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Abstract

Evolutionary quantitative genetics has recently advanced in two distinct streams. Many biologists 

address evolutionary questions by estimating phenotypic selection and genetic (co)variances (G 

matrices). Simultaneously, an increasing number of studies have applied quantitative trait locus 

(QTL) mapping methods to dissect variation. Both conceptual and practical difficulties have 

isolated these two foci of quantitative genetics. A conceptual integration follows from the 

recognition that QTL allele frequencies are the essential variables relating the G-matrix to marker-

based mapping experiments. Breeding designs initiated from randomly selected parental 

genotypes can be used to estimate QTL-specific genetic (co)variances. These statistics 

appropriately distill allelic variation and provide an explicit population context for QTL mapping 

estimates. Within this framework, one can parse the G-matrix into a set of mutually exclusive 

genomic components and ask whether these parts are similar or dissimilar in their respective 

features, for example the magnitude of phenotypic effects and the extent and nature of pleiotropy. 

As these features are critical determinants of sustained response to selection, the integration of 

QTL mapping methods into G-matrix estimation can provide a concrete, genetically based 

experimental program to investigate the evolutionary potential of natural populations.
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Over the last 25 years, quantitative genetics has become both a unifying conceptual 

framework in evolutionary biology and an essential tool for experimental studies. One large 

research effort has centered on the “G-Matrix,” the set of genetic variances and covariances 

associated with a collection of quantitative traits. This effort has involved at least three 

interrelated components: (1) an explosion of studies applying the Lande and Arnold (1983) 

regression methodology to measure selection in natural populations (reviewed by Kingsolver 

et al. 2001), (2) the continued estimation of genetic (co)variances of traits (e.g., Mezey and 

Houle 2005), and (3) the development of theoretical models to predict multitrait evolution 

under a variety of scenarios (e.g., Kirkpatrick and Lande 1989; Jones et al. 2003; Turelli and 

Barton 2004). Advances in molecular genetics and the development of high density genetic 

maps have facilitated a distinct research effort. Quantitative trait locus (QTL) mapping 

allows the dissection of trait variation into genomic components (Paterson et al. 1988; 

Lander and Botstein 1989; Tanksley 1993), potentially revealing the underlying genetic 

details of quantitative variation (Mackay 2004).

HHS Public Access
Author manuscript
Evolution. Author manuscript; available in PMC 2018 May 29.

Published in final edited form as:
Evolution. 2009 April ; 63(4): 813–825. doi:10.1111/j.1558-5646.2008.00590.x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite the fact that QTL studies examine the same class of characters that populate G-

matrices, these two streams of quantitative genetics remain strangely isolated in practice. 

This is illustrated by manuscript citation patterns. Figure 1 enumerates citations to two 

standard references: Lande and Arnold (1983) is routinely cited in G-matrix studies whereas 

Lander and Botstein (1989) is for QTL mapping papers. In the interval from 1984 to 2007, a 

total of 2343 papers cited Lander and Botstein (1989) whereas 1479 cite Lande and Arnold 

(1983). Remarkably, only 15 publications reference both papers and most of these do not 

relate the two foci of quantitative genetics in any material way.

The disconnection between G-matrix and QTL experiments is due in part to the nature of 

variables typically estimated by each type of study. Genetic variances and covariances are 

population statistics. These quantities summarize variation in the genotypic values of 

individuals randomly sampled from some reference population. In statistical terminology, 

these genotypic values are random effects (Searle et al. 1992, ch. 1). The G-matrix is the 

parameter set associated with this vector of random effects. In contrast, evolutionary 

geneticists have generally used line crosses to map QTLs. The parental “lines” are typically 

chosen because they differ in some notable phenotype or represent distinct taxonomic units, 

i.e., divergent populations or species (e.g., Bradshaw et al. 1998; Colosimo et al. 2005; 

Gleason et al. 2005). Under these conditions, QTLs are necessarily estimated as cross-

specific fixed effects (Lynch and Walsh 1998, ch. 15).

QTL allele frequencies are the essential variables relating marker-based quantitative genetics 

to the evolution of demes (contiguous natural populations). If we ignore dominance, 

epistasis, and linkage disequilibria, and assume two alleles per QTL, the components of the 

G-matrix can then be written as:

V A[x] = ∑
i

2qi(1 − qi)ai[x]
2 (1a)

CA[x, y] = ∑
i

2qi(1 − qi)ai[x]ai[y], (1b)

where VA[x] is the additive genetic variance for trait X, CA[x,y] is the additive genetic 

covariance between traits X and Y, qi is the frequency of the first allele at QTL i, ai[x] is the 

additive effect of that allele on trait X, and the summations are taken over all loci affecting 

the trait (or traits). The aggregate quantity 2qi(1 − qi)a2
i[x] is the genetic variance contributed 

by a QTL, whereas 2qi(1 − qi) ai[x]ai[y] is the corresponding covariance. Equations (1) are 

highly simplified but illustrate a fundamental feature of G-matrix components. Geneticists 

routinely identify a QTL as “major” if the estimated absolute value for ai[x] is large in a 

particular cross. However, such a QTL will make a distinctly minor contribution to genetic 

(co)variation if qi is close to 0 or 1.

Evolutionary biologists estimate genetic variances and covariances for a diversity of 

purposes. Principal objectives are to (1) quantitatively predict multitrait evolution and 
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diversification (Hazel 1943; Lande 1979; Grant and Grant 1995; Steppan 1997), (2) provide 

a more general and qualitative assessment of evolutionary potential and constraint (Arnold 

1992; Houle 1992), and (3) infer the evolutionary forces acting on trait variation (Mitchell-

Olds et al. 2007). The inclusion of QTL mapping data can advance each of these objectives, 

although most effectively if allele frequencies are considered in concert with allelic effects. 

This can be done by estimating genetic (co)variances at the scale of individual QTL, and 

ideally, further decomposing these (co)variances into their component parts, allelic effects 

and frequencies. In the following sections, I first discuss how QTL covariance estimates can 

advance work toward each of the principle objectives listed above and then review 

experimental methods to obtain such estimates.

DYNAMICS OF THE G-MATRIX UNDER SELECTION

The most obvious and perhaps compelling reason to estimate G-matrix components is that 

these “whole-genome statistics” are adequate to predict immediate response to selection 

under quite general conditions (Lush 1937; Bulmer 1980; Turelli and Barton 1994). Additive 

genetic (co)variances are useful abstractions regardless of the number of QTL, the 

distribution of allelic effects, and even interactions (epistasis) or associations (linkage 

disequilibria) among loci. Beyond immediate response, however, a difficulty emerges. Trait 

means and genetic (co)variances are functions of the same underlying variables, QTL allele 

frequencies. Thus, while changes in trait means can be predicted from genetic (co)variances, 

these predictor variables are also evolving.

Lande (1979, p. 405) emphasized that trait means typically change much more rapidly than 

(co)variances, particularly when variation is due to many minor QTL. However, the 

separation of time scales for means versus (co)variances begins to break down if there are 

QTLs with large contributions to (co)variation. Genetic (co)variances will also change 

rapidly under sustained selection if variation is due to rare alleles, even if all QTLs make 

small contributions (e.g., table 1 in Kelly 2008). This dependence of (co)variance evolution 

on the features of individual QTL, and not whole-genome aggregate statistics, motivates a 

genomic decomposition of the G-matrix.

The quantitative relationship between QTL features and G-matrix evolution is complicated. 

For a single quantitative trait under selection, the rate of change in allele frequency and 

mean effect of the QTL under selection should be at least roughly proportional to the QTL 

variance (Griffing 1960). Clearly, VA[x] will evolve more rapidly if variation in trait X is 

caused by a few major, rather than many minor, QTLs. However, the magnitude and 

direction of change in a specific QTL variance depends on the higher moments of the 

distribution of effects, e.g., skew and kurtosis (Barton and Turelli 1987). For example, a 

biallelic QTL with additive effects will contribute the same variance regardless of whether 

the high allele has frequency 0.2 or 0.8. However, selection for higher trait values will 

increase VA[x] with p = 0.2 (positive skew in the QTL effect distribution), but decrease VA[x] 

with p = 0.8 (negative skew). Extending to multiple traits, the numerical study of Bohren et 

al. (1966) suggests that genetic covariances may be even more sensitive than variances to 

changes in gene frequency brought about by selection. These authors argued that allele 

frequency asymmetry (sensu Falconer and Mackay 1996, pp. 212–213), and the consequent 
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evolution of VA[x], is the most important cause of asymmetric responses to artificial 

selection.

When considering multiple traits, unambiguous analytical results are limited (see Turelli 

1988). However, some simple qualitative arguments identify the nature and extent of 

pleiotropy as a critical feature of QTL. If pleiotropy is consistent across QTLs, for example 

if alleles that increase trait X also invariably increase trait Y, then directional selection on a 

single trait has predictable effects: CA[x,y] will change in magnitude but not direction as 

allele frequencies change. The situation is a bit more complicated with multitrait selection, 

particularly if favored traits are negatively correlated. Here, pleiotropy and selection impose 

fitness compromises on QTL alleles. Even if pleiotropy is consistent in direction, differences 

among QTL in the magnitude of allelic effects on traits can cause the high allele for trait X 

to increase in frequency at some QTL but decrease in frequency at others. These changes 

have conflicting effects on CA[x,y].

If the direction of pleiotropy is variable across QTL, selection can even change the sign of 

CA[x,y], that is a positive genetic correlation can become negative and vice versa. With this 

kind of pleiotropy, CA[x,y] is a net balance between QTLs contributing positively and 

contributing negatively. As selection alters allele frequencies, this balance shifts. Variable 

pleiotropy has been documented in QTL mapping of interpopulation crosses (e.g., Hall et al. 

2006; Albert et al. 2008) and is also likely to be prevalent for intrapopulation variation 

(Mackay 1996). Given the central importance of variability among QTL in their respective 

contributions to (co)variation, I outline a series of simple tests of “QTL consistency” in the 

section Hypothesis Testing section of this essay.

At least one important caveat applies to the arguments of the preceding paragraphs. The 

overall genetic (co)variance is a simple sum across QTL only if there is no epistasis and no 

linkage disequilibrium. If epistasis is absent, the linkage disequilibria among QTL have 

tractable effects on genetic (co)variances (e.g., Bulmer 1980, ch. 9). Predictably, few general 

results are available with epistasis. However, QTL mapping techniques at least provide the 

opportunity for more detailed characterization of genetic interactions. For example, in a 

study of Arabidopsis thaliana, Kroymann and Mitchell-Olds (2005) show that the high allele 

at a QTL for biomass accumulation in one genetic background becomes the low allele when 

assayed in another genetic background. This sort of epistasis, where the average effects of 

alleles at a QTL will change as the genetic background evolves, would seem most likely to 

accelerate changes in G-matrix components. An important challenge for future studies, both 

theoretical and experimental, is to determine how genomic information on QTL–QTL 

interactions can be directly brought to bear on the rate and pattern of quantitative character 

evolution.

DIVERSIFICATION OF THE G-MATRIX OVER LONGER TIME SCALES

The preceding section concerned immediate response to selection based on standing 

variation. Over longer time scales, we must also consider the input of novel variation via 

mutation and its loss due to genetic drift. Given the difficulty of directly discriminating the 

joint effects of mutation, selection, and genetic drift, researchers have resorted to 
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comparative studies of G-matrix evolution. A substantial set of statistical techniques have 

been developed and subsequently applied to contrast G-matrix estimates from closely 

related populations and/or species (Steppan et al. 2002; Bégin and Roff 2003).

G-matrix contrasts between populations can be substantially refined by inclusion of QTL 

mapping data. If alternative alleles at a QTL can be discerned, it is straightforward to 

decompose interpopulation differences in a genetic (co)variance into a component 

attributable to the QTL and that owing to the remainder of the genome. This can be 

accomplished by genotyping each individual in the breeding design that is used to estimate 

G-matrices at the QTL. This genotyping directly estimates QTL allele frequencies within 

each population and the cosegregation of QTL variation with phenotypic variation allows 

allelic effects to be estimated (see below). Given ai[x] for all relevant x, interpopulation 

differences in allele frequency (qi) combined with equation (1) immediately identify the 

contribution of QTL i to differences in G-matrices. Clearly, if we find that change at a single 

QTL substantially alters the genetic correlation, then such a correlation might represent a 

rather weak constraint on multitrait diversification over longer time scales.

Several complications related to comparing QTL (co)variances among G-matrices merit 

comment. First, ai[x] can differ between taxa if there is epistasis. Fortunately, this is a 

testable proposition if the QTL is polymorphic in both populations, or can be made 

polymorphic by introgression. Then we have a simple test for interaction: Does the 

difference between QTL genotypes change with genetic background? A more general 

problem is that most mapping studies do not identify QTL alleles, but instead the genomic 

region that harbors a QTL (the distinction between Known Alleles and Known Regions is 

elaborated below in the Hypothesis Testing section). If a particular region contributes to 

(co)variation in one population but not another, then this QTL clearly contributes to a 

difference in their G-matrices. However, there are a number of distinct ways that a QTL can 

contribute to (co)variation in both populations, but in different ways. A QTL-specific 

difference might result from epistasis (the same polymorphism in different genetic 

backgrounds), from a difference in allele frequency between populations, or because 

different, but closely linked, loci are polymorphic within each population. Here, the 

inclusion of an interpopulation cross with associated genotyping of the QTL region may 

clarify the nature of the difference.

Concurrent with the accumulation of comparative studies, theoretical biologists have been 

investigating the long-term balance of mutation, selection, and genetic drift on G-matrix 

evolution using stochastic simulation (e.g., Jones et al. 2003; Revell 2007; see references in 

Arnold et al. 2008). Arnold et al. (2008) recently reviewed this literature and concluded that 

important regularities in multitrait evolution can be predicted from “macroscopic statistics” 

such as the adaptive landscape (Simpson 1944; Lande 1979) and the mutational variance–

covariance matrix (the M-matrix, Lande 1980). The proposition that long-term evolution, 

and consequent phenomena such as adaptive radiation, can be understood without recourse 

to the dynamics of individual QTL is certainly attractive. However, the extent of this 

understanding—exactly what can be predicted and how accurately?—as well as the 

generality of predictions across different models of mutation and selection remains an open 

question. A second important direction for future simulation studies will be to fully 
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articulate predictions that can be tested with QTL mapping experiments. Mapping can 

directly address predictions about the genetic basis of segregating variation and divergence 

among taxa.

VARIANCE COMPONENTS AND THE MAINTENANCE OF GENETIC 

VARIATION

Most of the interest in the G-matrix centers on its use for prediction. However, other 

questions focus on the components themselves. Most quantitative characters are linked to 

fitness in some way, although this relationship may be very complicated and indirect. As a 

consequence, hypotheses about the maintenance of variation can be broadly classified as 

either mutation–selection models or balancing selection models. Both categories have 

mutation as the ultimate source of variation but differ in the role of natural selection. 

Selection is purifying in mutation–selection models, as it has a net negative effect on 

variability. By definition, balancing selection actively maintains polymorphism at QTLs 

through a variety of hypothesized mechanisms, for example simple overdominance, 

antagonistic pleiotropy, environmental variation combined with G × E interaction, etc. Here, 

it is worth noting that balancing selection is entirely different than stabilizing selection, 

despite that these terms are often confused in the literature. Because stabilizing selection at 

the phenotypic scale tends to erode genetic variation, it is more naturally categorized as a 

mutation–selection model than a balancing selection model.

Mutation–selection and balancing selection models differ in testable predictions about the 

relative magnitudes of different genetic (co)variances. The integration of QTL data can 

greatly increase the power of variance-based model tests and thus shed new light on the old 

question of why organisms vary. For example, most balancing selection models invoke some 

kind of genetic trade-off. An allele that is advantageous in one environment or with respect 

to one fitness component is disadvantageous under alternative circumstances (environments 

or fitness components). If such trade-offs are consistent across loci, then these models can be 

scaled up to predict negative genetic covariances. This has spurred researchers to estimate 

genetic covariances between different fitness components (e.g., Rose and Charlesworth 

1981) and between the same component across different environments (e.g., Rausher 1984). 

Unfortunately, a number of practical difficulties confront the use of whole-genome 

covariances (CA[x,y]) to infer trade-offs at individual loci. For example, variation in general 

vigor can easily overwhelm the signal of individual QTL (Fry 1993).

The trade-offs hypothesized by balancing selection models are directly evaluated by 

estimating genetic covariances at the scale of QTL. An appropriate experiment can isolate 

the contribution of particular QTL, not only from the confounding environmental effects that 

cause the “general vigor problem,” but also from the effects of other genomic regions. The 

latter is important because even if balancing selection is maintaining most of the genetic 

variation in a quantitative trait, it is not likely that the same trade-off applies across QTL. 

For example, antagonistic pleiotropy might maintain the polymorphism at one locus 

affecting a trait, whereas G × E interaction maintains variation at another. With variation in 
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the nature of fitness trade-offs across QTL, prevalent balancing selection might still produce 

only weak whole-genome covariances.

A different approach to the question takes mutation–selection balance as the null model and 

asks whether it is sufficient to explain variation. Mutation–selection models make direct 

predictions regarding the absolute magnitudes of additive genetic (co)variances, their 

magnitudes relative to nonadditive variance components, and the response of populations to 

inbreeding and/or artificial selection (Morton et al. 1956; Deng and Lynch 1996; Curtsinger 

and Ming 1997; Kelly 1999). Application of these methods to fitness-related traits in both 

fruit flies (Charlesworth and Hughes 2000; Charlesworth et al. 2007) and monkeyflowers 

(Kelly and Willis 2001; Kelly 2003) indicate an excess of additive genetic variation relative 

to the expectation under mutation–selection balance. The implication is that there are 

intermediate frequency polymorphisms—yet undiscovered—affecting these traits and thus 

worth mapping.

EXPERIMENTAL DESIGN FOR ESTIMATION OF QTL (CO)VARIANCES

QTL (co)variances can be estimated by incorporating molecular marker genotyping into the 

analysis of breeding designs initiated from randomly selected genotypes. By necessity, 

human geneticists have developed and subsequently applied a variety of statistical methods 

to mapping QTL within outbred full-sibling families (Elston and Spence 2006; Visscher et 

al. 2007). The “variance component method” of QTL detection directly estimates the genetic 

(co)variance contributed by a QTL (Goldgar 1990; Blangero et al. 2001). Given that these 

analytical techniques produce estimates that are directly related to the G-matrix, I suggest 

that they should be used more fully by evolutionary biologists.

In this section, I review the variance component method and discuss how it can be melded 

with the replicated genotype and/or inbred line procedures that are routinely used in 

evolutionary genetics. In essence, the general linear model from statistical mathematics is 

employed to distinguish the genetic covariance among relatives that is caused by a specific 

genomic region from that due to the remainder of the genome. The phenotypic value is 

parsed into three components: QTL, background genome, and environmental effect. Written 

as an equation,

z = g′ + g∗ + e, (2)

where z is the vector of phenotypic values for an individual, g′ is the vector of QTL effects 

on each trait, g* is the vector of background genotypic values, and e is the vector of 

environmental deviations. As emphasized by Goldgar (1990), g′ can characterize the 

aggregate effects of an entire genomic region and not merely a single genetic locus. These 

regions might be as large as entire chromosomes or chromosome arms, with full haplotypes 

as the analog of alternative alleles.

Variance–covariance matrices are associated with both g′ and g*, each of which can be 

decomposed into additive and dominance components (eq. 2 assumes no epistasis). Let G′ 
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denote the additive genetic covariance matrix associated with the QTL. In this matrix, the 

QTL variances for each trait, Vq[x], are the diagonal elements, and the covariances, Cq[x,y], 

are on the off-diagonal. Likewise, let G* denote the additive genetic covariance matrix 

associated with the remainder of the genome: V* A[x] on the diagonal and C* A[x,y] on the 

off-diagonal. Relating this notation to equation (1), VA[x] = V* A[x] + Vq[x] and CA[x,y] = C* 

A[x,y] + Cq[x,y]. When fitting equation (2) to data, the (co)variance contribution of the QTL, 

Vq[x] or Cq[x,y], is diagnosed by closely linked genetic markers that indicate the immediate 

parentage of alleles. QTL effects elevate the similarity of siblings that share alleles Identical 

by Descent (see Lynch and Walsh 1998, ch. 16; Blangero et al. 2001).

Equation (2), coupled with a methodology for model fitting such as maximum likelihood, 

has been applied primarily to outbred populations. However, naturally synthesized outbred 

families are neither essential nor optimal for estimating QTL (co)variances. Instead, it is the 

random sampling of parents that is essential. As explained below, experimental designs 

based on random founders but that employ controlled crosses and/or inbreeding have 

favorable statistical features. An example is the Replicated F2 design depicted in Figure 2. 

The Replicated F2 design elaborates the standard inbred line cross: A collection of randomly 

extracted inbred lines are individually crossed to a common reference line (RL, also fully 

homozygous). Randomly extracted lines are representative of the background natural 

population in terms of allele frequencies at QTL. Each cross produces F1 and F2 progeny, 

which are subsequently genotyped at markers closely linked to the QTL, and measured for 

the relevant quantitative traits. QTL covariances can then be estimated from the 

cosegregation of marker alleles with phenotypic variation—the relevant covariances among 

relatives for this design are described in Appendix 1.

One advantage of the Replicated F2 design concerns “marker informativeness,” which is 

often limiting for QTL mapping in outbred sib families (Lynch and Walsh 1998, ch. 16). As 

there are four distinct QTL alleles potentially segregating in sib families (two from each 

parent), a fully informative marker locus requires four discernable alleles within each family. 

Except with the most highly polymorphic marker loci, this is an infrequent occurrence. In 

contrast, the F2 families of Figure 2 will have only two alleles segregating at both QTL and 

linked markers because the parents are fully homozygous. Here, the ideal marker locus is 

one where the RL is homozygous for an allele that is rare in the entire population. At such a 

locus, the RL will mismatch the great majority of random lines, and as a consequence, this 

marker effectively “tags” the QTL in most F2 families. Even without such an ideal marker, a 

small collection of moderately polymorphic markers in close proximity to the QTL should 

suffice to estimate Vq[x] and/or Cq[x,y].

A second important feature of the Replicated F2 design is that three of the four sub-family 

types are internally homogeneous. Individuals within the RL, within each Random Line, and 

within each F1 are genetically equivalent. This allows replicated measurements of phenotype 

for the same genotype, reducing environmental noise, and subsequently increasing power for 

both estimation and hypothesis testing (Tanksley 1993). Inbreeding also typically increases 

the genetic variance and hence the signal associated with a QTL. Of course, it also 

complicates the covariance of relatives when there is dominance (Cockerham and Weir 
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1984) and mapping methods need to accommodate these complications (e.g., Verhoeven et 

al. 2006).

The Replicated F2 Design provides a nice illustration because it is a natural extension of the 

standard method for interspecies QTL mapping (e.g., Fishman et al. 2002). However, the 

basic advantages noted above are not specific to the Replicated F2 design. Other breeding 

schemes may be more appropriate in specific situations. For example, the Maize Diversity 

Group has extended the design of Figure 2 by developing Recombinant Inbred Lines from 

each replicate cross to the RL (http://www.panzea.org; Liu et al. 2003; Yu et al. 2008). Apart 

from the inability to estimate dominance, this design is almost certainly more powerful than 

the Replicated F2. Mott and Flint (2002) investigate a design in which an inbred RL is 

crossed to a large number of outbred individuals from a genetically heterogenous 

population. If a RL is not available (or desired), then a mapping population can be produced 

by intercrossing randomly extracted inbred lines (e.g., Kelly and Arathi 2003; Churchill et 

al. 2004).

HYPOTHESIS TESTING

This section outlines a simple hypothesis testing framework that can be used to relate 

genetic estimates to evolutionary questions. For this aim, it is first necessary to delineate two 

distinct situations, denoted “Known Alleles” and “Known Regions,” that differ in what is 

known about the QTL. Known Alleles describes cases in which mapping identifies 

alternative alleles at the QTL. This clearly applies when the QTL has been fine mapped to 

causal sites or closely linked diagnostic markers (e.g., Frary et al. 2000; Palsson and Gibson 

2004; Stinchcombe et al. 2004; Hoekstra et al. 2006). However, it also includes situations in 

which one can directly score the alternative states of a polymorphic inversion or other 

chromosomal features with phenotypic effects (Dobzhansky 1970, ch. 5). Simple phenotypic 

polymorphisms can also be treated as Known Alleles QTL. For example, a flower color 

polymorphism in the common Morning Glory has pleiotropic effects on quantitative fitness 

traits and the alternative genotypes are visually discernable (Coberly and Rausher 2008; see 

also Levin and Brack 1995; Schemske and Bierzychudek 2001).

For a Known Region QTL, mapping has established a genomic region containing a QTL but 

markers do not identify alternative QTL alleles. This situation is the most immediate product 

of most mapping studies. Cosegregation of markers with phenotypes within a line cross 

identifies a genomic segment (often defined by flanking markers) that contains a QTL. 

However, the associations between marker alleles and the causal polymorphism are specific 

to that cross. In the background population from which the line-cross parents were sampled, 

the same marker allele may be associated with high trait values in some families but low trait 

values in others. Genotyping of random individuals at marker loci thus does not identify the 

specific QTL genotype. This is a frequently noted problem with outbred population 

mapping. It is a primary reason for why QTL mapping of intrapopulational variation is more 

challenging than the characterization of fixed differences between taxa.

The estimation of QTL (co)variances, as well as any hypothesis tests conducted on these 

estimates, differs between Known Alleles and Known Regions. One can directly estimate the 
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components of QTL (co)variances with Known Alleles, that is allelic effects and 

frequencies. In model fitting, g′ of equation (2) is actually treated as a vector of fixed effects 

(the ai[*] from eq. 1). Genotyping of the parents provides a direct estimate of population 

allele frequencies (qi from eq. 1), as long as the parents are randomly sampled. In contrast, g
′ must be treated as a vector of random variables with Known Regions. QTL variances 

(Vq[x]) and covariances (Cq[x,y]) are directly estimated as parameters (Goldgar 1990; 

Blangero et al. 2001). They cannot be decomposed into ai[*] and qi without additional 

information, an idea elaborated in the section Direct estimation of QTL allele frequencies.

For Known Regions, there is already a substantial body of statistical theory focused on 

optimizing experimental design to determine whether Vq[x] is nonzero for a single 

quantitative trait (e.g., Knott and Haley 1992; Luo 1993; Muranty 1996). However, several 

interesting hypotheses are specific to multitrait data. Line-cross studies routinely identify 

major QTL with pleiotropic effects (e.g., Hall et al. 2006; Albert et al. 2008). One can then 

ask whether such a polymorphism is sufficient to explain the genetic covariance between 

traits. In contrast to the QTL-specific tests, this idea is formalized as a null hypothesis by 

imposing restriction on the parameters for the genetic background (g* of eq. 2). With two 

traits (X and Y), the hypothesis test contrasts a model in which C* A[x,y] is constrained to 

zero with the more general alternative model that allows C* A[x,y] nonzero values (see Table 

1). If the genetic background does contribute to genetic covariance, one can ask if QTL and 

background have consistent effects on each trait. In other words, is the QTL contribution to 

traits proportional to the contribution of the background genome? The parameter constraints 

for the null model with two traits (X and Y) and one QTL are Vq[x] = τ V* A[x], Vq[y] = τV* 

A[y], and Cq[x,y] = τ C* A[x,y]. Here, τ is a constant to be estimated from the data.

Equation (2) is easily generalized to treat multiple QTL (Blangero et al. 2001, p. 155), and 

although most mapping studies focus on one QTL at a time, evolutionary biology can profit 

from a broader perspective on hypothesis testing. This can start with very simple models for 

the entire genetic (co)variance. Perhaps the simplest model one could pose is the so-called 

“hypergeometric model” (Kondrashov 1985; Zeng 1987; Barton 1992; Shpak and 

Kondrashov 1999), in which QTLs are equivalent in allele frequencies and genotypic effects. 

Statistically, this can be imposed by constraining QTL across the genome to equivalent 

parameter values (Table 1, lower panel). Similar constraints can be defined among different 

QTLs to provide whole-genome models that are less restrictive than the hypergeometric 

model. For example, one can allow the magnitudes of (co)variances to vary among QTLs, 

but with constraint on their relative proportions. One step more permissive would be to allow 

the trait-specific variances to vary among QTLs, but impose a common correlation 

coefficient. In all cases, the sufficiency of reduced “null” models are evaluated by 

comparison to more general, unconstrained, models, using likelihood ratios or other model 

comparison techniques.

The series in Table 1 is certainly not exhaustive. It is merely a sampling of simple 

hypotheses about the “architecture” of quantitative genetic variation. The key difference 

from previous summaries about how QTL mapping can address questions about genetic 

architecture is that the parameters in Table 1 are population statistics. Vq[x] and Cq[x,y] are 

the constituents of the G-matrix. They explicitly link allele frequency to phenotypic 

Kelly Page 10

Evolution. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variation and evolution (eq. 1). Because evolutionary processes (mutation, selection, genetic 

drift, and migration) are typically characterized at the scale of allele frequency change, this 

framework provides a means to connect QTL experiments with larger evolutionary 

questions.

DIRECT ESTIMATION OF QTL ALLELE FREQUENCIES

The preceding sections argue that QTL (co)variances are a worthwhile target for 

experimental estimation. For some questions however, we would like to go beyond the QTL 

covariance and estimate its component parts, allelic effects and population frequencies. For 

example, the simplest and most general way to distinguish mutation–selection balance from 

balancing selection is by estimating QTL allele frequencies. Mutation–selection balance 

predicts that variation is caused mainly by rare alleles while balancing selection predicts 

intermediate allele frequencies.

With the advent of high-throughput genotyping methods, a new set of techniques has 

emerged that allow simultaneous estimation of QTL effects and allele frequencies. 

Advanced intercross methods are similar to line-cross designs except that (1) more than two 

parents initiate the mapping population, and (2) there are multiple, oftentimes many, 

generations of intercrossing prior to marker–trait association (e.g., Mott and Flint 

2002;Valdar et al. 2006). Macdonald and Long (2007) recently employed an advanced 

intercross design to map variation in bristle number of fruit flies. Their two mapping 

populations were each synthesized from eight ancestral inbred lines and subsequently 

allowed to undergo many rounds of recombination. With a high density of informative 

markers, these authors were able to determine the ancestor for each chromosomal region and 

estimate allele frequency by determining what fraction of the original eight chromosomes 

were high versus low in their effects.

Advanced intercross methods are designed to combine fine mapping with a broad sampling 

of genetic variation (Churchill et al. 2004). As emphasized in the Introduction, sampling is a 

critical issue if these methods are to be adopted by evolutionary biologists. Genetic effects 

are statistical random effects, and thus informative about the G-matrix, only if the founders 

of a breeding design are randomly sampled from the natural population. If founders are 

sampled based on location or phenotype, then genotypic differences must be treated as fixed 

effects and the resulting breeding design will not quantitatively reflect any real population.

Agricultural geneticists have developed procedures to estimate allele frequency without fine 

mapping (Bovenhuis and Weller 1994; Mackinnon and Weller 1995; Weller et al. 2002). The 

Replicated F2 design (Fig. 2) also yields simple estimators for both allele frequency and 

allelic effects when the QTL is known to have two alleles. If the RL allele has population 

frequency q and additive effect a[x] on trait X, then Vq[x] = 2(1 − q)q a[x]
2 and h0[x] = a[x] (1 

− q). The parameter h0[x], the average phenotypic difference between Reference and 

Random lines owing to the QTL, is estimated as a fixed effect in this design (see Appendix 

1). Inverting these equations yields estimators for a[x] and q from Vq[x] and h0[x]. Measuring 

multiple traits affected by the QTL, and thus also estimating Cq[x], improves the accuracy of 

estimation.
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The efficiency of QTL allele frequency estimation from the Replicated F2 design is 

illustrated by Figure 3. Data were repeatedly simulated for an experiment with 200 families, 

each composed of six individuals from the Random Line, six F1s, and 12 F2 individuals (see 

Fig. 2). Two traits were measured per individual combined with genotyping of fully 

informative markers for a Known Region QTL. For each simulated dataset, equation (2) was 

fit by likelihood (methods described in Appendix 2). Figure 3 considers a QTL of moderate 

effect with two different values for allele frequency: the RL QTL allele is uncommon in the 

background population (q = 0.05, red bars) or the two alleles are equally frequent (q = 0.5, 

green bars). With q = 0.05, this polymorphism explains about 1% of the variance in the first 

trait and 5% of the variance in the second. With q = 0.5, the QTL explains about 6% and 

20%, respectively.

The substantial gap between the distributions of q estimates in Figure 3 implies that 

intermediate frequency polymorphisms can be clearly distinguishable from rare-allele 

polymorphisms. Simulations based on only 40 families per replicate (about 1000 

individuals) indicate that smaller experiments are sufficient to discriminate intermediate 

frequency polymorphisms from rare alleles. However, there is greater variance in the 

sampling distributions of estimates (unpublished results). Although these results are clearly 

promising, the critical assumption for this method is that the target region contains a single 

biallelic causal polymorphism. The extent to which fine mapping is necessary for allele 

frequency estimation is an important question for future work.

SUMMARY AND CONCLUSIONS

In this essay, I have argued that QTL allele frequencies are the essential variables relating 

the G-matrices to QTL mapping experiments. Integration thus requires experimentalists to 

consider allele frequency. This consideration may be implicit, simply by insuring 

appropriate sampling of parents so that a breeding design reflects the genetic composition of 

a natural population. Ideally, it is explicit, wherein marker–trait associations are used to 

directly estimate population allele frequencies.

The oft-stated goal of QTL mapping is to identify the genes, and ultimately the nucleotide 

level differences (QTN), that contribute to variation in quantitative traits (Mackay 2001, p. 

319). This is a worthwhile but very difficult objective to achieve. The most immediate 

consequence of most mapping experiments is to fracture genomic variation into components. 

Although these components are large relative to individual coding genes (mapped QTL 

typically contain hundreds of genes), they may be quite small relative to the genome as a 

whole (usually 2–10% depending on the recombinational map length of the organism). 

Important questions can be addressed at this intermediate stage of genomic decomposition. 

Is the whole, that is the genetic (co)variance of traits, a simple sum of its genomic parts? Are 

these parts similar or dissimilar in their respective genetic features? These features, which 

include the magnitude of phenotypic effects, the extent and nature of pleiotropy, and the 

distribution of allele frequencies and dominance relationships, are critical determinants of 

sustained response to selection. They are essential to predict how the G-matrix will evolve 

with noninfinitesimal changes in allele frequency. As a consequence, the integration of QTL 
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mapping methods into G-matrix estimation can provide a concrete, genetically based 

experimental program to investigate the evolvability of natural populations.
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Appendix 1

This section describes the expectations, variances, and covariances among measurements 

collected from a Replicated F2 design. I assume additive gene action. The Known Alleles 

case is treated first, followed by modifications necessary with Known Regions.

Kelly Page 16

Evolution. Author manuscript; available in PMC 2018 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



THE RESEMBLANCE OF RELATIVES WITH KNOWN ALLELES

With Known alleles, g′ of equation (2) is estimated as a collection of fixed effects and we 

have a standard mixed-model (Searle et al. 1992). For the replicated F2 design, there are 

four different “types”: individuals of the reference line (P0), individuals from each random 

line (Pi), the F1 hybrids from the cross of random line i to the reference line (F1(i)), and the 

corresponding F2s (F2(i)). The effect of the genetic background, g*, is random for each Pi 

but is a fixed effect for P0. For simplicity, the population mean of g* (across Random Lines) 

is μ[x] for trait X and we define a vector b0 as the set of trait deviations specific to the 

reference line. Let A0 represent the allele homozygous in the reference line. Allele A0 has 

additive effect a0[x] on trait X. With these conventions, the conditional expected phenotypic 

values for trait X are

E[ZP0[x]] = μ[x] + 2(a0[x] + b0[x]) (A1)

E[ZPi[x]] = μ[x] + ka0[x] (A2)

E[ZF1[x]] = E[ZF2[x]] = μ[x] + ka0[x] + b0[x], (A3)

where k is the number of A0 copies at the QTL in the individual. The background genotypic 

variances for trait X are:

Var[gP[x]
∗ ] = 2V A[x]

∗ (A4)

Var[gF1[x]
∗ ] = 1

2V A[x]
∗ (A5)

Var[gF2[x]
∗ ] = 3

4V A[x]
∗ + VS[x] . (A6)

Here, V A[x]
∗  is additive background variance for trait X and VS[x] is the “segregational 

variance” associated with gamete production of the RL. If many loci contribute to the 

genetic background effect, VS[x] ≅ V A[x]
∗ /4. The phenotypic variance for each type is the 

genotypic variance plus VE[x], the environmental variance for trait X. The genotypic 

covariances (within an individual between traits) are similar in form to equations (A4–A6), 
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but with the appropriate additive covariance (CA[x, y]
∗ ) replacing V A[x]

∗  and the segregational 

covariance (CS[x,y]) replacing VS[x]. The corresponding phenotypic covariance is augmented 

by the addition of CE[x,y], the environmental covariance.

Comparisons among relatives can be classified as within-type (e.g., between two F1s from 

the same cross) or between-type (e.g., between the random line a descendant F2). The Pi and 

F1(i) subfamilies are genetically homogeneous (all individuals are genetically identical), and 

as a consequence, the genetic covariance of distinct individuals equals the corresponding 

genetic variance (eqs A4 and A5). In contrast, F2s are internally heterogeneous and

Cov[gF2.1[x]
∗ , gF2.2[x]

∗ ′] = 1
2V A[x]

∗ , (A7)

where F2.1 and F2.2 are distinct F2 individuals from the same subfamily. The between-type 

within family covariances are

Cov[gP[x]
∗ , gF1[x]

∗ ] = Cov[gP[x]
∗ , gF2[x]

∗ ] = V A[x]
∗ (A8)

Cov[gF1[x]
∗ , gF2[x]

∗ ] = 1
2V A[x]

∗ . (A9)

The genotypic covariances (for distinct traits of distinct individuals) are similar in form to 

equations A7–A9 except that the additive covariance of traits X and Y (CA[x, y]
∗ ) replaces 

V A[x]
∗ .

THE RESEMBLANCE OF RELATIVES WITH A KNOWN REGION

In this case, g′ of equation (2) must be treated as a vector of random effects. The 

covariances among relatives are now a function of the number of copies of the QTL allele 

that is derived from the random line (and not the RL) in each individual. Let j and k denote 

the number of QTL alleles descended from the random line in two distinct individuals of a 

family. The genotypic variance of trait X is increased by j2 Vq[x]/2 for the first individual 

and by k2 Vq[x]/2 for the second individual. The covariance between these individuals is 

incremented by j k Vq[x]/2. The increments to genotypic covariances among traits are the 

same except with Cq[x,y] replacing Vq[x]. The formulas for variance components associated 

with genetic background are the same as in the Known Alleles case. The conditional 

expectations for trait X are:

E[ZP0[x]] = μ[x] + 2(h0[x] + b0[x]) (A10)
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E[ZPi[x]] = μ[x] (A11)

E[ZF1[x]] = E[ZF2[x]] = μ[x] + kh0[x] + b0[x], (A12)

where k is the number of QTL allele copies derived from the RL (k = 1 for all F1 

individuals). Here, h0[x] is the deviation of the RL from the mean of random lines owing to 

its genotype at the QTL. The grand mean, μ[x], absorbs the average QTL effect in the 

background population and thus depends implicitly on a0[x]. To summarize the Replicated 

F2 Design, the full model for one trait (X) involves three fixed effects (μ[x], h0[x], and b0[x]) 

and four variance components (VE[x], V A[x]
∗ , VS[x]

∗ , and Vq[x]
∗ ). With two traits and one QTL, 

there are 18 parameters (the seven associated with each trait plus CE[x,y], CA[x, y]
∗ , CS[x, y]

∗ , and 

Cq[x,y]).

Appendix 2

This section describes the data simulation and model fitting to produce Figure 3. A single 

QTL exists in a Known Region, but the two alleles are not specifically identified by genetic 

markers. This QTL affects two traits (X and Y). The allele of the RL (A0) has frequency q in 

the background population. The example of Figure 3 considers q = 0.05 versus q = 0.5, and 

for both cases the QTL effects are a0[x] = 0.5 and a0[y] = 1.0 (the notation follows from 

Appendix 1). Data are simulated by first drawing the background genotypic values for each 

Random Line. Each g* is sampled from a bivariate normal distribution with means zero and 

the appropriate (co)variance matrix (see eq. A4). Each Random Line is assigned a 

homozygous QTL genotype randomly: A0/A0 with probability q, A1/A1 with probability 1 − 

q. Phenotypes for each Random Line individual were produced by adding a binormal 

environmental effect to genotypic values with means zero and the (co)variance matrix of 

environmental effects (VE[x], VE[y], and CE[x,y]).

The F1 and F2 individuals for each family were generated conditional on the genotypes of 

the Random Line and RL. For simplicity, I set b0[x] = b0[y] = 0 for the simulations of Figure 

3 and assumed that the segregational (co)variances were equal to one-fourth of the 

associated additive (co)variances (see Appendix 1). Given this, the F1 genotype for both 

background and QTL are fully specified by the parental lines. An environmental effect is 

added to each individual measured in the experiment. Segregation occurs in production of F2 

progeny, and as a consequence, random variables are drawn for both background and QTL. 

For the background, the expected genotypic value of each trait is equal to that of the F1. A 

residual is drawn from a binormal distribution with means zero and contingent on the 

segregational (co)variance matrix (eq. A6). If the F1 is A0/A1 at the QTL, then F2 are 

assigned a genotype randomly: A0/A0 with probability 0.25, A0/A1 with probability 0.5, and 

A1/A1 with probability 0.25. Finally, an environmental deviation is added to the genotypic 

value of all measured F2s by the same procedure described previously. For Figure 3, I also 
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included 96 individuals of the RL in each simulated experiment. The variance component 

parameters were set to VE[x] = VE[y] = V A[x]
∗ = V A[y]

∗ = 1.0, CE[x, y] = CA[x, y]
∗ = 0.0.

Given a simulated dataset, the statistical genetic model (eq. (2) and Appendix 1) was fit by 

likelihood (Searle et al. 1992, ch. 6). To maximize the likelihood, I used a combination of 

deterministic and stochastic search implemented in a C program (available upon request). 

Powell’s algorithm (Press et al. 1992) was initially applied starting with parameter values 

corresponding to the “truth”, that is the set of parameter values from which the data were 

simulated. After the Powell search converges, the algorithm performs a stochastic search for 

4000 steps. If this stochastic search finds a single likelihood higher than Powell, the cycle is 

repeated from this maximum. This two-part sequence, Powell then Stochastic search, is 

repeated until the Stochastic search fails to find any improvement on the preceding Powell 

search. When maximization is complete, parameter estimates and the likelihood are stored. 

For Figure 3, the procedure was applied to 200 simulated dataset for each case.

Likelihood maximization is subject to feasibility constraints. Variances cannot be negative 

and the magnitude of a covariance cannot exceed the geometric mean of the variances. In the 

search described above, I used penalty functions—an increment is subtracted from the 

likelihood if the search steps out of the feasible range for a parameter (Ilanko and Dickinson 

1999)—but these penalties do not affect the final likelihood value. Because Figure 3 actually 

considers the specific case in which the five QTL parameters (h0[x], h0[y], Vq[x]
∗ , Vq[y]

∗ , and 

Cq[x,y]) are determined by only three quantities (q, a0[x], and b0[y]), I fit the latter directly.
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Figure 1. 
The number of citations per year to Lande and Arnold (1983, diamonds) and Lander and 

Botstein (1989, squares) was estimated using Web of Science (Thomson Reuters, 

Philadelphia, PA). The number of publications citing both papers (triangles) was determined 

by comparing these lists.
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Figure 2. 
The Replicated F2 mapping design: A collection of n randomly extracted inbred lines is 

each crossed to a common reference line (RL). Each cross produces F1s that are 

subsequently intracrossed (or self-fertilized) to produce an F2 family. Arrows represent 

transmission of a gamete.
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Figure 3. 
The distribution of estimates is given for two distinct sets of simulations of the Replicated 

F2 design. Each distribution is composed of 200 replicate experiments. Red bars denote 

results where the true frequency of the reference line (RL) allele is 0.05 whereas green bars 

are for cases in which q = 0.5.
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Table 1

A summary of hypothesis tests appropriate to Known Regions QTLs: x and y index traits whereas q, i, and j 
index loci. The null hypothesis for I.(3) is specific to the case of two traits (X and Y) and the proportionality 

constant, τ, must be estimated from the data. For the null hypothesis of II.(2), the sum of λq across all QTLs 

and the genetic background is 1. See text for definitions of the (co)variance parameters.

I. A single QTL considered in relation to the genetic background

  Question Null hypothesis

  1. Does a QTL contribute to genetic (co)variation? Vq[x]=Cq[x,y]=0 for all x, y

  2. Is a QTL sufficient to explain genetic (co)variation? C*A[x,y]=0

  3. Is the genetic (co)variation contributed by a QTL proportional to that of the 
background genome?

Vq[x]=τ V*A[x], Vq[y]=τ V*A[y], Cq[x,y]=τ C*A[x,y]

II. Multiple QTLs considered in relation to each other

  Question Null hypothesis

  1. Are QTLs equivalent? Vi[x]=Vj[x]

Ci[x,y]=Cj[x,y] for all i, j, x and y

  2. Are the genetic (co)variances of different QTLs proportional? Vq[x]=λq VA[x], Cq[x,y]=λq CA[x,y] for all q

  3. Do QTLs share a common correlation structure? Cq[x,y]=ρ Vq[x] Vq[y] for all q
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