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Intensive selection for high milk yield in dairy cows has raised production levels substantially but at the cost of reduced fertility,
which manifests in different ways including reduced expression of oestrous behaviour. The genomic regulation of oestrous
behaviour in bovines remains largely unknown. Here, we aimed to identify and study those genes that were associated with
oestrous behaviour among genes expressed in the bovine anterior pituitary either at the start of oestrous cycle or at the mid-cycle
(around day 12 of cycle), or regardless of the phase of cycle. Oestrous behaviour was recorded in each of 28 primiparous cows
from 30 days in milk onwards till the day of their sacrifice (between 77 and 139 days in milk) and quantified as heat scores. An
average heat score value was calculated for each cow from heat scores observed during consecutive oestrous cycles excluding the
cycle on the day of sacrifice. A microarray experiment was designed to measure gene expression in the anterior pituitary of these
cows, 14 of which were sacrificed at the start of oestrous cycle (day 0) and 14 around day 12 of cycle (day 12). Gene expression
was modelled as a function of the orthogonally transformed average heat score values using a Bayesian hierarchical mixed model
on data from day 0 cows alone (analysis 1), day 12 cows alone (analysis 2) and the combined data from day 0 and day 12 cows
(analysis 3). Genes whose expression patterns showed significant linear or non-linear relationships with average heat scores were
identified in all three analyses (177, 142 and 118 genes, respectively). Gene ontology terms enriched among genes identified in
analysis 1 revealed processes associated with expression of oestrous behaviour whereas the terms enriched among genes
identified in analysis 2 and 3 were general processes which may facilitate proper expression of oestrous behaviour at the
subsequent oestrus. Studying these genes will help to improve our understanding of the genomic regulation of oestrous behaviour,
ultimately leading to better management strategies and tools to improve or monitor reproductive performance in bovines.
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Implications

Intensive selection for high milk yield in dairy cows has been at
the cost of reduced fertility and reduced expression of oestrous
behaviour, the genomic regulation of which is largely unknown.
Identifying and studying genes associated with oestrous
behaviour that are expressed in the bovine anterior pituitary
and brain areas at different phases of the oestrous cycle will
help to improve our understanding of the genomic regulation of
oestrous behaviour expression. This knowledge may lead to
better management strategies and tools to improve or monitor
reproductive performance in bovines.

Introduction

Several decades of intensive selection for high milk yield in
dairy cows has raised production levels substantially, but at
the cost of reduced fertility as the unfavourable genetic
correlation between milk yield and fertility traits used to
be ignored (Royal et al., 2000; Roxstrom et al., 2001). The
expression of oestrous behaviour (heat), a key fertility trait
that marks the fertile period in cows, has decreased both in
duration and intensity over generations of cows selected for
high milk yield (Lopez et al., 2004). Short heat periods and
the absence of clear behavioural signs of heat make farmers
fail to detect heat or misjudge the optimum time of insemi-
nation of their cows, resulting in financial losses because
of prolonged interval from calving to first insemination,
reduced conception rates and increased calving intervals.
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Some key hormones that regulate oestrous cycle in
mammals are gonadotropin-releasing hormone (GnRH)
produced in the hypothalamus; follicle-stimulating hormone
(FSH) and luteinizing hormone (LH) in the anterior pituitary;
oestrogen and progesterone in the ovaries; and prosta-
glandin in the uterus. These hormones may influence the
expression of oestrous behaviour by targeting specific brain
areas, directly or indirectly. For example, oestrogen depen-
dent gene transcription in the hypothalamus and midbrain
establishes the neural circuitry required for lordosis beha-
viour in female rats (Pfaff, 2005). The hormonal regulation of
oestrous cycle is well studied and several hormone-driven
mechanisms in the brain that influence the mammalian
sexual behaviour are known (Pfaff, 2005), but specific
knowledge on the genomic regulation of oestrous behaviour
in cows is lacking. Understanding the genomic regulation of
oestrous behaviour may help to develop better management
strategies and tools to improve or monitor reproductive
performance in bovines (Veerkamp and Beerda, 2007).

Conventionally, DNA microarray technology is used to
identify differentially expressed genes between groups of
individuals belonging to contrasting classes of a phenotypic
trait of interest. However, when the trait of interest is
quantitative (e.g. oestrous behaviour quantified as heat
score), the grouping of individuals into qualitative classes,
ignoring the continuous scale, is indistinct and dilutes the
available information. In such cases, the association
between gene expression and phenotypic trait is better
analysed using the individual quantitative measurements
(Reiner-Benaim et al., 2007). Recent studies on microarray
gene expression data have successfully linked genes to
quantitative traits of interest by correlation, linear regression
or complex regression models (Blalock et al., 2004; Jia and
Xu, 2005; Qu and Xu, 2006; Jia et al., 2008). Some of these
models have the added advantage that they account for non-
linear relationships between gene expression and phenotypic
trait that occur because of complex interactions among genes
in regulatory networks. The Bayesian hierarchical mixed model
developed by Jia et al. (2008) fits linear as well as non linear
associations between gene expression patterns and quantita-
tive measures of a trait using orthogonal polynomials.

Here, the Bayesian hierarchical mixed model was used for
the objective to identify and study those genes that were
associated with oestrous behaviour among genes expressed
in the bovine anterior pituitary, either at the start of oestrous
cycle, or at the mid-cycle (around day 12 of cycle), or
regardless of the phase of cycle.

Material and methods

Phenotypic data recording and tissue isolation
The current study is a part of an experiment which was
originally set up to investigate differential gene expression in
brain tissue samples of Holstein Friesian (HF) cows, which
were either of a low or high genetic merit for fertility and
which belonged to two different stages of oestrous cycle.
However, here we focus on identifying genes whose

expression profiles were associated with oestrous behaviour at
the start or mid of oestrous cycle, or regardless of the phase.
The associated gene lists thus identified were compared for
similarities or differences. No tests were performed to identify
genes that significantly differ in their level of expression
between the groups of animals in different phases.

Twenty-eight healthy HF heifers were selected for this
study, of which 14 belonged to a lower fertility group with
estimated breeding values (EBVs) for fertility ranging
between 93 and 97 whereas the remaining 14 belonged to a
higher fertility group with values ranging between 101 and
103. The EBVs are expressed on a standardised scale with
100 as the base value and with a s.d. of 4 units for EBV with
a reliability of 0.80. The base value of 100 corresponds to the
average EBV of black and white HF cows born in the year
2000. The EBV for fertility was based on the traits: time to
first insemination, percentage non-return within 56 days
after first insemination and interval between calvings (NRS,
2009). The EBVs for fertility of the selected heifers were
calculated using the EBVs for fertility of their sire (weighing
factor 2) and their dam’s sire (weighing factor 1).

At least 4 weeks before their expected calving date, the
experimental heifers were moved to a free stall barn with
slatted concrete floor at the Waiboerhoeve research farm at
Lelystad in the Netherlands and reared under identical con-
ditions of feeding and management. The age of the heifers at
calving varied between 22 and 30 months, with calving
dates in the period from September 2006 to December 2006.
After calving, the cows were observed daily for the signs of
oestrous expression during two observation periods of
30 min each: one in the morning (after milking but before
feeding) and one in the evening (after milking and feeding).
Cows were kept in one group of animals of similar age,
which over time ranged in size from 15 to 30 animals. At the
start and end of the study, cows from the main herd were
added to the experimental group so as to maintain a group
size of at least 15 individuals. Oestrous behaviour was
expressed as heat scores, with specific behaviours being
weighted according to the scoring protocol described by Van
Eerdenburg (2006): mucous vaginal discharge (three points),
flehmen (three points), restlessness (five points), being
mounted but not standing (ten points), sniffing the vulva of
another cow (ten points), resting with chin on the back of
another cow (fifteen points), mounting other cows, or
attempting to do so (thirty-five points), mounting head side
of other cows (forty-five points), standing heat (hundred
points). Heat scores per 30 min observation bouts were
calculated by adding up the recorded occurrence of each
specific behaviour multiplied by its weight as per the scoring
protocol described above. However, the recording of the
occurrence of restlessness behaviour was limited to one per
observation bout. From 30 days in milk (DIM) onwards, milk
progesterone levels were assessed twice a week. Ovarian
structure was evaluated by trans-rectal ultrasonography
either performed on alternate days or daily during the week
preceding expected oestrus. The time of oestrus was estab-
lished on the basis of milk progesterone levels and trans-rectal
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ultrasonography to help determine the right moment of
euthanizing cows and not miss those with possible silent
heat. Cows in silent heat were awarded a heat score of 0.
Cows were assumed to be in oestrus when the cumulative
heat score from two consecutive observation periods
exceeded 50 points. An average heat score value was cal-
culated for each cow to quantify the degree to which it
expressed oestrous behaviour (i.e. as a trait) based on its
heat scores at oestrus observed during all consecutive oes-
trous cycles from 30 DIM onwards, excluding the heat score
at oestrus on the day of sacrifice. All cows were euthanized
in the period ranging between 77 and 139 DIM by intrave-
nous injection of 20 ml of T61. They were sacrificed in a
stress-free, quick and standardised way, between 8 and 11
am, in a room only a few metres away from their home
section. Fourteen of the 28 cows were euthanized at the
start of their oestrous cycle (hereafter indicated as day 0)
and the remaining 14 were euthanized at mid-cycle around
day 12 (hereafter indicated as day 12) when milk proges-
terone levels were high. Each group of 14 cows that were
euthanized at a particular time point consisted of seven cows
with high and seven with low-genetic merit for fertility.
Within an hour of death, tissue samples from the anterior
pituitary and brain areas, that is the hippocampus, amyg-
dala, dorsal and ventral hypothalamus, were collected, snap-
frozen in liquid nitrogen and stored at 2708C until the RNA
isolation was made.

The study was approved by the Animal Care and Ethics
Committee of the Animal Sciences Group of Wageningen
University and Research Centre, Lelystad.

RNA isolation and microarray hybridisation
The procedure used for RNA isolation from all the separate
brain samples collected was similar to that described by
Niewold et al. (2007) but without the sodium citrate/NaCl
precipitation step. Bovine 24K oligonucleotide (70-mer) micro-
arrays designed and produced by the Bovine Oligonucleotide
Microarray Consortium (BOMC) (http://www.bovineoligo.org/)
were used. A total of 56 arrays were prepared in a common
reference design with the dye labels swapped between indivi-
dual anterior pituitary samples and a reference sample con-
sisting of equal proportions of RNA from the anterior pituitary,
hippocampus, amygdala, dorsal hypothalamus and ventral
hypothalamus of all 28 cows. Exactly 5 mg of RNA was used
per labelling using the RNA MICROMAX TSATM labelling
and detection kit (Perkin-Elmer, Boston, MA, USA). Following
hybridization, cover slips were removed after allowing a 5 min
delay at room temperature followed by three washings of
15 min each in: 23 SSC (saline sodium citrate) 1 0.2% SDS
(at 428C), 23 SSC (room temperature) and 0.23 SSC (room
temperature). The rest of the protocol conformed to that
described by Niewold et al. (2007). Part of the processed slides
were scanned using ScanArray 5000 (Packard Biosciences,
Billerica, MA, USA), part using ScanArray Express (Perkin-Elmer,
Boston, MA, USA) and the remaining using GenePix 4200A
(Molecular Devices, Sunnyvale, CA, USA), with identical set-
tings. Image processing was performed using GenePix Pro 6

software. All processed images were visually inspected for
proper data recording and any bad spots that remained unde-
tected by the software were manually flagged.

Pre-processing of microarray data
LIMMA (linear models for microarray data) package (Smyth,
2005) within Bioconductor project (Gentleman et al., 2004) of R
statistical programming language (http://www.r-project.org/)
was used for pre-processing the microarray data including
microarray data quality checking. The quality of the array data
was checked by means of several data visualisation plots such
as image plots, MA-plots, density plots and box plots. The
image plots of the background intensities for the two dyes
showed that the background was inconsistent within and
between arrays. Background correction was therefore required
and was performed using the ‘normexp 1 offset’ method
(Ritchie et al., 2007) available in LIMMA. This method always
produces positive corrected values so that no spot information
is lost. In addition, an offset of 50 was used to stabilise the
variability of the log-ratios (M-values) as a function of intensity.
Within array normalisation was performed using print tip loess
method, which is a good method to correct for spatial effects
and intensity dependent biases. To make the arrays compar-
able, between arrays normalisation was performed using
quantile method, which equalizes the intensity distribution
across all arrays. A comparison of the MA-plots and box plots
on data before and after normalisation showed that the nor-
malisation procedure followed had corrected intensity depen-
dent biases and made the ranges of intensity distributions
comparable across arrays. On the basis of observations of the
above-mentioned plots, we concluded that the microarray
data quality was good and that the background correction and
array normalisation procedures followed were adequate. The
M-values per probe of the dye-swap pairs for each individual
were averaged (after reversing the sign of M-value for one of
the dye channels) to obtain the gene expression data. As the
gene expression data was generated using a two colour
common reference design microarray experiment, the gene
expression levels in the anterior pituitary were assessed relative
to expression levels in reference tissue consisting of samples
from the anterior pituitary and four brain areas as obtained
during two phases of the oestrous cycle. This means that genes
with negative M-values were lower expressed in the anterior
pituitary than in the common reference while genes with
positive M-values were higher expressed in the anterior pitui-
tary than in the common reference.

Associating heat scores with gene expression data
The Bayesian hierarchical mixed model developed by Jia
et al. (2008) was used to associate quantitative phenotypes
to expressed genes using orthogonal polynomials. In this
model, the expression level of gene i (Yi) across N subjects,
as a function of the phenotypic value of a quantitative trait,
Z, is given by:

YiðZÞ ¼ ai þ biðZÞ þ �i
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where aiis the gene specific intercept for gene i, bi (Z ) is an
arbitrary function describing the relationship between the
gene expression of gene i and the phenotypic values and ei is
the random error term with assumed normal distribution,
N(0,se

2). Using orthogonal polynomials to describe the
functional relationships between the model parameters
and Z, followed by a linear contrasting scheme to remove
the mean expression (m) of each gene (Qu and Xu, 2006),
the model becomes:

yi ¼ YiðZÞ � m ¼
Xp

j¼1

Xjbij þ �i

where p is the order of the orthogonal polynomial ( j ) and
X is an N 3 p matrix denoting Z after transformation to its
orthogonal polynomials. In the mixed model, the gene spe-
cific regression coefficient (bij) is assumed to be sampled
from a mixture of two normal distributions: one with a very
small variance, N(0,q) and one with a larger variance,
N(0,sj

2),where q5 1024 (a small positive number) and sj
2

is an unknown variance assigned to the jth polynomial. This
approach used by Jia et al. (2008) is based on a procedure
called stochastic search variable selection developed by
George and McCulloch (1993). The variable hij 5 {0,1} is
used to indicate whether bij is sampled from the distribution
with the small variance in which case bij is approximating
0 or whether bij is sampled from the distribution with
the large variance, in which case bij will have a non-trivial
value and should be estimated from the data. Both variance
components, sj

2 and se
2 are estimated by borrowing

information across all genes. Using the Markov Chain Monte
Carlo simulation, the association status of gene i with the
jth polynomial is determined based on the posterior mean
of hij. According to this association status, genes are clus-
tered in 2p clusters. More details can be found in Jia et al.
(2008).

For the current study, we used the above mentioned
algorithm of Jia et al. (2008) coded in SAS�R language,
kindly provided by the authors. Average heat score was
selected as the quantitative phenotype to associate with
gene expression, as it was the most representative for the
trait oestrous behaviour. This was determined in a principal
component analysis where oestrous behaviour related
parameters as collected over time were correlated, with
heat scores showing the strongest loadings (B. Beerda,

unpublished results). The interpretation of the results
obtained in the association methodology used in this study
differs from that for differential gene expression analysis in
LIMMA where contrasting groups of individuals are com-
pared against each other for significant differences in gene
expression levels without considering its association with a
quantitative trait.

The clustering program was run on SAS�R software, Ver-
sion 9.1 of the SAS�R System for Windows. Gene expression
was modelled as a function of average heat score trans-
formed into third order polynomials, thereby clustering
genes into eight binary based categories. The categories
were represented as 000, 100, 010, 001, 110, 101, 011 and 111.
Genes with no association in all three orders of the poly-
nomial belong to cluster 000, those with a linear association
alone belong to cluster 100, those with a linear and quad-
ratic association belong to cluster 110 and so on. The algo-
rithm was run for 10 000 iterations with a burn-in period of
5000 iterations. Trace plots of the estimated residual var-
iance in consecutive iterations showed that the parameter
stabilised within a narrow range at approximately 3000
iterations and therefore the selected burn-in period of 5000
iterations was sufficient. After the burn-in period, results of
one iteration in 20 were saved, resulting in 250 samples
used for calculating posterior means of each variable. The
cut-off value for Zij for cluster assignment was set at 0.8 to
limit the false discovery rate (FDR) of cluster assignment
below 1% (Jia and Xu, 2007).

The clustering program was run in three separate
analyses (Table 1). To identify genes of which the
expression in the bovine anterior pituitary at the start of
oestrus was associated with oestrous behaviour (objective
1), we analysed gene expression data of day 0 cows and
their average heat scores (analysis 1). Similarly, to identify
genes of which the expression in the bovine anterior
pituitary around mid cycle (dioestrus) was associated with
oestrous behaviour (objective 2), we analysed gene
expression data of day 12 cows and their average heat
scores (analysis 2). Finally, to identify genes of which the
expression in the bovine anterior pituitary at the start of
oestrus and at around mid-cycle was associated with
oestrous behaviour, that is regardless of the phase of
oestrous cycle (objective 3), we analysed together, the
gene expression data of day 0 and day 12 cows and their
average heat scores (analysis 3).

Table 1 Description of the three analyses and their objectives

Analysis Data Objectives

1 Gene expression data of day 0 cows and their average
heat scores from previous cycles

To identify genes of which the expression in the bovine anterior pituitary at
the start of oestrus was associated with oestrous behaviour.

2 Gene expression data of day 12 cows and their
average heat scores from previous cycles

To identify genes of which the expression in the bovine anterior pituitary
around mid cycle (dioestrus) was associated with oestrous behaviour.

3 Gene expression data of day 0 and day 12 cows and
their average heat scores from previous cycles

To identify genes of which the expression in the bovine anterior pituitary
was associated with oestrous behaviour regardless of the phase of
oestrous cycle.
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Gene ontology (GO) based analysis of oestrous behaviour
associated genes
For gaining insight into biological processes underlying
associations between gene expression profiles and oestrous
behaviour as identified by the described clustering program,
we performed statistical analysis for over-representation of
GO terms in sets of oestrous behaviour associated genes
(study sets) in the three analyses compared to the set of all
genes represented on the array (population set). The GO
term over-representation analysis was performed using the
Ontologizer (Bauer et al., 2008), a web based software
package, with the parent–child intersection method devel-
oped by Grossmann et al. (2007) that addresses the problem
of dependencies between annotation of parent and child
terms in the GO hierarchy. The Ontologizer software uses
a modified Fisher’s exact test to calculate the statistical
significance of over-represented GO terms. In addition to the
study sets and the population set, the Ontologizer software
required as input, the OBO (Open Biomedical Ontologies) file
and the GO association file, both of which were available
for download from the website of the GO project (http://
www.geneontology.org/). The OBO file consists of GO terms,
their definition and structure, whereas the GO association
file maps gene products (protein, gene and transcript, etc) to
GO terms. Here, the OBO and GO association files downloaded
on 22 July 2008 were used. The microarray probe annotation
file provided by the BOMC (http://www.bovineoligo.org/) for
the bovine oligonucleotide array provides the Ensembl ID
(http://www.ensembl.org/) of the best matching human
homologous protein for 16 464 probes in the array. As
human genes are better annotated than bovine genes, it was
decided to use the human homologous protein information
for the GO-based analysis. The human homologous protein
Ensembl IDs were converted to the corresponding UniProt ID
(http://www.uniprot.org/) wherever possible using the
g:Convert module of the web-based tool g:Profiler (Reimand
et al., 2007) as the majority of the GO terms in the GO
association file were mapped to UniProt IDs followed by
Ensembl and NCBI RefSeq IDs (http://www.ncbi.nlm.nih.gov/
RefSeq/). After filtering out genes in the population set
without any GO term associations, 7635 genes remained.
The GO analysis was performed separately on the list of

genes from each associated cluster in each analysis and also
with the combined list of genes from all associated clusters
per analysis because associated genes from different clusters
could be involved in common biological processes. To reduce
the stringency of FDR control on the small number of genes
having GO annotation and thereby observe general trends in
the data, the adjusted P-value cutoff of correction for mul-
tiple testing by Benjamini-Hochberg method was relaxed
to 0.35 while still considering only GO terms with ordinary
P-value below 0.01 as significant.

Further, the GO analysis was re-performed by defining a
smaller refined set of genes as the population set. The
refined set included only genes that were expressed in the
anterior pituitary with variability across samples and exclu-
ded genes, which were either not expressed or whose
expression remained fairly constant across all samples. To
determine this refined population set, we filtered out genes
whose expression values had an inter-quartile range less
than 0.5 across all the array samples, leaving a total of 9608
genes. After filtering out genes in this set without any GO
term associations, 2461 genes remained.

Results

The trait of expressing oestrous behaviour was quantified as
a cow’s average heat score. Data from one of the day 0 cows
was excluded from further analysis because of its high out-
lier heat score (1750). The average heat scores for the
remaining 13 day 0 cows ranged from 0 to 405, with a mean
value of 178.4 (s.d. 125.7), and the average heat scores for
the 14 day 12 cows ranged from 2 to 505, with a mean value
of 244.7 (s.d. 175.4). These scores were used with the cor-
responding gene expression data to run the three analyses
as already described. The total number of heat score asso-
ciated genes found per cluster in each analysis is provided in
Table 2, including the number of genes for which UniProt/
Ensembl annotated gene product information was available.
All three analyses showed that over 99% of the genes had
no association with heat scores. Genes that were associated
with heat scores typically showed linear, quadratic or cubic
relationships and only a few showed combinations of these

Table 2 Association status of gene expression patterns to average heat score in the three analyses

No. of genes in cluster (no. of genes with UniProt/Ensembl annotated gene product)

Cluster Association status Analysis 1 Analysis 2 Analysis 3

1 (000) No association 23 319 23 354 23 378
2 (100) Linear 45 (35) 65 (48) 23 (18)
3 (010) Quadratic 85 (60) 25 (16) 10 (4)
4 (001) Cubic 37 (33) 35 (21) 76 (57)
5 (110) Linear 1 quadratic 2 (2) 3 (3) 1 (1)
6 (101) Linear 1 cubic 1 (0) 12 (11) 6 (6)
7 (011) Quadratic 1 cubic 7 (6) 1 (1) 1 (1)
8 (111) Linear 1 quadratic 1 cubic 0 (0) 1 (1) 1 (1)
Combined clusters from 2 to 8 (all associated genes) 177 (135) 142 (101) 118 (88)
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relations. The combined numbers of associated genes in all
clusters in the three analyses were 177, 142 and 118,
respectively. Figure 1 presents a Venn diagram showing the
number of oestrous behaviour associated genes found per
analysis and their overlap. The number of common genes
that were associated with oestrous behaviour across ana-
lyses was lower when comparing the results from analyses 1
and 2 than comparing those from 1 and 3 or 2 and 3. The
difference in the sets of genes identified in the three ana-
lyses indicate that the relationship between gene expression
profiles and oestrous behaviour depend on the phase of
oestrous cycle.

Some of the genes/probes had limited or no annotation in the
microarray probe annotation file provided by BOMC, in which
case, we reverted to the recent re-annotation of the bovine
microarray probes (Version 2, Ensembl 50: 11 September 2008)
by the European Animal Disease Genomics Network of Excel-
lence for Animal Health and Food Safety (EADGENE) (http://
www.eadgene.info). Supplementary Table A (additional file 1)
provides a list of all oestrous behaviour associated genes found
in the three analyses along with their annotation from 2 sources
– BOMC and EADGENE.

Of the nine genes associated with oestrous behaviour in
all three analyses, interestingly, three genes were immu-
noglobulin related and one was follicle-stimulating hormone
beta (FSHB) subunit, a key hormone in the regulation of
oestrous cycle. Figure 2 shows the association of gene
expression profile of FSHB with heat score for the three
analyses – a linear relationship in analysis 1, cubic in analysis
2 and quadratic in analysis 3. Unfortunately, the association
status of LH, another key hormone in the regulation of oes-
trous cycle could not be ascertained as probes for LH beta
subunit were not present on the array. Several genes in the
list of heat score associated genes are known from literature
to be related to oestrous expression. These included pro-
lactin (PRL) precursor, pituitary-specific positive transcription

factor 1 (PIT1) and melanin-concentrating hormone (MCH)
which associated with oestrous behaviour in analyses 1 and
2 separately but not in analysis 3. Further, considering a few
examples of associated genes with a nervous system related
function, Homo sapiens neurotrimin precursor (HNT), asso-
ciated with oestrous behaviour in analyses 1 and 3, neuro-
kinin-B precursor (NKB) and neurogenic differentiation
factor 2 (NEUROD2) associated with oestrous behaviour only
in analysis 1.

The genes that showed associations with oestrous beha-
viour were further analyzed based on their GO annotations
provided by BOMC. The significant GO terms in the clusters
of heat score associated genes in analyses 1, 2 and 3 are
given in Tables 3, 4 and 5, respectively. The study count and
population count provided in the tables correspond to the
number of gene products annotated to the particular over-
represented GO term in the cluster being analyzed and in the
whole array, respectively. It was noticed that certain GO
terms enriched in the combined cluster were different from
the terms in the separate cluster analysis.
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analysis 3 (118)

Figure 1 Venn diagram of number of genes identified as associated with
heat score in the three analyses.
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Figure 2 Association of gene expression profile of FSH (beta) gene with
heat score in the three analyses. a Note the difference in scale in Figure 2a.
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Considering only those GO terms that were supported by
at least four genes, significant terms within the GO category
‘biological processes’ for analysis 1 were: ‘behaviour’;
‘secretion’; ‘nervous system development’ and ‘antigen
processing and presentation’ and for analysis 2 was ‘multi-
cellular organismal process’. Within the GO category ‘mole-
cular function’ the following terms resulted: from analysis
1 – ‘major histocompatability complex (MHC) class I receptor
activity’ and ‘identical protein binding’; and from analysis
2 – ‘hormone activity’. Within the GO category ‘cellular
component’, both analyses 1 and 2 generated the term
‘extracellular region’ and analysis 1 produced in addition
‘cell projection’ and ‘MHC protein complex’. Genes identified
in analysis 3 did not have any significant enriched GO term

with at least four genes. The gene products in the over
represented GO terms are presented in Supplementary
Tables B, C and D (Additional file 2) for analyses 1, 2 and 3,
respectively.

When the GO analysis was re-performed with a popula-
tion set consisting of only the genes expressed with a certain
variability across samples, the top listed over represented
GO terms corresponded to those found in the earlier analysis
but the order of ranking of the terms based on P-values
differed and the P-values were less significant because of the
smaller population size. However, to understand the general
trends in the biological processes enriched in the lists of
heat score associated genes, the choice of either population
set did not matter in this case.

Table 3 Gene ontology terms over-represented in clusters of heat score associated genes from analysis 1 (day 0 cows) (adjusted P , 0.35)

GO ID GO term GO categorya P-value P-value (adjusted) Study count Population count

Cluster 010 (quadratic)
GO:0032393 MHC class I receptor activity M ,0.001 0.212 2 5
GO:0007610 Behaviour B 0.002 0.323 5 169
GO:0046903 Secretion B 0.003 0.323 4 139
GO:0031225 Anchored to membrane C 0.003 0.323 3 58
GO:0042802 Iidentical protein binding M 0.004 0.323 4 239
GO:0048732 Gland development B 0.004 0.323 2 24
GO:0046870 Cadmium ion binding M 0.005 0.323 1 1
GO:0007399 Nervous system development B 0.005 0.323 8 350
GO:0048154 S100 beta binding M 0.006 0.323 1 2
GO:0031984 Organelle sub compartment C 0.006 0.323 1 6
GO:0042995 Cell projection C 0.007 0.329 4 181
GO:0045202 Synapse C 0.008 0.337 3 91

Clusters 2 to 8 combined
GO:0032393 MHC class I receptor activity M ,0.001 ,0.001 4 5
GO:0042611 MHC protein complex C ,0.001 0.257 4 18
GO:0005576 Extracellular region C 0.001 0.257 16 743
GO:0019882 Antigen processing and presentation B 0.001 0.257 4 29

GO 5 gene ontology; MHC 5 major histocompatability complex.
aB 5 biological process; M 5 molecular function; C 5 cellular component.

Table 4 Gene ontology terms over-represented in clusters of heat score associated genes from analysis 2 (day 12 cows) (adjusted P , 0.35)

GO ID GO term
GO

categorya P-value
P-value

(adjusted)
Study
count

Population
count

Cluster 010 (quadratic)
GO:0032501 Multicellular organismal process B ,0.001 0.068 8 1496
GO:0005516 Calmodulin binding M 0.003 0.324 2 94
GO:0016829 Lyase activity M 0.003 0.324 2 71

Cluster 001 (cubic)
GO:0006091 Generation of precursor metabolites and energy B ,0.001 0.231 3 159

Cluster 101 (linear 1 cubic)
GO:0030276 Clathrin binding M 0.001 0.111 1 6

Clusters 2 to 8 combined
GO:0005576 Extracellular region C ,0.001 ,0.001 19 743
GO:0040034 Regulation of development, heterochronic B ,0.001 0.056 2 3
GO:0005179 Hormone activity M ,0.001 0.078 5 42
GO:0032501 Multicellular organismal process B 0.002 0.343 19 1496

GO 5 gene ontology.
aB 5 biological process; M 5 molecular function; C 5 cellular component.
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Discussion

Gene expression profiles in the anterior pituitary of dairy
cows were associated with oestrous behaviour by applying a
Bayesian hierarchical mixed model based method for clus-
tering genes on the basis of their linear, quadratic or cubic
relation with a quantitative phenotype of interest, that is
heat score. Genes in a regulatory network may interact in
complex ways (feedback mechanisms, cooperation or com-
petition between genes) to result in non-linear associations
between gene expression levels and phenotype. Therefore it
is advantageous to use a model that accounts for both linear
and non-linear associations, for example, through poly-
nomial regression. In this study, we began the microarray
data analysis with pre-processing steps performed in
LIMMA. However, for the association analysis, we did not
attempt to model polynomial regression in LIMMA but
instead we chose the SAS program developed by Jia et al.
(2008) in which polynomial regression was already imple-
mented. Jia et al. (2008) reported that their method was a
better and faster algorithm to detect quantitative trait
associated genes in comparison to similar methods like the
one described by Qu and Xu (2006) based on an expectation-
maximization (EM) algorithm. The increased speed is
achieved by logically fixing the number of clusters before-
hand thereby obviating the need for extra model evaluations
for determining optimal cluster number as required in the EM
algorithm. In our study, we tested the association between
gene expression values and phenotypic trait measurements
transformed in three orders of orthogonal polynomials, and
consequently, fixed the number of clusters to eight. By running
the three analyses, as defined earlier, we were able to detect
several genes associated with the expression of oestrous
behaviour. Each analysis took less than 6 h to complete on a
normal desktop computer. Analyses were performed to identify
genes that were associated with heat score during different
phases of the oestrous cycle but not intended to identify genes
differentially expressed between these phases. Analysis 1
identified genes that may have a direct association with the
expression of oestrous behaviour whereas analysis 2 identified
genes that may be involved in facilitator processes that pre-
pare the cow for later oestrous behaviour. Analysis 3 identified
genes whose expression during both phases of the cycle may
be associated with the expression of oestrous behaviour. The
increased power gained by the greater number of data points

in analysis 3 revealed significant genes that did not show up in
the other two analyses. The overlap in the results from the
three analyses indicate that certain genes that were directly
associated with the expression of oestrous behaviour at oes-
trus were also involved in oestrous behaviour related pro-
cesses at other phases in the cycle.

An alternative approach for doing three separate analyses
would be to add nested regressions to account for phase-
specific associations in a single model. However, we were
not able to do so within the current framework of the SAS
program as the algorithm followed would not support the
steps following the model fitting if we altered the model by
adding nested regressions. This could be taken up as a useful
feature to add to the existing algorithm in the future.

It is likely that some of the genes predicted by this pro-
gram to be associated with heat scores are false positives. To
test the robustness of the algorithm used, we performed
multiple runs of the algorithm on data from analysis 1 as a
test case. The overlap between the original lists of asso-
ciated genes reported here and the three repeated test runs
were 79%, 83% and 88%. This showed that the algorithm
was reasonably robust. In addition, we also did a leave-one-
out analysis, although we realise that this analysis would
give drastic results given the size of the current dataset.
Nevertheless, even in the worst-case scenario using the
smallest dataset (analysis 1), the overlap varied from 44% to
76% depending on the position of the data point removed.
As expected, the differences were not only in the number of
associated genes found but also the pattern of association it
was assigned to. Owing to the small number of data points
available, leaving out even one data point was expected to
result in a change in the pattern of the association and
thereby changes in the association status. Therefore, the
relatively low number of animals sampled in this study was a
constraint on this methodology due to which, especially the
higher order relationships captured by, this method seemed
to be in some cases an artefact of the method and were less
reliable. For datasets of the size as in this study, it would be
better to initially focus on the more reliably predicted linearly
associated genes and then carefully consider genes that are
associated with higher order relationships. The results may
be checked for genes already known from literature to be
involved in regulating oestrous. Further, rather than focusing
on individual genes found associated by this method, it
would be more reliable to focus on those genes that were

Table 5 Gene ontology terms over-represented in clusters of heat score associated genes from analysis 3 (day 0 1 day 12 cows) (adjusted P , 0.35)

GO ID GO term GO categorya P-value P-value (adjusted) Study count Population count

Cluster 100 (linear)
GO:0001871 Pattern binding M 0.001 0.226 2 58
GO:0010463 Mesenchymal cell proliferation B 0.002 0.265 1 1

Cluster 110 (linear 1 quadratic)
GO:0048511 Rhythmic process B 0.006 0.279 1 37

GO 5 gene ontology.
aB 5 biological process; M 5 molecular function; C 5 cellular component.
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together involved in certain biological processes as detected
in the GO term enrichment analyses.

Known oestrus regulating genes and new candidate genes
associated with oestrous behaviour
On the basis of annotation of the list of genes identified to
be associated to oestrous behaviour (Supplementary Table A
in Additional file 1), the list included genes that encoded for
hormones, transcription factors, signalling molecules or
other gene products. Some of these genes could be identified
to have a function related to oestrous regulation and/or
behaviour, examples of which are discussed below.

Among the key hormones known to regulate the oestrous
cycle, probes for GnRH and LH were, unfortunately, not
represented on the DNA microarray while the beta subunit
of FSH was. FSHB was found to be associated with heat
score either linearly or non-linearly in all the three analyses
(Figure 2). Transient rises in FSH drive the emergence and
growth of small antral follicles, with FSH concentrations
reaching peak values around 28 h after the onset of a new
oestrous cycle (Mihm and Austin, 2002). Relatively high
expression levels of the FSHB gene may mirror a general
good functioning of pituitary gonadotropes, promoting
gonadotrophin-induced steroidogenesis by ovarian follicles
with the resulting oestrogens facilitating oestrous behaviour
(Pfaff, 2005). PRL was associated with the oestrous beha-
viour in analysis 1. PRL, usually associated with lactation, is
a multifunctional hormone that has been reported to have a
negative effect on sexual arousal (Bancroft, 2005). Oestrous
behaviour may, therefore, be enhanced at lower PRL level.
The findings indicate, to some degree, the opposite func-
tioning of biological processes underlying lactation and
reproduction. Some of the genes that were found to be
associated with oestrous behaviour have known functions
related to behaviour or nervous development, making them
likely candidates regulating the oestrous behaviour expres-
sion. These include HNT and synapsin-2 as found in analyses
1 and 3; neurexophilin-2, PIT1 and MCH in analyses 1 and 2;
tachykinin-3 precursor (containing NKB and neuromedin-K),
NEUROD2 and early growth response protein 1 (EGR1)
found in analysis 1. EGR1 regulates LH (beta subunit) gene
expression in the pituitary gland (Lee et al., 1996). Relatively
high LH activity, like that of FSH, may reflect appropriate
functioning of pituitary gonadotropes and responsiveness to
the oestrogens that synchronise oestrous behaviour and LH
surge-induced ovulation. Similarly, PIT1 may be an important
regulator of oestrous behaviour due to its function as a
transcription factor that activates expression of growth
hormone and PRL genes. MCH is a neuropeptide whose
administration in female rats stimulates sexual behaviour
(Gonzalez et al., 1996) and proestrus FSH and LH releases,
which resembles the effect produced by GnRH (Chiocchio et al.,
2001). Possibly, it plays a similar role in regulating bovine
oestrous behaviour. The predominant expression site for
MCH is not the pituitary but the hypothalamus, hence the
relatively negative expression values noticed for this gene in
all cows at both phases.

The gene product sodium/potassium-transporting ATPase
subunit alpha-3 (ATP1A3) was found to be heat score
associated in analysis 1. ATP1A3 has been implicated in
rapid-onset dystonia parkinsonism, characterised by sudden
onset of neurological symptoms over hours to a few days
(de Carvalho Aguiar et al., 2004), suggesting a role in the
sudden onset of behavioural changes like during oestrus.
Several genes annotated to have immunological function
were found to be associated with oestrous behaviour in all
three analyses. Genes with immunological function were
also identified in a related study by Beerda et al. (2008) on
the same experimental cows as in this study but using tissue
from the ventral tegmental area of the brain. In their study,
an analysis using LIMMA for differential gene expression
between groups of day 0 and day 12 cows demonstrated up-
regulation of multiple immunoglobulin superfamily proteins
in day 0 cows. Immunoglobulin superfamily proteins may
play important roles in brain developmental processes and
the functioning of neuronal networks in adults because they
provide the ideal structure for protein–protein interactions
and, thus, cell-cell interactions (Rougon and Hobert, 2003).
Immunoglobulins may facilitate remodelling of synaptic
networks, which occurs during oestrogen promoted female
sexual behaviour (Pfaff, 2005).

The genes discussed above can be linked to oestrous
behaviour on the basis of earlier reports on the functioning
of their products, which identifies them as candidates for
regulating oestrous behaviour in dairy cows. The heat score
associated genes found in the different analyses may help
us to postulate hypotheses on the genomic regulation of
oestrous behaviour. There were several oestrous behaviour
associated genes that are not currently annotated or whose
function in the brain is still unknown and these genes may be
of particular interest to target in future research.

Biological processes associated with oestrous behaviour
Gene ontology analysis of genes found in the different
clusters of the three analyses revealed over-represented GO
terms. The highest number of over-represented GO terms
was found in analysis 1, confirming that relationships
between gene expression profiles and oestrous behaviour
are most strong around the time of oestrus. As expected, the
biological processes, ‘behaviour’, ‘secretion’, and ‘nervous
system development’ emerged from analysis 1. Also, the GO
term, ‘antigen processing and presentation’, enriched in
analysis 1 was in line with expectations, given the role of
immunoglobulins in remodelling of synaptic networks, which
occurs during oestrogen promoted female sexual behaviour.
Some of the over-represented GO terms, particularly in
analyses 2 and 3, had no clear relationship with oestrous
behaviour or fertility, and may represent more general pro-
cesses that facilitate oestrous expression at a later phase. It
would be interesting to study further the genes associated
with these processes for useful new insights.

Some of the GO terms that emerged from the three ana-
lyses were supported by only a few genes in the study set. In
part, this resulted from the limited number of genes for that
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GO term appearing on the whole array. For example, the
term ‘cadmium ion binding’ in analysis 1 and ‘mesenchymal
cell proliferation’ in analysis 3 have only one gene each in
the study set and in the whole array associated to it. The GO
terms that are based upon only few genes need to be eval-
uated critically regarding their importance in the regulation
of oestrous behaviour, as it could be that these terms appear
enriched just by chance.

Conclusions

The Bayesian hierarchical mixed model based clustering
method used in this study was successful in detecting the
oestrous behaviour associated genes based on the pattern of
the relationship of the expression values of these genes with
the quantitative phenotype, that is heat score. Although
most of the oestrous behaviour associated genes and the
biological processes they controlled were activated around
the time of oestrus, there were also genes expressed in mid-
cycle that associate with oestrous behaviour, indicating that
these genes may play a role in facilitating the next oestrus.
Studying these genes and the processes they control will
help improve our understanding of the genomic regulation of
oestrous behaviour expression, ultimately leading to better
management strategies or tools to improve or monitor
reproductive performance. The list of oestrous behaviour
associated genes identified may be useful for studying gene
networks and also for inferring possible functions for non-
annotated genes. On the basis of success of this method, a
similar study may be repeated on other brain areas already
sampled in this experiment. The results could then be inte-
grated to get an overall view of the gene expression patterns
of oestrous behaviour associated genes in different brain
areas and the likely genetic cross-talk between them and
how they contribute to the expression of oestrous behaviour.
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