## PAPER•OPEN ACCESS

# Design of an Information System for optimizing the Programming of Nursing Work Shifts 

To cite this article: F Osores et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 844012044

View the article online for updates and enhancements.

# Design of an Information System for optimizing the Programming of Nursing Work Shifts 

F Osores ${ }^{1}$, G Cabrera ${ }^{2}$, R Linfati ${ }^{3}$, S Umaña-Ibañez, J Coronado-Henández ${ }^{4}$ and G Gatica ${ }^{1}$<br>${ }^{1}$ Universidad Andres Bello. Engineering Faculty, Chile.<br>${ }^{2}$ Pontificia Universidad Católica de Valparaíso. Engineering Faculty, Chile<br>${ }^{3}$ Universidad del Bío- Bío. Engineering Faculty, Chile<br>${ }^{4}$ Universidad de la Costa. Departamento de Gestión Industrial, Agroindustrial y Operaciones. Colombia.

jcoronad18@cuc.edu.co


#### Abstract

Health institutions operate twenty-four hours a day, seven days a week. They face a demand that fluctuates daily. Unlike jobs with fixed hours and obligatory days off, in health, operational continuity is required. The allocation for nursing shifts generates a rotation of people for health services according to legal and casuistic guidelines. Assigning and planning shifts results in a workload that takes an average of five to six extra hours. Existing applications offer a partial solution because they do not consider the news and contingencies of a health service. A web application is presented that, given a list of nurses, historical shifts and restrictions, a work shift planning is generated. This application comes to support the current shift allocation method based on electronic spreadsheets. The development consists of two modules. The first module has a shift allocation algorithm developed in $\mathrm{C}++$ and the second module has a graphical interface. As a case study, a set of health services from Chile and Colombia was used. The services have a defined number of nurses, who work different shifts according to the role and need of the institution. The results obtained are similar to a historical one. The proposed system takes less time and delivers various files and parameters that can be useful for nurses, the service and the health institution.


## 1. Introduction

Health institutions are facing various challenges, in which they increase economic pressure and demand for care challenges. One of the outstanding problems in health care operations is the problem of the allocation of work shifts [1].

The Nurse Rostering Problem (NRP) is a problem of the NP-Hard class [2].The problem involves making the allocation of work shifts, days off and vacations for nurses [3] [4]. The NRP faces a variety of constraints that hinder the goal of optimizing shift allocation [5]. Among them are number of personnel versus required personnel; maximum monthly work hours; maximum number of workable hours and days off [6].

There are several restrictions that vary according to the country and corresponding labour legislation [7]. Therefore, there are various solutions to the NRP, each according to the needs of each institution and country [8] [9].

NRP has been the focus of study since the 1970s when the first studies on the problem emerged [10]. In [10] after studying a hospital unit, they propose a solution focused on minimizing an objective function that balances compensation of personnel coverage and personal time preferences. That same year, [11] proposes a solution to the problem, whose objective function to quantify the preferences of
the staff versus the time of work estimation, with rotation patterns and requests for free days, takes as restrictions the number of personnel and the change of rotation [12].

For NRP, new algorithmic approaches and developments of computer systems that facilitate the task of assigning shifts to arise. In spite of the above, the personnel in charge of assigning shifts prefer to perform this task manually [13]. The task of assigning shifts takes five hours on average, this scenario is affected when a nurse must be absent [14] [15]. Thus, an immediate reprogramming is required without overloading the remaining staff [16]. Based on the foregoing, it can be assumed that a quick way to deal with this situation is to offer extra shifts to the rest of the staff, but this sometimes exceeds the legal limit and may even generate additional costs for the institution [2] [17].

The research focus of this study is focused on contributing to improving the efficiency of the work shift programming and scheduling tasks through the development and implementation of a web application that automates the process and significantly reduces the time spent on this task.
This document presents in its structure a case study used for the analysis, the solution technique used, then the graphical interface and the technical architecture used are presented, finally, the results and conclusions are presented.

## 2. Case Study

The base scenario for the development of the web application, establishes a nursing service with five nurses, each with their own preferences for the request of free days and vacations [18] [19] [20] [21] [22][23][24]. It must be considered that any nurse at any time may present a medical license of an indeterminate length. External constraints define labor laws and the number of nurses available versus the minimum number of nurses for the service to function normally [6] [25] [26]. These restrictions will serve as input to develop an algorithm that performs a shift assignment taking into account the available constraints [27]. Figure 1. shows an example of how the work shift programming was carried out without any computational help. This manual assignment included Day Shifts (D), Night Shifts $(\mathrm{N})$ and days off (-).

| TURNOS DE ENFEREMERÍA 2018 ENERO |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENERO |  |  | 23 | 34 | 45 | 56 | 6 | 7 | 8 | 9 | 10 | 11 |  | 12 | 13 |  | 14 | 15 | 16 |  | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|  | L | M | M | J | J | $\checkmark 5$ | S | D | L | M | M | J |  | V | S |  | D | L | M |  | M | J | V | 5 | D | L | M | M | J | V | 5 | D | L | M | M |
| Francisca Torres | D | N |  |  |  |  | N |  |  | D | N |  |  |  | D | N |  |  |  | D |  | N |  |  | D | N |  |  | D | N |  |  | D | N |  |
| Africa Fuentes | N |  |  | D | N | $N$ |  |  | D | N |  |  | D |  | N |  |  |  | D | N | $N$ |  |  | D | N |  |  | D | N |  |  | D | N |  |  |
| Inés Tapias |  | D | N |  |  |  | D | N |  |  | D | $N$ |  |  |  | D |  | N |  |  |  | D | N |  |  | D | N |  |  | D | N |  |  | D | N |
| Mariela Capurro |  |  | D | N | N |  |  | D | N |  |  | D | N |  |  |  |  | D | N |  |  |  | D | N |  |  | D | N |  |  | D | N |  |  | D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Francisca Torres | D | N | - | - |  |  | N | - | - | 5 | N | - | - |  | D |  | N | - | - |  | D | N | - | - | D | N | - | - | D | N | - | $\dot{N}$ | - | $\stackrel{-}{-}$ | - |
| Africa Fuentes | N | - |  | D | N | N- | - | - D | D | N | - | - |  | D | N | N- |  | - | D |  | N | - | - | D | N | - |  | D | N | - | - | D | N | ${ }^{+}$ | - |
| Inés Tapias | - | - | N | N | - |  | - | N- |  |  | D | N | - |  | - |  | D | N | - |  | - | D | N | - | - | D | N | - | - | D | N | - | - | D | $N$ |
| Mariela Capurro |  | - | 0 | - |  |  | D | $\bigcirc$ | N- | - |  | D |  | - | - |  | - | D | N |  | - | - | D | N | - | - | D | N | - | - | D | - | D | N | D |
| Margarita Vásquez |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Vanessa Quispe |  |  |  |  |  |  |  |  |  |  |  |  | $N$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Figure 1. Example of a manual work shift programming.

## 3. Methodology

### 3.1 Solution Architecture

A three-layer architecture was defined as shown in Figure 2, the presentation layer corresponds to the user interface, displayed in the web application format. The second layer corresponds to the logical layer, where the allocation algorithm generates the monthly and weekly planning for the nurses of a service. The first two layers communicate with a third layer, where the data of an Access control list is stored according to the case study, this ensures that users cannot see information and plans from other users of other health institutions.

We chose to use this type of architecture because it offers extensible benefits to the needs of health services. The three-layer architecture allows developers to modularize and expand the application, in addition, the costs of implementing new functionalities are reduced, this is because the implementation of three independent layers between them allows making changes on one of them without unnecessarily affecting the others [28].


Figure 2. Technological architecture.

### 3.2 Solution Algorithm - Logical Layer

The proposed solution consists of an algorithm developed in $\mathrm{C}++$, whose pseudocode is shown in Figure 3 , which receives 2 files as input, one of them corresponds to the nurses list with their respective preferences and the second, a configuration file, the which defines the internal variables of each service as shown respectively in Table 1.

### 3.3. User interface - Presentation Layer

A web module was developed (figures 4 and 5) to facilitate the use of the system by final users.
The web application is completely in Spanish. The interfaces were designed for data acquisition the content and functionality, complying with the quality standard established by ISO 25000 [29].

As shown in Figure 3, the option is shown when selecting a file to upload, there is the option to modify it, in a more intuitive way than to modify the input file directly, prioritizing the usability of the system, in addition to this way the nurse in charge of the assignment of shifts does not make mistakes when entering the desired information.

Attributes of functionality, maintainability, efficiency, usability, and portability stand out as attributes of quality. This in relation to the non-functional requirements developed.

| 1 | Inputs: personal.csv, config. |
| :--- | :---: |
| 2 | Output: planificationcsv |
| $\mathbf{3}$ | Start |
| $\mathbf{4}$ | While Last day of the month condition is not met Do |
| $\mathbf{5}$ | While Unassigned nurses in a daily work shift > 0 D0 |
| 6 | If the nurse is available for assignment Then |
| 7 | If the nurse has no assignments Then |
| 8 | Assign a work shift |
| 9 | Go to Line 5 |
| 10 | End If |
| 11 | If the nurse has assignments Then |
| 12 | Analyze if assignment is possible according hours and consecutive work shifts. |
| 13 | Assign work Shift |
| 14 | Go to Line 5 |
| 15 | End If |
| 16 | End If |
| 17 | If Number of nurse and the work shift have no changes Then |
| 18 | Assign an extra work shift to the nurse with less hours and less extra works shifts. |
| 19 | End If |
| 20 | If No extra shifts was assigned Then |
| 21 | Update the list of required float nurses |
| 22 | End If |
| 23 | If there is remaining nurses with no assignments Then |
| 24 | Schedule the nurse as Day Off. |
| 25 | End If |
| 26 | End While |
| 27 | Go to the Next day of the month |
| 28 | End While |
| 29 | End |

Figure 3. Proposed Solution Algorithm

Table 1. Available configurations

| Type of configuration | Data |
| :---: | :---: |
| Maximum number of hours per day | Integer number between 0 and 24 |
| Maximum number of hours per week | Integer number between 0 and 168 |
| Types of shifts | List of elements separated by comma, in the following order: ShiftID (integer), the name of shift (String), Duration in hours (integer) |
| Shifts that cannot be preceded by other shifts (combinations not valid) | List of elements separated by comma, in the following order: ShiftID, ShiftID which cannot precede. |
| Combinations of valid turns | List of elements separated by comma, in the following order: new ShiftID, ShiftID 1, ShiftID 2, ..., ShiftID n |
| Requirements of shifts per day | List of elements separated by comma, in the following order: ShiftID, integer number indicating the number of nurses for shift on Monday, integer number indicating the number of nurses for shift on Tuesday, integer number indicating the number of nurses for shift on Wednesday, integer number indicating the number of nurses for shift on on Thursday, integer number indicating the number of nurses for shift on Friday, integer number indicating the number of nurses for shift on Saturday, integer number indicating the number of nurses for shift on Sunday |

Expotecnología 2019 "Research, Innovation and Development in Engineering"
IOP Publishing IOP Conf. Series: Materials Science and Engineering 844 (2020) 012044 doi:10.1088/1757-899X/844/1/012044

```
Planificar
```

| Seleccionar archivo | Saginicsv |
| :--- | :--- |


| (1) Ayuda |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | Nombre | Apellido | LUN | MAR | MIE | JUE | vie | SAB | DOM | Turno | Prioridad |
| 111 | Gabbi | Perez | $\square$ | Cuarto turn ${ }^{-}$ | 5 - |
| 222 | Arabela | Gutierrez | $\square$ | $\square$ | $\square$ | $\pm$ | $\pm$ | $\pm$ | $\square$ | Cuarto turn $\sim$ | 5 |
| 333 | Joana | Velez | 0 | $\nabla$ | 0 | $\pm$ | $\bullet$ | $\bullet$ | $\nabla$ | Cuato turn ${ }^{\sim}$ | 5 - |
| 444 | Esme | Pavarotti | $\square$ | $\square$ | $\square$ | $\nabla$ | $\nabla$ | $\nabla$ | $\square$ | Cuarto turn ${ }^{\sim}$ | 5 - |
| 555 | Gabbi | Herrandez | $\square$ | $\square$ | $\square$ | $\square$ | $\pm$ | $\square$ | $\square$ | Cuarto turn - | 5 - |
| 666 | Arabela | Henriquez | 0 | $\nabla$ | 0 | $\bullet$ | $\bullet$ | $\square$ | $\nabla$ | Cuarto turn ${ }^{\sim}$ | 5 - |
| 777 | Joana | Kowalsky | $\square$ | $\nabla$ | $\square$ | $\square$ | $\square$ | $\nabla$ | $\square$ | Cuarto turn $\sim$ | 5 - |
| 888 | Esme | Kira | $\square$ | $\nabla$ | $\square$ | $\pm$ | $\nabla$ | $\nabla$ | $\nabla$ | Cuarto turn - | 5 - |
| 999 | Gabbi | Quiroga | 0 | $\nabla$ | 0 | $\nabla$ | $\nabla$ | $\nabla$ | $\nabla$ | Cuarto turn ${ }^{\sim}$ | 5 v |
| 100 | Arabela | Quetzalcoat | $\nabla$ | $\square$ | $\triangle$ | $\square$ | $\nabla$ | $\nabla$ | $\square$ | Cuarto turn ${ }^{\sim}$ | 5 - |
| 110 | Joana | Zapatero | $\square$ | $\nabla$ | 0 | $\pm$ | $\pm$ | $\pm$ | $\nabla$ | Cuarto turn - | 5 - |
| 121 | Esme | Wu | 0 | $\nabla$ | 0 | $\bullet$ | $\bullet$ | $\bigcirc$ | 0 | Cuartoturn ${ }^{\sim}$ | 5 v |
| 131 | Kitty | Yrizzbal | $\square$ | $\square$ | $\square$ | $\nabla$ | $\nabla$ | $\nabla$ | $\square$ | Tercer turne $\sim$ | 5 - |
| ... | .. | .. | m | m | m | m | m | m | m | - | - |

Figure 4. Input file example.


Figure 5. User interface example.

## 4. Results

To carry out a validation of the system, a real nursing service was used, the objective was to obtain results similar to a manual assignment.

Figure 1 shows hand-made planning, the top part shows what was planned at the beginning of the month and in the part below it shows the result at the end of the month.

An input file was defined with the list of nurses and some constraints like the one shown in figures 2 and 3 to obtain a monthly shift plan.

| ID | Nombre | VIE | SAB | DOM | LUN | MAR | MIE | JUE | VIE | SAB | DOM | LUN | MAR | MIE | JUE | VIE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE |
| 3 |  | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE |
| 4 |  | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE |
| 5 |  | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO |
| 6 |  | DIA | LIBRE | LIBRE | DIA | DIA | DIA | DIA | DIA | LIBRE | LIBRE | DIA | DIA | DIA | DIA | DIA |
| 7 |  | LIBRE | LIBRE | SOLICITUD | SOLICITUD | LIBRE | LIBRE | SOLICITUD | SOLICITUD | LIBRE | LIBRE | SOLICITUD | SOLICITUD | LIBRE | LIBRE | SOLICITUD |
| 8 |  | LIBRE |

Figure 6. Output file (1/2).

| 16 |  |  | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |  |  | 27 | 28 | 29 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SAB | DOM | LUN |  | MAR | MIE | JUE | VIE | SAB | DOM | LUN | MAR | MIE | JUE | VIE | SAB |  |
| LARGO | NOCHE | LIBRE |  | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE |  |
| LIBRE | LIBRE | LARGO |  | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO |  |
| LIBRE | LARGO | NOCHE |  | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE |  |
| NOCHE | LIBRE | LIBRE |  | INCAPACIDAI | INCAPACIDA | INCAPACIDA | INCAPACIDA | INCAPACIDA | INCAPACIDA | INCAPACIDA | LIBRE | LARGO | NOCHE | LIBRE | LIBRE |  |
| LIBRE | LIBRE | DIA |  | DIA | DIA | DIA | DIA | LIBRE | LIBRE | DIA | DIA | DIA | DIA | DIA | LIBRE |  |
| LIBRE | LIBRE | LIBRE |  | LARGO | NOCHE | LIBRE | LIBRE | LARGO | NOCHE | LIBRE | LIBRE | LIBRE | LIBRE | LIBRE | LIBRE |  |
| LIBRE | LIBRE | LIBRE |  | LIBRE |  |

Figure 7. Output file (2/2).
When uploading the generated file to the system, resulting in a plan as shown in illustrations 6 and 7 , which, when comparing both schedules, the system delivered similar results to the planning done in Figure 1.

When performing a more detailed analysis, it can be seen in figure 1 , that the assignment for the first nurse of the list is that corresponding to the nurse with ID 2 of figures 4 and 5, it is exactly the same, with the difference that Figure 1 shows an anomaly in the structure of shifts between days 28 and 31, where the nurse performs a night shift when it does not correspond and is assigned an extra day off.
Another case to analyze is that of the nurse with ID 5 of figures 6 and 7, which corresponds to the fourth nurse of the list in figure 1, by way of proof this nurse was assigned a medical license between days 19 and 25 (figure 6) this medical license was specified by the system as shown in figure 5 , the objective of this was to observe the behavior of the allocation algorithm to adapt to the minimum personnel requirements required daily, in this case it was not necessary allocation of extra work shifts to other nurses.

## 5. Conclusions and Future Work

The software architecture is portable, manageable, with reusable components, and allows modifications and extensibility, as well as being scalable. This is due to a set of layers interacting with each other, which have interfaces to communicate with other services.

The developed product is extensible and can be implemented in similar areas. As future work, it is planned to include new restrictions such as the time an nurse takes from his home to his place of work, work with historical records to avoid repeating the same shifts from one year to the next in an nurse and implement new functionalities to the Web Application.

## References

[1] Fügener A, Pahr A and Brunner J O 2018 Mid-term nurse rostering considering cross-training effects Int. J. Prod. Econ. vol 196 pp 176-187
[2] Azaiez M N and Al Sharif S S 2005 A 0-1 goal programming model for nurse scheduling, Comput. Oper. Res. vol 32 no 3 pp 491-507
[3] Burke E K, Curtois T, Post G, Qu R, and Veltman B 2008 A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem Eur. J. Oper. Res. vol 188 no 2, pp 330-341
[4] Burke E K, Curtois T, Qu R, and Vanden Berghe G 2010 A scatter search methodology for the nurse rostering problem J. Oper. Res. Soc. vol 61 no 11 pp 1667-1679
[5] De Causmaecker P and Vanden Berghe B 2011 A categorisation of nurse rostering problems, J. Sched vol 14 no 1 pp 3-16
[6] Dowsland K A 1998 Nurse scheduling with tabu sGGGarch and strategic oscillation Eur. J. Oper. Res.vol 106 no 2-3 pp 393-407
[7] Valouxis C and Housos E 2000 Hybrid optimization techniques for the workshift and rest assignment of nursing personnel Artif. Intell. Med. vol 20 no 2 pp 155-175
[8] Vanhoucke V and Maenhout B 2009 On the characterization and generation of nurse scheduling problem instances Eur. J. Oper. Res. vol 196 no 2 pp 457-467
[9] Komarudin, M A, Guerry T and Vanden Berghe G 2013 The roster quality staffing problem A methodology for improving the roster quality by modifying the personnel structure Eur. J. Oper. Res. vol 230 no 3 pp 551-562
[10] Miller H E, Pierskalla W P and Rath G J 1976 Nurse Scheduling Using Mathematical Programming Oper. Res. vol 24 no 5 pp 857-870
[11] Warner D M 1976 Scheduling Nursing Personnel According to Nursing Preference: A Mathematical Programming Approach Oper. Res. vol. 24 no 5 pp 842-856
[12] Berrada I, Ferland J A and Michelon P 1996 A multi-objective approach to nurse scheduling with both hard and soft constraints Socioecon. Plann. Sci. vol 30 no 3 pp 183-193
[13] Clark A, Moule P Topping A and Serpell M 2015 Rescheduling nursing shifts: scoping the challenge and examining the potential of mathematical model based tools J. Nurs. Manag. vol 23 no 4 pp 411-420
[14] MJC2 2018 Workforce Planning \& Scheduling
[15] Bester M J, Nieuwoudt I and Van Vuuren J H 2007 Finding good nurse duty schedules: a case study J. Sched. vol 10 no 6 pp 387-405
[16] Cheang B, Li H, Lim A, and Rodrigues B 2003 Nurse rostering problems-a bibliographic survey Eur. J. Oper. Res., vol 151 no 3 pp 447-460
[17] Erhard M, Schoenfelder J, Fügener A and Brunner J O 2018 State of the art in physician scheduling Eur. J. Oper. Res. vol 265 no 1 pp 1-18
[18] Jaumard B, Semet F and Vovor T 1998 A generalized linear programming model for nurse scheduling Eur. J. Oper. Res. vol 107 no 1 pp 1-18
[19] Burke E K, De Causmaecker P, Vanden Berghe G and Van Landeghem H 2004 The State of the Art of Nurse Rostering J. Sched. vol 7 no 6 pp 441-499
[20] Bard J F and Purnomo H W 2005 Preference scheduling for nurses using column generation Eur. J. Oper. Res. vol 164 no 2 pp 510-534
[21] Constantino A A, Landa-Silva D, de Melo E L, de Mendonça C F X, Rizzato D B and Romão W 2013 A heuristic algorithm based on multi-assignment procedures for nurse scheduling Ann. Oper. Res.
[22] Lin C C, Kang J R, Chiang D J, and Chen C L 2015 Nurse Scheduling with Joint Normalized Shift and Day-Off Preference Satisfaction Using a Genetic Algorithm with Immigrant Scheme Int. J. Distrib. Sens. Networks, vol 11 no 7 p. 595419
[23] Romero Conrado A, Coronado-Hernandez J, Rius-Sorolla G, and García-Sabater J 2019A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments Appl. Sci. vol 9 no 7 p 1464
[24] Vélez Vargas V, Henao Baena V and Calvo Salcedo 2018 A Design and implementation of a wired intercommunication prototype for hospital care $I N G E C U C$ vol 14 no $1 \mathrm{pp} 101-112$
[25] Ernst A, Jiang H, Krishnamoorthy M and SierD 2004 Staff scheduling and rostering: A review of applications, methods and models Eur. J. Oper. Res.vol 153 no 1 pp 3-27
[26] Lin C C, Kang J R, Liu W Y and Deng D J 2014 Modelling a Nurse Shift Schedule with Multiple Preference Ranks for Shifts and Days-Off Math. Probl. Eng. vol 2014 pp 1-10
[27] Wu T H,Yeh J Yand Lee Y M 2015 A particle swarm optimization approach with refinement procedure for nurse rostering problem Comput. Oper. Res. vol 54 pp 52-63
[28] Wijegunaratne I and Fernandez G 1998 The Three-Tier Application Architecture pp. 41-78.
[29] International Organization for Standardization 2005 ISO/IEC 25000: Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE).

