534 research outputs found

    Cloud robotics platforms: review and comparative analysis

    Get PDF
    Due to the various advantages that the cloud can offer to robots, there has been the recent emergence of the cloud robotics paradigm. Cloud robotics permits robots to unload computing and storage related tasks into the cloud, and as such, robots can be built with smaller on-board computers. The use of cloud-robotics also allows robots to share knowledge within the community over a dedicated cloud space. In order to build-up robots that benefit from the cloud-robotics paradigm, different cloud-robotics platforms have been released during recent years. This paper critically reviews and compares existing cloud robotic platforms in order to provide recommendations on future use and gaps that still need to be addressed. To achieve this, 8 cloud robotic platforms were investigated. Key findings reveal varying underlying architectures and models adopted by these platforms, in addition to different features offered to end-users

    Cloud robotics platforms: review and comparative analysis

    Get PDF
    Due to the various advantages that the cloud can offer to robots, there has been the recent emergence of the cloud robotics paradigm. Cloud robotics permits robots to unload computing and storage related tasks into the cloud, and as such, robots can be built with smaller on-board computers. The use of cloud-robotics also allows robots to share knowledge within the community over a dedicated cloud space. In order to build-up robots that benefit from the cloud-robotics paradigm, different cloud-robotics platforms have been released during recent years. This paper critically reviews and compares existing cloud robotic platforms in order to provide recommendations on future use and gaps that still need to be addressed. To achieve this, 8 cloud robotic platforms were investigated. Key findings reveal varying underlying architectures and models adopted by these platforms, in addition to different features offered to end-users

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions

    Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease

    Get PDF
    In recent years, some offcial reports, to produce best products regarding quality, quantity and economic conditions, recommend that the farming sector should benefit with new tools and techniques coming from Information and Communications Technology (ICT) realm. In this way, during last decade the deployment of sensing devices has increased considerably in the field of agriculture. This fact has led to a new concept called smart agriculture, and it contemplates activities such as field monitoring, which offer support to make decisions or perform actions, such as irrigation or fertilization. Apart from sensing devices, which use the Internet protocol to transfer data (Internet of Things), there are the so-called crop models, which are able to provide added value over the data provided by the sensors, with the aim of providing recommendations to farmers in decision-making and thus, increase the quality and quantity of their production. In this scenario, the current work uses a low-cost sensorized platform, capable of monitoring meteorological phenomena following the Internet of Things paradigm, with the goal to apply an alert disease model on the cultivation of the vine. The edge computing paradigm is used to achieve this objective; also our work follows some advances from GIScience to increase interoperability. An example of this platform has been deployed in a vineyard parcel located in the municipality of Vilafamés (Castelló, Spain)

    Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease

    Get PDF
    In recent years, some official reports, to produce best products regarding quality, quantity and economic conditions, recommend that the farming sector should benefit with new tools and techniques coming from Information and Communications Technology (ICT) realm. In this way, during last decade the deployment of sensing devices has increased considerably in the field of agriculture. This fact has led to a new concept called smart agriculture, and it contemplates activities such as field monitoring, which offer support to make decisions or perform actions, such as irrigation or fertilization. Apart from sensing devices, which use the Internet protocol to transfer data (Internet of Things), there are the so-called crop models, which are able to provide added value over the data provided by the sensors, with the aim of providing recommendations to farmers in decision-making and thus, increase the quality and quantity of their production. In this scenario, the current work uses a low-cost sensorized platform, capable of monitoring meteorological phenomena following the Internet of Things paradigm, with the goal to apply an alert disease model on the cultivation of the vine. The edge computing paradigm is used to achieve this objective; also our work follows some advances from GIScience to increase interoperability. An example of this platform has been deployed in a vineyard parcel located in the municipality of Vilafamés (Castelló Spain)

    AGNI: an API for the control of automomous service robots

    Get PDF
    With the continuum growth of Internet connected devices, the scalability of the protocols used for communication between them is facing a new set of challenges. In robotics these communications protocols are an essential element, and must be able to accomplish with the desired communication. In a context of a multi-­‐‑agent platform, the main types of Internet communication protocols used in robotics, mission planning and task allocation problems will be revised. It will be defined how to represent a message and how to cope with their transport between devices in a distributed environment, reviewing all the layers of the messaging process. A review of the ROS platform is also presented with the intent of integrating the already existing communication protocols with the ServRobot, a mobile autonomous robot, and the DVA, a distributed autonomous surveillance system. This is done with the objective of assigning missions to ServRobot in a security context

    The web of things and database management systems

    Get PDF
    The Web of Things (WoT) is slowly gaining grounds and through the properties of barcodes, QR codes, RFID, active sensors and IPv6, objects are fitted with some form of readability and traceability. People are becoming part of digital global network driven by personal interests. The feeling being part of a community and the constant drive of getting connected from real life finds it continuation in digital networks. This paper investigates the concepts of the internet of things from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database management systems

    The Penetration of Internet of Things in Robotics: Towards a Web of Robotic Things

    Get PDF
    As the Internet of Things (IoT) penetrates different domains and application areas, it has recently entered also the world of robotics. Robotics constitutes a modern and fast-evolving technology, increasingly being used in industrial, commercial and domestic settings. IoT, together with the Web of Things (WoT) could provide many benefits to robotic systems. Some of the benefits of IoT in robotics have been discussed in related work. This paper moves one step further, studying the actual current use of IoT in robotics, through various real-world examples encountered through a bibliographic research. The paper also examines the potential ofWoT, together with robotic systems, investigating which concepts, characteristics, architectures, hardware, software and communication methods of IoT are used in existing robotic systems, which sensors and actions are incorporated in IoT-based robots, as well as in which application areas. Finally, the current application of WoT in robotics is examined and discussed
    corecore