01 0.01 0.01

GLUP+BLASSO 0 0 0 0.01 0.02 0.02

GLUP+BLUP 0 0.01 0 0 0 0

RKHS 0 0 0 0 0 0

RKHS+BayesA 0.12 0.15 0.14 0.21 0.25 0.27

RKHS+BayesB 0.29 0.31 0.31 0.31 0.3 0.31

RKHS+BayesC 0.08 0.08 0.04 0.03 0.04 0.06

RKHS+BLASSO 0 0 0 0.01 0.04 0.13

RKHS+BLUP 0.01 0.02 0.01 0 0.01 0.03
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Figure 14. Heat map of the genomic relationship matrix of the 5555 individuals of the 
SoyNAM population with delimitations indicating family. 
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Muir. Alencar's research on yield components in the SoyNAM population called attention 

of Dow AgroSciences, which turned out funding his entire PhD research. With growing 

interest on statistical genetics, Alencar developed novel methods that would accommodate 

omic data of next-generation populations. Many statistical packages developed by Alencar 

were published on R and are being used worldwide for data analysis in the public and 

private sector. Alencar wrote eight manuscripts by the time of his graduation, having two 
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improve the way breeding is done, trying to make it more data-driven and optimizing the 

use of novel technologies into breeding pipelines. 
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