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ABSTRACT 

In this paper, we present a scatter search algorithm for the well-known nurse scheduling 

problem (NSP). This problem aims at the construction of roster schedules for nurses taking 

both hard and soft constraints into account. The objective is to minimize the total preference 

cost of the nurses and the total penalty cost from violations of the soft constraints. The 

problem is known to be NP-hard. 

The contribution of this paper is threefold. First, we are, to the best of our knowledge, the first 

to present a scatter search algorithm for the NSP. Second, we investigate two different types 

of solution combination methods in the scatter search framework, based on four different cost 

elements. Last, we present detailed computational experiments on a benchmark dataset 

presented recently, and solve these problem instances under different assumptions. We show 

that our procedure performs consistently well under many different circumstances, and hence, 

can be considered as robust against case-specific constraints.  

 

Keywords: meta-heuristics; scatter search; nurse scheduling 
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1 INTRODUCTION 

Personnel scheduling problems are encountered in many application areas, such as 

public services, call centers, hospitals, and industry in general. For most of these 

organizations, the ability to have suitably qualified staff on duty at the right time is of critical 

importance when attempting to satisfy their customers’ requirements and is frequently a large 

determinant of service organization efficiency (Thompson, 1995; Felici and Gentile, 2004). 

This explains the broad attention given in literature to a great variety of personnel rostering 

applications (see Ernst et al., 2004a; Ernst et al., 2004b). In general, personnel scheduling is 

the process of constructing occupation timetables for staff to meet a time-dependent demand 

for different services while encountering specific workplace agreements and attempting to 

satisfy individual work preferences. The particular characteristics of different industries result 

in quite diverse rostering models which leads to the application of very different solution 

techniques to solve these models. Typically, personnel scheduling problems are highly 

constrained and complex optimization problems (Ernst et al., 2004b; Glover and McMillan, 

1986).  

In this paper, a procedure is presented to solve the nurse scheduling problem (NSP) 

which involves the construction of duty rosters for nursing staff over a pre-defined period. 

Problem descriptions and models vary drastically and depend on the characteristics and 

policies of the particular hospital. Due to the huge variety of hard and soft constraints, and the 

several objective function possibilities, the nurse scheduling problem has a multitude of 

representations, and hence, many exact and heuristic procedures have been proposed to solve 

the NSP in various guises. Recent literature surveys (Cheang et al., 2003; Burke et al., 2004) 

give an overview of all these procedures, and mention simulated annealing, tabu search and 

genetic algorithms as popular meta-heuristics for the NSP.  

In constructing a nurse schedule, nurses need to be assigned to days and shifts in order 

to meet the minimal coverage constraints and other case-specific constraints and to maximize 

the quality of the constructed timetable. According to Warner (1976), quantifying preferences 

in the objective function maintains fairness and guarantees the quality of the nurse roster over 

the scheduling horizon. The coverage constraints embody the required nurses per shift and per 

day, and are inherent to any shift scheduling problem. The coverage constraints are handled as 

soft constraints that can be violated at a certain penalty cost expressed in the objective 

function. Case-specific constraints (determined by personal time requirements, specific 

workplace conditions, national legislation, etc…) are handled as hard constraints, for which 
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no violation is possible whatsoever. The objective is thus to minimize the nurses’ preferences, 

expressed as the aversion to work a particular shift on a particular day, and to obtain a feasible 

schedule as much as possible subject to different case-specific (hard) constraints. The 

problem is known to be NP-hard (Osogami and Imai, 2000).  

In section 2 of this paper, we briefly review the philosophy of the scatter search 

template provided by Glover (1998). Moreover, we discuss and illustrate the underlying 

principles and the implementation of the scatter search framework for the nurse scheduling 

problem. In section 3, we present new computational results tested on the NSPLib dataset 

proposed by Vanhoucke and Maenhout (2005). In section 4, conclusions are made and 

directions for future research are indicated. 

2 SCATTER SEARCH FOR NSP  

Scatter search (Glover, 1998) is a population-based meta-heuristic in which solutions 

are combined to yield better solutions using convex linear or non-linear combinations. This 

evolutionary meta-heuristic differs from other evolutionary approaches, such as genetic 

algorithms, by providing unifying principles for joining solutions based on generalized path 

constructions in Euclidian space and by utilizing strategic designs where other approaches 

resort to randomization. The scatter search methodology is very flexible, since each of its 

elements can be implemented in a variety of ways and degrees of sophistication. Hence, the 

scatter search template has been successfully applied in several application areas. However, to 

the best of our knowledge, the scatter search framework has been applied only once to 

personnel rostering, more precisely on a labour scheduling problem by Casado et al. (2005). 

In their paper, they describe the development and implementation of a decision support 

system for the optimization of the passenger flow by trading off service quality and labour 

costs at an airport. In their search for the minimal number of employees, their path relinking 

approach concentrates on the shifts which are staffed differently in the parent solutions. 

For an overview of the basic and advanced features of the scatter search meta-

heuristic, we refer to Glover and Laguna (2000) and Martí et al. (2006). In the following, we 

describe our implementation of the scatter search approach to the nurse scheduling problem. 

The pseudo-code for our generic scatter search template to solve the NSP is written below. 
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Algorithm Scatter Search NSP   

 Diversification Generation Method 

 While Stop Criterion not met 

  Subset Generation Method 

  Subset Combination Method 

  Improvement Method 

  Reference Set Update Method 

 Endwhile 

2.1  The Diversification Generation Method 

In this initialization step, a large pool of P initial solution vectors is generated. Since 

useful information about the structure of optimal solutions is typically contained in a suitably 

diverse collection of elite solutions, the initial solutions are generated in such a manner a 

critical level of diversity is guaranteed (Glover and Laguna, 2000). In order to generate a 

diverse set of initial solutions, we create x solutions using a constructive heuristic and P – x 

solutions in a random way. The constructive heuristic schedules the nurses in a random 

sequence taking both preference costs and penalty cost of violating the coverage constraints 

into account. This greedy heuristic is conceived as a minimum cost flow problem which 

represents all shifts on all days to which a particular nurse can be assigned to. Since not all 

case-specific constraints (e.g. the maximum number of assignments) can be modelled in the 

network, it has been implemented by a k-shortest path approach. Based on this initial 

population, a subset of the population elements are designated to be reference solutions. This 

reference set contains b1 high quality solutions (Refset1) and b2 diverse solutions (Refset2). 

The construction of Refset1 starts with the selection of the best b1 solutions in terms of 

solution quality out of the P initial solutions. In order to select the diverse solutions (Refset2), 

the minimum distance between all remaining P - b1 solutions and the b1 solutions is 

calculated based on the adjacency degree of Aickelin (1999). In pursuit of diversity, the b2 

solutions with maximal distance will be selected for membership of Refset2. 

2.2 The Solution Generation Method  

After the initialization phase, scatter search operates on this reference set by 

combining pairs of reference solutions in a controlled, structured way. Two elements of the 

reference set are chosen in a systematic way to produce points both inside and outside the 

convex regions spanned by the reference solutions. Glover and Laguna (2000) suggest to 

create new solutions out of all two-element subsets. Choosing the two reference solutions out 
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of the same cluster stimulates intensification, while choosing them from different clusters 

stimulates diversification. Hence, in our scatter search, the solution method consists of the 

evaluation of all b1 × b1, b1 × b2 and b2 × b2 combinations in a random sequence. 

2.3 The Solution Combination Method 

A new solution point is the result of a linear combination of two population elements 

in the reference set. The process of generating linear combinations of a set of reference 

solutions may be characterized as generating paths between solutions (Glover and Laguna, 

1997; Glover, 1999). A path between solutions will generally yield new solutions that share a 

significant subset of attributes contained in both parent solutions, which can differ according 

to the path selected. The moves introduce attributes contributed by a guiding solution and/or 

reduce the distance between the initiating and the guiding solution. The goal is to capture the 

assignments that frequently or significantly occur in high quality solutions, and then to 

introduce some of these compatible assignments into other solutions that are generated by a 

heuristic combination mechanism. 

Our specific combination method relies on problem-specific information of both the 

initiating and the guiding solution schedule to create a new schedule, and takes four criteria 

into account. Two of these criteria incorporate objective function related data into account, as 

follows:  

Preference costs: Since the overall objective is to minimize the nurses’ aversion 

towards the constructed work timetable, the day/shift preference cost expressed by each nurse 

is inherent to any problem instance. 

 

Coverage information: In order to minimize the penalty cost of violating the minimal 

coverage constraints, the algorithm penalizes those shifts where the coverage constraints are 

violated. In doing so, the solution combination method biases the initiating solution towards a 

(more) feasible solution.  

 

The other two criteria incorporate information to maintain the “good” characteristics of both 

the initiating and the guiding schedule, as follows: 

Critical shifts of the initiating solution: In directing the initiating solution towards the 

guiding solution, the algorithm prevents the removal of critical shifts from the initiating 

solution, which, in case of removal, would lead to an additional violation of the coverage 

constraints. In doing so, the algorithm aims at the construction of a new solution point that 

does not encounter any (additional) violations of the coverage constraints.  
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Bias to the guiding solution: The algorithm guides the initiating solution to the 

assignments of the guiding solution, in order to decrease the distance between the two 

schedules by introducing attributes of the guiding solution 

These four elements will be carefully taken into account for each move from an initiating 

solution to a guiding solution. Since the relinking process of the two solutions out of the reference set 

can be based on more than one neighbourhood (Glover and Laguna, 2000), our algorithm makes use of 

two types of neighbourhood moves: a nurse neighbourhood move or a day neighbourhood move. 

In the nurse neighbourhood move, the schedule of a single nurse of the initiating 

solution is directed towards the schedule of the corresponding nurse in the guiding solution. 

Therefore, the algorithm relies on a k-shortest path approach to optimize the schedule for a 

particular nurse taking into account a weighted average of the four aforementioned elements. 

The scheduling of a single nurse at minimum cost over the complete scheduling horizon can 

be considered as a minimum cost flow problem and can be solved by any shortest path 

algorithm. Moreover, since not all case-specific constraints can be incorporated in a shortest 

path algorithm, a k-shortest path approach is implemented where the outcome of this 

algorithm (i.e. a nurse schedule) should be checked whether it is feasible or not with respect 

to all these constraints. If the outcome is not feasible, a 2nd shortest path will be generated and 

checked for feasibility. This process continues until the shortest feasible pattern (i.e. the kth 

shortest path) for the nurse is found. The graph used for our algorithm consists of 

#days*#shifts nodes (plus two extra dummy nodes representing the start and end of the 

network) representing the daily shift assignments for the nurse under study. An arc (a, b) is 

drawn to connect node a representing a possible shift assignment on day j to node b 

representing a shift assignment on day j + 1. The distances between nodes are made up of a 

weighted average of the four abovementioned elements. In calculating the new schedule for a 

particular nurse, we rely on the algorithm of Martins and Pascoal (2003) which identifies the 

next shortest path deviating from the previously found shortest paths and is based on 

Dijkstra’s labelling algorithm (Dijkstra, 1959). 

In the day neighbourhood move, the roster of a single day of the initiating solution is 

directed towards the roster of the corresponding day of the guiding solution, given the 

assignments of the nurses on all other days in the initiating solution. To that purpose, we 

transform a single day roster to a linear assignment problem matrix, and solve it by means of 

the Hungarian method (Kuhn, 1955). In constructing this matrix, we duplicate each shift 

column such that each shift has a number of columns that is equal to its coverage 

requirements. Moreover, we add dummy nurses and/or dummy shifts to allow under- or over-

coverage of the coverage requirements. The number of extra dummy nurses equals the total 
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daily nurse requirements, and penalizes under-coverage when a required shift column has to 

be assigned to a dummy nurse. The number of extra dummy shifts equals the total number of 

(non-dummy) nurses and allows over-coverage of the coverage requirements when nurses are 

assigned to dummy shifts. The cost of assigning non-dummy nurses to one of the dummy 

shifts is equal to the minimum cost of the (feasible) shifts a nurse can be assigned to. The 

LAP matrix contains costs associated with the four criteria the solution combination 

mechanism is based on. Furthermore, the LAP matrix excludes certain shift assignments to 

cope with the case-specific constraints, taking into account the fixed assignments of all other 

days of the current solution. 

This solution combination method can be best illustrated on an example NSP instance 

with 5 nurses and a scheduling period of 4 days. We assume that each day consists of three 

shifts (e.g. early (s1), day (s2), night (s3)) and a free shift (s4). The nurses’ preferences as well 

as the minimal coverage requirements are displayed in the top table of figure 1. Since “s4” is 

used to refer to a free shift, its daily coverage requirements equal zero. We assume some 

additional case specific constraints as follows: the number of assignments varies between a 

minimal value of 3 and a maximal value of 4. The consecutive working shifts vary between a 

minimal value of 2 and a maximal value of 4. The assignment of nurses to maximal one shift 

per day and the succession constraints are inherent to continuous personnel scheduling. The 

latter constraint implies forbidden successive assignments between s3 and s1, s3 and s2 and s2 

and s1. The left top table is assumed to be the initiating solution from Refset2 with a total 

preference cost of 81 and four coverage violations (the specific assignments have been 

encircled). Since the algorithm penalizes each coverage violation with a penalty cost of 100, 

the total solution quality of the initiating solution equals 481. The right table is assumed to be 

the guiding solution from Refset1 with a total preference cost of 70 and no coverage penalties. 

The adjacency degree measures the distance between schedules as the sum of zeros (identical 

day/shift assignment) and ones (different day/shift assignment), which leads to a total distance 

of 12. 

In the remainder of this section, we illustrate the nurse neighbourhood move for nurse 

4 (left part) and the day neighbourhood move for day 2 (right part) on our two parent solution 

schedules. 

Insert Figure 1 About Here 
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Nurse neighbourhood move: The left table below the parent solutions displays the 

calculations of the four elements of this section, i.e. the nurse’s preference costs, the coverage 

penalties, the critical shifts and the assigned shifts of the guiding solutions. The coverage 

penalty is set to 100, while the assigned shifts of the guiding solution have a negative cost of 

10. The critical shifts are found for those assigned shifts of the initial schedule of nurse 4 

when the difference between the number of scheduled nurses (row ‘Scheduled’) and the 

assignments of nurse 4 is lower than minimum required number of nurses (row ‘Coverage’).  

The sum of all costs in the table results in the cost values on the corresponding arcs of 

the network representing the scheduling of the nurse over the complete scheduling horizon. 

The graph counts 4 * 4 nodes and a start and an end dummy node. The shortest path in the 

network is s3 – s3 – s4 – s1 with a distance of -291. However, the path is infeasible since the 

constraint of minimal 2 consecutive working days is violated. Based on the same argument, 

the 2nd shortest path, i.e. s1 – s3 – s4 – s1 with a distance of -289, is infeasible. The next 

shortest path is s1 – s1 – s1 – s1 with a distance of -213. This path is feasible for all case-

specific constraints and leads to the newly constructed schedule at the left bottom part of the 

figure. The new solution point has a total solution quality of 386. The total preference cost has 

increased from 81 to 86, whereas the number of coverage violations has decreased from 4 to 

3. The distance between the new initiating solution point and the guiding solution point has 

also decreased from 12 to 11. 

Day neighbourhood move: The right table below the parent solutions displays the 

calculations of the four elements in a similar way as previously, but from the second day’s 

point-of-view. The corresponding LAP matrix contains the sum of three of these four 

elements, i.e. the nurse’s preference costs, the total critical shift cost and the cost of the 

assigned shifts of the guiding solutions. The coverage penalties have been incorporated 

implicitly in the structure of the LAP matrix since dummy nurses (dn) have been inserted 

which penalize the under-coverage of shifts. In contrast, the incorporation of dummy shifts 

(ds) allows the over-coverage of shifts. The case-specific constraints have been embedded in 

the LAP matrix by excluding some assignments (denoted by crossed cells). The optimal LAP 

solution has been encircled and leads to the newly constructed schedule at the right bottom 

part of the figure. The new solution point has a total solution quality of 374. The total 

preference cost has decreased from 81 to 74, and the number of coverage violations has also 

decreased from 4 to 3. The distance between the new initiating solution point and the guiding 

solution point has not changed and remains 12. 
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2.4 The Improvement Method 

The improvement method applies heuristic processes to improve both total preference 

cost and coverage infeasibilities of the newly generated solution points. To that purpose, we 

implemented the three complementary local search algorithms of Maenhout and Vanhoucke 

(2005), each focusing on a different part of the scheduling matrix, i.e. on the schedule of a 

single nurse, on a single day for all nurses and on the whole schedule for all nurses.  

The pattern-based local search aims at the optimization of the schedule for a 

particular nurse, given the schedules for all other nurses. Scheduling a single nurse over the 

scheduling horizon can be considered as a minimum cost flow problem to compute a shortest 

path on a suitably defined graph satisfying the hard constraints and the soft constraints as 

much as possible. Preference costs and penalty costs of violating the coverage constraints are 

both taken into account. 

The day-based local search optimizes the schedule for one day given the assignments 

of the nurses on all other days. To that purpose, the single day in our schedule is converted to 

a matrix which can be solved as a linear assignment problem. Moreover, the transformation 

allows over- and under-coverage the coverage requirements and the matrix consists of both 

preference and penalty cost information in order to bias the solution of the linear assignment 

problem towards a coverage feasible shift assignment. 

The schedule-based local search aims to improve the total preference cost of the 

schedule by swapping (parts of) schedules between nurses. This problem is solved by defining 

a linear assignment problem that optimally re-distributes the schedules of the current schedule 

among the nurses. The re-distribution mechanism has only effect on the total preference cost 

of the schedule, since the coverage remains unchanged. The algorithm tries first to swap 

complete schedules and then tries to swap parts of the schedule (i.e. parts of two days, 

whether or not consecutive) between the nurses. 

2.5 The Reference Update Method 

After the application of the diversification and intensification process, the child 

solutions are added to the reference set if certain threshold values for the criteria which 

evaluate the merit of newly created solution points are met. A newly generated solution may 

become a member of the reference set either if the new solution has a better objective function 

than the solution with the worst objective value in Refset1 or if the diversity of the new 

solution to the reference set is larger than the solution with the smallest distance value in 

Refset2.  
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In both cases the new solution replaces the worst and the ranking is updated to identify 

the new worst solution in terms of either quality or diversity. The reference set is dynamically 

updated. In contrast to a static update where the reference set is updated after combination of 

all generated sub-sets, a dynamic update evaluates each possible reference set entrance 

instantly. In this way, new “best” solutions can be combined faster and inferior solutions are 

eliminated faster. During the search, diversity in the reference set is maintained through the 

use of these artificial tiers in the reference set but also through a threshold distance depending 

on the problem size under study. The latter prevents the duplication of solution points in the 

reference set and/or the entrance of highly resembling solutions. 

3 COMPUTATIONAL RESULTS 

In this section, we present computational results for our scatter search procedure tested 

on the NSPLib problem instances of Vanhoucke and Maenhout (2005). This testset contains 4 

sub-sets with 25, 50, 75, and 100 nurses and a 7-days scheduling horizon (this so-called 

diverse set contains 4 * 7290 instances), and 2 sub-sets with 30 or 60 nurses and a 28-days 

scheduling horizon (this realistic set contains 2 * 960 instances). The nurses’ preference 

structure and the coverage requirements of each sub-set are characterized by systematically 

varied levels of various NSP complexity indicators proposed in Vanhoucke and Maenhout 

(2005). All sets have been extended by 8 mixes of case-specific constraints which appear 

frequently in literature (Cheang et al., 2003), i.e. the minimum/maximum number of working 

assignments, the minimum/maximum number of assignments per shift, the 

minimum/maximum consecutive working shifts, and the minimum/maximum consecutive 

working shifts. The testsets and the case-specific constraints can be downloaded from 

http://www.projectmanagement.ugent.be/nsp.php. The tests have been carried out on a 

Toshiba SPA10 with a 2.4 Ghz processor and 256 Mb RAM, under a stop criterion of 1,000 

or 5,000 schedules. In the next sub-section, we compare different neighbourhood combination 

versions into detail. In section 3.2, we present best known solutions for our large dataset. 

3.1 Day Neighbourhood or Nurse Neighbourhood 

In order to test the performance of our two solution combination methods, the day 

neighbourhood (DNH) and nurse neighbourhood (NNH), we have randomly selected 576 

instances from the 25- and 288 instances from the 30- nurse instances.  
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Each neighbourhood move (day or nurse) contains a mix of the 4 elements, i.e. 

preference cost (PC), coverage penalty (CP), critical shift calculation (CS) and the bias to the 

guiding solution (BG). Both the nurse and the day neighbourhood moves will be compared 

with simple and straightforward moves, based on 

 

Random cost (RAN): The cost matrix simply contains random numbers instead of the 

sum of PC, CP, CS and BG. 

 

Percentage of guiding solution (%GS): A randomly selected part of the day (DNH) or 

nurse (NNH) of the initiating solution will be replaced by the assignments of the 

guiding solution. 

 

Complete replacement by the guiding solution (CGS): The day (DNH) or nurse 

(NNH) of the initiating solution will be completely replaced by the assignments of the 

guiding solution. 

Insert Table 1 About Here 

The results displayed in table 1 can be summarized as follows. First, the day-based 

neighbourhood (DNH) outperforms, on the average, the nurse-based neighbourhood (NNH). 

Indeed, 13 (10) of the 18 tests results in a DNH cost which is lower than its corresponding 

NNH cost. However, the best results can be obtained with the NNH method. The best result 

for the N25 (N30) instances amounts to 305.82 (1,486.36) which outperforms the best known 

results for the DNH method (306.94 and 1,492.97, respectively). Second, the top 4 results for 

the NNH have been displayed in bold, and show that the three elements, PC, CS and BG are 

relevant cost factors (3, 3 and 4 times used, respectively). The CP cost factor has been used 

only once in the top 4 results, and seems to be less important. Last, the simple CGS approach 

is the best approach for the DNH method, but is not able to outperform the best known results 

with the NNH method. The %GS has an average (good) performance for the NNH (DNH) 

method while the RAN method leads to rather poor results for both solution combination 

methods. 

In section 3.2, we report best known solutions for all the data instances, based on the 

solution combination method NNH-PC/CS/BG for the diverse set with a 7-days scheduling 
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horizon (N25, N50, N75 and N100) and the solution method NNH-PC/CP/CS/BG for the 

realistic set with a 28-days scheduling horizon (N30 and N60). 

3.2 New Best Known Solutions 

In order to benchmark our results and present best known state-of-the-art solutions, we 

have tested all 31,080 instances on all case-specific constraint files, resulting in 248,640 

instances in total. We have truncated each test after a stop criterion of 1,000 and 5,000 

schedules. Table 2 and 3 display the results for respectively the 1,000 and 5,000 schedule stop 

criterion. The tables display the average solution quality of the tests, split up in the average 

total preference cost (Avg_Pref) and the average penalty cost (Avg_Pen) which is calculated 

as the average number of violations of the minimal coverage requirements times the penalty 

cost of 100, the required CPU time (Avg_CPU), the percentage of files for which a feasible 

solution has been found (%Feas), and the percentage deviation from the LP based lower 

bound (%Dev_LP). The latter has been found by a simple and straightforward LP model, and 

has been used for similar tests by [20]. No LP lower bounds could be provided for the N30 en 

N60 sets, since the number of constraints exceeded the limits for the industrial LINDO 

optimization library, version 5.3 (Schrage, 1995). 

Insert Table 2 & 3 About Here 

 

In order to fine-tune a number of parameters, we have run our procedure on a small 

subset of all instances under different parameter settings. In order to find an appropriate 

balance between the diversification and intensification process, we have combined the three 

proposed local search heuristics into a variable neighbourhood search. For the N25 instances, 

all nurses are subject to the pattern-based local search and all days are subject to the day-

based local search. The schedule-based local search evaluates possible swaps between whole 

schedules and two-days sub-schedules. In our tests, 40% of all two-days sub-schedules are 

swapped between the nurses for all testsets. The population size (b1 + b2) has been set to 15 

(10) for the N25, N50 and N30 (N75, N100 and N60) instances, respectively. Each time, 80% 

of these population elements (b1) have been put into the Refset1. Moreover, 40% of all nurses 

are subject to the NNH move for N25 and N50 instances, 60% for the N75 instances, 20% for 

the N100 instances and all nurses for the N30 and N60 instances. The total time needed to 



 15 

perform all our tests accounted for approximately 10 days for the 1,000 schedules tests and 35 

days for the 5,000 schedules tests.  

The table reveals that the gap between the obtained solutions and the LP based lower 

bounds is in many cases very small. For some of the cases, the gap is somewhat larger which 

gives an indication of the constrainedness of the problem instances. We suggest that this table 

can be used for comparison purposes for future researchers. To that purpose, we would like to 

call the attention to the strict test design used in our computational results section. Therefore, 

we rely on a limited number of generated schedules, which is a clear and easily applicable 

stop criterion that is independent of the computer platform and coding skills (see [11]). The 

results for each individual instance can be downloaded from 

www.projectmanagement.ugent.be/nsp.php. Our scatter search algorithm is able to 

outperform (equalize) 40.5% and 62.06% (27.12% and 1.45%) of respectively the diverse and 

realistic instances solved by the electromagnetic procedure of [20] with a stop-criterion of 

1,000 schedules, and 33.29% and 64.42% (45.02% and 1.74%) of respectively the diverse and 

realistic instances for the 5,000 schedules. We would like to call researchers to outperform 

these results and report their solutions on our website. 

4 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we have presented a new scatter search procedure for the well-known 

nurse scheduling problem. To the best of our knowledge, the literature on scatter search for 

the nurse scheduling problem is completely void. This framework has only been applied once 

on a similar problem type (labour scheduling) by Casado et al. (2005). 

We have investigated the use of two types of solution combination methods, based on 

the combinations of sub-schedules of nurses or days. Each method calculates the 

attractiveness of the move based on four criteria. We have shown that the scatter search 

algorithm leads to promising results and hence might have a bright future in the further 

development of meta-heuristic optimization algorithms. We have tested our instances based 

on a generated problem set NSPLib, under a strict test design with a strict stop criterion to 

facilitate comparison between procedures. All results can be downloaded from our website 

which can be used to motivate researchers to report new, outperforming state-of-the-art 

results. 

Our main future research intention is as follows. We will aim at the development of 

hybrid versions of different meta-heuristics, based on knowledge and concepts presented in 

this and many other research papers. A skilled combination of concepts of different meta-
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heuristics can provide a more efficient behaviour and a higher flexibility when dealing with 

real-world and large-scale problems. 
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FIGURE 1 

The Solution Combination Method in nurse and day neighbourhood space 

 

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9
Nurse 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2
Nurse 3 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6
Nurse 4 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0
Nurse 5 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2
Scheduled 1 2 0 2 3 2 0 0 2 1 2 0 1 1 3 0 2 1 1 1 2 2 1 0 2 2 1 0 2 1 1 1
Coverage 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0
Violation 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Guiding Solution
Day 1 Day 2 Day 3 Day 4

Initiating Solution
Day 1 Day 2 Day 3 Day 4

 
s1 s2 s3 s4

Day 1 9 / -100 / 0 / 0 4 / 0 / 0 / 0 7 / -100 / 0 / 0 2 / 0 / 0 / -10

Day 2 2 / 0 / 0 / -10 0 / 0 / 0 / 0 5 / -100 / 0 / 0   6 / 0 / 0 / 0

Day 3 4 / 0 / 0 / -10 6 / 0 / -100 / 0 1 / 0 / 0 / 0 5 / 0 / 0 / 0

Day 4 2 / -100 / 0 / -10 2 / 0 / 0 / 0 2 / 0 / 0 / 0 0 / 0 / 0 / 0

s1 s2 s3 s4

Nurse 1 0 / - / 0 / 0 0 / - / -100 / -10 3 / - / 0 / 0 6 / - / 0 / 0

Nurse 2 2 / - / 0 / 0 8 / - / 0 / -10 0 / - / 0 / 0 7 / - / 0 / 0

Nurse 3 9 / - / 0 / 0 8 / - / -100 / 0 3 / - / 0 / -10 4 / - / 0 / 0

Nurse 4 2 / - / 0 / -10 0 / - / 0 / 0 5 / - / 0 / 0 6 / - / 0 / 0

Nurse 5 7 / - / 0 / -10 1 / - / 0 / 0 1 / - / 0 / 0 2 / - / 0 / 0  
* PC / CP / CS / BG is used to display preference cost / coverage penalties / critical shifts / bias to the 
guiding solution 
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s1 s2 s2 s3 ds ds ds ds ds

Nurse 1 × -110 -110 3 -110 -110 -110 -110 -110

Nurse 2 2 × × × 2 2 2 2 2

Nurse 3 × -92 -92 -7 -92 -92 -92 -92 -92

Nurse 4 -8 0 0 × -8 -8 -8 -8 -8

Nurse 5 -3 × × × -3 -3 -3 -3 -3

dn 100 100 100 100 0 0 0 0 0

dn 100 100 100 100 0 0 0 0 0

dn 100 100 100 100 0 0 0 0 0

dn 100 100 100 100 0 0 0 0 0  
 

 

s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

Nurse 1 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9
Nurse 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2
Nurse 3 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6
Nurse 4 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0

Nurse 5 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2
Scheduled 2 2 0 1 3 2 0 0 3 0 2 0 2 1 2 0 1 2 0 2 2 2 1 0 2 1 2 0 1 1 3 0
Coverage 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0
Violation 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

New Solution

Day 1 Day 2 Day 3 Day 4

New Solution

Day 1 Day 2 Day 3 Day 4
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TABLE 1 

Average solution quality (Avg_Sol) and Ranking for the various combination methods 

 

  PC   CP   CS   BG Avg_Sol Ranking Avg_Sol Ranking Avg_SolRanking Avg_Sol Ranking
× - - - 310.67 17 1,498.21 9 307.52 14 1,500.20 15
- × - - 312.26 18 1,528.22 18 307.37 11 1,501.21 16
- - × - 308.43 9 1,507.74 11 307.86 18 1,498.72 13
- - - × 306.67 5 1,496.02 6 307.00 5 1,495.93 9
× × - - 310.25 14 1,515.23 13 307.57 16 1,542.96 18
× - × - 309.18 11 1,496.80 7 307.67 17 1,498.66 12
× - - × 306.66 4 1,493.21 4 307.00 5 1,495.16 5
- × × - 310.40 15 1,519.58 15 307.50 13 1,498.87 14
- × - × 309.37 13 1,519.87 16 307.03 7 1,494.11 3
- - × × 306.57 3 1,492.17 3 307.27 10 1,495.43 7
× × × - 308.39 8 1,509.86 12 307.44 12 1,497.53 11
× × - × 309.26 12 1,518.92 14 306.97 4 1,496.35 10
× - × × 305.82 1 1,490.34 2 307.19 8 1,495.65 8
- × × × 308.99 10 1,494.23 5 307.21 9 1,495.24 6
× × × × 306.20 2 1,486.36 1 306.94 3 1,493.77 2

  CGS - - - - 306.68 6 1,497.63 8 306.14 1 1,492.97 1
  RAN - - - - 310.56 16 1,524.50 17 307.55 15 1,504.30 17
  %GS - - - - 307.01 7 1,498.63 10 306.71 2 1,494.71 4
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Combination elements Nurse Neighbourhood Day Neighbourhood
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TABLE 2 

Computational Results for the diverse and realistic dataset for 1,000 schedules 

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 1 241.51 53.02 88.27% 0.19 0.67% 481.73 84.81 89.95% 0.66 0.70%
Case 2 270.45 54.06 88.27% 0.69 0.33% 532.35 88.68 90.00% 2.00 0.38%
Case 3 251.31 53.02 87.86% 0.51 1.94% 500.91 84.98 89.03% 1.64 1.92%
Case 4 267.56 71.28 88.27% 0.77 0.51% 530.34 145.02 89.97% 2.39 0.56%
Case 5 242.56 53.02 85.82% 0.19 4.26% 484.01 84.83 84.77% 0.66 4.09%
Case 6 286.40 127.05 88.27% 1.73 0.77% 560.26 279.73 89.99%4.56 0.87%
Case 7 260.88 72.78 79.68% 0.43 6.97% 515.59 142.59 77.39% 1.20 6.27%
Case 8 0.00 0.00 85.43% 0.00 3.99% 0.00 0.00 85.05% 0.00 3.66%

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 1 739.70 150.34 88.67% 1.77 0.67% 1,183.72 166.57 90.30% 5.83 0.77%
Case 2 806.33 154.88 88.67% 3.56 0.35% 1,305.39 176.27 90.44% 8.19 0.45%
Case 3 754.12 150.40 87.89% 3.03 1.80% 1,213.13 167.63 89.14% 7.50 1.86%
Case 4 805.29 204.55 88.68% 4.14 0.48% 1,285.92 266.71 90.21% 8.72 0.61%
Case 5 741.23 150.36 85.84% 1.78 4.30% 1,186.81 166.68 85.58% 5.86 3.98%
Case 6 853.04 378.59 88.68% 7.06 0.37% 1,361.53 534.86 90.37% 12.33 0.48%
Case 7 790.97 211.52 78.66% 2.46 6.51% 1,263.28 264.58 78.52% 6.71 6.10%
Case 8 0.00 0.00 85.27% 0.00 4.83% 0.00 0.00 85.97% 0.00 4.65%

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 9 1,546.94 469.48 65.94% 4.71 - 3,156.39 801.67 68.23%8.02 -
Case 10 1,437.84 396.77 69.17% 1.66 - 2,947.16 684.17 69.79% 6.84 -
Case 11 1,633.40 501.25 65.42% 13.33 - 3,321.11 846.15 68.13% 8.46 -
Case 12 1,476.42 399.48 69.17% 2.31 - 3,022.04 686.77 69.27% 6.87 -
Case 13 1,586.09 568.33 65.31% 5.11 - 3,237.34 987.08 67.40% 9.87 -
Case 14 1,453.73 402.81 68.75% 1.91 - 2,971.72 755.83 67.92% 7.56 -
Case 15 1,705.82 1,010.00 59.17% 18.04 - 3,483.89 2,085.5259.58% 20.86 -
Case 16 1,556.91 545.42 65.73% 2.88 - 3,178.67 1,087.60 65.31% 10.88 -

Realistic set
N30 N60

Diverse set
N25 N50

N75 N100
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TABLE 3 

Computational Results for the diverse and realistic dataset for 5,000 schedules 

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 1 252.23 53.02 88.27% 1.61 0.19% 502.66 84.79 90.03% 5.33 0.25%
Case 2 240.86 53.02 88.27% 1.03 0.08% 480.42 84.79 90.03% 3.76 0.11%
Case 3 268.40 53.76 88.08% 2.31 1.11% 529.16 86.80 89.66% 6.38 1.17%
Case 4 250.33 53.02 88.27% 1.58 0.14% 499.12 84.79 90.03% 5.37 0.19%
Case 5 265.94 71.12 85.88% 2.26 3.63% 527.76 142.88 85.25% 6.97 3.44%
Case 6 241.86 53.02 88.27% 1.03 0.50% 482.65 84.79 90.03% 3.77 0.59%
Case 7 284.11 125.05 80.10% 5.05 5.95% 556.82 273.20 78.29%12.61 5.33%
Case 8 259.21 71.89 85.60% 1.67 3.26% 513.02 140.01 85.50% 5.01 3.01%

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 1 762.77 150.32 88.70% 10.13 0.33% 1,223.44 166.49 90.49% 23.08 0.36%
Case 2 738.20 150.32 88.70% 10.78 0.15% 1,180.94 166.32 90.51% 21.16 0.20%
Case 3 802.67 152.43 88.37% 14.33 1.24% 1,299.15 170.40 90.01% 24.68 1.22%
Case 4 752.10 150.32 88.70% 9.83 0.23% 1,209.59 166.45 90.48% 22.09 0.28%
Case 5 802.08 202.88 86.06% 11.36 3.85% 1,280.83 260.23 86.28% 24.08 3.43%
Case 6 739.66 150.32 88.70% 8.51 0.17% 1,183.93 166.35 90.51% 21.22 0.22%
Case 7 848.60 367.17 79.48% 16.28 5.76% 1,354.75 517.49 79.49% 31.24 5.38%
Case 8 787.75 206.68 85.78% 9.42 4.30% 1,258.08 256.98 86.53% 22.11 4.11%

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 9 1,525.63 423.65 68.02% 17.37 - 3125.66 743.65 68.54%37.99 -
Case 10 1,429.45 392.50 69.58% 7.52 - 2935.91 677.81 70.00%24.01 -
Case 11 1,607.99 429.58 67.60% 40.68 - 3277.91 758.54 68.44% 73.00 -
Case 12 1,465.36 392.40 69.38% 8.95 - 3006.31 677.29 69.90%26.10 -
Case 13 1,570.33 501.67 66.35% 17.52 - 3211.65 906.46 67.92% 37.66 -
Case 14 1,444.48 394.17 69.48% 7.64 - 2963.95 681.98 69.79%24.04 -
Case 15 1,678.09 843.75 63.33% 59.68 - 3424.43 1543.33 66.04% 105.97 -
Case 16 1,541.34 498.02 66.88% 10.41 - 3154.49 882.92 68.23% 27.44 -

Realistic set
N30 N60

N25 N50

N75 N100

Diverse set

 

 


