8 research outputs found

    INERTIAL MEASUREMENT UNIT IN BIOMECHANICS AND SPORT BIOMECHANICS: PAST, PRESENT, FUTURE

    Get PDF
    The current technologies and methodologies used for physical activity monitoring and ambulatory motion analysis are based on the Inertial Measurement Unit (IMU). Perspectives and issues met with when performing physical activity monitoring and ambulatory motion analyses with this type of device are presented here

    Generalized Activity Assessment computed fully distributed within a Wireless Body Area Network

    Get PDF
    Currently available wearables are usually based on a single sensor node with integrated capabilities for classifying different activities. The next generation of cooperative wearables could be able to identify not only activities, but also to evaluate them qualitatively using the data of several sensor nodes attached to the body, to provide detailed feedback for the improvement of the execution. Especially within the application domains of sports and health-care, such immediate feedback to the execution of body movements is crucial for (re-)learning and improving motor skills. To enable such systems for a broad range of activities, generalized approaches for human motion assessment within sensor networks are required. In this paper, we present a generalized trainable activity assessment chain (AAC) for the online assessment of periodic human activity within a wireless body area network. AAC evaluates the execution of separate movements of a prior trained activity on a fine-grained quality scale. We connect qualitative assessment with human knowledge by projecting the AAC on the hierarchical decomposition of motion performed by the human body as well as establishing the assessment on a kinematic evaluation of biomechanically distinct motion fragments. We evaluate AAC in a real-world setting and show that AAC successfully delimits the movements of correctly performed activity from faulty executions and provides detailed reasons for the activity assessment

    Generalized Activity Assessment computed fully distributed within a Wireless Body Area Network

    Get PDF
    Currently available wearables are usually based on a single sensor node with integrated capabilities for classifying different activities. The next generation of cooperative wearables could be able to identify not only activities, but also to evaluate them qualitatively using the data of several sensor nodes attached to the body, to provide detailed feedback for the improvement of the execution. Especially within the application domains of sports and health-care, such immediate feedback to the execution of body movements is crucial for (re-)learning and improving motor skills. To enable such systems for a broad range of activities, generalized approaches for human motion assessment within sensor networks are required. In this paper, we present a generalized trainable activity assessment chain (AAC) for the online assessment of periodic human activity within a wireless body area network. AAC evaluates the execution of separate movements of a prior trained activity on a fine-grained quality scale. We connect qualitative assessment with human knowledge by projecting the AAC on the hierarchical decomposition of motion performed by the human body as well as establishing the assessment on a kinematic evaluation of biomechanically distinct motion fragments. We evaluate AAC in a real-world setting and show that AAC successfully delimits the movements of correctly performed activity from faulty executions and provides detailed reasons for the activity assessment

    Internet of Things for enabling smart environments: a technology-centric perspective

    Get PDF
    The Internet of Things (IoT) is a computing paradigm whereby everyday life objects are augmented with computational and wireless communication capabilities, typically through the incorporation of resource-constrained devices including sensors and actuators, which enable their connection to the Internet. The IoT is seen as the key ingredient for the development of smart environments. Nevertheless, the current IoT ecosystem offers many alternative communication solutions with diverse performance characteristics. This situation presents a major challenge to identifying the most suitable IoT communication solution(s) for a particular smart environment. In this paper we consider the distinct requirements of key smart environments, namely the smart home, smart health, smart cities and smart factories, and relate them to current IoT communication solutions. Specifically, we describe the core characteristics of these smart environments and then proceed to provide a comprehensive survey of relevant IoT communication technologies and architectures. We conclude with our reflections on the crucial features of IoT solutions in this setting and a discussion of challenges that remain open for research

    Designing smart garments for rehabilitation

    Get PDF

    A personalized exercise trainer for the elderly

    No full text

    A personalized exercise trainer for the elderly

    No full text
    Regular and moderate physical activity practice provides many physiological benefits. It reduces the risk of disease outcomes and is the basis for proper rehabilitation after a severe disease. Aerobic activity and strength exercises are strongly recommended in order to maintain autonomy with ageing. Balanced activity of both types is important, especially to the elderly population. Several methods have been proposed to monitor aerobic activities. However, no appropriate method is available for controlling more complex parameters of strength exercises. Within this context, the present article introduces a personalized, home-based strength exercise trainer designed for the elderly. The system guides a user at home through a personalized exercise program. Using a network of wearable sensors the user's motions are captured. These are evaluated by comparing them to prescribed exercises, taking both exercise load and technique into account. Moreover, the evaluation results are immediately translated into appropriate feedback to the user in order to assist the correct exercise execution. Besides the direct feedback, a major novelty of the system is its generic personalization by means of a supervised teach-in phase, where the program is performed once under supervision of a physical activity specialist. This teach-in phase allows the system to record and learn the correct execution of exercises for the individual user and to provide personalized monitoring. The user-driven design process, the system development and its underlying activity monitoring methodology are described. Moreover, technical evaluation results as well as results concerning the usability of the system for ageing people are presented. The latter has been assessed in a clinical study with thirty participants of 60 years or older, some of them showing usual diseases or functional limitations observed in elderly population.Funding agencies|AAL Joint Programme|AAL-2008-1|</p
    corecore