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ABSTRACT

In this paper, we present a scatter search algorfttr the well-known nurse scheduling

problem (NSP). This problem aims at the constract roster schedules for nurses taking
both hard and soft constraints into account. THeablve is to minimize the total preference

cost of the nurses and the total penalty cost fraomations of the soft constraints. The

problem is known to be NP-hard.

The contribution of this paper is threefold. Figg are, to the best of our knowledge, the first
to present a scatter search algorithm for the NE&feond, we investigate two different types
of solution combination methods in the scatter deframework, based on four different cost
elements. Last, we present detailed computatiorperements on a benchmark dataset
presented recently, and solve these problem inssander different assumptions. We show
that our procedure performs consistently well undany different circumstances, and hence,

can be considered as robust against case-speamifstraints.

Keywords: meta-heuristics; scatter search; nursediding



1 INTRODUCTION

Personnel scheduling problems are encountered iy rapplication areas, such as
public services, call centers, hospitals, and itrglusn general. For most of these
organizations, the ability to have suitably qualifistaff on duty at the right time is of critical
importance when attempting to satisfy their custamequirements and is frequently a large
determinant of service organization efficiency (fripson, 1995; Felici and Gentile, 2004).
This explains the broad attention given in literatto a great variety of personnel rostering
applications (see Ernst et al., 2004a; Ernst e28D4b). In general, personnel scheduling is
the process of constructing occupation timetabdestaff to meet a time-dependent demand
for different services while encountering specifiorkplace agreements and attempting to
satisfy individual work preferences. The particudharacteristics of different industries result
in quite diverse rostering models which leads t® #pplication of very different solution
techniques to solve these models. Typically, perebrscheduling problems are highly
constrained and complex optimization problems (Eetsal., 2004b; Glover and McMillan,
1986).

In this paper, a procedure is presented to solgentlise scheduling problem (NSP)
which involves the construction of duty rosters farsing staff over a pre-defined period.
Problem descriptions and models vary drasticallgd depend on the characteristics and
policies of the particular hospital. Due to the éwgriety of hard and soft constraints, and the
several objective function possibilities, the nussgheduling problem has a multitude of
representations, and hence, many exact and hepisitedures have been proposed to solve
the NSP in various guises. Recent literature swy{&heang et al., 2003; Burke et al., 2004)
give an overview of all these procedures, and mamgimulated annealing, tabu search and
genetic algorithms as popular meta-heuristicstierNSP.

In constructing a nurse schedule, nurses need &sdigned to days and shifts in order
to meet the minimal coverage constraints and athse-specific constraints and to maximize
the quality of the constructed timetable. AccordiagVarner (1976), quantifying preferences
in the objective function maintains fairness andrgatees the quality of the nurse roster over
the scheduling horizon. The coverage constraintsoeiynthe required nurses per shift and per
day, and are inherent to any shift scheduling gnoblThe coverage constraints are handled as
soft constraints that can be violated at a cergmnalty cost expressed in the objective
function. Case-specific constraints (determined gwrsonal time requirements, specific

workplace conditions, national legislation, etc..r¢ #andled as hard constraints, for which



no violation is possible whatsoever. The objecis/#hus to minimize the nurses’ preferences,
expressed as the aversion to work a particular shif particular day, and to obtain a feasible
schedule as much as possible subject to differase-specific (hard) constraint$he
problem is known to be NP-hard (Osogami and Im2002.

In section 2 of this paper, we briefly review thkilpsophy of the scatter search
template provided by Glover (1998). Moreover, wecdss and illustrate the underlying
principles and the implementation of the scatterd®e framework for the nurse scheduling
problem. In section 3, we present new computatioeslilts tested on the NSPLib dataset
proposed by Vanhoucke and Maenhout (2005). In @ecli, conclusions are made and

directions for future research are indicated.

2 SCATTER SEARCH FOR NSP

Scatter search (Glover, 1998) is a population-baseth-heuristic in which solutions
are combined to yield better solutions using conlegar or non-linear combinations. This
evolutionary meta-heuristic differs from other ewanary approaches, such as genetic
algorithms, by providing unifying principles forijong solutions based on generalized path
constructions in Euclidian space and by utilizingategic designs where other approaches
resort to randomization. The scatter search metbggas very flexible, since each of its
elements can be implemented in a variety of waysdeyrees of sophistication. Hence, the
scatter search template has been successfullyedpplseveral application areas. However, to
the best of our knowledge, the scatter search frarle has been applied only once to
personnel rostering, more precisely on a labouedualng problem by Casado et al. (2005).
In their paper, they describe the development anpleémentation of a decision support
system for the optimization of the passenger flomtdading off service quality and labour
costs at an airport. In their search for the midimanber of employees, their path relinking
approach concentrates on the shifts which areestafifferently in the parent solutions.

For an overview of the basic and advanced featofethe scatter search meta-
heuristic, we refer to Glover and Laguna (2000) Kfadti et al. (2006). In the following, we
describe our implementation of the scatter seapgnaach to the nurse scheduling problem.

The pseudo-code for our generic scatter searchia¢eno solve the NSP is written below.



Algorithm Scatter Search NSP
Diversification Generation Method
While Stop Criterion not met
Subset Generation Method
Subset Combination Method
Improvement Method
Reference Set Update Method
Endwhile

2.1 The Diversification Generation Method

In this initialization step, a large pool of P ialtsolution vectors is generated. Since
useful information about the structure of optimalusions is typically contained in a suitably
diverse collection of elite solutions, the initisblutions are generated in such a manner a
critical level of diversity is guaranteed (GlovardaLaguna, 2000). In order to generate a
diverse set of initial solutions, we create x solug using a constructive heuristic and P — x
solutions in a random way. The constructive hegristhedules the nurses in a random
sequence taking both preference costs and penasdtyo€ violating the coverage constraints
into account. This greedy heuristic is conceivedaasinimum cost flow problem which
represents all shifts on all days to which a paléicnurse can be assigned to. Since not all
case-specific constraints (e.g. the maximum nurebe@ssignments) can be modelled in the
network, it has been implemented by a k-shortesh @gproach. Based on this initial
population, a subset of the population elementgasggnated to be reference solutions. This
reference set contains b1l high quality solutionsf¢B1) and b2 diverse solutions (Refset2).
The construction of Refsetl starts with the sebacf the best bl solutions in terms of
solution quality out of the P initial solutions. dnder to select the diverse solutions (Refset2),
the minimum distance between all remaining P - blut®ns and the bl solutions is
calculated based on the adjacency degree of Arck&B99). In pursuit of diversity, the b2

solutions with maximal distance will be selectedrfiembership of Refset2.

2.2 The Solution Generation Method

After the initialization phase, scatter search apes on this reference set by
combining pairs of reference solutions in a cotgayl structured way. Two elements of the
reference set are chosen in a systematic way tupeopoints both inside and outside the
convex regions spanned by the reference solutiGisver and Laguna (2000) suggest to

create new solutions out of all two-element subsgi®osing the two reference solutions out
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of the same cluster stimulates intensification, levlwhoosing them from different clusters
stimulates diversification. Hence, in our scattearsh, the solution method consists of the

evaluation of alb; x by, by x b, andb, x b, combinations in a random sequence.

2.3 The Solution Combination Method

A new solution point is the result of a linear canation of two population elements
in the reference set. The process of generatirgplicombinations of a set of reference
solutions may be characterized as generating pgatween solutions (Glover and Laguna,
1997; Glover, 1999). A path between solutions géherally yield new solutions that share a
significant subset of attributes contained in bpdéinent solutions, which can differ according
to the path selected. The moves introduce attribcbatributed by a guiding solution and/or
reduce the distance between the initiating andytheéing solution. The goal is to capture the
assignments that frequently or significantly ocaurhigh quality solutions, and then to
introduce some of these compatible assignmentsoititer solutions that are generated by a
heuristic combination mechanism.

Our specific combination method relies on problgraesfic information of both the
initiating and the guiding solution schedule toateea new schedule, and takes four criteria
into account. Two of these criteria incorporateeghye function related data into account, as
follows:

Preference costs: Since the overall objective isninimize the nurses’ aversion
towards the constructed work timetable, the daft/pheference cost expressed by each nurse

is inherent to any problem instance.

Coverage information: In order to minimize the dgnaost of violating the minimal
coverage constraints, the algorithm penalizes tisbdés where the coverage constraints are
violated. In doing so, the solution combination neet biases the initiating solution towards a

(more) feasible solution.

The other two criteria incorporate information taintain the “good” characteristics of both
the initiating and the guiding schedule, as follows

Critical shifts of the initiating solution: In dicéing the initiating solution towards the
guiding solution, the algorithm prevents the rentoef critical shifts from the initiating
solution, which, in case of removal, would leadato additional violation of the coverage
constraints. In doing so, the algorithm aims at¢bastruction of a new solution point that

does not encounter any (additional) violationshef toverage constraints.



Bias to the guiding solution: The algorithm guidé® initiating solution to the
assignments of the guiding solution, in order tardase the distance between the two
schedules by introducing attributes of the guidintution

These four elements will be carefully taken intocact for each move from an initiating
solution to a guiding solution. Since the relinkimgpcess of the two solutions out of the referesate
can be based on more than one neighbourhood (Géovkkaguna, 2000), our algorithm makes use of
two types of neighbourhood moves: a nurse neightumd move or a day neighbourhood move.

In the nurse neighbourhood movéhe schedule of a single nurse of the initiating
solution is directed towards the schedule of theesponding nurse in the guiding solution.
Therefore, the algorithm relies on a k-shortesh @giproach to optimize the schedule for a
particular nurse taking into account a weightedraye of the four aforementioned elements.
The scheduling of a single nurse at minimum costr akre complete scheduling horizon can
be considered as a minimum cost flow problem and lma solved by any shortest path
algorithm. Moreover, since not all case-specifiastaaints can be incorporated in a shortest
path algorithm, a k-shortest path approach is impleted where the outcome of this
algorithm (i.e. a nurse schedule) should be chegWeether it is feasible or not with respect
to all these constraints. If the outcome is nositele, a 2 shortest path will be generated and
checked for feasibility. This process continuesilithe shortest feasible pattern (i.e. #i®
shortest path) for the nurse is found. The grapbdufor our algorithm consists of
#days*#shifts nodes (plus two extra dummy nodesessmting the start and end of the
network) representing the daily shift assignmentstlie nurse under study. An ag; b) is
drawn to connect noda representing a possible shift assignment on jday nodeb
representing a shift assignment on glayl. The distances between nodes are made up of a
weighted average of the four abovementioned elesnémtalculating the new schedule for a
particular nurse, we rely on the algorithm of Mastand Pascoal (2003) which identifies the
next shortest path deviating from the previouslynid shortest paths and is based on
Dijkstra’s labelling algorithm (Dijkstra, 1959).

In theday neighbourhood moyéhe roster of a single day of the initiating $wo is
directed towards the roster of the corresponding ofathe guiding solution, given the
assignments of the nurses on all other days inirtii@ting solution. To that purpose, we
transform a single day roster to a linear assigrimpesblem matrix, and solve it by means of
the Hungarian method (Kuhn, 1955). In constructihig matrix, we duplicate each shift
column such that each shift has a number of coluttié is equal to its coverage
requirements. Moreover, we add dummy nurses amldiormy shifts to allow under- or over-

coverage of the coverage requirements. The nunfbextca dummy nurses equals the total



daily nurse requirements, and penalizes under-egeewhen a required shift column has to
be assigned to a dummy nurse. The number of extrany shifts equals the total number of
(non-dummy) nurses and allows over-coverage ottwerage requirements when nurses are
assigned to dummy shifts. The cost of assigningdwnmy nurses to one of the dummy
shifts is equal to the minimum cost of the (feami8hifts a nurse can be assigned to. The
LAP matrix contains costs associated with the fauteria the solution combination
mechanism is based on. Furthermore, the LAP mattotudes certain shift assignments to
cope with the case-specific constraints, taking extcount the fixed assignments of all other
days of the current solution.

This solution combination method can be best flatsd on an example NSP instance
with 5 nurses and a scheduling period of 4 days.adsme that each day consists of three
shifts (e.g. earlyd), day &), night &;)) and a free shifts). The nurses’ preferences as well
as the minimal coverage requirements are display#ue top table of figure 1. Since,” is
used to refer to a free shift, its daily coveragquirements equal zero. We assume some
additional case specific constraints as follows tlumber of assignments varies between a
minimal value of 3 and a maximal value of 4. Theserutive working shifts vary between a
minimal value of 2 and a maximal value of 4. Theigsment of nurses to maximal one shift
per day and the succession constraints are inheyerdntinuous personnel scheduling. The
latter constraint implies forbidden successivegassents betwees; ands,, 3 ands; ands;
ands;. The left top table is assumed to be the initatsolution fromRefset with a total
preference cost of 81 and four coverage violatithe specific assignments have been
encircled). Since the algorithm penalizes each ramee violation with a penalty cost of 100,
the total solution quality of the initiating soloti equals 481. The right table is assumed to be
the guiding solution fronRefset with a total preference cost of 70 and no covepgalties.
The adjacency degree measures the distance besekedules as the sum of zeros (identical
day/shift assignment) and ones (different day/stafignment), which leads to a total distance
of 12.

In the remainder of this section, we illustrate these neighbourhood move for nurse
4 (left part) and the day neighbourhood move for 24right part) on our two parent solution

schedules.

Insert Figure 1 About Here




Nurse neighbourhood mové@&he left table below the parent solutions displdys
calculations of the four elements of this sectian,the nurse’s preference costs, the coverage
penalties, the critical shifts and the assignedtssiuf the guiding solutions. The coverage
penalty is set to 100, while the assigned shifthefguiding solution have a negative cost of
10. The critical shifts are found for those asstysaifts of the initial schedule of nurse 4
when the difference between the number of schednledes (row ‘Scheduled’) and the
assignments of nurse 4 is lower than minimum regumumber of nurses (row ‘Coverage’).

The sum of all costs in the table results in th&t @alues on the corresponding arcs of
the network representing the scheduling of the emorger the complete scheduling horizon.
The graph counts 4 * 4 nodes and a start and ardemsiny node. The shortest path in the
network iss; — 3 — S — § with a distance of -291. However, the path isasfble since the
constraint of minimal 2 consecutive working daywvislated. Based on the same argument,
the 29 shortest path, i.es; — s — 4 — S With a distance of -289, is infeasible. The next
shortest path is; —s; — 51 — 51 with a distance of -213. This path is feasible dtircase-
specific constraints and leads to the newly congtischedule at the left bottom part of the
figure. The new solution point has a total solutiprality of 386. The total preference cost has
increased from 81 to 86, whereas the number ofrageeviolations has decreased from 4 to
3. The distance between the new initiating solupomt and the guiding solution point has
also decreased from 12 to 11.

Day neighbourhood movefhe right table below the parent solutions displéyes
calculations of the four elements in a similar vy previously, but from the second day’s
point-of-view. The corresponding LAP matrix conwithe sum of three of these four
elements, i.e. the nurse’s preference costs, tta totical shift cost and the cost of the
assigned shifts of the guiding solutions. The cager penalties have been incorporated
implicitly in the structure of the LAP matrix sin@ummy nursesdf) have been inserted
which penalize the under-coverage of shifts. Intiast, the incorporation of dummy shifts
(d9) allows the over-coverage of shifts. The case-ifipamnstraints have been embedded in
the LAP matrix by excluding some assignments (dsshbly crossed cells). The optimal LAP
solution has been encircled and leads to the neamgtructed schedule at the right bottom
part of the figure. The new solution point has taltsolution quality of 374. The total
preference cost has decreased from 81 to 74, ahduimber of coverage violations has also
decreased from 4 to 3. The distance between thamgating solution point and the guiding

solution point has not changed and remains 12.
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2.4 The Improvement Method

The improvement method applies heuristic process@saprove both total preference
cost and coverage infeasibilities of the newly gatesl solution points. To that purpose, we
implemented the three complementary local seargbrithms of Maenhout and Vanhoucke
(2005), each focusing on a different part of thieesluling matrix, i.e. on the schedule of a
single nurse, on a single day for all nurses antherwhole schedule for all nurses.

The pattern-based local searckims at the optimization of the schedule for a
particular nurse, given the schedules for all otih@nses. Scheduling a single nurse over the
scheduling horizon can be considered as a minimashftow problem to compute a shortest
path on a suitably defined graph satisfying thedh@onstraints and the soft constraints as
much as possible. Preference costs and penalty abstolating the coverage constraints are
both taken into account.

The day-based local searabptimizes the schedule for one day given the agsats
of the nurses on all other days. To that purpdsesingle day in our schedule is converted to
a matrix which can be solved as a linear assignmetilem. Moreover, the transformation
allows over- and under-coverage the coverage reqgpaints and the matrix consists of both
preference and penalty cost information in ordebits the solution of the linear assignment
problem towards a coverage feasible shift assighmen

The schedule-based locaearch aims to improve the total preference cbshe
schedule by swapping (parts of) schedules betweeses. This problem is solved by defining
a linear assignment problem that optimally re-disties the schedules of the current schedule
among the nurses. The re-distribution mechanisnohbseffect on the total preference cost
of the schedule, since the coverage remains unedanthe algorithm tries first to swap
complete schedules and then tries to swap partheofschedule (i.e. parts of two days,

whether or not consecutive) between the nurses.

2.5 The Reference Update Method

After the application of the diversification andtensification process, the child
solutions are added to the reference set if cettaieshold values for the criteria which
evaluate the merit of newly created solution poarts met. A newly generated solution may
become a member of the reference set either ifighesolution has a better objective function
than the solution with the worst objective valueRefset or if the diversity of the new
solution to the reference set is larger than tHatism with the smallest distance value in
Refset
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In both cases the new solution replaces the waibtlze ranking is updated to identify
the new worst solution in terms of either qualitydoversity. The reference set is dynamically
updated. In contrast to a static update wheredferance set is updated after combination of
all generated sub-sets, a dynamic update evaledels possible reference set entrance
instantly. In this way, new “best” solutions candmmbined faster and inferior solutions are
eliminated faster. During the search, diversitythia reference set is maintained through the
use of these artificial tiers in the referencelms#talso through a threshold distance depending
on the problem size under study. The latter presvémg duplication of solution points in the

reference set and/or the entrance of highly resegbblutions.

3 COMPUTATIONAL RESULTS

In this section, we present computational reswltofir scatter search procedure tested
on the NSPLib problem instances of Vanhoucke andrifiaut (2005). This testset contains 4
sub-sets with 25, 50, 75, and 100 nurses and a§-sleheduling horizon (this so-called
diverse setontains 4 * 7290 instances), and 2 sub-sets 86tlor 60 nurses and a 28-days
scheduling horizon (thisealistic setcontains 2 * 960 instances). The nurses’ preference
structure and the coverage requirements of eactsetulare characterized by systematically
varied levels of various NSP complexity indicatpreposed in Vanhoucke and Maenhout
(2005). All sets have been extended by 8 mixesagkepecific constraints which appear
frequently in literature (Cheang et al., 2003), itee minimum/maximum number of working
assignments, the minimum/maximum number of assigisne per shift, the
minimum/maximum consecutive working shifts, and theimum/maximum consecutive
working shifts. The testsets and the case-specificstraints can be downloaded from
http://www.projectmanagement.ugent.be/nsp.php. Téms have been carried out on a
Toshiba SPA10 with a 2.4 Ghz processor and 256 MM Runder a stop criterion of 1,000
or 5,000 schedules. In the next sub-section, wepapendifferent neighbourhood combination

versions into detail. In section 3.2, we presest kaown solutions for our large dataset.

3.1 Day Neighbourhood or Nurse Neighbourhood

In order to test the performance of our two solutammbination methods, the day
neighbourhood (DNH) and nurse neighbourhood (NN, have randomly selected 576
instances from the 25- and 288 instances from GheGrse instances.
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Each neighbourhood move (day or nurse) containsixaainthe 4 elements, i.e.
preference cost (PC), coverage penalty (CP), atighift calculation (CS) and the bias to the
guiding solution (BG). Both the nurse and the daighbourhood moves will be compared

with simple and straightforward moves, based on

Random cost (RAN): The cost matrix simply contai@sdom numbers instead of the
sum of PC, CP, CS and BG.

Percentage of guiding solution (%GS): A randomleasted part of the day (DNH) or
nurse (NNH) of the initiating solution will be reyged by the assignments of the

guiding solution.

Complete replacement by the guiding solution (CGH)e day (DNH) or nurse
(NNH) of the initiating solution will be completelgplaced by the assignments of the

guiding solution.

Insert Table 1 About Here

The results displayed in table 1 can be summarazeébllows. First, the day-based
neighbourhood (DNH) outperforms, on the average,rhrse-based neighbourhood (NNH).
Indeed, 13 (10) of the 18 tests results in a DNkt @¢hich is lower than its corresponding
NNH cost. However, the best results can be obtamédthe NNH method. The best result
for the N25 (N30) instances amounts to 305.82 @ 3 which outperforms the best known
results for the DNH method (306.94 and 1,492.93peetively). Second, the top 4 results for
the NNH have been displayed in bold, and showttiathree elements, PC, CS and BG are
relevant cost factors (3, 3 and 4 times used, otisyedy). The CP cost factor has been used
only once in the top 4 results, and seems to leeitegortant. Last, the simple CGS approach
is the best approach for the DNH method, but isahd¢ to outperform the best known results
with the NNH method. The %GS has an average (gpedprmance for the NNH (DNH)
method while the RAN method leads to rather poasulte for both solution combination
methods.

In section 3.2, we report best known solutionsdibthe data instances, based on the
solution combination method NNH-PC/CS/BG for theedse set with a 7-days scheduling

13



horizon (N25, N50, N75 and N100) and the solutioethmd NNH-PC/CP/CS/BG for the
realistic set with a 28-days scheduling horizon{¥8d N60).

3.2 New Best Known Solutions

In order to benchmark our results and presentkestn state-of-the-art solutions, we
have tested all 31,080 instances on all case-spemnstraint files, resulting in 248,640
instances in total. We have truncated each test aftstop criterion of 1,000 and 5,000
schedules. Table 2 and 3 display the results &peetively the 1,000 and 5,000 schedule stop
criterion. The tables display the average solutjoality of the tests, split up in the average
total preference cost (Avg_Pref) and the averagmlpe cost (Avg_Pen) which is calculated
as the average number of violations of the miniomalerage requirements times the penalty
cost of 100, the required CPU time (Avg_CPU), tkeecpntage of files for which a feasible
solution has been found (%Feas), and the percerttagation from the LP based lower
bound (%Dev_LP). The latter has been found by alsirand straightforward LP model, and
has been used for similar tests by [20]. No LP lolainds could be provided for the N30 en
N60 sets, since the number of constraints exceddedimits for the industrial LINDO

optimization library, version 5.3 (Schrage, 1995).

Insert Table 2 & 3 About Here

In order to fine-tune a number of parameters, weehran our procedure on a small
subset of all instances under different paramet#tings. In order to find an appropriate
balance between the diversification and intendificaprocess, we have combined the three
proposed local search heuristics into a variabighturhood search. For the N25 instances,
all nurses are subject to the pattern-based lagmich and all days are subject to the day-
based local search. The schedule-based local seaatiates possible swaps between whole
schedules and two-days sub-schedules. In our #3%, of all two-days sub-schedules are
swapped between the nurses for all testsets. Thelgi®n size I, + by) has been set to 15
(20) for the N25, N50 and N30 (N75, N100 and Né®tances, respectively. Each time, 80%
of these population elements have been put into tHRefset Moreover, 40% of all nurses
are subject to the NNH move for N25 and N50 instané0% for the N75 instances, 20% for

the N100 instances and all nurses for the N30 a®@d iNstances. The total time needed to
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perform all our tests accounted for approximaté€lydays for the 1,000 schedules tests and 35
days for the 5,000 schedules tests.

The table reveals that the gap between the obtaokdions and the LP based lower
bounds is in many cases very small. For some otdlses, the gap is somewhat larger which
gives an indication of the constrainedness of tieblpm instances. We suggest that this table
can be used for comparison purposes for futureareBers. To that purpose, we would like to
call the attention to the strict test design usedur computational results section. Therefore,
we rely on a limited number of generated schedwldsch is a clear and easily applicable
stop criterion that is independent of the compptatform and coding skills (see [11]). The
results for each individual instance can be dowddoa  from
www.projectmanagement.ugent.be/nsp.php. Our scastearch algorithm is able to
outperform (equalize) 40.5% and 62.06% (27.12%1aA8%) of respectively the diverse and
realistic instances solved by the electromagnaticgrure of [20] with a stop-criterion of
1,000 schedules, and 33.29% and 64.42% (45.02% .34&0) of respectively the diverse and
realistic instances for the 5,000 schedules. Weldvbke to call researchers to outperform

these results and report their solutions on oursiteb

4 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have presented a new scattectsgaocedure for the well-known
nurse scheduling problem. To the best of our kndgée the literature on scatter search for
the nurse scheduling problem is completely voids Tramework has only been applied once
on a similar problem type (labour scheduling) by&o et al. (2005).

We have investigated the use of two types of smhutiombination methods, based on
the combinations of sub-schedules of nurses or .d&ach method calculates the
attractiveness of the move based on four critdNa. have shown that the scatter search
algorithm leads to promising results and hence miglve a bright future in the further
development of meta-heuristic optimization algorith We have tested our instances based
on a generated problem set NSPLib, under a se#ttdesign with a strict stop criterion to
facilitate comparison between procedures. All rissaln be downloaded from our website
which can be used to motivate researchers to rapost, outperforming state-of-the-art
results.

Our main future research intention is as followse Wil aim at the development of
hybrid versions of different meta-heuristics, basedknowledge and concepts presented in

this and many other research papers. A skilled aoation of concepts of different meta-
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heuristics can provide a more efficient behaviouwd a higher flexibility when dealing with

real-world and large-scale problems.

16



REFERENCES

Aickelin, U., 1999, “Genetic Algorithms for MultiptChoice Optimisation Principles”, PhD,

University of Wales Swansea.

Burke, E.K., De Causmaecker, P., Vanden Berghgn@.Van Landeghem, H., 2004, “The
state of the art of nurse rosteringurnal of Scheduling7, 441-499.

Casado, S., Laguna, M., and Pacheco, J., 2005,ri$fieal Labor Scheduling to Optimize
Airport Passenger Flows”, Journal of the Operatiétesearch Society, 56, 649-658.

Cheang, B., Li, H., Lim, A., and Rodrigues, B., 300Nurse rostering problems — a
bibliographic survey”, European Journal of OpenagioResearch, 151, 447-460

Dijkstra, E.W., 1959, “A note on two problems inno@xion with graphs”, Numerische
Mathematik., 1, 269-271.

Ernst, A.T., Jiang, H., Krishamoorty, M., Owens, Bnd Sier, D., 2004a, “Staff scheduling
and rostering: A review of applications, methodsd amodels”, European Journal of

Operational Researgh 53, 3-27.

Ernst, A.T., Jiang, H., Krishamoorty, M., Owens, Bnd Sier, D., 2004b, “An Annotated
Bibliography of Personnel Scheduling and Rosteriyinals of Operations Research, 127,
21-144.

Felici, G., and Gentile, C., 2004, “A polyhedral gkpach for the Staff Rostering Problem”,
Management Science, 50, 381-393.

Glover, F., and McMillan, C., 1986, “The General jayee Scheduling Problem: An
integration of MS and Al"'Computers and Operations Researt8, 563-573.

Glover, F. and M. Laguna (1997). Tabu Search, Klud@demic Publishers.

Glover, F. (1998). “A Template for Scatter Searad #ath Relinking,” in Lecture Notes in
Computer Science, 1363, J.K. Hao, E. Lutton, E.dkhnM. Schoenauer, D. Snyers (Eds.),
pp. 13-54.

Glover F. (1999). “Scatter Search and Path RelmKim: D Corne, M Dorigo and F Glover

(eds.) New Ideas in Optimisation, Wiley.

17



Glover, F., and Laguna, M., 2000, “FundamentalsSoéatter Search and Path Relinking”,
Control and Cybernetics, 3, 653-684

Kuhn, H., 1955, “The Hungarian method for the amsignt problem”, Naval Research
Logistics, 2, 83-97.

Maenhout, B. and Vanhoucke, M., 2005, “An Electrgmeatism meta-heuristic for the nurse

scheduling problemworking paper 05/31,6Ghent University.

Marti, R., Laguna, M., Glover, F., 2006, “Principlef scatter search”, European Journal of
Operational Research, 169, 359-372.

Martins, E.Q.V., and Pascoal, M.M.B., 2003, “A nemplementation of Yen’s ranking
loopless paths algorithm”, 40R — Quarterly Jouroélthe Belgian, French and Italian

Operations Research Societies, 1, 121-134.

Osogami, T., and Imai, H., 2000, “Classification\rious Neighbourhood Operations for
the Nurse Scheduling Problent’ecture Notes in Computer Scient869, 72-83.

Schrage, L., 1995, “LINDO: Optimization softwarer ftinear programming”, LINDO

Systems Inc.: Chicago, IL.

Thompson, G.M., 1995, “Improved implicit optimal dlling of the labour shift scheduling
problem”, Management Science, 43, 595-607.

Vanhoucke, M., and Maenhout, B., “Characterisatmal Generation of Nurse Scheduling

Problem Instancestyorking paper 2005Ghent University.

Warner, H.W., 1976, “Scheduling Nursing Personneta@xding to Nursing Preference: A
Mathematical Approach'Qperations Researcl24, 842-856.

18



FIGURE 1

The Solution Combination Method in nurse and day nighbourhood space

Initiating Solution Guiding Solution

Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4

S1 So S3 S4|S1 S2 S3 S4|S1 S2 S3 S4|S1 S2 S3 Syl|S1 S2 S3 S4|S1 S2 S3 S4[S1 S2 S3 Sy|S1 S» S3 Sy
Nurse 1 320 1[/0(@ 3 6|2 0 1|3 5B 932 0 1[{0(® 3 6[2(0 4 1|3 5 49
Nurse 2 803@@807149@6228@392078499@22
Nurse3 | 4(® 9 2[9(® 3 4]0 6(D 5[0 0(® 6/[4 5(@ 2|9 8(® 4|0 6( 5|0 0(® 6
Nurse 4 947@%0564@15220947@ 05 6(@D6 15220
Nurse5 (D9 6 8(D1 1 232 8 8|/3(®7 2f(D9 63811 2(3)2 8 8 0 7 2
Scheduled] 1 2 0 2 3 2 0 p 2 1 2Jo 1 1 3fo 211122 1022 10211
Coverage | 2 1 1 1 2 1 p 211021 1flo211]o12 102140211
Violation [1 0 1 0f0 0 1 d 0 0 O 1 00 ooofoooofoooofooo0o

Nurse neighbourhood ! Day neighbourhood

S; S, S3 Sy S; Sz S3 Sy
Nurse1| 0/-/0/0 | 0/-/-100/-10 3/-/0/( 6610
INurse2| 2/-70/0 | 8/-/0/-10]  0r-/0/0f  7/-10
Nurse3| 9/-/0/0 | 8/-/-100/¢ 3/-/0/-1 410
Day3 | 4/0/0/-10| 6/0/-100/ 1/0/0/0 5010 fnuseal 2/-70/a0] or-70/01  si-r0rdl 6r-i0

Day1l | 9/-100/0/0 4/0/0/0 71/-100/0/f0 2/0/-10

Day2| 2/0/0/-10 0/0/0/0 5/-100/0/p 6/0/0

Day4 |2/-100/0/-1 2/0/0/0 2/0/0/0 0/0/0 INurse5| 7/-/0/-10] 1/-70/0| 1/-70/0]  2/-10
*PC/CP /CS/BG is used to display preference loopterage penalties / critical shifts / bias to the
guiding solution |

I
l |

I
S; S, S, S3 ds ds ds ds dJ
Nurse 1| x -110(11® 3 -110 -110 -110 -110 -11p
Nurse2 2D x x x 2 2 2 2 2
Nurse3| x 92 -92(7) -2 92 92 92 -92
Nuse4| 8 Co) o x -8 8 -8 -8 -8

=

Nurse 5| -3 x x x @ -3 -3 3 3
dn 100 100 100 100 o 0oC0> 0o o0
dn 100 100 100 100 0(0) 0 0 0
dn 100 100 100 100 0 o o 0(0)
dn 100 100 1200 100 0 o 0oC0) o
| R

New Solution New Solution
Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4
51Sz535451Sz535451Sz5354515253541315233541315233 34131 Sy, S3 S4|S1 Sz S3 Sy
Nursel | 3(2 0 1]0(® 3 6|2 0 1|3 5(d 9320 1Jo(@ 3 6]2 0(®» 1|3 5(® 9
Nurse2 | 8 0 9 2D8 0 71 4 996 2 28 0 3928 0 7[81 4 9(96 2 2
Nurse! |4(5 9 2/9(8) 3 4]0 6(D5/0 0B 6[4® 9 2)9 83 40 6(D 5|0 0(6 6
Nurse4 [9) 4 7 2[2) 0 5 6[4) 6 1 5[2)2 2 0J9 4 72205 6J4(® 1 5[2 2( 0
Nurse5 (1) 9 6 8[(7) 1 1 2(3) 2 8 8307 2[D9 6 8(D1 1 232 8 8/3(07 2
Scheduled] 2 2 0 § 3 2 00 3 0 20 2 1 2J0 1 2 0J2 2 2 40 2 1 4 0 1 1
Coverage | 2 1 1 1 2 1 p2 11021 1Jo211o12 1021414021
Violation |0 0 1 0]/0 0 1 00 1 0 0/|0 0 0 0|1 0 1 0J0O 0 0 OJO 0 0 0|1 0 0 O
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TABLE 1

Average solution quality (Avg_Sol) and Ranking fotthe various combination methods

Combination elementd Nurse Neighbourhood Day Neighbahbood
N25 [ N30 N25 N30
PC CP CS B§ Avg_Sol Rankinb Avg_Sol Rankihg Avg_SoRanking | Avg_Sol Ranking
x - - - 310.67 17 1,498.21 9 307.52 14 1,500.p0 15
= - x - - 312.26 18 1,528.21 18 307.37 11 1,501p1 16
S - - x - 308.43 9 1,507.74 11 307.86 18 1,498.72 13
@ - - - x 306.67 5 1,496.03 6 307.00 5 1,495.93 9
E x x - - 310.25 14 1,515.23 13 307.57 16 1,542{96 18
2 X - X - 309.18 11 1,496.8 7 307.67 17 1,498.66 12
.E x - - x 306.66 4 1,493.2] 4 307.00 5 1,495.14 5
-g - x x - 310.40 15 1,519.54 15 307.50 13 1,49887 14
8 - x - x 309.37 13 1,519.8] 16 307.03 7 1,494 /11 3
c - - X X 306.57 3 1,492.171 3 307.27 10 1,495.49 7
-% x x x - 308.39 8 1,509.84 12 307.44 12 1,497.63 11
) X x - x 309.26 12 1,518.91 14 306.97 4 1,496.35 10
@ x - x x 305.82 1 1,490.34 2 307.19 8 1,495.64 8
- X x x 308.99 10 1,494.23 5 307.21 9 1,495.p4 6
X X X X 306.20 2 1,486.34 1 306.94 3 1,493.77 2
CGS| - - - - 306.68 6 1,497.68 8 306.14 1 1,492]97 1
RAN| - - - - 310.56 16 1,524.50 17 307.55 15 1,50430 17
%GS| - - - 307.01 7 1,498.6B 10 306.71 2 1,494(71 4
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TABLE 2

Computational Results for the diverse and realisticlataset for 1,000 schedules

Diverse set
N25 N50
Avg_Pref Avg Pen %Feas Avg CPU %Dev | P Avg Pref Avg Pen e&8F Avg CPU %Dev LP
Case 1 24151 53.02 88.27% 0.19 0.67%6 481.73 84.81 89.95% 66 0. 0.70%
Case 2 270.45 54.06 88.27% 0.69 0.33%6 532.35 88.68 90.00% 00 2. 0.38%
Case 3 251.31 53.02 87.86% 0.51 1.94% 500.91 84.98 89.03% 64 1. 1.92%
Case 4 267.56 71.28 88.27% 0.77 0.51%6 530.34 145.02 89.97% .39 2 0.56%
Case 5 242.56 53.02 85.82% 0.19 4.26%0 484.01 84.83 84.77% 66 0. 4.09%
Case 6 286.40 127.05 88.27% 1.73 0.77%0 560.26 279.73 89.9994.56 0.87%
Case 7 260.88 72.78 79.68% 0.43 6.97% 515.59 142.59 77.39% .20 1 6.27%
Case 8 0.00 0.00 85.43% 0.00 3.99% 0.00 0.00 85.05% 0.00 %3.46
N75 N100
Avg_Pref Avg Pen Y%Feas Avg CPU %Dev |P Avg Pref Avg Pen e&8F Avg CPU %Dev_LP
Case 1 739.70 150.34 88.67% 1.77 0.67%0 1,183.72 166.57 0%0.3 5.83 0.77%
Case 2 806.33 154.88 88.67% 3.56 0.35%0 1,305.39 176.27 4%0.4 8.19 0.45%
Case 3 754.12 150.40 87.89% 3.03 1.80%% 1,213.13 167.63 4%®9.1 7.50 1.86%
Case 4 805.29 204.55 88.68% 4.14 0.48%6 1,285.92 266.71 1%0.2 8.72 0.61%
Case 5 741.23 150.36 85.84% 1.78 4.30% 1,186.81 166.68 8855 5.86 3.98%
Case 6 853.04 378.59 88.68% 7.06 0.37%0 1,361.53 534.86 7%0.3 12.33 0.48%
Case 7 790.97 211.52 78.66% 2.46 6.51%6 1,263.28 26458 2%8.5 6.71 6.10%
Case | 0.0C 0.0C 85.27% 0.0C 4.83% 0.0C 0.0C 85.97% 0.0C 4.65%
Realistic set
N30 N60
Avg_Pref Avg_Pen %Feas Avg CPU %Dev_|P Avg Pref Avg Pen e&8F Avg CPU %Dev_LP
Case 9 1,546.94 469.48 65.94% 4.71 - 3,156.39 801.67 68.23%8.02 -
Case 10 1,437.84 396.77 69.17% 1.66 - 2,947.16 684.17 %0.79 6.84 -
Case 11 1,633.40 501.25 65.42% 13.33 - 3,321.11 846.15 3%8.1 8.46 -
Case 12 1,476.42 399.48 69.17% 231 - 3,022.04 686.77 %9.27 6.87 -
Case 13 1,586.09 568.33 65.31% 5.11 - 3,237.34 987.08 %7.40 9.87 -
Case 14 1,453.73 402.81 68.75% 191 - 2,971.72 755.83 %7.92 7.56 -
Case 15 1,705.82 1,010.00 59.17% 18.04 - 3,483.89 2,085.5%8.58% 20.86 -
Case 16 1,556.91 545.42 65.73% 2.88 - 3,178.67  1,087.60 31®b.  10.88 -
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TABLE 3

Computational Results for the diverse and realisticlataset for 5,000 schedules

O

Diverse set
N25 N50
Avg_Pref Avg Pen %Feas Avg CPU %Dev | P Avg Pref Avg Pen e&8F Avg CPU %Dev L
Case 1 252.23 53.02 88.27% 1.61 0.19%6 502.66 84.79 90.03% 33 5. 0.25%
Case 2 240.86 53.02 88.27% 1.03 0.08%6 480.42 84.79 90.03% 76 3. 0.11%
Case 3 268.40 53.76 88.08% 231 1.11% 529.16 86.80 89.66% 38 6. 1.17%
Case 4 250.33 53.02 88.27% 1.58 0.14%0 499.12 84.79 90.03% 37 5. 0.19%
Case 5 265.94 71.12 85.88% 2.26 3.63% 527.76 142.88 85.25% .97 6 3.44%
Case 6 241.86 53.02 88.27% 1.03 0.50%6 482.65 84.79 90.03% 77 3. 0.59%
Case 7 284.11 125.05 80.10% 5.05 5.95%6 556.82 273.20 78.29%12.61 5.33%
Case 8 259.21 71.89 85.60% 1.67 3.26%0 513.02 140.01 85.50% .01 5 3.01%
N75 N100
Avg_Pref Avg Pen Y%Feas Avg CPU %Dev | P Avg Pref Avg Pen e&F Avg CPU %Dev L
Case 1 762.77 150.32 88.70% 10.13 0.33p0 1,223.44 166.49 49%®0. 23.08 0.36%
Case 2 738.20 150.32 88.70% 10.78 0.15%6 1,180.94 166.32 51%0. 21.16 0.20%
Case 3 802.67 152.43 88.37% 14.33 1.24% 1,299.15 170.40 01®0. 24.68 1.22%
Case 4 752.10 150.32 88.70% 9.83 0.23%6 1,209.59 166.45 8%0.4 22.09 0.28%
Case 5 802.08 202.88 86.06% 11.36 3.85p0 1,280.83 260.23 28®B6. 24.08 3.43%
Case 6 739.66 150.32 88.70% 8.51 0.17%6 1,183.93 166.35 1%®0.5 21.22 0.22%
Case 7 848.60 367.17 79.48% 16.28 5.76\6 1,354.75 517.49 49%9. 31.24 5.38%
Case | 787.7¢ 206.6¢ 85.78Y% 9.4z 4.30% 1,258.0¢ 256.9¢ 86.53% 22.11 4.11%
Realistic set
N30 N60
Avg_Pref Avg_Pen %Feas Avg CPU %Dev_|P Avg Pref Avg Pen e&F Avg CPU %Dev L
Case 9 1,525.63 423.65 68.02% 17.37 - 3125.66 743.65 68.54987.99 -
Case 10 1,429.45 392.50 69.58% 7.52 - 2935.91 677.81 70.00924.01 -
Case 11 1,607.99 429.58 67.60% 40.68 - 3277.91 758.54 %8.44 73.00 -
Case 12 1,465.36 392.40 69.38% 8.95 - 3006.31 677.29 69.90926.10 -
Case 13 1,570.33 501.67 66.35% 17.52 - 3211.65 906.46 %7.92 37.66 -
Case 14 1,444.48 394.17 69.48% 7.64 - 2963.95 681.98 69.79%24.04 -
Case 15 1,678.09 843.75 63.33% 59.68 - 3424.43  1543.33 4%6.0 105.97 -
Case 16 1,541.34 498.02 66.88% 10.41 - 3154.49 882.92 %8.23 27.44 -
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