169 research outputs found

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities

    A hybrid constraint integer programming approach to solve nurse scheduling problems

    Get PDF
    The Nurse Scheduling Problem can be simply defined as assigning a series of shift sequences (schedules) to several nurses over a planning horizon according to some constraints and preferences. The inherent benefits of having higher-quality and more flexible schedules are a reduction in outsourcing costs and an increase of job satisfaction in health organizations. In this paper, we present a novel systematic hybrid algorithm, which combines Integer Programming (IP) and Constraint Programming (CP) to efficiently solve highly-constrained Nurse Scheduling Problems. Our focus is to exploit the problem-specific information to improve the performance of the algorithm, and therefore obtain high-quality solutions as well as strong lower bounds. We test our algorithm based on some real-world benchmark instances. Very competitive results are reported compared to the state-of-the-art algorithms from the recent literature, showing that the proposed algorithm is able to solve a wide variety of real-world instances with different complex structures

    A harmony search algorithm for nurse rostering problems

    Get PDF
    Harmony search algorithm (HSA) is a relatively new nature-inspired algorithm. It evolves solutions in the problem search space by mimicking the musical improvisation process in seeking agreeable harmony measured by aesthetic standards. The nurse rostering problem (NRP) is a well-known NP-hard scheduling problem that aims at allocating the required workload to the available staff nurses at healthcare organizations to meet the operational requirements and a range of preferences. This work investigates research issues of the parameter settings in HSA and application of HSA to effectively solve complex NRPs. Due to the well-known fact that most NRPs algorithms are highly problem (or even instance) dependent, the performance of our proposed HSA is evaluated on two sets of very different nurse rostering problems. The first set represents a real world dataset obtained from a large hospital in Malaysia. Experimental results show that our proposed HSA produces better quality rosters for all considered instances than a genetic algorithm (implemented herein). The second is a set of well-known benchmark NRPs which are widely used by researchers in the literature. The proposed HSA obtains good results (and new lower bound for a few instances) when compared to the current state of the art of meta-heuristic algorithms in recent literature

    New computational results for the nurse scheduling problem: A scatter search algorithm

    Get PDF
    In this paper, we present a scatter search algorithm for the well-known nurse scheduling problem (NSP). This problem aims at the construction of roster schedules for nurses taking both hard and soft constraints into account. The objective is to minimize the total preference cost of the nurses and the total penalty cost from violations of the soft constraints. The problem is known to be NP-hard. The contribution of this paper is threefold. First, we are, to the best of our knowledge, the first to present a scatter search algorithm for the NSP. Second, we investigate two different types of solution combination methods in the scatter search framework, based on four different cost elements. Last, we present detailed computational experiments on a benchmark dataset presented recently, and solve these problem instances under different assumptions. We show that our procedure performs consistently well under many different circumstances, and hence, can be considered as robust against case-specific constraints. Keywords: meta-heuristics, scatter search, nurse schedulin

    A time predefined variable depth search for nurse rostering

    Get PDF
    This paper presents a variable depth search for the nurse rostering problem. The algorithm works by chaining together single neighbourhood swaps into more effective compound moves. It achieves this by using heuristics to decide whether to continue extending a chain and which candidates to examine as the next potential link in the chain. Because end users vary in how long they are willing to wait for solutions, a particular goal of this research was to create an algorithm that accepts a user specified computational time limit and uses it effectively. When compared against previously published approaches the results show that the algorithm is very competitive

    A tensor based hyper-heuristic for nurse rostering

    Get PDF
    Nurse rostering is a well-known highly constrained scheduling problem requiring assignment of shifts to nurses satisfying a variety of constraints. Exact algorithms may fail to produce high quality solutions, hence (meta)heuristics are commonly preferred as solution methods which are often designed and tuned for specific (group of) problem instances. Hyper-heuristics have emerged as general search methodologies that mix and manage a predefined set of low level heuristics while solving computationally hard problems. In this study, we describe an online learning hyper-heuristic employing a data science technique which is capable of self-improvement via tensor analysis for nurse rostering. The proposed approach is evaluated on a well-known nurse rostering benchmark consisting of a diverse collection of instances obtained from different hospitals across the world. The empirical results indicate the success of the tensor-based hyper-heuristic, improving upon the best-known solutions for four of the instances

    Design of an Information System for optimizing the Programming of nursing work shifts

    Get PDF
    Health institutions operate twenty-four hours a day, seven days a week. They face a demand that fluctuates daily. Unlike jobs with fixed hours and obligatory days off, in health, operational continuity is required. The allocation for nursing shifts generates a rotation of people for health services according to legal and casuistic guidelines. Assigning and planning shifts results in a workload that takes an average of five to six extra hours. Existing applications offer a partial solution because they do not consider the news and contingencies of a health service. A web application is presented that, given a list of nurses, historical shifts and restrictions, a work shift planning is generated. This application comes to support the current shift allocation method based on electronic spreadsheets. The development consists of two modules. The first module has a shift allocation algorithm developed in C ++ and the second module has a graphical interface. As a case study, a set of health services from Chile and Colombia was used. The services have a defined number of nurses, who work different shifts according to the role and need of the institution. The results obtained are similar to a historical one. The proposed system takes less time and delivers various files and parameters that can be useful for nurses, the service and the health institutio

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    A heuristic algorithm based on multiassignment procedures for nurse scheduling

    Get PDF
    This paper tackles a Nurse Scheduling Problem which consists of generating work schedules for a set of nurses while considering their shift preferences and other requirements. The objective is to maximize the satisfaction of nurses? preferences and minimize the violation of soft constraints. This paper presents a new deterministic heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is based on successive resolutions of the assignment problem. The algorithm has two phases: a constructive phase and an improvement phase. The constructive phase builds a full schedule by solving successive assignment problems, one for each day in the planning period. The improvement phase uses a couple of procedures that re-solve assignment problems to produce a better schedule. Given the deterministic nature of this algorithm, the same schedule is obtained each time that the algorithm is applied to the same problem instance. The performance of MAPA is benchmarked against published results for almost 250,000 instances from the NSPLib dataset. In most cases, particularly on large instances of the problem, the results produced by MAPA are better when compared to best-known solutions from the literature. The experiments reported here also show that the MAPA algorithm finds more feasible solutions compared with other algorithms in the literature, which suggest that this proposed approach is effective and robust
    • …
    corecore