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ABSTRACT

JONATHAN GELFOND:
Bayesian Model-based Methods for the Analysis of DNA Microarrays with Survival,

Genetic, and Sequence Data
(Under the direction of Dr. Joseph G. Ibrahim)

DNA microarrays measure the expression of thousands of genes or DNA fragments

simultaneously in which probes have specific complementary hybridization. Gene ex-

pression or microarray data analysis problems have a prominent role in the biostatistics,

biological sciences, and clinical medicine. The first paper proposes a method for finding

associations between the survival time of the subjects and the gene expression of tumor

microarrays. Measurement error is known to bias the estimates for survival regression

coefficients, and this method minimizes bias. The latent variable model is shown to

detect associations between potentially important genes and survival in a breast cancer

dataset that conventional models did not detect, and the method is demonstrated to

have robustness to misspecification with simulated data. The second paper considers the

Expression Quantitative Trait Loci (eQTL) detection problem. An eQTL is a genetic

locus that influences gene expression, and the major challenges with this type of data are

multiple testing and computational issues. The proposed method extends the Mixture

Over Marker (MOM) model to include a structured prior probability that accounts for
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the transcript location. The new technique exploits the fact that genetic markers are

more likely to influence transcripts that share the same location on the genome. The

third paper improves the analysis of Chromatin (Ch)-Immunoprecipitation (IP) (ChIP)

microarray data. ChIP-chip data analysis estimates the motif of specific Transcription

Factor Binding Sites (TFBSs) by comparing the IP DNA sample that is enriched for the

TFBS and a control sample of general genomic DNA. The probes on the ChIP-chip array

are uniformly spaced on the genome, and the probes that have relatively high intensity

in the IP sample will have corresponding sequences that are likely to contain the TFBS

motif. Present analytical methods use the array data to discover peaks or regions of IP

enrichment then analyze the sequences of these peaks in a separate procedure to dis-

cover the motif. The proposed model will integrate enrichment peak finding and motif

discovery through a Hidden Markov Model (HMM). Performance comparisons are made

between the proposed HMM and the previously developed methods.
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1 Introduction and Literature Review

Microarrays are quantitative assays that can measure the gene expression levels of thou-

sands of transcripts or millions of DNA fragments simultaneously. Since the mid 1990s,

this technology has provided a wealth of new biological and medical insights from the

discovery of the often subtle influences that experimental conditions can have on gene

expression to the recognition of previously unknown cancer subtypes. In the future,

one may expect that microarrays or similar technologies will provide insights into gene

networks, and that gene expression analysis will be used to guide clinical decisions on

chemotherapy to find optimal treatments and avoid unnecessary side effects.

The scientific potential of microarrays is enormous, and the statistical challenges of the

technology are nontrivial. First, there is the problem of multiple testing. Thousands or

even millions of dependent hypotheses can be tested in a single experiment. The simple p-

values and Bonferroni corrections have been enhanced by estimates of the false discovery

rates as a means of characterizing the certainties of inferences. Second, these hypotheses

are not made independently of one another. The genes do not work independently, and

the expression measurements of the genes share parameters between them that should

be modeled in order to utilize all of the information on the array. Third, microarrays are

indirect measurements that often have several components per transcript. An estimate

of the true expression level should be obtained that summarizes these components; these

estimates are referred to as the Gene Expression Indices (GEIs). There are many other



difficulties such as normalization for experimental comparisons and outcome prediction

based on high dimensional data.

The dissertation is organized as follows. In Chapter 1, the scientific and statistical

fundamentals of microarrays are introduced. The first paper develops a measurement

error model for time-to-event data and tumor microarrays and is discussed in Chapter 2.

Chapter 3 presents the second paper and the analysis of genetics and microarrays. The

paper capitalizes on the relationship between genomic location and the genetic control

of transcription. The third paper is discussed in Chapter 4, and it concerns statistical

methods that use microarrays to discover transcription factor binding sites.

1.1 Fundamentals of Microarrays

Some biological and technological knowledge of how microarrays work is necessary for

the development and understanding of analytical methods. The biology that underlies

expression microarrays is often referred to as the “Central Dogma of Molecular Biology.”

For a review see Watson et al. (2004) or Stryer (1995). This is the principle that the

information coded in the nucleotide sequence of DNA is transcribed into mRNA which

is moved to the cytoplasm and translated into polypeptides that modulate and enzy-

matically promote most of the biochemical reactions in a cell. Gene expression is the

process of regulated transcription which is vital for cellular differentiation and function.

Microarrays are simultaneous measurements of this transcription process of thousands of

genes in a tissue or cell culture. Basically, a microarray is a snapshot quantification of

how much particular genes are being transcribed.
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There are some specifics of polynucleotide molecules like DNA and RNA that are

vital to the self-reproductive properties of cells and to microarrays. DNA molecules are

sequences of nucleotide bases that are the purines adenosine and guanine and the pyrim-

idines thymine and cytosine. In RNA, the role of the purine thymine is replaced by uracil.

The polynucleotide chains of DNA and RNA will bind according to the hydrogen bonds of

their base sequence. The pyrimidines thymine, uracil have corresponding hydrogen bonds

with the purine adenine, and cytosine has corresponding hydrogen bonds with guanine.

These favorable configurations result in the complementary binding of adenine with cy-

tosine and uracil and the binding of guanine with cytosine. Polynucleotide molecules will

preferentially bind to other nucleotides that have the complementary sequence, and this

process of one nucleotide binding to another is called hybridization. There are many va-

rieties of microarrays, but they all depend on the principle of specific hybridization. The

various mRNA of the cells are extracted through a technical process, but their sequences

remain specific to the gene from which they were transcribed in the cell. The cellular

extraction or sample of all of these mRNA is then labeled with either a fluorescent dye or

radioactive isotope that binds in a non-specific manner to the mRNA. On the microarray

slide is a spot or probe that contains the complementary sequence to a particular gene,

say “G1”. Sometimes multiple spots will represent the same gene, and these collection

of spots are called probe sets. When the sample makes contact with the slide, only the

“G1” mRNA will bind to the “G1” probes or spots because of the specific hybridization.

There may be tens of thousands of different probe sets each representing different genes

on an array. The fluorescent intensity or radioactivity of all of the probe sets can be

quantifiably measured by imaging. The resulting image of the slide is segmented into the
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different probes, and a summary statistic of the intensity of light or radiation for each

probe is obtained by image analysis (Yang et al., 2001).

Two major classes of microarrays are the two color microarrays and the Affymetrix

oligonucleotide arrays. Some of the earliest microarrays used a two dye system to obtain

a relative quantification of mRNA (Cho et al., 1997). Two different samples of mRNA

are labeled with two different fluorescent dyes (e.g. red and green) and are hybridized

to the same array. The array probes are spots containing nucleotide sequences comple-

mentary to a specific gene. The ratio of red/green of the probe’s fluorescent intensity

is taken to be a relative measure of the mRNA levels corresponding to the biological

states of the two samples. Affymetrix high-density oligonucleotide arrays are synthesized

by a proprietary photolithography process that allows the synthesis of up to 105 differ-

ent probes on the same array (Fodor et al., 1993; Lockhart et al., 1996). The probes

consist of short complementary sequences of length 25, and the probes are in perfect

match/mismatch pairs. The 13th nucleotide in a mismatch probe is not complementary

to the transcript sequence whereas the perfect match probes are entirely complementary

to the corresponding sequence. A probe set representing a gene will be about 10-20 pairs,

each complementary to a different part of the gene’s sequence.

1.2 Gene Expression Index

The Gene Expression Index (GEI) is the scalar valued summary statistic of the gene ex-

pression level based on the probe set data. For example, a probe in a two dye system has

red and green intensity components that often correspond to a control sample (green)
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and an experimental sample (red) (Pollack et al., 2002). The log-ratio of red/green

summarizes the two measurements by giving an estimate of the log of the ratio of the

concentrations in the two biological states. The motivation for using the log-ratio is man-

ifold. The ratio gives an easily interpretable comparison of the two concentrations and

may reduce variation from multiplicative noise that might be present in the measurement

variability of both the red and the green channels (Ideker et al., 2000; Rocke and Durbin,

2001). Taking the log acts to symmetrize the distribution of the ratio; the distribution of

the ratio is strictly positive and positively skewed. The log-ratio is not universal though,

sometimes the red and the green components are analyzed separately (Wolfinger et al.,

2001; Kerr et al., 2002).

In Affymetrix arrays, several different probes measure the presence of different com-

ponents of the gene’s sequence, and the models for the GEI are more complex. Early

studies used the average difference model (Lipshutz et al., 1999) as the GEI. Let P PM
gij

be the intensity measurement of the gth gene’s ith measurement of the jth perfect match

probe where j = 1, . . . , J , and let PMM
gij be the corresponding mismatch probe. The

statistical model has the form

P PM
gij = νgj + θgi + εPM

gij (1)

PMM
gij = νgj + εMM

gij (2)

where νgj is the common background effect, θi is the gene expression effect, and εij is the

random error. The average difference GEI is given by

ADgi =
1

J

J∑

j=1

P PM
gij − PMM

gij . (3)
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The motivation for the average difference model is the elimination of ν background vari-

ability, and the utilization of all probe data. However, there are some problems with

this model. It was seen that θgi could sometimes be negative which is problematic for

estimates proportional to concentration. Also, the average difference model did not take

into account the reduced coefficient of variation for higher values. Li and Wong (2001)

proposed a model that had parameters that reflected the various probe sensitivities to

their target. The model is as follows

P PM
gij = νgj + αgjθgi + φgjθgi + εPM

gij (4)

PMM
gij = νgj + αgjθgi + εMM

gij (5)

where φgi are the specific probe sensitivities, and αgi represent the probe sensitivities to

non-specific binding. The φgj parameter had the constraint
∑J

j=1 φ
2
gj = J . Neverthe-

less, Li and Wong showed that their model could give improved GEIs that would more

accurately detect differential expression in different biological states. Since the Li and

Wong model, there have been many competing models that give GEIs for Affymetrix

data such as Robust Microarray Analysis (Irizarry et al., 2003) and a mixed model ap-

proach of Hsieh et al. (2003). Both of these methods use a transformation of the intensity

measurements.

1.3 Microarrays and Multiple Testing

The types of hypotheses most common are those that test for the existence of an as-

sociation between a gene’s expression and the biological states of the collected sample.

For example, experiments have found associations between gene expression and cell cycle
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Table 1: Possible outcomes in testing m hypotheses

Declared Declared Total

non-significant significant

True Null U V m0

True Alternative T S m−m0

m− R R m

(Cho et al., 1997; MacAlpine and Bell, 2005), irradiation exposure (Tusher et al., 2001;

Snyder and Morgan, 2004; Burns and El-Deiry, 2003), exposure to various compounds

(Bartosiewicz et al., 2001; Lobenhofer et al., 2004; Shultz et al., 2001), and survival times

(Hastie et al., 2000; Beer et al., 2002; Vijver et al., 2002). In these studies, there are

thousands of hypotheses because there are thousands of genes. We will refer to these

hypotheses as Hi where i represents the gene identification number, and Hi = 0 when the

gene is under the null (no association), and Hi = 1 when the gene is under the alternative

(association). Classical methods generally focused on the development of testing proce-

dures that controlled the type I error rate for one or a few tests of hypotheses (Lehmann,

2005). New testing procedures were developed to increase the power of inferences in this

setting. Benjamini and Hochberg (1995) introduced the False Discovery Rate (FDR)

approach with the following Table 1.

The quantity m0

m
is the proportion of hypotheses that are truly null, and it is often

called π0. The family-wise error rate (FWER) is defined to be

FWER = P{V > 0} = E{I[V > 0]}. (6)
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FWER is the probability that there was at least one rejection of a null hypothesis or

false discovery. If the truth concerning the m hypotheses was known such that the table

could be constructed then the FDR would be given by

FDR = I[R > 0]
V

R
= I[R > 0]

V

V + S
. (7)

Since the truth concerning these hypotheses is not known, the FDR was defined to be

FDR = E

[
V

R
|R > 0

]
P{R > 0} (8)

where V
R

= 0 when R = 0. There is a closely rated concept of the positive false discovery

rate pFDR = E[V
R
|R > 0], but for microarray analyses P{R > 0} ≈ 1 so that FDR ≈

pFDR. A simple interpretation of the FDR is the expected proportion of false discoveries

in the set that is rejected. As Ge et al. (2003) point out,

FDR ≤ pFDR ≤ FWER. (9)

The above inequality is readily shown by writing the quantities as expectations and

illustrates the utility of the FDR to avoid the excessive strictness of controlling the

FWER. Biologists and clinicians are less concerned about the probability of making a

single false discovery (FWER) than in finding a set of genes that has a FDR that is

controlled in some sense.

The FWER, FDR or pFDR may be controlled in three ways, and these three ways

depend on the conditions under which these expectations are estimated. Strong control

is achieved when these expectations are bounded from above conditional on any set of

null hypotheses being true. Exact control is a bounding of the expectations under the

condition of knowing the truth concerning the null hypotheses. Weak control is satisfied
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when the expectations are controlled under the complete null hypothesis which states

that all hypotheses are under the null. An important early result that Benjamini and

Hochberg (1995) proved for independent null hypotheses is that the FDR is controlled

in the strong sense under the following procedure. Order the p-values and let these be

P(1) ≤ P(2) ≤ · · · ≤ P(m). If one defines k to be the largest i such that P(i) ≤
i
m
q∗ and

rejects the H(r) for r ∈ {1, . . . , k}, then the FDR will be less than π0q
∗. They do not

estimate π0 so that they simply bound the FDR by q∗. Benjamini and Yekutieli (2001)

extended this type of procedure to handle arbitrary dependence in the test statistics.

This procedure is as follows. If one rejects k hypotheses when k is the largest i for which

P(i) ≤
i

Pm
l=1

1/l
q, then the FDR is no greater than π0q.

The Benjamini Hochberg (BH) procedure is an example of a stepwise procedure. A

stepwise procedure is one that involves using the rejection decision of other tests to in-

fluence the rejection of another. Specifically, the BH procedure is a step-up procedure

that starts at the least significant test (i.e. the largest p-value). A step-down test such as

the Westfall and Young (1993) procedure to control the FWER starts at the most signif-

icant test with the smallest p-value. These stepwise procedures are contrasted with the

single-step procedures like the Bonferroni, Sidak, minP and maxT p-value adjustments

(Ge et al., 2003). These are called single-step because the rejection decision of one test

does not involve the decisions concerning other tests.

Efron et al. (2001) and Storey (2003) utilize the connection between the FDR and

a Bayesian interpretation of the multiple testing problem. Efron et al. (2001) use an

empirical Bayes method to estimate the local false discovery rate that is the posterior

probability of a hypothesis being under the null given that it is rejected. The discussion
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of the connection between the posterior probability and the FDR will be continued later.

The pFDR may be written as Storey (2002) did

pFDR(p) = P{Hi = 0|pi < p} =
π0P{pi < p|Hi = 0}

P{pi < p)}
(10)

with the exception that the p-value has been substituted for the test statistic. This

Bayesian construction leaves the problem of estimating the value of π0 which Storey

does by examining the distribution of the p-values. Storey argues that in an experiment

with π0 > 0, the density of p-values over the interval [0, 1] should become flat over some

subinterval [λ, 1]. Given a choice of λ, an estimate of π0 is

π̂0(λ) =
#{pi > λ}

(1 − λ)m
. (11)

This estimate of π0 is conservative (π̂0(λ) > π0) because some pi under the alternative

could be greater than λ. The number of rejections R(p) is taken to be a function of the

p-value cutoff. He then estimates the pFDR as

p̂FDRλ(p) =
π̂0(λ)p

P̂ r(P ≤ p)[1 − (1 − p)m]
. (12)

In the above equation, the numerator π̂0(λ)p is an estimate of the probability of the false

positive, and the denominator is the product of estimates for the probability of rejection

given p (P̂ r(P ≤ p)) and the probability that R(p) > 0 ([1− (1− p)m]). The probability

for rejection P̂ r(P ≤ p) is estimated by the observed rejection rate R(p)/m, and the

probability that R(p) > 0 is conservatively estimated under that case that the null

hypotheses are independent. Storey et al. (2004) demonstrates that his method of pFDR

estimation provides strong control when the test statistics are independent or exhibit

weak dependence. Storey et al. (2004) defines weak dependence to be the condition of
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V (p)/m0 and S(t)/(m − m0) converging almost surely as m → ∞. Weak dependence

holds for dependence in finite blocks and some other special cases, but it is not clear

that the correlation in expression data exhibits weak dependence. Specifically, there are

only a finite number of genes so that the meaning of asymptotic and continuity in the

empirical distribution cannot directly be applied.

Resampling methods like those of Yekutieli and Benjamini (1999) (YB) provide FDR

control under general dependence structure. Yekutieli and Benjamini (1999) use resam-

pling to control FDR in a similar manner as the Westfall and Young (1993) procedure

for controlling the FWER. Yekutieli correctly notes the FWER estimation through re-

sampling only requires that the null hypotheses rejected V , but FDR estimation through

resampling requires that the number of true alternatives (S) is estimated giving

FDRest(p) = EV ∗(p)

[
V ∗(p)

V ∗(p) + ŝ(p)

]
(13)

where p is the p-value threshold for significance. The YB procedure has an estimate of

S = ŝ that is negatively biased to ensure that the estimate of the FDR is conservative.

To this end, YB suggested using ŝ = mp. Reiner et al. (2003) compared the performance

in terms of power of the YB resampling method and the BH procedure. They concluded

that the YB resampling method provided small increases in power over the BH procedure.

Storey’s idea of estimating π0 based on the density of the p-values is similar in spirit to

the Beta-Uniform Mixture (BUM) method of Pounds and Morris (2003). In this method,

the density of the p-values is modeled by a BUM given by

f(p) = λ+ (1 − λ)apa−1 (14)

for p ∈ [0, 1]. They argue that an upper bound and thus a conservative estimate for π0 is
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given by π̂0 ≈ λ̂+ (1− λ̂)â. The density of p-values f is written as a mixture distribution

with uniform component π̂0I[p ∈ [0, 1]] corresponding to the p-values under the null

which have cumulative distribution function F0(p) = p, and the alternative component

f(p) − π̂0

1 − π̂0

(15)

which has cumulative density Fa(p). For any p-value cutoff τ , an upper bound of the

FDR is given by

F̂DRub =
π̂0F0(τ)

π̂0F0(τ) + (1 − π̂0)Fa(τ)
. (16)

However, the BUM method does not model any dependence structure or address the

dependence theoretically. Broberg (2005) discusses the performance of the BUM method

as well as other methods under dependence, and found that the BUM method performs

reasonably well, but as dependence increases, the BUM method, like other methods, has

worsening performance.

There are a number of methods for estimating the FDR directly in terms of a posterior

probability. Efron et al. (2001) originally proposed the equivalence between local false

discovery rates and posterior probability, but Newton et al. (2001) developed a fully

Bayesian model for posterior probabilities involving a parametric hierarchical model for

two color microarray data. The model estimated the mixing proportion p of genes that

were differentially expressed using an Expectation Maximization (EM) (Dempster et al.,

1977) algorithm. The complete data involved an unobserved indicator variable zg that

represented whether or not transcript g was differentially expressed. They advocated

using the first-order approximation of the posterior odds

odds =
P (zg = 1|D)

P (zg = 0|D)
≈

pA(r, g)p̂

p0(r, g)(1 − p̂)
(17)
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where pA(r, g) and p0(r, g) are the parametric densities of the red (r) and green (g)

spot intensities under the alternative (differential expression) and the null respectively.

Kendziorski et al. (2003) extended this model to include different parametric assumptions.

Kendziorski used the posterior probability in an empirical Bayes framework as a decision

rule. These parametric models were extended to a semiparametric error model by Newton

et al. (2004a). Newton proposed using the average posterior probability to estimate the

FDR and control the FDR. He defined βg to be the posterior probability of the null

hypothesis for gene g. The βg are then ranked from smallest to largest, and if βg is less

than some κ, then the genes are identified as differentially expressed. One controls the

FDR in this framework by this estimate

F̂DR(κ) =

∑
g βgI[βg ≤ κ]∑

g I[βg ≤ κ]
≤ α. (18)

Clearly, F̂DR can be controlled by choosing an appropriate κ.

Considering the FDR as an average of posterior probabilities exposes a potential

problem in some FDR procedures like Storey’s q-value. This averaging quality of the

pFDR has been proved by Efron and Tibshirani (2002). In short, the FDR is problematic

because placing a bound on the average (FDR) of a set does not bound the members of

a set (posterior probabilities). Liao et al. (2004) point out the differences between the

posterior probabilities

P{Hi = 0|pi = p} =
π0

π0 + (1 − π0)fa(p)
(19)

and Storey’s pFDR

P{Hi = 0|pi ≤ p} =
π0p

π0p+ (1 − π0)Fa(p)
(20)
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where fa and Fa are the density and the cdf under the alternative. The right hand side

in the above equation matches the FDRub in the BUM method. The difficulties with the

pFDR arise when considering inferences on specific genes. For example, it is possible

that the posterior probabilities for being under the null have a highly positively skewed

distribution, and the pFDR can be controlled but the gene of least significance could

have a posterior probabilities of being under the null equal to 0.99. Glonek and Soloman

(2003) give more examples of these poor decisions resulting in blindly controlling the

pFDR. This motivates the development of local FDR methods that approximate the

posterior probabilities such as Liao et al. (2004) and Efron (2004).

Other methods have been suggested to control the accuracy of multiple inferences

in microarray data. Versions of the negative predictive value for detecting differential

expression have been used by Liao et al. (2004) and Genovese and Wasserman (2002).

Also, Ibrahim et al. (2002) presented a parametric Bayesian model for modeling optimal

inferences concerning differential expression. This model includes correlation between the

genes as a form of dependency which was induced by the structure of the hyperparame-

ters. The ratio of the mean expression levels of different states for gene g is given by ξg.

The posterior probability γg is defined as P (ξg > 1|D), and a threshold γ0 ∈ [1
2
, 1] is then

selected such that gene g is differentially expressed if |γg −
1
2
| ≤ γ0 −

1
2
. The γ0 threshold

could then be set by using the L measure criterion. This model selection criterion was

developed by Ibrahim and Laud (1994), and it balances the posterior squared predictive

error and the posterior variance of the predictions for future observations. The optimal

model minimizes the L measure. In the gene expression model, several levels of γ0 were

assessed with the L measure and the optimal γ0 determined the list of genes declared to

14



be differentially expressed. This list is approximately optimal in terms of the L measure,

and the list is determined without selecting an arbitrary p-value cutoff.
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2 Microarrays and Survival Data

2.1 Cancer and Gene Expression

The first paper presents a method for finding associations between time-to-event data

and microarrays of tumors. Microarrays have been used to study cancer in many ways.

First, scientists saw in microarrays a technique for differentiating cancer types that can-

not be differentiated by other means. Microarrays are now capable of measuring every

gene in a cell giving a near complete picture of the transcriptome. The transcriptome

contains vast amount of information about tumors and can be used to differentiate dif-

ferent types of cancer. This process of classification of high-dimensional transcriptomes

into distinct subtypes is a statistical problem known as unsupervised classification or

clustering (Hastie et al., 2001). Methods of unsupervised classification include hierar-

chical clustering (Eisen et al., 2001), self-organizing maps (Tamayo et al., 1999), and

some more statistical methods like Parmigiani et al. (2002). Microarrays are not simply

a taxonomic tool, but the transcriptome gives biological insight as well (Golub et al.,

1999). Unsupervised clustering techniques can be used to find clusters of the genes,

and biologists recognize that genes within known pathways often are found within these

clusters (Golub et al., 1999; Perou et al., 2000). The discoveries of pathways and the

gene expression patterns involved in disease is a critical component of finding targets for

potential therapies (Evans and Guy, 2004).



The transcriptomes of tumor samples have also been successfully used to predict sur-

vival for several different types of cancer including lung adenocarcinoma (Beer et al.,

2002), breast cancer (Sorlie et al., 2001; Sotiriou et al., 2003), hepatocellular carci-

noma(Lee et al., 2004), and leukemia (Chiaretti et al., 2004). The combination of survival

data and expression data has become an increasingly important and common analysis

problem. One of the fundamental difficulties in analysis of expression and survival data

is that the number of predictors (transcripts) is much larger than the number of indepen-

dent survival times. This leads to a nonidentifiability problem in estimating regression

parameters. Classical Principle Components Regression (PCR) involves using the prin-

ciple components of the data matrix as the linear predictors (Nguyen and Rocke, 2002).

The principle components with the smallest eigenvalues are discarded from analysis thus

reducing the dimension of the predictor matrix. However, Nguyen and Rocke (2002) have

shown that PCR performs poorly relative to the method of Partial Least Squares (PLS)

in predicting tumor classification based on expression profiles, but PLS is not optimal

in any reasonable way as shown by Butler and Denham (2000). The poor performance

of PCR is not surprising because principle components are an orthogonal decomposition

of the total variation of only the predictor matrix, and they are not necessarily associ-

ated with the variational patterns correlated with survival. For example, the application

of unsupervised clustering techniques to tumor data can lead to classes that are not

associated with survival as seen by Bair and Tibshirani (2004).

Several strategies have been developed for predicting survival based on expression

data, and most of them used supervised methods of classification. Supervised classifica-

tion is a technique in which the classes (here the survival data) of the objects (here the
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transcriptomes) are known in advance of the model construction (Hastie et al., 2001).

This is contrasted to unsupervised clustering methods like those that look for previously

unknown classes in the data. Naturally, survival times are continuous and censored in

nature, so forming discrete classes is often arbitrary. If these classes are treated as known,

then the stochastic properties are ignored which can lead to overfitting (Bair and Tib-

shirani, 2004). Nevertheless, there exist many mathematical techniques for supervised

classification such as neural networks (Wei et al., 2005), support vector machines (Lee

et al., 2003), and penalized logistic regression (Shen and Tan, 2005) that have been ap-

plied to tumor gene expression. Hastie et al. (2000) developed a “gene shaving” procedure

that is related to principle components analysis and takes advantage of the survival times

in order to find clusters of genes that are associated with survival. Gene shaving accom-

plished this by selecting genes into clusters by a balance of both their associations with

survival as well as correlations with other genes. There are several tuning parameters

that must be predetermined in the gene shaving method including the balance parameter

that determines the degree to which survival data influences the principle components in

the predictor matrix. Bair and Tibshirani (2004) created a semi-supervised method for

predicting survival in which only genes most associated with survival were included in a

reduced predictor matrix. The reduced predictor matrix was then decomposed into prin-

ciple components that are used in a predictive model. It is important to notice that the

univariate associations with gene expression play a vital role in some of these supervised

methods. In the first paper of the proposal, methods are developed for improving the

joint modeling of gene expression and survival that take into account the measurement

error.
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2.2 Measurement Error Models

The measurement error of microarrays is often not modeled directly by methods that

link gene expression and survival. Ideally, one would like to consider the variability

due to microarray measurement error when making inferences because microarrays have

significant amounts of assay noise (Yang et al., 2002). The presence of noise is obvious in

the case of assay replication, but assay noise can be confounded with biological variation

depending on experimental design. In the case where the biological states are finite (i.e.

treatment and control), there is often biological and technical replication of the states.

The assay noise in the presence of biological or technical replication is accounted for

by estimating the variance within replicates in the manner of t-statistics (Dudoit et al.,

2002). No two tumors constitute the same biological state. Unless the same tumor is

assayed more than once, the assay noise will be confounded with biological variation

between tumors. The analysis of noise in the absence of either biological or technical

replication is not straightforward, but it is of interest to account for the effects of assay

noise when dealing with time-to-event data. It is a well known phenomena that failure to

account for measurement error in covariates results in asymptotic bias of the estimated

effect toward the null (Prentice, 1982; Nakamura, 1992). This gives us motivation to

develop a model that includes assay noise and avoids biased inference. Tadesse et al.

(2005) have recently shown how inferences concerning microarrays and survival can be

affected by not accounting for measurement error in Affymetrix microarrays, and we

would like to build a similar model for cDNA microarray data.

The aim of the first paper is to construct a model that accounts for the effects mea-
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surement error in cDNA microarray experiments on the assessment of associations be-

tween gene expression and time-to-event data. We present a Bayesian hierarchical latent

variable model linked with a piecewise constant proportional hazards model for the time-

to-event data. The latent variable corresponds to the Gene Expression Index, and the

hazard function is conditional upon this latent GEI. The model is shown to have favor-

able properties such as robustness to misspecification and GEIs that do not explicitly

depend on platform specific parameters. Platform specific parameters include the sensi-

tivity of the red probe compared to the green probe and the reference sample. We apply

the model to a particular breast cancer experiment that previously demonstrated novel

subtypes of breast cancer based on gene expression profiles. The time-to-event of interest

is time-to-death due to disease.

Characterizing the association between time-to-event data and gene expression is

similar to the differential expression problem because event data constitutes a biological

state, although the state is complex in that the state space is censored and infinite. The

broader problem of differential expression requires that the gene expression for a partic-

ular gene on an array is measured or computed. The aforementioned value of a gene’s

expression is often referred to as the gene expression index (GEI) (Li and Wong, 2001).

The GEI is computed in numerous ways depending on the type of array and the model

used. The probes or spots on an individual array have complementary subsequences

highly specific to the corresponding gene’s RNA in the samples. The proposed model

extends the additive error-in-variable survival model for Affymetrix data of Tadesse et al.

(2005) to two color microarrays with correlated multiplicative errors. The error model

is included within the framework of a piecewise exponential survival model. Robustness
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analyses are performed, and the model is applied to a breast cancer study dataset.

2.3 The Data Structure

The data analyzed were obtained from experiments performed on breast cancer samples

with similar types of cDNA microarrays. There were a total of 85 microarrays of tumor

(78), normal tissue (4), and other tissue (3) from 84 individuals, but clinical information

was available from only 77 of the individuals who corresponded to tumors. Of these 77

individuals, 75 had time-to-event data available. This subset of the data is the focus of

the paper. There were six batches of microarrays, some arrays having 24k probes and

others having 8k probes. A common subset of 7,938 probes were selected. In the green

channel, one of three batches of standardized reference were used. The red channel for

each array consisted of the 75 tumor samples. It has been reported that the differences in

the array type and the batch effect due to reference add some variability to the analysis

(Sorlie et al., 2001), but this noise is not considered here. The dataset is available from

the Stanford Microarray Database (http://genome-www.stanford.edu/microarray) . The

endpoint studied was time to death due to disease in months. Survival times were between

0 and 100 months (mean 35.43, median 30.0). Twenty-six of the 75 patients experienced

the event after time 0, A Kaplan-Meier curve of the 75 patients is shown in Figure 1.

2.4 The General Model

The goal is to characterize the association between gene expression of particular genes

and time-to-event data. The model proposed will integrate both survival times and a
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Figure 1: Survival curve for breast cancer dataset
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measurement error model. The data is inherently trivariate in that the red and green

channels of any probe are potentially correlated with survival and jointly modeled. Some

notation will be introduced for this two color data. Each spot on the array will be

described as Pgir which are vectors of length two whose indices g, i and r refer to the gth

gene and the ith individual at the rth replicate respectively. The elements of Pgir are Rgir

and Ggir which are the red and green fluorescent measurements of the spot. Pgir may be

written as Probegir ≡ Pgir =



Rgir

Ggir


.

The measurement error model is adapted from one proposed by Ideker et al. (2000).

Ideker’s model consists of a bivariate normal error with an additive component and a

multiplicative component. The multiplicative component will be called the spot effect

(spot ≡ S). The spot effect is the motivation for taking the ratio of Rgir/Ggir. By

dividing R by G, the general assumption is that the multiplicative error will cancel.

The additive component is related to the background effect (B). An examination of the

data reveals the relationship between the mean probe intensity and the variance of the

probe. Figure 2 shows the log of the sample variance plotted against log of the sample

mean in the green and red channels of our dataset. There appears to be a strong linear

relationship between log(probe mean) and log(probe variance).

Stating the model in equation form we have

Pgir = MgiSgir +Bgir, (21)

where

Sgir ∼ N2







1

1


 ,




σ2
mR ρmσmRσmG

ρmσmRσmG σ2
mG





 ,
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Figure 2: Variance vs Mean Relationship with Model Fit Lines
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Bgir ∼ N2







0

0


 ,




σ2
aR ρaσaRσaG

ρaσaRσaG σ2
aG





 ,

and

Mgi =



µRgi 0

0 µGgi


 .

The diagonal elements of Mgi are interpreted as the mean intensities for gene g and state

i since E[Pgir] = [µRgi µGgi]
′, and this is what motivates the mean vector of




1

1


 for

Sgir. The covariance parameters for the multiplicative error are σ2
mR, σ2

mG, and ρm which

represent the variability due to a multiplicative effect in assay replication of biologically

identical samples. Similarly, the covariance parameters for the additive variability due

to replication are σ2
aR, σ2

aG, and ρa.

There are other models for cDNA data with both additive and multiplicative compo-

nents. Rocke and Durbin (2001) suggest a log-normal multiplicative error with a normal

additive error. This model presents major computational challenges because Pgir does

not have a standard distribution, and the likelihood cannot be written in closed form.

Rocke and Durbin (2001) suggest an iterative fitting procedure on different subsets of

genes for the additive and the multiplicative components separately. However, we do not

choose this model for three reasons. First, analysis of the residuals of the log transformed

data suggest that the log-transformation over-corrects for the relatively small amount of

skewness in the data. Second, the difficulty of dealing with a nonstandard distribution

adds to an already heavy computational burden. Third, we show in Section 2.6 that the

estimation of survival parameters and GEI’s with a model based on a normality assump-
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tion are robust to this type of misspecification of the multiplicative error distribution.

However, even the Ideker model is not identifiable unless there is technical replication

in both the red and green channels. In the dataset considered in this paper, we do not

have such replication except in a small number of duplicate probes on each array (about

180). An analysis of these probe measurements was performed on the green and the red

channels separately, and the estimates of σ2
mR and σ2

mG were found to be approximately

equal. With this justification, we set the constraint σ2
mR = σ2

mG = σ2
m for the purpose

of model identifiability. Also, the variance parameters due to the additive components

(σ2
aR, σ2

aG, and ρa) were found to be very small relative to the multiplicative error, so we

set them to zero. The parameters µRgi and µGgi are the means within a biological state.

When a common reference is used, µGgi becomes µGg and it represents the mean intensity

of the reference channel, and µRgi is the mean of the sample channel. In experiments

with biological replication within a channel, the means of the intensities measured are

often considered to be derived from the same underlying population, so that µRgi = µRg

for replicates within a biological state. We must account for the biological variability in

tumor samples, and thus we consider an additional hierarchical component to the model

and take µRgi = µRg(1 + βgi) The parameter βgi is the latent GEI and represents the ith

tumor’s and the gth gene’s deviation from mean of that gene (µRg). βgi is taken to be a

truncated normal variable with βgi > −1 because βgi + 1 is considered to be proportional

to a concentration, and therefore, βgi + 1 must be positive. The method of identifying

the GEI as a latent variable is novel. It is well suited for tumor samples because it gives

a structure to the variation in a gene’s expression. The structure of the truncated normal

distribution acts to resist outlying measurements so that the GEI’s have a regression to
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the mean. The model can be restated in another equivalent form.

Rgi = µRg(1 + βgi)εRgi (22)

Ggi = µGgεGgi (23)

where

Sgi ≡



εRgi

εGgi


 ∼







1

1


 ,




σ2
m ρmσ

2
m

ρmσ
2
m σ2

m







and

βgi ∼ N{βgi>−1}(0, σ
2
bio).

We have a simple physical model that assumes that the intensity of a probe (P ) is roughly

proportional to product of the concentration ([mRNA]) of the target mRNA in the sample

and the sensitivity of the probe (φ). In equation form we have P ≈ [mRNA] × φ. The

physical model is motivated in part because of the Li and Wong model for Affymetrix

data which takes the following form for a single gene:

Pij = νj + θiφj + εij (24)

Here, Pij represents the ith measurement jth probe with sensitivity φj and background

νj. θi is the gene expression index and εij is a normally distributed error term. The

difference between our model and models like that of Li and Wong is that the GEI of

individual i is not a random effect. That is, in the Li and Wong model, the biological

variation of GEI’s is not modeled explicitly. We extend the form of the Li and Wong

model to cDNA data here for the case of a standard reference in the green channel by

taking

Pgir = ΘgiΦgSgir, (25)
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where Φg =



φRg 0

0 φGg


 and Θgir =




[red]gi 0

0 [green]g


.

The parameters φRg and φGg are the platform specific sensitivities of the red and

green channels respectively. The Θgi denotes a matrix whose diagonal elements [red]gi

and [green]g are the concentrations of RNA on the specified array. This model statement

is consistent with (21) if we let ΘgiΦg = Mgi and set Bgi = 0. The problem of gene by

dye interaction occurs for some genes when the intensity of the red channel and the green

channel respond differently to the same concentration gradient. Using the language of

this model, gene by dye interaction can be stated as φRg 6= φGg. The connection with

this model and the log-ratio can be seen by considering the special case that ρm = 1.

The log-ratio is given by

ψgir ≡ log(Rgir/Ggir) = log ((φRg/φGg)([red]gi/[green]g)) . (26)

The three deficiencies of ψgir can be noticed. First, if the values in the red or green channel

are negative, then the log-ratio cannot be computed, and this generates missing data

despite the clear informativeness of low values. Second, the platform specific parameters

of φRg and φGg are contained in the GEI. Third, the reference specific parameter µGg is

also affecting the GEI, and these two problems complicate the interpretation and the cross

platform comparisons of the log-ratio. Now, consider the parameter βgi. The parameter

can be stated in terms of the ratio of intensity parameters as βgi = (µRgi/µRg) − 1.

According model 29, µRgi = φRg[red]gi and µRg = φRg[redg] then,

βgi = (µRgi/µRg) − 1 = ([redgi]/[red]g) − 1. (27)

Thus, βgi does not explicitly depend on platform or reference specific parameters for
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the reason that it is a function of the ratio of the mean intensities, and that ratio is not

dependent on the probe sensitivity or the reference channel.

The parameter βgi will also be linked to the following piecewise constant hazards

survival model. This model divides the survival time axis into J adjacent disjoint intervals

(s0, s1], (s1, s2], ..., (sJ−1, sJ ] where 0 = s0 < sj < sj′ if (0 < j < j ′) and j = 1, . . . J .

Within each interval is a constant baseline hazard h0(y) = λj when y ∈ (sj−1, sj]. We let

νi = 1 be the failure indicator for the ith individual (νi = 0 otherwise), and let δij = 1

if the ith individual was either censored or failed in the jth interval (δij = 0 otherwise).

The survival component contribution of the likelihood for the ith individual becomes

f(yi|βgi, γc) =
J∏

j=1

(λjexp(ηi))
δijνiexp{−δij

[
λj(yi − sj−1) +

j−1∑

k=1

λk(sk − sk−1)

]
exp(ηi)}

(28)

where ηi = log(βgi + 1)γg + Z ′
iγc is the linear predictor. Zi is the p× 1 vector of clinical

covariates for the ith individual, and γc is the corresponding p× 1 vector of coefficients.

Note that βgi has been log transformed for comparisons with the log-ratio models.

In this paper, we consider only one gene’s (g = g′) association with survival at a time

so βg′ refers to the vector of latent GEI’s for the g ′(th) gene, but P refers to all probe

data, that is all of the red and green channel measurements. The model parameters are

Ω = {λj, βg′i, γ
′
g, γck, µRg, µGg, σm, ρm, σBg}.

The dataset consists of D = {Pgi, Y, νi, δij, }. The full likelihood function is the given
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by

L(Ω|D) ∝

n∏

i=1

G∏

g=1

φ2


Pgi;



µRg(1 + βgi)

µGg


 ,




µ2
Rgiσ

2
m ρmσ

2
mµRgiµGg

ρmσ
2
mµRgiµGg µ2

Ggσ
2
m







× φ{βgi>−1}(βgi; 0, σ2
Bg)

×
J∏

j=1

[
λje

(log(βg′i+1)γg′+Ziγc)δijνi
]I[g=g′]

×

[
exp{−δij

[
λj(yi − sj−1) +

j−1∑

k=1

λk(sk − sk−1)

]
elog(βg′i+1)γg′+Ziγc}

]I[g=g′]

. (29)

where φ2() is the bivariate normal density, and φ{βgi>−1}() is the left truncated normal

density. Again, ηi = log(βg′i + 1)γg′ + Ziγc is the linear predictor for survival involving

only one gene (g′). Also, µgRi = µgR(1 + βgi) for convenience.

The likelihood has two parts. The first part will pertain to the measurement error

model, and the second part is the survival model. This dichotomy of the likelihood

motivates the two stage fitting procedure described in Section 2.4.2.

2.4.1 Priors

Bayesian models involve the specification of priors as well as the likelihood, therefore

the specification of priors will complete our model. We do not have information about

parameters from previous studies, and therefore we choose priors that are relatively non-

informative or vague. We use the following priors for the parameters
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µ−1
Rg|µi, σ

2
µi

∼ N{µRg>0}(µim
−1
Rg , σ

2
µi
m−2

Rg) [mRg =
1

ng

ng∑

i=1

Rgi] (30)

µ−1
Gg|µi, σ

2
µi

∼ N{µGg>0}(µim
−1
Gg, σ

2
µi
m−2

Gg) [mGg =
1

ng

ng∑

i=1

Ggi] (31)

σ−2
m |αm, ωm ∼ gamma(αm, ωm) (32)

ρm ∼ Unif(0, 1) (33)

σBg|αB, ωB ∼ gamma(αB, ωB) (34)

λj|α0, ω0 ∼ gamma(α0, ω0/λj−1)(λ0 = 1) (35)

γg′|σ
2
g ∼ N(0, σ2

gene) (36)

(37)

The gamma priors on the λj’s are chosen because they are strictly positive, conju-

gate, and they induce correlation between adjacent λ′s. Such correlated priors create

smoothness in the baseline hazard and were introduced by Arjas and Gasbarra (1994).

Such correlated priors are also discussed in Ibrahim et al. (2001). The prior for σBg

was chosen to be a vague gamma prior; the prior was taken for on σBg instead of the

precision parameter σ−2
Bg because the former is more easily interpreted, and the precision

parameter of a truncated normal does not have a conjugate gamma prior. The prior for

σ−2
m is a vague gamma prior because this is the conjugate form. A vague normal prior

was selected for the survival coefficients γg and to let the likelihood drive the inference

and make the survival parameters comparable to the Cox model for comparison. The

µ parameters in both models had priors that cover the range of the measurements, and

a vague prior is placed on µ−1
Gg and µ−1

Rg instead of the reciprocal to take advantage of
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the log-concave posterior which facilitates a more efficient Gibbs sampling scheme. See

the appendix for computational details. The array data is scaled to avoid numerical

problems. This scaling by mGg and mRg results in the choice of µi = 1.

2.4.2 Model Fit

Our goal is to fit the model (29) on a gene by gene basis in a computationally effi-

cient manner, and the parameter of interest is γg′ because γg′ determines the association

between gene expression and time-to-event. We could fit the full model likelihood for

each gene, but doing so would be computationally expensive because parameters such as

(βgi, µgR, andµgG) relating to other genes would then be estimated as well. The number

of these nuisance parameters is on the order of n ∗ G ≈ 100, 000. To facilitate a more

feasible fitting scheme, the model was fit using an MCMC method in two stages. These

two stages correspond to the two parts of the likelihood. In the full likelihood, the first

part contains information about the measurement error parameters (σm, ρm, σBg) for all

genes, and the second part contains the parameters of the survival model. One may

notice that the measurement error parameters are shared across all genes and that one

individual gene’s contribution to the likelihood should be relatively small. Further, our

analysis has shown that these parameters can be estimated to a reasonably high precision

by using a large number of genes (≥ 500). Thus, in the first stage of the model fitting,

we will estimate the measurement error parameters using likelihood

 L(Ω|D) =
n∏

i=1

G∏

g=1

φ2


Pgi;



µRg(1 + βgi)

µgG


 ,




µ2
Rgiσ

2
m ρmσ

2
mµRgiµGg

ρmσ
2
mµRgiµGg µ2

Ggσ
2
m





(38)

× φ{βgi>−1}(βgi; 0, σ2
B)
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The biological variance parameter σB is chosen in this stage to be the same for each

gene for computational convenience and to borrow strength across genes. Alternatively,

one could select of subset of housekeeping genes thought to have the same low biological

variability, and use only these genes to estimate the measurement error parameters. From

this model fit, we will use the estimates of the measurement error parameters σ̂m and ρ̂m

and substitute them into (29) and this will constitute the second stage of the model fit:

L(Ω|D) ∝

n∏

i=1

φ2


Pgi;



µRg(1 + βgi)

µg′G


 ,




µ2
Rgiσ̂

2
m ρ̂mσ̂

2
mµRgiµGg

ρ̂mσ̂
2
mµRgiµGg µ2

Ggσ̂
2
m





φ{βg′i>−1}(βg′i; 0, σ2

Bg′)

×
J∏

j=1

(λjexp(ηi))
δijνiexp{−δij

[
λj(yi − sj−1) +

j−1∑

k=1

λk(sk − sk−1)

]
exp(ηi)}. (39)

The second stage will be applied to each gene, and the parameters associated with the

measurement error (σ̂m, ρ̂m) remain fixed. Further, we found that the model is weakly

identifiable when σB becomes large (σB > 2). For large σB, the parameters σB and µRg

become confounded. So, for the second stage of the analysis, we fixed µRg = 1
n

∑n
i=1Rgi.

We found that this constraint only had slight influence on the inferences regarding the

parameter of interest (γg). In order to classify the genes as either significantly associated

with an survival or not, we will use the highest posterior density (HPD) intervals for

the γg parameter. If and only if the interval does not contain 0, then the gene will be

included in the list of genes associated with survival.

We fit the models using a Gibbs sampling technique in which samples from the joint

posterior (L(D|Ω)π(Ω)) are obtained by successively sampling from the full conditionals

for a number of iterations after convergence criteria are met. The log likelihood functions
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of the full conditionals for the first stage of the model fit are given below: For notational

convenience let

SSR =

G∑

g=1

ng∑

i=1

(Rgi − µRg(1 + βgi))
2

(µRg(1 + βgi))2
,

SSG =
G∑

g=1

ng∑

i=1

(Ggi − µGg)
2

µ2
Gg

,

SRG =

G∑

g=1

ng∑

i=1

(Rgi − µRg(1 + βgi))(Ggi − µGg)

µGgµRg(1 + βgi)
,

mRg =
1

ng

ng∑

i=1

Rgi , and

mGg =
1

ng

ng∑

i=1

Ggi .
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We have

p(µ−1
Gg|rest) ∝ exp{−

1

2σ2
m(1 − ρ2

m)
[

1

µ2
Gg

ng∑

i=1

G2
gi

−
2

µGg

ng∑

i=1

(
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(
RgiGgi

µRg(1 + βgi)
−Ggi

))
]}

× µ
−ng

Gg exp

{
−

(µ−1
Gg − µim

−1
Gg)2

2σ2
µi
m−2

Gg

}
I [µGg > 0] ,

p(µ−1
Rg|rest) ∝ exp{−

1

2σ2
m(1 − ρm)

[
1

µ2
Rg

ng∑

i=1

(
Rgi

1 + βgi

)2

−
2

µGg

ng∑
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(
Rgi

1 + βgi

+
ρm
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(
RgiGgi

µGg

− Rgi

))
]}

× µRg
−ng exp

{
−

(µ−1
Rg − µim

−1
Rg)2

2σ2
µi
m−2

Rg

}
I [µRg > 0] ,

p(σ−2
m |rest) ∼ gamma

(
αm +

G∑

g=1

ng, ωm +
1

2(1 − ρ2
m)

[SSR + SSG − 2ρmSRG]

)
,

p(ρm|rest) ∝ exp

{
−

1

2

G∑

g=1

ng log(1 − ρ2
m) −

1

2σ2
m(1 − ρ2

m)
(SSR + SSG − 2ρmSRG)

}

× I [ρm ∈ [0, 1]] ,

p(βgi|rest) ∝ exp{−
1

2σ2
m(1 − ρ2

m)
[
(Rgi − µRg(1 + βgi))

2

(µRg(1 + βgi))2

− 2ρm
(Rgi − µRg(1 + βgi))(Ggi − µGg)

µGgµRg(1 + βgi)
]}

× (1 + βgi)
−1 exp

{
−
β2

gi

2σ2
B

}
I [βgi > −1] , and

σB|rest ∝ (1 − Φ(
−1

σB
))−

PG
g=1

nGσ
−

PG
g=1

ng+αB

B exp

{
−ωB −

1

2σ2
B

G∑

g=1

ng∑

i=1

β2
gi

}
.

where ”rest” denotes the data and the remaining parameters.

Computation for the Gibbs sampler was performed using the C language. The full

conditionals of ρm, σm, and βgi were sampled using the Adaptive Rejection with Metropo-

lis Sampling (ARMS) algorithm of Gilks et al. (1995). The µ−1 parameters have a log-
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concave density, and could be sampled directly using Adaptive Rejection Sampling (ARS)

(Gilks and Wild, 1992). The parameter σ−2
m has a gamma distribution which could be

sampled using standard statistical algorithms. The ordered overrelaxation technique of

Neal (2003) was used when sampling from the σ−2
m , µ−1

Rg and µ−1
Gg full conditionals to

reduce autocorrelation of the Gibbs sampler and improve convergence.

The second stage of the model fit has additional parameters relating to the survival

model, and it treats the measurement error parameters σm and ρm as known by substi-

tuting in their estimated values from stage 1. Further, the parameter µRg set to mRg

(defined above) for identifiability. Below are the full conditionals for the second stage of

the model. For notational convenience, we define Λi as the cumulative baseline hazard

for individual i

Λi =

J∑

j=1

δij

[
λj(yi − sj−1) +

j−1∑

h=1

λh(sh − sh−1)

]
.
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We now have

p(µ−1
Gg|rest) ∝ exp{−

1

2σ2
m(1 − ρ2

m)
[
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]}
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γgνiβgi − Λie
log(βgi+1)γg′+Z′

iγc
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× exp
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1
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p(γck|rest) ∝ exp
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n∑
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γckνiZik − Λie
log(βgi+1)γg′+Z′

iγc
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× exp
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, and

λj|rest ∼ gamma

(
α0 +

n∑

i=1

νiδij,
ωo

λj−1
+

n∑

i=1

∆ije
log(βgi+1)γg′+Z′

iγc

)

where ∆ij = (min(yi, sj) − sj−1)
+.

Again, the ARMS algorithm was used to sample from the posterior distribution within

the Gibbs framework for the all of the parameters except λj. The γck and γg parameters

have full conditionals that are log-concave so that the ARS algorithm is potentially

applicable; however, numerical imprecision sometimes yielded non-concave log-likelihood

functions despite the analytical log-concavity of the conditionals. Since ARMS is a more

general sampling method, it was used for these parameters. Also, within the ARMS

algorithm, the value of the log-likelihood function of the parameters γg and βgi was

37



truncated in the extreme tails to avoid numerical imprecision. Again overrelaxation was

used for the µGg parameter to improve convergence properties.

2.5 Case Study in Breast Cancer

We use the model in the previous section to examine the breast cancer data described

in Section 2.3. As mentioned above, the model was in two stages, measurement error

parameter estimation and survival analysis.

2.5.1 Estimating the Measurement Error Parameters

We normalized the microarrays before applying our model. There are many normalization

procedures available for cDNA (Yang et al., 2002). However, most of these methods are

applied to the log-ratio as opposed to the red and green channel individually. For our

purposes, we jointly model the red and green channel instead of modeling log(R/G).

Moreover, there is no replication of samples that is an important component of many

normalization procedures. For normalization, we choose to perform a simple scaling

procedure as follows. One array without major problems such as poor green or red dye

measurements is chosen as the standard, and the red channel measurements from that

array are scaled so that the mean of the red channel is equal to the mean of the green

channel. Then, all other arrays are scaled so that the means of each channel’s probes are

equal to the mean of the green channel of the first array. This method was chosen above

quantile normalization because it better preserved the correlation between the red and

the green channels across arrays. When we compare our method to one that uses the

log-ratio, we used the log-ratio normalization procedure used by (Sorlie et al., 2001).

38



After the arrays were normalized, we estimated the measurement error parameters by

sampling 500 probes at random from the original 7,938 probes. Prior parameters were

selected as follows: (αB, ωB) = (2, 0.1); (αm, ωm) = (2, 0.1); (µi, σ
2
µi

) = (1, 100). The

burn-in period of 10,000 Gibbs sample was used to achieve convergence, and the number

of samples used was 50,000. The convergence of the Gibbs sampler was diagnosed with

parallel chains by using the Gelman and Rubin
√
R̂ statistic (Gelman and Rubin, 1992).

Convergence diagnostics were computed with the R coda package (Plummer et al., 2005).

See the Figure 3 for trace plots.

There was some autocorrelation in the parameters that slowed convergence, but the

effect on parameter estimation was small as the mean of the posterior estimates were

within 1% of their final estimates very early in the chain (i.e. after a few hundred

iterations). The measurement error model then yielded estimates for these parameters

as follows: σB = 0.5752(0.0062); σm = 0.6082(0.0029); ρm = 0.9347(0.0021).

These parameters suggest a large amount of variation due to assay noise. The coef-

ficient of variation due to the multiplicative technical error is σ̂m, and the correlation of

the red and green components of this multiplicative effect is ρ̂m which suggests that the

log-ratio has significant error. These parameters will now be considered fixed in the gene

by gene survival analysis stage.

2.5.2 Data Preprocessing

Before survival models are fitted, there is some data preprocessing including gene filtering

and imputation of missing data. The large number of genes relative to the number of

independent observations makes it beneficial to limit the analysis to a subset of probes
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Figure 3: Trace plots of select parameters (σB, σm, and ρm) of measurement
error model with lag 1 autocorrelation
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that meet some threshold of variability across samples. We used a similar inclusion

threshold to that of the original analysis. We considered only probes that had at least

3 samples that were a 4-fold change from the median log-ratio. From that list, we took

a subset of those probes which had missing data in the green or red channels for no

more than 10 out of the 75 arrays. This left 991 probes for examination, but there

were duplicated gene names in the probe list. All duplicate gene names were removed

for the survival analysis which left 942 genes. The missing data in the reduced set

was then imputed using the log-ratio. Specifically, imputation was performed using

the Statistical Analysis for Microarrays package (Tusher et al., 2001) with a K-nearest

neighbor algorithm in which K=10.

2.5.3 Results: Genes identified by the Gene Only Model

Our goal is to find a list of genes that are associated with time-to-event in breast cancer.

We perform two types of analyses and compare the results with a conventional Cox pro-

portional hazards model. The analysis presented here tests the gene’s survival association

without additional clinical covariates. For comparison, we fit a Cox proportional hazards

model with standard software R Development Core Team (2004a) using the log-ratio as

the GEI covariate. When constructing gene lists using the Cox model, the p-value of the

corresponding regression parameter was used to determine association. Specifically, lists

with genes having a p-value cutoff of < 0.01 for the regression parameter will be com-

pared to lists including genes whose γg parameters have 99% HPDs that do not contain

0. The latent variable and the Cox models were fit to the 942 genes. The prior hyperpa-

rameters for the survival model are as follows: (αB, ωB) = (2, 0.1); (α0, ω0) = (0.01, 0.01);
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(µi, σ
2
µi

) = (1, 100); σ2
gene = 100.

The Gelman-Rubin statistic was again used to assess convergence, but because of the

number of models (942), convergence could not be thoroughly examined except for a

few genes. Based on these models, a conservative estimate for the number of iterations

needed to achieve convergence was used for all genes. A burn-in of 5,000 cycles, and

10,000 samples were used to summarize the posterior estimates. The results compare

lists of genes selected to have a significant association with survival by the by proposed

model and the Cox model given in Table 2.

Table 2: Comparison of significant gene lists for Gene Only Model

Proposed Model

Significant Not Significant Total

Cox Significant 65 18 83

Model Not Significant 13 846 859

Total 78 864 942

There is significant agreement between the the two lists. For the sake of brevity, we

will focus a few important genes. The intersection of the two lists includes genes which

have known associations with breast cancer such as the estrogen receptor Perou et al.

(2000), gamma glutamyl hydrolase (Rhee et al., 1993), and the angiotensin receptor 1

(AGTR1) gene (De Paepe et al., 2001). Of the 13 genes that were detected by the
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Table 3: Clinical Covariates Only Comparison

Cox Model Piecewise Exponential

Covariate Estimate (SD) Estimate (SD)

Age 0.049 (0.259) 0.014 (0.274)

Tumor Category 0.606 (0.267) 0.640 (0.269)

Grade 0.488 (0.230) 0.483 (0.234)

ER status 0.747 (0.202) 0.726 (0.205)

proposed model only, we have found that some of them have associations with breast

cancer such as estrogen regulated LIV-1 protein (Dressman et al., 2001) and the 5T4

oncofetal trophoblast glycoprotein gene (Kopreski et al., 2001).

2.5.4 Results: Inclusion of Clinical Covariates

The clinical covariates of age (< 40), tumor category (1,2,3,4), grade (High, low), and

ER status (+/-) were entered into the model. Tumor category corresponds to the size

of the tumor, so it was treated as a continuous covariate instead of a factor. First, the

clinical covariates were fit without the expression data in order to compare the Cox and

the piecewise exponential models. All of these clinical variables were centered and scaled.

A burn-in period of 5,000 samples were taken and 10,000 samples were used to compute

the posterior estimates. The results in Table 3 show the close agreement between the

two models.

The results of the model fit with these covariates and each of the genes are shown in
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Table 4. A burn-in of 7,500 cycles and 10,000 samples were used.

Table 4: Comparison of significant gene lists with covariates

Proposed Model

Significant Not Significant Total

Cox Significant 19 11 30

Model Not Significant 8 904 912

Total 27 915 942

Many of the 19 genes selected by both models have associations with breast cancer

such as Claudin 4 Kominsky et al. (2004). Some of the 8 genes selected only by the

latent variable model have associations with breast cancer in the literature such as the

somatomedin gene (Byron et al., 2006).

2.6 Robustness Analysis and Operating Characteristics

2.6.1 Deviation from normality in the data

According to the model, the array data in the green channel for a particular probe is

normally distributed about the same mean so that greengi ∼ N(µGg, µ
2
Ggσ

2
m). One may

calculate the scaled residuals in a typical manner of subtracting the sample mean and

then dividing by the sample standard deviation for each gene. To examine the validity

44



of the distributional assumption, we show a histogram of the scaled residuals in Figure

4. The normal density is overlaid.
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Figure 4: Scaled Residuals with normal density curve.

One can detect that the distribution is skewed to the right with a heavier tail. One

could consider a transformation, but transformations dilute the relationship between the

mean and the variance. The distribution of the red channel is much more complicated

under the model because it is the product of a normal and a truncated normal random
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variable.

2.6.2 Simulations demonstrating robustness to nonnormality

In order to characterize the effects of this deviation from normality, we performed a

robustness analysis with a simulation. We used the log-normal model of Rocke and

Durbin (2001) without the normal additive error to simulate a dataset and applied our

two stage model fitting procedure to 200 different datasets with n = 75 individuals. The

true measurement error parameters of the simulation were σm = 0.6, ρm = 0.9, and

σBg = 0.5. A total of 500 genes were simulated with µgR = |Xgi| and µgG = µgRYgi

where Xgi ∼ N(10, 000, 3, 000) and Ygi ∼ gamma(2, 2). The estimates (and SD’s) from

the model fit were (σ̂m = 0.651 (0.005), ρ̂m = 0.985 (0.001), and σ̂Bg = 0.59 (0.05)).

Then, 200 survival datasets were generated with the survival time yi being exponentially

distributed with rate parameter equal to exp[γglog(βgi + 1)] with a censoring probability

of 0.7. The regression coefficient γg was drawn uniformly from the interval [−2, 2], and

βgi ∼ N{βgi>−1}(0, 25.0). The parameters µRg and µGg were simulated as above. We are

primarily interested in the γg parameter, but we also show results of βgi. Figure 5 shows

the γ̂g plotted against the true values.

The bars in the plot indicate the 95% HPD intervals. The 95% and 99% HPD intervals

contained the true values of γg 92.0% and 98.5% of the time respectively, which indicates

that the model is estimating γg fairly accurately. Also, the log(β̂gi + 1) were highly

correlated with the true values, see Figure 6. Another test of robustness of the β̂gi as

GEI’s is the correlation that they have with the conventional log-ratio GEI’s. The mean

and median correlation of log(β̂gi + 1) with the log-ratio estimates for each of the 942
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Table 5: Operating Characteristics Under True Model

N γg Estimate (SD) γg ∈ 95%HPD γg ∈ 99%HPD 0 6∈ 95%HPD 0 6∈ 99%HPD

950 0 0.0004 (0.18) 0.943 0.99 0.057 0.008

25 1 1.11 (0.24) 0.96 1.0 1.0 1.0

25 -1 -1.01 (0.22) 0.96 1.0 1.0 0.96

genes of interest are 0.90 and 0.97 respectively. These high correlations between the

log-ratio GEI and the latent GEI estimates suggests substantial agreement of the two

estimates of the biological variability present in the data.

An analysis of the operating characteristics of the model demonstrates that the model

has good type I and type II error rate control for inference regarding the γg parameter.

The Ideker et al. (2000) model was used to simulate the datasets, and the same measure-

ment error parameters were used as above with these parameters treated as known. A

total of 1,000 datasets with n = 75 individuals were simulated with 950 genes under the

null (γg = 0) and 50 genes under the alternative (γg = 1 and γg = −1, 25 times each).

The results for the simulation are given in Table 5.

Table 5 shows that the properly specified model has no strong evidence of type I error

rate inflation and has good power for moderate effect size. Also, the HPDs have accurate

coverage probabilities, and the estimated coefficients γg show no indication of bias. For

comparison, we retested the operating characteristics using the log-normal multiplicative

error mentioned above the and using same simulation parameters as well as the same
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Table 6: Operating Characteristics under Misspecified Model

N γg Estimate (SD) γg ∈ 95%HPD γg ∈ 99%HPD 0 6∈ 95%HPD 0 6∈ 99%HPD

950 0 0.004 (0.15) 0.941 0.987 0.059 0.013

25 1 0.989 (0.19) 1.0 1.0 1.0 1.0

25 -1 -0.958 (0.16) 0.92 1.0 1.0 1.0

estimated measurement error parameters. Again, 1,000 datasets were simulated with

n = 75, for fitting the survival model. The results are shown in Table 6.

Table 6 represents the model fit under a grossly misspecified error structure, and

this degree of skewness in the error is greater than that of the observed data. Despite

this large deviation from normality, the model is seen to be quite robust to this kind of

misspecification. One can see a slight inflation of the type I error rate (0.05→0.059 and

0.01→0.013). The power is not seen to decrease, and this may be surprising. However,

one must remember that the measurement error is not the same. The estimates of the

γg coefficients are slightly biased towards the null as would be the case for models that

did not account for measurement error, but this bias does not effect the HPD coverage

probabilities. Overall, the model shows good type I and type II error rate control under

misspecification.
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2.7 Discussion

This paper presents a model to find associations between a gene’s expression and time-to-

event data for cDNA microarrays that accounts for the substantial measurement error.

The model for the microarray probes is parametric and creates a GEI which is latent

instead using the log-ratio. The model for the time-to-event data is a Bayesian semipara-

metric piecewise constant hazards model. We fit the model using an MCMC algorithm in

a two stage process. The first stage estimates the measurement error parameters, and the

second stage uses these estimates in the survival model on a gene by gene basis. A case

study with a breast cancer dataset is performed with and without adjusting for clinical

covariates. The new model is shown to be generally consistent with a conventional model

that uses the log-ratios in a Cox proportional hazards model, and potentially important

genes selected by the proposed model only are found to have known connections with

breast cancer. That is, conventional models that do not account for measurement error

may fail to detect these genes’ associations between event and gene expression. In addi-

tion to detecting associations, the conventional models may underestimate the strength

of these associations because models not accounting for measurement error are known to

be biased towards the null, and this bias may be avoided in the proposed model. The

model was shown to be robust to some parametric assumptions for inference about the

parameter of interest, and the new GEI’s are found to be highly correlated with the

log-ratios. Further, the model is demonstrated to have good operating characteristics

concerning type I and type II error rates as well as accurate coverage of the parameter

values by the HPDs. However, the issue of False Discovery Rates (FDR) is not addressed
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here. Conceivably, permutation of the survival times could be applied to the data in order

to estimate the false discovery rate. Permutation is regularly applied in the case of the

Cox model and in other frequentist approaches in microarray data Sorlie et al. (2001), yet

such permutations would be not computationally feasible for a Bayesian analysis using

this model, and permutation is only valid under exchangeability which excludes more

complex models with clinical covariates. The problem of estimating FDR for Bayesian

models is one of current research (Efron et al., 2001; Ibrahim et al., 2002; Newton et al.,

2004a; Tadesse et al., 2005), and the estimation of the FDR can be obtained by using

the mean posterior probability. If one is interested in which genes are most likely to be

associated with the time-to-event data, an ordering of the genes in terms of association

is required. In the frequentist setting, the p-values for the test statistics can generate

the ordering. One may easily derive such an ordering from the model presented here by

calculating the posterior probability that γg = 0 as in Tadesse et al. (2005). Overall,

this model has an important advantage over the conventional one in that it accounts for

measurement error which is a significant additional source of variation.
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3 Microarrays and Genetics

The second paper derives an enhanced method for finding associations between genotype

and gene expression. Microarrays represent high-dimension complex traits that can be

influenced by the genotype of the cells. The purpose of genetic analysis of microarray data

is to understand the influence of genotype on gene expression as an intermediary between

genotype and the directly observable complex traits such as blood pressure, cholesterol,

obesity and disease states like diabetes. Linking genotype and expression may help to

elucidate genetic networks as well. Jansen and Nap (2001) asserted that the combined

analysis of gene expression and genetic variation be called “genetical genomics”. Others

have called it eQTL analysis for Expression Trait Loci. eQTL analysis methods are

closely related to Quantitative Trait Loci (QTL) methods that have been developed for

single or a few traits (Lynch and Walsh, 1998). The genetic analysis of quantitative traits

has a very long history dating back to Francis Galton in 1869 (Galton, 1892).

3.1 Fundamentals of Genetics

The basic aim of eQTL and QTL analysis is to find associations between the genotype

which is a set of positively correlated, categorical variables and the phenotype that is a

continuous response. For a review of QTL methods, see Lynch and Walsh (1998).

Experimental or observational design plays a pivotal role in the analysis techniques

used in mapping or detecting eQTL and QTL. The main consideration is whether the



population tested is inbred or outbred. Inbred populations are those whose parents are

closely related. Specifically, recombinant inbred lines (RILs or RI strains) are the results

of multiple generations of brother-sister mating (Lynch and Walsh, 1998). Through

recombination, the offspring will become almost completely homozygous, meaning that

the maternal and paternal chromosomes have the same genotypes. The offspring will

have identical genotypes except for the differences between sexes. Two RILs can be

crossed in different ways depending on the experimental design. For example, F1 designs

compare offspring from the cross of 2 RILs. F2 designs involve the offspring of the F1

generation and so on. The backcross design compares the cross of the F1 line with one

of the parents. The observational designs of outbred populations are very different from

those of inbred populations. Outbred parents and offspring are those whose ancestors

are not closely related. This poses additional analytical challenges compared to inbred

populations, but many important studies of humans involve outbred subjects. Lynch and

Walsh (1998) stress that the outbred designs examine within population trait variability

while the inbred designs examine between population variances, and they give the major

differences between the two. The variability of genetic markers is not well controlled in

outbred populations. For example, markers may not be informative, meaning that the

genotypes are polymorphic (having variation) for the subjects in the study. On the other

hand, outbred parents could have excess variability at a locus. For example, if there are

4 or more genotypes, then the analysis can become less powerful to detect QTLs.
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3.2 Fundamentals of QTL Analysis

The analysis of inbred strains involves the comparisons of means of populations. One

fundamental idea in QTL analysis is that genotype influences the mean value of the trait

y so that

yi = µ+ βxi + εi (40)

where β is the QTL effect, and xi is the QTL genotype of the ith subject, and εi is a

random error with variance σ2. The vectors xi and β may be two or three dimensional

depending on the number of different genotypes and whether or not the effect of the

QTL is additive or has a dominance component. If there are three genotypes say QQ,

Qq and qq, then an additive model would have means µQQ + a = µQq = µqq − a for some

a. For dominance models, there is no such a, but there are a and d where µQQ + a =

µQq + d = µqq − a. The location of the QTL or eQTL is generally unknown in advance

so that markers must be used as proxies. One may use the markers themselves, but for

sparse markers, this may have disadvantages such as underestimating the QTL effect and

inaccurate estimation of the QTL location. Interval mapping was developed by Lander

and Botstein (1989) in order to analyze the possible occurrence of a QTL between the

markers. The likelihood for the QTL with additive effect a becomes

L(µ, a, σ2) =
n∏

i=1

[Gi(0)Li(0) +Gi(1)Li(1)] (41)

where Gi(x) is the probability of the genotype x ∈ {0, 1} of the ith subject. Li(x) is the

likelihood function given genotype x. The probability Gi(x) may be calculated condition-

ally upon the distance from the left and right flanking markers for any position between

them. The above likelihood can be maximized by the Expectation Maximization (EM)
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algorithm for positions uniformly distributed across the genome. This form of interval

mapping is computationally intensive, and eQTL would greatly increase those demands.

The results of interval mapping can be approximated by another more computationally

efficient method of Haley and Knot (1992). They proposed that instead of Equation

(40) one substitutes the expected value of x conditional upon the flanking markers for x.

This allows one to calculate the likelihood for positions between markers like the interval

mapping of Lander and Botstein, but it avoids the burden of the iterative EM algorithm.

Another significant advance in QTL involves correction for multiple QTL affecting a

single trait. If there are many QTL then the model becomes yi = µ +
∑

g βgxgi + εi

where the subscript g indexes the different QTL. The existence of multiple, linked QTLs

is known to bias the effect and location of methods that detect the largest single QTL

(Zeng, 1993). Zeng (1993) proposed Composite Interval Mapping (CIM) to overcome

bias due to the composite effects of multiple QTL. CIM models the trait y as a function

of the genotype anywhere in the interval (j, j + 1) between the two flanking markers

j and j + 1 and the genotypes at all other markers. The phenotype model becomes

yi = b0 + b∗x∗i +
∑

k 6=j,j+1 bkxki + εi where k indexes the nonflanking markers. The b∗

parameter measures the effect of the loci of interest while the bk parameters are the

effects of the background trait variability due to the kth marker. The number of back-

ground markers to adjust for is not given by the model, but the markers j − 1 and j + 2

should always be included because all of the other markers on the same chromosome are

conditionally independent of x∗i .

eQTL detection in human studies must use the analytic methods of outbred analysis.

The underlying model for the means is the same as for inbred populations, but the
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modeling focuses on the analysis of variance components. In the notation of Almasy and

Blangero (1998), we have y = µ+X ′β+
∑n

i=1 γi+g+εi where y is the vector of trait values,

γ is the effect of QTL i, and ε is the random error. The term X ′β represents the covariates

(e.g. age, sex) and the corresponding regression coefficients. The g parameter represents

the effects of the polygene which is the composite of many QTLs with small effects.

The variance of y (σ2
y) can be written in terms of the independent genetic components

∑n
i=1 σ

2
γi

and the random error σ2
ε so that σ2

y =
∑n

i=1 σ
2
γi

+σ2
g +σ2

ε . The covariance of any

two related individuals is a function of kji which is the probability that the ith QTL has j

alleles that are Identical by Descent (IBD). Ignoring dominance effects, the covariance of

these two relatives is Cov(y1, y2) =
∑n

i=1(k1i + k2i)σ
2
ai. One may make an approximation

that σ2
a =

∑n
i=1 σ

2
ai, and let φ = 1

2
E[(k1i + k2i)] where φ is called the expected kinship

coefficient. This gives Cov(y1, y2) ≈ 2φσ2
a. If one is interested in QTL i only, we have

Cov(y1, y2) = πiσ
2
ai + 2φσ2

g where πi = k1i + k2i. The background or polygenic effects are

reflected by σ2
g . The term πi is the probability of an allele of the i QTL being IBD and is

called the coefficient of relationship as in Almasy and Blangero (1998). The phenotypic

covariance for a general pedigree may be written as Ω =
∑n

i=1 Π̂iσ
2
ai + 2Φσ2

g + Iσ2
e where

the matrix Π̂i has elements (πijl) that indicate the proportion of IBD alleles of QTL i

shared by individuals j and l. Φ is the matrix of kinship coefficients. The estimation

of the Π̂i matrix is not straightforward for general pedigrees, and there are methods

designed for estimating the IBD probability for genetic marker locations (Amos et al.,

1990; Davis et al., 1996) and locations in between markers (Fulker et al., 1995; Almasy

and Blangero, 1998). Almasy and Blangero developed software for general pedigrees that

estimates the Πi matrix for positions between markers with a regression based approach.
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The likelihood for the phenotypes given the form of the covariance matrix is then given

by

log(L(µ, σ2
ai, σ

2
g , β|y,X)) = −

t

2
log(2π) −

1

2
log |Ω| −

1

2
∆′Ω−1∆ (42)

where ∆ = y − µ − X ′β. The hypothesis concerning whether or not QTL i exists is

equivalent to testing σ2
ai = 0. Since the test involves the boundary of the parameter

space (σ2
ai ≥ 0), the distribution of the likelihood ratio statistic does not have a chi-

square distribution. Self and Liang (1987) showed that the likelihood ratio statistic will

follow a mixture of chi-square distributions, and this null distribution is the basis for

inference.

3.3 eQTL analysis

Most of the existing analyses of and methods for eQTL detection are adaptations of

QTL methods applied to gene expression data. The main difference is that the num-

ber of traits is much increased. Attempts are made to reduce the number of traits or

dimensions that are considered. One motivation is that transcripts with low variation

in expression between genotypes are not likely to be controlled by eQTLs. The removal

of these low variance transcripts is then thought to reduce the number of false positive

eQTL detections as in Schadt et al. (2003). Schadt et al. (2003) excluded transcripts

of low variability, and then used interval mapping with a likelihood ratio threshold to

identify eQTLs for a specific trait. Another motivation for reducing the number of tran-

scripts considered is that some of the expression measurements may not be reproducible

within an genotype. Carlborg et al. (2005) borrowed the concept of repeatability from
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Falconer and Mackay (1996). Repeatability is defined as the ratio of within line variance

to between line variance. Carlborg et al. (2005) showed that when transcripts with low

repeatability are excluded, the power for detection of eQTLs is increased. However, as

Schadt et al. (2003) and Chesler et al. (2005) point out, excluding subsets of transcripts

may increase the number of false negatives or non-discoveries. Instead of excluding sets

of transcripts, the dimension of the phenotype may be reduced by combining transcripts

to form a smaller number of “supertraits.” Yvert et al. (2003) reduced the number of

individual traits by clustering groups of genes that were significantly correlated, and the

mean expression level of transcripts in the cluster was the quantitative trait considered.

Lan et al. (2003) proposed that the principle components of the gene expression data

and clusters based on transcripts of interest could be used as supertraits to improve the

power of eQTL detection.

The attempts to control false discovery or Type I error rates in eQTL analyses have

mostly been derivative of the methods applied to QTL framework. Schadt et al. (2003),

Morley et al. (2004), and Monks et al. (2004) used a genome-wide p-value cutoff based on

a Bonferroni correction to all possible eQTL associations. Chesler et al. (2005), Hubner

et al. (2005), and Carlborg et al. (2005) used a combination of a genome-wide permutation

p-value and the FDR estimation method of Storey (2002). The permutation procedure

of Churchill and Doerge (1994) was applied to each transcript. This procedure simply

permutes the trait (transcript) values, and calculates the test statistic for each loci on the

genome. The maximum test statistic across the genome for each permutation gives an

empirical null distribution. The observed test statistic is then given a p-value according

to this null distribution. In these eQTL experiments, this p-value is then entered into
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Storey’s q-value procedure so that the FDR can be computed.

Very recently, Storey et al. (2005) have developed a method that uses a forward

selection process to create a multiple eQTL model, meaning that many loci affect the

mean expression level of a transcript. The method proceeds as follows. First, for each

transcript, the loci on the genome with the highest likelihood of association is chosen

using a method related to Efron (2004) that calculates an empirical Bayes estimate of

posterior probability for association. Next, the effect of the chosen loci is included in

the model for each corresponding transcript, and the procedure selects the loci with

the highest probability of association with the transcript given the loci selected in the

previous stage. The posterior probability that both loci selected in the two rounds of the

procedure are associated with the transcript is given by

P{loci 1 and 2 are associated|Data} = P{locus 2 associated|Data, locus 1 associated}

×P{locus 1 associated|Data}. (43)

This methods allows for the FDR to be calculated as the average posterior probability of

no association (1− P{loci 1 and 2 are associated|Data}) for the selected subset of traits

with two loci models. The forward selection can be applied for more than two levels, but

forward selection procedures are generally known to be biased. Whether or not this bias

affects the biological inferences is not known at this point.

3.4 Data Structure

The motivating dataset that we consider is from an experiment on brain tissue from

mouse recombinant inbred (RI) strains with Affymetrix microarray measurements. The

59



microarray dataset is available from www.genenetwork.org by searching for mouse data,

BXD group, and whole brain tissue. RI strains are the product of multiple generations

of inbreeding that result in offspring that are homozygous for either of the two founding

parents. BXD (B strain crossed with D strain) strains have homozygous alleles of either

one of two parents B (C57BL/6J) and D (DBA/2J). The BXD panel and RI panels in

general have several advantages for eQTL mapping experiments (Chesler et al., 2004).

The RI mouse model has been broadly used for the genetic exploration of complex dis-

eases and as a model of human disease (Chesler et al., 2004). The RI strains are a

renewable source of genetically identical animals that can be used in experiments that

are reproducible from laboratory to laboratory. The genetic identity reduces the need

for genotyping and facilitates exploring gene by environment interactions. Also, there

are continuously evolving databases for comparison and integration of results. In this

paper, the model is applied to RI designs, but it can be applied to many breeding designs

such as backcross or F2. The basic goal of eQTL detection is to find associations between

the categorical predictors (genotypes) and the continuous response (transcript expression

level). (For a general reference on QTL analysis, see Lynch and Walsh (1998)). In the

most simple circumstance and in the case of RI strains, the genotypes are of two varieties

denoted as 0 or 1. The genotype of any individual k out of n is then a vector of length

M of 0’s and 1’s where M is the number of genetic markers. The index for the transcript

will be t out of T . The microarray measurement for a transcript t is given by yt so that
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we have

yt ≡ Vector of gene expression measurements for transcript t.

yt,m,g ≡ Subvector of yt for individuals having genotype g at marker m.

The transcripts can be either equivalently expressed (EE) meaning that genotypes

are not associated with expression level or differentially expressed (DE) meaning that

one or more marker loci are associated with the transcript’s expression.

3.5 The Mixture Over Markers Model

The False Discovery Rate (FDR) is often used to account for the multiple testing problem

in microarray analyses, but the multiple testing methods typically applied to microarray

data like the q-value method can be anticonservative in the eQTL setting as Kendziorski

et al. (2005) point out. The reasons for the shortcoming of these methods are manifold,

but the main reason is that FDR methods developed for microarrays typically consider

only one alternative hypothesis. That is, the alternative hypothesis is that the transcript

is differentially expressed with respect to or correlated with a single biological state. In

eQTL analyses, any given transcript has alternative hypotheses for each marker. That

is, a transcript could be associated with marker 1, 2, 3, etc. This adds another dimension

to the multiple testing problem. In QTL analyses, the existence of merely an association

between a marker and a trait is not a sufficient discovery because the QTL discoveries

are optimally localized to minimal regions of highest association, not merely some asso-

ciation. Kendziorski’s MOM method (Kendziorski et al., 2005) has the advantage that it

simultaneously estimates posterior probabilities of all of the MT possible associations be-
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tween transcripts and markers. The result of fitting the MOM model gives the posterior

probability of a transcript being associated with a certain marker based on the observed

data. This has at least three advantages. First, by averaging the posterior probabilities,

one can estimate the FDR. Second, for every transcript, one has the conditional proba-

bilities for an eQTL across all of the markers. Returning to the previous example, the

MOM model gives the posterior probabilities that transcript t is associated with markers

1, 2, or 3, simultaneously. Third, the model pools information to estimate parameters

common to all transcripts.

The MOM model does have some disadvantages. First, the MOM model assumes at

most one locus explicitly controls the expression of a given transcript which may not hold

for some transcripts. In the QTL literature, there are some methods that are developed

which can estimate the number as well as the location of QTLs, but these methods may

not be readily applied in the eQTL setting because of the sheer computational burden

(Storey et al., 2005). We propose an extension of the MOM method to model two eQTLs

conditionally upon finding the first major eQTL. Second, the MOM method assumes

that the error variances are equal within predetermined transcript clusters. We relaxed

this assumption and suggest a discrete uniform prior for the standard deviations of the

errors.

When considering all possible MT associations between transcripts and markers it

could be advantageous to utilize the patterns of these associations. Chesler et al. (2004)

and Carlborg et al. (2005) noted that transcripts are more likely to be associated with

markers that correspond to the genomic location of the transcript. eQTLs that are as-

sociated with the transcripts of nearby genes are called cis acting eQTLs while eQTLs
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that are associated with transcripts that are some distance away are called trans acting

eQTLs. There are biological reasons for the prevalence of cis eQTLs. Namely, the lo-

cal DNA sequence may contain elements that affect the transcript’s regulation or subtly

affect the transcript’s function (Doss et al., 2005). This biology is one of the major mo-

tivations for developing the proposed extension of the MOM method to include genomic

locations of the transcripts and markers. There is a possibility that a putative cis eQTL

is an artifact of sequence variation in the transcript affecting the expression measure-

ment process. However, Doss et al. (2005) examined putative cis acting eQTLs in mice

and experimentally confirmed that a majority of these associations corresponded to true

eQTLs.

First, we describe the MOM model. The marginal likelihood for EE transcripts is

f0(yt) =

∫
f∗(yt|σ

2)πσ2(σ2)dσ2, (44)

where

f∗(yt|σ
2) =

∫ ∏

k

fobs(yt,k|µt, σ
2)πµ(µt)dµt, (45)

and

fobs(yt,k|µt, σ
2) = φ(yt,k;µt, σ

2) and πµ(µt) = φ(µt;µ0, τ
2
0 ). (46)

The transcription measurements are considered independent sampling units. The term

fobs(yt,k|µt, σ
2) is the distribution of yt,k (the kth element of yt) conditional on σ2 and the

mean µt, which for EE transcripts, is the same for all subjects. fobs represents residual,

non-genetic variation and genetic variation not explained by the model. The parametric

form of fobs is φ(yt,k;µt, σ
2) where φ(x;µ, σ2) is the normal density with mean µ and

variance σ2. One may integrate out the µt parameter and find that f∗ is a multivariate
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normal density with mean µ0 and a compound symmetric variance Iσ2 + 11′τ 2
0 where 1

and I are the vector of ones and the identity matrix respectively.

In Equation (44), the prior for σ2 is denoted as πσ2 . In Kendziorski et al. (2005),

there is no prior on σ2, but the error variance is chosen to be equal within clusters.

These clusters are chosen using the k-means algorithm before MOM is applied. We

argue that there is no a priori reason to assume that genes have equal variances because

they are correlated. Further, the uncertainty in the clustering of genes is not accounted

for when the variance categories are fixed before the model fit. We choose a discrete prior

for σ2 so that σ is uniformly distributed over the interval [0, σ∗] to cover the range of

probable variances where σ∗ is determined by estimating the variances of a subset of genes

thought to be EE. Equation (44) implies that f0 is a scale mixture of compound symmetric

densities. Differentially expressed (DE) transcripts associated with marker m would have

density fm(yt) =
∫
f∗(yt,m,0|σ

2)f∗(yt,m,1|σ
2)πσ2(σ2)dσ2 where the corresponding fobs are

centered around a different mean (µt,m,0 or µt,m,1) according to the genotype of marker m.

This implies that fm is a scale mixture of block diagonal compound symmetric normal

densities.

The status of whether or not the transcript is differentially expressed and if so, which

marker(s) is it associated with is not known a priori, and this is treated as missing data.

In a fully Bayesian context, one would estimate the joint posterior distribution for both

the parameters and the missing data. Although such joint estimation would be ideal,

the number of missing data points is MT which makes such fully Bayesian estimation

computationally infeasible using MCMC methods. As a computationally feasible alter-

native, we consider an Empirical Bayes procedure in which the parameters are estimated
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by maximizing the marginal likelihood. If we consider only marker m and let pm be the

probability of a transcript t being associated with marker m, then the marginal distri-

bution of the data is given by Lt,m = pmfm(yt) + (1 − pm)f0(yt). This model may be

extended over many markers. We let p0 be the prior probability of the transcript mapping

nowhere (i.e., the null hypothesis that the transcript is not associated with any marker)

and equate the mixing proportions pm with prior probabilities for the marker being an

eQTL for a transcript. One may notice that the prior probabilities pm for a transcript

mapping to a particular marker are not dependent on the particular transcript. The

likelihood now becomes Lt = p0f0(yt) +
∑M

m=1 pmfm(yt) where M is the total number of

markers considered. So the likelihood for all transcripts and markers is L =
∏T

t=1 Lt. The

model is fitted with the expectation maximization (EM) algorithm. EM is used because

the binary (0 or 1) (M+1)×T dimension matrix Z of random variables (zm,t) that deter-

mine which marker, if any, is associated with the transcript t are not observed. The case

z0,t = 1 implies that transcript t is not controlled by any marker, and the case zm,t = 1

implies that transcript t is controlled by marker m. Thus, if the zm,t were observed, we

would have the complete data. The columns zt of the matrix of zm,t are multinomial

random variables which contain exactly one 1 when observed and have elements whose

expectation sum to unity. This model considers the existence of only one major eQTL.

The complete data log-likelihood for a given transcript can be rewritten in terms of these

zm,t as

lt =

M∑

m=0

zm,t log(pm) +

M∑

m=0

zm,t log(fm(yt)). (47)

The above equation illustrates that the mixture probabilities pm can be thought of as
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the prior component with the fm(yt) being the likelihood component. This equation also

indicates that zt has multinomial probabilities p0 . . . pM that can be estimated directly

with the EM algorithm by substituting the expectation of zm,t. The expectation of zm,t is

an important quantity that is equal to the posterior probability of a transcript mapping

to the marker m and is given by

E[zm,t] =
pmfm(yt)∑M

m=0 pmfm(yt)
. (48)

3.6 Extensions of the MOM model

We describe the proposed extensions of the Mixture Over Marker model, the model fitting

procedure, and the calculations of the FDR.

3.6.1 Proximity Model

We extend the MOM model to allow the prior probabilities of a transcript mapping to

a marker to depend on the transcript’s genomic proximity to the marker. We choose a

simple and reasonable relationship to model these prior probabilities. We use a log-linear

model for the mixture probabilities pm,t that contains the Kendziorski model as a special

case. The responses in the model are the multinomial columns zt of the Z matrix that can

be converted into a (M + 1)× (M + 1) contingency table ζ with elements ζij =
∑

t∈Ci
zj,t

where Ci ≡ {t | t closest to marker i}. The element ζij is the number of transcripts

closest to marker i that map to marker j where i, j ∈ {0, 1, . . . ,M}. The 1st row of ζ (ζ0j)

represents transcripts that were not sufficiently close to any marker. The 1st column of

the ζ (ζi0) represents the transcripts mapping to no marker. Converting Z into ζ allows
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the reduction of the data from (M + 1) × T elements of Z to the (M + 1) × (M + 1)

elements of ζ because T is often several times larger than M . A log-likelihood is derived

under the assumption that the ζij’s are a vector of random variables that have a Poisson

distribution. This generalized linear model with the canonical link is proportional and

equivalent to a multinomial likelihood for the zt’s. The linear, systematic component of

the model for the elements of the table is

log(E[ζij]) = νij = αi + βj + γI[i = j]I[i > 0] (49)

where I[ ] is the indicator function. The I[i > 0] term exists because the first row of

the table corresponds to transcripts that are not close to any marker. The parameters

α0 . . . αM are nuisance parameters that model the row totals so that the log-linear model

and the multinomial models are equivalent. The parameters β0 . . . βM correspond to the

marker specific effects. The β0 parameter is related to the log prior probability that

a transcript is not associated with any marker. Because the multinomial probabilities

must sum to 1, one of the βm parameters is determined by the others, and without loss

of generality, we set β0 to 0. The size of βm varies greatly. Some markers do not appear

to regulate any transcripts while other markers might modulate hundreds of transcripts.

The γ parameter represents the effects of proximity and is the increase (if γ > 0) in prior

probability of a transcript being associated with the closest locus. Explicitly, the prior

probability for zm,t is

pm,t(β, γ) =
exp(βm + γI[m is closest marker to t])∑M

m′=0 exp(βm′ + γI[m′ is closest marker to t])
. (50)

It is clear that if we fix t then
∑M

m=0 pm,t = 1. If γ = 0, then the log-linear model

becomes equivalent to the Kendziorski’s multinomial model for the mixture proportions
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zm,t. The modeling of the mixture proportions adds some numerical difficulties because

some markers (say marker m) may not be associated with any transcripts which precip-

itates convergence problems because this implies βm → −∞. This may be alleviated by

using a normal prior on the β parameters. These priors may be easily implemented by

the method of Knuiman and Speed (1988) who developed these models to utilize prior

information for contingency tables, but they noted that these priors also accommodate

fitting with low frequency cells in tables. We chose a diffuse prior such that β ∼ N(0, σ2
β)

which is both a sensible prior and is equivalent to using a small ridge parameter that

we denote as λ = 1
2σ2

β

. These normal priors can be fit by adding a penalty parameter

to the iterative weighted least squares algorithm. We observed that the inferences were

insensitive to the prior choice of λ. The model performed well for values of λ between

10−2 and 10−4 which imply a large prior variance for βm.

It is worth mentioning that the proximity model is identifiable when the MOM model

is not. For example, if there are two or more flanking markers with identical geno-

types, then the MOM model is incapable of distinguishing between them so that the

prior probabilities of these markers would be nonidentifiable. In the proximity model,

the markers would be differentiated by their proximity to different transcripts, and the

posterior probability for being an eQTL would be highest for the closest markers.

3.6.2 Model Fitting

We use a variant of the EM algorithm (Dempster et al., 1977) known as the Expecta-

tion Conditional Maximization (ECM) algorithm (Meng and Rubin, 1993). The full log
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likelihood conditional on zm,t is

l =

T∑

t=1

M∑

m=0

zm,t log(pm,t(β, γ)) +

T∑

t=1

M∑

m=0

zm,t log(fm(yt|Ω)). (51)

A convenient aspect of this model is that the β and γ parameters can be estimated

independently of Ω = (µ0, τ
2
0 ) conditionally on the expectation of zm,t. The expectation

of zm,t is

E[zm,t] =
pm,t(β, γ)fm(yt)∑M

m=0 pm,t(β, γ)fm(yt)
. (52)

The ECM algorithm begins by choosing initial values for all of the parameters. The

expectation of zm,t is then calculated. Next, we maximize the expected log-likelihood

over the β and γ parameters. There are a few considerations when fitting this model that

were not previously mentioned. First, the transcripts should be ordered by their genomic

locations to facilitate the collapsing of Z into the table of ζij. Second, sparse matrix

operations effectively reduce the computation time. The dimension of the design matrix

is ∼ M2 × 2M which might cause the usual generalized linear model fitting procedures

to fail because of computer memory and time limitations. We used the sparse matrix

operations package developed by Koenker and Ng (2003) to implement the iteratively

weighted least squares algorithm with the λ ridge parameter to fit the generalized linear

model. The next step of the algorithm is recomputation of the expected value of zm,t.

Then, the Ω parameters are maximized. We maximize these parameters with a generic

optimization algorithm provided by the R nlm function (R Development Core Team,

2004b). The ECM algorithm continues alternately conditioning on Ω and the β and γ

parameters until convergence.
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3.6.3 Calculation of the False Discovery Rate

We estimate the FDR in a similar manner as Kendziorski et al. (2005) and Newton et al.

(2004b). The determination of the FDR depends on the calculation of the posterior

probabilities of EE (pEE,t) and DE (pDE,t = 1 − pEE,t) for each transcript. This is given

by

pEE,t = E[z0,t] =
p0,tf0(yt)∑M

m=0 pm,t(β, γ)fm(yt)
. (53)

To control the FDR to be less than α, we choose a threshold κ(α) for the pEE,t so that

if pEE,t < κ(α) then the transcript is identified as DE or mapping to some marker. For

any given κ(α), the FDR is

FDR =

∑T
t=1 pEE,tI[pEE,t < κ(α)]∑T

t=1 I[pEE,t < κ(α)]
≤ α. (54)

The FDR is the average posterior probability of being EE of those transcripts that are

selected as DE. In most nontrivial cases, some of the pEE,t that are averaged will exceed

the FDR. We have seen in real data analyses that controlling FDR alone could lead to a

poor decision rule which results in a κ > 1
2
. This implies that some transcripts declared

to be DE may have pEE,t >
1
2
. Thus, we advocate controlling κ, but the FDR remains a

useful summary measure of the overall reliability of a set of inferences. Particularly, the

FDR is useful for comparing the average reliability of lists generated by different methods

as is done with the simulations of Section 3.7.

3.6.4 Multiple eQTL extension of the MOM model.

Multiple eQTL may be discovered using the following extension based on a forward model

selection process. We consider the 2 eQTL case. In the first stage, one applies the MOM
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or the Proximity Model to select the most likely associated marker for each transcript

identified as DE. Call these markers m∗
t . In the second stage, one fits a variant of the

MOM model for the case of 2 eQTLs which we describe below. We condition on the

event that the transcript t has at least two means based upon the genotypes of marker

m∗
t . Let yt,mi,gi,mj ,gj

be the subvector of yt that contains observations from individuals

having the genotypes gi and gj for markers mi and mj respectively. The density for a

transcript mapping to 2 markers (m∗
t and another marker m) is given by

fm∗

t ,m(yt) =

∫
f∗(yt,m∗

t ,0,m,0|σ
2)f∗(yt,m∗

t ,0,m,1|σ
2)f∗(yt,m∗

t ,1,m,0|σ
2)f∗(yt,m∗

t ,1,m,1|σ
2)πσ2(σ2)dσ2.

(55)

This is a natural extension of the definition of fm(yt) in Section 3.5 and represents a

2 eQTL model with 4 different means corresponding to the 4 different genotype com-

binations. The marginal likelihood of the transcript data becomes Lt = p1fm∗

t
(yt) +

∑
m6=m∗

t
p2fm∗

t ,m(yt) where p1 is the prior probability of being associated with one marker

only, and p2 = (1 − p1)/(M − 1) is the prior probability of mapping to any one of the

additional M − 1 markers. One may fit this model using the EM algorithm as described.

The posterior probability of a transcript being only associated with marker m∗
t is denoted

as pEE2,t ≡ E2[zm∗

t ,t], and can be estimated by

E2[zm∗

t ,t] =
p1fm∗

t ,m∗

t
(yt)

p1fm∗

t ,m∗

t
(yt) +

∑
m6=m∗

t
p2fm∗

t ,m(yt)
. (56)

Controlling the FDR in the setting of forward model selection is possible by calculating

the conditional probabilities using the method of Storey et al. (2005). The FDR of the

second stage is calculated based upon the posterior probabilities of the second stage
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conditionally upon the posterior probabilities in the first stage. That is,

P{m∗
t and additional marker are associated with t|Data}

= P{Additional marker associated|Data, marker m∗
t associated}

×P{marker m∗
t associated|Data}

= (1 − pEE2,t) × E[zm∗

t ,t]. (57)

where E[zm∗

t ,t] is calculated as in Equation (48). The FDR of the second stage is the

average of 1 − P{m∗
t and additional marker are associated|Data} for the selected subset

of transcripts with two loci models. Fitting more than 2 eQTLs proceeds with similar

arguments.

3.7 Simulated Data Analysis

We performed analyses under the controlled setting of simulated data in order to ex-

plore the operating characteristics of the proposed proximity model in comparison to

the previous MOM model. The comparison is between the realized performance of both

methods in terms of power and FDR control. The definition of power and false discovery

rate for eQTL analyses is not trivial and should be defined. We define power to be the

probability of identifying a transcript as DE with the posterior distribution of an eQTL

having a maximum at the true location of an eQTL. That is, power is the probability of

detecting the true eQTL and localizing it to the correct position. We define the realized

FDR to be the probability of the union of two mutually exclusive events. First, the model

declares a transcript is associated with any marker when the transcript is independent of

all markers. Second, for those transcripts associated with a marker, the model declares

72



the transcript to be associated with some marker, but neither the true eQTL nor the

flanking markers are in the 90% Highest Posterior Density (HPD) region. We defined this

HPD region as the minimal set of markers whose combined posterior probabilities of as-

sociation with the transcript is greater than or equal to 90%. The formula for calculating

the realized FDR is given by

# of Transcripts Falsely Identified as DE + # of Transcripts Incorrectly Localized

# of Transcripts Identified as DE
.

The simulation experiment details follow. A total of 500 datasets were simulated with

100 datasets for each value of γ = [0.0, 2.0, 4.0, 6.0, 8.0]. These values of γ correspond to

increases in prior probability of a transcript being controlled by the closest marker. The

corresponding proportions of DE transcripts that were controlled by the closest marker

were [3%, 17%, 59%, 91%, 98%]. Each dataset had 500 transcripts and 30 markers equally

distributed amongst 3 chromosomes evenly spaced with a 10 cM distance between. The

transcripts had a 0.6 probability of being EE, and the eQTL were uniformly distributed

across markers. The genotypes of n = 60 individuals were simulated once and held fixed

for all datasets. Realistic distributions were chosen for πµ, πσ2 , and fobs. To generate

these distributions, the MOM model was applied to the BXD dataset described in the

next section. We used this model to find a subset of about 5, 000 transcripts that were

EE. For πµ, we resampled the distributions of the sample means of these transcripts. For

πσ2 , we independently resampled the distribution of the corresponding sample variances,

and the non-genetic error distribution fobs was simulated by independently resampling the

empirical deviations of the EE transcripts about their sample means. To fit our model,

we chose σ∗ to correspond to the 99% quantile of πσ2 and chose 10 points uniformly within
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this range for the discrete prior. We fixed our false discovery rate at 0.05 as calculated

by Equation (54). The ridge parameter was selected to be λ = 0.05 which implies that

β ∼ N(0, 10) and gave stable results which converged quickly. For comparisons against

a naive method, we used a t-test comparing the means of the genotypes at each marker.

We then calculated the q-values of all MT tests. We declared a relationship between

marker and transcript if the q-value was < 0.05. The power of the t-test approach is

defined to be the probability of finding the true eQTL at the marker having the minimal

q-value. The realized FDR is similarly defined as the probability of the union of two

events for a transcript. The first event is declaring a transcript to be associated with

some marker when it is independent of all markers. Second, for transcripts that have an

eQTL, the transcript is declared to be DE, but the true eQTL and flanking markers all

have q-values that are > 0.05.

The results are shown in Figure 6 and Figure 7. In Figure 6, there are three power

plots representing the overall power to detect eQTLs, the power to detect the cis subset

of eQTLs, and the power to detect the trans subset of eQTLs.

The similarities in power occur because the models are closely related, however, one

may see that the overall power of the proximity model is higher than the power of the

MOM model as γ becomes large. It may be surprising to see that the power of the

proximity model is maintained even if the γ parameter is 0. This is because the γ

parameter is estimated to be close to zero when γ = 0 in the proximity model. As one

might expect, the power advantage of the proximity model is increasing for increasing

values of γ, and the differences in posterior inferences are substantial for a subset of

transcripts as will be seen in the next section. The power advantage appears to be due to
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Figure 6: Simulated Data: Power Comparisons with 95% confidence intervals
as a function of the proximity effect γ. The overall power is shown on the left.
The power plots by cis transcripts and trans transcripts are middle and right.
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the prevalence of cis transcripts, but the MOM model has a more variable corresponding

power advantage for detecting trans eQTLs. The FDR comparison is shown in Figure 7.
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Figure 7: Simulated Data: FDR Comparisons with 95% confidence intervals
as a function of the proximity effect γ.

The naive method called “T q-value” has similar power to the MOM method, but it

controls the FDR very poorly with a mean FDR of 0.155 and 95% CI (0.114, 0.197)

which is much higher than the target FDR of 0.05. This result is consistent with
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Table 7: Simulated Data Parameter Estimates

Parameter Sample γ = 0 γ = 2 γ = 4 γ = 6

MOM µ 5.848 5.85 (0.06) 5.85 (0.06) 5.85 (0.06) 5.85 (0.06)

Model τ0 1.615 1.61 (0.04) 1.61 (0.04) 1.62 (0.05) 1.62 (0.04)

Proximity µ 5.848 5.85 (0.07) 5.85 (0.06) 5.85 (0.06) 5.85 (0.06)

Model τ0 1.615 1.61 (0.04) 1.61 (0.04) 1.62 (0.05) 1.62 (0.04)

γ - -0.14 (0.60) 1.99 (0.21) 4.05 (0.16) 5.99 (0.30)

Table 8: Simulated Data Parameter Estimates Continued

Parameter Sample γ = 8

MOM µ 5.848 5.86 (0.06)

Model τ0 1.615 1.62 (0.05)

Proximity µ 5.848 5.86 (0.06)

Model τ0 1.615 1.62 (0.05)

γ - 7.42 (0.33)

Kendziorski’s observations. The average realized FDR of the proximity model is 0.0434

with 95% CI (0.0303, 0.0623) compared to the MOM average FDR of 0.0419 with 95%

CI (0.0235, 0.0587). Tables 7 and 8 show the estimates of the remaining parameters with

their standard deviation over the simulated datasets.

The µ0 and τ0 parameters were estimated accurately by both models. The γ parameter

was only estimated by the proximity model, and one may notice accurate estimation.

The 2 eQTL model was fit to 100 datasets simulated with the same distributional
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assumptions and genotypes as above. There was no effect of proximity (γ = 0), and

n = 60. The probability of EE was 0.6, and the probabilities of a transcripts being

associated with one or two eQTLs were 0.2 and 0.2, respectively. The positions of the

eQTLs were chosen independently of one another with uniform probability throughout

the genome. The two stage fitting procedure was applied, and the threshold κ for pEE,2

and pEE was set to 0.05. This method identified both eQTLs at the modes of the posterior

distributions 72% of the time. The FDR for declaring associations with these 2 eQTLs

was defined as having the posterior mode of the 2 eQTLs outside of the flanking markers

for both eQTLs or declaring associations when there are none. The average FDR was

0.016 with a 95% CI of [0.0,0.046], and the average nominal FDR was estimated to be

0.049 so that the realized FDR is conservatively controlled.

3.8 Case Study: BXD Dataset

There were 32 BXD strains considered and each of the strains included were sampled

from 1 to 4 times for a total of n = 88 mice. The Affymetrix U74Av2 chip was used

which contained a total of T = 11, 935 transcripts with known percent identity to genome

locations that are available from Affymetrix (www.affymetrix.com). We chose the tran-

script to be located at the sequence with highest identity. The 277 markers were used

with a median spacing of 4 cM. The markers were located on chromosomes 1 to 19 and

on the X chromosome. The determination of which marker was closest was made using

the Build 33 distances between the transcripts and the markers. Build 33 refers to the

version of the mouse genome map used to locate the transcripts and markers. If the tran-
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Table 9: BXD Analysis: Comparison of Parameter Estimates from Mouse
Experiment Data with the Standard Deviations in ().

Parameter MOM Model Proximity Model

µ̂0 6.1439 (0.00003) 6.1443 (0.00006)

τ̂0 1.5372 (0.00002) 1.5371 (0.00006)

γ̂ - 3.6070 (0.008)

script was further than 5 × 106 base pairs away from any marker then it was considered

to be not close to any marker. Only 12% of transcripts were not close to any marker

by this standard. Some of the markers had missing data which accounted for 1% of all

genotypes. We imputed this missing data by sampling genotypes conditionally upon the

flanking markers as in Lynch and Walsh (1998). The variability between imputations of

the final results was very small and affected < 0.1% of transcript inferences because of

the high density of the markers leading to 99.7% agreement between the imputations of

the genotypes. Because of this small variability and computational time constraints, we

performed 5 imputations and report the average result.

The raw microarray data was preprocessed with the Robust Multichip Average (RMA)

(Irizarry et al., 2003) software to summarize the probe level data and normalize the

microarrays, and this output was used as the expression level for each transcript. The

MOM method was applied using our implementation. We chose σ∗ as discussed in the

simulation section and chose 30 points uniformly within this range for the discrete prior.

Next, we applied our extension of the MOM method to the data, and we compared

our results. Table 9 shows the estimates for the Ω and γ parameters.
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Table 10: BXD Analysis: Comparison of Differentially Expressed Genes
Parameter Estimates from Mouse Experiment Data

Posterior Probability Threshold κ = 0.05

Proximity Model

DE EE Total

MOM DE 370 11 381

Model EE 30 11524 11554

Total 400 11535 11935

Estimates of µ0 and τ are identical to three digits. The γ parameter is equal to 3.61

which indicates that the proximity model increases the prior probability of a marker being

associated with a nearby transcript by a factor of about exp(3.61) ∼ 40. We now compare

the conclusions regarding which transcripts are differentially expressed. One might select

the false discovery rate which implies a threshold for the posterior probability. An FDR

cutoff of 0.05 is often used, but this can lead to false discoveries that can be easily avoided.

The rule that we adopted is that the posterior probability of DE is > 0.95 which implies

a FDR of 0.011. The genes selected by this criterion for the posterior probability of DE

are very similar in both models as shown in Table 10.

The proximity model selects most of the genes selected by the MOM model as well

as 30 other genes which is consistent with higher sensitivity of the proximity model in

finding associations between genotypes and gene expression when γ > 0. It is important

to point out that the structure of the proximity model will map more transcripts to

the closest marker on the genome. All 30 of the transcripts selected as DE only by the
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proximity model were cis, and all 11 of the transcripts selected as DE only by the MOM

model were trans. Some of these transcripts with the largest differences between the two

methods are shown in Figure 8.
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Figure 8: BXD Analysis: Posterior distribution of eQTL for selected tran-
scripts. Transcript 96629 at shows differing posterior distributions between
the models. Transcript 102287 at demonstrates the proximity model gives
a highly localized eQTL HPD compared to a weaker, more diffuse posterior
distribution of the MOM model.

In Figure 8, the posterior modes are mapped more closely to their genomic location

by the proximity model while the MOM model may map the transcripts to different
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chromosomes resulting in quite different posterior inference. These models were used to

select the most likely marker to be associated with the differentially expressed transcripts

(m∗
t ). Of the 370 transcripts selected by both models, 15 had different values for m∗

t . This

would likely affect the results of any forward building model selection process based upon

m∗
t . We performed the two eQTL analysis on this dataset, and we found that among

the 400 transcripts selected to be associated with one eQTL, there were 185 transcripts

declared to be associated with 2 eQTLs with posterior probability greater than 95% given

the first eQTL.

We considered the robustness of inference to the selection of the ridge parameter, and

values of λ = 1
2σ2

β

ranging from 10−2 to 10−4 did not greatly effect inferences regarding

transcripts. Further, the selection of the number of discrete variance points from 10 to

30 did not greatly affect inferences.

3.9 Discussion

We have developed a proximity model for finding eQTL which includes explicitly mod-

eling the effect of genome location by extending the MOM model of Kendziorski et al.

(2005). The model adds a data-driven increase in the prior probability of a transcript

mapping to the marker that is closest on the genome. We have also extended the MOM

model to include more than one eQTL and have allowed for transcript specific variances.

We have shown that this proximity model can be implemented in an efficient manner, and

that it has favorable performance in terms of power while controlling the false discovery

rate. The proximity model performs well compared to the MOM model in simulated

82



datasets with moderate to large proximity effects, but the MOM model may have more

power to detect trans associations even when the proximity effect is large. The model

was applied to an experimental dataset, and the MOM and the proposed model gave

similar overall results regarding the genetic control of transcripts. However, the proxim-

ity model suggests that a greater number of transcripts are associated with eQTLs than

the MOM model, and it was shown that the MOM model gave different localizations

of eQTLs regarding some transcripts. Furthermore, we showed that roughly half of the

transcripts are likely to be associated with a second eQTL. We chose a simple model for

the increase in prior probability of a transcript mapping to the closest marker. However,

we considered more complex models such as ones that would make the prior probability

a decreasing function of the distance of a marker and the transcript. These other models

add interpretational and computational difficulties, and they do not reflect any widely

accepted biological understanding not captured by the model we used. Lastly, we note

that controlling the FDR alone could result in poor decision rules for certain cases as the

FDR is a summary statistic for a set of hypotheses, but does not strictly control the pos-

terior probability of the individual alternative hypotheses. Thus, we suggest controlling

the posterior probability of individual hypotheses instead.

In future research, we will explore how the ridge parameter may be estimated from the

data through a mixed model or empirical Bayes methods which would use the information

across markers to regularize the parameter estimation. We also note that this framework

of modeling the prior probability of differential expression across transcripts and markers

can be readily extended to include other parameters for sequence characteristics like the

presence of features in the sequences known to involve transcription regulation. We chose
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the prior for the error variance πσ2 to be discrete and noninformative, but future methods

could model this density semiparametrically so that the prior becomes more informative

resulting in higher power. Also, we used a limited number of imputations of missing

genotypes, but in applications involving less dense maps, more imputations should be

performed which might require more efficient computational implementations.
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4 Microarrays for Binding Site Discovery

The third paper advances an analytic method that integrates microarray data and the

sequence analyses of the probes to discover transcription factor binding sites. The spe-

cific hybridization of DNA microarrays can be used in ways other than the measurement

of expression. The method of Chromatin (Ch) Immunoprecipitation (IP) microarrays

(ChIP-Chips) use microarrays of DNA sequences to measure specific DNA-protein inter-

actions. The ChIP-chip technique is reviewed by Buck and Lieb (2004). The goal is to

discover the genomic locations of transcription factor binding sites (TFBSs). Transcrip-

tion factors are proteins that regulate the expression of nearby genes by binding to DNA

and interacting with RNA polymerase (Stryer, 1995) which is the enzyme responsible

for transcription. Gene transcription is often locally regulated so that knowing the lo-

cation of the TFBS can give insight into which genes are regulated by the transcription

factor. Identifying the conditions that transcription factors are active in is important to

understanding the role a transcription factor has in certain biological processes and de-

velopmental stages. Transcription factors bind to TFBSs with specific sequence patterns

that are usually on the order of 10 nucleotides in length, and even in relatively small

genomes, the binding sites occur in thousands of locations (Buck and Lieb, 2004). The

chromatin immunoprecipitation procedure concentrates specific DNA-Transcription Fac-

tor complexes in the following manner. First, the transcription factor of interest binds to

the DNA in vivo under controlled conditions, and the extracted protein-DNA complexes



are fixed or crosslinked. The DNA is broken into 1kb fragments by sonication. Next, an

antibody specific to the transcription factor of interest binds to the protein-DNA com-

plex, and this entire complex precipitates out of solution. The DNA is then extracted,

and the DNA is amplified and labeled. We call this the IP sample. Control samples

of DNA that do not go through the IP process are used as a reference, and either two

color microarrays (Buck and Lieb, 2004) or high density oligonucleotide arrays (Kapra-

nov et al., 2002; Cawley et al., 2004) compare the DNA present in the IP sample and the

control at each locus. The ChIP process is shown in Figure 9.

If a locus or continuous region of many loci has higher intensity in the IP sample than

the control, it is said to be enriched. The sequences of the enriched regions are analyzed

for the presence of a motif or specific TFBS corresponding to the transcription factor

of interest. Current methods have separated ChIP-chip analysis into two steps that

first identify enriched regions then estimate the TFBS motif given those regions with

a separate procedure. We propose a method that unifies the ChIP-chip and sequence

analyses to more accurately estimate the enrichment probabilities and the location of the

TFBSs.

4.1 The Data

There are two main technologies used for ChIP-chip experiments. First, there is a two-

color system in which the IP sample is labeled with one fluorescent dye and the control

sample is labeled with a different dye and applied to the same array. The probes on the

two-color arrays range from about 100 to 2,000 base pairs in length. For each probe p on
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Figure 9: Chromatin Immunoprecipitation Process as shown in Buck and
Lieb (2004).
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each array, there are two measurements: one for the IP sample intensity (Dye 1) IPp and

one for the control sample intensity (Dye 2) Controlp. The variation due to the random

error of a specific probe’s measurement is reduced by taking the ratio of IPp

Controlp
which

removes the multiplicative effect of probe p that is common to both IPp and Controlp

(Rocke and Durbin, 2001). Enrichment implies that log( IPp

Controlp
) > 0 for a given probe p.

The second type of ChIP-chip is the oligonucleotide array. Oligonucleotide arrays have

probes that are 15-30 base pairs in length and have only one fluorescent sample applied

to each array. For oligonucleotide arrays, the IP sample is applied to one array or set of

arrays, and the control sample is applied to a different array or set of arrays. Enrichment

implies that IPp > Controlp where the two measurements have random errors which

are uncorrelated as the probes are on separate and independent arrays. The two-color

and oligonucleotide enrichment tests are analogous to the paired and unpaired t-test,

respectively.

ChIP-chip analysis should also consider the spatial correlation between probes that

represent adjacent loci. Probes are correlated if the genomic distance between the probes

is less than the length of the DNA fragments in the sample. For example, tiling oligonu-

cleotide arrays have been constructed for human chromosomes 21 and 22 that have an

average inter-probe distance of about 35 bp (Kapranov et al., 2002) (Cawley et al., 2004;

Keles et al., 2004) whereas the distance between the probe midpoints is larger (200-1500

bp) for two-color arrays (Buck and Lieb, 2004). Correlation between adjacent probes is a

prominent feature of the data because the DNA fragments (∼ 1 kb) applied to the arrays

may span two or more probes (Buck and Lieb, 2004).

In this paper, we focus on two-color ChIP-chip data. The ChIP-chip experiment can

88



be represented as an P×R matrix Y where microarray replicates are indexed r ∈ [1 . . . R],

and the probes are indexed by p ∈ [1 . . . P ]. A row of this matrix which contains all

measurements from a probe is denoted as Yp. The number of probes P ranges from

10, 000 to 1, 000, 000 in different experiments, and the number of replicates R ranges

from 4 to about 10. Ypr is the log-ratio of the IP sample intensity and the control sample

intensity so that Ypr = log(Redpr/Greenpr). A schematic of the data is shown in Figure

10. The ChIP-chip data consists of consecutive measurements of Y1,1, Y2,1, Y3,1, etc. The

values of Ypr that are higher are more likely to be IP enriched. The histogram of average

values of Yp from the yeast dataset discussed in this paper (Lieb et al., 2001) are shown

in Figure 11. The averages can be thought of as a mixture of the enriched and the not

enriched probes, and the proposed model density estimates for these two components is

shown.

The sequence that corresponds to probe p will be denoted as Xp. The consecutive

probes are complementary to adjacent segments on the genome, and the fragments which

hybridize to the probes correspond to the surrounding sequence. The genome consists

of complementary double helices of DNA, so that each segment of the genome has two

sequences which are the reverse complement to one another. Xp consists of these two

sequences of A’s, C’s, G’s, and T’s with length Kp. The probe sequences can range from

a few hundred to several thousand base pairs in length, but the resolution of each probe

is limited by the size of the applied DNA fragments (about 1000 bp). A subsequence of

Xp from position j to position k will be denoted as Xp[j : k].
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ACTTATGACGTCCTGCGCAAAACAGCCTGCGTACGTGCTGCATAATCGTGacg tCGTCTGTCAAGCTGGATGGCAGCGTTGAAAATTAACAAAATCTTCG

Binding Site

Threshold for Significance

Figure 10: ChIP-chip data schematic is shown for one ChIP-chip replicate.
The genomic sequence is shown in blue, and the segments corresponding to
the probes is indicated by bars over the sequence. The number of base pairs
has been greatly reduced for clarity. Note that log( IPp

Controlp
) is increased for the

probes close to a binding site, and the region corresponding to the significant
probes contains a binding site. Also, note the correlation between adjacent
probes.
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Rap1 ChIP−chip Data
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Figure 11: Histogram of average probe intensities Ȳp = 1
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r=1 Ypr from

Rap1 yeast experiment. The density estimates from the proposed model fit are
overlayed, and the two component mixture of both Enriched and not Enriched
probes is evident.
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4.2 Current Methods for ChIP-Chip Data

The analysis of ChIP-chip data has been done in two phases. The first phase deals with

the microarray data, and it analyzes the intensity to find the regions of enrichment. The

second phase uses the sequences of the regions found in the first phase to find the motif.

The first analytic phase is discussed below.

4.2.1 ChIP-Chip Analysis to Identify Enriched Regions

The microarray phase of the analysis should consider the spatial correlation between

probes that represent adjacent loci. This correlation occurs when the genomic distance

between the probes is less than the length of the DNA fragments in the sample. There

are a number of methods developed that account for this data feature. First, a sliding

window approach has been suggested by Cawley et al. (2004); Keles et al. (2004); Ji

and Wong (2005). The sliding window methods average the test statistic over adjacent

probes. Cawley et al. (2004) propose using a Wilcoxon rank sum statistic for each probe,

Keles et al. (2004) used Welch t-statistic, and Ji and Wong (2005) used both a t-like-

statistic which has a shrunken variance estimate and a statistic similar to a posterior

probability. These methods identify regions or peaks of intensity as IP enriched when

the moving average of the statistic exceeds a threshold, and should give an FDR or

posterior probability of enrichment for each region. Cawley et al. (2004) only used a

strict p-value cutoff without estimating the FDR. Keles et al. (2004) used a nested-

Bonferroni procedure to estimate the FDR, and suggested cross-validation approach for

choosing the size of the window.
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Ji and Wong (2005) developed a nonparametric method called Unbalanced Mixture

Subtraction (UMS) to estimate the posterior probability and FDR for enrichment. UMS

is a method for estimating a mixture distribution of two components say h(t) = π0f0(t)+

(1−π0)f1(t). The parameter π0 represents the portion of probes or probe moving averages

that are not enriched, and the densities f0(·) and f1(·) correspond to the statistics for

the not enriched and enriched states respectively. UMS requires that one can obtain

estimates for similar mixture densities where one density (g0(t) = p0f0(t) + (1− p0)f1(t))

has a higher contribution from the f0(t) density (p > π0), and the other density (g1(t) =

q0f0(t)+(1−q0)f1(t)) has a higher contribution from the f1(t) density (q0 < π0). Another

condition for UMS is that f0(t) ≈ g0(t) or that p0 ≈ 1. Ji and Wong find sets of adjacent

probes to estimate g0(·) and g1(·) by using a cutoff for the test statistic. Given these

densities and the assumption that f0(t)/f1(t) → ∞ as t → t0 for some t0, the authors

show that the component densities f0(·) and f1(·) as well as the mixing proportion π0 can

be estimated, and from this, the posterior probabilities for enrichment are computed.

Another approach to finding regions of enrichment is to use Hidden Markov Mod-

els (HMM). HMMs are Markov random processes with latent states that emit random

variables whose distributions depend on the state. The HMM naturally incorporates the

spatial dependency in the data because the state of the preceding probe affects the state

of the next probe. The essential components of this HMM are the three states (start,

enriched and not enriched), the parameters describing transition probabilities between

states (π0, τ0, and τ1), and the emission densities of the probe intensities of the enriched

(f1(·)) and not enriched states (f0(·)). Ji and Wong (2005) used the nonparametric UMS

method to estimate the emission densities and the transition probabilities from the start
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state. The other transition probabilities were derived using approximations, but were not

fit by maximizing the HMM likelihood. Li et al. (2005) implemented an HMM with the

same state space, but used normally distributed parametric models for the emission den-

sities. The emission from an IP enriched state had a mean that was 2 standard deviations

above the control mean, and the transition probabilities for changing between enriched

and not enriched states were the same for both states and fixed before fitting the model.

Li et al. (2005) and Ji and Wong (2005) both demonstrate the superior performance of

the HMM method over moving average models in terms of power for detecting IP en-

richment for small sample sizes. The HMMs were not compared against each other. One

problem with both of these methods is that the transition probabilities and the emission

densities are not estimated simultaneously by the HMM.

Keles (2006) proposed a hierarchical mixture model for detecting regions of IP en-

richment. The model is similar to that of the Bayesian method for differential expression

of Kendziorski et al. (2003) and closely related to the parametric model of Newton et al.

(2004a) in that the probe intensities have mixture distributions which have parametric

components corresponding to null and alternative hypotheses. The model divides the

genome into N continuous regions Ri (i ∈ 1 . . . N), and each region contains Li adjacent

probes. The array data consists of the control j th probe intensity (j ∈ 1 . . . Li) for the

ith region Xj(i) and the corresponding IP sample intensity Yj(i). The latent means of

Xj(i) and Yj(i) are µj1(i) and µj2(i) respectively. This model estimates the posterior

probability that a region contains one and only one subregion of IP enrichment or peak

as an expectation of a latent indicator variable Ri. The existence of the peak (Ri = 1)

implies that µj1(i) ≤ µj2(i), and µj1(i) = µj2(i) if there is no peak (Ri = 0). The bound-
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aries of the peaks have posterior distributions that are estimated by the model. The start

position is given by Zi and the end position is Vi. Zi and Vi are discrete random variables

that take values corresponding to the probes in the region, and wi is the random variable

for the length of the peak in terms of numbers of spanned probes so that wi = Zi−Vi +1.

The posterior distribution of Zi and Vi for enriched regions is the important indication

of the localization of enrichment within a region. Keles proposes a parametric density

for the latent means of the probe intensities, and uses conjugate gamma distributions for

the probe intensities themselves. The conjugate intensity distributions are vital to the

model because the latent means of the probes are integrated out analytically. The EM

algorithm is used to fit the model, and Keles reports that there may be multiple station-

ary points. Keles also shows that the estimates for the FDR may be anticonservative

when the error model is grossly misspecified. However, the author demonstrates that the

hierarchical model has superior power for small sample sizes compared to sliding window

methods.

The previous methods for ChIP-chip analysis identify the enriched regions of the

genome, but the next analytical phase in the two step approach examines these enriched

regions and estimates the motif patterns within them. These methods are discussed in

the next section.

4.2.2 Sequence Analysis of Enriched Regions

The TFBS discovery within the sequences of the enriched regions is statistically chal-

lenging for many reasons. A transcription factor binding motif is not an exact sequence,

and it is usually represented by a 4 × w position specific weight matrix (PSWM) Θ that
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defines a product multinomial distribution where the four rows represent the nucleotides

A, C, G and T and the w columns represent the w motif positions (Liu et al., 1995).

The element Θij is the probability that the nucleotide at position j of the sequence is i,

i = {A,C,G, T}. Searching for patterns of several base pairs within segments of DNA

that might be several thousand base pairs long can lead to many false positive matches

because there are thousands of potentially similar sites within a single DNA segment.

This multiplicity greatly increases the computational burden, especially if many different

DNA segments are considered simultaneously. Further, the “background” DNA sequence

that does not contain binding sites generally has a highly non-random distribution of nu-

cleotides, for instance, it may contain dependencies between consecutive base pairs, and

these patterns can mimic motifs. The computational and statistical challenges of motif

discovery have led to the development of a number of statistical model-based methods for

motif discovery (Bailey and Elkan, 1994; Lawrence et al., 1993; Liu et al., 1995; Gupta

and Liu, 2003; Thompson et al., 2004; Zhou and Liu, 2004; Gupta and Liu, 2005; Shida,

2006) as well as computationally fast and partially heuristic methods (Liu et al., 2001,

2002; Buhler and Tompa, 2002; Keles et al., 2002; Sinha et al., 2004; Elemento and

Tavazoie, 2005).

4.2.3 Motivation for a Unified Model

The key difficulties of the two step approach are displayed in Table 11. The first stage

categorizes the probes into the columns (Enriched/Not Enriched), and the second stage

categorizes the probes sequence into the rows (Binding Site/No Binding Site). The first

stage might be considered as a screening test for probes, whereas the second stage is
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Table 11: Different Possible Probe Outcomes

Probe Intensity

IP Enriched Not Enriched

Probe Binding True Ambiguous

Sequence Site Positives False Neg?

Contains No Binding Ambiguous True

Site False Pos? Negatives

similar to a confirmatory test for a probe containing a TFBS. In this case, the diagonal

quadrants of the table would consist of the probes that were accurately classified by the

first stage where the left upper quadrant represents the true positives, and the right lower

quadrant the true negatives, although only the probe sequences classified as enriched

typically are searched for a TFBS. The off-diagonals represent ambiguous states in which

probes could have been falsely identified as either enriched or not enriched. Another

possibility for probes falling into the off-diagonal categories is that there is underlying

biological complexity not explained by the simple binding model, as discussed further

in Section 4.6. Minimizing the number of probes that fall in the off-diagonal quadrants

is the primary motivation for a model the considers the probe sequence and the probe

intensity measurements simultaneously.

Another theoretical advantage of the joint model is the more accurate estimation of

the binding site probabilities. In the two step approach, the first step estimates the

enrichment probabilities P (E) and selects sequences based upon this probability. The
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second step estimates the binding site probabilities P (B|E) within those sequences taken

to be enriched with a completely different model. However, the second step could ignore

the uncertainty in selecting the sequence in determining P (B|E). The proposed method

estimates the enrichment and the binding sites simultaneously which yields an estimate

of the joint probability P (B ∩ E) that takes into account both sources of uncertainty.

The organization of the rest of the paper is as follows. Section 4.3 describes the

proposed model. Section 4.4 discusses a set of simulation studies, and Section 4.5 contains

an analysis of a yeast ChIP-chip experiment for the Rap1 TF (Lieb et al., 2001). Section

4.6 contains a discussion of the overall results and outline future avenues of research.

4.3 The General Model

In this section, we first describe the models used for the probe intensity, the probe

sequences, and the joint HMM framework for the probe intensity and sequence data.

4.3.1 Probe Intensity Model

The probe level data is modeled through a hidden Markov model (HMM). HMMs are

defined by the latent or hidden states, the emission densities of the states, and the

transition probabilities between these states. The hidden states of the HMM at the probe

level are the binding states of probe p denoted as sp where sp = 1 if the pth probe is IP

enriched and sp = 0 otherwise. The intensity emission has density fsp
(Yp) where f0(Yp)

is the not enriched density and f1(Yp) is the enriched density for the pth probe’s intensity

vector Yp. We assume a hierarchical model such that the measurements for a probe Yp

will be a vector of replicate observations related by a probe-specific mean µp, and the
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rth replicates Ypr are conditionally independent given µp so that Ypr|µp, σ
2
a ∼ N(µp, σ

2
a).

This density for Ypr is denoted as fobs(·). The normality assumption is justifiable if

one considers the raw intensity values to have a gamma distribution that is close to a

lognormal distribution so that the log transformation yields an approximately normal

random variable. The distribution for µp is defined in the next layer of the hierarchy to

be µp|sp = 0 ∼ N(0, τ 2
0 ) and µp|sp = 1 ∼ N(µ1, τ

2
1 ). We denote these priors for µp as

πsp
(·). Figure 11 demonstrates that the observed probe averages Ȳp may be accurately

fit by the proposed mixture normal densities for µp. The density for Yp can be written

as fsp
(Yp) =

∫ ∏R
r=1 fobs(ypr|µp, σ

2
a)πsp

(µp)dµp. Integration with respect to the parameter

µp yields a compound symmetric multivariate Gaussian density for Yp with mean spµ11R

and covariance matrix σ2
aIR + τ 2

sp
1R1′

R where 1R is a vector of 1’s of length R and IR is

the identity matrix with dimension R.

4.3.2 Sequence Model

The vast majority of the DNA that is not within the binding sites of interest is referred to

as the background DNA sequence. Subsequent letters of this background sequence have

some dependency on the previous letters. By accounting for dependencies between the

adjacent positions of the background sequence, one hopes to more accurately estimate the

foreground motif. This dependency is often modeled as having a higher order Markov

structure (Liu et al., 2002). However, these Markov models require large numbers of

parameters, and some dependencies such as simple repeats are more important than oth-

ers for distinguishing binding site motifs from background patterns. We propose using

PSWMs representing repeats to allow for the modeling of these low complexity back-
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ground patterns with fewer parameters than Markov models. Specifically, the PSWMs

of the proposed background model include one-letter words (A, C, G, and T) as well as

repeats of A’s and T’s.

Next, we formulate the model for the sequence data in detail. PSWMs in the model

will be denoted as Θv ≡ where v ∈ [1 . . . V ], and ΘV ≡ is the motif corresponding to the

transcription factor of interest. Let Θv have length wv, and let πv be the prevalence of

PSWM v. The emission densities of the sequence are p0(Xp) and p1(Xp) for the enriched

and not enriched states, respectively. The density p0(Xp) denotes p(Xp|Θ1, ..,ΘV −1), the

likelihood of observing the sequence Xp given that it was produced by the background set

of PSWMs Θ1, ..,ΘV −1. Similarly, p1(Xp) ≡ p(Xp|Θ1, ..,ΘV ) denotes the same likelihood

given that the motif of interest ΘV could be present in the set of PSWMs generating the

sequence. The sets of PSWMs in p1(Xp) and p0(Xp) can be considered as words that are

part of a stochastic dictionary (Gupta and Liu, 2003).

The sequence likelihoods p0(Xp) and p1(Xp) do not have closed forms and can be

calculated using a recursive formula. The likelihood of subsequence Xp[i : j] given that

it was emitted from motif Θv is denoted as p(Xp[i : j]|Θv) where j − i + 1 = wv and is

given by

p(Xp[i− wv + 1 : i]|Θv) = I[i− wv + 1 > 0]I[i ≤ K]
i∏

j=i−wv+1

∏

l∈{A,C,G,T}

Θ
I[Xp[j]=l]
v,lj .

The term I[i−wv +1 > 0]I[i ≤ Kp] makes the probability 0 when the motif would not fit

within the sequence. p1(Xp) are calculated by using a recursive summation involving the

terms φp(k) which are the probabilities of Xp up to position k allowing for all possible

100



motif sites as below

φp(k) = p1(Xp[1 : k])

=

V∑

v=1

πvp(Xp[k − wv + 1 : k]|Θv)φp(k − wv). (58)

p0(Xp) is found similarly by allowing v = 1, .., V − 1.

4.3.3 The HMM Likelihood

Hidden Markov model likelihoods generally cannot be written in a closed form so that

a recursive procedure based upon the law of total probability are used in the likelihood

computation (Juang and Rabiner, 1991). We use a forward summation recursive formula

for computing the likelihood of an HMM, described below. We define gp(s), the forward

probability of state s at probe p, as the probability of the sequence of probes up to probe

p given that the pth state is s, given by

gp(s) = P (Xp, Yp|s)
∑

sp−1∈{0,1}

gp−1(sp−1)τsp−1,s (59)

where P (Xp, Yp|s) = ps(Xp)fs(Yp) for s ∈ {0, 1}. The states {−1, 0, 1} respectively

correspond to the start, not enriched, and enriched states. The τij parameters represent

the transition probability i → j. The likelihood quantities gp(s) in (59) will be used to

draw samples of probe states sp within the data augmentation method for fitting the

model, described further in Section 4.3.5. Prior specification for the joint intensity and

sequence HMM is discussed in the following section.
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4.3.4 Priors

The priors for the intensity parameters µ1 were taken to be noninformative (∝ 1), and

τ 2
0 , τ 2

1 , σ2
a were also take to be noninformative, in other words, p(τ 2

0 ) ∝ τ−2
0 , p(τ 2

1 ) ∝ τ−2
1 ,

and p(σ2
a) ∝ σ−2

a . The priors for each row of the HMM transition matrix (τij) (i, j =

−1, 0, 1) are taken to be Dirichlet distributions with hyperparameters denoted as δij.

More precisely, [τsi0, τsi1] ∼ Dirichlet(δi0, δi1). The δij are equal for all transitions so that

δij = δi′j′ and are small (0.1) relative to the total number of transitions ∼ P = 11, 575,

and therefore, minimally informative.

One difficulty in estimating the motif is that the motif and prevalence of the motif may

be jointly nonidentifiable in practice. The less conserved a motif is, the more prevalent it

may be. If there is no prior placed on the motif prevalence, then the model often tends

to converge to a highly prevalent and non-specific motif which contradicts the biological

understanding of the specificity of transcription factor binding. A relatively strong prior

may be implemented for πV to avoid this problem and hasten convergence. Instead of

drawing the PSWM prevalence vector π from a Dirichlet distribution, the vector of πv can

be drawn in a hierarchical manner. The prior for the transcription factor motif prevalence

is πV ∼ Beta(δ0(1 − γ), δ0γ) where δ0 is a large pseudocount and γ (with 0 < γ < 1)

indicates the prior expected value. The conditional prior for the other components of

π (π1, . . . , πV −1) can then be drawn from the prior Dirichlet distribution D(δ1, .., δV −1)

and scaled by 1 − πV . δ1, .., δV −1 represent pseudocounts which are set to a small value

to avoid Dirichlet parameters of value 0. The prior for the motif matrix of interest ΘV

is taken to be the product Dirichlet distribution PD(B) where B is a 4 × wV matrix
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of pseudocounts where the element Bij is the count of the symbol i at motif position

j which is set to a small value to avoid Dirichlet parameters of value 0, but is uniform

across letters and not informative. The Data Augmentation (DA) sampling scheme for

fitting the full HMM is given in the following section.

4.3.5 MCMC Fitting Procedure

We fit the model with a Data Augmentation (DA) method. The complete steps of the

algorithm are given in the Appendix. First, all the model parameters µ1, τ
2
1 , τ 2

0 , σ2
a,

Θv, π, τij, and s1, . . . sP are initialized. The intensity parameters (µ1, τ
2
1 , τ 2

0 , σ2
a) are

sampled using a Metropolis-Hastings (MH) random walk procedure, and the enrichment

states sp are then sampled jointly using the backward sampling technique described in

Section 4.3.3. The transition parameters τij can be drawn from the complete conditional

distribution Beta(tij + δij,
∑

k 6=j tik + δij) where tij are the i→ j transitions.

Backward sampling generates samples from the joint complete conditional distribution

of the vector of sp. The probability distributions for sP , sP−1 . . . s1 are given by

sP ∼ Bern

(
gP (1)

gP (1) + gP (0)

)
, (60)

and for p ∈ {1, . . . , P − 1}

sp ∼ Bern

(
gp(1)τ1,sp+1

gp(1)τ1,sp+1
+ gp(0)τ0,sp+1

)
. (61)

The sp imply a segmentation of the entire genomic sequence into enriched regions with

sp = 1 and not enriched regions with sp = 0. The enriched segments are formed by

the overlapping regions of the genome that correspond to probes with sp = 1, and these
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segments are denoted by Xe with length Ke where the index e (e ∈ {1 . . . ne}) stands for

Enriched segment.

Another DA algorithm is applied to the Xe in order to sample the motif matrix ΘV .

We define the Ke × V matrices Ae corresponding to the segments Xe. The elements

Ae,jv indicate the sampling of the motif or PSWM v at position j such that Ae,jv = 1 iff

the vth PSWM was sampled with Ae,jv = 0 otherwise. We may sample Ae,jv using the

backward algorithm described in the Appendix. The motif matrix ΘV depends on the

letter counts from the sampled TFBS where Ae,jV = 1, and we will call this 4×wV count

matrix C where the element Cij is the number of the symbol i at motif position j. ΘV

has conditional distribution PD(B+C) where PD is the product Dirichlet distribution.

Next, the π parameter depends on the number of sampled realizations of each PSWM

n1, .., nV given by Ae so that πV ∼ Beta(δ0(1−γ)+
∑V −1

v=1 nv, δ0γ+nV ), and the complete

conditional for [π1, . . . , πV −1] becomes Dirichlet(n1 + δ1, .., nV −1 + δV −1).

4.4 Simulation Study

A simulation study was performed to assess the model performance when the true loca-

tions of the binding sites are known. The datasets were generated in two ways. First,

the sequence was simulated based upon the proposed probe intensity model. Second, the

sequence was simulated based upon the TileMap nonparametric ChIP-chip model of Ji

and Wong (2005), introduced in Section 4.2.1.
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4.4.1 Data Generation

Simulated datasets were generated to assess the operating characteristics of the proposed

method compared to the intensity only HMM and the TileMap HMM. The real intensity

data was used instead of simulated intensity data in order to mimic the structure and the

informativeness of the true experiment. To simulate the sequence data, we used the probe

intensity data from the Rap1 dataset (Lieb et al., 2001) with four independent arrays

described in Section 4.5, and we applied the intensity only model and the TileMap model

which gave the probe enrichment probability estimate ŝp. The enrichment state for each of

the probes were then simulated by Bernoulli random variables with probability ŝp, that is,

sp,Simulated ∼ Bernoulli(ŝp). For the probes that were selected as enriched (sp,Simulated = 1),

motif realizations were randomly inserted into the corresponding genomic sequences.

4.4.2 Analysis of Simulated Data

The accuracy of the binding site estimates is used to assess the models. The proposed

joint intensity-sequence (IS) model gives the binding site probabilities directly, but the

two step ChIP-chip methods like TileMap (TM) give only the enrichment probabilities

of the probe sequences, not specific binding sites within those sequences. In order to get

binding site estimates, we used the following two step procedure. If a probe sequence

had a posterior probability > 0.5 for enrichment, then it was included in the set of

selected sequences. These selected sequences were searched for binding sites by fitting the

stochastic dictionary model. The primary aim of the analysis is to locate the binding sites

of the transcription factor, and these sites may be estimated by the posterior probability
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that each position on the genome corresponds to a sampled motif binding site such

that Ae,jV = 1. This probability is estimated by averaging the indicators Ae,jV at each

position on the genome at each iteration of the DA sampler. A position on the genome

was included in a list of binding sites if the posterior probability of being sampled as a

TFBS was > 0.5.

When fitting motif discovery models with real DNA used as background, there are

multiple motifs that represent multiple modes in the likelihood surface which may result

in poor convergence. Multimodality issues when one does not know the true motif are

discussed in the Section 4.5. For the simulations, the DA sampler was initialized to the

true motif estimate and then updated as per the algorithm. This is done to limit the

amount of human supervision that would have been required for de novo motif finding

within the many simulated datasets. In the low prevalence scenarios, a strong prior was

placed on the prevalence of the motif to prevent divergence as described in the Section

4.3.4 so that δ0 = 106 and γ = 0.0001. Sensitivity analyses demonstrated that model

estimation was robust to prior specifications within a moderately large range of the set

values (more details in Section 4.5).

Four models were applied to each dataset. In the first model, the motif sites were

sampled with the stochastic dictionary model conditioning upon the true enrichment re-

gion. Call this the Known Binding Region (KBR) model. Second, the two step procedure

was applied by fitting the Intensity Only (IO) model, and third, the two step procedure

was applied using the TileMap method (TM). The TileMap method was not originally

designed for two-color arrays, but it is flexible and may use a test statistic for probe en-

richment computed by another method. The test statistics for each probe were computed
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separately as the p-value under the null hypothesis that Ȳp ∼ N(0, τ̂ 2
0 + σ2

p/R) where τ̂ 2
0

is given by the IO model, and σ2
p is a shrinkage estimate for the variance suggested by Ji

and Wong (2005). Lastly, the proposed joint intensity and sequence (IS) model was ap-

plied. The model performance assessment was in the sensitivity and Positive Predictive

Value (PPV) for detection of simulated binding sites.

4.4.3 Intensity Only Model Simulations

The first step was to fit the intensity only model to the array data which results in

enrichment estimates ŝp from which the enrichment probes are selected as described in

Section 4.4.1. There were four simulation scenarios with two levels of motif conservation,

and two levels of motif site prevalence. The two simulated motifs were a highly conserved

motif and the Rap1 binding motif taken from the literature. The highly conserved motif

consisted of a 13 length sequence with each position having a 99% probability of the

consensus letter and the rest of the letters with equal probability. The two levels of motif

prevalence were 0.0005 (High) and 0.0002 (Low). Each of the four scenarios was repeated

5 times. The results are shown in Table 12.

As one might expect, the highly conserved motif was detected more accurately than

the Rap1 motif for all models. Also, the decreasing the prevalence of the Rap1 motif

negatively impacted the sensitivities of all models. However, the effects of motif conser-

vation were the most profound. The IS model was almost equivalent to the KBR model

with the artificial motif. The IS model gives superior performance compared with the

IO model in terms of both sensitivity and specificity for all four scenarios. Most notably,

the PPV is enhanced by the joint IS model for all scenarios from ∼ 65 for the IO model
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Table 12:
Simulations Based on Intensity Model Enrichment Estimates
KBR = Known Binding Region; IO = Intensity Only Model;
IS = Joint Intensity Sequence Model; TM = TileMap Model

Table 2a - Highly Conserved Motif and Prevalence = 0.0005

Outcome (SD) True KBR IO TM IS

Sensitivity - 91.8 (1.2) 77.7 (1.4) 37.6 (1.2) 90.1 (1.0)

PPV - 93.5 (6.5) 63.4 (1.3) 63.2 (0.6) 93.2 (0.8)

Total Sites 839 (31) 821 (31) 1016 (57) 505 (23) 829 (30)

Table 2b - Highly Conserved Motif and Prevalence = 0.0002

Outcome (SD) True KBR IO TM IS

Sensitivity - 91.9 (2.0) 78.8 (3.2) 37.5 (1.2) 91.4 (2.6)

PPV - 93.2 (1.3) 62.5 (1.5) 62.1 (0.9) 92.9 (1.7)

Total Sites 336(21) 331 (22) 423 (29) 209 (13) 331 (24)

Table 2c - Rap1 Motif and Prevalence = 0.0005

Outcome (SD) True KBR IO TM IS

Sensitivity - 70.5 (1.3) 57.7 (1.7) 23.4 (1.8) 63.7 (1.5)

PPV - 95.7 (0.5) 63.4 (0.9) 66.7 (0.3) 97.2 (1.0)

Total Sites 868(21) 639 (24) 790 (21) 306 (33) 569 (14)

Table 2d - Rap1 Motif and Prevalence = 0.0002

Outcome (SD) True KBR IO TM IS

Sensitivity - 57.2 (4.2) 41.7 (3.0) 7.9 (8.9) 45.5(5.0)

PPV - 95.3 (2.2) 67.3 (1.8) 33.8 (32.7) 98.2 (1.6)

Total Sites 339 (22) 204 (22) 211 (30) 131 (24) 158 (25)
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compared with ∼ 95 for the IS model. This implies that the motif matrix estimation is

more accurate for the IS because this estimation is directly related to the accuracy of

binding site estimation. In the low prevalence Rap1 motif scenario, TileMap procedure

failed to find any binding sites in 2 of the 5 simulations.

4.4.4 Simulated Sequence Based on the TileMap Model

Next, we simulated sequences based upon the nonparametric TileMap intensity model

enrichment estimates. The TileMap intensity model selected fewer regions to be enriched

than the intensity only model, and a higher prevalence of binding sites within these

regions was needed in order to estimate the motif accurately. The Rap1 motif was

randomly inserted into the selected regions with a prevalence of 0.001. This scenario

was repeated 5 times, and the results are shown in Table 13. The TileMap (TM) model

has the highest sensitivity of the three models, but the joint IS model is demonstrated

to have superior PPV compared to the TM model (98% vs 67%) with little penalty in

terms of lost sensitivity (56% vs 64%). The nonparametric intensity model of TileMap

assumes that the probe intensity component of the proposed model may be misspecified,

but the proposed joint model still shows an excellent performance.

4.5 Yeast Data Case Study

We considered a yeast dataset from Lieb et al. (2001) which was a ChIP-chip experiment

for the Rap1 transcription factor.
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Table 13:
Simulations Based on TileMap Enrichment Estimates
KBR = Known Binding Region; IO = Intensity Only Model;
IS = Joint Intensity Sequence Model; TM = TileMap Model

Prevalence = 0.001

Outcome (SD) True KBR IO TM IS

Sensitivity - 77.5 (0.9) 55.9 (2.0) 63.9 (2.1) 56.3 (2.2)

PPV - 93.3 (1.0) 70.0 (1.6) 67.1 (1.0) 98.3 (0.8)

Total Sites 656 (33) 595 (22) 566 (33) 623 (40) 391 (21)

4.5.1 Data Preprocessing and Initialization

The data consist of four arrays and 11, 575 non-telomeric probes of various lengths span-

ning the yeast genome of 17 chromosomes with a total of 12 million base pairs. Simple

repeats were removed from the genome with the RepeatMasker software (Smit et al.,

2004). We used median centering and variance standardization to normalize the data.

Shifting the median of each array to 0 is important because the proposed model assumes

that the majority of the observations will arise from a distribution that is symmetric

about 0. The model also assumes that the within array variance is equal which moti-

vates variance standardization. This procedure produced good results as seen later in

this section, but there is still a need for improved normalization methods designed for

ChIP-chip data (Buck and Lieb, 2004).

We preprocessed the data through an initialization phase that is similar to the first

step of the two stage procedure in which the segments of highest enrichment are selected

using the intensity only model. This step will allow the model to avoid the multimodality
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difficulties of sequence modeling by providing the initial estimate of the motif matrix that

will later be updated by the joint model. These probes that were selected by the IO model

were ranked according to the log-ratio of the intensity probabilities in favor of enrichment

log(f1(Yp)/f0(Yp)). The sequences of the probes in the highest 1% likelihood ratios were

then selected, and the following search for the initial motif estimate was implemented.

The initialization of the sequence model requires a reasonable estimate of the TFBS

motif to facilitate convergence. The sequences selected by the above procedure are likely

to have the highest concentration of the binding site for the motif, but it is evident that

there are many non-random patterns in the DNA that correspond to different modes in

the likelihood and can lead to the failure of the stochastic dictionary model to find the

motif which gives the highest likelihood for these sequences.

An accumulating stochastic dictionary model was fit to the sequences in which suc-

cessive motifs are estimated and then added to the dictionary which accumulates these

new motifs. First, the dictionary was initialized with PSWM of length one representing

A’s, C’s, G’s, and T’s as well as repeat words of A’s and T’s of both of length 4 and

length 8. These 8 motifs were considered part of the fixed background model with motif

matrices Θ1, . . .Θ8. The search was restricted to the previously reported motif width of

13 (Lieb et al., 2001), and a motif of length 13 with uniform probability across all letters

at all positions was added to the dictionary and updated using the data augmentation

method described in the Section 4.3 (V = 9). The prevalence of this motif is fixed to

be 0.0001, and this motif is considered the foreground motif Θ∗ and is the only motif

updated in each cycle of the DA sampler. After approximate convergence, the updated

motif is added to the fixed background dictionary, and another motif of length 13 with
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uniform probability across all letters at all positions is added to the dictionary so that

V = 10, and this new word becomes the new updated foreground motif. The procedure of

iteratively adding words to the background allows the model to consider different modes

in the space of potential motifs.

Two likelihoods of the sequences are plotted across the iterations in order to find a

reasonable motif for initialization. The first is the likelihood of the sequences given the full

dictionary up to that point which may be denoted as
∏

Xi∈Top Sequence p(Xi|Θ1, . . .Θ8+m,Θ
∗)

where m ≥ 1 is the number of accumulated words and Θ∗ is the updated motif. The

recursive relationship (58) is used to calculate the likelihood of the stochastic dictionary.

The likelihood generally increases as motifs are added to the dictionary, and after a few

iterations a plateau is reached signifying entrapment in a likelihood mode. The second

likelihood computed is based on the original eight-PSWM background with only the cur-

rent foreground motif and may be denoted as
∏

Xi∈Top Sequence p(Xi|Θ1, . . .Θ8,Θ
∗). This

likelihood is an indication of the improvement in model fit given the addition of only the

current foreground motif. These two plots are shown in Figure 12 for 4 runs of length

2000 in which a total of 8 words are added to the dictionary every 250 iterations. One

can see that runs 2 and 3 have the highest likelihood and that the fifth motifs added

in both of the runs give the largest improvement in model fit. The fifth motifs added

in both of these runs are very similar. The final estimate for the Rap1 shown in Figure

13 as well as the initialization motif, and there is a strong resemblance to the motifs

reported previously by (Lieb et al., 2001) and in the TRANSFAC database (Matys et al.,

2003). We conclude that the motif that gives the largest increase in sequence likelihood

is a reasonable choice for the initial estimate in the joint sequence and intensity model.
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The next phase of the analysis is the application of the joint model. An assessment of

the sensitivity to the selection of hyperparameters was performed as well as a comparison

of the results with other ChIP-chip methods in the next section.
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Figure 12: Likelihood trace plots for Accumulating Dictionary (Upper), and
Single Word Addition (Lower). Independent runs are distinguished by bold
vertical bars, and subsequent motifs are separated by light vertical bars. The
Rap1 motif is discovered as the fifth motif in runs 2 and 3.
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Figure 13: Comparison of motif logos of the model estimates and literature.
The final motif estimate for Rap1 by the joint IS model is at the top. Second
from the top is the initial estimate given by the accumulating dictionary. The
bottom two plots show the motif discovered by Lieb et al. (2001) and the
motif listed in the TRANSFAC database.
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4.5.2 Sensitivity Analysis

The next phase of the analysis is the application of the joint model. An assessment of the

sensitivity to the selection of hyperparameters was performed as well as a comparison of

the results with other ChIP-chip methods.

We first did a sensitivity analysis to examine the dependence of the final estimates on

the choice of the prior hyperparameters. The hyperparameters for the pseudocounts δ0ij ,

δv, and the elements of the pseudocount matrix B were set to 0.1. These pseudocounts

are quite small compared to the number of observed counts, and do not greatly affect

inferences. We fixed δ0 = 106 and varied the prior parameter for the expected motif

prevalence γ ∈ {5.0×10−5, 6.0×10−5, 7.0×10−5, 8.0×10−5, 9.0×10−5, 10.0×10−5, 20.0×

20−5} to assess the sensitivity to this prior. To initialize the IS model, the IO model

DA sampler was repeated for 1, 000 iterations for a burn-in period, and the parameter

estimates from the 1, 000th iterations were used as the initial values for the IS model.

The IS model DA sampler was repeated for 1, 000 more iterations, and the last 750 were

sampled for posterior inference. MCMC convergence of the DA sampler was diagnosed

with parallel chains by using the Gelman and Rubin
√
R̂ statistic. The joint IS model

was then applied and the corresponding number of binding sites found for each value of

γ were {278, 290, 293, 297, 306, 311, > 1000} respectively. The last value indicated that

the model did not converge to the correct mode of the posterior distribution. One can

see that the number of TFBSs was about 300 in the range γ ∈ [7.0 × 10−5, 10.0 × 10−5].

The positions of the binding sites discovered were also very consistent, the intersection

of the binding site lists for each consecutive value of γ being {277, 287, 291, 297, 303,−}.
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In other words, all 277 of the 278 TFBSs found when γ = 5.0 × 10−5 were also found

when γ = 6.0 × 10−5.

4.5.3 Comparisons with Other Methods

We chose the largest value of γ = 10−4 for which convergence was observed to compare

the IS method with three two step methods. The first method is the intensity only

(IO) model which is the proposed method without the sequence component, the second

method is the Chipotle method (Buck et al., 2005), and the third method is TileMap (Ji

and Wong, 2005). The Chipotle method requires that one choose a normal approximation

or a nonparametric model to estimate the p-value for rejection of the “No Enrichment”

null hypothesis, and one must decide on a p-value cutoff for selecting regions for the motif

finding stage. We chose the normal approximation method and a p-value cutoff of 0.001.

There does not seem to be an objective rule for choosing this cutoff, but this conservative

value is consistent with our other models.

These three methods were implemented, and they produced estimates of the regions

of IP enrichment to which the stochastic dictionary model was applied with γ = 10−4

and δ0 = 106 to obtain lists of estimated TFBS as in Section 4.4.2. The estimates for

the parameters common to the IO and the IS models are shown in Table 14, and these

estimates are quite similar for all parameters. The comparisons of estimated TFBS are

shown in Table 15. There is marked agreement between the three methods with the IS

model finding the most TFBS and the IO model the next to most. However, the TileMap

method found roughly half of the TFBS of the other methods. The TFBS found by the

joint IS model included 97.5%, 89.9%, and 96.9% of the TFBS found by the IO model,
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Table 14:
Parameter Estimates from IO and IS methods

Parameter Intensity Only Intensity with Sequence

Estimate (SD) Estimate (SD)

µ1 0.982 (0.03 ) 1.01 (0.03 )

σa 0.1172 (0.001) 0.1172 (0.001)

τ 2
0 0.045 (0.001) 0.045 (0.001)

τ 2
1 0.364 (0.021) 0.346 (0.020)

τ00 0.97 (0.002) 0.97 (0.002)

τ11 0.71 (0.02 ) 0.70 (0.02 )

Chipotle, and TileMap respectively. Also, the IS model was highly consistent in that it

found a much larger number of sites compared to TileMap, for example, that found only

52.8% of the Chipotle sites. This might indicate a higher sensitivity of the IS model,

but the higher specificity cannot be directly assessed because the locations of all “true”

binding sites are not known.

An analysis of the differences between the probe enrichment probabilities estimated

by the IO model and the joint IS model was performed to examine the effect of adding the

sequence component to the model. Figure 14 shows the posterior probability P (sp = 1|D)

of probe enrichment under the IO and IS models for all of the probes. Most of the

posterior probabilities are close to 0 with a smaller cluster of probabilities close to 1.

This polarity of probabilities motivates the cutoff of P (sp = 1|D) > 0.5 for selecting
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Table 15: Estimated Binding Site Comparisons of Four Methods

- TileMap Chipotle Intensity Only Intensity with Sequence

TileMap 163

Chipotle 141 267

Intensity Only 156 235 287

Intensity with Sequence 158 240 280 305

probes as enriched. The enrichment probabilities for the probes that were identified as

enriched by one model and not the other in quadrants A (IS only) and D (IO only) have

IO model enrichment probabilities in the range [0.049, 0.746]. These probes are neither

definitely enriched nor definitely not enriched according to the IO model. The probes

above the diagonal x = y have joint IS model enrichment probabilities that were higher

than the enrichment probabilities based upon intensity alone. Most of the probes have

smaller enrichment probabilities under the joint IS model. The IO model selected 934

probes as enriched while the IS model selected 922 probes as enriched. Even though

fewer probes were identified as enriched by the joint IS model, the IS model found more

binding sites which is consistent with the IS model selecting probes that are more likely

to correspond to binding sites. These data are also consistent with the idea that including

sequence in the model can help to classify some of the probes with ambiguous posterior

enrichment probabilities so that more probes corresponding to binding sites are identified

as enriched.
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Figure 14: Posterior probabilities for probe enrichment under the Intensity
Only (IO) model and Joint (IS) model for all 11,575 probes. The plot has
been divided into four quadrants A-D by the lines x = 0.5 and y = 0.5. The
unit line x = y is also drawn. The polarity of the probabilities is evident in
the clusters of values at 0 and 1. Probes above the diagonal have enrichment
probabilities higher under the IS model, and probes below the diagonal have
enrichment probabilities greater under the IO model. The C quadrant contains
probes that the IS and the IO model both declared to be not enriched (10,605),
and quadrant B contains the probes selected by both models to be enriched
(886) The D quadrant contains those probes identified as enriched by the IO
model, but not the joint Intensity Sequence (IS) model (48). The A quadrant
contains those probes identified as enriched by the IS, but not the IO model
(36).
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4.6 Discussion

The proposed HMM for transcription binding site detection in ChIP-chip experiments was

motivated by the HMMs of Ji and Wong (2005) and Li et al. (2005) with the important

extension of jointly analyzing the sequence data rather than the implementation of a two

stage procedure. A sequence likelihood based on a stochastic dictionary model is included

the emission densities of the HMM. The joint Intensity Sequence (IS) model was shown

to significantly out-perform the two stage procedure for binding site discovery in terms of

the sensitivity and especially the specificity in the simulated data. The IS model was also

applied to a yeast dataset which examined the DNA binding of the Rap1 transcription

factor. We proposed a method for overcoming the multimodality difficulties of de novo

motif discovery using an accumulating stochastic dictionary and choosing the motif that

gave the greatest increase in the sequence likelihood. The resulting de novo motif estimate

is in close agreement with the Rap1 motif found in the literature. The binding sites

estimated by the proposed method from the experimental data were compared to the the

binding estimates of the intensity only model, the Chipotle method, and the TileMap

method. It is important to note that these three methods do not yield the binding sites

directly, but the stochastic dictionary model had to be applied in the second stage. This

shortcoming of intensity only models strains comparisons with the IS method because

these comparisons would overlook the additional utility of the IS indicating the posterior

probability of an exact position (1 base pair) on the genome of a binding site rather than

merely estimating the posterior probability that a region (100-2000 base pairs) might

contain one or more binding sites. This utility of the joint model may be considered a
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large improvement in resolution in binding site discovery. Nevertheless, the binding sites

found by the IS and the two stage approaches were mostly identical, but the IS model

estimated the largest number of binding sites. Simulation studies indicated that the joint

IS model can successfully estimate binding site probabilities with much higher specificity

than two step ChIP-chip analyses that might not accurately combine the uncertainty of

enrichment region selection and the uncertainty of binding site identification.

Future work would include several possible variations and extensions of the IS model.

First, the IS model currently assumes that each of the large and possibly overlapping

sequences corresponding to the probe measurements are either enriched or not enriched.

However, with the increasing availability of data at higher resolution, an alternative

method might consider modeling smaller non-overlapping segments of DNA having a

latent enriched or not enriched state. This might allow for higher resolution, and is

another way of pooling the intensity information for adjacent probes. Second, the simple

binding model of Table 11 is a reductionist perspective of the transcription factor binding

process. The sequence model could be extended to include the possibility of alternative

binding motifs for the transcription factor of interest. Alternative motifs could account

for some of the probe enrichment not due to the primary motif of interest. Also, the

latent state space could be extended from two state (enriched or not) to many states

such as “enriched in association with motif 1”, “enriched in association with motif 2”,

etc. Biological insight into transcription factors working in conjunction may also motivate

other extensions of the sequence model. As more complex sequence models are developed

one might also consider the use of prior information concerning the TFBS motifs.
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Appendix

The complete sampling scheme for the joint intensity sequence model is given below.

1. Initialize intensity parameters µ1, τ
2
1 , τ 2

0 , and σ2
a.

2. Initialize sequence parameters Θv and π.

3. Initialize transition parameters τij.

4. Initialize probe states s1, . . . sP .

5. Sample µ1 ∝
∏P

p=1 fsp
(Yp) with MH random walk.

6. Sample τ 2
1 ∝

∏P
p=1 fsp

(Yp) with MH random walk.

7. Sample τ 2
0 ∝

∏P
p=1 fsp

(Yp) with MH random walk.

8. Sample σ2
a ∝

∏P
p=1 fsp

(Yp) with MH random walk.

9. Compute P (Yp, Xp|sp) = fsp
(Yp)psp

(Xp) for sp ∈ {0, 1}.

10. Compute gp(0) and gp(1) for p ∈ {1, . . . , n} with Forward Algorithm.

11. Sample Backwards sP , sP−1 . . . s1.

12. Count the number transitions tij where i→ j in s1...P .

13. Sample τij ∼ Beta(tij + δij,
∑

k 6=j tik + δij).

14. Sample Ae,jv for all ne subsequences with algorithm below.

(a) Initialize Ae,jv = 0, nv = 0.
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(b) Let j = Ke the last position in sequence Xe.

(c) Sample Ae,j. ∼ Multinomial(φe(j−w1)π1p(Xe[j−w1+1:j]|Θv)
φe(j)

, .., φe(j−wV )πV p(Xe[j−wV +1:j]|Θv)
φe(j)

)

so that Ae,jv = 1 iff the vth PSWM was sampled Ae,jv = 0 otherwise.

(d) Decrement j by (wv − 1) iff Ae,jv = 1.

(e) Increment nv by 1 iff Ae,jv = 1.

(f) Return to 3 until j = 0.

15. Sample ΘV ∼ PD(B + C).

16. Sample πV ∼ Beta(δ0(1 − γ) +
∑v=V −1

v=1 nv, δ0γ + nV ).

17. Sample π ∼ Dirichlet(n1 + δ1, .., nV −1 + δV −1).

18. Return to 5.

The intensity only sampling scheme would skip steps 2 and steps 14-17, and step 9

would only compute P (Yp|s) = fsp
(Yp). The computations of step 9 may be prohibitive

because of the terms psp
(Xp) if the number of background motifs V − 1 is large. The

ratio p0(Xp)/p1(XP ) is what is necessary for the computation of gp(sp), and this ratio

may be approximated by reducing the number of background motifs in this step.

The MCMC algorithm was implemented using the C laguage, and the applications

were run on a Linux cluster with dual-CPU 2.8 Ghz Xeon IBM BladeCenter nodes each

with 2.5 GB RAM. The run time for 1,000 iterations of the full model with 10,000 probes

with 1,000 bp sequences is approximately 10 hours.

123



REFERENCES

Almasy, L. and Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in
general pedigrees. American Journal of Human Genetics, 62(5):1198–221.

Amos, C., Dawson, D., and Elston, R. (1990). the probabalistic determination of identity-
by-descent sharing for pairs of relatives from pedigrees. American Journal of Human
Genetics, 47:842–53.

Arjas, E. and Gasbarra, D. (1994). Nonparametric Bayesian inference from right censored
survival data, using the Gibbs sampler. Statistica Sinica, 4:505–524.

Bailey, T. L. and Elkan, C. (1994). Fitting a mixture model by expectation maximization
to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol, 2:28–36.

Bair, E. and Tibshirani, R. (2004). Semi-supervised methods to predict patient survival
from gene expression data. PLoS Biology, 2(4):0511–22.

Bartosiewicz, M., Penn, S., and Buckpitt, A. (2001). Applications of gene arrays
in environmental toxicology: fingerprints of gene regulation associated with cad-
mium chloride, benzo(a)pyrene, and trichloroethylene. Envirnomental Health Perspect,
190(1):71–4.

Beer, D. G., Kardia, S. L., Huang, C. C., Giordano, T. J., Levin, A. M., Misek, D. E., Lin,
L., Chen, G., Gharib, T. G., Thomas, D. G., Lizyness, M. L., Kuick, R., Hayasaka, S.,
Taylor, J. M., Iannettoni, M. D., Orringer, M. B., and S., H. (2002). Gene-expression
profiles predict survival of patients with lung adenocarcinoma. Nat Med, 8(8):816–824.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Statist Soc B, 57:289–300.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate under
dependency. Ann Stat, 29:1165–1188.

Broberg, P. (2005). A comparative review of estimates of the proportion unchanged genes
and the false discovery rate. BMC Bioinformatics, 6:199.

Buck, M. J. and Lieb, J. D. (2004). Chip-chip: considerations for the design, analysis, and
application of genome-wide chromatin immunoprecipitation experiments. Genomics,
83:349–360.

Buck, M. J., Nobel, A. B., and Lieb, J. D. (2005). Chipotle: a user-friendly tool for the
analysis of ChIP-chip data. Genome Biol., 6(11).

Buhler, J. and Tompa, M. (2002). Finding motifs using random projections. J. Compu-
tational Biol., 9(2):225–242.

Burns, T. and El-Deiry, W. (2003). Microarray analysis of p53 target gene expression
patterns in the spleen and thymus in response to ionizing radiation. Cancer Biology
and Therapy, 2(4):444–5.

124



Butler, N. and Denham, M. (2000). The peculiar shrinkage properties of partial least
squares regression. Journal of the Royal Statistical Society, Series B, 62:585–93.

Byron, S. A., Horwitz, K. B., Richer, J. K., Lange, C. A., Zhang, X., and Yee, D. (2006).
Insulin receptor substrates mediate distinct biological responses to insulin-like growth
factor receptor activation in breast cancer cells. British J. Cancer, 95(9):1220–1228.

Carlborg, O., De Koning, D., Manly, K., Chesler, E., Williams, R., and Haley, C. (2005).
Bioinformatics, 21(10):2383–2393.

Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., Pic-
colboni, A., Sementchenko, V., Cheng, J., Williams, A. J., Wheeler, R., Wong, B.,
Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl,
K., and Gingeras, T. R. (2004). Unbiased mapping of transcription factor binding
sites along human chromosomes 21 and 22 points to widespread regulation of noncod-
ing rnas. Cell, 116:499–509.

Chesler, E., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H., Mountz, J., Baldwin,
N., Langston, M., Threadgill, D., Manly, K., and Williams, R. (2004). Complex trait
analysis of gene expression uncovers polygenic and pleiotropic networks that modulate
nervous system function. Nature Genetics, 37(3):233–242.

Chesler, E., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H., Mountz, J., Baldwin,
N., Langston, M., Threadgill, D., Manly, K., and Williams, R. (2005). Complex trait
analysis of gene expression uncovers polygenic and pleiotropic networks that modulate
nervous system function. Nature Genetics, 37(3):233–242.

Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M., Mandelli, F., Ritz, J., and
Foa, R. (2004). Gene expression profile of adult t-cell acute lymphocytic leukemia
identifies distinct subsets of patients with different response to therapy and survival.
Blood, 103(7):2771–8.

Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg,
T., Gabrielian, A., Landsman, D., Lockhart, D., and Davis, R. (1997). A genome-wide
transcriptional analysis of the mitotic cell cycle. Molecular Cell, 2(1):65 – 73.

Churchill, G. and Doerge, R. (1994). Empirical threshold values for quantitative trait
mapping. Genetics, 138(3):963–71.

Davis, S., Schroeder, M., Goldin, L., and Weeks, D. (1996). Nonparametric simulation-
based statistics for detecting linkage in general pedigrees. American Journal of Human
Genetics, 58(4):867–80.

De Paepe, B., Verstraeten, V. L., De Potter, C., Vakaet, L., and Bullock, G. (2001).
Growth stimulatory angiotensin ii type-1 receptor is upregulated in breast hyperplasia
and in situ carcinoma but not in invasive carcinoma. Histochemistry and Cell Biology,
116:247–254.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm (C/R: P22-37). Journal of the Royal Statistical
Society, Series B: Methodological, 39:1–22.

Doss, S., Schadt, E. E., Drake, T. A., and Lusis, A. J. (2005). Cis-acting expression
quantitative trait loci in mice. Genome Research, 15:681–691.

125



Dressman, M., Walz, T., Lavedan, C., Barnes, L., Buchholtz, S., Kwon, I., Ellis, M., and
Polymeropoulos, M. (2001). Grgenes that co-cluster with estrogen receptor alpha in
microarray analysis of breast biopsies. Pharmacogenomics, 1:135–141.

Dudoit, S., Yang, Y. H., Callow, M. J., and Speed, T. P. (2002). Statistical methods
for identifying differentially expressed genes in replicated cdna microarry experiments.
Statistica Sinica, 12:111–139.

Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null
hypothesis. Journal of the American Statistical Association, 99(465):96–104.

Efron, B. and Tibshirani, R. (2002). Empirical bayes methods discovery rates for mi-
croarrays. Genetic Epidemiology, 23:70–86.

Efron, B., Tibshirani, R., Storey, J. D., and Tusher, V. (2001). Empirical Bayes anal-
ysis of a microarray experiment. Journal of the American Statistical Association,
96(456):1151–1160.

Eisen, M. B., Spellman, P. T., O., B. P., and Botstein, D. (2001). Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95(25):14863–
14868.

Elemento, O. and Tavazoie, S. (2005). Fast and systematic genome-wide discovery of
conserved regulatory elements using a non-alignment based approach. Genome Biol.,
6(2).

Evans, W. and Guy, R. (2004). Gene expression as a drug discovery tool. Nature Genetics,
36(3):214–5.

Falconer, D. and Mackay, T. (1996). Introduction to Quantitative Genetics. Longman,
Harlow, UK.

Fodor, S., Rava, R., Huang, X., Pease, A., Holmes, C., and Adams, C. (1993). Multi-
plexed biochemical assays with biological chips. Nature, 364(6437):555–6.

Fulker, D., Cherny, S., and Cardon, L. (1995). Multipoint interval mapping of quantita-
tive trait loci, using sib pairs. American Journal of Human Genetics, 56(5):1224–33.

Galton, F. (1892). Hereditary Genius. Macmillon and Co, London, second edition.

Ge, Y., Dudoit, S., and Speed, T. P. (2003). Resampling-based multiple testing for
microarray data analysis. TEST, 12(1):1–77.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences (Disc: P483-501, 503-511). Statistical Science, 7:457–472.

Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of
the false discovery rate procedure. Journal of the Royal Statistical Society, Series B:
Statistical Methodology, 64(3):499–517.

Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). Adaptive rejection Metropolis
sampling within Gibbs sampling (Corr: 97V46 p541-542 with R. M. Neal). Applied
Statistics, 44:455–472.

Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling.
Applied Statistics, 41:337–348.

126



Glonek, G. and Soloman, P. (2003). Discussion of resampling based multiple testing for
microarray data analysis by ge, dudoit and speed. Test, 12(1):1–77.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander,
E. S. (1999). Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science, 286(5439):531–537.

Gupta, M. and Liu, J. S. (2003). Discovery of conserved sequence patterns using a
stochastic dictionary model. J. Am. Statistical Association, 98:55–66.

Gupta, M. and Liu, J. S. (2005). De novo cis-regulatory module elicitation for eukaryotic
genomes. Proc. National Acad. Sciences United States Am., 102(20):7079–7084.

Haley, C. and Knot, S. (1992). A simple method for mapping quantitative trait loci in
line crosses using flanking makers. Heredity, 69:315–24.

Hastie, T., Tibshirani, R., Eisen, M., Alizadeh, A., Levy, R., Staudt, L., Chan, W.,
Botstein, D., and Brown, P. (2000). ’gene shaving’ as a method for identifying distinct
sets of genes with similar expression patterns. Genome Biology, 1(2):0003.1–21.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning
: data mining, inference, and prediction. Springer, New York.

Hsieh, W., Chu, T., Wolfinger, R., and Gibson, G. (2003). Mixed-model reanalysis of
primate data suggests tissue and species biases in oligonucleotide-based gene expression
profiles. Genetics, 165(2):747–57.

Hubner, N., Wallace, C., Zimdahl, H., Petretto, E., Schulz, H., Maciver, F., Mueller, M.,
Hummel, O., Monti, J., Zidek, V., Musilova, A., Kren, V., Causton, H., Game, L.,
Born, G., Schmidt, S., Muller, A., Cook, S., Kurtz, T., Whittaker, J., Pravenec, M.,
and Aitman, T. (2005). Integrated transcriptional profiling and linkage analysis for
identification of genes underlying disease. Nature Genetics, 37(3):243–253.

Ibrahim, J., Chen, M.-H., and Sinha, D. (2001). Bayesian Survival Analysis. Springer,
New York.

Ibrahim, J. G., Chen, M.-H., and Gray, R. J. (2002). Bayesian models for gene ex-
pression with DNA microarray data. Journal of the American Statistical Association,
97(457):88–99.

Ibrahim, J. G. and Laud, P. W. (1994). A predictive approach to the analysis of designed
experiments. Journal of the American Statistical Association, 89:309–319.

Ideker, T., Thorsson, V., Siegel, A. F., and Hood, L. E. (2000). Testing for differentially-
expressed genes by maximum-likelihood analysis of microarray data. Journal of Com-
putational Biology, 7:805–17.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U.,
and Speed, T. P. (2003). Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics (Oxford), 4(2):249–264.

Jansen, R. and Nap, J. (2001). Genetical genomics: the added value from segregation.
Trends in Genetics, 17(7):388–91.

Ji, H. K. and Wong, W. H. (2005). Tilemap: create chromosomal map of tiling array
hybridizations. Bioinformatics, 21:3629–3636.

127



Juang, B.-H. and Rabiner, L. R. (1991). Hidden Markov models for speech recognition.
Technometrics, 33(3):251–272.

Kapranov, P., Cawley, S. E., Drenkow, J., Bekiranov, S., Strausberg, R. L., Fodor, S.
P. A., and Gingeras, T. R. (2002). Large-scale transcriptional activity in chromosomes
21 and 22. Science, 296:916–919.

Keles, S. (2006). Mixture modeling for genome-wide localization of transcription factors.
Biometrics, To Appear (Online Early).

Keles, S., van der Laan, M., and Eisen, M. B. (2002). Identification of regulatory elements
using a feature selection method. Bioinformatics, 18(9):1167–1175.

Keles, S., van der Laan, M. J., Dudoit, S., and Cawley, S. E. (2004). Multiple testing
methods for chip-chip high density oligonucleotide array data. Journal of Computa-
tional Biology, 13(3):579–613.

Kendziorski, C., Chen, M., Yuan, M., Lan, H., and Attie, A. (to Appear 2005). Statistical
methods for expression trait loci (etl) mapping. Biometrics.

Kendziorski, C. M., Newton, M. A., Lan, H., and Gould, M. (2003). On parametric em-
pirical bayes methods for comparing multiple groups using replicated gene expression
profiles. Statistics in Medicine, 22(24):3899–914.

Kerr, M. K., Afshari, C. A., Bennett, L., Bushel, P., Martinez, J., Walker, N. J., and
Churchill, G. A. (2002). Statistical analysis of a gene expression microarray experiment
with replication. Statistica Sinica, 12(1):203–217.

Knuiman, M. W. and Speed, T. P. (1988). Incorporating prior information into the
analysis of contingency tables. Biometrics, 44:1061–1071.

Koenker, R. and Ng, P. (2003). SparseM: Sparse Linear Algebra. R package version 0.61.

Kominsky, S. L., Vali, M., Korz, D., Gabig, T. G., Weitzman, S. A., Argani, P., and
Sukumar, S. (2004). Clostridium perfringens enterotoxin elicits rapid and specific
cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3
and 4. Am. J. Pathology, 164(5):1627–1633.

Kopreski, M. S., Benko, F. A., and Gocke, C. D. (2001). Circulating RNA as a tumor
marker - Detection of 5T4 mRNA in breast and lung cancer patient serum. Circulating
Nucleic Acids In Plasma Or Serum Ii, 945:172–178.

Lan, H., Stoehr, J., Nadler, S., Schueler, K., Yandell, B., and Attie, A. (2003). Dimension
reduction for mapping mrna abundance as quantitative traits. Genetics, 164(4):1607–
14.

Lander, E. and Botstein, D. (1989). Mapping mendelian factors underlying quantitative
traits using rflp linkage maps. Genetics, 121(1):185–99.

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F., and Wootton,
J. C. (1993). Detecting subtle sequence signals: a Gibbs sampling strategy for multiple
alignment. Science, 262(5131):208–214.

Lee, J., Chu, I., Heo, J., Calvisi, D., Sun, Z., Roskams, T., Durnez, A., Demetris, A.,
and Thorgeirsson, S. (2004). Classification and prediction of survival in hepatocellular
carcinoma by gene expression profiling. Hepatology, 40(3):667–76.

128



Lee, Y.-J., Mangasarian, O., and Wolberg, W. (2003). Survival-time classification of
breast cancer patients. Computational Optimization and Applications, 25:151–166.

Lehmann, E. (2005). Testing statistical hypotheses. Springer, New York, third edition.

Li, C. and Wong, W. H. (2001). Model-based analysis of oligonucleotide arrays: expres-
sion index omputation and outlier detection. Proc Natl Acad Sci U S A, 98:31–36.

Li, W., Meyer, C. A., and Liu, X. S. (2005). A hidden Markov model for analyzing ChIP-
chip experiments on genome tiling arrays and its application to p53 binding sequences.
Bioinformatics, 21:I274–I282.

Liao, J., Lin, Y., Selvanayagam, Z., and Shih, W. (2004). A mixture model for estimating
the local false discovery rate in dna microarray analysis. Bioinformatics, 20(16):2694–
704.

Lieb, J. D., Liu, X. L., Botstein, D., and Brown, P. O. (2001). Promoter-specific binding
of Rap1 revealed by genome-wide maps of protein-DNA association. Nature Genetics,
28(4):327–334.

Lipshutz, R. J., Fodor, S., Gingeras, T., and Lockhart, D. (1999). Nature Genetics,
Supplement, 21:20–24.

Liu, J. S., Neuwald, A. F., and Lawrence, C. E. (1995). Bayesian models for multiple local
sequence alignment and Gibbs sampling strategies. J Amer Statist Assoc, 90:1156–
1170.

Liu, X. S., Brutlag, D. L., and Liu, J. S. (2001). Bioprospector: Discovering conserved
dna motifs in upstream regulatory regions of co-expressed genes. Pacific Symposium
on Biocomputing, 6:127–38.

Liu, X. S., Brutlag, D. L., and Liu, J. S. (2002). An algorithm for finding protein-
DNA binding sites with applications to chromatin-immunoprecipitation microarray
experiments. Nature Biotechnology, 20:835–839.

Lobenhofer, E., Cui, X., Bennett, L., Cable, P., Merrick, B., Churchill, G., and Af-
shari, C. (2004). Exploration of low-dose estrogen effects: identification of no observed
transcriptional effect level (notel). Toxicologic Pathology, 32(4):482–92.

Lockhart, D., Dong, H., Byrne, M., Follettie, M., Gallo, M., Chee, M, S., Mittmann,
M., Wang, C., Kobayashi, M., Horton, H., and Brown, E. (1996). Expression moni-
toring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology,
14(13):1675–80.

Lynch, M. and Walsh, B. (1998). Genetic Analysis of Quantitative Traits. Sinauer
Associates, Inc., Massachusetts.

MacAlpine, D. and Bell, S. (2005). A genomic view of eukaryotic dna replication. Chro-
mosome Research, 13(3):309–26.

Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., Hornischer, K.,
Karas, D., Kel, A. E., Kel-margoulis, O. V., Kloos, D. U., Land, S., Lewicki-potapov,
B., Michael, H., Munch, R., Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S.,
and Wingender, E. (2003). Transfac (R): transcriptional regulation, from patterns to
profiles. Nucleic Acids Research, 31:374–378.

129



Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM
algorithm: A general framework. Biometrika, 80:267–278.

Monks, S., Leonardson, A., Zhu, H., Cundiff, P., Pietrusiak, P., Edwards, S., Phillips,
J., Sachs, A., and Schadt, E. (2004). Genetic inheritance of gene expression in human
cell lines. American Journal of Human Genetics, 75:1085–1094.

Morley, M., Molony, C., Weber, T., Devlin, J., Ewens, K., Spielman, R., and Cheung, V.
(2004). Genetic analysis of genome-wide variation in human gene expression. Nature,
430(7001):743–7.

Nakamura, T. (1992). Proportional hazards model with covariates subject to measure-
ment error. Biometrics, 48:829–838.

Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31(3):705–767.

Newton, M., Kendziorski, C., Richmond, C., Blattner, F., and Tsui, K. (2001). On
differential variability of expression ratios: improving statistical inference about gene
expression changes from microarray data. Journal of Computational Biology, 8(1):37–
52.

Newton, M., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004a). Detecting differential gene
expression with a semiparametric hierarchical mixture method. Biostatistics (Oxford),
5(2):155–176.

Newton, M., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004b). Detecting differential gene
expression with a semiparametric hierarchical mixture method. Biostatistics (Oxford),
5(2):155–176.

Nguyen, D. and Rocke, D. (2002). Tumor classification by partial least squares using
microarray gene expression data. Bioinformatics, 18(1):39–50.

Parmigiani, G., Garrett, E. S., Anbazhagan, R., and Gabrielson, E. (2002). A statistical
framework for expression-based molecular classification in cancer. Journal of the Royal
Statistical Society, Series B: Statistical Methodology, 64(4):717–736.

Perou, C. M., Sorlie, T., Elsen, M. B., van de Rijn, M., Jeffrey, S., Rees, C., Pollack,
J., Ross, D., Johnsen, H., Akslen, L., Fluge, O., Pergamenschikov, A., Williams, C.,
Zhu, S., Lonning, P., Borresen-Dale, A., Brown, P., and Botstein, D. (2000). Molecular
portraits of human breast tumors. Nature, 406:747–752.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2005). coda: Output analysis and
diagnostics for MCMC. R package version 0.9-5.

Pollack, J. R., Sorlie, T., Perou, C. M., Rees, C. A., Jeffrey, S. S., Lonning, P. E., Tibshi-
rani, R., Botstein, D., Borresen-Dale, A. L., and Brown, P. O. (2002). Microarray anal-
ysis reveals a major direct role of DNA copy number alteration in the transcriptional
program of human breast tumors. Proc Natl Acad Sci U S A, 99(20):12963–12968.

Pounds, S. and Morris, S. (2003). Estimating the occurrence of false positives and false
negatives in microarray studies by approximating and partitioning the empirical dis-
tribution of p-values. Bioinformatics, 19(10):1236–42.

Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a
failure time regression model (Corr: V71 p219). Biometrika, 69:331–342.

130



R Development Core Team (2004a). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

R Development Core Team (2004b). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed
genes using false discovery rate controlling procedures. Bioinformatics, 19(3):368–75.

Rhee, M., Wang, Y., Nair, M., and Galivan, J. (1993). Acquisition of resistance to
antifolates caused by enhanced gamma-glutamyl hydrolase activity. Cancer Research,
53(10 Suppl):2227–30.

Rocke, D. M. and Durbin, B. (2001). A model for measurement error for gene expression
arrays. Journal of Computational Biology, 8:557–69.

Schadt, E., Monks, S., Drake, T., Lusis, A., Che, N., Colinayo, V., Ruff, T., Milligan,
S., Lamb, J., Cavet, G., Linsley, P., Mao, M., Stoughton, R., and Friend, S. (2003).
Genetics of gene expression surveyed in maize, mouse and man. Nature, 422:297–302.

Self, S. and Liang, K. (1987). Asymptotic properties of maximum likelihood estimator
and likelihood ratio tests under nonstandard conditions. Journal of the American
Statistical Association, 82:605–610.

Shen, L. and Tan, E. (2005). Dimension reduction-based penalized logistic regression for
cancer classification using microarray data. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2(2):166–75.

Shida, K. (2006). Gibbsst: a Gibbs sampling method for motif discovery with enhanced
resistance to local optima. BMC Bioinformatics, 7.

Shultz, V., Phillips, S., Sar, M., Foster, P., and Gaido, K. (2001). Altered gene profiles in
fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicological Sciences,
64(2):233–42.

Sinha, S., Blanchette, M., and Tompa, M. (2004). Phyme: A probabilistic algorithm for
finding motifs in sets of orthologous sequences. BMC Bioinformatics, 5.

Smit, A. F. A., Hubley, R., and Green, P. (2004). Repeatmasker open-3.0.
http://www.repeatmasker.org.

Snyder, A. and Morgan, W. (2004). Gene expression profiling after irradiation: clues
to understanding acute and persistent responses? Cancer and Metastasis Reviews,
23(3-4):259–38.

Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T.,
Eisen, M., van de Rijn, M., Jeffrey, S., Thorsen, T., Quist, H., Matese, J., Brown,
P., Botstein, D., Eystein Lonning, P., and Borresen-Dale, A. (2001). Gene expression
patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
Proceedings of the Natinoal Academy of Science U S A, 98:10869–874.

Sotiriou, C., Neo, S.-Y., McShane, L. M., Korn, E., Long, P., Jazaeri, A., Martiat, P.,
Fox, S., Harris, A., and Liu, E. (2003). Breast cancer classification and prognosis based
on gene expression profiles from a population based study. Proceedings of the Natinoal
Academy of Science U S A, 100:10393–398.

131



Storey, J., Akey, J., and Kruglyak, L. (2005). Multiple locus linkage analysis of
genomewide expression in yeast. PLoS Biology, 3(8):e267.

Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal
Statistical Society, Series B: Statistical Methodology, 64(3):479–498.

Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and
the q-value. Ann Stat, 31:2013–2035.

Storey, J. D., Taylor, J. E., and Siegmund, D. (2004). Strong control, conservative point
estimation and simultaneous conservative consistency of false discovery rates: a unified
approach. Journal of the Royal Statistical Society, Series B: Statistical Methodology,
66(1):187–205.

Stryer, L. (1995). Biochemistry. W.H. Freeman and Company, New York, New York,
fourth edition.

Tadesse, M. G., Ibrahim, J. G., Gentleman, R., Chiaretti, S., Ritz, J., and Foa, R.
(2005). Bayesian error-in-variable survival model for the analysis of genechip arrays.
Biometrics, 61(2):488–497.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander,
E., and Golub, T. (1999). Interpreting patterns of gene expression with self-organizing
maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci,
96(6):2907–12.

Thompson, W., Palumbo, M. J., Wasserman, W. W., Liu, J. S., and Lawrence, C. E.
(2004). Decoding human regulatory circuits. Genome Research, 14(10A):1967–1974.

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 98(9):5116–5121.

Vijver, M. J., He, Y. D., Van’t Veer, L. J., Dai, H., Hart, A., Voskuil, D., Schreiber, G.,
Peterse, J., Roberts, C., Marton, M., Parrish, M., Atsma, D., Witteveen, A., Glas,
A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E., Friend,
S., and Bernards, R. (2002). A gene-expression signature as a predictor of survival in
breast cancer. New England Journal of Medicine, 347:1999–2009.

Watson, J., Baker, T., Bell, S., Gann, A., Levine, M., , and Losick, R. (2004). molecular
biology of the gene. Cold Spring Laboratory Harbor Press, Cold Spring Harbor, New
York, fifth edition.

Wei, J., Greer, B., Westermann, F., Steinberg, S., Son, C., Chen, Q., Whiteford, C.,
Bilke, S., Krasnoselsky, A., Cenacchi, N., Catchpoole, D., Berthold, F., Schwab, M.,
and Khan, J. (2005). Prediction of clinical outcome using gene expression profil-
ing and artificial neural networks for patients with neuroblastoma. Cancer Research,
65(1):6883–91.

Westfall, P. and Young, S. (1993). Resampling-Based Multiple Testing. Wiley, New York.

Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., Bushel,
P., Afshari, C., and Paules, R. S. (2001). Assessing gene significance from cDNA
microarray expression data via mixed models. J Comput Biol, 8(6):625–637.

Yang, Y., Buckley, M., and Speed, T. (2001). Analysis of cDNA microarray images.
Briefings in Bioinformatics, 2(4):341–9.

132



Yang, Y. H., Dudoit, S., Luu, P., Lin, D., Peng, V., Ngai, J., and Speed, T. (2002).
Normalization for cdna microarray data: a robust composite method addressing single
and multiple slide systematic variation. Nucleic Acids Research, 30(4):e15.

Yekutieli, D. and Benjamini, Y. (1999). Resampling-based false discovery rate controlling
multiple test procedures for correlated test statistics. J Statist Plann Inference, 82:171–
196.

Yvert, G., Brem, R., Whittle, J., Akey, J., Foss, E., Smith, E., Mackelprang, R., and
Kruglyak, L. (2003). Trans-acting regulatory variation in saccharomyces cerevisiae and
the role of transcription factors. Nat Genetics, 35(1):57–64.

Zeng, Z. (1993). Theoretical basis for separation of multiple linked gene effects in mapping
quantitative trait loci. Proceedings of the National Academy of Sciences of the U.S.A.,
90(23):10972–6.

Zhou, Q. and Liu, J. S. (2004). Modeling within-motif dependence for transcription
factor binding site predictions. Bioinformatics, 20(6):909–916.

133


