eRSIDAp
» 2,
.9\

Gg Jorge Miguel Carvalho Claro
A

o o9 VAID S'Nwo

Licenciado em Ciéncias da Engenharia Eletrotécnica

N
A‘b
&

o e Computadores

[\
€omsa non St

AGNI: an API for the Control of Automomous Service
Robots

Dissertacéo para obtencédo do Grau de Mestre em
Engenharia Eletrotécnica e de Computadores

Orientador: Joadao Paulo Pimentao, Professor Auxiliar,
Faculdade de Ciéncias e Tecnologia -
Universidade Nova de Lisboa

Co-orientador: Pedro Sousa, Professor Auxiliar, Faculdade de
Ciéncias e Tecnologia — Universidade Nova de

Lisboa
Juri:

Presidente: Doutor Ricardo Luis Rosa Jardim
Gongalves, Professor Associado com
Agregacao da Faculdade de Ciéncias e

Tecnologia da Universidade Nova de
Lisboa

Vogais: Doutor José Anténio Barata de Oliveira,
Professor Auxiliar da Faculdade de
Ciéncias e Tecnologia da Universidade
Nova de Lisboa

Doutor Joédo Paulo Branquinho
Pimentao, Professor Auxiliar da

Faculdade de Ciéncias e Tecnologia da
Universidade Nova de Lisboa

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Setembro, 2014

AGNI: an API for the Control of Autonomous Service Robots

Copyright © Jorge Miguel Carvalho Claro, Faculdade de Ciéncias e Tecnologia,

Universidade Nova de Lisboa.

A Faculdade de Ciéncias e Tecnologia e a Universidade Nova de Lisboa tém o
direito, perpétuo e sem limites geograficos, de arquivar e publicar esta
dissertacao através de exemplares impressos reproduzidos em papel ou de
forma digital, ou por qualquer outro meio conhecido ou que venha a ser
inventado, e de a divulgar através de repositorios cientificos e de admitir a sua
copia e distribui¢ado com objectivos educacionais ou de investigagao, nao

comerciais, desde que seja dado crédito ao autor e editor.

A minha familia. ..

Acknowledgements

It was a hard journey since 2008, with its ups and downs. The work
presented in this dissertation is the result of all the support I got during the last

years, studying electrical Engineering.

I would like to thank my mentors and teachers Joao Pimentao, Pedro Sousa,
Tiago Cabral Ferreira and Sérgio Onofre for all the support during the
development this research. For many months I worked together with Bruno
Dias, and Bruno Rodrigues who shared their ideas and made possible to
accomplish the objectives that I intended to. Nuno Zuzarte naturally spread his
good humor and Joao Lisboa, pooled great discussions that enriched my

experience through Holos.

All my friends, especially Fabio Miranda, who guided, shared, listened and

supported me for many, many years, also deserve my deepest thanks.

Finally I thank my loving family, who ever supported me, and without them I

would never be who I am today.

vii

Resumo

Com o crescimento do numero de dispositivos ligados & internet, a escalabilidade
dos protocolos utilizados para os interligar depara-se com um conjunto de novos
desafios. Na robdtica estes protocolos de comunica¢do sao um elemento essencial e

devem ser capazes de os superar.

Num contexto de uma plataforma de multi-agentes, os principais tipos de protocolos
de comunicagao utilizados na robdtica sao revistos, desde o planeamento de missoes,
até 4 alocacdo de tarefas. A forma de representagao das mensagens, o seu transporte e
todos os passos envolvidos neste processo num tradicional sistema distribuido

também sao tratados.

Uma abordagem a plataforma ROS estd também presente, onde a possibilidade de
integrar um dos protocolos de comunicagao ja existentes no ServRobot, um robot
autonomo, e o DVA, um sistema de vigilancia auténomo, é também estudada. A
possibilidade de atribuir missdes de seguranga ao ServRobot é tratada como objectivo

principal.

Palavras-chave: Robo; informagdo; protocolo; arquitetura; comunicagao;

distribuido; servi¢o; missao

ix

Abstract

With the continuum growth of Internet connected devices, the scalability of the
protocols used for communication between them is facing a new set of challenges. In
robotics these communications protocols are an essential element, and must be able to

accomplish with the desired communication.

In a context of a multi-agent platform, the main types of Internet communication
protocols used in robotics, mission planning and task allocation problems will be
revised. It will be defined how to represent a message and how to cope with their
transport between devices in a distributed environment, reviewing all the layers of the

messaging process.

A review of the ROS platform is also presented with the intent of integrating the
already existing communication protocols with the ServRobot, a mobile autonomous
robot, and the DVA, a distributed autonomous surveillance system. This is done with

the objective of assigning missions to ServRobot in a security context.

Keywords: Robot; information; protocol; architecture; communication;

distributed; service; mission

Contents

ACKNOWLEDGEMENTSoiritrsiniseeseisesessessssssssesssssssssssssssssssssssssssessssssssssssssssssssssassssssssssssanes VII
RESUDMO cceitseieeeetssisessessesssss s bsessssse s ssses s s s s s s b b s bbb IX
ABSTRACT ottt ssssses s ss s s ss s s es s Rttt X
LIST OF FIGURES ...t irertsteseeretssessessssesssssessssss s s s s ssesasssssssnss XIII
LIST OF TABLES ...ttt bbb ssss s s XV
GLOSSARY ettt s s s ss s bR XVI
1. INTRODUCTION c.oorirtereeresseeseesessessssssssssssssssssssssssssssesssssssssssssssssssssssssasssssssssssssssssssssssssssssassssasssnss 1
1.1 MULTICORE AND CLOUD BASED COMPUTING euucueurresenessressessessssssssessessssssessesssssssssssssssssssssssssnes 2
1.2 DISTRIBUTED COMPUTING vuceureesesessessesssessessesssessessessesssssssssssssssssssssssssnss 3
1.3 APPLICATIONS. ..ccutueureusesseseesessessessessesssseesessessessssssssessssessessessessssssssssessessesssnsssssssssessessesssnssssssssessesnen 5
1.4 NETWORK ABSTRACTION w.cueureeriussesesresssessessesssesssssesssssssssssssssssssessssssssssssssssssssssesssssssasssssssssasssssssnss 6
1.5 DISSERTATION QUTLINE ...cuitueersesessessesssessessesssesssssessasssssssssasssssssnss 7

2. MIDDLEWARE PLATEFORMSoirniretssiseessesssesssens 9
2.1 DEFINING MIDDLEWARE ...ovttitneureessesessessssssessesssssssssesssssssssesssssssssesssssssssssssssasssssssssesssssssssssasssssssnss 9
2.2 SERVICE-ORIENTED ARCHITECTURES AND WEB SERVICES.....ccsumemeueersenesseessrssesssessssessesees 9
2.3 MISSION PLANNING AND TASK ASSIGNMENT ..eeuvueereereeressessessesssssssessessessessssssssesessessessessssssees 11
2.4 PUBLISH/SUBSCRIBE AND MESSAGE-ORIENTED MIDDLEWAREccosturienseneneessrsesseesesnnens 16
2.5 QUEUING AND MESSAGING LAYER FRAMEWORKScvsumeureersrsenessesssessesssssssssesssssssssessessssaseas 18
2.5.1 Message Broker versus Peer-to-Peer (P2P) ... 18
2.5.2 MesSaging FrameWOTKS.......oreereeerensesseessesssesssssssesssssssesssessssssessssssesssseses 19
RS TRe T 0)= 74 U=} TP 24

3. IMPLEMENTATION ..ootrisssereissrseesesse s sssans 27
3.2 PROPOSED ARCHITECTURE ...vtieueusiessessesssesssssesssssssssessesssssssssssssssssssssssssssasesssssssssssssssssssssssssesaseas 28

xi

3.2.2 Message Patterns in USE ... 30
3.2.3 Message LaNGUAaZE ...t ssssssssssas 31
3.2.4 Message FOrmMat. .. 31

1285 20 20 1 TPV 37
3.3.1 Introduction to ROS ...t sss s ses s ssanens 37
3.3.2 ROS Concepts and RESOUICES........vwrerereenerneereersseseesseesssessesssesssesssesssssssesssssssesseees 38
3.3.3 ROS VETISUS PIAYeT ...t ssesssssessssssessssssesssssssssssesssssssesasees 39
3.3.4 SerVRODOL HArAWATE ... ss s ssesssss s s ssessssssssesssssanens 40
3.3.5 Motor Controller SOIULION ...t anens 41
3.3.6 Parameter Server and the Roslaunch ToOolS ... 44
3.3.7 ROS ServRobot RemMote CIENT ... ssesssssssssssssseanens 45
3.3.8 Arduino, Weather Shield and Converter N0deomnenreneenseseesesssesseeneenss 46
3.3.9 Integration of the Proposed Protocol in the ServRobot......ccovveereniinrecreeninnae 47
3.3.10 Protocol Benchmarks and Performance ... 51
3.3.11 HiMU NOAE ettt s ssssssssessessnssnens 57
SIS 700 9720 19 5 s T30 - @ 1o Yo - 00T 58

4. CONCLUSIONS AND FUTURE WORK....csstrerirsrenserrerssensessessesssessessssssessssssssssessesssssessesssens 59
SCIENTIFIC CONTRIBUTIONSoiretrteneeresseiseessesssees 65
REFERENCES ...ttt s st st seas 67

xii

List of Figures

FIGURE 2.1 - SURF - TRADITIONAL NETWORKED ROBOTIC SYSTEM FOR SPECIFIC ENVIRONMENT E1 [14].............. 12
FIGURE 2.2 - SURF - ROBOTS INTEGRATED INTO CURRENT SERVICE ENVIRONMENTS [14]..covivrieererrrerrerreernreeseeenne 12
FIGURE 2.3 - SURF - DETAILED ARCHITECTURE [14] .ot sessssssssessssssssesssessssssssesssesssssssssssssssssssssessans 13

FIGURE 2.4 - ROBOLINK PROTOCOL ARCHITECTURE [15]
FIGURE 2.5 - SANCTA PLATFORM ARCHITECTURE [17] ..

FIGURE 2.6 - MESSAGE BROKER ARCHITECTUREoevuetueesesuesssssesssessssssssssssssssssssansssssassassans

FIGURE 2.7 - PEER-TO-PEER ARCHITECTURE ..uvvuetesueeessesssessssasssssssssssssssansssssanssssans 19
FIGURE 3.1 - PROJECTED ARCHITECTURE [24]..vuuiieirsreessmssessesssssssesssssssssssessssssssssssessssssssssssessssssssesssssssssssssssssssasssssessans 29
FIGURE 3.2 - EXAMPLE OF A “START TELEOPERATION” MESSAGE REQUEST w.cuvueuuuesessessesessessessessessessesssssssssssssssssnsessans 32
FIGURE 3.3 - EXAMPLE OF A EMERGENCY MESSAGE ..uvuevuetmersssassssssassssans 32
FIGURE 3.4 - EXAMPLE OF A HEARTBEAT MESSAGE ...vovuuetmstsssserssassssssassssans 32
FIGURE 3.5 - EXAMPLE OF A REGISTRATION MESSAGE ...cuutustesseresssassssans 33
FIGURE 3.6 - MESSAGES EXCHANGE UML ..cuuecuiiretieeretssesssansssssanssassens 36
FIGURE 3.7 - RQT ROS GUI FRAMEWORK [30] covueuuieeeerrrseessssssssesssssssssssessssssssssssessssssssssssessssssssesssessssssssessssssssssssessans 38
FIGURE 3.8 - SERVROBOT [33].uiuueerirsirmeesssssssesssssssssssessssssssssssessssssssssssessssssssess sessssssssessssssssssssessssssssssssessasssssessssssasssssessans 40
FIGURE 3.9 - SERVROBOT INTERNAL DIAGRAMucueruereessrunssessssssssssssssssssssansssssassansans 41
FIGURE 3.10 - ROS NODES AND TOPICS GRAPH FOR THE BASIC ROBOT CONTROL....ccovuurereseressesseressesessesseressessasessssenas 44
FIGURE 3.11 - EXAMPLE OF A .LAUNCH FILE c.evuvvurerseeuressssssssssssssssssssssssassssssessans .45

FIGURE 3.12 - SSH DIAMOND SYSTEMS HERCULES Il BATCH START SCRIPT..

FIGURE 3.13 - ROS SERVROBOT REMOTE CLIENT ...cvtseuressssesesessesssesssssssessssesssssssssssssssssssssssssssssssssssesssssssesssssssssssssssssesns 46
FIGURE 3.14 - ARDUINO MEGA 2560 WITH SPARKFUN WEATHER SHIELD ...uvcuvuurereuressessessessessessessessessesssssssssssssssssssessens 47
FIGURE 3.15 - ADD NEW SENSOR FUNCTION ..cuvueurernieesssessesssssessessessessssssssessssesssssssssssssassans 48
FIGURE 3.16 - ROS TOPIC SUBSCRIBER UPDATING THE HASH-TABLEScevoversuneuresseresissssessesessssssessssesssssssessssesssssssessnenns 49
FIGURE 3.17 - /ROSZMQDRIVER REGISTRATION FUNCTION ...couevurersesernesssessesssessssssessssssssssssssssssssssssessesssessesssessssssssssesssssns 49
FIGURE 3.18 - EXAMPLE OF A PUBLISHER ROSJAVA CANCELABLE LOOPootvinsiresinrsinseresinessessressssessesssesssssssesssnenns 50
FIGURE 3.19 - PARAMETER LISTENER FOR HEARTBEAT UPDATE INTERVAL...covosusseresesrasesseressssssessssesssssssessesssssssssessssesss 51
FIGURE 3.20 - ONE-WAY SIMPLE MESSAGE REQUEST DELAY ...covuvunstresissssessssessssssesssssssssssssssssssssssssssssssssssesssssssssssssssssesns 52
FIGURE 3.21 - SIMPLE MESSAGE REQUEST AND RESPONSE DELAY w..cvtviurissesesessssessssesessssessssesssssssessssesssssssessssssssssssessssesns 54

xiii

FIGURE 3.22 - DELAY OF THE XML MESSAGE GENERATE PROCESSevvtsturesssesesssesesessssssessssesssssssessssesssssssessssessssssssssns 55

FIGURE 3.23 - DELAY OF THE XML MESSAGE SCHEMA VERIFICATION AND PARSING w.cvuueeusrerseerssssessessssssssssessssssssanns 56
FIGURE 3.24 - DELAY OF THE ZMQ MESSAGE SERIALIZATION w.couuvuuueersssesseesssesssseesssesssssesssssssssssssssesssssessssessssssssssssssanens 57
FIGURE 3.25 - XSENS INERTIAL MEASUREMENT UNIT coouutvuuseesuseesssesssseesssesssssessssssssssssssesssssessssesssssessssesssssesssssssssssssssssssanns 57
FIGURE 3.26 - SICK LMST 1T LIDAR ..ccotetreeeisseerseeessesssseessssesssessssssssssssssssssssssssssessssesssssessssesssssessssesssssesssssssssssssssssssanens 58
FIGURE 4.1 - ROS GRAPH WITH ALL NODES AND TOPICS vuvuvvuueerssrssssesssessssessssssssssssssesssssessssesssssessssssssssesssssssssssssssssssanens 61
FIGURE 4.2 - DVA WEBSITE [35] ettt isssssssssesssssssssss s sssesssessssssssesssssssssss s sssssssessssssssessssssasssssesssssssnessns 62

xiv

List of Tables

TABLE 2.1 - SANCTA PREDEFINED COMPONENT LIST [17] tuueeuieureeeeuseeeesssesesseessesseessessessesssessesssessssssssssessssssesssssssasees 16
TABLE 2.2 - COMPARISON OF MIDDLEWARE PLATFORMS ...cvuvtriurtieressesessessssessssessessssessasas 24
TABLE 3.1 - TEST BENCH WITH ONE-WAY SIMPLE MESSAGE REQUEST DELAYS wecvvureseressersssesssessessssessssssssssssessssssssssssens 52
TABLE 3.2 - TEST BENCH WITH SIMPLE MESSAGE REQUEST-REPLY DELAYS ...vuvuurtnerreseressessssessssessessssesssssssssssessssssssssssens 53
TABLE 3.3 — TEST BENCH TO GENERATE MESSAGE PROCESS.....cvuurtnisreseressesssresssessessssesssssssessasas 54
TABLE 3.4 - TEST BENCH TO XML VALIDATION AND PARSING DELAY ..cvvviuriiererrinsrseseressessssesssessessssesssssssssssssssssssssssens 55
TABLE 3.5 - TEST BENCH WITH ZMQ SERIALIZATION DELAYS oututuuseusessessessessessessessessessssssssessessessessssssssesssssssssssssssssssssnses 56

XV

Glossary

AGNI

The API for the control of autonomous service

robots presented in this dissertation.

AMQP

The Advanced Messaging Queuing Protocol is an
open standard application layer protocol for

message-oriented middleware.

API

Application Programming Interface is a set of
programming instructions and standards for
accessing a Web-based software application or Web
tool. A software company releases its API to the
public so that other software developers can design

products that are powered by its service.

ARM

ARM is a family of instruction set architectures for
computer processors based on a reduced instruction
set computing (RISC) architecture developed by
British company ARM Holdings.

CoAP

Constrained Application Protocol is a software
protocol designed to be used in very simple
electronic devices, allowing them to communicate

over the Internet.

xvi

CORBA

Common Object Request Broker Architecture is a
standard for interoperability in heterogeneous
computing environments. It enables applications to
overlay different technologies and programming
languages. It specifies how client applications can

invoke operations on server objects.

CPU

A central processing unit (CPU) is the hardware
within a computer that carries out the instructions of
a computer program by performing the basic
arithmetical, logical, and input/output operations of

the system.

DDS

The Data Distribution Service for Real-Time Systems
is an Object Management Group (OMG) M2M
middleware standard that directly addresses
publish-subscribe communications for “real-time”

and embedded systems.

DPWS

Device Profile for Web Services is a set of constraints
that resource constrained devices should implement
in order to enable secure and seamless Web service

messaging.

DVA

Is a distributed autonomous surveillance system
able to detect risk situations using different types of

sensors and their geo-localization.

GPS

The Global Positioning System is a space-based
satellite navigation system that provides location
and time information in all weather conditions,
anywhere on or near the Earth where there is an
unobstructed line of sight to four or more GPS

satellites.

XVil

GUI

In computing, a graphical user interface is a type of
interface that allows users to interact with electronic
devices through graphical icons and visual
indicators such as secondary notation, as opposed to
text-based interfaces, typed command labels or text

navigation.

Ir

An Internet Protocol address (IP address) is a
numerical label assigned to each device (e.g.,
computer, printer) participating in a computer
network that uses the Internet Protocol for

communication.

IT

Information technology is the collection of
technologies that store, retrieve, transmit and
manipulate data, often in the context of a business or

other enterprise.

TMS

Java Message Service APl is a Java Message
Oriented Middleware (MOM) API for sending

messages between two or more clients

M2M

Machine-to-Machine refers to technologies that
allow both wireless and wired systems to

communicate with other devices.

MAC

A media access control (MAC) address is a unique
identifier assigned to network interfaces for
communications on the physical network segment.
MAC addresses are used as a network address for
most IEEE 802 network technologies, including
Ethernet.

MOM

Message Oriented Middleware is software or

hardware infrastructure supporting sending and

xviii

receiving messages between distributed systems.

MQTT

Message Queuing Telemetry Transport is a message-
centric wire protocol designed for telemetry-style
data, along high latency or constrained networks, to
a server or small message broker, typically used in

M2M communications.

OWL

The Web Ontology Language (OWL) is designed for
use by applications that need to process the content
of information instead of just presenting information

to humans.

OWL-S

Web Ontology Language for Services (OWL-S) is the
Semantic Web Services description language. OWL-

S builds on the Ontology Web Language (OWL).

pP2pP

Peer-to-peer computing or networking is a
distributed application architecture that partitions
tasks or work loads between peers. Peers are equally
privileged, equipotent participants in the

application.

PID

A Proportional-Integral-Derivative (PID) controller
is a control loop feedback mechanism (controller)

widely used in industrial control systems.

PLAYER

Robot framework, client/server based, where the
client is an external program that interacts with the

player server using classic TCP/IP sockets.

QoS

Quality of Service refers to several related aspects of
computer networks that allow the transport of traffic
with special requirements. For example,
Asynchronous Transfer Mode (ATM) networks

specify modes of service that ensure optimum

Xix

performance for traffic.

Qt

Qt is a cross-platform application framework that is
widely used for developing application software

with a graphical user interface (GUI).

REST

Representational state transfer is a style of software
architecture for distributed systems such as the

World Wide Web-

ROS

The Robot Operating System (ROS) is a flexible
framework for writing robot software. It is a
collection of tools, libraries, and conventions that
aim to simplify the task of creating complex and
robust robot behavior across a wide variety of

robotic platforms.

ROSJAVA

Rosjava provides both a client library for ROS
communications in java as well as growing list of

core tools (e.g. tf, geometry) and drivers.

Rqt

Rqt is a library for calling R functions within
C++/Qt4 applications. The argument interface uses
QVariant for flexible exchange of data to and from
R. This allows R calls as if they were part of the local

Qt environment.

RS-232

In telecommunications, RS-232 is a standard for

serial communication transmission of data.

rviz

ROS 3D visualization tool.

ServRobot

Is an autonomous service robot designed specially to

be integrated in surveillance systems.

SI

The International System of Units (SI) is the modern
form of the metric system and is the world's most

widely used system of measurement, used in both

XX

everyday commerce and science.

SOA

The concept of Service-Oriented Architecture (SOA)
defines a way to organize and utilize distributed
capabilities that may be controlled by different

organizations or different owners.

SOAP

Simple Object Access Protocol is an Exchanging
XML-based messaging protocol wused as a
component of various middleware platforms
including CORBA, JMS, and other proprietary

platforms.

URI

Uniform resource identifier is a string of characters

used to identify a name of a web resource.

Wire Protocol

The term “wire protocol” is commonly used to
describe how the information is represented and
transferred at the application layer from point-to-

point in the network.

WS-NOTIFICATION

WS-Notification is a family of related specifications
that define a standard Web services approach to
notification using a topic-based publish/subscribe

pattern.

WSN

Is a wireless sensor network of spatially distributed
intelligent sensors to monitor physical or
environmental conditions, and cooperatively pass

their data through the network to a central location.

XML

Extensible Markup Language (XML) is a subset of
Standard Generalized Markup Language (SGML)
that is optimized for delivery over the Web; XML
provides a uniform method for describing and

exchanging structured data that is independent of

XX1

applications or vendors. In other words XML is the

Web's language for data interchange.

ZMQ

Zero Message Queue (ZMQ), it's a lightweight
message-driven middleware library, specially
designed for high throughput and low latency
scenarios, such as AMQP that can be found in

financial systems.

xxii

1. Introduction

With the continuum growth of Internet connected devices, the scalability
of the protocols used for communication between them is facing a new set of
challenges. In robotics these communications protocols are an essential element,

and must be able to accomplish with the desired communication.

In a context of a multi-agent platform, this dissertation refers to the main types
of internet communication protocols used in robotics, mission planning and
task allocation problems. How to represent a message and how to handle with
their transport between devices in a distributed environment, reviewing all the

layers of the messaging process, is the key objective of this dissertation.

A small review of the Player and ROS platform is also presented where the
possibility of using one of the already existing communication protocols within
the ServRobot, a mobile autonomous robot, capable of obstacle avoidance,
follow people, among other functionalities and the DVA, a distributed
autonomous surveillance system able to detect risk situations using different
types of sensors and their geo-localization, is also considered. The objective

consists of assigning missions to ServRobot in a security context.

1.1 Multicore and Cloud based Computing

Until a few years ago, multi-core CPUs were expensive and rare, and
limited to higher-end servers. To achieve higher performance, the only solution
was to increase more and more the clock cycles out of one single core
CPUs, which lead to severe heat dissipation problemsamong other
things. Today the multi-core CPUs have become very common and
inexpensive, even in small devices that everybody uses in a day-to-day basis,
like smartphones. While the clock speeds trends to become stable, as have been
seen for the last years, the number of cores per processor is doubling every two

years or less. Moore's Law still applies [1], [7].

There are several motives that support this change of approach when dealing
with processing higher volumes of data. Manufacturers have found multi-core
to be the best way to scale their architectures and offer more competitive
products, and the spreading of multitasking operating systems, which can

translate that power into performance, justify this even more.

Supercomputing, in the other end, faces similar problems. The cost of a single
high-end computer can be much higher and more difficult to maintain when
compared with a cluster of more common and cheaper computers networked
together to achieve a common goal. These networked computers can be even

faster, more reliable, more flexible and fault tolerant.

Cloud Computing, considered as the long-held dream of computing, has the
potential to solve the large part of these problems. It refers to the ability to
develop applications, without concerning about overprovisioning for a service
whose popularity does not meet the expected predictions, thus wasting costly
resources, or under provisioning for one that becomes wildly popular, thus
missing potential customers and revenue. It refers also to the hardware and
systems software in the data centers that provide those services. This flexibility
that allows companies to scale their products, without paying for premium is

unprecedented in the history of IT [2].

1.2 Distributed Computing

There are several definitions for distributed systems such as: “a system in
which hardware or software componentslocated at networked computers
communicate and coordinate their actions only by message passing” [3] or “A
collection of independent computers that appear to the users of the system as a

single computer” [4].

In distributed systems, different ways of organizing multiple processors have
been proposed. The tightly-coupled systems which consist in several processors
connected together by the same bus, and sharing the same memory. And
the loosely-coupled systems consisting of independent devices, each with their
own separate bus and memory, sharing data over a network to achieve a

predefined goal.

The term distributed can also be used in a wider sense. There are several
processing methods, besides of how the processors are organized. The systems
can be programmed to exchange messages inside the same process (in-process),

between processes (inter-process), or between different systems [5], [6].
Some properties of distributed systems are listed below [7], [8].

* Collaboration and connectivity - One of the main motivations of
distributed systems is their ability to connect a high quantity of

geographically distributed information and services.

* Distributability and decentralization - The possibility of distributing
different tasks to the most adequate devices - capable of executing them
the best way possible - even when the ideal one is not available, it's an
effective way to assign tasks among the devices. Using combined
computing, disseminating work among the available devices in
the networks and eliminating bottlenecks or centralized elements, is a
good way to increase the overall performance of the system easily and
provides fault tolerance and resiliency. Another way of achieving
decentralization is making roles transient or transferable between

devices.

* Performance and scalability - Over time, software is required to serve
more users and require more performance to be able to scale up in order

to handle the increased load and data transmission requirements.

* Reliability and topology - Making a distributed system reliable is very
important. The failure of a distributed system can result in anything
from easily repairable errors to catastrophic meltdowns. A reliable
distributed system is designed to be as fault tolerant as possible,
reducing the dependability on the components. The topology of the

components can be classified in two classes.

o Physical topology - Where are all physical devices and

network devices are interconnected in the real world.

o Virtual topology - Where all virtual devices, responsible for
sending commands, store data, route information among the
desired devices, and apply security rules in the network, are

represented.

* Redundancy and fault tolerance - If there are no additional mechanisms
providing redundancy, it may make the system more vulnerable, since
the failure of any element might impair the proper working of the whole
system. The correct operation of all elements when facing partial failures

is also a desired property, even if it is part of the network itself that fails.

* Flexibility and responsiveness - In order to accomplish different service
missions in the same environment, one of the most convenient solutions
is to use heterogeneous or flexible robots. When changes are introduced
in the working environment or mission conditions, task added or
removed, low latency until achieving good results is a good way to grant

a good responsiveness of the whole system.

To write software is easy, but to write the right software is hard. Even with all
the advantages described above, there are also some problems when
implementing and programming this kind of distributed systems. There are

some extra sets of rules that developers should be aware of, like these [9]:

« “Forgotten Synchronization” - When developing programs using
multiple threads accessing shared data, freezes, bizarre loops and data
corruption may occur. To avoid this kind of problems, developers must
use protective locks and semaphores on critical parts of the code. Only

this way shared data is safely read or written by one thread at a time.

« “Incorrect Granularity” - Splitting code into parts to protect it, does not
grant that the system is going to work properly. Developers can easily
make some sort of mistake, failing to consider all possible behaviors of
the system. Those parts of dangerous code can be too large and they
cause other threads to run slowly, or they can be too small, failing to

protect the shared data properly.

« “Lock-free reordering” - Even taking care of the number of locks in
code, the compiler and the CPU are free to reorder instructions to make
things run faster, causing inconsistency in the code. This reordering
problem can cause some randomly breaks. To solve this, the solution is

to add some kind of “memory barriers” to protect the code.

« “Lock convoys” - When too many threads ask for the same lock at the
same time, the entire application may freeze. There is no real solution to
this problem except to try to reduce lock times and reorganize the code

to reduce the probability of this problem.

There are some other rules besides these ones, but they cover more

specific problems not much relevant for the main themes in this dissertation.

1.3 Applications

Several examples of applications of distributed systems include
telecommunication networks, telephone and cellular networks, Air-Traffic
Control Systems, GPS System, or computer networks like Internet. Note that the
most powerful machines in the world are nearly all collections of computers
sometimes numbering as many as several hundred, where each component

participates in making services available tousers or making complex

calculations. The financial services industry spends billions on new IT
initiatives every year, and there are lots of research and development projects

over the world [5].

1.4 Network Abstraction

There are several ways available to communicate in a networked
distributed environment, where the wide range of protocols can be very
heterogeneous. When configuring, each component should be independent
from the network interface it uses and from the protocol used to define the
rules how the messages are transported. To handle the necessity to transmit
information consistently, many developers end up doing some kind of
messaging. There are some message queuing products that developers can use,

but most of the time, they end up using simple TCP and UDP sockets.

In general TCP and UDP protocols are not hard, but when implementing large
systems where the amount of data being transmitted is much higher, there are a
lot of problems that need to be solved. Any messaging layer must take care of

all or most of these [10]:

* When designing a messaging layer, the way the I/Os are handled must
be defined. The application that creates architectures that not scale well
must be blocked or opt to run the I/O procedures in the background, but
that can be very hard.

* Split the components into “client/servers” and hope that servers do
not disappear, or define an interval to try to reconnect every few seconds
if the connection is lost, are both valid ways to handle the dynamics of
our system.

* The message format on the network is also an important factor to
consider. The message must be small, easy to read and write, safe from
buffer overflows and easy to route between devices. Besides it must be
able to be adequate to transmit large files granting their consistency.

* If the messages could not be delivered immediately, the decision to wait
for that component to come back on-line, discard the messages, store
them into a database, or into a memory queue, must also be taken.

* Distinct platforms such as: Windows, Unix, Solaris, between many
others, represent the data in different formats, therefor there are many
compatibly problems even at the operating systems layer.

1.5 Dissertation Outline

In the next chapter of this dissertation, there is an introduction to the
definition of middleware; to the way the different types of middleware
platforms can be organized in different groups, and a comparison between the
broker based and peer-to-peer messaging concepts. In the end of the chapter, is
presented a table with a detailed comparison of the most important
specifications of the different messaging layer frameworks, including the ROS

(Robot Operative System), which will be addressed later.

The third chapter is focused in the implementation. It starts with the proposed
architecture, including the reasons taken to the choice of the previously
boarded messaging layer frameworks, the message language and format used
over it. The ROS platform and the basic modules needed for the developed of
this API are explained, starting from here, with the concepts and resources
available, through the ServRobot hardware, implemented ROS nodes and

tinally, the performance benchmarks.

To conclude, there is a fourth chapter with the analysis of the developed work

and a view of possible future improvements.

2. Middleware Platforms

2.1 Defining Middleware

Most middleware messaging frameworks try to solve distributed

architectures problems in modern distributed systems.

Creating a layer that insulates the application developer from the worries about
implementation details, like different operative systems and different network
interfaces. Middleware frameworks also allow the programmer to integrate

applications developed for different executions contexts and in different times

[7].

2.2 Service-Oriented Architectures and Web Services

Services represent intangible products such as accounting, banking,
cleaning, consultancy, education, insurance expertise, medical treatment or
transportation. Most of the times services combine more than one of these, and
cannot be transferred of possession or ownership, cannot be stored or

transported and come into existence when they are bought and consumed.

In business, a service represents the part of the code wrapped with a formal and
documented interface that doesn't depend on other services or the way they
operate. The concept of Service-Oriented Architecture (SOA) defines a way to

organize and utilize distributed capabilities that may be controlled by different

organizations or different owners. It designates anything contributing to an

enterprise platform based on service-oriented principles [11].

SOA provides the adequate means to offer, discover and interact with
independent or loosely-coupled systems and inter-operable or tightly-coupled
systems to support the exigent requirements of the business software and

applications users [7].

With the emerging technologies, Cloud-based services and SOAs, as referred in
section “1.1 Multicore and Cloud based Computing”, are booming, serving
every client, ranging from casual Internet users to IT giants, and opening
many possibilities of research advances by the scientific community. This
includes more computational power, storing, networking and new
infrastructure innovations, allowing significant progresses in understanding
and solving complex real-world challenges [7][12]. Such challenges normally
require a new approach when modeling a complex system at different levels of
abstraction. It helps addressing separate system requirements and concerns,
and integrates diverse sources of knowledge on the system’s components and

their interactions [12].

Software as a Service (SaaS), virtualization and peer-to-peer are the key to cloud
computing, providing formal ways to provision computational resources,
improve deployment flexibility and increase scalability, as well the

dependability of cloud computing, reducing the possible points of failure [12].

The SOAP allowed that a new variant of SOAs called Web Services to be
spawned, allowing developers to package application logic into services whose
interfaces are described with the Web Service Description Language
(WSDL). WSDL-based services are often accessed using standard higher-level
Internet protocols like Enterprise Service Bus (ESB), which is a distributed
computing architecture that simplifies inter-working between disparate
systems. It binds the protocols and transports required at runtime across
devices, and allow the reuse of different components, independently from their
implementations technologies [7]. These are specified by the DPWS (Device

Profile for Web Services), a set of constraints that resource constrained devices

10

should implement in order to enable secure and seamless Web service

messaging [13].

2.3 Mission Planning and Task Assignment

Web Services technologies are already mature and support many
middleware products and tools. It is important that robots deployed over large
distributed systems use open standards and can communicate independently

from the lower levels in the protocol stack.

With the progress of those communication protocols, many researchers have
been working in Internet based remote control, monitoring, mission planning
and task allocation platforms, with the objective of controlling mobile robots,

unnamed vehicles or simple sensors in a networked environment.

Heterogeneous robots deal with different capabilities, disparity of tasks that can
be performed, secondary problems like localization and navigation, are factors
that affect the outcome of a mission. Besides those factors, distributed robot
systems allow users from all over the world to visit museums, automatize
distribution and storage centers, manufacturing systems or networks of
embedded devices. They have great potential for industry, education,
entertainment and security by making valuable robotic hardware accessible to a

broad audience [8].

The main goal of mission planning and task allocation in a multi robot team is
to optimize available resources, and integrate them into ubiquitous computing
environments using a service-oriented approach. One good example of a
platform capable of this, is SURF (Service-oriented Ubiquitous Robotic
Framework) [14].

SURF implements a mission-planning platform based in semantic web services
technology using Al-based algorithms to provide interoperation between

devices. SURF platform defines 3 main entities:

11

« EKR (Environmental Knowledge Repository) - It stores KB (Knowledge
Bases) with knowledge about the Web Services in OWL-S (Web
Ontology Language for Services) the Semantic Web Services description

language.

« SA (SURF agent) - It can automatically discover required knowledge
using KB to communicate with specific device and build a feasible
service plan for according with the mission plan and the current

environment.

« DWS (Device Web Service) - Each DWS can have control objects for one
device or multiple devices that may work cooperatively, for instance air-
conditioning devices and temperature sensors. It uses SOAP to transmit

and receive the messages between them.

This structure allows SA to adapt their plans, when it is placed in unknown

environments or when a new sensor is added to the actual one.

Known Environment E1 Unknown Environment E2
Known Known Py
Device - '/ Sensor D ¥ ®
sS=ones 4 >
Known Known 22?2
Interface Interface 9 ’ ? ? ? ?

Performs - What to do
Service ‘ for S1in
Slin El [E2:7
Change of
Web based Environments Web-based
Robot Application Robot Application
Programmed for E1 Programmed for E1

Figure 2.1 - SURF - Traditional networked robotic system for specific environment E1 [14]

Service Environment E1 Service Environment E2

res

OWL-S %
Knowledge N L.~ OWL-S
Registration Unified Interface ggg.;':f;:gi

(Web Services
Protocol)

Knowledge
Discovery

® Knowledge
Discovery

SURF Agent

Figure 2.2 - SURF - Robots integrated into current service environments [14]

+ WS: Web
Service

12

RoboLink protocol provided by the Robolink Consortium, which includes

different manufacturer companies and vendors, is another platform based on

SURF Agent (SA)

\ User Interface

n Composition Module

XML |

LA

SYIOMISN UOIBDIUNWWOD

i Environmental R

Knowledge Repository (EKR)

Module

\
Device Web Service (DWS)

Device

ol Ob |eCls

Figure 2.3 - SURF - Detailed architecture [14]

Web Services.

When compared with SURF is was not implemented for mission planning
capabilities, only for scattered communication among loosely coupled

robots, promoting the standardization of the robot architecture and connecting

robots to the network [15], [16].

The RoboLink Protocol defines two main blocks:

RoboLink Common Protocol - It provides common functions to connect

to a network and to communicate (session management, conversation,

security).

Profiles - It organizes different types of functions into different profiles.
The basic interface includes generic profiles for all kinds of robots like
toys, home robots and service robots. The Extended interface includes

the vendor specific profiles implemented by the manufacturer with

higher-level functions specific of a given robot.

13

“ RobolLink Protocol

I \
I 1
1 Basic Motion Dance Motion Venqor |
1 Profile Profile Profile Pattern . Spe ci fic "
! Profile Profile :
1

- - |
: RoboLink Common Protocol L"'(';g“,':?gf:‘f::‘)g |
N /

Sl L e M M M M Y M M e e e o | _ ,
P Protocol Layer (SOAP, HTTP, CORBA, ...)
H Profile

Transport/Hardware Layer
(USB, Wireless LAN. Bluetooth, Infrared rays...)

Figure 2.4 - RoboLink protocol architecture [15]

The Basic Profile includes all essential functions transversal for all kinds of
robots, Motion Profile includes the basic low level motion functions, Dance
profile gives control to independent components and Motion Pattern Profile is
used to instruct a robot with the specification of the predefined movement

pattern.

One last protocol important for the theme of this dissertation is SANCTA: An
Ada 2005 General-Purpose Architecture for Mobile Robotics Research. As the
name says, Sancta is a flexible architecture for controlling multi-robot teams

mainly written in Ada 2005 programming language.
Accordingly with A. Mosteo:

“The SANCTA architecture receives its name from Simulated
Annealing Constrained Task Allocation, since these are the first
novel features that it implemented in the field of multi-robot
task allocation. Simulated annealing is a probabilistic tool
useful for optimization problems with large solution spaces,
able to escape local minima and, with enough running time,

find good solutions or even the optimal one” [17].

In SANCTA protocol each node is defined in an agent element, and can have
different configuration depending on its capabilities, and can be synced and
updated in real time using XML file formats as SURF [14] or RoboLink [15]
platforms. It implements a predefined abstract network interface independent

from the lower levels and also a local database used to store configuration files.

14

The SANCTA can be integrated with different robot platforms like Player, as it

was tested with, or even ROS (Robot Operative System), since it provides an

integration module.

| SANCTA -)

Network

SANCTA s SANCTA

.
'
Player-Ada| H
.

Figure 2.5 - SANCTA platform architecture [17]

Different executions modes can be used when assigning tasks, since Periodic,

Event-driven or Asynchronous.

Periodic: After an initial call, a determined interval can be defined for
each subsequent run slice.

Event-driven (or synchronous): This mode is based in a
Publish/Subscribe middleware, where a specific component subscribes a
topic of interest from a database and using an observer pattern it will
invoke a specific procedure.

Asynchronous: Is the main task assignment mode when dealing with

real-time functions. The predefined components listed in the next table
are safe for use with this approach, in a typical client/server mode.

15

| Component | Inputs | Outputs | Explanation |

Global database | Network Database Globally accessible database for data
sharing among nodes with built-in
replication.

Local database | None Database Local data storage and sharing among
components.

Annealer Pose, Task Computes a best effort task allocation

Database allocation for a multi-robot team using
simulated annealing techniques
[Mosteo 06b].
Bidder Pose, Task Bids on auctioned tasks using
Network allocation market-based techniques [Dias 05].
Map Pose, Map Builds an environment grid map.
Laser scan

Network None Network Provides messaging between nodes.

Transformer Pose Pose Transforms a pose in robot
coordinates to world coordinates.

Scan matching | Pose, Pose Uses MBICP [Minguez 05] to

Laser scan improve odometry using laser
readings.

Aligner Pose, Pose Corrects the pose angle when the

Laser scan robot is in an environment with
known principal orientations (i.e.
orthogonal walls).

GPS Pose Pose Combines an odometry pose with
GPS readings to produce global
localization.

Executor Task list Robot Determines the robot actions needed

commands to perform a task.

Go to goal Pose, None Issues Player [Gerkey 03b]

Goal movement calls.
GUI relay Robot state, None Relays information to remote GUISs.
Network

Logger Any None Logs some input to disk.

Watchdog Any None Aborts execution if input remains
unchanged for some time.

Player_Ada Robot Robot Proxy to robot hardware

commands SEnsors [Mosteo 06a].

Table 2.1 - SANCTA Predefined component list [17]

2.4 Publish/Subscribe and Message-Oriented Middleware

RPC (Remote Procedure Calls) is a powerful abstraction technique, based
on a request/response communication model. Using the network, two systems
can communicate and call procedures to each other, even if they do not exist in
the same address space. Caller waits for a response to be returned from the
remote procedure and the calling arguments are passed to remote procedure
when an RPC is made in functional call. Until either a reply is received, or the
call times out, the thread is blocked from processing [5]. This block behavior

can cause some troubles for some types of distributed applications, particularly

16

those that react to external stimuli and events, such as control systems and

online stock trading systems [7].

The main aspects that prevent these systems to work properly in a
request/response model can be summarized in synchronous communications
restrictions between client ~and server. These restrictions can
derail parallelisms necessary to the well function of these. The client must know
the identity of the server, and bound a partnership between them, forming
a point-to-point communication, where no other component can interact with

them [7].

An alternative to convey its information to all interested recipients, distributed
systems must use message-oriented middleware to handle the messages
transactions. The main advantages when comparing with request/response
systems include its support for asynchronous communications, where the
senders don’t need to lock threads until they receive a reply. Many message-
oriented middleware platforms provide a set of properties, where messages

are reliable queued and/or persisted until needed by the receiver.

Publish-subscribe is a sibling of message queue paradigm and defines
a pattern where publishers and subscribers are loosely coupled and thus do not
know about each other existence. The main elements of a

publish/subscribe middleware can be defined as:

« Publishers, the source of information. They classify and update
information in topics that can later be read by subscribers interested on
it.

« Subscribers, the information sinks. Every subscriber can request data
from different topics and only receive messages from topics subscribed
by it. Multiple subscribers can receive messages from the same
publisher, and they don't have knowledge of what or how many

publishers have written in a specific topic.

17

« Topics, the components in the system that create a channel, and
propagate information from the publishers to subscribers.
These channels propagate information across distribution domains to
remote subscribers and can perform various services, such as filtering

and routing, QoS enforcement, and fault management.

To represent the information passed from publishers to subscribers, there are
various options available, ranging from, simple text messages to even richly-
typed data structures like XML. This flexibility allows the interfaces to be
generic, such as send and receive methods that exchange arbitrary dynamically
typed XML messages in WS-NOTIFICATION, or specialized formats, such as a
data writer and data readers that exchange statically typed event data in DDS

[7].

2.5 Queuing and Messaging Layer Frameworks

When the necessity of planning missions or any framework dedicated to
their assignment to the robots could not be discarded, messages syntax,
identification, routing, transportation, and error checking among other
problems, still need to be solved. This is where messaging frameworks take in

action.

Messaging platforms abstract some of the these low-level details or socket
types, allowing to hide much of the complexity, that developers are forced to
repeat in their applications, every time they try to exchange messages in

a consistent way.

2.5.1 Message Broker versus Peer-to-Peer (P2P)

There are two main approaches to control the way the messages are

exchanged between nodes, broker-based or peer-to-peer.

In broker-based implementations, data does not flow directly from the
publishers to the subscribers. Instead the data streams of all publishers are

concentrated in a single trusted node. This node is responsible for the routing

18

and delivery service. Subscribers only connect with the broker agent, and do
not have to keep track of the status of the publishers, considering that it also

performs message filtering, and prioritize a queue before routing [18].

Subscriber

Broker

Subscriber

Figure 2.6 - Message Broker Architecture

In peer-to-peer implementations, subscribing node directly contacts every
publisher, which is publishing a specific topic and maintains a separate
subscription to each of them. This method has the advantage of independent
connections between the nodes, leading to a more stable and more robust
system. If the bandwidth of the underlying network is large enough, it also

provides a low latency between the publishers and the subscribers [18].

Publisher Subscriber

Publisher Subscriber

Figure 2.7 - Peer-to-Peer Architecture

2.5.2 Messaging Frameworks

This section presents an overview of the most important messaging
frameworks used in networked systems, an their possible relevance in the scope

of this dissertation.

19

2.5.2.1 AMQP

AMQP (Advanced Messaging Queuing Protocol) is a message-centric
protocol born proposed by the financial sector, aimed to free users from
proprietary and non-interoperable messaging systems. As well as JMS (Java
Message Service), it was designed to address applications requiring fast and
reliable business transactions, but unlike it, AMQP assures that
implementations from different vendors are truly interoperable. JMS merely
defines an API (Application Programming Interface) and AMQP is a true wire
protocol. The term “wire protocol” is commonly used to describe how the
information is represented and transferred at the application layer from point-

to-point in the network.

AMQP uses a binary encoding format and provides flow control with message-
delivery guaranties such at-most-once (where each message is delivered once or
never), at-least-once (where the message will always certainly arrive and do so
only once), and authentication and/or encryption based on SASL (Simple
Allocation and Security Layer) and/or TLS (Transport Security Layer),

assuming an underlying reliable transport layer protocol [19].

2.52.2]MS

Java Message Service (JMS) is one of the most widely used publish-
subscribe messaging technologies. JMS is a message centric API for sending
messages between two or more clients. JMS is part of Java Enterprise Edition
(Java EE) and assures the communications of distributed and loosely-coupled
applications based on Java EE. JMS is asynchronous and supports both point-
to-point and publish-subscribe style routing. The main limitations of JMS is that

it is only a Java API standard, and does not define a wire protocol [19].

2523 MQTT

Message Queue Telemetry Transport (MQTT) is a message-centric wire

protocol designed for telemetry-style data, along high latency or constrained

20

networks, to a server or small message broker, typically used on M2M

(Machine-to-Machine) communications.

Is an extremely simple protocol, supports publish-subscribe style and devices
may range from sensors, actuators, smartphones, embedded systems on

vehicles, or full-scale computers.

MQTT uses a binary encoding, and supports partial interoperability between
different MQTT implementations. The Message body must be agreed between

peers, otherwise the message cannot be interpreted [19].

2.5.2.4 REST

Representational State Transfer (REST) started as the predominant Web
API design model in the context of HTTP (Hypertext Transfer Protocol), but not
limited to that. RESTful style architectures are based on conventionally request-
response messaging style. It defines resources as any coherent and meaningful
concept that may be addressed, based or not, in already existing applications
layer protocols if they provide a rich and uniform vocabulary capable to

represent a state [19].

2.5.2.5 CoAP

Constrained Application Protocol (CoAP) is a document transfer protocol
designed to allow very simple electronic devices to communicate over the
Internet. CoAP is lightweight, runs over UDP with support for multicast
addressing, and is often used in WSNs (Wireless Sensor Networks). CoAP is
compatible with client-server model based on RESTful architectures in which
resources are server controlled abstractions identified by Universal Resource
Identifiers (URIs). This new standard enables the use of IPv6 in Low-Power and
Lossy-Networks (LLNs) such as those based on IEEE 802.15.4 and is currently
being standardizing by the IETF (Internet Engineering Task Force) [19].

21

2.5.2.6 DDS

Data Distribution Service (DDS) was designed to support large scale, real-
time data sharing between devices in a network. It is used in many mission
critical systems with large device-to-device data exchanges requiring efficient,

predictable, low latency and reliable data sharing.

Unlike other platforms such as AMQP, MQTT or JMS, DDS provides support
for dynamic discovery. This means that DDS doesn’t need to implement a

broker agent to exchange messages between peers.

Communication between publishers and subscribers are all based on direct P2P
links, between nodes (inter-process) or even on a single node (in-process) as

referred in section “1.2 Distributed Computing” of this dissertation.

By design DDS’s connectionless architecture scales better than the other
protocols when the number of applications on the node producing and

consuming data increases [19].

2.5.2.7 ZeroMQ

ZeroMQ (OMQ/ZMQ) resembles the standard Berkeley sockets. It's a
lightweight message-driven middleware library, specially designed for high
throughput and low latency scenarios, such as AMQP that can be found in

financial systems.

It provides a new type of sockets that carry whole messages across different
types of transport, and able us to connect N-to-N sockets with patterns like
Publish-Subscribe, Parallel-Pipeline, Fair-Queuing, or Request-Response. Those
concepts, made ZeroMQ initially called a ‘messaging middleware” later “TCP on
steroids” and right now a ‘new layer on the networking stack’ [20]. It is
transport agnostic, supports in-process, inter-process, and multicast
communication, all together. To achieve the best possible performance it uses
different protocols, depending on the peers location [20]. Users have full control
over communication policies and QoS (synchronous or asynchronous

communication, timeouts). As an asynchronous processing model, the

22

messages can be dispatched, delivered and queued (sender or receiver side) in

parallel without need to block the main application process [21].

ZeroMQ is routing and network topology aware, since isn’t needed to explicitly
manage the peer-to-peer connection state. A single ZeroMQ socket is able to
bind two or more distinct ports to listen for inbound requests, at the same time
without any conflict, or the same in reverse using a single API call to send data

to distinct sockets [1], [10].

ZeroMQ has no type specification and does not know anything about the data a
user sends. For this reason it has to be used with an external serializer. It's
considered as one of the major candidates to replace CORBA (Common Object
Request Broker Architecture), as a standard on distributed systems, facilitating
the collaboration between different operating systems, programming

languages, and computing hardware. [6].

2.5.2.8 ROS

Robot Operating System (ROS) platform arose from the need to integrate
common solutions employed in the robotic area and make the development
easier. ROS is not a common operating system but rather a mixture
of different tools. This high level and service oriented communication concept
can be defined as a middleware, whereas the core libraries execute framework

functionalities [22].

ROS developers adopted to use peer-to peer (P2P) communication instead of a
centralized node (brokered) to handle the messages. Considering ROS a robot
development framework where multiple nodes share information collected by
sensors to processing nodes, the P2P model offers better scalability and

performance.

There is only a small part of the system is centralized - the naming service. It is
responsible for registering new services, inform which ones are available and
which nodes are responsible for them. After this stage, all communication is

independent from the naming service [22].

23

2.5.3 Overview

Table 2.2 - Comparison of Middleware Platforms

DDS MQTT AMQP JMS
Abstraction Pub-Sub Pub-Sub Pub-Sub Pub-Sub
Architecture Global Data Space | Brokered P2P / Brokered | Brokered
Style
Interoperability | Yes Limited Yes No
Performance 10s of 1000s of Typically 100s | Typically 100s | Typically 100s to
messages per to 1000+ to 1000+ 1000+ messages
second. Massive messages per messages per | per second per
fan-out second per second per broker.
performance broker. broker.
Real-time Yes No No No
Processing
Transport UDP by default TCP TCP Not Specified
Layer TCP can also be Typically TCP
used
Subscription Partitions, Topics; | Topics with Exchanges, Topics and
Control Message filtering | hierarchical Queues and Queues; Message
matching bindings filtering
Data CDR Undefined AMQP type Undefined
Serialization system or user
(Wire Protocol) defined
Encoding Binary Binary Binary Binary
Licensing Open Source; Open Source; Open Source; | Open Source;
Model Commercial Commercial Commercial Commercial
support support support support
Service Yes No No No
Discovery
Layer
Mobile Devices | Yes, on Yes Yes Dependent on the
(Android, iOS) | commercial OSJAVA
applications capabilities
6LoWPAN Yes Yes Implementatio | Implementation
n Specific Specific
Security Vendor Specific; Simple SASL; TLS Vendor specific;
SSL; TLS; Username- SSL; TLS
Proprietary access | Password;
control SSL

24

REST/HTTP CoAP ZeroMQ ROS
Abstraction Request- Request- Pub-Sub Pub-Sub
Response Response Parallel-Pipeline Request-
Fair-Queuing Response
Request-Response
Architecture pP2p pP2p pP2p pP2p
Style
Interoperability Yes Yes Limited Limited
Performance Typically 100s | Typically 100s Typically 100s to Typically 100s
of requests per | of requests per 1000+ of messages | to 1000+ of
second. second per second. messages per
Faster than ROSin | second.
every case.
Real-time No No No No
Processing
Transport Layer | TCP TCP TCP TCP
uDP
Subscription N/A Multicast Queues Topics
Control Addressing Multicast
Addressing
Data Serialization | No Configurable ZMTP TCPROS
(Wire Protocol)
Encoding Plain Text Binary Binary Binary
Licensing Model | HTTP Open Source Open Source with Open Source
available for with commercial
free on most commercial support
platforms support
Service Discovery | No Yes Yes Yes
Layer
Mobile Devices Yes Via HTTP proxy | Yes Yes
(Android, iOS)
6LoWPAN Yes Yes Yes Yes
Security SSL; TLS DTLS Plain-text No
Username —
Password;
Curve25519

25

3.Implementation

3.1 Introduction

Surveillance systems are part of the current mechanisms of the society for
its protection against events that attempt against people health or goods. These
systems have evolved, being less depended of humans and using more sensors'

information to detect events.

In the DVA project (partially sponsored by the European Regional
Development Fund and the Portuguese Government), a surveillance system
based in geographic position of events and humans agents was developed
which improves human-machine cooperation. This system reduces the
dependence on humans in the detection of events and benefits from the location
of the events and of human agents to improve and accelerate the response to
events. It is composed by: Sensor Agents, Processor Agents, Inference Agent,
Action Agents, Mobile Agents, Interface Agent, Backup Agent and Monitor
Agent.

Nevertheless, there are some tasks performed by humans that could be
delegated to machines, such as: confirmation of events; access to areas
dangerous to human health; mobile sensors' information; reconnaissance of
areas. To respond to these gaps, a partnership was established with the
ServRobot project (also partially sponsored by the European Regional

Development Fund and the Portuguese Government) in order to integrate the

27

autonomous robot, developed in this later project, as an agent of the DVA
system. ServRobot is an autonomous service robot designed specially for
surveillance activities, and it is composed by many types of sensors, gathering
information about its environment. The use of this robot as an agent, enables
the execution of tasks (hitherto performed only by humans), by the robot and
minimizes human intervention in various hostile situations. The ServRobot
should adapt it self to different types of usage and environmental conditions,
providing different residing capabilities such as: following people, lines,
teleoperation, execute a predefined path based on reference points, avoid

possible obstacles, in autonomous navigation and cargo transportation.

Given this partnership, AGNI, an API for the control of autonomous service
robots, is presented in this dissertation. Agni is a Hindu deity, and the sacrifices
made to Agni go to the deities because Agni is a messenger from and to other
gods [23]. AGNI will enable the integration of the ServRobot as a DVA mobile

agent.

3.2 Proposed Architecture

To use the autonomous robot, developed in ServRobot, as a new agent in
the DVA’s surveillance system, it is necessary to define an integration
architecture and a communication protocol. The integration of the robot in
DVA's system could provide new capabilities to this system, such as: send the
robot to execute a mission; teleoperate the robot; or get robot's sensory

information.

The architecture developed, depicted in Figure 3.1, has three primary nodes,
DVA as the core of the architecture, ServRobot representing the robot and the

Client representing others devices that can interact with the robot.

The DVA node refers to the DVA’s surveillance system. As the core of the
architecture, it handles requests regarding registration, sensor and device list

queries. Authentication and permission level requests are also managed by

DVA.

28

The ServRobot node represents the robot as an operable device. The robot must
first request a registration to DVA. ServRobot's sensors can be subscribed by
DVA. Subscribing a sensor allows receiving its output’s values updated with a
specific frequency. It’s also possible for DVA to request execution of missions or

remote control of the ServRobot.

The communication between ServRobot and DVA can be synchronous or
asynchronous depending on what is being requested. For example in a
teleoperation scenario it’s clearly a synchronous communication, the orders
sent to the robot must have a “real time” acknowledgement. If the DVA wants
to subscribe to sensors it doesn’t need to reply every time it receives an update,

in this case the communication would be asynchronous [24].

CONNECTION REQUESTS, TELEOPERATION AND MISSION COMMANDS

f ACKNOWLEDGE \

Publisher

Subscriber |

¢ SENSOR SUBSCRIPTION

e HEARTBEATS

¢ REAL TIME ROBOT
STATUS

Subscriber

ACKNOWLEDGE ACKNOWLEDGE

o REGISTRATION REQUESTS o REGISTRATION REQUESTS

e LIST REQUESTS ¢ PERMISSION LEVEL

o AUTHENTICATION k_) CONFIRMATIONS
REQUESTS

Figure 3.1 - Projected Architecture [24]

This architecture was projected to be scalable, allowing the integration with
other systems. Client node could represent for example a mobile device that

interacts directly with a ServRobot by teleoperating it as a remote control.

29

A permission level was defined to control accesses between system' nodes. This
permission level allows the definition of authorization to subscribe not all the
sensors of the robot, but only a few. Depending on permission level, one client
may only be allowed to do teleoperation, missions, or both. There are different
classes of permission levels; they limit the client’s freedom, regarding the

actions that they can perform [24].

3.2.1 Choice of a Message Framework

Taking into account all the requirements of the architecture described in
the previous section, and all the middleware platforms reviewed in the section
“2.5.2 Messaging Frameworks” of this dissertation, it was decided to use ZMQ

(ZeroMQ), as its communication middleware.

The choice of the platform is justified clearly, considering the main
requirements of the proposed architecture. Is has to be as much distributed as
possible, must be capable of having several subscribers requiring information
from the robot simultaneously, but also it must be able to provide synchronous
communication patterns. Other important factors were the fact that it is one of
the fastest and lightest communications frameworks available, crucial for a

battery-based system [25].

DDS standard was also an option, considering all the layers that it offers, since
its distributed architecture, performance, scalability, and interoperability. Even

being available as open-source, it is mainly focused in commercial applications.

The community open-source distribution of DDS lacks of the more advanced
features, such as mobile applications, and has considerable performance

constraints.

3.2.2 Message Patterns in Use

This architecture uses two ZMQ message patterns. Request-Reply
(REQ/REP) and Publish-Subscriber (PUB/SUB). Essentially, REQ/REP is used

when an acknowledge is expected, for example on registration messages, direct

30

orders or one time sensor output requests. The concept of PUB/SUB is used
when one or more devices need to have periodically updates from a sensor, also

to send heartbeats to the connected clients as “I'm alive” messages.

3.2.3 Message Language

The language used in the exchanged messages, is XML. XML was adopted
taking into account its advantages to: modulate the concepts of the scenario in
study (instead a byte codification); make changes in the message protocol by
modeling new objects and types of data [26]; develop in different platforms,

debug problems and validate the messages' composition [27], [28].

Also with XML an important issue to this architecture is guaranteed:
communication interface does not contain limitations, so in future, new
functionalities can be added easily with scalability, for new sensor/modules in

the autonomous robot or new devices in the system [29].

3.2.4 Message Format

The message format was defined using XML tags. Messages are initiated
by the tag <msg> and followed by the MessageType tag as a chilld element,
which defines the type of the message.

In most cases this tag contains the receiver's identification (DestinationID),
session used to send the message (SessionID), message identification
(MessagelD), sender's identification (SourceID) and when this message was sent
(Timestamp). After these, the DataType tag must follow. It identifies the specific
type of data, and contains all the necessary child elements that form the

message to achieve a specific purpose.

The Message's structure could be different depending on the message type. The

types of messages implemented are [24]:

31

Simple Message (SimpleMsg) — Message with the regular structure

explained before.

<?xml version="1.0" encoding="UTF-8" =standalone="yes"?>
<msg>
<SimpleMsg>
<DestinationID>70:1A:04:F9:81:D6</DestinationID>
<MessageID>124</MessageID>
<SourceID>56:2B:04:E4:56:D8</SourcelID>
<Timestamp>12:30:56</Timestamp>
<SessionID>1425</SessionID>
<TeleOp>
<StartTeleOp></StartTelelp>
</TeleOp>
</SimpleMsg>
</msg>

Figure 3.2 - Example of a “start teleoperation” message request

Emergency Command (EmergencyMsg) — Message with the
structure explained before, but without any additional elements.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<msg>
<EmergencyMsg>
<DestinationID>70:1A:04:F9:81:D6</DestinationID>
<MeszzageID>124</MessagelD>
<SourceID>56:2B:04:E4:56:D8</SourcelID>
<Timestamp>12:30:56</Timestamp>
<Se=g=2ionID>1425</SessionID>
</EmergencyMsg>
</mag>

Figure 3.3 - Example of a Emergency Message

regular

Heartbeat Message (HHBMsg) — Similar to the Emergency Command but

also without the SessionID.

<?xml version="1.0" encoding="UTF-8" =standalone="yes"?>

<msg>
<HBM=g>
<DestinationID>70:1A:04:F9:81:D6</DestinationID>
<MessageID>124</MessageID>
<SourceID>56:2B:04:E4:56:D8</SourcelD>
<Timestamp>12:30:56</Timestamp>
</HBMsg>
</msg>

Figure 3.4 - Example of a Heartbeat Message

32

Request Registration Message (RegRegMsg) — This message has two
additional tags: Device and IpAddr. In the message, Device is a tag to
identify the type of device (robot, teleoperation device, etc) that intends
to register. IpAddr is a tag with the IP address of the device on the
network.

<?xml version="1.0" encoding="UTF-8"?2
<msg>
<RegMsg>

<DestinationID>70:1A:04:F9:81:D6</DestinationID>
<MessageID>124</Me=ssageID>
<SourceID>56:2B:04:E4:56:D8</SourceID>
<Timestamp>12:30:56</Timestamp>
<SessionID>1425</SessionID>
<DevicelLabel>Tablet BQ Curie 2</DevicelLabel>
<DeviceType>TeleOp</DeviceType>
<IpAddr>192.168.1.48</IpAddr>
</RegMsg>
</msg>

Figure 3.5 - Example of a Registration Message

3.2.5 Message Types
Each message type has a specific purpose, described in this section.

Emergency Command - Used to abort an activity that is being
undertaken. Independently of the current status of the robot, when it
receives an emergency command, it should stop immediately.

Heartbeat Message - The heartbeat message is used as an “I'm here.”
type of message. It is sent using a Publish/Subscribe messaging pattern
and is present in all devices in the architecture.

Request Registration Message - To make part of the system, the devices
and clients need to send a registration request to the DVA. If a client
wants to operate an available robot in the system, it must be
authenticated before. To obtain a permission level, the client must ask to
DVA for permissions. Figure 3.5 shows an example of a Request
Registration Message that is sent by the devices to the DVA system.

Simple Message - Simple Messages are a regular messages defined in this

protocol with the structure presented specifies the type of data that is
contained on the message to send and can take values as:

33

o Robot Status - Commands available in this DataType:

GetRobotStatus. These messages can request the general status
(GetRobotStatus) to the robot device and reply to it, with a
RobotStatus. RobotStatus provides general information about the
robot status: Operation Mode, Speed, Turn Rate, Speed Left
Wheel, Speed Right Wheel, Direction Angle, Pitch, Roll, Yaw,
coordinate X, latitude, coordinate Y, longitude, Terrain type,
Reliability hours and Battery capacity.

Mission - Commands available in this DataType: DoStoredMission,
DoNewMission, GetMissionsList, GetMissionlnfo, GetMissionStatus,
StoreMission, RemoveMission, GetRefPtList, StoreRefPt, RemoveRefPt.
Mission messages are used to request execution of missions to the
robot (DoStoredMission, DoNewMission) and get feedback from the
result of an executed mission (GetMissionStatus, receiving a
MissionStatus). It is also possible get a missions list available at the
robot memory (GetMissionsList, receiving a MissionList) or get a
more detailed data about one specific mission (GetMissionlnfo,
receiving a MissionInfo). It is possible to upload and remove
missions on the robot's memory (StoreMission, RemoveMission).
The robot also deals with the concept of Reference Point. A
Reference Point is a known location (by the Robot and the DVA)
that is associated with a label. This way it is possible to execute a
mission at ‘Room01” instead using its coordinates. There are
messages that manipulate and get these Reference Points
(GetRefPtList receiving a RefPtList, StoreRefPt, RemoveRefPt).

Teleoperation - Commands available in this DataType:
StartTeleOp, StopTeleOp, SetTeleOp. Teleoperation messages are sent
by a Teleoperation Device and are used to control a target device.
It is possible to toggle on or off the Teleoperation Mode of the
robot (StartTeleOp, StopTeleOp), and to control his speed and
steering angle (SetTeleOp).

Sensor - Commands available in this DataType: SubSensor,
UnsubSensor, SetSensorUplnt, GetSensorUplnt, SetSensorConfig,
GetSensorList, GetParameterValue, GetSensorConfig, GetSensorlnfo,
GetMetaParameterValues, GetSensorParametersValue. All the devices
connected to a robot/sensorial device can get information about its
sensors, for example: get the list of all the sensors (GetSensorList
receiving a SensorList) or get the detailed information of a specific

34

sensor (GetSensorlnfo receiving a SensorInfo). With these messages
it is also possible to subscribe (SubSensor) or unsubscribe
(UnsubSensor) to specific sensor values that are published by the
device. Those values are published with a certain Update Interval
requested by the device when it subscribes it. This Update
Interval can be updated with SetSensorUplnt, GetSensorUplnt
(receiving a SensorUpInt) messages. There are other methods to
get a values from sensors, such as: GetParameterValue (receiving a
ParameterValue), GetSensorParametersValue (receiving all
ParameterValue of an sensor), GetMetaParameterValues (receiving all
ParameterValue of an specific Metaparameter type). The
MetaParameter represent the type of measurement that is being
sent, such as: length, temperature, pressure, acceleration, etc.

Device Subscription - Commands available in this DataType:
GetDeviceList, GetSessionID. These messages make accessible a list
of devices online and connected to the DVA system (GetDeviceList,
receiving a DeviceList). All the devices that are part of this list had
to be registered in the system. It's also possible to use these
messages to initiate a new session on a device (GetSessionID,
receiving a SessionID) with a certain Permission Level. On the
first interaction between a client device and ServRobot, the last
one requests DVA to verify what Permission Level this session
has.
* Permission Levels

* Robot Status Only

* Sensors Only

* Robot Status + Missions

* Robot Status + Teleoperation

* Robot Status + Sensors

* Robot Status + Missions + Sensors

* Robot Status + Teleoperation + Sensors

* Robot Status + Missions + Teleoperation

* Full Permissions

Reply - This DataType of message is used as "answer" to all the
messages that require some result. The reply message uses
MessagelD to identify to which request is answering. The types of
Data used, are: RobotStatus, MissionInfo, MissionStatus, MissionList,
RefPtList, SensorList, SensorInfo, ParameterValue, —DeviceList,
SessionID and Acknowledge. In case of request failure, instead of the
previous types, one ErrorCode is returned. Figure 8 shows an
example of Reply message with ParameterValue.

35

The diagram below shows the content and the chronological order of the messages

exchanged between the DV A, the Client, and the ServRobot.

Client DVA ServRobot

| |
|

—

|

_— . -
|' Reply to Reg —— | | ___Registration Query
|

|

' | T ReplyloReg ___
|
|

:_‘“' Registration Query

|
™= Get Device List

I P
' e —

*____ Reply to Device List

— Get SessioniD
| — Get SessioniD _
| —)

|
~___Reply SessionlD —

A |

T — Stant Tele-.Operanon - —)
I —
Verify SessionlD
|('-‘")
= I

" Reply Permission Level

|
___ Acknowledge Start Tele-Cperaton — -
— I
F———————— Set Tele-Gperation _

| | E—

—

__ Acknowledge Selt Tele-Operation

Figure 3.6 - Messages Exchange UML

After the inital registration requests and respective replies, the client requests
the actual device list from DVA. From then on the client can request a new
sessionlD from DVA to gain access to a specific ServRobot, which will be

verified later, after the robot receives a new command from the client.

Teleoperation requests or sensor information can now be exchanged between

the client and the ServRobot, according with the negotiated permission level.

36

3.3 ROS

3.3.1 Introduction to ROS

In robotics, the widely varying types of hardware, makes software
development for robot control one of the most challenging tasks in robot

creation.

In general, robotic systems are controlled by Robotic Software Frameworks.
These frameworks are focused on providing scalability, reusability, and
deployment, helping to debug the software developed in the system easier.
There are many Open-Source Frameworks available for the development of
Robotic Systems such as: Player, OROCOS, YARP, OpenRave, OpenRTM, ROS,

and others.

ROS is a product of tradeoffs and prioritizations during its development cycle.
As already referenced in section “2.5.2.8 ROS” of this dissertation, the
underlying goals of ROS can be summarized as: Peer-to-Peer; Tools'-based;

Multi-lingual; Thin; Free and Open-Source.

It is designed to minimize the difficulty of debugging, as its modular structure
allows nodes undergoing active development alongside preexisting, well-

debugged nodes.

This “infrastructure” graph can be started and left running during an entire
experimental session. Only the node(s) undergoing source code modification
need to be periodically restarted, at which ROS silently handles the interactions

between them.

It provides rqt as a Qt framework of ROS that implements the various GUI tools
in form of plugins. In one single window, all ROS GUI tools are dockable
within rqt, even rviz, a ROS package that visualizes robots, point clouds, etc

[30].

37

demo - RosGui

File Plugins Running _Perspectives

web
http://www.ros.org/wiki/rqt

$3:ROS.org

Documentation

1. Stack Summary

Integration of the ROS package system and ROS-specific pl

« Author: Maintained by Dirk Thomas

o licance: RSN

Console
[GiLoad || &save || [Pause
Message
#9
#8

#7 Starting scene monitor
#6
#4
#5

Help

D@ 0% Publisher DE@ 0% Robot Steering DE@ 0% Logger Level DC@ ox
e
c @ | Topic [cmd_vel3 | + | Type [/Float32 | + Freq.[5s |+ Hz [db|[= | [@ Jemd_vel No Loggers Levels
— e Debug
About | Supp| | | toPic v type rate enabled expression Ir p, [ros.moveit_c(|Info
v femd_vel2 std_msgs/Float32 1000 True = Jrat_gui_cpp] rosroscpp | Wam
data float32 cos(i/20)*20 I - /rviz_134392{ ros.roscpp.ro Error
B v /emd_vel3 std_msgs/Float32 5.00 True -] - ros.roscpp.su | Fatal
ro data floatsz sinfi/20)+10
Stop Refresh
D@ Oo% Plot DC@ ox
Displaying 9 Messages. Resize Columns | Topic |/cmd_vel3/data Subscribe Topic Pause Remove All
Severity Node Time
Info 29
Info 232
Info /moveit_setup_assistant 11:11:25.293 (2012-08-02) /rosout, /move

- 4NN NN
s ,”;Huf\ \

Exclude Rules: Messages matching ANY of these rules will NOT be displayed 7\ \ }r / \\ \ ({ w f \){/ f \)\/ / \
s8]
& SeverityFilter: Debug Info Warning Error Fatal = i \\ | /) \ \ { \ / / |
' 11.6 -
| \ | \
\/ \/ V) Vo / \/ / \/
S IV Y \ y v \ \ J
Highlight Rules: Message matching ANY of these rules will be highlighted 232
& Message Filter: |monitor () Regex (=] (@ 5]
r T T T T]
i 0 200 800 1.000

T T T T
400 600
- femd_vel2/data — /cmd_vel3/data

Figure 3.7 - RQT ROS GUI framework [30]

Logging values in ROS is also possible using the “rosbag” tool, which
subscribes to one or more ROS topics. The data collected is stored in a file as it
is received, leaving the need of implement logging software in each new ROS
node. It allows ROS to playback the retrieved data to the same topics they were

recorded from, or even to remapped new topics [31].

3.3.2 ROS Concepts and Resources

As is summarized below and in later sections, ROS structure has three levels

of concepts [32]:

* File System Level — Representation of the main ROS resources
o Packages — Runtime (nodes), libraries, datasets
o Manifests — Flags; configuration files; licenses
o Stacks — Collection of Packages
o MsgTypes — Message descriptions
o SrvTypes — Service descriptions

* Communication graph level — P2P network of ROS processes

o Nodes — Wheel controllers
o Master — Control communication between nodes
o Parameter Server — Makes configuration values available

38

Messages — Communication “data structures” (int, char, ...)
Topics — Conjuncts of messages of a given Type
Services — Used to reply messages to a specific node.
o Bags - Storing data
* Community level — Main resources that enable software and

o O O

knowledge exchange.

o Distributions — Collections of versioned stacks that can be
easily installed. Similar to Linux distributions.

o Repositories — Network of code repositories, where different
institutions develop and release their own robot software
components.

o Wiki — ROS community forum and documenting platform
for all the information about ROS. Anyone can contribute.

The software can be organized in several nodes, and the information can be
addressed between them using the concept of topics. These topics contain
information that is shared across all nodes and can be updated by any one that

publishes new information on them.

The choice of the ROS as the main framework for the ServRobot is justified by
several factors. The previous versions of the software developed for the
ServRobot are one of the most important ones, considering the fact that ROS is
developed using knowledge already acquired by the Player framework. Its high
level of software integration and service oriented communication concept [22] is
another important factor as already referred in the section “2.5.2.8 ROS” of this

dissertation.

3.3.3 ROS versus Player
Player by the other hand, (the previous implementation of the software in
the ServRobot), is client/server based, where the client is an external program

that interacts with the player server using classic TCP/IP sockets.

It can simulate and control the behavior of the robot using all of its sensors and
actuators. Is interface based, as it uses a pre-defined set of messages and data

types to interact with a specific device or algorithm.

39

Provides several tools like Stage and Gazebo, 2D and 3D multi-robot
simulators, for indoor and outdoor applications and it is responsible of all
driver abstraction, hardware communication protocols, used in every sensor,

actuator, or even algorithmic features as path-planning, vision, etc...

3.3.4 ServRobot Hardware

Figure 3.8 - ServRobot [33]

* ITX Computer — Used to run ROS over Ubuntu 12.04 LTS Linux
operating system.

* Roboteq ax3500 — The motor controller used to control the speed of
the two front wheels with a PID controller.

* Diamond Systems Hercules II - Data acquisition device to gather
information from several sensors, as the direction angle encoder,
electric currents and voltages of the different components, like the
battery information. It also runs a Linux distribution — Knoppix.

* xsens MTI - Inertial Measurement Unit

* Sick 111 - Laser radar guidance system

* Arduino platform — Used to acquire information from the weather
shield or other external sensors, and run a ROS node to publish that
information.

* Weather shield — Shield with several weather sensors, including
temperature, humidity, light, altitude and GPS position if available.

* USB Camera - Used to obtain images of the floor for later
processing in a line follower algorithm.

* Microsoft Kineck - Human-machine interface for gesture
recognition.

40

RS-232 USB Roboteq Motors
Converter ax3500
Xsens MTI
IMU
LADAR

ITX Router . Axle Angle
Diamond (g
Computer Y Encoder
Kinect

USB Floor
Camera
L

Figure 3.9 - ServRobot internal diagram

Weather
Shield

Other
Sensors

3.3.5 Motor Controller Solution

For the integration of the ServRobot with the DVA using the proposed
messaging protocol, the software running on the ServRobot hardware, was
rewritten to run on the new ROS framework. Some nodes that were created
needed to control the basic movements of the robot, as described next in more

detail.

3.3.5.1 Implemented Nodes

* /hconfig — Configuration node responsible to publish the configuration
information of the several ServRobot ROS nodes. It verifies which
configuration topics are being subscribed and updates them.

e /hio — Data acquisition node responsible to acquire information of the
steer angle of the axis, battery power consumption information, or other
new sensor values for future developments.

* /hsteerpid — PID correction factor calculator node responsible to receive
the input speed and turn-rate command and send the corrected one to
the /hroboteq node. This correction factor, alongside the steer angle, is
used to replace the original Roboteq ax3500 differential algorithm, using

41

the independent wheel encoders. This able the ServRobot to execute a
more accurate path.

/hroboteq — Roboteq motor controller node responsible to process the
received command, and interact directly with the hardware via a RS-232
serial link.

/serial_node — Source of the speed and turn-rate input commands
(joystick or other input method). It publishes them into
/hsteerpid_input_vel topic.

3.3.5.2 Implemented Topics

/hio_config — Data acquisition node configuration message
/hroboteq_config — Motor controller node configuration message
/hsteerpid_config — PID node configuration message

/hio_steer_angle — Message with the steer angle of the axis in real time
/hsteerpid_input_vel - Message with the value of the input speed and
turn rate pretended to be executed by the ServRobot. This message can
be provided by a joystick or interpreted for example as a teleoperation
message from the proposed messaging protocol.

/hroboteq_cmd_vel — Message with the value of the speed and turn rate
to the motor controller including the PID correction factor, from the
/hsteerpid node.

/hroboteq_raw_vel — Message with the actual speed of the left and right
wheel being executed by the /hroboteq node.

/hroboteq_estimated_pos — Message with the estimated odometry data
from the motor encoders.

3.3.5.3 Hroboteq node

The development process started with the communication with the

Roboteq ax3500 motor controller /hroboteq by a serial RS-232 link. All the low-

level serial communication functions were implemented, and a few ROS

messages were created to start sending input commands to the motors.

There was some problems at first, related with the ROS publish / subscribe

messaging structure, where the callback functions, started to conflict with some

ported static routines from the previous Player drivers.

It subscribes /hroboteq_cmd_vel topic with the value of the speed and turn rate

to the motor controller including the PID correction factor, from the /hsteerpid

node, essential for the teleoperation function, but it also publishes the

42

/hroboteq_raw_vel topic with the actual speed of the left a right wheel being
executed by the /hroboteq node and /hroboteq_estimated_pos topic with the
estimated odometry data from the motor encoders.

3.3.4.4 Hconfig node

A configuration node was created as soon as the motor controller
problems were solved. All the code written after this point was prepared to be

configured at any time, using dedicated configuration messages.

All the nodes start subscribing the correspondent configuration topic. The
configuration node /hconfig verify which configuration topics are being
subscribed and update them. After receiving the first configuration, the several
nodes start their initialization process. The configuration node can update the
configuration topics at any time, giving the possibility to reconfigure a specific

node in real-time without the need to restart all the other nodes.

3.3.5.5 Hio node
The data acquisition node /hio was the next one to be implemented with
the purpose to get the steer angle from the axis encoder in real-time and to

calculate the PID correction factor to the /hroboteq, by the /hsteerpid nodes.

The /hio node gets the information from the data acquisition board Hercules II
from Diamond Systems, using a TCP/IP direct link. The data acquisition board
should be initiated before using a SSH link. This link is started automatically
using a ROS .launch file as described in the section “3.3.6 Parameter Server and

the Roslaunch Tools” of this dissertation.

The data structure sent by the board is a simple C structure with information
from the axis absolute encoder, electrical currents from the several components

and correspondent electrical voltages.

3.3.5.6 Hsteerpid node
The /hsteerpid algorithm was ported almost without any major changes

from the Player code, and interacts with the /hio and /hroboteq nodes to

43

calculate the turn-rate correction factor. It subscribes /hsteerpid_input_vel, to

receive the commands and publishes to the /Hroboteq_cmd_vel.

3.3.5.7 Basic Teleoperation ROS Messages Exchange

As represented in the next figure, after all these nodes are implemented,
the ServRobot can be operated remotely using a generic ROS node that
publishes the desired values of the speed and turn-rate. These values can be

gathered from a simple joystick, for example.

/hroboteq_config

/[hio_steer_angle >
/hroboteq_cmd_vel

/hio_steer_angle

/hsteerpid_input_vel

Figure 3.10 - ROS Nodes and Topics Graph for the basic robot control

3.3.6 Parameter Server and the Roslaunch Tools
After some tests, it was clear, that the ROS platform wasn’t being taken to
all its potential. The use of custom messages, was working well but, for the

configuration of the several nodes, the parameter server was a better solution.

Parameter Server has all the tools to publish all the parameters of all ROS nodes
in one single place. Roslaunch is an easy way to fill the parameter server and
order to launch new nodes to the platform, including the roscore, the base of
the ROS infrastructure. Every node can access and modify if needed, all the

information available in the server at any time.

In the Figure 3.11, there is a launch file with all the parameters needed to
configure and start the /hio node, and run the Batch script needed to start the
SSH link.

44

<launch>

<node pkg="hio" type="start.sh" args="192.168.1.221 root diamond1"
name="start_diamond" output="screen" launch-prefix="xterm -e">

</node>

<node pkg="hio" type="hio" name="hio" output="screen">
<param name="IP" value="192.168.1.221" />
<param name="Port" value="51717" />
<param name="Publish_CPUTemp" value="false" />
<param name="CPUTemp_path" value="/sys/bus/platform/devices/coretemp.0/
temp2_input" />

Figure 3.11 - Example of a .launch file

#l/usr/bin/expect
#Usage sshsudologin.expect <host> <ssh user> <ssh password>
set timeout 60
spawn ssh [lindex $argv 1]@[lindex $argv 0]
expect "yes/no" {
send "yes\r"
expect "*?assword" { send "[lindex $argv 2)\r" }

} "?assword" { send "[lindex $argv 2)\r"

expect "# " { send "/DSCServRobot\n"
interact

Figure 3.12 - SSH Diamond Systems Hercules II Batch Start Script

3.3.7 ROS ServRobot Remote Client
To give control of the robot to the final user, it was created a GUI using
the Qt framework, the most used in ROS projects and already present in the

main ROS tools and features.

The application allows the user to control the basic movements of the
ServRobot using five push buttons, to increase and decrease the actual speed

and turn-rate.

45

It's another available way to send commands to the ServRobot, publishing
values to the /hsteerpid_input_vel topic, as already refereed in section “3.3.5.6

Hsteerpid node”.

QRosApp

— Command Panel ®
Ros Communications

Ros Master
Remote

iSpeed Ros Master Url
-Angle Stop +Angle http://localhost:11311/
Ros IP
-Speed
192.168.1.3

Logging
Ros Hostname

Use environment variables
Remember settings on startup [

Connect

Quit

Figure 3.13 - ROS ServRobot Remote Client

3.3.8 Arduino, Weather Shield and Converter node

The Arduino is an open source project intended to make the application of
interactive objects and environments more accessible. It’s a physical computing
platform based on a simple microcontroller board based on an 8-bit Atmel AVR
microcontroller or a 32-bit Atmel ARM. There is also available an IDE that can
be downloaded from the official Arduino website. The programing language
used, is an implementation Wiring, a similar computing platform, which is

based on the Processing multimedia environment [34].

The Sparkfun weather shield is an easy way to access simple weather
information, like the barometric pressure, relative humidity, luminosity and
temperature. It provides also connections to optional sensors such as wind

speed, direction, rain gauge and GPS, if present.

46

Mpruny

4

PI8Iys Jayieapy
unpueds

»
5
*
=3
3
2

i
n

]
=

+

*
1%60 b
¢

' CLLE
AL ELLLELE
‘(“11’:

‘C+

Figure 3.14 - Arduino Mega 2560 with Sparkfun weather shield

The Arduino model used is a Mega 2560, to accomplish the task of running a
native ROS node internally. The Arduino will connect it self to the /roscore and

will be represented as an /serial_node.

The /serial node represents the sensorial information gathered from the
weather shield and other external sensors, processed by the Arduino platform,

and published using sensor_msgs ROS topics.

Given the lack of ROSJAVA compatibility with sensor_msgs in the current

versions, an additional converter node is needed.

3.3.9 Integration of the Proposed Protocol in the ServRobot

Considering that DVA is based on a JADE platform and the mobile clients,
Android devices, it was decided to implement the proposed protocol using the
Java programing language. ZeroMQ and ROS are based on C++, but as already
said, both are Multi-language capable.

All the middleware messaging patterns were implemented using a ZeroMQ

Java code and all the XML validation was done using the JAXB platform.

47

A JAR was created using all these required tools and all the new code to
generate and parse the exchanged messages, to create ZMQ REQ/REP servers
and clients along with ZMQ publishers and subscribers.

3.3.9.1 Implemented Nodes

* /roszmqdriver — ROSJAVA node that runs all the ServRobot — DVA
proposed protocol.

* /converter — Converter node responsible to convert the sensor_msgs
topics published by the Arduino to std_msgs topics, already available in
the ROSJAVA platform.

3.3.9.2 ROSZMQDriver
/roszmqdriver is a ROSJAVA node with the .JAR integration allowing ROS
to interact with the DVA and teleoperation clients using the proposed message

protocol referred in the section “3.2 Proposed Architecture” of this dissertation.

Roslaunch is configurable, (3.3.6 Parameter Server and the Roslaunch Tools),
allowing for example, to change ServRobot registration labels, ID’s or update
intervals of the sensorial information. /roszmqdriver node is structured to use
the ROS parameter server to handle these values, discarding the use of local

variables.

The sensorial information available in the robot is structured using two hash-
tables, with all the sensor and parameters information. The first one includes
the sensor ID, sensor name and a list of meta-parameters linked with a specified
sensor. The second one includes the parameter ID, meta-parameter, parameter
SI base units, and values. The process of adding a new sensor to the hash-tables

is represented in the Figure 3.15.

SensorInfo Batteries = create_sensor('Batteries");

SensorParameter Total_i = create_parameter(MsgStrings.MetaParameters.OTHER,
MsgStrings.Units.A);

SensorParameter Batt_u = create_parameter(MsgStrings.MetaParameters.OTHER,
MsgStrings.Units.V);

link_parameter(Batteries, Total_i);

link_parameter(Batteries, Batt_u);

Figure 3.15 - Add new sensor function

48

The ROS callback functions that subscribes the sensorial information, verifies if
the sensor exists and update the hash-tables when new values are available. The

callback functions are always the first ones to be started.

Subscriber<std_msgs.Float64> himu_temp_sub = rosNode.newSubscriber("/himu_raw_temp",
std_msgs.Float64._TYPE);

himu_temp_sub.addMessagelListener(new MessagelListener<std_msgs.Float64>() {

@Override
public void onNewMessage(std_msgs.Float64 imu_temp) {
set_parameter_value(get_sensor_parameter_list(get_sensor_id("IMUtemp")),
MsgStrings.MetaParameters.TEMP, MsgStrings.Units.C, imu_temp.getData());
b

)

Figure 3.16 - ROS topic subscriber updating the hash-tables

After creating the hash-tables, the /roszmqdriver node gathers the current IP
and MAC addresses from the Linux operative system, and verifies in the ROS

parameter server if it should send a registration request to DVA.

The MAC address is normally used as the ServRobot ID tag, and the IP address

used to inform the DV A, where it can find the ServRobot in the network.

void regist_Robot(){

String regmsg = gen.newRegMsg(MsgStrings.DVA_IDTAG, myID, sessionID, mylLabel,
MsgStrings.DeviceTypes.ROBOT, myIP);

ZMQregClient.sendMsg(regmsg);

String regreply;

regreply=ZMQregClient. requester.recvStr();

ROS_INFO(regreply);

parser.parse(regreply);

if(parser.getMsgObject().getSimpleMsg().getReply().getCode().equals(MsgStrings.ErrorC
odes.0K)){
//Registered OK
ROS_INFO("Robot registered on DVA successfully");
robot_dva_registered=true;
¥
else{
//Error registing ServRobot on DVA
ROS_INFO("Robot failed to regist on DVA");
ROS_INFO("Error:
".concat(parser.getMsgObject().getSimpleMsg().getReply().getCode()));
¥

¥

Figure 3.17 - /roszmqdriver registration function

49

If it is registered successfully, the ROSJAVA cancelable loops responsible for

the several types of messages exchanged are started.

ROSJAVA cancelable loops are used to create independent ZMQ publishing
cycles, for heartbeats, sensorial information or ZMQ REQ/REP servers. Each
cancelable loop handles a specific ZMQ port, making the information routing
more differentiable and more efficient, and has an independent update interval

for each ZMQ Pub/Sub messaging pattern.

As represented in Figure 3.18, the temperature publisher ROSJAVA cancelable
loop, there is a setup() function that retrieves the ZMQ port number from the
ROS parameter server, and a loop() function. In every publisher, the loop()
function verifies if ZMQdebug parameter is active, if is authorized to publish
values, if there is any sensor installed in the ServRobot with the specified

MetaPatrameter, that is added to a temporary list of parameters.

The list is published and the thread sleeps for a specified time interval.

CancellableLoop pub_temp_cl = new CancellableLoop() {
ZMQPublisher temp_publisher = new ZMQPublisher();

@Override

protected void setup(){

temp_publisher.connect(String.valueOf (ROSparams.getInteger("/"+getDefaultNodeNa
me()+"/ZMQ_Temp_Port")));

ROS_INFO("Temp publisher server started");

}

@Override

protected void loop() {

temp_publisher.debug=R0Sparams.getBoolean("/"+getDefaultNodeName()+"/ZMQdebug");
if(publish_values==true){
if(temp_cl_upd_interval!=-1){
List pValues = new ArraylList();
Enumeration<Integer> enumKey = sensor_pValues_tab.keys();
while(enumKey.hasMoreElements()) {
Integer key = enumKey.nextElement();
PValue pv = (PValue) sensor_pValues_tab.get(key);
if(pv.getMetaParameter().equals(MsgStrings.MetaParameters.TEMP)){
pValues.add(pv);
}
}
String tempmsg = gen.newParameterValuesMsg(MsgStrings.DVA_IDTAG,
myID, sessionID, reqID_PUB, pValues);
ROS_INFO (tempmsg);
temp_publisher.pusblishMsg(tempmsg);
thread_sleep(temp_cl_upd_interval);

Figure 3.18 - Example of a Publisher ROSJAVA Cancelable Loop

50

A ParameterListener is always updating the several update intervals for each
type of message. It uses a parameter server callback function to receive the new

values.

ParameterListener heartbeat_upd_int_pl = new ParameterListener() {
@Override
public void onNewValue(Object value) {
heartbeat_cl_upd_interval=Integer.parseInt(value.toString());
ROS_INFO("New Heartbeat update interval");
}

Figure 3.19 - Parameter Listener for heartbeat update interval

3.3.10 Protocol Benchmarks and Performance

In terms of performance, the following information is based on a simple
Wifi network, and two computers. The server runs on a 3.4Ghz Intel Core i5
4670K and the client, runs on a 2.53Ghz Intel Core 2 Duo, both with 8 GB of

ram.

The tests executed to the protocol, were programmed to discover where is used
the majority of the time during all the several steps. Batches 5000 messages
were sent between the two computers, using the XML message generating
process, the serialization using the ZMQ Req/Rep messaging pattern, and on
the receiving computer, the XML schema validation and respective message

parsing process.

Sets of small (acknowledge), regular (with information about 20 generic
sensors), and large messages (with information about 200 generic sensors) were
sent. The tests executed were based on request, request-reply, message

generation, XML validation, and ZMQ serialization times.

The time lost during the request is based on the difference between the original
message timestamp and the time when the respective content is ready to be

processed after being validated and parsed by the protocol, on the destination.

51

The request test results are shown in Table 3.1.

Table 3.1 - Test bench with one-way simple message request delays

Small Regular Large
Delay (ms) messages messages messages
(Acknowledge) | (20 Sensors) | (200 Sensors)
200-205 0 0 0
205-210 65 16 1
210-215 1774 1325 338
215-220 1953 2483 2052
220-225 765 679 1609
225-230 170 178 460
230-235 96 117 285
235-240 46 71 112
240-245 27 34 36
245-250 17 18 14
>250 87 79 93
Total 5000 5000 5000

The values obtained from the Table 3.1 show that the request delays were
approximately around 210 and 230 milliseconds. The Figure 3.20 represents the

values of the regular messages delays, from the Table 3.1.

Request Delay

3000
2500
2000
1500
1000

500

Delay (ms)

M 200-205 M 205-210 H210-215 H215-220 M 220-225 H225-230
230-235 235-240 240-245 245-250 ©>250

Figure 3.20 - One-way simple message request delay

52

The request-reply delays were measured accounting with all the steps, since the
generation of the messages on the source computer, until the respective reply is
received from the server and validated again on the client. The request-reply

test results are shown in Table 3.2.

Table 3.2 - Test bench with simple message request-reply delays

Small Regular Large
Delay (ms) messages messages messages
(Acknowledge) | (20 Sensors) | (200 Sensors)
200-210 0 0 0
210-220 22 0 0
220-230 2081 1073 621
230-240 2100 2770 2758
240-250 454 636 1021
250-260 156 265 328
260-270 62 90 69
270-280 26 52 48
280-290 19 25 30
290-300 15 12 26
>300 65 77 99
Total 5000 5000 5000

From the Table 3.2, the request-reply delays were approximately around 220 and
260 milliseconds, which are plausible, considering that the server is faster than
the client and the reply message is a small acknowledge message. The delays
are more spread when compared with the request delays. The Figure 3.21

represents the values of the regular messages delays, from the Table 3.2.

53

Request-Reply Total Delay

3000
2500
2000
1500
1000

500

Delay (ms)

H200-210
H260-270

H210-220
H270-280

©220-230
280-290

M 230-240
290-300

H 240-250
£>300

H250-260

Figure 3.21 - Simple message request and response delay

The generation process delays were measured on the client computer and are

shown in the Table 3.3.

Table 3.3 — Test bench to generate message process

Small Regular Large
Delay (ms) messages messages messages
(Acknowledge) | (20 Sensors) | (200 Sensors)
50-60 0 0 0
60-70 0 0 0
70-80 2070 1545 2088
80-90 2562 3041 2384
90-100 223 254 365
100-110 65 81 69
110-120 24 35 28
120-130 9 9 15
130-140 10 8 5
140-150 5 2 10
>150 32 25 36
Total 5000 5000 5000

The values obtained from the Table 3.3, show that the generation process delays
were approximately around 70 and 100 milliseconds. The Figure 3.22 represents

the values of the regular message generation delays, from the Table 3.3.

54

Generate Message Delay

3500
3000
2500
2000
1500
1000

500

Delay (ms)

H50-60 H60-70

m'70-80

H 80-90 E90-100 E100-110

Figure 3.22 - Delay of the XML message generate process

The XML validation and parsing process delays were measured on the client

computer and are shown in the Table 3.4.

Table 3.4 - Test bench to XML validation and Parsing Delay

Small Regular Large
Delay (ms) messages messages messages
(Acknowledge) | (20 Sensors) | (200 Sensors)
50-60 0 0 0
60-70 0 0 0
70-80 2 0 21
80-90 2178 2155 1788
90-100 2348 2256 842
100-110 252 339 495
110-120 77 90 946
120-130 35 38 318
130-140 24 39 418
140-150 6 16 84
>150 78 67 88
Total 5000 5000 5000

The values obtained from the Table 3.4, show that the XML validation and

parsing process delays were approximately around 80 and 100 milliseconds.

55

When compared with the generation process, the validation is slightly slower in

average and more spread with larger messages.

The Figure 3.23 represents the values of the regular message XML validation

and parsing delays, from the Table 3.4.

XML Validation and Parsing Message Delay

2500

2000

1500

1000

500

Delay (ms)

H50-60 H60-70

m70-80

H 80-90 ®90-100 E100-110

Figure 3.23 - Delay of the XML message schema verification and parsing

The ZMQ serialization delays were measured on the client computer, when it

was sending request messages to the server, and are shown in the Table 3.5.

Table 3.5 - Test bench with ZMQ serialization delays

Small Regular Large
Delay (ms) messages messages messages
(Acknowledge) | (20 Sensors) | (200 Sensors)

0-2 4578 4494 4391

2-4 247 230 356

4-6 145 212 194
6-8 10 38 21
8-10 5 4 9
>10 15 22 29

Total 5000 5000 5000

56

The Figure 3.24 represents the values of the regular messages ZMQ serialization

delays.

Serialization Message Delay

5000

4000 -

3000 -

2000 -

1000 -

Delay (ms)

HQ-2 m24 H46 m68 mg810 E>10

Figure 3.24 - Delay of the ZMQ message serialization

3.3.11 Himu node

The /himu node wraps the official Xsens C++ library, and is responsible
to connect to the MTI sensor. It configures the sensor and publishes the RAW
and calibrated values of the accelerometer, gyroscope, and magnetometer. Also
publishes the RAW temperature and Euler angles, needed for later

developments.

Figure 3.25 - Xsens inertial measurement unit

57

3.3.12 Lmslxx node
The /Imslxx allows future ports of the previous Player software. It
connects with the Sick111 laser radar, configures it, and publishes the /scan

topic with all the measured points.

Figure 3.26 - Sick LMS111 LIDAR

58

4. Conclusions and Future Work

At this moment the ROS nodes and topics working in the ServRobot can be
represented in the graph present in Figure 4.1. The /hsteerpid_input_vel
receives speed and turn-rate commands from the /remote node, representing
the GUL or the /roszmqdriver node, representing the teleoperation client, with
negligible delay. All other nodes related with the basis ServRobot control are
working as already referenced in the previous section of this dissertation, “3.3.5

Motor Controller Solution”.

For future work, ServRobot ROS nodes for autonomous driving, obstacle
avoidance and mapping should be ported from the previous Player

implementation.

It is expected the drop of the /converter node in the future, as soon as
ROSJAVA became compatible with a greater variety of ROS message types,
including sensor_msgs. The /hgps is being used only to simulate the GPS
position of the ServRobot. It is also expected to be dropped in the future.

The messaging protocol should be optimized, using its capabilities to customize
the ServRobot’s behavior, execute autonomous missions and handle session

IDs, increasing the general security.

59

The possibility of setting the publishing update intervals for the several
ROSJAVA cancelable loops in the ROS parameter server remotely, through the

DVA for example, is one of the future objectives.

Error messages should also be interpreted accordingly with the desired
behavior for each situation. For now, only the ID tag and command hierarchy

are being verified.

The teleoperation client using the tablet and ROS remote GUI, are able to access
some of the sensorial information published by the ServRobot using the same

channels as DVA or ROS framework directly.

A few adjustments were made to optimize the general behavior of the
messaging protocol. The ZMQ buffer was limited to a specific number of
messages, considering that the ServRobot is publishing at a higher rate than
DVA is subscribing and parsing the messages. The different types of messages
started by being processed altogether in a single ZMQ port. It was verified that
some messages should have greater priority than others and it was decided to
separate them in different ROSJAVA cancelable loops, using different ZMQ
ports. This way, the overhead in the network was considerable reduced and

they could already be handled separately and executed only when necessary.

The ZMQ ports used in the /roszmqdriver node, were initially hard coded in
the shared Java code. For easier configurations, these were also ported for the
ROS parameter server. It should be possible to unregister, change the ZMQ port
numbers through any other node, and register again the ServRobot, without the

need of restarting the /roszmqdriver.

The request message and device IDs, should be verified in every reply received
to grant a minimum level of security. This method can also be implemented in
the teleoperation context if it is proved that doesn’t affect the delay

considerable, when compared with the native ROS motor controller nodes.

In the section “3.2.4 Message Format” of the proposed protocol in this
dissertation, is already presented a generic solution for this problem, the device

subscription command.

60

The proposed protocol, along with ZMQ and ROS, were successfully
implemented in the ServRobot, and run as expected. The sensorial information
collected by the robot is available for consultation through DVA or any other

device using the same protocol.

=d
va
DVA Direto Agentes Criar Evento Monltorizagdo Histérico Configuragio Sair
Direto
DVA Detalhe do Evento
A Tharana
< o > Evento: Gas (89)
Origem: Controlinterface
~ T < Regra: Criado Manualmente
@ 7[3 Localizagao: N377-1 JB-2, 2825 Caparica (38.66326282,-9.20742676)
Data do Evento: 2014-09-03-16:28
+ Descrigéo: teste robot

Estado: Confirmado

T
3 2 4ntgnio Calads

Editar Evento Criar Evento Ver Timeline
3 3 +| Agentes Associados
X UTILIZADOR ESTADO DO EVENTO DATA DA OCORRENCIA
BL <ol 7 il KA. AT st robot Confirmado 2014-09-03 16:28:57
= robot Confirmado 2014-09-03 16:30:45
Eventos a decorrer - 5 Registos robot Confirmado 2014-09-03 16:47:29
D ORIGEM EVENTO ESTADO DATA DA OCORRENCIA p— e TR

90 Controlinterface Gas Confirmado 2014-09-03-16:34 5| Agdes
89 | Controlinterface Gas Confirmado 2014-09-03-16:28 5| Estados
88 Monitorizagao do Sistema Avaria Sensor Por confirmar 2014-09-01-15:26

87 Monitorizagéo do Sistema Avaria Sensor Por confirmar 2014-09-01-15:18

86 I2CSensorsdva-test Avaria Sensor Por confirmar 2014-08-27-11:59

prh—
: I’ l g % -
COMFETE T

Figure 4.2 - DVA Website [35]

It is highly customizable and easily ported to other scenarios. The message tags
defined in the protocol are only a limited set of possible applications. The
maximum message size is not limited in any of the layers, and the smallest one
is already defined as a heartbeat message, with only the header. The application
of the protocol is mainly focused in sensorial data acquisition, configuration
messages and mission assigning. It proved that it can be used close to real time
applications, but is not the best choice when dealing with critical information in
short time intervals. The most, time expensive, step in the proposed protocol is
the XML validation against the XSD model. The choice of the ZMQ framework,
proved to be resilient, including the possibility of a high quantity of data to be

transferred in the network with almost no delay at all.

As already said, the protocol was implemented in Java, but since it uses XML
language, it can be implemented in any other language that is compatible with

the ZMQ framework.

62

For any future developments on the ServRobot, all information gathered at the
moment is available to any new ROS node, running internally or externally in

the same network.

63

64

Scientific Contributions

During the development of this dissertation, two papers were accepted
and published in two different conferences. The first one more focused in the
choice of the messaging framework and the second one in the proposed

architecture and integration on the DVA.

J. Claro, B. Dias, B. Rodrigues, J. Paulo, P. Sousa, and S. Onofre,
“Autonomous robot integration in Surveillance System - Architecture and
communication protocol for systems cooperation,” in 16th International
Power Electronics and Motion Control Conference and Exposition (PEMC
2014), 2014, pp. 714-720.

B. Dias, B. Rodrigues, J. Claro, J. P. Pimentao, P. Sousa and S. Onofre,
“Architecture and Message Protocol Proposal for Robot * s Integration in
Multi-Agent Surveillance System,” in Rough Sets and Current Trends in Soft
Computing, 2014, pp. 366-373.

65

66

[1]

[2]

[6]

References

P. Hintjens, “Multithreading Magic.” [Online]. = Available:
http://zeromgq.org/blog:multithreading-magic. [Accessed: 20-Nov-2013].

M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R.
Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of

cloud computing,” Communications of the ACM, vol. 53, no. 4, p. 50, Apr.
2010.

G. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems: concepts
and design. 2005, p. 1067.

M. Van Steen, Distributed Systems Principles and Paradigms. 2004, p. 686.

G. Murali and A. Shirisha, “Remote procedure calls implementing using
distributed algorithm,” vol. 2, no. 6, pp. 1742-1746, 2011.

A. Dworak, M. Sobczak, F. Ehm, W. Sliwinski, and P. Charrue,
“Middleware trends and market leaders 2011,” in 13th International

Conference on Accelerator and Large Experimental Physics Control Systems,
2011.

B. Frank, H. Kevlin, and C. Douglas, “Pattern Oriented Software
Architecture ‘A pattern Language for Distributed Computing,”” Pattern-
Oriented Software Architecture, A Pattern Language for Distributed

Computing, 2007.

67

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. R. Mosteo, “Multi-Robot Task Allocation for Service Robotics: from
Unlimited to Limited Communication Range.”

J. Dufty, “Solving 11 Likely Problems In Your Multithreaded Code.”
[Online]. Available: http://msdn.microsoft.com/en-
us/magazine/cc817398.aspx. [Accessed: 10-Dec-2013].

P. Hintjens, “ZeroMQ: The Guide.” [Online]. Available:
http://zguide.zeromq.org/page:all. [Accessed: 20-Nov-2013].

H. Luthria and F. Rabhi, “Service-Oriented Architectures: Myth or
Reality?,” IEEE software, pp. 46-52, 2012.

L. Liu and J. Xu, “Clouds and service-oriented architectures,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 271-272, Jan. 2013.

F. Campos and]. Pereira, “Improving the Scalability of DPWS-Based
Networked Infrastructures,” p. 28, Jul. 2014.

Y. Ha, J. Sohn, and Y. Cho, “Service-oriented integration of networked
robots with ubiquitous sensors and devices using the semantic Web
services technology,” 2005 IEEE/RS] International Conference on Intelligent
Robots and Systems, pp. 3947-3952, 2005.

M. Narita and F. Limited, “A Robot Collaboration Protocol based on Web
Services - RoboLink Protocol Connect Robots to the Network,” 2004.

M. Narita, M. Shimamura, and M. Oya, “Reliable Robot Communication
on Web Services,” vol. 18, no. 1, pp. 36-37, 2006.

A. Mosteo and L. Montano, “SANCTA: an Ada 2005 general-purpose
architecture for mobile robotics research,” Reliable Software Technologies—
Ada Europe ..., 2007.

V. Netze, T. Schneider, and P. M. Kranz, “Distributed Networks Using
ROS - Cross- Network Middleware Communication using,” 2012.

A. Foster, “Messaging Technologies for the Industrial Internet and the
Internet of Things,” no. January, pp. 1-22, 2014.

N. Piél, “ZeroMQ an introduction.” [Online]. Available:
http://nichol.as/zeromg-an-introduction. [Accessed: 20-Oct-2013].

68

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

P. Hintjens, Code Connected Volume 1, vol. 1. 2013.

“About ROS.” [Online]. Available: http://wiki.ros.org/About ros.org.
[Accessed: 06-May-2014].

“Agni.” [Online]. Available: https://en.wikipedia.org/wiki/Agni.
[Accessed: 06-Oct-2014].

B. Dias, B. Rodrigues, J. Claro, and J. P. Pimentao, “Architecture and
Message Protocol Proposal for Robot ’ s Integration in Multi-Agent
Surveillance System,” in Rough Sets and Current Trends in Soft Computing,
2014, pp. 366-373.

J. Claro, B. Dias, B. Rodrigues, J. Paulo, P. Sousa, and S. Onofre,
“Autonomous robot integration in Surveillance System - Architecture and
communication protocol for systems cooperation,” in 16th International
Power Electronics and Motion Control Conference and Exposition (PEMC
2014), 2014, pp. 714-720.

T. Bray and J. Paoli, “Extensible markup language (XML),” W3C, vol. 1,
no. August, 2006.

M. G. Kostoulas, M. Matsa, N. Mendelsohn, E. Perkins, A. Heifets, and M.
Mercaldi, “XML Screamer : An Integrated Approach to High Performance
XML Parsing , Validation and Deserialization,” International World Wide
Web Conference Committee, pp. 93-102, 2006.

F. Wang, J. Li, and H. Homayounfar, “A space efficient XML DOM
parser,” Data & Knowledge Engineering, vol. 60, no. 1, pp. 185-207, Jan.
2007.

P. Inigo-Blasco, F. Diaz-del-Rio, M. C. Romero-Ternero, D. Cagigas-
Muniz, and S. Vicente-Diaz, “Robotics software frameworks for multi-
agent robotic systems development,” Robotics and Autonomous Systems,
vol. 60, no. 6, pp. 803-821, Jun. 2012.

“RQT.” [Online]. Available: http://wiki.ros.org/rqt. [Accessed: 10-Jun-
2014].

“ROSBAGS.” [Online]. Available: http://wiki.ros.org/rosbags. [Accessed:
10-Jun-2014].

69

[32] “ROS Concepts.” [Online]. Available: http://wiki.ros.org/ROS/Concepts.
[Accessed: 10-Jun-2014].

[33] “ServRobot.” [Online]. Available: http://servrobot.holos.pt. [Accessed: 10-
Jun-2014].

[34] “Arduino.” [Online]. Available: http://arduino.cc. [Accessed: 10-Aug-
2014].

[35] “DVA.” [Online]. Available: http://dva.holos.pt. [Accessed: 10-Jun-2014].

70

