
Microservice-based Cloud Robotics System for

Intelligent Space☆

Chongkun Xia1, Yunzhou Zhang1*, Lei Wang1, Sonya Coleman2, Yanbo Liu1

1. College of Information Science and Engineering, Northeastern University, Shenyang, China.

2. Intelligent Systems Research Centre, University of Ulster, Derry, UK

Abstract— Cloud robotics (CR) is a red-hot branch of the

burgeoning field of service robots that is centered on the

benefits of integrating infrastructure and shared services via a

cloud computing environment. Although it extends the

computation power and information sharing capabilities of the

network robots, the development and operations (DevOps) of

the CR system are currently limited for enterprise-scale

projects due to the heavy framework. In fact, current

developed CR systems are typical distributed monomer

architectures followed by a “top-down” design. As the scale of

the applications gets larger, the operation and maintenance of

CR systems will become a very difficult task. In this paper, a

new architecture for a microservice-based cloud robotics

system in intelligent space is proposed to solve the present

dilemma. To enable this, we design a service management

architecture based on a microservice to provide a highly

efficient and flexible development/deployment mechanism. The

container technology based on the docker engine is then used

to functionally decompose the application into a set of

collaborating services to ensure the software design methods,

based on microservice, easy for implementation. Finally, a real

experiment on SLAM (Simulation localization and mapping) in

an intelligent space is implemented to verify the proposed

architecture. Compared with traditional monomer

architectures, the results show that the proposed framework is

more productive, flexible and cost effective.

Keywords— Cloud robotics; microservice; container

technology; cloud computing; intelligent space; visual SLAM

I. INTRODUCTION

Intelligent systems that mimic the behaviors and
cognitive processes of human are rapidly being developed
around the world. With the rapid development of sensor
devices, the volume and type of information and data that
need to be processed by the onboard processors of robots are
growing rapidly. As a unique device, the robot carries out all
the computation and storage processes on board, which
significantly increases its computational burden and can
become bloated and inefficient. To solve this problem, James
J. Kuffner proposed the concept of “cloud robotics” [1]. This
concept introduced a new scenario where robots were
regarded as agents, relying on remote servers for most of
their computational load and data storage, and creating a
middleware where they can share information and
knowledge. The typical structure diagram for a cloud
robotics system is depicted in Fig.1. The use of cloud
computing for robotics and automation brings many potential
benefits such as largely ameliorating the performance of
robotic systems. Since the on-board processing capacity and
storage capacity are very limited for physical robots, it often

leads that robots have a long processing time and run slowly.
Cloud robotics [2] can not only solve the inherent problems
of traditional robotic systems, such as onboard computation
and storage limitation, asynchronous communication and
compatibility problem of multi-robot systems, but can also
enhance the performance via concepts such as a remote brain,
shared knowledge-base, collective learning and intelligent
behavior.

Fig.1 The cloud robotics system provides a management center and a data

center. Every robot service can be registered on the cloud servers by a

uniform interface standard and rule. The robot clients are the low-cost

robot platforms with an embedded-class processor and a wireless

connection. Robot clients can request these robot services from a service

item which is stored in the management center.

The standard CR system follows a systematic “top-down
design”, which can be treated as a stepwise design or a
synonym of decomposition. The approach in [2] describes an
overview of the system, specifying, but not detailing any
first-level subsystems. Moreover, as the scale of the
applications expands, it may be very difficult to deploy and
maintain the system for a long time [3]. In fact, current
research into the CR framework is based on a typical
distributed monomer architecture [4], such as M2M/M2C
(Machine-to-machine/machine-to-cloud) [5] or UNR-PF
(Ubiquitous Network Robot Platform) [6]. It should be noted
that the monomer architecture is a mainstream development
framework in the current software development background
due to wide popularity, friendly IDE (Integrated
Development Environment) and facilitated resource-sharing
functionality. But the monomer architecture is limited by a
technology stack, which forces developers to use a unified

☆Research supported by National Natural Science Foundation of China

(No.61471110, 61733003), National Key R&D Program of China

(No.2017YFC0805000/5005), Fundamental Research Funds for the Central

Universities (N160413002, N172608005). Chong-kun Xia is the first
author; he is a Ph.D. candidate. E-mail: xiachongkun@163.com.

*Corresponding author: Prof. Yun-Zhou Zhang; Tel: +86-24-83687761,

e-mail: zhangyunzhou@mail.neu.edu.cn.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zhangyunzhou@mail.neu.edu.cn

programming language, even though that may be
inappropriate. Besides, too much coupling between services
worsens the problems caused by code duplication for the
monomer architecture. Hence, even though M2M/M2C and
UNR-PF are widely known in academia, they cannot get out
of the laboratory and achieve popularity and recognition
from the market. These existing problems indicate that
current architectures are unsuitable and unfavorable for the
long-term development of cloud robotics system. Given this,
the microservice, as a new software design idea, provides a
novel perspective for technology companies and developers.

Therefore, inspired by the new design idea, in this paper
we present a new cloud robotics system framework based on
a microservice that tries to meet the requirements of
designers and developers in an intelligent environment. Our
idea is that all functions of the CR system can be
modularized and regarded as a service, and some
complicated tasks can be effectuated through the
composition of available services. Finally, a real experiment
“3D Visual Mapping and Localization” in an intelligent
environment is adopted to verify the new architecture. We
also design a comparative experiment to demonstrate the
excellent performance of our proposed architecture. The
results show the promise of our work.

II. RELATED WORK

A. Cloud-enabled robotics

Cloud technology-based computing or simply Cloud
Computing is one of the most active fields of Info-
Communication Technologies (ICT) [7]. The principal
structure of cloud computing is depicted in Fig.2.

Fig.2 The cloud computing system consists of middleware module,

background tasks module and control module. Every module can provide a

diverse set of capabilities. The main advantages of cloud computing relate

to dynamic scalable mechanism, parallelism computing and distributed

structure.

From Fig.2, we see that the cloud computing enables
desktop-based computing to move towards full web-based
computing where a web browser can be used to access,
develop and configure various applications, hardware and
data over the internet. It also indicates that the combination
of cloud computing and robotics is an inevitable trend. Many

major companies participate in cloud computing and
establish all kinds of platforms such as Google App engine
[8], Amazon Elastic Compute Cloud (EC2) [9], Microsoft
Azure [10], GRIDS Lab Aneka [11] and Sun Grid [12]. The
emergence of cloud computing and the corresponding
platforms make it possible to conveniently use cheap
computing resources in a similar manner to water or
electricity in daily life.

The concept of cloud robotics can be traced back at least
two decades to network robots. Masayuki Inaba [13]
proposed a robot control method based on remote computing,
highlighting the advantages and the IEEE Robotics and
Automation Society established a technical committee for
Networked Robotics in 2001 [14]. Kamei et al., [15]
proposed “cloud networked robotics” to fulfil various
location-based tasks in a shopping mall for supporting daily
activity, especially for the elderly and disabled. The ASORO
lab in Singapore proposed DAvinCi based on Hadoop and
ROS (Robot Operating System), which shows the scalability
and parallelism advantages of cloud computing for service
robots in large environments [16]. Tenorth [17] designed the
UNR-PF to realize human-computer interaction in a
convenience store and Gostainet [18] established an
infrastructure using cloud robotics for speech recognition on
the humanoid robot NAO. Carlos and Du Z et al. [19]
present an architecture design of “robot cloud” to bridge the
power of robotics and cloud computing. They use the SOA
(Service-oriented architecture) to expand the capacities of
physical robots. Nan Tian et al. [20] described Berkeley
Robotics and Automation as a Service, which is a RAaaS
prototype that allows robots to access a remote server that
hosts a robust grasp planning system (Dex-Net 1.0). The
above research mainly focuses on some practical application
areas but does not present systematic architectures for cloud
robotics which is the focus of this paper.

In addition, the European Union also started a
groundbreaking cloud robotics project “RoboEarth” [21] in
2009. This project attempts to build a giant network and
database repository where robots can share information and
knowledge and learn from each other about their behaviors
and environments. The researchers have developed the
famous cloud engine “Rapyuta” [22] and the knowledge
processing system “KnowRob” [23] successfully.
Furthermore, in 2014 scientists from institutes including
Cornell, Stanford, Google, and Microsoft developed a new
project “RoboBrain” [24] that allows robots to learn and
share representations of knowledge. These developments
indicated that cloud robotics can be used to effectively and
efficiently expand the robots’ knowledge and skills.
Undoubtedly, there is much more additional research being
undertaken in the field of cloud robotics. However, from this
brief review, we can determine the main cloud robot
architectures can be divided into two subgroups: M2M/M2C
and UNR-PF and the these are typical distributed monomer
architectures. The deployment of a typical distributed
monolithic architecture is depicted in Fig.3.

However, the traditional distributed monolithic
architecture has also some inherent defects. From the
development methodology, many companies want to deploy
more applications to the cloud and they also need to innovate

as fast as possible to avoid competition [25]. Therefore,
continuous delivery is very important for many startups or
large Internet corporates in recent years. Applications based
on a typical monolithic architecture would have a single
codebase shared among multiple developers and be
developed using an MVC (Model View Controller) [26] web
application framework such as JEE, .NET, Symfony, Rails,
Grails and many others. If these developers want to add or
change services, they must do more work to make sure that
the new service is perfectly compatible with other services.
Thus, as more services are added, the complexity of
deployment will increase significantly and limit the ability of
companies to innovate with new application versions and
features in the monolithic applications. The above limitations
and problems have become a great challenge for most
Internet companies and SaaS providers which we aim to
address in this paper.

Fig.3 Deployment of the monolithic architecture

B. Microservice in the cloud

To solve the above problem of deployment, we propose a
novel lightweight cloud robotics architecture based on
microservice. Microservice [27] is a software architecture
style in which complex applications are composed of small,
independent processes communicating with each other using
language-agnostic APIs. It should be noted that, although the
design and philosophy behind each architecture approach
share some traits, microservices and the SOA are
fundamentally different in other key ways. With the new
architecture, the companies can innovate quickly and reduce
complexity by using computing resources efficiently.
Therefore, the development teams can be enlarged in a
controlled way. The brief deployment of the microservice
architecture on a cloud solution is depicted in Fig.4. In Fig.4,

μS1 , μS2，μS3 and μS4 all are microservices, each of which

can be developed using different technological stacks as
three tiers applications. The gateway is developed as a light
web application that receives requests from end-users and
gets or returns the results. It does not contain a persistence
layer because no information needs to be stored. Moreover, it
must use the services offered by the microservices (μS1 ,

μS2，μS3 and μS4) through REST (Representational State

Transfer). JSON is used as the interchange message protocol
between the display module and the gateway, and the
gateway and each microservice. From Fig.4, we can see that
the gateway and each microservice can be developed and
maintained by independent teams as self-managed
applications, which facilitates the increase of the number of

developers in a more scalable way than is currently available.
Besides, we also find that each microservice may be
developed with different programming languages such as
Python, Java, .NET, PHP, Ruby, etc. The increasing
adoption of microservices in the cloud is motivated by the
ease of deploying and updating the applications, as well as
the provisioned loose coupling provided by dynamic service
discovery and binding. Furthermore, structuring the software
deployed in the cloud environment using a collection of
microservices allows cloud service providers to offer higher
scalability guarantees through more efficient utilization of
cloud resources, and to restructure the software to
accommodate growing consumers’ demand dynamically and
quickly [28]. The microservice framework attempts to
simplify the process of defining service descriptions to
promote automatic service consumption in the semantic web.
In the framework, the description task can be improved by
enabling reusability across service descriptions.

Fig.4 Deployment of the microservice architecture

Recent advancements in the container technology [29]
and its capability to overcome limitations in virtualization
have shown the advantage of the utilization of containers in
the cloud for software applications development and
deployment. The container technology is very attractive
because it completely enables isolation of independent
software applications running in a shared environment.
Docker is a representative product of the container
technology [30]. The Docker provides a single and
lightweight API to manage the execution of containers and
allows developers to pre-package the software dependencies
into a lightweight and portable file that requires less
operation costs than a standard hypervisor. The diagram of
microservice based on the container technology is depicted
in Fig.5. Microservice supports the realization of small (sized)
software applications that are fine-grained and loosely
coupled via the REST communication. These applications
are implemented using APIs provided by the infrastructure-
as-a-service (IaaS) layer for provisioning data computing,
storage and delivery capabilities. Besides, the microservice
model also enables a simpler and faster migration of
software component instances from one visual Machine to
another to satisfy variable resource demands for cloud
applications.

Fig.5 The publishing principle of container-based microservices

III. CLOUD ROBOTICS SYSTEM ARCHITECTURE BASED ON

MICROSERVICE USED IN INTELLIGENT SPACE

The motivation of this research is to design a new cloud
robotics system framework based on microservice to
implement the Cloud-based Assisted Living Project (CALP).
From Section II, we find that current research focusses on
two main parts: cloud platforms and robots. However,
various sensors and monitoring systems in the environment
are changing our life substantially, and we cannot ignore the
revolution brought about by the Internet of Things for
intelligent robots. There is no doubt that the environment
around the robots should be regarded as an integral part of
the whole CR system and it also plays a significant role in
the real application of the CR system. Therefore, in this
paper, the CR system mainly includes three parts: cloud
platform, robots and robots’ working environment. For the
CALP, the robot’s working environment can be seen as an
intelligent environment. The intelligent space (iSpace) [31],
also called a smart space or intelligent environment, is a
space with devices, multi-source information and
communication technologies creating interactive
environments that bring computation into the physical world
and enhance the occupants experiences; the iSpace is
depicted in Fig.6.

Fig.6 Intelligent space (iSpace). The iSpace can physically and mentally
support people through robot and intelligent hardwires, thereby providing
satisfaction for their needs.

For cloud robotics system, most of services requested
by local physical robots are apparently compute-intensive
tasks in the cloud such as SLAM, navigation and scene
recognition and fusion. The distributed monolithic

architecture often deploys and runs an integrated
development application and provides the robot services by
the entire system. However, the change of one function may
affect the others and cause more difficulties of redeployment
and continuous integration due to the change and evolution
of the system function. Additionally, since the monomer
system adopts a unified technology stack and development
standard, it will make the development process more limited
and complicated. The discussion indicates that current
distributed monomer architectures need to be improved and
changed. Based on this, we replace the microservice
architecture as a solution. The microservice, as a new
software architecture design pattern, has shown the
competitive strengths such as more productive, flexible and
low development costs. Obviously, it is a very complex work
to design a novel architecture based on microservice for the
CR system. We need to consider many factors including
reliability, scalability, modularity, interoperability, interface
and QoS. The core designs of the proposed system are
described briefly as follows.

A. Cloud robotics system based on microservice in iSpace

The structure diagram of the proposed CR system based
on microservice is depicted in Fig.7. The fundamental idea is
that the service architecture can be divided into smaller
granularity services that run in an isolated environment.
Fig.7 clearly shows the basic components and system
composition of cloud robotics that are migrated to the
microservice architecture from a single distributed
application. In Fig.7, the microservice application is released
to the distributed environment via a continuous delivery
platform after deployment and verification; then it will be
registered. Besides, physical robots can upload the collected
multisource data information and request “robot services”
towards cloud management system via wireless WIFI and
wired short-range network. The iSpace can share all sorts of
environment information with the cloud platform. To
implement the proposed microservice architecture
successfully, these components will be put into a container
and be managed by the Docker engine. In addition, the APIs’
service will be accessed by the users or external services via
Service Gateway. The key components of the proposed
architecture are described below in detail.

(1) Service registry and discovery component
Service registration and discovery is the core component

of the proposed architecture. In the distributed environment,
the service instance will be changed dynamically according
to the default rule or policy in a dynamic environment.
leading to a higher requirement for this component. The
sketch of the service registry and discovery mechanism is
depicted in Fig.8. It should be noted that the proposed
services refer to “robot services”, such as SLAM service,
navigation service and vision recognition service.

a) Registration and identification service
Since a microservice application can be deployed via the

Continuous Delivery Platform (CDP), it will be registered as

https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Information_and_communication_technologies
https://en.wikipedia.org/wiki/Information_and_communication_technologies

Fig.7 Microservice-based cloud robotics (MCR) system for intelligent space consists of cloud platform, robots and intelligent space. Each function of the MCR
system will be seen as a microservice, especially for robot services. The data center shared in this system is built on the cloud servers.

a service instance by the service registry automatically.
Besides, the location of service instance will change when
the health status and the network environment change, so the
service registry needs to track and identify the service
instance.

b) Locating and discovery service
Ideally, when the user accesses directly from the client,

the scheduling module will query the service registry to find
the accessible service and send it to the corresponding
service instance via the load balancing algorithms. Dynamic
discovery means that calling components can locate
microservice information as needed without closely
integrating the service. However, an application often relies
on the collaboration of several microservices in the real
environment, especially for a robot application. For example,
SLAM is a complex robot application, that contains tracking
service, local mapping service and loop closing service.
Therefore, it is very important to locate and discover services.
If the caller accesses a service layer directly, it can query the
service registration center and find the access service and the
corresponding service instances, and then use the load
balancing mechanism to invoke the service instance.

Fig.8 Service registry with non-center nodes and auto discovery mechanism

(2) Sustainable delivery platform

The main function of the sustainable delivery platform is

the rapid and flexible deployment of the microservice

application. In addition, the deployed microservice must be

programmable, easier-to-maintain and scalable, which can

run in a separate and isolated container as a process. This

sustainable delivery process can bring more rapid feedback

to the application. Furthermore, compared with the

traditional “Waterfall” software development process,

sustainable delivery will become more cooperative and

more efficient on demand analysis, user experience,

interactive design, testing and maintenance collaboration.

For example, as an important part of the robot application

“SLAM”, the loop closing often needs to be improved or

updated by researchers. If we take full advantage of this

platform to publish a new improved version, we believe that

the development of SLAM will be easier and faster than

what currently exists. The sustainable delivery (deployment)

process is depicted in Fig.9.

Fig 9. The sustainable delivery (deployment) process

(3) Service gateway
The service gateway (SG) is a unified call logic portal,

which encapsulates the service information of a node in a
distributed environment. The main functions of the service
gateway are described as follows: a) The services which are
registered via an existing service registry are exposed to an
external call directly; b) The SG can satisfy the requirement
that a client requests multiple services at one time; c)
Support cache storage for some services whose operating
results are constant in certain time intervals. If the service
request fails, the SG will provide the last correct cache
execution or null response; d) Provide request distribution
routing, load balancing, security protection, protocol
conversion and other functions.

(4) Log service, application monitoring and RPC
The log service component will accurately collect various

pieces of information, such as operation log, SQL operation
log, exception log, etc. Then, after standardization, filtering,
merging and alarm analysis, it centralizes storage and
management in a unified format, helping users to locate
faults quickly, and providing objective basis for tracking and
recovery by summarizing and analyzing all log information.
The monitoring component provides the running status of the
microservice, the JVM performance index, the system
performance index and the monitoring function of the
microservice call chain to facilitate real-time monitoring for
users. The RPC (Remote procedure call) component
provides a remote procedure call mechanism that is suitable
for a distributed environment to ensure the performance and
reliability of inter-service communication.

(5) Communication protocol
For the communication pattern, all components can

contact each other, no matter how they communicate at the
interface or protocol levels. In this paper, we adopt the REST
(Representational state transfer) protocol [32] as the
communication specification among different microservices
and JSON (JavaScript Object Notation) [33] is used as the
data format. Compared with the traditional protocol such as
the SOAP [34] protocol and WSDL [35], REST and JSON
are all lightweight protocols and communicate directly by
HTTP requests. The REST is an architecture style that can
allow web services to provide interoperability between

computer systems via an Internet. The web services based on
REST allow requesting systems to access and manipulate
text descriptions of various web resources using a unified
and predefined set of stateless operations. Through the
stateless protocol and the standard operations, REST systems
can provide high availability, fast performance, continuous
growth capacity and reliability by reusing components that
can be managed and updated without impacting the system,
even while it is running. JSON is a lightweight data
exchange format that uses human-readable and easy-to-edit
texts to transmit the data objects containing attribute-value
pairs. Moreover, the JSON is also the most common data
format that is used for asynchronous browser/server
communication. In addition, each service data will be clearly
defined in two formats: normal and abnormal. To make the
data processing and reading easier, the exception code and
exception information of the abnormal format are necessary.
The communication flow between different microservices is
described in Fig.10.

Fig.10 Communication flow between different microservices

When we adopt the instance independence patterns, the

proposed architecture can support component-to-component

communications by synchronous or asynchronous models.

And it does not force the other components to be in any

specific state before receiving the requests or messages. Thus,

if our proposed deployment is appropriate, all of the services

can respond to any requests from components

asynchronously and retain or manage every state no matter

what the sequence is.

(6) Security mechanism
The data sharing mechanism of our proposed architecture

supports the cross platform and the cross application. It is
very important to ensure safe and reliable access while
unauthorized access is denied. The flow chart of security
mechanism based on OAuth2 protocol is depicted in Fig.11.
To enable the security mechanism, we will take advantage of
the federated security system that can create trust between
components, no matter whether the security model is local to
the components. OAuth is an open protocol that provides a
safe, open and simple standard API service for the
authorization of user resources without providing the
passwords or keys. Moreover, any third party can use the
OAuth authentication service and any service providers can
their own OAuth authorization service. The security
mechanism has been widely used by many Internet
companies such as Google, Facebook, Microsoft and Twitter
to permit users to share their account information with third
party applications or websites. Therefore, we use OAuth

https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Stateless_protocol
https://en.wikipedia.org/wiki/File_format#Chunk-based_formats
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Open_standard

protocol as every microservice’s authorization standard in
our proposed system.

Fig.11 The flowchart of security mechanism

B. Scheme demonstration and feasibility analysis

The proposed scheme in this paper comes with some
irreplaceable advantages, including the ability to reduce
complexity by leveraging container abstractions which
indicates that we can abstract the access to resources (such as
storage) and make the application portable thus speeding up
the refactoring of the applications by removing dependencies
on the underlying infrastructure services. In the past, most of
researches focusing on cloud robotics architecture, security
and governance services have been platform specific, not
application specific. It is obvious that the traditional on-
premises applications have almost no security and
governance functions. Therefore, the new proposed
architecture can provide better portability and less
complexity by placing security and governance services
outside of the application domain. Moreover, in the proposed
architecture, the applications can be distributed and
optimized according to their utilization of the platform.
When the proposed architecture is adopted, we can easily
place an I/O-intensive portion of the application on the cloud
thus providing better performance than non-cloud based
approaches, placing a computationally-intensive portion of
the application on a public cloud that can provide the proper
scaling and load balancing. Additionally, an important
prerequisite for the proposed framework is that all of these
elements work together to form the application and the
applications should be divided into components that can be
optimized. It means that the application should be broken
down to its functional primitives and built it up as
component pieces to minimize the amount of code that needs
to be revised.

From an operational point-of-view, the nature of the
operations in the proposed CR system based on microservice
is cloud operations [36], or the operation of the application
containers in the cloud. Before the applications are generated,
developers should take advantage of the microservice
architecture and container technology. They should manage
the applications as distributed components that can be

separately scaled. For example, the container that manages
the user interface can be easily replicated in servers when the
demand increases within a certain time period. This indicates
that the operation is a very convenient way to achieve the
scalability automatically around the application thus
expanding the use of cloud resources as needs change.
Although the proposed method forces the application
developers to think about how to best redesign the
applications to make them containerized and service-oriented,
it is more productive, flexible and cost effective. Compared
with the complexity of the cloud operations, the advantages
of the follow-up use also verify the feasibility and necessity
of the proposed architecture.

Additionally, two important considerations regarding the
proposed system are programmability and ease of use.
Programmability can be regarded as a set of tools and best
practices to add, deploy and manage applications’
microservices. Although the learning process is necessary,
compared with other traditional CR systems the proposed
system required lower learning threshold and less learning
cost. According to our research, if you have a general
familiarity with new applications and docker technology,
you can develop and deploy the applications in the proposed
system. Ease of use is also a fundamental consideration
factor for developers and users. For the proposed system,
microservice allows to develop and maintain the applications
in different programming languages, which is unimaginable
for traditional CR systems. Moreover, microservice can
make the deployed applications clearer and more convenient
for users. These advantages make the proposed system
architecture more competitive than other CR systems.

IV. EXPERIMENT AND ANALYSIS

We use Kubernetes (commonly referred to as “K8s”) [37]
to build a service cluster environment and adopt the Docker
engine to implement service encapsulation. In addition, the
cloud platform uses our own private cloud which is built by
OpenStack [38].

A. Experimental system deployment

To complete the deployment of the cloud management

development environment, we create four nodes: one master

node, two slave nodes and one docker private node. The

private node provides mirroring services for a cluster

environment as a private warehouse server of Docker. The

details of all nodes are shown in Table.1. Then, we need to

install the Flannel service and configure the environment of

Kubernetes. We also change the configuration file of

Docker to install some components for the master node such

as the API server, Scheduler and Controller Management,

and install other components for slave nodes such as

Kubelet and Kubernetes Proxy. Obviously, to ensure the

components work, we should create the Service

configuration file to manage and control the system [39].

In addition, we choose the new ORB-SLAM2 [40] as an

application of FaaS (Function as a service) in a cloud

management platform. The ORB-SLAM2 can work in real

time on the standard CPUs (Central processing units) in a

wide variety of environments from small hand-held indoors

https://en.wikipedia.org/wiki/Numeronym

scene to drones flying in industrial environments and cars

driving around a city for monocular, stereo and RGB-D

cameras. Due to the complicated structure and intensity of

technologies, SLAM is very difficult to modify or develop

for most of scholars and researchers. Therefore, we split the

ORB-SLAM2 process into three microservices: the tracking

service, the local mapping service and the loop closing

service, as is depicted in Fig.12. These microservices are

built in a shared database. Then we define three related

Dockerfiles and use the command “$ sudo docker build ~”

to construct Docker images. Finally, we publish the docker

images on a docker private mirror server. Besides, it should

be noted that the docker mirror name must be prefixed with

an IP number of the Docker private server, such as

“19216859131”.
When the experimental system environment has been

deployed, we need to create a configuration file by YAML to
build resources and start services. Therefore, we should
create three Replication Controller (RC) files and the related
Kubernetes Service files. The RC file and Service file in the
pose map are shown below.

Then, we can start the service using the command

“$ kubectl ~” on the master node. Moreover, it should be

noted that every microservice is assigned a cluster-IP

address, which is an access entry address defined by

Kubernetes. Using the IP address, we can access the cluster

instances consisted of Pod copies.

Table.1 The details of all nodes

Nodes Node IP
Operation

System
Configuration

Master Node 192.168.59.128 CentOS 7
Memory: 2G;

Storage: 10G

Slave Node 1 192.168.59.129 CentOS 7
Memory: 16G;
Storage: 20G

Slave Node 2 192.168.59.130 CentOS 7
Memory: 16G;

Storage: 20G

Docker private

server
192.168.59.132 Ubuntu 14

Memory: 2G;

Storage: 40G

Fig.12 The ORB-SLAM2 is divided into three nodes (microservice): tracking, local maping and loop closing. Each microservice can be assigned a independent IP

address and deployed in a separate container. The case builds the communication between nodes by ROS.

1) RC file:

2) Service file:

B. Simulation using the standard dataset

To verify the proposed system, we use the standard
dataset “freiburg2-desk” [41] from TUM for simulation
testing. The tested dataset information is described in Table 2.
The point cloud map and octomap built by the microservice-
based ORB-SLAM2 are depicted in Fig.13. The comparison
of estimated trajectory and ground truth is depicted in Fig.14.
From Fig.13, we can find that the microservice-based ORB
SLAM2 (M-ORB-SLAM2) system runs well and the point
cloud map and octomap are all sufficiently clear for the
robot’s navigation and relocation. Fig.14 shows that the error
of the M-ORB-SLAM2 is relatively small and meets the
necessary level of accuracy.

Then we use the Root Mean Square Error (RMSE) of the
Absolute Trajectory Error (ATE) and running time to
accurately evaluate the system performance. Suppose the

estimated robot pose is  1= , , nX X X
  

, and the real

moving trail is  1, , nX X X= . Then the RMSE of the

ATE can be calculated as follows:

2

1

1
(,) () ()

n

RMSE i i

i

ATE X X trans X trans X
n

 

=

 
= −

  
 (1)

where trans is the translation vector.
To strengthen the argument, we compared the system

with the LSD-SLAM, RGBD-SLAM, ORB-SLAM2. Every

method is run 10 times and the average results are used as an
evaluation index for comparison and shown in Table 3. From
Table 3, we can see that the differences of the ATE and
RMSE between ORB-SLAM2 and the proposed method are
all less than 0.001m. The difference of running time is less
than 2s. The results indicate that the M-ORB-SLAM2 has
similar performance to the ORB-SLAM2. Additionally,
compared with the ORB-SLAM2, the M-ORB-SLAM2
system tends to be more loosely coupled, heterogeneous and
physically dispersed and each component can be easy to be
modified or developed by researchers and technicians. It
indicates that the proposed method will encourage more
people to participate in improving a particular component of
SLAM without knowledge of other components. Moreover,
this also indicates that the M-ORB-SLAM2 is extensible and
can be reused by other teams, ultimately promoting
standardization. Based on the above, the M-ORB-SLAM2
can perform better than LSD-SLAM and RGBD-SLAM.

Table.2 The tested dataset basic information

Samples of frames Basic information

 Distance:18.880m

Time: 99.36s

Mean angular velocity: 6.338deg/s

Mean linear velocity: 0.193deg/s

Number of frames: 2893

Trajectory size:

3.90m×4.13m×0.57m

Table.3 Comparison of SLAM system performance

LSD-

SLAM
RGBD-
SLAM

ORB-
SLAM2

M-ORB-
SLAM2

Average error /m 0.038 0.090 0.010 0.009

RMSE /m 0.045 0.095 0.011 0.012

Running time /s >500 >500 271.5 269.7

Fig.13 The simulation results of “freiburg2-desk” based on the proposed method: (a) dense point cloud map; (b) octomap map

(a) (b)

Fig.14 Comparison of estimated trajectory and ground truth: (a) 3D visual angle; (b) 2D projection angle

C. Experiment in a real-world scenario

To further verify the proposed M-CR system, we design
a SLAM experiment in a real scenario. We use the above M-
ORB-SLAM2 as the mapping method in this experiment.
The tested scene is an indoor study room of our college. To
simulate the environment of the CALP, we created a simple
smart space with some Ultra-Wideband (UWB) modules.
These UWB modules can assist 3D map building and
localization in the work space. The main experimental
hardware equipment is a TurtleBot with mounted Kinect1.0
and the embedded board NXP.I.MX6Q. The experimental
indoor floor plan is depicted in Fig.15. Detailed information
of all required hardware equipment is described in Table 4.

In conclusion, the complete flow chart of the experiment
is described in Fig.16. It is important to note that the
embedded processor in this experiment is low cost and
unable to complete the whole visual SLAM process alone. In
addition, the communication mechanism between cloud and
robot adopts Socket. The communication method between
physical robot and cloud mainly uses the wireless WIFI.
From Fig.16, we can also see that the cloud management
platform is the key part for the proposed Microservice-CR
system. To investigate the accuracy of the mapping and
location service in smart space, we imitated the smart home
and designed a model of a simple realistic home scenario in

our laboratory. The labels “A” to “E” represent desks with
sensors. The labels “G” to “I” represent chairs with sensors.
The label “F” represents the door with a sensor. In this
experiment, the robot needs to fulfil two tasks: build a 3D
map of the tested space and locate these desks, chairs and the
door.

Table.4 Required hardware equipment

Equipment Detailed configuration No.

Private Cloud

Servers

Intel Xeon E5-2620v4 CPU×2, 2.4GHz, 64G

DDR4ECC memory, 2T storage, GTX1080,

4xPCIE3.0x16

4

Robot TurtleBot platform 1

Embedded

processor

NXP(Freescale) I.MX6Q Cortex A9 CPU,

4cores@1.2GHz, 2G RAM, 16G eMMC Flash
1

Visual sensor Kinect1.0 from Microsoft 1

PC
Intel Core i5, 8GB DDR4 memory, 256GB

SSD storage, NVIDIA 940MX monitor,
1

Other sensors UWB modules 9-10

Task 1:3D visual SLAM task

Though the proposed architecture is very lightweight and
easily expandable, it can also easily obtain huge computing
resource and tackle all kinds of computation tasks due to
cloud platform. The 3D mapping result is described in Fig.17.

mailto:4cores@1.2GHZ,

Since 3D visual mapping is a typical computationally
intensive task, we use the running time as a performance
index to evaluate the system. To make the experiments more
convincing and appealing, we use “Running locally by
laptop” and the monomer CR system as comparative
schemes. For all schemes, the key frames processed by
embedded-level robots will be sent to receivers (laptop or
cloud servers) using wireless transmission technology such
as WIFI. It should be noted that the laptop used for the first
comparative scheme has the following general hardware
configurations: Core i5@2.5GHz, 4G memory and 1T
Storage. Moreover, the monomer CR system is a non-
microservice CR system based on Robot Operating System
(ROS) [42], which implies that SLAM in a cloud platform is
a whole package and the robot is just regarded as a simple
image acquiring unit. The communication protocol of the
monomer CR system based on ROS is Rosbridge. The
detailed development or deployment information of the three
schemes is described in Table 5. The comparison of the run-
times of the whole 3D visual SLAM is depicted in Fig.18.

Fig.15 The diagram of the tested smart space

From Table 5, we can see that the proposed system has

almost the similar deployment time with scheme 2.

However, the proposed system has better scalability and

computing capability than others. Besides, compared with

other schemes the proposed system can offer more diverse

and friendlier development languages support such as Java,

Python, C# and Ruby. Undoubtedly, the advantage reduces

the development threshold and allows more people to

participate in the improvement of robot applications and

services. Moreover, Table 5 indicates that the proposed

system can offer easier code maintenance, which can reduce

the cost of operation and maintenance. The low hardware

cost of the proposed system allows more “Shortage of

Funds” researchers to do some “expensive” robot research

work. Since deployed applications need to be split into

“microservices”, they have lower coupling degree and more

flexible deployment. Moreover, the proposed system

architecture can build and improve the SLAM process more

flexibly than other existing architectures. For example, we

can easily replace the closed-loop module with deep

convolutional neural network to improve the mapping

accuracy. Additionally, we expediently check and modify

every microservice to remain in an optimal state. In Table 5,

we make a detailed correlation among these schemes with

respect to various aspects such as the deployment time and

language, coupling, scalability and cost. Table 5 shows that

the proposed system has relatively more superiority than

other schemes. Though the deployment of the proposed

system takes longer, it will be acceptable and worthwhile

for sustainable development and research.

From Fig.17 we see that the 3D mapping based on a

cheap embedded board processor is successful and the

reconstructed indoor scene of the laboratory is very clear.

The result entirely meets the requirements of robot location

and navigation in a real scenario. Fig.18 shows that the

difference in the average run time of each key frame among

three schemes is less than 8ms. From Fig.18, we see that the

proposed architecture has almost the same run time as the

other two methods. It also indicates that splitting into

microservices do not reduce the execution speed of SLAM

process. This is because the communication mechanism

among the microservices is like the memory reading and

writing process, and these communication time can often be

ignored. The results indicate that the proposed architecture

is effective and the deployment of the microservice

application is successful. Though it is not perfect as a

prototype system, there is no doubt that the proposed

architecture presents a better solution on cloud robotics than

the past research work.

Table 5 Comparison of three schemes in detail

No.
Deployment

time(/h)

Development

language

Coupling

degree
Scalability

Computing

capability

Code

maintenance

difficulty

Communication

protocol

(Robot-cloud)

Hardware cost

(robot controller)

Scheme 1 >6 C++ High Bad + Hard None Like a laptop ($800)

Scheme 2 >12 C++ Medium Normal + + + Medium Rosbridge Embedded device (<$50)

Scheme 3 >12 No limit Very Low Very good + + + Easy Socket Embedded device (<$50)

Note: Scheme 1: Running locally using a laptop level controller; Scheme 2: The monomer CR system based on ROS; Scheme 3: The proposed Microservice-

based CR system

Cloud management
platform based on

microservice

Terminal display

Embedded
system

Real scene

Kinect1.0

Socket

Private cloud servers

TurtleBot

3D map and location

A B

TurtleBot
C

D

F

G

E

I

H

Desk(A-E) Door(F) Chair(G-I)

UWB module

The floor plan of our workspace

Kubernetes Master

Etcd API Server Scheduler

Controller Manager

Kubernetes Node1

Proxy

Kubelet Docker

Kubernetes Node2

Proxy

KubeletDocker

Local mapping
service

Tracking

service

Loop closing

service

Fig.16 An overview of the entire experimental setup.

Real-time pose

Fig.17 The 3D map of our workspace

Fig.18 Comparison of running time using different frameworks

Task 2: Location task

When the 3D map has been built, a robot can determine
the position of the labels by self-localization and UWB
signal. Therefore, we regard the location as a microservice
and package the third-party application using Docker to
verify the scalability of the proposed architecture. Since
different microservices share the same database, the
communications consumption in the cloud platform can be
ignored. However, it should be noted that the positioning
effect depends on map accuracy and the robot’s self-
localization accuracy. Thus, in this paper we run the location
experiment 10 times and use the average as the final result.
The location experiment’s result is depicted in Table 6; the
location precision is 0.1m. In Table 6, the location results
show that the robot can judge the location of the desks and

chairs effectively. From the experiment, we find that the
third-party application can be developed independently and
is easier to deploy for the proposed architecture than a
traditional monomer architecture.

Table 6 The location experiment’s results

 Label

Desk A B C D E

Accuracy 0.9 0.8 1.0 0.8 0.9

Chair G H I

Accuracy 1.0 0.9 0.9

Door F

Accuracy 1.0

V. CONCLUSION AND FUTURE WORK

We have presented a new cloud robotics prototype
system architecture based on microservice for use in an
intelligent environment. We demonstrate the proposed
system performance using both a simulation test and a real
experiment and this highlights that both run-time and
flexibility of the proposed approach are comparable with
existing architectures. Additionally, third-party applications
can be developed independently and are easy to deploy for
the proposed architecture than a traditional monomer
architecture. There is no doubt that the CR system based on
microservice is a very important and prospective research for
the development of intelligent robots. The microservice-
based ORB-SLAM2 also presents a meaningful exploration
for standardizing the visual SLAM process.

Future development of the research direction will enable
proposed system architecture to show its superiority and
bring more convenience and benefits. The proposed
architecture is currently just a prototype system; we will
continue with in-depth study to improve it further. In the
future, we hope that the Microservice-CR system can play an
important role in the field of home service robots, especially
for the disable and the elderly.

ACKNOWLEDGMENT

We would like to thank Professor Sonya Coleman and
other members from Intelligent System Research Centre
(ISRC) of Ulster University for helping us to improve this
work. Additionally, the authors would like to thank
experienced anonymous reviewers for their constructive and
valuable suggestions for improving the overall quality of
this paper.

REFERENCES

[1] Kuffner J J. Cloud-enabled robots[C]//IEEE-RAS international

conference on humanoid robotics, Nashville, TN. 2010.

[2] Kehoe B, Patil S, Abbeel P, et al. A survey of research on cloud

robotics and automation [J]. IEEE Transactions on Automation

Science and Engineering, 2015, 12(2): 398-409.

[3] Villamizar M, Garcés O, Castro H, et al. Evaluating the monolithic

and the microservice architecture pattern to deploy web applications

in the cloud[C]// 10th Computing Colombian Conference (10CCC),

IEEE, 2015: 583-590.

[4] Lorido-Botran T, Miguel-Alonso J, Lozano J A. A Review of Auto-

scaling Techniques for Elastic Applications in Cloud Environments[J].
Journal of Grid Computing, 2014, 12(4): 559-592.

[5] Hu G, Tay W P, Wen Y. Cloud robotics: architecture, challenges and

applications [J]. IEEE network, 2012, 26(3): 21-27.

[6] Kamei K, Nishio S, Hagita N, et al. Cloud networked robotics[J].

IEEE Network, 2012, 26(3): 28-34.

[7] Mell P, Grance T. The NIST definition of cloud computing [J].

Communication of the Acm, 2011, 53 (6): 50-50.

[8] Ciurana E. Developing with google app engine[M]. Apress, 2009.

[9] Amazon Elastic Compute Cloud (EC2). http://www.amazon.com/ec2/.

[10] Microsoft Azure. http://www.microsoft.com/windowsazure/

[11] Chu X, Nadiminti K, Jin C, et al. Aneka: Next-generation enterprise

grid platform for e-science and e-business applications[C]// IEEE
International Conference on e-Science and Grid Computing, 2007:

151-159.

[12] Sun network.com (Sun Grid). http://www.network.com.

[13] Inaba M. Remote-Brained Robots [C]// Multisensor Fusion and

Integration for Intelligent Systems, 1994. IEEE International
Conference on MFI '94, IEEE, 1997: 747-754.

[14] IEEE networked robots technical committee. [Online]. Available:

http://www-users.cs.umn.edu/∼isler/tc/

[15] Kamei K, Nishio S, Hagita N, et al. Cloud networked robotics[J].

IEEE Network, 2012, 26(3): 28-34.

[16] Arumugam R, Enti V R, Bingbing L, et al. DAvinCi: A cloud

computing framework for service robots[C] // 2010 IEEE

International Conference on Robotics and Automation (ICRA), IEEE,
2010: 3084-3089.

[17] Tenorth M, Kamei K, Satake S, et al. Building knowledge-enabled

cloud robotics applications using the ubiquitous network robot

platform[C]// IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), IEEE, 2013: 5716-5721.

[18] Mester G. Cloud Robotics Model [J]. Interdisciplinary Description of

Complex Systems, 2015, 13(1): 1-8.

[19] Du Z, He L, Chen Y, et al. Robot Cloud: Bridging the power of

robotics and cloud computing [J]. Future Generation Computer

Systems, 2016, 21(4): 301-312.

[20] Tian N, Matthew M, Mahler J, et al. A cloud robot system using the

dexterity network and berkeley robotics and automation as a service
(Brass)[C]// IEEE International Conference on Robotics and

Automation (ICRA), IEEE, 2017: 1615-1622.

[21] Hunziker D, Gajamohan M, Waibel M, et al. Rapyuta: The roboearth

cloud engine[C]// IEEE International Conference on Robotics and

Automation (ICRA), IEEE, 2013: 438-444.

[22] Tenorth M, Beetz M. KnowRob: A knowledge processing

infrastructure for cognition-enabled robots [J]. The International

Journal of Robotics Research, 2013, 32(5): 566-590.

[23] Saxena A, Jain A, Sener O, et al. RoboBrain: Large-Scale Knowledge

Engine for Robots[J]. Computer Science, 2014.

[24] Waibel M, Beetz M, Civera J, et al. Roboearth [J]. IEEE Robotics &

Automation Magazine, 2011, 18(2): 69-82.

[25] Balalaie A, Heydarnoori A, Jamshidi P. Microservices architecture

enables DevOps: migration to a cloud-native architecture[J]. IEEE

Software, 2016, 33(3): 42-52.

[26] Pop D P, Altar A. Designing an MVC model for rapid web

application development[J]. Procedia Engineering, 2014, 69(1): 1172-
1179.

[27] Esposito C, Castiglione A, Choo K K R. Challenges in Delivering

Software in the Cloud as Microservices [J]. IEEE Cloud Computing,

2016, 3(5): 10-14.

[28] Sill A. The Design and Architecture of Microservices [J]. IEEE Cloud

Computing, 2016, 3(5): 76-80.

[29] Stubbs J, Moreira W, Dooley R. Distributed systems of microservices

using docker and serfnode [C]// 2015 7th International Workshop on

Science Gateways (IWSG), IEEE, 2015: 34-39.

[30] Bernstein D. Containers and cloud: From lxc to docker to kubernetes

[J]. IEEE Cloud Computing, 2014, 1(3): 81-84.

[31] Lee J H, Morioka K, Ando N, et al. Cooperation of distributed

intelligent sensors in intelligent environment [J]. IEEE/ASME

Transactions on Mechatronics, 2004, 9(3): 535-543.

[32] Richardson L, Amundsen M, Amundsen M, et al. RESTful Web APIs

[M]. O'Reilly Media, 2013.

http://www.amazon.com/ec2/

[33] Zaidi R. JavaScript Object Notation (JSON)[M]// JavaScript

Essentials for SAP ABAP Developers. Apress, 2017.

[34] Dumusque X, Boisse I, Santos N C. SOAP 2.0: A tool to estimate the

photometric and radial velocity variations induced by stellar spots and

plages [J]. The Astrophysical Journal, 2014, 796(2): 132.

[35] Zheng Z, Zhang Y, Lyu M R. Investigating QoS of real-world web

services [J]. IEEE Transactions on Services Computing, 2014, 7(1):

32-39.

[36] Linthicum D S. Practical Use of Microservices in Moving Workloads

to the Cloud[J]. IEEE Cloud Computing, 2016, 3(5): 6-9.

[37] Brewer E A. Kubernetes and the path to cloud native[C]// ACM

Symposium on Cloud Computing, ACM, 2015:167-167.

[38] Rosado T, Bernardino J. An overview of openstack

architecture[C]//Proceedings of the 18th International Database

Engineering & Applications Symposium. ACM, 2014: 366-367.

[39] Sefraoui O, Aissaoui M, Eleuldj M. OpenStack: Toward an Open-

source Solution for Cloud Computing[J]. International Journal of
Computer Applications, 2012, 55(3):38-42.

[40] Mur-Artal R, Tardos J D. ORB-SLAM2: An Open-Source SLAM

System for Monocular, Stereo, and RGB-D Cameras[J]. IEEE

Transactions on Robotics, 2016, 33(5):1255-1262.

[41] Freiburg2_desk dataset. https://vision.in.tum.de/data/datasets/rgbd-

dataset/download

[42] Quigley M, Conley K, Gerkey B, et al. ROS: an open-source Robot

Operating System[C]//ICRA workshop on open source software.

2009, 3(3.2): 5.

