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Abstract 

The aim of expression Quantitative Trait Locus (eQTL) mapping is the 
identification of DNA sequence variants that explain variation in gene 
expression. Given the recent yield of trait-associated genetic variants 
identified by large-scale genome wide association analyses (GWAS), eQTL 
mapping has become a useful tool to understand the functional context where 
these variants operate and eventually narrow down functional gene targets for 
disease. Despite its extensive application to complex (polygenic) traits and 
disease, the majority of eQTL studies still rely on univariate data modeling 
strategies, i.e., testing for association of all transcript-marker pairs. However 
these “one at-a-time” strategies are (i) unable to control the number of false 
positives when an intricate Linkage Disequilibrium structure is present and (ii) 
are often underpowered to detect the full spectrum of trans-acting regulatory 
effects. Here we present our viewpoint on the most recent advances on eQTL 
mapping approaches, with a focus on Bayesian methodology. We review the 
advantages of the Bayesian approach over frequentist methods and provide a 
simple empirical example of polygenic eQTL mapping to illustrate the different 
properties of frequentist and Bayesian methods. Finally, we discuss how 
multivariate eQTL mapping approaches have distinctive features with respect 
to detection of polygenic effects, accuracy and interpretability of the results. 
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1. Introduction 

Genetics shape the landscape of phenotypic variation between humans 
through changes in the mechanisms regulating gene transcription and, 
consequently, gene expression. Detecting genetic drivers of gene expression 
can help understand the functional effects of DNA sequence variations at the 
cellular level. In particular, with the growing number of genetic variants 
associated with complex traits and diseases by Genome Wide Association 
Studies (GWAS), understanding how these variants act though changes to 
the transcriptome might help elucidating their cellular context and prioritize 
functional gene targets [1]. 

Expression Quantitative Trait Loci (eQTLs) are genetic loci that control 
variation in the expression level of a gene (or transcript) in a given tissue or 
cell-type. In the literature eQTLs are distinguished by their relative position to 
the gene they regulate, as cis- (or proximal) and trans-acting. This distinction 
is important, as it can be informative on the mechanisms underlying variation 
in gene expression. For example, cis-eQTLs can be located within the 
promoter or enhancer region of the gene, and thus indicate interactions with 
the gene’s own regulatory elements. Typically, cis-eQTLs are more easily 
detected and are of large genetic effect, whereas trans-eQTLs have relatively 
smaller effects and can reveal secondary regulatory mechanisms of gene 
expression. While it has been reported that a substantial fraction of observed 
trans-eQTL associations can be explained by cis-mediation [2], the 
identification of large clusters of trans-eQTLs can be informative of 
coordinated genetic regulation of gene expression and regulatory networks 
underlying complex traits [3–6]. 

The classical set-up of an eQTL mapping study involves quantifying the 
expression levels of selected genes or of the whole transcriptome using 
microarrays or RNA-sequencing analysis, and then treating each expression 
level as a quantitative trait to be mapped against a set of genetic markers. 
The goal is to estimate the number, effect size and kind (i.e., cis- or trans-
acting) of eQTLs in a given tissue or cell-type. eQTLs can be detected using 
linkage or association mapping, much the same as in GWAS for quantitative 
traits. Linkage mapping is typically used to detect genetic linkages in 
pedigrees of related individuals for highly penetrant phenotypes with a few 
major effect genes (or under monogenic control), while association is more 
powerful when working with traits determined by many small-effect variants 
(i.e., polygenic) and in populations of unrelated individuals. There is vast 
literature on linkage-based eQTL mapping in inbred populations, families as 
well as in experimental model systems; however, in this review we restrict our 
attention to association mapping, as it is more relevant to the interpretation of 
GWAS signals in common disease. 

Due to the complex genetic architecture of expression traits, statistical power 
is key when choosing an eQTL-mapping strategy. Contemporary eQTL 
studies are characterized by the “large 𝑝, small 𝑛 paradigm”, as the number of 
predictors (genetic markers) is orders of magnitude larger than the number of 
genotyped samples. Typically, the contribution of most predictors to the 
expression trait is negligible, so most experiments aim to discover the few 
SNPs with substantial effects and use separate analyses to detect cis- and 
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trans-effects. In this, cis-eQTLs are usually investigated by analyzing only the 
SNPs located nearby the gene, therefore reducing the need for multiple 
testing adjustments. However, frequentist models, which estimate individual 
SNP’s contribution to the gene expression, are less capable of identifying the 
full spectrum of (cis- and trans-acting) eQTLs in the genome, giving way to 
multivariate selection approaches. 

A wide range of genetic mapping programs, tailored for eQTL analysis, is 
currently available, using either frequentist or Bayesian inference [7–20]. 
These methods vary greatly in terms of statistical power to detect 
associations, interpretability of results and computational efficiency and the 
choice between different approaches is usually influenced by the trade-off 
between these three factors. Frequentist univariate models, for example, are 
fast and usually come with straightforward conversions to false-positive rates 
and false discovery rates (FDR), but have limited ability to detect small-effect 
trans-eQTLs and polygenic contributions to gene expression. Multivariate 
selection models (using penalization on the regression coefficients or sparsity 
prior on their number) are substantially more powerful than univariate 
approaches since they are able to decrease the uncertainty of the results by 
selecting (non-collinear) independent predictor variables avoiding at the same 
time over-fitting. However these advantages do come at a price: these 
methods are computationally more demanding and less efficient to deal with 
genome-wide eQTL-mapping experiments. 

Another problem of frequentist univariate models relates to their ability to 
distinguish a tissue-specific eQTL (i.e., a genetic marker linked to gene 
expression in a specific tissue or cell-type) from an eQTL that is conserved 
across tissues. In contrast, the simultaneous and multivariate eQTL mapping 
of expression levels across tissues has been shown to increase power to 
detect common trans-eQTLs [20–22] in comparison with a naïve intersection 
of eQTLs mapped separately within individual tissues. 

Here we review statistical methodologies that are most commonly used for the 
discovery of eQTLs. In this, after introducing eQTL mapping that use the 
frequentist approach, we focus on Bayesian approaches and appraise their 
advantages and distinctive features. For illustrative purposes, we report an 
example of eQTL mapping of simultaneous cis- and trans-effects (i.e., 
polygenic control of gene expression) as well as the extension to multiple 
tissues, to illustrate features specific to each eQTL mapping method. 

 

2. Frequentist eQTL mapping 

In classical statistics, the observed data are considered an instance of 
infinitely many possible independent samples, while the tested hypothesis ℎ, 
and any model parameters, are fixed and unknown. Hypothesis testing aims 
at deciding to accept or reject the null hypothesis with a high probability, 
which amounts to estimating the likelihood of observing the current instance 
of the data (or any function of it) under the null hypothesis. The p-value, a 
measure of the probability of observing under the same experimental 
conditions future samples equal or more extreme than the observed data, is 



 4 

used to decide on a hypothesis, based on whether it is smaller than an 
arbitrary significance level (typically <5% when a single hypothesis is tested). 

(a) Simple parametric models 

Early attempts of eQTL mapping were predominantly frequentist, and utilized 
mapping strategies that were used in ordinary linkage of GWAS analysis 
settings. Most these methods test the association of the expression level of 
each transcript to each marker independently, partitioning the samples in 
groups based on their genotype – e.g., in isogenic populations this is 
essentially differential expression analysis using the allele as grouping 
variable [23, 24] while in multi-allelic data an ANOVA test is performed with 
genotypes as grouping variable. Since both t-test and ANOVA can be seen as 
special cases of the linear regression model, several software packages 
implementing simple linear regression for eQTL mapping are available [7, 10, 
14, 15].  

Here we introduce the basic principles of the linear regression approach in 
eQTL mapping. Let’s assume an expression profiling experiment with 𝑛 
samples that are genotyped at p markers which are the predictor variables. 
Without loss of generality, here we also assume that 𝑛 > 𝑝. The expression of 
one transcript can be described as: 

𝑦 = 𝛼 + 𝑥1𝛽1 + ⋯ + 𝑥𝑝𝛽𝑝 + 𝜀, 𝜀~𝛮(0, 𝜎2), 

where 𝑦 is the 𝑛 × 1 vector of expression levels, 𝑥𝑗 = (𝑥1,𝑗, … , 𝑥𝑛,𝑗), 𝑗 = 1, … , 𝑝, 

is the 𝑛 × 1 predictor vector which corresponds to the sample genotypes at 

the 𝑗th marker and 𝜀 is the normally distributed error term, centered in zero 
with residual variance 𝜎2. The regression coefficients 𝛽 = (𝛽1, … , 𝛽𝑝)𝛵, which 

encode the contribution of each marker to the gene expression 𝑦, can be 
estimated by minimizing the sum of squared residuals using Ordinary Least 
Squares (OLS), i.e., by solving: 

�̂� = arg min
𝛽

{∑ (𝑦𝑖 − 𝛼 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

}. 

A hypothesis test can be set-up testing whether all 𝛽 regression coefficients 
are zero (null hypothesis) or at least one is not zero, in which case an eQTL 
association is detected 

𝐻0: 𝛽 = 0 

𝐻1: at least 𝛽𝑗 ≠ 0, 𝑗 = 1, ⋯ , 𝑝. 

Different statistics can be used to test this hypothesis, each employed by 
different methods in the frequentist eQTL literature: the t-statistic [24] if each 
𝛽𝑗  , 𝑗 = 1, … , 𝑝, is tested independently, the F-statistic [7, 15, 25] if all 𝛽 are 

tested simultaneously, the Pearson’s 𝑟 [7] or the, closely related, Likelihood 
Ratio test [10, 12]. These linear regression models are quite flexible and can 
be extended in several ways, for example by including sex, age, batch effects, 
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population structure, etc., or considering confounders as fixed effects 
(covariates), by combining additive, recessive and dominant effects of the 
genotypes or by adding a random effect that, for instance, can be used to 
account for family/pedigree structure [26]. Since in typical eQTL mapping 
experiments the number of markers is much larger than the number of 
observations, 𝑝 ≫ 𝑛, (also known as the “large 𝑝, small 𝑛” paradigm), linear 
regression models cannot be used straightforwardly with the whole set of 
markers. To overcome this problem, simple univariate strategies have been 
proposed where all possible transcript-markers pairs are tested for 
association. However, these procedures are sub-optimal since they are not 
able to control the number of false positive associations when an intricate 
Linkage Disequilibrium (LD) structure with correlated markers is present. 

(b) Non-parametric models 

When the assumptions of normality and/or linearity are not guaranteed, non-
parametric models, based on the Wilcoxon rank-sum test [23, 27, 28], a non-
parametric version of the t-test, or Spearman’s rank correlation [9] have been 
proposed and employed to map eQTLs, in particular in simple model 
organisms [23]. Sometimes non-parametric models are used in conjunction 
with linear models to help establish a significance threshold, especially in the 
presence of outliers. 

Both parametric and non-parametric frequentist approaches based on the 
“one at-a-time” strategy are widely adopted because of their computational 
performance – many employ efficient memory allocation techniques [11] or 
minimize the number of required operations [7, 29]. The appealing “simplicity” 
and widespread use of the p-value is another attractive feature of these 
approaches, as it allows for straightforward control of family-wise error rate 
(FWER) and FDR (e.g., using for instance the Benjamini-Hochberg method 
[30]) although both procedures assume the independence of the statistical 
tests that are rarely met in practice due to LD structure in the genetic markers. 

Despite its extensive use, the p-value as a measure of association is based 
only on the null distribution and it cannot control the power, which depends on 
the alternative hypothesis. The lack of power control provided by p-values is 
particularly undesirable in typical eQTL studies based on linear regression 
models since it is hard to detect associations with small effect sizes, such as 
those observed for trans-eQTLs. For instance, it has been shown that with 5M 
SNPs a sample size of at least 200 is required to detect common (i.e., minor 
allele frequency, MAF > 20%) trans-eQTLs and over 500 with rare (MAF < 
5%) variants [31]. Reaching this sample size requirement can be difficult in 
many eQTL-mapping experiments since relevant tissue for expression 
profiling is difficult to obtain, in particular in human eQTL analyses. 

 

(c) Penalized-regression models 

Penalized-regression methods such as ridge regression [14, 32], the LASSO 
[33–36], Elastic Net [37] and Group Lasso [38] have been proposed to 
address the limitations of classical regression-based eQTL mapping methods. 
This class of approaches tries to account for a sparse representation of the 
genetic markers that contribute to the expression of the gene when 𝑝 ≫ 𝑛 and 
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for the presence of blocks of LD between genetic markers. In penalized-
regression approaches the output consists of a sparse set of predictors 
(genetic markers) that are obtained by shrinking the majority of regression 
coefficients towards zero. Here, we focus on the LASSO [33–36], as it is one 
of the most widely used method in eQTL mapping, and it is a key component 
of a larger class of penalized-based approaches [39–46]. In LASSO, 
shrinkage is achieved by restricting the OLS solution such that the absolute 
sum of the regression coefficients (L1-norm) does not exceed a threshold 𝑡: 

∑|𝛽𝑗|

𝑝

𝑗=1

≤ 𝑡 

which is equivalent to solve 

�̂� = arg min
𝛽

{∑ (𝑦𝑖 − 𝛼 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

}. 

The parameter 𝜆  is called penalty, which is typically selected by cross-
validation, such that it minimizes the off-sample prediction mean square error. 
However imposing a L1-norm restriction on the effects, the non-zero 
regression coefficient estimates become biased. 

The eQTL mapping by penalized regression-based approaches typically leads 
to the identification of a few genetic markers as eQTLs, implicitly assuming 
that the majority of markers in the genome have negligible effects of gene 
expression. While this hypothesis is plausible from a biological viewpoint, the 
interpretation of the results can be sometimes difficult, as the non-zero 
regression coefficients are not informative about the genome-wide 
significance of the eQTL results, and their estimate cannot be used 
straightforwardly to control the FWER or FDR. 

To overcome this limitation, additional resampling-based approaches such as 
stability selection [47, 48] (which accounts for the number of times a genetic 
marker is selected by a LASSO-type algorithm during the resampling 
procedure) provides a selection frequency (posterior probability) for each 
predictor, that can be used to control the FWER, but not the FDR. Another 
limitation of this approach is that current strategies to calibrate the penalty 
parameter 𝜆 are not robust: in general there is no optimal strategy for the 
tuning of the parameter 𝜆, while standard calibration strategies may lead to 
inconsistent prediction with either too many false positives or false negatives 
[49]. This is particularly important in the presence of moderately correlated 
predictors, which is usually the case in eQTL mapping studies due to the 
underlying LD structure in the genome [44]. 

In the presence of a group of highly correlated variables, the LASSO tends to 
select one variable from a group and ignore the others. To overcome this 
limitation, Elastic Net [37] has been proposed. This method adds an extra 
penalty (L2-norm) which, when used alone, corresponds to the ridge 
regression: 
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�̂� = arg min
𝛽

{∑ (𝑦𝑖 − 𝛼 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆1 ∑|𝛽𝑗| + 𝜆2 ∑ (|𝛽𝑗|
2

)

1
2

𝑝

𝑗=1

𝑝

𝑗=1

}. 

However including groups of correlated predictors in the sparse solution (i.e., 
the set of eQTLs) can produce large variance in the final parameter estimates 
since the determinant operator required in the OLS solution is close to zero, 
which makes the linear algebra operator “ill-conditioned”, and therefore the 
matrix inversion cannot be performed with as much precision (i.e., large 
variances). However, adding an extra penalty regularizes the matrix inversion, 
reducing the variance of the non-zero effects. Although the resulting non-zero 
regression coefficient estimates are biased, the expected mean squared error 
is lower than OLS since the bias is largely compensated by a smaller 
variance. Despite the theoretical and intuitive arguments in favor of the Elastic 
Net, the choice of the penalty parameters 𝜆1  and 𝜆2  by cross-validation is 
computationally time consuming since the optimization should be done in a 
two-dimensional grid. Moreover the optimal solution for 𝜆1 and 𝜆2 can lie in a 
very small interval that is not covered by the user-defined grid of penalty 
parameters, with the risk of producing a sub-optimal solution. 

A concise list of the most commonly used frequentist eQTL mapping methods 
and their software implementation is reported in Table 1. 
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Table 1. Frequentist eQTL mapping approaches 

Strategy Method, [ref] and availability Statistic Additional features 
Multi-
tissue  

Genetic 
models 

One at-a-time 
test 

ANOVA F-statistic  - Yes Additive 

One at-a-time 
test 

Krux [13] 
https://github.com/tmichoel/krux  

Kruskal-Wallis - No Additive 

One at-a-time 
test 

Matrix-eQTL [7] 
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL  

Pearson’s 𝑟 

 Heteroskedastic error term 
(for correlated transcripts) 

 Slice computations in small 
matrices for computational 
efficiency 

No 
 Additive 

 Dominant 
 

One at-a-time 
test 

Genevar [9] 
https://www.sanger.ac.uk/resources/software/genevar/  

Spearman’s 𝜌  - No Additive 

One at-a-time 
regression 

R/QTL [10] 
http://www.rqtl.org  

t-test - No Additive 

Multiple 
regression 

snpMatrix [11] 
http://www.bioconductor.org/packages/2.3/bioc/html/snpMatrix.html  

Chi-squared 
 Generalized linear models 

 SNP conditioning search 
No Additive 

Multiple 
regression 

eMap [12] 
http://www.mybiosoftware.com/emap-1-2-eqtl-analysis.html  

Likelihood Ratio  
Inclusion of covariates via 
backward selection 

No 
 Additive 

 Dominant 

Multiple 
regression 

HEFT [14] 
http://mezeylab.cb.bscb.cornell.edu/Software.aspx  

t-test 
 Ridge regression 

 Detection of hidden 
covariates by factor analysis 

No Additive 

One at-a-time 
regression 

SNPTEST [15] 
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html  

F-statistic 
Frequentist and Bayesian 
analysis (see Table 2) 

Yes 

 Additive 

 Dominant 

 Recessive 

 Heterozygote 

Multiple 
regression 

Glmnet [50] 
https://cran.r-project.org/web/packages/glmnet/index.html  

- 
 LASSO 

 Elastic Net 
Yes Additive 

https://github.com/tmichoel/krux
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL
https://www.sanger.ac.uk/resources/software/genevar/
http://www.rqtl.org/
http://www.bioconductor.org/packages/2.3/bioc/html/snpMatrix.html
http://www.mybiosoftware.com/emap-1-2-eqtl-analysis.html
http://mezeylab.cb.bscb.cornell.edu/Software.aspx
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
https://cran.r-project.org/web/packages/glmnet/index.html
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3. Bayesian eQTL mapping 

Bayesian methods are becoming increasing popular in modern genetics [51], 
possibly as a consequence of recent more efficient algorithmic/computational 
implementations, cheaper high-performance computing solutions, and in 
general less computational constraints in their genome-wide applications. 
Unlike frequentist approaches, which try to infer the value of fixed models 
parameters from random data, in Bayesian inference the data are treated as a 
fixed quantity (since there is no randomness after observing the data) while 
the parameters are treated as random variables. This allows researchers to 
assign to parameters (and models) probabilities, making the inferential 
framework more intuitive and straightforward. Here we introduce a few 
general concepts that are at the core of the Bayesian paradigm. Denoting the 

parameters by 𝜃 and the observed data by 𝐷, the Bayes theorem allows to 
write: 

𝜋(𝜃|𝐷) =
ℓ(𝐷|𝜃)𝜋(𝜃)

ℓ(𝐷)
=

ℓ(𝐷|𝜃)𝜋(𝜃)

∫ ℓ(𝐷|𝜃)𝜋(𝜃)𝑑 𝜋
  , 

where 𝜋(𝜃|𝐷)  is the posterior distribution, ℓ(𝐷|𝜃)  is the likelihood 
(conditionally on some parameters’ value), 𝜋(𝜃) is the prior distribution on the 

parameters and ℓ(𝐷)  the marginal likelihood. In a nutshell, the equation 
above states that the Bayesian paradigm provides a distribution regarding 
what it has been learned about the parameter from the data. In contrast to the 
frequentist approach, where only a point estimate (Maximum Likelihood 
Estimation of MLE) and a standard error (SE) are obtained from the inferential 
process, in the Bayesian paradigm the whole distribution of the parameters is 
available. 

Similarly, the Bayesian model selection is obtained by assigning a distribution 
of probability over alternative competing models and, after observing the data, 
selecting the most promising model as the one with the largest posterior 
probability. The assignment of probabilities to model parameters is made 
using both the information captured by the data 𝐷 and prior knowledge (or 
beliefs) about the structure of the model, which is encoded by the prior 
probability 𝜋(𝑀) of a model 𝑀. Then, a typical Bayesian experiment updates 
the prior distribution 𝜋(𝑀)  to the posterior 𝜋(𝑀|𝐷)  by multiplying the 

likelihood ℓ(𝐷|𝑀) with the prior probability of the model 𝜋(𝑀), using the Bayes 
theorem: 

𝜋(𝑀|𝐷) =
ℓ(𝐷|𝑀)𝜋(𝑀)

𝜋(𝐷)
=

ℓ(𝐷|𝑀)𝜋(𝑀)

∑ ℓ(𝑖 𝐷|𝑀𝑖)𝜋(𝑀𝑖)
  , 

where ℓ(𝐷|𝑀) is the conditional probability of observing the data under the 
model and 𝜋(𝐷) is the probability of the data, which can be computed by 
summing over the conditionals of all possible models. 

An alternative way to evaluate which model is most supported by the data 𝐷, 

between two alternative models 𝑀1and 𝑀2, is to calculate the so-called Bayes 
Factor (BF) [52]: 
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𝐵𝐹(𝑀1, 𝑀2) =
ℓ(𝐷|𝑀1)

ℓ(𝐷|𝑀2)
=

𝜋(𝑀1|𝐷)
𝜋(𝑀1)

𝜋(𝑀2|𝐷)
𝜋(𝑀2)

=

𝜋(𝑀1|𝐷)
𝜋(𝑀2|𝐷)

𝜋(𝑀1)
𝜋(𝑀2)

 

which is the ratio between posterior odds 𝜋(𝑀1|𝐷)/𝜋(𝑀2|𝐷) and prior odds 
𝜋(𝑀1)/𝜋(𝑀2) . The BF can also be interpreted as a Likelihood Ratio test 
between two competing models 𝑀1 and 𝑀2  when all the uncertainty about 
nuisance parameters 𝜂 (i.e., parameters that are of no direct interest but are 
specified in the model) have been marginalised (integrated) out 

ℓ(𝐷|𝑀1)

ℓ(𝐷|𝑀2)
=

∫ ℓ(𝐷|𝑀1, 𝜂)𝜋(𝜂)𝑑𝜂

∫ ℓ(𝐷|𝑀2, 𝜂)𝜋(𝜂)𝑑𝜂
 

without conditioning as in frequentist approaches. 

In Bayesian eQTL mapping the observed data typically include a 𝑛 × 1 vector 
of outcomes 𝑦 (i.e., gene expression levels) and a 𝑛 × 𝑝 matrix of predictor 

variables 𝑋 (i.e., genetic markers). The set of model parameters, their prior 
distribution and hence the joint posterior distribution may vary between 
approaches [53]. The Bayesian models presented here attempt to infer the 
posterior distribution of the vector of regression coefficients 𝛽 = (𝛽1, … , 𝛽𝑝)𝛵, 

which encodes the effect of markers to the gene expression level, i.e., the 
eQTLs. 

(a) Univariate regression models 

One class of Bayesian eQTL approaches associates the outcome with one 
marker “at-a-time”, by computing the BF for each SNP (instead of the 
frequentist p-value) [15, 19, 20, 54]. This approach is computationally efficient 

since only two alternative models 𝑀1 and 𝑀2 are compared each time, i.e., 𝑀1 
and 𝑀2, encoding for the inclusion/exclusion of the marker, respectively. In 
this framework the BF is further simplified 

𝐵𝐹(𝑀1, 𝑀2) =
𝜋(𝑀1|𝐷)

1 − 𝜋(𝑀1|𝐷)

1 − 𝜋(𝑀1)

𝜋(𝑀1)
  , 

where 𝜋(𝑀1) and 𝜋(𝑀1|𝐷) are the prior and posterior probability, respectively, 
that the marker is an eQTL. Markers whose BF exceeds a certain threshold 
are therefore defined as eQTL (the general criteria for setting the optimal BF 
threshold based on number of predictors can be found in [15, 55]). Beyond 
setting the BF threshold, it has been shown that using the BF is superior to 
conventional p-value since the Bayesian-inferred associations can benefit 
from the elicitation of “biologically primed” informative priors [56, 57], which in 
some cases can improve power [58]. 

SNPTEST [59] performs a single-marker eQTL association analysis, i.e., 
implementing a “one at-a-time” strategy, which incorporates both frequentist 
and Bayesian association tests. In its Bayesian form, SNPTEST fits a linear 
regression model that computes the posterior odds of including marker 𝑗 in 
the linear regression model 𝑦 = 𝛼 + 𝛽𝑥𝑗 + 𝜀 . The error term is normally 
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distributed 𝜀~𝛮(0, 𝜎2) , while the model parameters 𝛽, 𝜎2  are given a 
conjugate Normal-Inverse-Gamma prior set-up. This regression approach can 
be extended to map eQTL under dominant or recessive inheritance models: 
the prior distributions remain the same, but the genotype vector is modified 
and recoded to reflect dominant or recessive inheritance model. A normal 
prior is used on 𝛽  with larger variance, reflecting the assumption that 
dominant or recessive alleles contribute differently to the phenotypic (i.e., 
gene expression) variance. 

(b) Bayesian Variable Selection methods 

Initially, most “one at-a-time” Bayesian strategies were applied to GWAS of 
clinical traits or disease, in which the phenotype (disease trait) was analyzed 
against a genome-wide panel of genetic predictors (SNPs). When applied to 
these data and especially to data problem that is typical of eQTL mapping 
(i.e., large number of both expression phenotypes and genetic markers), 
these methods display similar problems as the simple frequentist models 
described in Section 2; namely, an inflated number of false positive 
associations and loss of power due to setting arbitrary study-wide significance 
thresholds [60]. 

Similarly to penalized-regression models, Bayesian Variable Selection (BVS) 
methods have been developed for eQTL mapping to analyze jointly the whole 
set of markers. However, differently from penalized-regression, BVS is able to 
perform model choice (select the markers that are likely to influence the 
expression of the gene) and provide parameters estimate (the regression 
coefficients of the active markers) at the same time [16–18, 61–65]. With both 
these quantities available, genome-wide significance can be obtained by 
controlling the FDR level [66]. Here, we describe the major components of 
BVS and introduce a few computational implementations of this class of 
approaches. 

BVS - Prior set-up: similar to penalized-regression methods, BVS models try 
to choose few important markers with large effects. Unlike LASSO-type 
regressions, in BVS sparsity is not only controlled by the prior distribution on 
the regression coefficients (i.e., the Lp-norm penalty in the frequentist 
approach), but by specifying an a priori number of eQTLs encoded in a latent 

binary vector 𝛾 = (𝛾1, … , 𝛾𝑝)𝑇, where 𝛾𝑗 = 1 if 𝛽𝑗 ≠ 0 and 𝛾𝑗 = 0 if 𝛽𝑗 = 0. In a 

nutshell, BVS can control both the level of shrinkage and the number of non-
zero eQTL effects that can be detected. These two tasks are tightly connected 
in BVS given the prior specification of the regression coefficients [67]: 

𝛽|𝛾, 𝜎2~𝑁 (0, 𝑔𝜎2(𝑋𝛾
𝑇𝑋𝛾)

𝜆
). 

The equation above states that for the selected markers, i.e., for markers with 
𝛾𝑗 = 1 since 𝛽𝑗 ≠ 0, the prior distribution on vector of regression coefficients is 

normal distributed and centered in zero. The covariance matrix can be the unit 
diagonal matrix, giving rise to the so-called independent prior, if 𝜆 = 0 or the 
inverse of the covariance matrix which characterize the so-called g-prior if 𝜆 =
−1 , multiplied by a constant 𝑔  and the residual variance 𝜎2 . Under this 
specification the linear regression model becomes  𝑦 = 𝛼 + 𝛸𝛾𝛽𝛾 + 𝜀 , 
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𝜀~𝛮(0, 𝜎2), where 𝛾, the vector of binary values indicating which markers are 
selected and therefore their number, receives a Binomial prior distribution 

𝜋(𝛾) = 𝐵𝑖𝑛(𝑝, 𝜃) 

where 𝜃  can be a fixed parameter or a further level of hierarchy can be 

specified [1]. The prior distribution for the model parameters 𝛽, 𝜎2  usually 
follows a Normal-Inverse-Gamma set-up [16, 17, 21] with a different 
specification for the power-prior 𝜆 . The choice of 𝜆 = −1  is particularly 
appealing in eQTL studies since an a priori g-prior “discourages” highly 
collinear predictors to enter the models simultaneously by inducing a negative 
correlation between the coefficients, therefore controlling LD structure 
automatically. On the opposite side with 𝜆 = 0, the regression coefficients are 
a priori mutually independent [59] although, given the influence of the 
likelihood, this does not hold a posteriori. It turns out that a priori independent 
prior is less capable in handling intricate correlations between markers, but its 
use is encouraged because it induces, like the ridge estimator, an absolute 
shrinkage to the regression coefficients, i.e., it shrinks greatly in directions of 
small eigenvalues, whereas the g-prior proportional shrinkage retains much 
more of the OLS estimator in ill-conditioned directions [68]. 

The specification of the prior distribution for the model parameters 𝛽, 𝜎2 is an 
active area of research in Bayesian statistics, since different prior set-ups 
imply different levels of shrinkage. Sparsity-inducing prior set-ups include the 
Laplace prior [69], the spike-and-slab priors [62, 63], the horseshoe shrinkage 
prior [70] and local adaptation priors [17, 64] – analyzing the different features 
of these set-ups in detail goes beyond the scope of this review. However, 
here we mention that in the piMASS eQTL mapping method [17] a novel prior 
set-up is used on the expected genetic effect sizes linking them with the 
model size. In particular, the effect size prior demonstrates the biologically 
primed idea that if the model size is small, then the few associated markers 
will have large effect sizes – the opposite is expected when then model size is 
large. This exemplifies how the Bayesian setting can effectively leverage 
“biologically informed” priors to improve ad refine eQTL detection. 

BVS - Model selection and posterior computation: in typical genomics and 
eQTL mapping experiments the number of predictor variables is too large to 
enumerate all possible combinations of latent binary vector 𝛾 . Therefore 
search algorithms are used to explore the model space. Most methods use 
Markov Chain Monte Carlo (MCMC) [17, 18, 62–64], a sampling technique in 
which the posterior distribution 𝜋(𝛾|𝐷)  is simulated using Markov Chain 
algorithms. The idea behind is that not all the 2𝑝  possible models (i.e., 
combination of markers) need to be simulated, since the majority of them are 
unable to explain the data with 𝜋(𝛾|𝐷) ≈ 0. On the contrary, it is more efficient 
to concentrate the markers’ space exploration on important models with large 
𝜋(𝛾|𝐷). In a post-processing analysis, 𝜋(𝛾|𝐷) can be used to rank the visited 
models and decide which one to report. The output provided by MCMC 
algorithm is very rich since the sampled distribution of 𝜋(𝛾|𝐷) is available 
(apart from non-interesting models with 𝜋(𝛾|𝐷) ≈ 0). However, this comes at 
a price since MCMC algorithms are computational intensive and, as for 
frequentist penalized-regression methods, rather time consuming. If the goal 
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of the analysis is to report only the top visited model, alternative faster 
sampling algorithms based on the expectation maximization (EM) algorithm 
[71] have been recently proposed [72]. 

There is a very large literature on the MCMC sampling schemes that can be 
used to sample realizations of 𝜋(𝛾|𝐷). The simplest MCMC algorithm that can 
be implemented is the Gibbs sampling [73], which is particular suitable when 
spike-and-slab priors are specified for the regression coefficients [18, 62, 63]. 
Since spike-and-slab priors can be seen as two-point mixture distribution, 
once conditioning on value of jth binary latent variable 𝛾𝑗 , the posterior 

distribution of the jth “spike” or the “slab” is ready available and it is relatively 
simple to simulate from. The drawback of this approach is that it tends to mix 
slowly when there are correlated predictors (e.g., in the presence of LD 
between the markers), since the posterior distribution of regression coefficient 
for the jth predictor depends on the neighbour predictors and if a marker has 
been selected, 𝛾𝑗 = 1, markers in strong LD with it will be selected as well. It 

turns out that the algorithm may be stuck in a particular configuration of 𝛾 for 
many iterations of the MCMC algorithm (slow mixing) without being able to 
detect the optimal combination of predictive markers. To overcome this 
problem, MCMC algorithms that explore more efficiently the model space 
have been proposed. For instance, using a “shotgun” stochastic search [74] 
one can explore the entire neighbour of the current model and randomly pick 
up with a non-uniform probability a model from that list. For instance in 
piMASS [17], once a model has been selected, the next active marker that 
can be included in the model is the one that shows the (residual) highest 
absolute correlation with the phenotype so that correlated predictors are less 
likely to be included in the model. The Evolutionary Stochastic Search method 
[16, 61, 75, 76], which we will discuss in detail below, has been designed for a 
more efficient and far-reaching exploration of the model space. It runs several 
parallel MCMC samplers that swap information about the different 
configurations of markers selected in each chain and therefore avoiding the 
slow mixing phenomenon described above. 

BVS - Posterior summary and interpretation: a large number of MCMC 
iterations are generally required in order to match the frequency a particular 
model has been sampled, �̂�(𝛾|𝐷), with the theoretical posterior probability of 
that model, 𝜋(𝛾|𝐷) . In that case the algorithm is said to have reached 
convergence. From a practical point of view, assessing convergence of 
MCMC is not easy and many diagnostic measures can be applied to detect 
any anomalous behavior of the algorithm. Moreover the initial draws of the 
algorithm (burn-in phase) are usually discarded because it may be possible 
that the models are sampled with the wrong frequency compared with the 
correct theoretical probability with some models over-represented or vice 
versa during the initial phase. All the models visited by the search algorithm 
after the burn-in are kept and summarized into a marginal posterior probability 

of inclusion (MPPI) �̂�(𝛾𝑗 = 1|𝐷, 𝛾\𝑗) , which indicates the frequency the jth 

marker has been selected in the models visited by the search algorithm. 
Despite its straightforward interpretation (MPPI = the probability that the 
marker j explains the variation of the gene expression given all other 
markers), the use of MPPI alone in variable selection by setting a threshold is 
not recommended apart for prediction [77], as there is no direct interpretation 
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of it with respect to effect size or for controlling the FDR. However the 
classification of the MPPI into two groups will allow the assessment of their 
genome-wide significance. Specifically, one can employ the EM algorithm to 
fit a mixture of two beta distributions and then use the classification 
probabilities to derive the FDR, as described in [78]. Alternatively, versatile R 
packages that can estimate local (tail-area) FDR from the posterior 
distribution [79], are also available [80]. 

piMASS [17] is a BVS algorithm for eQTL mapping with a new regression 
coefficients’ prior variance that allows either models with a large number of 
predictors with a small proportion of variance explained (PVE) or a small 
number of predictors with a large PVE. This prior set-up is in tune with what is 
expected in typical eQTL mapping experiments, where few cis-eQTLs are 
present with large effects and large PVE, whereas many trans-eQTLs have 
relatively smaller effects and smaller PVE. Its implementation is based on a 
single MCMC chain with a sampling strategy that explores models made by 
faraway and/or uncorrelated genetic markers. 

Another BVS algorithm is Evolutionary Stochastic Search (ESS) [16, 21, 61, 
76] in which the level of sparsity can be controlled directly by the user 
specifying the a priori expected number of predictors to be included in the 
model and its variance. Moreover given the prior structure on the regression 
coefficients that can be thought as a mixture of g-priors and an Inverse-
Gamma prior [81], the level of proportional shrinkage automatically adapts to 
different real data scenarios. ESS uses an advanced stochastic search 
algorithm in which multiple models are explored by parallel MCMC samplers. 
Specifically, at each iteration, each chain locally selects a different model 
using local moves based on the Gibbs sampler [73] or a fast version of the 
Metropolis-Hasting algorithm [82]. Global moves, which allow the exchange of 
information between parallel chains about the models selected, are also 
implemented, using a MCMC version of genetic algorithms [83]. The 
combination of local and global moves allows the efficient exploration of the 
model space and prevents the algorithm from getting stuck to a sub-optimal 
model made by highly correlated predictors (i.e., genetic markers in high LD).  

A concise list of the most commonly used Bayesian eQTL mapping methods 
and their software implementation is reported in Table 2. 
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Table 2. Bayesian eQTL mapping approaches 

Strategy Method [ref] and availability Statistic Additional features 
Multi-
tissue 

Genetic 
models 

Univariate 

SNPTEST [15] 
https://mathgen.stats.ox.ac.uk/  

BF 

 Bayesian and frequentist  
and analysis (see Table 1) 

 Covariates can be included  
in the model 

 Imputation of missing 
genotypes 

Yes 

 Additive 

 Dominant 

 Recessive 

 Heterozygote 

 General  

Sherlock [19] 
http://sherlock.ucsf.edu/  

BF 
 Integration of known GWAS 

hits 
No Additive 

eQTLBMA [20] 
https://github.com/timflutre/eqtlbma  

BF 
Multiple tissues, while 
allowing different eQTLs per 
tissue 

Yes Additive 

BVS 

ESS [16, 21, 61, 76] 
www.bgx.org.uk/software/guess.html 
(command-line implementation) 
https://cran.r-project.org/package=R2GUESS  
(R implementation) 

 MPPI 

 Best 
models 
visited 

 Covariates can be included in 
the model 

 FDR control 

 Extension for eQTLs hotspots 
[75] 

 Extension for eQTLs hotspots 
in multiple tissues [84] 

Yes Additive 

piMASS [17] 
http://www.haplotype.org/pimass.html  

MPPI  Linear and logistic regression No Additive 

iBMQ [18] 
https://www.bioconductor.org/packages/release/bioc/html/iBMQ.html  

MPPI 
 FDR control 

 Extension for eQTLs 
hotspots 

No Additive 

https://mathgen.stats.ox.ac.uk/
http://sherlock.ucsf.edu/
https://github.com/timflutre/eqtlbma
http://www.bgx.org.uk/software/guess.html
https://cran.r-project.org/package=R2GUESS
http://www.haplotype.org/pimass.html
https://www.bioconductor.org/packages/release/bioc/html/iBMQ.html
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4. Multi-tissue extensions 

Transcriptomic studies can assess gene expression levels in multiple tissues 
or cell-types in order to understand the mechanism of gene regulation at the 
systems-level, including mapping of eQTLs in multiple systems [85]. While 
expression of certain genes and pathways can be conserved across different 
tissues, intersecting results from several single-tissue eQTL analyses (for 
instance by imposing the same FDR threshold in each eQTL study) may be 
too conservative and can lead to inflated false negative rate [84]. In contrast, 
utilizing a cross-tissue analysis of eQTLs by jointly mapping gene expression 
profiles from multiple tissues, has been shown to increase power to detect 
small effect eQTLs (specifically, trans-eQTLs) [20–22]. 

Several eQTL mapping approaches, including some discussed above, have 
been extended to allow eQTL mapping of tissue-consistent QTLs (i.e., eQTLs 
that are detected across multiple tissues), by allowing BVS models to analyze 
multivariate outcomes. Thus, assuming an experiment with 𝑛  samples, 𝑝 
predictors and 𝑞 outcomes (tissues or cell-types), the multiple outcome linear 
regression model can be written as: 

𝑌 = 𝐴 + 𝑥1𝐵1 + ⋯ + 𝑥𝑝𝐵𝑝 + 𝐸, 𝐸~𝑀𝑁(0, 𝐼𝑛, 𝛴), 

where 𝑌 is a 𝑛 × 𝑞 matrix of outcomes, 𝐴 is a 𝑛 × 𝑞 matrix of intercepts, 𝑥𝑗 is 

the jth predictor encoded in a 𝑛 × 1 vector and 𝐵𝑗 = (𝛽𝑗,1, … , 𝛽𝑗,𝑞) is the vector 

of regression coefficients that links the jth predictor with the multiple outcomes 

𝑌. Finally, 𝐸 is the 𝑛 × 𝑞 matrix of errors that is distributed as a matrix-variate 

normal distribution centered in zeros, with the matrix 𝛴  that controls the 
residual correlation between the 𝑞 outcomes.  

The above equation can be seen as the multiple-outcome extension of the 
linear model and both SNPTEST [15] and ESS [21, 76] come with this 
multivariate outcome extensions. Both algorithms use a similar prior set-up, 

modeling the matrix of regression coefficients 𝐵 = (𝐵1, … , 𝐵𝑝)
𝑇
 by a matrix-

variate normal prior |𝛴~𝛭𝛮 (𝑔(𝑋𝛾
𝑇𝑋𝛾)

𝜆
, 𝛴), where (𝑋𝛾

𝑇𝑋𝛾)
𝜆
 is the correlation 

matrix between the selected markers with 𝜆 = 0 in SNPTEST and 𝜆 = −1 in 
ESS and 𝛴 is the 𝑞 × 𝑞 matrix modelling the correlation between outcomes 
(i.e., gene expression levels in different tissues). The model is further 
specified by placing an Inverse-Wishart prior on 𝛴 , 𝛴~𝐼𝑊(𝑐, 𝑄) , where 𝑐 

indicates the degrees of freedom and 𝑄  is proportional to the expected 
residual variance. eQTLBMA [20] is another eQTL mapping method that is 
designed to handle multi-tissue eQTLs, again using a matrix-variate normal 
prior set-up – but it also uses a hierarchical model which permits  
heterogeneity between tissues, to allow the estimate of genetic effects both 
between- and within-tissues. 

Frequentist approaches for multiple-tissue eQTL analysis have also been 
implemented: for example the multivariate version of the ANOVA model 
(MANOVA) or the Wilks’ test statistic [86], a generalization of the F-statistic for 
multivariate random variables [87]. Multiple-outcome penalized-regression 
approaches have also been proposed [43, 88], while the R package glmnet 
[50] includes options that fit multiple-outcome Gaussian models. However, 
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controlling for FWER and FDR is more challenging than in the case of 
univariate penalized linear regression, and extensions of stability selection 
[47] for the multivariate problem are still in the stage of development. As a 
result, interpretation of the multi-tissue eQTL results from multivariate 
penalized-regression has to be based on the value of regression coefficients, 
and so thresholding can be a challenge. 

 

5. Empirical comparison of frequentist and Bayesian eQTL mapping  

In this section we present an illustrative example of previously reported eQTL 
mapping for the Hopx gene, which in the rat has been shown to be under 
control by two loci on chromosome 14 (cis-eQTL) and chromosome 2 (trans-
eQTL), respectively; where both cis- and trans-eQTLs have been 
experimentally validated [21]. Rather than providing a comprehensive 
comparison of eQTL mapping methods (systematic simulation studies that 
compare methods in a variety of scenarios can be found in [76]), our purpose 
here is to use this empirical eQTL mapping example to facilitate discussion on 
the comparison between frequentist and Bayesian eQTL mapping 
approaches. In this eQTL mapping exercise, we have used microarray gene 
expression data for the Hopx gene in two tissues (heart and fat) from 29 
recombinant inbred (RI) rat strains (generated by sibling-mating the offspring 
of a genetic cross until the progenies are inbred), genotyped at 1,307 SNPs. 
Since rats within an RI strain have complete homozygosity at each locus in 
the genome, each genetic marker allows splitting the rat population in two 
groups. We considered (i) a single-tissue example using gene expression 
data from the heart only and (ii) a multi-tissue example using gene expression 
data from both tissues. 

(i) Single-tissue example 

We mapped genome-wide eQTLs for the heart gene expression data using 
three frequentist (Matrix-eQTL [7], Kruskal-Wallis test [8] and LASSO from the 
R package glmnet [50]) and three Bayesian methods (SNPTEST [15], ESS 
[16, 61], piMASS [17]) - see Tables 1-2 for reference. The parameters and 
eQTL analysis details are provided in the table below and the eQTL results 
from all methods are reported in Figure 1. 

 

Method Genome-wide eQTL analysis details 

Matrix-eQTL We used the linear additive model as the genotypes are binary. p-values were 

adjusted using the Benjamini-Yekutieli FDR method [89]. We selected eQTL 
associations at 1% FDR. 

Kruskal-Wallis 
test 

The test is the non-parametric equivalent of a one-way ANOVA.                         
We used the kruskal.test function in R to extract p-values, and selected eQTLs 
at 1% FDR employing Benjamini-Yekutieli method. 

Glmnet-
LASSO 

We performed 9-fold cross-validation using the function cv.glmnet, setting 
alpha = 1 and family = “gaussian”. After obtaining estimates on the regression 
coefficients, these were transformed in posterior probabilities by using stability 
selection method, implemented in the R package stabs [90]. We declared 
significance with a threshold of 0.2 on the posterior probabilities. 



 18 

SNPTEST We ran the Bayesian version of SNPTEST-v.2.5.2 with 𝛽~𝛮(0,0.02𝜎2),
𝜎2~𝐼𝐺(3,2) as priors (-prior_qt_mean_b 0 -prior_qt_V_b 0.02 -prior_qt_a 3 -
prior_qt_b 2). We called eQTLs at log10 𝐵𝐹 ≥ 0.25. 

piMASS We ran piMASS-v.0.90 setting the prior probability that a SNP is truly 
associated with the phenotype to range between 1 and 56 (-pmin 1 –pmax 56) 
and the model size to range from 1 to 100 (-smin 1 –smax 100). We did not 
impose constraints on the hyperparameter ℎ and to the minor allele frequency 

(-exclude_maf 0). The burn-in phase was set to 106 iterations, followed by 107 
sampling iterations, while only one every 10 models considered by the 
sampling steps was recorded (-w 1,000,000 –s 10,000,000 –num 10). We 
computed the FDR on the marginal posterior probabilities of inclusion (MPPI) 
by fitting a mixture of beta distributions, as described in [91]. 

ESS We ran GUESS-v.1.1, setting the a priori expected model size to 𝐸 = 5, 𝑆 = 3 

(-Egam 5 –Sgam 3) and ran 25,000 steps of which the first 5,000 as burn-in (-
nsweep 25,000 –burn_in 5,000). We computed FDR on the MPPI provided by 
ESS in the same way as described above for piMASS algorithm. 

All six approaches detected a clear cis-QTL signal on rat chromosome 14 
(close to the location of Hopx gene), although for the ANOVA and SNPTEST 
the level of significance reached at the cis-eQTL is only a little higher than the 
rest of the genome. In this example, Glmnet-LASSO and ESS are the only 
methods that unambiguously detect a trans-eQTL signal on chromosome 2. 
However, Glmnet-LASSO is also picking an additional eQTL signal on 
chromosome 3. Therefore, in this example, the classic method that 
implements penalization (Glmnet-LASSO) and one of the Bayesian 
approaches that uses sparsity (ESS), show good performance in detecting 
both the cis- and trans-eQTL signals (however, Glmnet-LASSO is also picking 
an comparable eQTL signal on chromosome 3). The most striking observation 
that we can derive from this empirical analysis is that widely used frequentist 
methods (e.g., Matrix-eQTL) which employ a “one at-a-time” strategy were not 
able to detect the trans-eQTL signal on rat chromosome 2 (with both the cis- 
and trans-eQTL signals experimentally validated, as previously reported in 
[21]), therefore highlighting an important limitation of this approach. 

(ii) Multiple-tissue example 

For the second illustrative example, we ran multivariate ANOVA, Glmnet-
LASSO and ESS to jointly map eQTLs for Hopx gene expression levels 
across heart and fat tissues from the 29 rat RI strains used for single-tissue 
eQTL analysis. The parameters and eQTL analysis details are provided in the 
table below and the eQTL results in heart and fat tissues from all methods are 
reported in Figure 2. 

Method Genome-wide eQTL analysis details 

MANOVA We ran a Wilks’ test using the R function wilks.test setting method = “rank”, 
and selected associations at 1% FDR employing Benjamini-Yekutieli method. 

Glmnet-
LASSO 

We set parameters to cv.glmnet in the same way as in the single-tissue 
analysis, but specified family = “mgaussian” to perform multivariate analysis. 

ESS The prior set-up was the same as in single-tissue analysis described in the 
table above, but we instead ran 110,000 sampling steps, of which 10,000 were 
burn-in. No further specification for multi-outcome analysis is required by ESS 
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that automatically recognises the multivariate nature of the matrix 𝑌. 

Similarly to the results of eQTL analysis in the single tissue, all three methods 
unambiguously identified a strong cis-effect on rat chromosome 14, which 
therefore suggests the presence of a common cis-eQTL in heart and fat 
tissues. However, only the Glmnet-LASSO and ESS methods were able to 
identify an additional trans-eQTL on rat chromosome 2, suggestive of 
common trans-regulation between the two tissues (as previously shown for 
other trans-eQTL signals conserved across multiple tissues in this genetic 
system [91]). Glmnet-LASSO identifies the two eQTLs without identifying 
false-positives, although the signal from the trans-effect is much weaker than 
that of the cis-effect. One important issue with Glmnet-LASSO is in the output 
provided by the algorithm: although the regression coefficients of the selected 
markers for the two tissues are clearly reported there is not a simple way to 
combine them and to transform the tissue-specific effects into a posterior 
probability, for instance, by the stability selection procedure. In the same 
eQTL example ESS picks up with a very low MPPI an additional signal from 
chromosome 10, which is likely to be a false positive. A noteworthy 
observation that can be derived from the results of the ESS analysis is that 
the MPPI of the trans-effect is almost doubled in multiple-tissues compared to 
the single tissue analysis, highlighting the advantage of combining information 
from multiple sources (in this case tissues). From a biological viewpoint, when 
compared the MPP of the same trans-eQTL detected in the single-tissue 
analysis (Figure 1), the signal in the multi-tissue maybe reflects a potential 
pleiotropic nature of this eQTL.  

 

6. Discussion and outlook 

We discussed the challenges in eQTL mapping and reviewed several 
commonly used approaches, including their advantages and advantages. In 
particular, we emphasized the useful features provided by the Bayesian 
methods. Using a simple yet informative example of polygenic regulation of 
gene expression in the rat, we illustrated the major differences between 
frequentist and Bayesian eQTL mapping approaches. In this, we first focused 
on single-tissue eQTL mapping (Figure 1), where both cis- and trans-signals 
have been previously experimentally validated [21]. We used this 
demonstrative example to show that frequentist approaches based on a 
computational efficient strategy that tests for association all transcript-marker 
pairs (“one at-a-time”) were not suitable to detected polygenic control of gene 
expression. In contrast, methods based on multivariate models, either 
frequentist (LASSO) or Bayesian (ESS), were able to detect both eQTLs, 
although ESS performed marginally better as it eliminated possible false 
positive associations identified by the LASSO-based approach. We then 
extended this example to include gene expression data from two tissues for 
the same gene: the eQTL results were very similar to what observed in the 
two single tissue cases, with the Bayesian variable selection method detecting 
unambiguously both cis- and trans-eQTLs (Figure 2). This example also 
highlighted the benefits of using multiple tissues for simultaneous eQTL 
mapping since, by joint modelling the dependence between tissues, it further 
increased the power to detect (small-effect) trans-eQTLs compared to the 
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single-tissue experiment [20–22]. 

For Bayesian approaches, the ability to handle the whole set of predictors 
(genome-wide genetic markers) and model their correlation (i.e., accounting 
for LD structure) as well as providing the whole posterior distribution of the 
parameters come at a price. The more traditional (frequentist) eQTL 
approaches (such as Matrix-eQTL [7]) have the attractive feature of 
computational efficiency compared to the more demanding BVS methods. 
This might account for the common application of frequentist eQTL mapping 
methods in biomedical research. However, as highlighted in our illustrative 
examples, the high computational efficiency of frequentist approaches might 
come at the expenses of missing polygenic control of gene expression. This 
can have important implications when both cis- and trans-eQTLs are 
investigated at the genome-wide level, usually resulting in a smaller fraction of 
“replicable” trans-eQTLs as compared with cis-eQTLs, and advocating the 
use of larger populations to boost detection of small trans-effects [92].  

However, recent advancements in high-performance computing have 
rendered the application of MCMC methods feasible even for hundreds of 
thousands of predictors in hundreds (if not thousands) of individuals [76] – 
which now justifies the increasing popularity of the Bayesian eQTL mapping 
methods. In contrast, although recent advances in the computational aspects 
of the LASSO solution [93], frequentist penalized-regression methods still 
need time-consuming cross-validation procedure to estimate the penalty 
parameter 𝜆. In the case of Elastic Net a two-dimensional grid is required in 
order to select the optimal 𝜆1, 𝜆2 penalties. Selecting the optimal parameters 
however, necessitates a very fine-grained grid of penalties to be analyzed, 
which is even more computationally expensive.  

Regarding interpretation of the eQTL results, in BVS approaches all the 
models visited by the search algorithm (after the burn-in) are kept and 
summarized into a marginal posterior probability of inclusion (MPPI). 
Penalized-regression models usually output estimates of regression 
coefficient values, which can vary largely between experiments and therefore 
are less safe for declaring eQTL associations consistently across studies. 
Moreover, estimation of the FDR from the regression coefficients is not 
possible, so one is limited to controlling family-wise error rates, a more 
conservative approach that can lead to false negatives. In contrast, several 
techniques that control the FDR from the MPPI are now available, making the 
genome-wide control of the significance level less of a problem for Bayesian 
eQTL methods. In addition, although not directly investigated in our illustrative 
examples, the Bayesian prior set-up offers more flexibility to consider (and 
explore) different eQTL models, for example by specifying the number of 
expected eQTLs and their effect size or by using genomic locations of the 
transcripts to improve the accuracy of the posterior distribution for the location 
of the eQTL [94]. 

In summary, we advocate that Bayesian approaches are in general more 
flexible to analyze complex genetic regulation of expression than frequentist 
methods. In particular, Bayesian eQTL mapping strategies can adapt naturally 
to a wider range of applications, such as (i) detection of polygenic effects on 
gene expression [21], (ii) epistatic eQTL interactions [63], (iii) eQTLs hotspots 
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[75] and (iv) eQTLs and eQTLs hotspots across multiple-tissues [21, 75, 84]. 
We also argue that using Bayes Factors might provide a more objective way 
to call statistically significant eQTLs [55, 95] and compare them across 
studies. Conversely, using computationally inexpensive p-values generated 
by frequentist approaches to call significant eQTLs requires a threshold for 
genome-wide significance that can varies largely with sample size as well as 
with other study-specific factors. While this issue is well known and yet often 
ignored, it is likely to be highly relevant to the development of reference eQTL 
databases and resources. Since eQTL analyses have been proved useful in 
the identification of molecular pathways affecting disease susceptibility, e.g., 
[6, 91, 96, 97], it is generally advisable to use truly multivariate eQTL mapping 
strategies that can provide more flexibility in modeling complex data 
structures and can have enhanced interpretability of the results. In this 
respect, Bayesian mapping approaches now provide a valid alternative to 
traditional “one at-a-time” frequentist methods and a richer and easy to 
interpret output than penalized-regression methods. 

  



 22 

Figure legends 

 

Figure 1. For each SNP genotyped in the rat genome (x-axis), for each 
method we report the evidence in support of genetic regulation of Hopx gene 
expression in the heart tissue (y-axis). The input consisted of 𝑛 × 1 

expression values and a 𝑛 × 𝑝  matrix of predictors (genome-wide SNPs), 
where 𝑛  = 29 and 𝑝  = 1,307. Black dots, associations called at 1% FDR. 
Boxes highlight the chromosomal locations where the cis- and trans-eQTLs 
are located, respectively. 

 

Figure 2. For each SNP genotyped in the rat genome (x-axis), for each 
method we report the evidence in support of genetic regulation of Hopx gene 
expression simultaneously in the heart and fat tissues (y-axis). The input 

consisted of 𝑛 × 2 expression values (fat and heart, respectively) and a 𝑛 × 𝑝 
matrix of predictor variables (genome-wide SNPs), where 𝑛  = 29 and 𝑝  = 
1,307. Black dots, associations called at 1% FDR. For the Glmnet-LASSO, 
the blue and black dots indicate the absolute values of β-coefficients 
estimated in fat and heart tissues, respectively. Boxes highlight the 
chromosomal locations where the cis- and trans-eQTLs are located, 
respectively. 
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