
Constantino, Ademir Aparecido and Landa-Silva, Dario 
and de Melo, Everton Luiz and de Mendonza, Candido 
Ferreira Xavier and Rizzato, Douglas Baroni and 
Romao, Wesley (2014) A heuristic algorithm based on 
multiassignment procedures for nurse scheduling. 
Annals of Operations Research, 218 (1). pp. 165-183. 
ISSN 1572-9338 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/31328/1/ANOR-1756-1.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33575473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf


For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Annals of Operations Research
 

A HEURISTIC ALGORITHM BASED ON MULTI-ASSIGNMENT PROCEDURES FOR
NURSE SCHEDULING

--Manuscript Draft--
 

Manuscript Number: ANOR-1756R3

Full Title: A HEURISTIC ALGORITHM BASED ON MULTI-ASSIGNMENT PROCEDURES FOR
NURSE SCHEDULING

Article Type: SI: PATAT 2010

Keywords: Nurse Scheduling Problem, Assignment Problem, Heuristic Algorithms, Combinatorial
Optimization.

Corresponding Author: Ademir Aparecido Constantino, Ph. D.
State Universty of Maringá
Maringá, Paraná BRAZIL

Corresponding Author Secondary
Information:

Corresponding Author's Institution: State Universty of Maringá

Corresponding Author's Secondary
Institution:

First Author: Ademir Aparecido Constantino, Ph. D.

First Author Secondary Information:

Order of Authors: Ademir Aparecido Constantino, Ph. D.

Dario Landa-Silva, Ph. D.

Everton Luiz de Melo, Mc.

Candido Ferreira Xavier de Mendonça, Ph. D.

Douglas Rizzato

Wesley Romão, Ph. D.

Order of Authors Secondary Information:

Abstract: This paper tackles a Nurse Scheduling Problem which consists of generating work
schedules for a set of nurses while considering their shift preferences and other
requirements. The objective is to maximize the satisfaction of nurses' preferences and
minimize the violation of soft constraints. This paper presents a new deterministic
heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is
based on successive resolutions of the assignment problem. The algorithm has two
phases: a constructive phase and an improvement phase. The constructive phase
builds a full schedule by solving successive assignment problems, one for each day in
the planning period. The improvement phase uses a couple of procedures that re-solve
assignment problems to produce a better schedule. Given the deterministic nature of
this algorithm, the same schedule is obtained each time that the algorithm is applied to
the same problem instance. The performance of MAPA is benchmarked against
published results for almost 250,000 instances from the NSPLib dataset. In most
cases, particularly on large instances of the problem, the results produced by MAPA
are better when compared to best-known solutions from the literature. The experiments
reported here also show that the MAPA algorithm finds more feasible solutions
compared with other algorithms in the literature, which suggest that this proposed
approach is effective and robust.

Powered by Editor ial Manager®  and Preprint  Manager®  from  Aries System s Corporat ion



2 

1 Introduction 

In this paper, we tackle a Nurse Scheduling Problem (NSP) which consists 

of assigning work shift patterns to a team of nurses over a pre-defined scheduling 

period in such a way that nurses’ preferences (soft constraints) for what type of 

shift to work in each day are best satisfied while additional requirements (hard 

constraints) are met. A penalty cost is associated to the non-satisfaction of nurses’ 

preferences and also to the non-satisfaction of the additional requirements. Thus, 

the objective is to generate feasible nurse schedules with a minimum total penalty 

cost. The general nurse scheduling problem was classified by Osogami and Imai 

(2000) as NP-hard. In the literature, we find many different descriptions and 

models for nurse scheduling due to the different characteristics and policies that 

arise in each hospital. Similarly, we can find a wide variety of solution procedures 

to tackle the nurse scheduling problems and a fair comparison between the many 

proposed algorithms seems to be impractical as discussed by Maenhout and 

Vanhoucke (2007). 

Cheang et al. (2003) and Burke et al. (2004) provide surveys of nurse 

scheduling problems and solution approaches. These surveys reveal that most of 

the heuristic algorithms for nurse scheduling algorithms in the literature are based 

on local search procedures. Even recent works tackling nurse scheduling in a 

multi-objective fashion (e.g. Burke et al. 2012) are still largely based on local 

search. The distinctive feature of the heuristic algorithm proposed here is that it is 

based on exact resolution of successive assignment problems instead of local 

search. The surveys by Cheang et al. (2003) and Burke et al. (2004) also identify 

the need for a set of benchmark problem instances to facilitate the comparison of 

the many proposed algorithms for the problem. Towards this, Vanhoucke and 

Maenhout (2005) proposed a large dataset called NSPLib, which also includes a 

problem instance generator. NSPLib has 248,640 nurse scheduling problem 

instances randomly generated and they are classified according to their size and 

complexity. A subset of these instances is called the ‘realistic’ set which includes 

instances with a scheduling period of 28 days. The other set is called the ‘diverse’ 

set which includes instances with a scheduling period of 7 days. Instances of both 

types are used in the experiments of this paper. As mentioned above, NSPLib 

includes a program for generating different tests instances by changing the type of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3 

contract (full-time or part-time), skill sets, etc. For a detailed description, see 

Vanhoucke and Maenhout (2005). The NSPLib problem instances are available 

at: http://www.projectmanagement.ugent.be/nsp.php. In their work on nurse 

scheduling using the NSPLib dataset, Maenhout and Vanhoucke (2006; 2007; 

2008) have proposed several algorithms and reported a range of results. 

Other benchmark datasets for nurse scheduling problems have been made 

available more recently. For example, the First International Nurse Rostering 

Competition 2010 (see Haspeslagh et al. 2012 and http://www.kuleuven-

kulak.be/nrpcompetition for details) includes 60 problem instances classified in 

three groups according to the expected computational difficulty. Also, Tim 

Curtois at the University of Nottingham maintains a large collection of employee 

scheduling benchmark problem instances including nurse scheduling (see 

http://www.cs.nott.ac.uk/~tec/NRP/ for details). In addition De Causmaecker and 

Vanden Berghe (2011) proposed a classification system for nurse rostering 

problems, comparing three datasets: http://www.cs.nott.ac.uk/~tec/NRP/ (Burke et 

al. 2008), http://allserv.kahosl.be/~burak/project.html (Bilgin et al. 2008) and 

NSPLib at http://www.projectmanagement.ugent.be/nsp.php (Vanhoucke and 

Maenhout 2005). In their attempt to classify and compare the problem instances in 

these tree datasets, they proposed and discussed several notations and categories. 

According to the authors, the advantage of NSPLib is its large size, which 

facilitates statistical analysis of different solution approaches. 

Developing formal models for the many specific objectives and constraints 

in nurse scheduling problems and applying optimization methods to solve them 

are very difficult tasks. Then, developing heuristic algorithms to tackle these 

problems is a common and effective approach. In fact, Vanhoucke and Maenhout 

(2005) suggest that the purpose of NSPLib is to be a benchmark dataset for 

evaluating heuristic approaches to solve nurse scheduling problems.  The best 

results for the NSPLib instances have been obtained with different meta-heuristic 

approaches including the Electromagnetic method by Maenhout and Vanhoucke 

(2007), Scatter Search by (Maenhout and Vanhoucke, 2006) and Genetic 

Algorithms by Maenhout and Vanhoucke (2008). The present paper presents a 

new deterministic heuristic algorithm called MAPA (multi-assignment problem-

based algorithm), which produces new best solutions for some instances in 

NSPLib. 
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According to Cordeau et al. (2002) a good heuristic must satisfy some 

criteria such as simplicity, flexibility , accuracy and speed. They also state that 

“algorithms that contain too many parameters are difficult to understand and 

unlikely to be used”. The MAPA algorithm proposed here is simple because it 

does not require parameter tuning and it uses the well-known linear assignment 

problem that is solvable in polynomial time. It is flexible because it is well suited 

to tackle different constraints (hard and soft) by only adapting the procedure to 

calculate the matrix of costs (see Section 4.1). It also has reasonable accuracy and 

speed which is illustrated by the experiments described in the next sections. 

The remainder of this paper is as follows. The problem description is given 

in Section 2. A high-level description of the proposed MAPA algorithm is given 

in Section 3 and then a detailed description is provided in Section 4. Experimental 

results are presented and discussed in Section 5. The final Section 6 draws overall 

conclusions and suggestions for future research. 

2 Description of the Nurse Scheduling Problem 

The nurse scheduling problem addressed in this paper is the same as stated 

by Maenhout and Vanhoucke (2007) with test instances from the NSPLib. The 

problem involves requirements that must be met (hard constraints) and 

requirements that are desirable to meet (soft constraints) when constructing the 

schedule. Hard constraints in this problem are the prohibition of certain successive 

shift assignments to nurses (for example a night shift followed by an early or a 

day shift), maximum number of consecutive assignments of the same type (i.e. 

identical shift assignments), minimum and maximum number of overall working 

assignments for a nurse and minimum number of consecutive assignments of the 

same type (i.e. identical shift assignments). Soft constraints in this problem are the 

minimum coverage requirement (to satisfy the workload demand of each day) and 

the nurses’ preferences. 

Nurses express their preferences for the shifts that they want to work in each 

day. A cost is associated to every shift and this cost is inversely proportional to 

the expressed preference, i.e. less preferred shifts carry a higher cost. The cost of 

violating hard constraints is added to the cost of violating soft constraints to 

obtain the total solution cost which should be minimized. Full details of the costs 

calculation are given in Section 4 when the MAPA algorithm is described. 
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More formally, the Nurse Scheduling Problem tackled here can be stated as 

follows. A set of nurses N needs to be scheduled within a scheduling period of 

dmax days (d=1, ..., dmax). Each nurse needs to be assigned to a set of shifts in the 

scheduling period while minimizing the cost of violating hard and soft constraints. 

Thus, we have: 

N: set of nurses, index n (n=1, ...,nmax), nmax=|N|; 

D: set of days within the scheduling period, thus dmax= |D|; 

Sd: set of required shifts for day d, index s (s=1, ...,sd), sd=|Sd|.  

The term shift refers to a given working period (early, day or night shift) or 

a rest period (free shift), although the starting/ending times of each shift are not 

defined in the NSPLib instances. Note that Sd represents the minimum coverage 

requirement, i.e. |Sd| is the minimum number of nurses required on day d, then 

|Sd|≤|N|. A duty roster, or roster, is a sequence of shifts assigned to one nurse 

during the scheduling period of dmax days. A solution or nurse schedule is a 

collection of nmax duty rosters. 

3 A Multipartite Model for Nurse Scheduling 

 In this paper we represent the above nurse scheduling problem as an acyclic 

multipartite graph with dmax+1 partitions, where the first partition of vertices 

corresponds to the set of nurses and the remaining partitions correspond to the sets 

of shifts (i.e. one partition per day in the scheduling period). Figure 2 shows a 

sample of this representation in the case where nmax=4 nurses. An edge represents 

a possible assignment of a shift to a nurse in a particular day (according to the 

partition number). There are no edges connecting vertices in the same partition. 

Instead, a sequence of edges connecting vertex n from the first partition 

(corresponding to nurse n) to a vertex in the last partition indicates the sequence 

of shifts that are assigned to nurse n. The weight associated to an edge is the cost 

of assigning a particular shift to nurse n according to the nurse’s preferences.  

More formally, let’s have a graph G=(T, A), where T is the set of vertices 

and A is the set of edges as described above. The set T is composed by the 

partitions To, T1, T2,..., Tdmax, where To is the set of vertices representing the nurses 

and Td (d from 1 to dmax) is the set of vertices representing the shifts on day d. 

Thus, we have a multipartite graph representation. The objective is to find nmax 

paths from the first to the last partition while minimizing the total cost. Each path 
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represents a duty roster for one nurse, i.e. the sequence of shifts assigned to a 

nurse for each day of the scheduling period. In order to find these paths we 

propose a heuristic algorithm that solves successive assignment problems, each 

one corresponding to a matching problem between two consecutive partitions 

(bipartite graph). This assignment problem is formulated as follows: 

Minimize  
 

max max

1 1
.

n

i

n

j

d
ij

d
ij xc          (5) 

Subject to: ,1
max

1




n

i

d
ijx  max,...,1 nj        (6) 

 
,1

max

1




n

j

d
ijx     max,...,1 ni   (7) 

 
 ,1,0d

ijx

 maxmax ,...,1;,...,1 njni   (8) 

The cost matrix   is always a square matrix of size nmax
2 and has 

different interpretation and structure depending on the algorithm phase, as 

explained in the next section. In some cases, the cost  in (5) is the cost of edge 

(i, j) connecting partitions Td-1 and Td, where index i corresponds to a nurse or 

roster, while the index j can be a shift or a roster. In other cases, the cost  is the 

cost of replacing a shift j in the duty roster of nurse i. Note that  if there is 

no edge (i, j). The binary decision variable  indicates an assignment or not of 

vertex i to vertex (nurse) j. Constraints (6) and (7) indicate a one-to-one 

assignment between two partitions. This means that each nurse (partition T0) will 

be assigned exactly one (working or free) shift for each partition (day). The main 

idea is to find the minimal cost matching for each bipartite graph so that we find 

the nmax paths (each path corresponds to an individual nurse roster). The main 

advantage of tackling the nurse scheduling problem in this way is that the 

assignment problem can then be solved in polynomial time using the algorithm 

proposed by Carpaneto and Toth (1987) which has a polynomial running time 

complexity of O(nmax
3). Also, the heuristic procedure is deterministic producing 

the same solution every time is applied to the same problem instance. However, 

note that in our approach we need to solve the assignment problem many times in 

order to obtain a full nurse schedule. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 

4 The Proposed Heuristic Algorithm 

We propose a multi-assignment problem-based algorithm (MAPA) which 

consists of two phases, both based on successive resolutions of an assignment 

problem between two consecutive partitions in the multipartite graph described 

above. In the first phase, an initial solution (set of duty rosters) is built. In the 

second phase, two procedures are employed to improve the initial solution by 

modifying the previous assignments between the partitions. 

4.1 Construction Phase 

The construction phase starts by generating the multipartite graph as defined 

in Section 3. An initial solution is obtained by solving dmax successive assignment 

problems from the first to the last day of the scheduling period. 

As stated above, the square matrix of costs  has different interpretations 

in each phase of the algorithm. In this first phase 
 
is the cost of assigning shift j 

to nurse i on day d. We note that in the nurse scheduling problem instances 

tackled here, the number of nurses available to work on a day is usually greater 

than or equal to the number of required working shifts on that day (covering 

requirement), i.e. |Sd|≤|N| as stated in Section 2. Then, we complete the cost matrix 

with spare shifts in order to get a square matrix  where a spare shift is a type 

of shift considered in the problem (early, late, night or free shift). This means that 

the algorithm can assign more working shifts than needed in day d (further 

discussion below on how we deal with this). In this first phase, the matrix  is 

divided into two blocks as shown in Figure 1. 

 
Figure 1: The cost matrix structure for the assignment of shifts to nurses, Block I ensures 

the cover requirement and Block II contains the spare shifts needed to form a square cost 

matrix. 
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Block I contains the shifts that satisfy the required coverage on day d and 

Block II contains the spare shifts added to form a square matrix  where the 

number of available nurses on day d is greater or equal than the number of nurses 

required in the coverage. Since the minimum coverage requirement is guaranteed 

by the shifts in Block I, any assignment of spare shifts in Block II to nurses is 

permitted, including the assignment of free shifts. The function for calculating the 

costs in Block I is defined as follows: 

 
  (9) 

 
where is the penalty cost (related to the nurse’s preferences) for 

assigning shift j to nurse i on day d;  is the number of hard constraint 

violations due to this assignment; Ph is the penalty for the violation of a hard 

constraint;  is the number of soft constraint violations due to this assignment 

and Ps is the penalty for the violation of a soft constraint. This cost function is as 

proposed by Maenhout and Vanhoucke (2007). 

Let  be all the required shifts in Sd including free shifts, then 

. Therefore, the equation in Block II gives 

the following information: the penalty cost of assigning spare shift j to nurse i and 

the shift type in  that will be assigned to this nurse i as a spare shift. Note that 

the value of in Block II is the same for nurse i. Each cost  in Block II is 

taken as the minimum cost among the costs in Block I for the corresponding 

nurse, also considering the assignments of free shifts to that nurse. This means 

that for nurse i, each of the costs in Block I corresponds to an assignment (early, 

day, night or free shift) towards a covering of the required shifts in the workload 

while the corresponding costs in Block II are equal to the minimum of the costs in 

Block I for that same nurse. Since the assignments in Block II correspond to spare 

(not required shifts) our approach produces schedules that definitely meet the 

minimum coverage requirements and possibly exceed that requirement for some 

days in the scheduling period. Hence, the associated constraint violation costs are 

set accordingly to complete the overall multi-assignment problem. 

An assignment problem is constructed and solved for each day of the 

scheduling period. Note (see Figure 2) that in the first assignment of shifts (day 1) 

from partition 1 to partition 2 there is no previous assigned shift. However, from 
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the second assignment (day 2) onwards, the previous assignments must be 

considered when calculating the cost matrix. That is, when calculating the cost 

for nurse i on day d, the shifts assigned to that nurse in previous days are taken 

into account. In order to calculate   a simple procedure (called constraints 

update) checks the sequence of shifts assigned to nurse i in the previous days to 

day d. The procedure checks the constraints, e.g. if the minimum/maximum 

number of working assignments is satisfied or not. The time spent in calculating 

depends on the length of that sequence of shifts which is known to be not 

greater than dmax. This process is repeated for each day in the scheduling period. 

Then, at the end of this multi-assignment process, we have constructed an initial 

solution, i.e. a duty roster for each nurse. The construction phase just explained is 

expressed in the following pseudo-code (AP stands for assignment problem). 

Procedure Construction 

Begin 

For d=1 to dmax do: 

Construct the cost matrix for day d  

Solve the AP corresponding to the cost matrix ; 

Assign the shifts to the nurse according to the AP solution; 

End. 

4.2  Improvement Phase 

The improvement phase is composed of two procedures that aim to improve 

the initial solution obtained in the construction phase. The first procedure, called 

Cutting and Recombination Procedure (CRP), performs successive ‘cuts’ in the 

multipartite graph before each day d. This means dividing the duty roster in two 

parts (left- and right-hand sides) and then constructing another assignment in the 

cut made, as it is shown in Figure 3. Therefore, a new assignment problem is 

formulated with new square costs matrix and then solved after each cut. An 

important difference when solving this new assignment problem is that 

represents the cost of assigning to nurse i on day d, the left-hand side of 

schedule j to the right-hand side of the same schedule which takes into account the 

shifts already assigned before and after the cut. In order to calculate this cost, the 

algorithm explores which spare shifts (those with the minimum cost) can be 

updated (reassigned) for the nurse in such a way that the new reassignment has a 

reduced cost. Such updates in the assignment of spare shifts after the cut are 
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possible due to the degree of flexibility in the nurse’ preferences. The satisfaction 

of such preferences takes into account the left and right-hand sides of the cut 

schedule, which might be different from the construction of the initial schedule 

when there is no assignment to the right of the given partition. 

 
Figure 2:  Example of a multipartite graph for 4 nurses and 7-days scheduling period, showing a 

duty roster with a cut before day 2 and possible recombinations (dashed lines) of partial rosters. 

Letters E, D, N, F mean an Early, Day, Night and Free shift, respectively; * means a spare shift. 

 
Figure 3: Example of reassignment after the cut (Figure 2 and then solving the new assignment 

problem) with the cutting and recombination procedure (CRP), resulting in a reassignment of 

working and spare shifts. Note that on day 5 a spare shift was changed (updated) for reducing the 

cost corresponding to nurse 2 individual roster (assuming that nurse 2 prefers shift D to shift E). 

The pseudo code of the CRP improving procedure is given below (AP stands for 

assignment problem). 

Algorithm CRP 

Begin 

   For d=1 to dmax do: 

Construct the matrix after performing a cut before day d; 

Solve the AP corresponding to the cost matrix ; 

Reassign left- and right-hand sides of the schedule according 
to the AP solution; 

Update the spare shifts for each nurse roster to reduce the 
overall solution cost; 

End. 
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The second improvement procedure, called Shift Redistribution Procedure 

(SRP), aims to decrease the total cost of the solution by redistributing shifts 

among nurses in each day as shown in Figure 4. Since the solution cost is 

associated to the nurses’ preferences, the same shift assigned to different nurses 

may contribute with different costs to the overall schedule cost. Then, this SRP 

improving procedure consists of selecting a day (partition) in the schedule and 

then reassigning the nmax shifts on this day to the nmax rosters. The cost of each 

association is an element of the matrix , where  is the cost of replacing shift 

j in day d of the schedule for nurse i. This calculation of the costs is analogous to 

the one performed in the CRP procedure and involves the minimum cost of the 

spare shifts as well as the constraints update procedure described in Section 4.1. 

 
Figure 4. Example of reassignment in the shift redistribution procedure (SRP). New possibilities of 

shift association on day 4 are represented by dashed arrows. 

Once the cost matrix is generated and the related assignment problem is 

solved, the current solution is altered through shift exchanges and some spare 

shifts may be replaced. Figure 5 shows an example of such alteration. 

 

Figure 5: Example of shift exchange. Individual rosters after shift redistribution on day 4 including 

the change (update) of a spare shift on day 1 for nurse 3 (from shift D to shift F).  
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This SRP improving procedure is repeated for all partitions (all days) 

according to the pseudo-code shown below (AP stands for assignment problem). 

Algorithm SRP 

Begin 

   For d=1 to dmax do: 

Construct the matrix  to replace the shifts on day d; 

 Solve AP corresponding to cost matrix ; 

 Replace the shifts in the rosters according to AP solution; 

Update the spare shifts for each nurse roster to reduce the 
overall solution cost; 

End. 

 

The two improving procedures CRP and SRP described above are performed in a 

sequential fashion in both directions covering the dmax partitions: forward (d=1 to 

dmax) and backward (d=dmax downto 1). The procedures are performed until there 

is no improvement for a certain number of iterations (NumIt). Therefore, we 

defined four variants: RCP_Forward(s), SRP_Forward(s), RCP_Backward(s) and 

SRP_Backward(s), where s represents a solution (full schedule). Let Val(s) be the 

cost of solution s, which is equal to the objective function value of the last 

assignment problem solved, then the overall proposed improvement phase in our 

algorithm works as shown in the pseudo-code below (the fixed execution order of 

the improvement procedure variants was decided by preliminary 

experimentation). The parameter NumIt is the predefined number of times that the 

whole improvement procedure is attempted without an improvement in the current 

solution. 

Procedure Improvement(s) 

Begin 
   count:=0; 
   Repeat  
  s’:=s; 
 s’:=RCP_Forward(s’); 
  s’:=SRP_Forward(s’); 

 s’:=RCP_Backward(s’); 
 s’:=SRP_Backward(s’); 

     if Val(s’)=Val(s) then 
        count:=count + 1 
      else 

        count:=0; 
   until count=NumIt; 
end. 
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5 Performance Analysis of MAPA  

5.1 Experimental Setting 

The proposed MAPA algorithm was implemented in Pascal programming 

language and the tests were performed on a PC with two 3.2 GHz quad-core Xeon 

processors and 16GB of RAM running Windows XP. The problem instances were 

obtained from the NSPLib library (Maenhout and Vanhoucke, 2005). 

 We tested MAPA on 248,640 problem instances split in two groups: Group 

1 with 233,280 instances involving 1-week schedules and Group 2 with 15,360 

problem instances involving 4-week schedules. In the Group 1 we find 29,160 

requirement-costs problem instances involving a scheduling period of 7 days (1-

week schedule). These instances are divided by problem size: 25, 50, 75, and 100 

nurses, each subset containing 7,290 instances. Each problem instance has a 

different set of requirements per day and different preference costs. Furthermore, 

there are also 8 cases with different preferences and coverage constraints. Then, 

each of these 8 preferences-coverage cases may be combined with each of the 

29,160 requirements-costs problem instances, forming a total of 233,280 1-week 

schedule problem instances. In the Group 2 we find 1,920 requirement-costs 

problem instances involving a scheduling period of 28 days (4-week schedule). 

These instances are divided by problem size: 30 and 60 nurses, each subset 

containing 960 instances. Again, we combine the 8 preference-coverage cases 

with each of the 1,920 requirement-costs problem instances forming a total of 

15,360 4-week schedule instances. There are two important issues we must 

discuss about the use of NSPLib. The first issue is that the results we obtained for 

38 of these instances (33 instances with 30 nurses and 5 instances with 60 nurses) 

could not be compared to existing results. We believe that the solution costs are 

misreported in the NSPLib because in some cases the reported cost is less than 

zero, which is not possible considering the given definition of penalty costs. The 

penalty values for soft constraint violations used here are the same as the ones 

used by Maenhout and Vanhoucke (2006) and Maenhout and Vanhoucke (2007), 

i.e. Ph= Ps= 100. Also, we fixed NumIt=3 in the improvement phase. 

The second issue in using NSPLib is that the minimum coverage constraint 

(working shifts required in each day) is always satisfied by our algorithm (as 

explained in Section 4.1), but this is not the case in some of the (infeasible) 
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solutions reported in the NSPLib. In other words, our MAPA procedure satisfies 

the minimum coverage hard constraint, while some of the solutions reported in 

NSPLib satisfy some of the constraints but not necessarily the coverage 

constraint. We followed exactly the same definition stated by Maenhout and 

Vanhoucke (2007), i.e. “a nurse schedule is said to be feasible if the coverage 

constraints and all other case-specific constraints are satisfied”. Then, given this 

issue with feasibility in some solutions reported in NSPLib, in order to compare 

our results to those NSPLib infeasible solutions, we made the following 

adjustments. At the end of the improvement phase, if a solution is infeasible we 

apply a procedure that changes shifts to attempt satisfying all hard constraints 

except the coverage constraints. Then, if a required working shift is not assigned, 

a penalty is added to the solution cost. However, if another hard constraint is 

satisfied, then a penalty is deducted from the solution cost. For example, if a nurse 

works more than the maximum allowed number of working days, this constraint 

violation can be satisfied by replacing a working shift with a free shift (in case of 

a spare shift). Anyway, the solution stays infeasible, but is more comparable to the 

solutions reported in NSPLib. 

5.2 Results and Discussion 

We compare the results obtained by MAPA to the results reported in NSPLib. 

These results are split in two groups, one for the 1-week instances and the other 

for the 4-week instances. Each group is then split according to the problem size, 

i.e. the number of nurses. 

The top four sections of Table 1 show the results reported by NSPLib and 

the results obtained by MAPA for the 233,280 1-week instances involving 25, 50, 

75 and 100 nurses. The two sections of Table 1 below the double lines report 

results for the 15,322 (not 15,360)1 4-week instances involving 30 and 60 nurses. 

The best results are highlighted in bold and the data given in each column is as 

follows. Column one gives the number of nurses |N|. Column two gives a label for 

each case (instances of the same type). Column three gives the total number of 

solved instances (#Inst) for each case. Columns four and six give the average 

solution cost (AvgCost) reported in NSPLib and obtained by MAPA respectively. 

                                                             
1
 We excluded 33 cases involving 30 nurses and 5 cases involving 60 nurses for which NSPLib 

reports infeasible solutions. 
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Columns five and seven give the average number of constraints violations 

(AvgVl) reported in NSPLib and obtained by MAPA respectively. Columns eight 

and nine give the relative difference between the NSPLib results and MAPA 

results with respect to the average solution cost (GpCost) and the number of 

constraint violations (GpVI) respectively. The last three columns give the 

percentage of times in which the best solution cost is reported in NSPLib (column 

ten), obtained by MAPA (column twelve) or there is a tie (column %both). 

The %GAP value is calculated as follows: 

%GAP = (Val(MAPA) – Val(NSPLib)/Val(NSPLib) )×100 (10) 

where Val() is the solution cost value obtained by the given method. 

The results shown in Table 1 indicate that MAPA performed poorly on the 

1-week small instances (with 25 nurses), performed better on the 1-week larger 

instances (with 50, 75 and 100 nurses), but performed very well on the 4-week 

instances (with 30 and 60 nurses). In the 4-week instances MAPA always reached 

better results than those reported in NSPLib. Looking at the overall performance 

of MAPA compared to the solution costs reported in NSPLib across all 1-week 

schedules, we can report that MAPA obtained solutions with better average cost 

on 7.26% of the instances. However, when considering all 4-week schedules, 

MAPA obtained solutions with better average cost on 99.48% of the instances. 

We highlight case 15 with 60 nurses where MAPA showed its best performance, 

that is, a 12.21% lower average cost solutions with 32.40% fewer constraint 

violations. Case 15 for 30 nurses is also a case where MAPA performed very well. 

Table 2 shows the average solution cost for those instances in which 

NSPLib reports feasible solutions (recall that NSPLib reports infeasible solutions 

for some instances). This table shows the number of instances for which a feasible 

solution is reported both by MAPA and NSPLib (#BothFeas), the number of 

instances for which a feasible solution is reported by MAPA or by NSPLib 

(#Feas). Note that MAPA and NSPLib do not always report feasible solutions for 

the same number of problem instances. 

The results shown in Table 2 indicate that MAPA reached better solutions 

and also more feasible solutions on larger instances, mainly 1-week schedules 

with 100 nurses and 4-week schedules with 30 and 60 nurses. We highlight that 

on the 4-week schedules MAPA obtained more feasible solutions in all cases. 
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Table 1:  Comparing the results (solution cost and number of soft constraint violations) obtained 

by MAPA to the results reported in NSPLib. 

|N| Case #Inst  
NSPLib  MAPA  %GAP  %BestSol 

AvgCost AvgVl AvgCost AvgVl GpCost GpVl NSPLib     %both MAPA 

25 

1 7,290 305.11 0.530 306.25 0.530 0.37 0.00 46.28 47.94 5.78 
2 7,290 293.82 0.530 294.34 0.530 0.18 0.00 25.93 69.66 4.42 
3 7,290 321.99 0.538 323.48 0.538 0.46 0.03 58.26 32.28 9.47 
4 7,290 303.26 0.530 303.97 0.530 0.24 0.00 33.51 59.66 6.83 
5 7,290 336.89 0.711 339.37 0.715 0.74 0.52 65.79 29.70 4.51 
6 7,290 294.81 0.530 295.32 0.530 0.17 0.00 25.45 69.77 4.79 
7 7,290 408.74 1.250 441.59 1.548 8.04 23.84 83.40 13.59 3.00 
8 7,290 330.90 0.719 335.69 0.753 1.45 4.77 52.47 39.03 8.50 

50 

1 7,290 587.07 0.848 587.44 0.848 0.06 0.00 27.52 51.22 21.26 
2 7,290 565.07 0.848 565.24 0.848 0.03 0.00 13.66 68.57 17.76 
3 7,290 615.58 0.868 615.53 0.869 -0.01 0.03 27.72 36.32 35.95 
4 7,290 583.68 0.848 583.84 0.848 0.03 0.00 18.74 58.93 22.33 
5 7,290 670.28 1.429 672.91 1.443 0.39 1.04 42.15 36.90 20.95 
6 7,290 567.41 0.848 567.43 0.848 0.00 0.00 12.15 65.17 22.67 
7 7,290 829.02 2.730 870.87 3.125 5.05 14.49 64.72 20.34 14.94 
8 7,290 652.73 1.400 660.34 1.473 1.16 5.19 26.80 39.45 33.74 

75 

1 7,290 912.86 1.503 912.15 1.503 -0.08 -0.01 16.45 40.69 42.87 
2 7,290 888.31 1.503 888.07 1.503 -0.03 -0.01 9.47 58.33 32.21 
3 7,290 954.41 1.524 952.80 1.521 -0.17 -0.18 17.34 32.41 50.25 
4 7,290 902.16 1.503 901.68 1.503 -0.05 0.00 11.33 50.27 38.40 
5 7,290 1,004.27 2.029 1,005.13 2.037 0.09 0.39 28.38 33.06 38.56 
6 7,290 889.69 1.503 889.44 1.503 -0.03 0.00 9.67 58.05 32.28 
7 7,290 1,214.34 3.671 1,284.07 4.362 5.74 18.82 55.24 21.59 23.17 
8 7,290 993.65 2.067 997.98 2.119 0.44 2.52 16.05 31.43 52.52 

100 

1 7,290 1,389.23 1.665 1,387.28 1.663 -0.14 -0.11 10.08 32.55 57.37 
2 7,290 1,346.80 1.663 1,346.01 1.663 -0.06 -0.02 6.79 43.48 49.73 
3 7,290 1,468.56 1.704 1,464.12 1.691 -0.30 -0.75 9.90 23.50 66.60 
4 7,290 1,375.60 1.664 1,373.98 1.663 -0.12 -0.09 7.04 34.50 58.46 
5 7,290 1,540.01 2.602 1,541.29 2.618 0.08 0.61 21.80 25.24 52.96 
6 7,290 1,349.82 1.663 1,348.84 1.663 -0.07 -0.03 6.61 41.54 51.85 
7 7,290 1,870.16 5.172 1,938.01 5.825 3.63 12.63 50.07 17.53 32.40 
8 7,290 1,513.95 2.569 1,520.31 2.646 0.42 3.00 13.83 21.69 64.49 

30 

9 959 1,911.806 4.024 1,861.785 3.923 -2.62 -2.51 1.04 0.31 98.64 
10 960 1,821.199 3.924 1,806.778 3.919 -0.79 -0.13 4.79 1.15 94.06 
11 957 2,016.964 4.134 1,938.501 3.931 -3.89 -4.90 0.52 0.10 99.37 
12 960 1,857.499 3.924 1,837.518 3.919 -1.08 -0.13 1.67 0.73 97.60 
13 959 2,030.919 4.668 1,930.881 4.217 -4.93 -9.67 1.98 0.00 98.02 
14 960 1,837.875 3.942 1,822.353 3.931 -0.84 -0.26 4.27 0.94 94.79 
15 951 2,473.512 8.231 2,208.909 5.839 -10.70 -29.06 7.68 0.00 92.32 
16 941 2,022.393 5.149 2,010.258 4.964 -0.60 -3.59 14.03 0.53 85.44 

60 

9 960 3,786.042 7.020 3,675.269 6.741 -2.93 -3.98 1.15 0.00 98.85 
10 960 3,610.247 6.769 3,567.293 6.741 -1.19 -0.42 1.15 0.10 98.75 
11 960 3,984.298 7.217 3,819.042 6.741 -4.15 -6.60 1.04 0.00 98.96 
12 960 3,681.692 6.765 3,627.718 6.741 -1.47 -0.35 0.31 0.21 99.48 
13 960 4,015.435 8.190 3,799.254 7.243 -5.38 -11.56 0.83 0.00 99.17 
14 960 3,644.343 6.814 3,596.639 6.758 -1.31 -0.81 0.94 0.10 98.96 
15 960 4,875.376 14.758 4,280.155 9.976 -12.21 -32.40 3.85 0.00 96.15 
16 955 4,003.423 8.825 3,917.626 8.422 -1.99 -4.57 10.83 0.00 89.17 
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Table 2: Comparing the results (solution cost and number of feasible solutions) obtained by 

MAPA to the results reported in NSPLib. 

|N| Case #Inst  # BothFeas 
NSPLib  MAPA 

AvgCost # Feas AvgCost # Feas 

25 

1 7,290 6,435 250.553 6,435 251.394 6,435 
2 7,290 6,435 239.395 6,435 239.689 6,435 
3 7,290 6,421 266.482 6,421 267.677 6,422 
4 7,290 6,435 248.629 6,435 249.094 6,435 
5 7,290 6,261 263.472 6,261 265.228 6,261 
6 7,290 6,435 240.368 6,435 240.637 6,435 
7 7,290 5,642 279.050 5,839 282.044 5,642 
8 7,290 6,228 256.453 6,241 257.495 6,232 

50 

1 7,290 6,563 499.941 6,563 500.020 6,563 
2 7,290 6,563 478.054 6,563 477.905 6,563 
3 7,290 6,534 526.071 6,537 525.694 6,544 
4 7,290 6,563 496.466 6,563 496.306 6,563 
5 7,290 6,215 523.088 6,215 523.641 6,221 
6 7,290 6,563 480.358 6,563 480.069 6,563 
7 7,290 5,570 547.861 5,707 549.278 5,574 
8 7,290 6,217 508.347 6,233 508.060 6,225 

75 

1 7,290 6,466 757.929 6,466 756.830 6,466 
2 7,290 6,466 733.380 6,466 732.795 6,466 
3 7,290 6,442 797.099 6,442 795.464 6,454 
4 7,290 6,466 746.826 6,466 746.000 6,466 
5 7,290 6,274 795.008 6,274 794.510 6,276 
6 7,290 6,466 734.754 6,466 734.133 6,466 
7 7,290 5,648 834.904 5,795 835.540 5,654 
8 7,290 6,244 779.549 6,253 778.138 6,252 

100 

1 7,290 6,597 1,217.768 6,597 1,215.337 6,600 
2 7,290 6,599 1,175.595 6,599 1,174.085 6,600 
3 7,290 6,563 1,292.882 6,563 1,289.106 6,588 
4 7,290 6,597 1,203.919 6,597 1,201.737 6,600 
5 7,290 6,290 1,269.268 6,290 1,267.558 6,309 
6 7,290 6,598 1,178.512 6,598 1,176.831 6,600 
7 7,290 5,706 1,334.991 5,797 1,335.186 5,729 
8 7,290 6,299 1,246.684 6,309 1,243.779 6,323 

30 

9 959 659 1,476.656 659 1,443.880 668 
10 960 669 1,404.157 669 1,390.821 669 
11 957 653 1,576.562 653 1,524.534 666 
12 960 667 1,439.109 667 1,420.769 669 
13 959 638 1,524.378 638 1,477.876 657 
14 960 668 1,418.090 668 1,403.674 669 
15 951 590 1,613.158 592 1,579.397 631 
16 941 621 1,488.361 621 1,477.105 628 

60 

9 960 664 3,015.901 664 2,948.224 675 
10 960 673 2,875.618 673 2,838.235 675 
11 960 658 3,199.853 658 3,098.603 675 
12 960 673 2,945.602 673 2,897.960 675 
13 960 653 3,117.025 653 3,011.757 670 
14 960 670 2,902.136 670 2,862.655 674 
15 960 634 3,321.891 634 3,197.087 657 
16 955 646 3,048.249 646 2,999.334 656 
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The results shown in Tables 1 and 2 give us some evidence that the 

multiple resolutions of the assignment problems in each step of the improvement 

procedures constitute an effective approach to build larger schedules. Also, these 

results indicate that the improvement phase is particularly useful when making 

reassignments of shifts for nurses by targeting existing costly assignments. 

5.3 Computational Time 

Table 3 shows the average computational time taken by MAPA and the 

corresponding computational time reported in NSPLib. Without taking into 

account that the machines used were different, the last column in the table gives 

an indication of the difference in computation time between MAPA and NSPLib. 

Table 3: Computation time consumed by MAPA and computational time reported in NSPLib. 

|N| |D| Case #Inst 
Average time (seconds)  

%GAP of time 
NSPLib  MAPA  

25 7 1 a 8 58,320 2.162  0.718  -66.780 
50 7 1 a 8 58,320 5.212  2.825  -45.809 
75 7 1 a 8 58,320 11.641  6.834  -41.291 
10
0 

7 1 a 8 58,320 21.623  13.629  -36.970 
30 28 9 a 16 7,647 22.102  92.246  317.368 
60 28 9 a 16 7,675 61.906  447.035  622.119 

 

Note that for smaller instances the average execution time of MAPA is 

shorter than the time reported in NSPLib. As the size of the instance grows, the 

running time of the proposed MAPA method becomes larger compared to the time 

reported in NSPLib. This also indicates that although the proposed multi-

assignment approach is very effective in finding low-cost feasible solutions for 

large instances, the computational efficiency of MAPA is an aspect that could be 

improved. The resolution of each assignment problem is done in polynomial time, 

but the number of assignment problems solved together with the improvement 

phase, slow down the method on larger instances. 

5.4 Performance of the Improvement Procedures 

Now we assess the contribution of the CRP and SRP improvement 

procedures to the performance of MAPA. Table 4 presents results from additional 

tests with some instances involving 1-week and 4-week schedules. We conducted 

three independent experiments on the same set of initial solutions: 1) applying 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 

CRP only, 2) applying SRP only and 3) applying both CRP and SRP. Table 4 

presents the results of these experiments as follows. The initial solution cost is 

shown in column (InitCost), the cost obtained after applying CRP only to the 

initial solution is shown in column (CRP-Cost), the percentage cost reduction 

achieved by CRP is shown in column (%CRP), the cost obtained after applying 

SRP only to the initial solution is shown in column (SRP-Cost), the percentage 

cost reduction achieved by SRP is shown in column (%SRP), the cost obtained by 

applying both CRP and SRP to the initial solution is shown in column 

(CRP&SRP) and the percentage cost reduction achieved by applying both CRP 

and SRT is shown in column (%CRP&SRP). 

Table 4: Contribution of CRP and SRP improvement procedures to the overall cost reduction in 

the improvement phase.  

 

Table 4 shows that CRP obtained more cost reductions over the initial cost 

than SRP. On some instances, CRP alone achieved the same improvement as 

when applying both procedures. However, Table 4 shows that overall, applying 

the two procedures achieves better results than applying either CRP or SRP alone. 

5.5 Performance of MAPA 

MAPA has shown to perform better on problem instances of larger size. 

Figure 6 shows a curve of %GAP for cost reduction and a curve of %GAP for soft 

constraint violations reduction for different problem instance sizes. Each point in 

the curves corresponds to the percentage of the average difference between the 

results obtained by MAPA and those reported in NSPLib. For example, the first 

point to the left in Figure 6 (a) indicates that on the problem instances with 7-days 

scheduling period and 25 nurses, MAPA obtained an average solution cost 0.37% 

higher. The last point to the right on Figure 6 (a) indicates that on the problem 

instances with 28-days scheduling period and 60 nurses, MAPA obtained an 

|N| |D| File InitCost 
Experiment 1  Experiment 2  Experiment 3 

CRP-Cost  %CRP  SRP-Cost %SRP  CRP&SRP %CRP&SRP 
25 7 1 343 309 9.91  313 8.74  307 10.49 
50 7 1 1,123 580 48.35  584 47.99  580 48.35 
75 7 1 939 880 6.28  882 6.07  880 6.28 
100 7 1 2,476 1,289 47.94  1,292 47.81  1,289 47.94 
30 28 1 3,998 1,583 60.40  2,149 46.24  1,573 60.65 
60 28 1 6,267 3,186 49.16  3,364 46.32  3,184 49.19 
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average solution cost 2.93% lower. Figure 6 (b) shows similar information but 

with respect to the difference in soft constraints violations. For example, the two 

first points to the left indicate that on the problem instance with 7-days scheduling 

period and 25 or 50 nurses, MAPA obtained an average solution with the same 

penalty violations as those reported in NSPLib, The last point to the right of 

Figure 6 (b) indicates that on the problem instances with 28-days scheduling 

period and 60 nurses, MAPA obtained an average solution with 3.98% less soft 

constraints violations.  

 
Figure 6: Comparing (a) average cost reduction and (b) average constraints violations difference 

between results obtained by MAPA and reported in NSPLib. A point below 0 indicates MAPA 

achieves better average results on that problem instance. 

Figure 7 shows the percentage number of times that the best solution cost is 

reported in NSPLib, is obtained by MAPA or both. It can be seen that MAPA 

performs better as the size of instances grows. 

 

 
Figure 7: Percentage number of times that the best solutions are reported by MAPA and NSPLib. 

Figure 7 shows that for instances with 7-days scheduling period and 50 

nurses, the best results percentage achieved by MAPA and those reported in 

NSPLib are very close, 21.26% and 27.52%, respectively. However, MAPA 
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overcomes the results reported in the NSPLib for instances with 7-days 

scheduling period and 75 nurses.   

These results show again that, as the size of instances grows with respect 

to the length of the scheduling period or the number of nurses, the performance of 

MAPA with respect to the solution quality improves considerably producing 

better results than those reported in NSPLib. 

Although MAPA uses some more computational time compared to the 

results reported in NSPLib, the proposed algorithm can still be considered 

efficient for large instances. For example, producing a high-quality schedule for a 

problem with 4-week scheduling period and 60 nurses takes MAPA around 450 

seconds (around 7.5 minutes) which can be considered practical. 

5.6 Usability of MAPA 

We should note that while it is common for heuristic algorithms 

(particularly meta-heuristics) to use randomization, MAPA is deterministic and 

hence multiple executions always generate the same results for the same input. In 

hospitals it is usually the case that nurse re-scheduling is required due to changes 

in demand, staff availability, etc. Another interesting aspect of MAPA is the 

possibility of using it for re-scheduling when facing unforeseen changes. Such re-

scheduling is possible by applying the algorithm from the day in which the change 

happened onwards, while the previous days (left-hand side of the multipartite 

graph) are treated as historical records. Then, the multipartite model and multi-

assignment procedure in MAPA is a suitable re-scheduling approach. The above 

features can be seen as very valuable for a heuristic approach to be accepted by 

human decision-makers (Cordeau et al. 2002) and particularly in the context of 

real-world healthcare environments (Petrovic and Vanden Berghe 2012). 

6 Conclusions 

In this work we proposed MAPA (multi-assignment problem algorithm) as a 

deterministic and effective heuristic algorithm for tackling a nurse scheduling 

problem. The proposed algorithm is based on an exact solution procedure with 

polynomial time complexity that solves a series of sub-problems (assignment 

problems). Each sub-problem corresponds to the assignment of shifts to all nurses 
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on a particular day, while considering the assignments already made on other days 

of the scheduling period.  

We believe that MAPA satisfies the various desirable criteria defined by 

Cordeau et al. (2002) for heuristic methods. The simplicity criterion is met 

because the proposed algorithm does not require parameter tuning and it uses a 

classical well-known assignment problem which is easily solved. The flexibility 

criterion is also observed when incorporating new constraints which can be 

achieved by just introducing new values on the cost matrix (through equation 9) 

and modifying the appropriate constraints update procedure in the improvement 

stage of the algorithm. Reasonable accuracy and speed criteria are also observed 

in MAPA, particularly for larger problem instances, as it was shown in the 

experimental results of Section 5.  

We also believe that MAPA satisfies several of the seven criteria proposed 

by Petrovic and Vanden Berghe (2012) for nurse scheduling methods. MAPA has 

good expressive power given its ability to tackle a wide variety of constraints by 

only modifying the procedure to construct the cost matrix. MAPA has good 

flexibility because the multi-assignment procedure can be easily adapted to 

different nurse scheduling scenarios. The results presented here also show that 

MAPA has good algorithmic power in terms of effectiveness and efficiency. 

MAPA has good rescheduling capability (as discussed in section 5.6) given the 

underlying multipartite model and associated multi-assignment procedure. MAPA 

is also good on parameter tuning because its performance does not depend on 

such process. MAPA meets the maintenance criterion because updating the 

domain knowledge about the specific nurse rostering problem being solved can be 

done easily by having a procedure to check each constraint (hard or soft) in order 

to construct the cost matrix. The only criterion of those proposed by Petrovic and 

Vanden Berghe that is not fully met by MAPA is the learning capability since the 

method is not capable of self-improving its performance over time. 

In general, the solutions obtained by MAPA are better than the solutions 

reported in the NSPLib dataset. Taking into account all 248,602 solutions, MAPA 

obtained better solutions in 34.70% of the instances. On the opposite, NSPLib 

reports better solutions than those obtained by MAPA in 27.03% of the instances. 

Also, MAPA produced more feasible solutions than those reported in NSPLib. 

Therefore, we believe that this paper contributes with the introduction of a new 
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deterministic and effective heuristic algorithm to tackle the nurse scheduling 

problems in NSPLib. The paper also contributes by reporting new best results on 

some NSPLib instances compared to those by Maenhout and Vanhoucke (2007) 

obtained with different meta-heuristic approaches including the Electromagnetic 

method, Scatter Search and Genetic Algorithms. 

As future research work, we suggest to investigate extensions to MAPA by 

considering new improvement procedures in addition to those described here. 

Also, it would be interesting to investigate the applicability of MAPA to other 

nurse scheduling benchmark datasets. Another suggestion is to combine the 

improvement procedures (CRP, SRP and perhaps others) with some meta-

heuristic techniques to develop a hybrid approach. Having more improvement 

procedures, could allow using them as neighbourhood search routines and 

possibly to combine them into a VNS (variable neighbourhood search) style meta-

heuristic. Also, the improvement of the computational time used by MAPA in 

larger problem instances is subject of future investigation. 
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