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Abstract. The Internet of Things (IoT) is a computing paradigm whereby everyday life objects are augmented with computa-

tional and wireless communication capabilities, typically through the incorporation of resource-constrained devices including 

sensors and actuators, which enable their connection to the Internet. The IoT is seen as the key ingredient for the development 

of smart environments. Nevertheless, the current IoT ecosystem offers many alternative communication solutions with diverse 

performance characteristics. This situation presents a major challenge to identifying the most suitable IoT communication solu-
tion(s) for a particular smart environment. In this paper we consider the distinct requirements of key smart environments, 

namely the smart home, smart health, smart cities and smart factories, and relate them to current IoT communication solutions. 

Specifically, we describe the core characteristics of these smart environments and then proceed to provide a comprehensive 

survey of relevant IoT communication technologies and architectures. We conclude with our reflections on the crucial features 

of IoT solutions in this setting and a discussion of challenges that remain open for research. 
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1.  Introduction 

The Internet of Things (IoT) is a computing and 

communicat ions paradigm whereby everyday life 

objects are connected to the Internet. Such connectiv-

ity, supported by the incorporation of resource-

constrained devices including sensors and actuators, 

enables intelligent systems that obtain information 

from the physical world, process such informat ion, 

and may perform act ions on the physical world ac-

cordingly. Benefits of the IoT comprise efficient  re-

source management, enhanced productivity, and in-

creased quality-of-life fo r human populations [39]. 

The IoT is therefore a fundamental enabler of smart 

environments [24], such as smart homes, smart health, 

smart cities and smart factories, among others. In-

deed, the trend towards smart-x p romises a revolu-

tion for most kinds of human-related activities. 

Advances in many technical areas are making the 

IoT and smart environments possible, including mul-

tiple communication solutions for IoT devices , which 

we categorize into two main families: i) Radio Fre-

quency Identification (RFID), intended mainly for 

object and device identification, and ii) general-

purpose Constrained-Node Network (CNN) technol-

ogies and architectures. The numerous and highly 

heterogeneous solutions available provide different 

features and performance trade-offs, a fact that makes 

identifying the most suitable IoT communication 

technologies and solutions for a part icular s mart en-
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vironment challenging. While all s mart  environments 

collect, process and act upon information, d ifferent 

specific smart environments do so at different scales. 

Moreover, different vertical domains (e.g. smart 

home/health/city/factory) come with diverse re-

quirements, and hence technology choices , which 

also influences the tactics of how and where data is 

processed and how to act upon the information with-

in a specific context. Furthermore, different types of 

smart environments evolve at a different pace: Some 

vertical domains can evaluate and adopt new tech-

nologies much faster (e.g. s mart home and smart 

health), while in others (e.g. smart factories and 

smart cit ies) changes cannot be adopted expediently 

due to the fact that such environments must deal with 

legacy systems. This requirement  further complicates 

the choice of communication technologies and solu-

tion availability for particular smart environments.  

In this paper, we identify emerg ing trends in IoT 

communicat ion and compare d ifferent IoT technolo-

gies and solutions. We then collect lessons learnt 

from specific vertical domains to elicit best practices 

that are reusable across families of s mart environ-

ments. In Sect ion 2, we describe the main character-

istics and services of smart home, s mart health, smart 

cities, and s mart factories. In Sect ions 3-5, we survey 

a wide range of IoT co mmunication technologies and 

architectures, including RFID (Section 3), CNN 

technologies (Section 4) and CNN architectures (Sec-

tion 5). In Section 6, we d iscuss crucial features of 

IoT solutions for supporting the highlighted smart 

environments, and we elaborate on the main remain-

ing challenges. Finally, Sect ion 7 concludes with a 

summary of the main insights of this work. 

2.  Smart environments 

This Section provides an overview of the main fea-

tures and services in key  smart  environments, includ-

ing the smart home, s mart health, s mart cities and 

smart factories. These four vertical domains are cho-

sen because of their d istinct characteristics in size 

and complexity, such as personal- vs business- ori-

ented, single-user vs many users, different "smart-

ness" objectives, etc. Although clearly other types of 

smart environments exist, we focus on the aforemen-

tioned four domains as representative use cases. 

2.1. Smart home  

Homes are environments particularly suitable to 

host smart technologies for three main reasons: (i) 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Main components in smart home systems. 

 

 

modern homes already contain a large number of 

technological devices, even if not always  intercon-

nected or interoperable; (ii) they are controlled envi-

ronments and their owners can (at least in  principle) 

provide the suitable investments for the deployment 

of technological solutions and provide to their 

maintenance, and (iii) they can provide to the inhab-

itants a large number of useful services and applica-

tions. 

Services of smart homes vary widely. We broadly 

classify them as assistive services and management 

services (Fig. 1). Assistive services in smart  homes 

aim at provid ing direct support to the users in their 

interests [77] and in their daily  actions and activities 

that take place in the home  [15]. For example, if 

watching television or listening to music are particu-

lar user interests, the smart home can assist by 

scheduling sources of noise caused by machine au-

tomation (such as the activation of the washing ma-

chine) at different hours, or by setting appropriately 

the lights and the mult imedia devices configuration, 

according to the users’ preferences. Assistive ser-

vices may also be tailored to some special needs  of 

the user, especially when the user is an elder or a 

disabled or just sick, like ambient assisted living [68] 

or e-health [18] services.   

Further, management services are those that ad-

dress specific functionalit ies of the s mart home. Ex-

amples of such services can be those concerning the 

security and safety of inhabitants (for example the 

anti-intrusion alarms or the detection of gas leaks) 

[35] or those concerning energy efficiency of the 

home [65], such as those that control ventilation and 

solar panels for the energy production and those that 

control the appliances and lights to reduce energy 

consumption while satisfying the inhabitants’ needs.  

Although individually different, s mart home ser-

vices are usually developed at the application level of 



context-aware systems, which, in turn, are built on 

top of common mechanisms and functions . In  fact, at 

the foundation of such systems are home automation 

mechanis ms, which provide the ability to  moni-

tor/control the build ing blocks of a home like win-

dows, doors, electrical system, air conditioning sys-

tem, energy production subsystem, alarm, appliances 

and so forth.  

Furthermore, most advanced services also need in-

formation about the inhabitants that can be obtained 

by a combination of environmental and wearable 

sensors, possibly those embedded in the users’ per-

sonal devices such as smartphones for example. Such 

additional sensors are necessary to obtain a detailed 

context about the users that is crucial to make the 

smart home an intelligent environment at the service 

of the user. Examples of such informat ion are the 

user position (by means of a localization  system), the 

user physical condition (by means of wearable sen-

sors) or the user activities (by means of combined 

wearable and environmental sensors).  

However, this information, which is often high-

level, cannot be obtained by a direct observation of 

raw data coming from sensors . Instead, it must be 

processed by suitable data fusion algorithms, usually 

based on signal processing, machine learning and/or 

data analysis algorithms.  

From the perspective of the informat ion and com-

municat ion technology (ICT), support for the full 

range of these mechanis ms and services  requires the 

development of a complete and complex IoT in fra-

structure. Such infrastructure must span the full range 

from the sensor/state data acquisition, storage and 

fusion to the data presentation and control of the ac-

tuation mechanisms present in the home , and should 

also include the appropriate support for deployment, 

commissioning and maintenance. 

Employing contemporary standards and technolo-

gies, basic functionalit ies for sensing, state acquisi-

tion and control can already be achieved with relat ive 

ease.  In particular, at the level of home automat ion, 

several standards [38] already provide adequate sup-

port, which  include accessing state or sensor infor-

mat ion and binding this information to the con-

trol/actuation mechanis ms. Similarly, both ZigBee 

[32] and Bluetooth [30] support the integration of 

wearable devices and, at an upper layer, M2M stand-

ards [3] including but not limited to MQTT and 

CoAP, provide the mechanis ms necessary to inte-

grate the smart home in  cloud services over the Inter-

net. On the other hand, the development of services 

and applications in smart homes reflecting use cases 

and business plans of rich applicat ion scenarios is 

usually supported by specialized platforms for exa m-

ple, see subsection 2.2.3 for AAL [28]. 

Another aspect of IoT that has been confined so 

far to research, concerns the adaptation and personal-

ization of services offered by smart homes. Adapta-

tion and personalization consider the ability of a 

smart home to automatically tailor its services to the 

individual user’s needs. This is often achieved by 

building on generic services designed for a specific 

group of users such as children or the elderly, and 

then by adapting the behavior of the service to the 

habits of the user. This implies the ability to detect 

habits as well as to  discover deviations from these 

habits while  at the same time, to automatically recon-

figure the business logic of the service or applicat ion. 

Such mechanis ms usually require a strong conver-

gence among sensors and activity recognition, anom-

aly detection and cognitive capabilit ies, especially in 

those cases in which at  least part of these capabilities 

are integrated within the sensors themselves. Signifi-

cant preliminary  experiences  with this approach 

which is often referred to as the Internet of Intelligent 

Things [4], has been obtained by EU projects RUBI-

CON [56] and OPPORTUNITY [6]. 

2.2. Smart health  

Over the last twenty years, due to significant re-

ductions to the cost of sensors and improvements in 

both signal processing techniques and integra-

tion/quality of signal, applications of smart environ-

ments and Internet of Things to health have expanded 

rapidly. Th is Section relates some of the work in this 

domain  with an overview description of enabling 

technologies. 

2.2.1. General description of solutions 

Enabling technologies and their application to 

healthcare are presented under the common scheme 

described in Fig. 2. A  set of sensors, integrated to the 

environment of the person and/or worn  by him/her 

will acquire some data continuously or periodically 

and process them, to be able to firstly give some in-

formation or some feedback to the person and sec-

ondly inform the medical staff, the fa mily  or some 

other authorized persons of the status. These devices 

can be used for medical monitoring in specific con-

texts for instance after surgery, or to enable the per-

son to live longer, in better health and independently 

for instance in applications for the elderly o r for peo-

ple with disabilities [45].   



 
Fig. 2. General description of IoT or smart environments for health. 

2.2.2. Distress situation detection 

Continuous monitoring of a person using physio-

logical data or even using contextual/activity data, 

can provide information on the physical condition of 

the person and the ability to raise alerts in  case of 

distress or other hazardous situations.  

One key example due to its importance in devel-

oped countries, is detecting fall for elderly people 

liv ing independent. In France for instance it is one of 

the most frequent causes of emergency calls and of 

medical intervention for the elderly at  home. Solu-

tions must be found to analyze it, detect it better and 

know which  kind of persons have to be sent (medical 

or normal citizen) to help the person. Fall is a highly 

studied subject in the last years and one of the main 

uses of IoT and smart environments for health-related 

applications [53,67].  

One of the most common ways to detect fall is us-

ing inertial sensors that are worn  by the person. With 

the wider availability and the power offered by 

smartphones in recent years, it has become possible 

to use their Inertial Motion Unit to detect falls. For 

example, [52]
 
that fuses the different sensors of the 

smartphone (IMU, GPS, etc.) to try  to understand the 

context of the alert raised by the mot ion sensors-

based algorithm and reduce false positives. Another 

way to achieve this is to add external sensors to the 

IMU, such as PIR sensors in the home, and fuse them 

with the IMU to check the activity of the person in 

the next  minutes after the detection of the event [36]. 

In the last years, video cameras [73] have been more 

and more used in this context. Depth cameras can 

give more info rmation and analyze more easily the 

moving vs. background objects [27]. They can be 

used to analyze the scene, detect the activities and 

this abnormal scenario of fall. Concerning 2D camer-

as, [26]
 
gives the state-of-the-art of the subject and 

tries to analyze the pertinence of the different results 

and the real advances that have been made versus 

what remains to overcome. Finally, other kinds of 

solutions exist and for instance [60]
 
presents a solu-

tion that is based on radar sensors that are integrated 

to the home. Fall remains a very  difficult (consider-

ing all the kinds of falls that exist) and challenging.  

Another kind of situation that could be detected is 

heart conditions and for instance atrial fibrillation 

[59]. It can be detected using the camera of a 

smartphone or even now with a s martwatch. This 

detection concerns one of the most common heart 

problems in the world and is a subject of research 

nowadays by means of using phones and watches. 

Situations such as relapse in depression can also be 

detected and analyzed [5]. Such system can permit  to 

act as soon as possible to prevent the state of the per-

son to escalate.  

2.2.3. Ambient Assisted Living 

As presented in the previous Section, smart homes 

are a huge challenge in the last years and have been a 

hot topic of research. Indeed, data from ambient as-

sisted living can also be used to infer the behavior of 

the person and detect changes in it to find signs of a 

degradation of the health of the person as soon as 

possible. There are mult iple  challenges in  this case 

including the correct segmentation of data in uncon-

trolled trials [86], an important mult imodality using 

very different kind of data [90], how to adapt the 

models to the person that we have to monitor [21], 

the problem to infer behavior or high-level data from 

the activities that are recognized [21] o r the efficien-

cy and capacities of different kind of recognitions 

[19]. This activity recognition is then crucial in ap-

plications related to health in smart homes as it  will 

be the basis to infer the well-being of the person and 

to link the results to well-known and use scales in 

geriatrics such as ADLs. The challenges are very 

difficult as the first problem is that it is very difficu lt 

to separate the activities that are performed, and sec-

ondly the realization of the activities not only de-

pends on the person that does it but also on the envi-

ronment in which it is done. That leads to very com-

plex models to construct and to evaluate. 

From these detections and recognition, applica-

tions are then two-fold. The first kind is to evaluate 

the status of the person that is monitored  in  the home 

for a certain kind of problem, such as cognitive im-



pairment [2]. This evaluation allows to show the evo-

lution of the problem of the person to determine 

when he/she is not any more able to live inde-

pendently. The second kind of application is to help 

people performing these activities taking into account 

the specificity of their d isease/impairment [46]. It can 

improve their conditions of living at  home and their 

experiences. 

2.2.4. Prevention/assistance to healthcare 

The final goal of all the solutions of smart sensors 

and environments for health is to help prevent or as-

sist the person that has to face a specific condition. 

Dependence is one of the huge cost in our healthcare 

systems and if it can be improved, it would reduce 

this part. A lot of work focuses on that considering 

different kinds of assistance. For people with a d isa-

bility for instance, [44] proposes a system that will 

combine a web-app to allow the caregiver to give 

instruction to the environment and a s martphone to 

help the person in daily living. Such development has 

required expert ise to design it as efficiently as poss i-

ble so that it can be useful to the person. It generally 

includes co-conception with users.  

One of the major concerns in health is monitoring 

and/or improving the condition of persons with 

chronic diseases or recurrent disorders. For instance, 

some smart devices and applications can help manag-

ing chronic diseases such as diabetes  [47]. The goal 

of such applications, that relies generally on  meas-

urement devices and/or on smartphones and other 

connected devices is to help the person to manage the 

effect of the disease and control it or control the ob-

servance of medication. Solutions can also be inte-

grated in objects daily used such as the bed [92]. In 

this application, the goal is to analyze the sleep con-

ditions in order to detect and/or quantify changes in it 

and thus detect disorders. To this end, sensors and 

strain gauge are integrated to the bed. The long-term 

evolution of the uses of the person is important and 

relevant to the improvement or degradation of living 

conditions of the person. Other data can be acquired, 

such as heart rate, to be able to monitor in long terms 

the evolution of this data, and possibly in  the future 

to raise alarms such as described before in the dis-

tress situations detection [79].  

To conclude this Section, one of the important ap-

plications is the monitoring of and help offered to 

elderly  people. In  all developed countries, population 

is ageing fast due to improvements in medicine, and 

another fact is that the family is spreading all over 

countries and ageing people generally are lonelier 

than in the past. In addition to the works that monitor 

activities of daily living of the person, monitoring 

some characteristics of the living conditions of the 

person could be important. For instance, in [7] and 

[72], gait  or time of transfers are measured along 

time, and their evolution is characterized. Th is evolu-

tion is another point of evaluating possible entrance 

in dependency. As a prevention, some works  [12,31] 

propose to train the person with some specific exer-

cises (link to posture, transfers or movements) to 

prevent fall or give benefit to the person.  

Finally, in case of dependence, robots can be of 

help for the person to allow measurement and moni-

toring, and more importantly, to create a p resence for 

the person and bring help in case of specific needs 

[70]. 

As seen in this Section, health applications are 

numerous and go from distress situation detection to 

long-term monitoring in s mart environments. Such 

monitoring can be included in larger architectures. In 

the future, we could think that it can be included in 

smart city arch itectures. Smart cit ies are the subject 

of the next Section. 

2.3. Smart city  

Smart  cit ies are one of the richest and most com-

plex scenarios for s mart  environment (if not already 

the most complex) [87,88]. It crosses several do-

mains including the environment, economy, mobility, 

energy, planning, governance among others (see Fig. 

3) presenting a large number of associated challenges 

and involving mult iple actors such as city admin istra-

tors, operators, service providers and citizens, with 

possibly competing objectives. 

It is thus clear that smart cit ies are not just a tech-

nological challenge, but they are the place in which 

the challenges to the technology are the most diverse 

and heterogeneous, and the technological solutions 

must confront themselves against many interests and 

needs. 

 

 
Fig. 3. A subset of the most relevant domains in the smart city. 



From an ICT perspective, its technologies are of-

ten transversal to all domains and challenges, and 

they address a number of scenarios of smart cities 

spanning from e-touris m [89], e-culture [11], e-

government [61], smart energy [63], s mart mobility 

[96], e-health/wellbeing [25], just to mention a few. 

The heterogeneity of technical problems and of 

available technologies [85], united to political issues 

[54], are barriers that may delay the development of 

smart cities.  It is thus no surprise that the interopera-

bility of technological solutions and standards are of 

utmost importance, especially in the field of the In-

ternet of Things, which is widely  recognized as a key 

technological enabler o f s mart cit ies  [95]. Most re-

cent trends, under this respect, are the introduction of 

novel participatory sensing paradigms that involve 

the citizens themselves in the (expensive) task of 

sensing data from the cities, by means mobile appli-

cations for personal smartphones [17]. 

In addition to reducing or indeed avoiding the 

costs due to the deployment and maintenance of ca-

pillary sensory apparatus in the city, such paradigms 

have also the great advantage of empowering users in 

the development of smart cities. However, the rela-

tive youth of these approaches makes them even far-

ther from a standardization, and many different e x-

perimental p latforms have been tested in several 

smart cit ies [16,43,57]. Furthermore, recent ap-

proaches to participatory sensing are also experienc-

ing novel forms of network organizat ion based on 

emerging edge computing [10]. 

2.4. Smart factory and Industry 4.0 

Industry 4.0 is an emerg ing business paradigm that 

is reaping the benefits of enabling technologies driv-

ing intelligent systems and environments  [74]. While 

acquiring, processing and acting upon various kinds 

of relevant context informat ion is common in appli-

cation areas such as smart homes and offices, smart 

automated manufacturing systems can benefit from 

these capabilities as well. For example, s mart manu-

facturing systems can make well-informed  decisions 

to adapt and optimize their production processes at 

runtime or adapt to a customer's personal preferences 

without any delay on the production process. The 

proliferation o f s mart  enabling technologies  has 

sparked a dig ital transformation in  the manufacturing 

world. This paradigm shift is often referred to as the 

4th Generation Industrial Revolution (Industry 4.0) 

[34,58] or the Factory of the Future (FoF) [50].  

 

 
 

Fig. 4. The 4 industrial revolutions leading to the Smart Factory of 
the Future and Cyber-physical Production Systems 

 

It envisions smart factories where the Internet of 

Things (IoT) and Cyber-Physical Systems (CPS)-

enabled manufacturing [66] provide the foundations 

for creating smart products through smart processes 

and procedures. Large factories  connect hundreds - if 

not thousands - of sensors and devices, not only with-

in the p lant, but also with other factories  and the out-

side world. Smart products will plan, control and 

optimize their own production process with minimal 

human intervention by harnessing ongoing develop-

ments in  sensor technology, machine-to-machine 

communicat ion [91], big data analytics [69] and ma-

chine learn ing [71,75]. The purpose of this digital 

transformation is to enhance the transparency of the 

production process across the organizational bounda-

ries of the manufacturing enterprise.   

Enhanced access to data from the Industrial IoT 

(IIoT) [34] will support business applications on any 

device, any time, from any location. In turn, the data-

intensive nature of smart production systems  will 

enable timely, accurate and detailed log trails result-

ing in a real-t ime augmented view on many systems 

and activities in a way that was not previously poss i-

ble. A consequence is that the production floor has 

become an  inherently  complex intelligent environ-

ment, as the digital and physical worlds are heavily 

intertwined.  

Indeed, interconnected systems will be linked to 

cloud services for remote monitoring and data analyt-

ics to optimize production plans, enable proactive 

maintenance, and respond quicker to continuously 

changing customer requirements. The factory of the 

future will leverage data-accessing and data-

processing services available on the internet to sup-

port data-intensive business processes and time-

critical applications, as depicted above in Fig. 5. 



 
 

Fig. 5. Networked production and manufacturing 

 

With networked production as a key feature of In-

dustry 4.0, people, machines and business processes 

will interact with one another to enable personalized 

products through flexib le, resource-efficient and 

cost-effective manufacturing. 
 

3.  Radio Frequency Identification 

 

As it can be concluded from the previous Section, 

IoT communication solutions  constitute a fundamen-

tal enabler of s mart  environments . This Section fo-

cuses on RFID, which is a family  of solutions main ly 

intended to provide device identification.  

A traditional RFID system consists of two ele-

ments namely a reader or interrogator which typically 

controls communication with several tags, low-cost 

devices that can be easily embedded into a variety of 

physical artefacts and assets.  Contrary to other low-

power wireless communicat ion systems, RFID is an 

asymmetric system in  that in most cases the interro-

gator not only controls all communicat ion with the 

tags but also provides the energy source for the tags 

through the emission of its radio  frequency signal 

[80,82]. Th is distinctive architecture enables the de-

velopment of systems where a relatively small nu m-

ber of expensive components are combined with a 

very-large number of low-cost tags to optimize the 

overall cost of the system. For example, a metropoli-

tan transit ticketing system such as the Oyster card in 

London or the Suica card in Tokyo, incorporate 

reade.rs in the thousands with millions of tags em-

bedded in tickets and mobile devices. 

The use of RFID in  the IoT context introduces two 

additional elements that are necessary to enable 

large-scale open infrastructures: (i) universally 

unique identificat ion (UUID) schemes that allow 

each entity connected to the IoT to be unambiguously 

identified through an alphanumeric handle, and (ii) 

networked services that allow the mapping of a han-

dle to entity-related information and supporting me-

ta-data.  

3.1. RFID technologies 

RFID is the umbrella term in  common use which 

covers a variety of distinct technologies using a wide 

range of frequencies, communication protocols, and 

device types. Moreover, RFID technologies have 

been standardized under many different organizations 

including international such as ISO, ITU and IEC as 

well as national such as DIN (Germany), JIS (Japan) 

and SINIAV (Brazil). The confusing landscape of 

RFID is further complicated by the common use of 

commercial brand names such as Mifare and RAIN 

RFID as alternatives to the difficult to use alphanu-

meric standard names.  

To provide some structure and help navigate the 

range of RFID technologies a common approach is to 

refer to different technologies using the names of the 

corresponding frequency band as summarized in Ta-

ble 1. Furthermore, often RFID technologies are 

characterized with reference to their tag chip tech-

nology, which also defines their communication 

characteristics, as summarized in Table 2. 

Despite the great variety of RFID technologies and 

flavors on offer, the vast majority of applications 

developed in the context of the IoT reviewed in Sec-

tion 2 above typically  employ one of the three most 

common types summarized in Table 3 below. This 

table provides summary informat ion that can be used 

to select the particular flavors that meet the require-

ments of a particu lar IoT applicat ion matching spe-

cific characteristics such as the number of co-located 

tags that must be supported (depending on the ability 

of the technology in terms of reading speed and its 

ability to avoid collisions), security provisions, tag 

capacity, range, tag packaging and form as well as 

the ability to easily integrate readers in bespoke sys-

tem designs. 



Table 1. RFID technologies by Frequency Band Table 2. RFID technologies by Chip Type 

 

RFID Name Band Frequencies in Use 
LF Low Frequency 

(125–134.2 kHz) 
125 kHz RFID 
134 kHz RFID 

HF High Frequency 
(13.553–13.567 MHz) 

13.56 MHz RFID 

UHF Ultra-High Frequency 

(433 MHz and   
858–960 MHz) 

433 MHz RFID 

UHF RFID (includ-
ing ETSI RFID at 
865-868 and FCC 
RFID at 902-928) 

Microwave Microwave 

(2.4–2.454 GHz 
5.725–5.875 GHz) 

2.4 GHz RFID 

5.8 GHz RFID 

 

 

Chip Type  Description 
Passive Tag power source: RF energy transmitted by 

reader/integrator 

Communication: by modulation of the read-
er/integrator signal 

Semi-Passive Tag power source: battery 
Communication: by modulation of the read-

er/integrator signal 

Active Tag power source: battery 

Communication: active transmission 

Sensor Tag Simple sensor integrated in the tag (tempera-
ture, pressure or humidity) 

Tag power source: battery or RF harvesting 
Communication: passive or active transmission 

Chipless No chip but uses time-domain reflectometry 

(e.g. surface acoustic waves) 
 

Table 3. Main flavors of RFID technologies used in IoT  Systems 

Technology Brand Name  Typical  
Frequency  

Range  Bit rate and  
Tag Density 

Typical Applications O rganization 
Responsible 

ISO 14443 NXP Mifare 

Sony FeLiCa 

13.56 MHz Short  Low Personal identification 

Payments and ticketing 
Access control and security 

ISO/IEC 

ISO 18000-63 EPC Gen2  
RAIN RFID 

858-960 MHz 
(depending 
on region) 

Long High Asset tracking 
Logistics 
Retail/Consumer applications 

ISO/IEC/EPCglobal 

ISO 18000-7 

EN 300 220–2007 

N/A 433 MHz Very 

Long 

High or 

Very High 

Real-time Location Tracking 

Industrial/Hardened  

ISO/IEC/ETSI 

3.2. Identifier schemes 

As noted earlier, for the development of open IoT 

systems, which typically incorporate a variety of 

stakeholders and must support scalable operation, 

RFID must support a common way to interpret iden-

tifiers retrieved from tags  [82]. Moreover, standard 

identifier schemes are already in widespread use for a 

variety of material objects, locations and even digital 

artifacts so demanding that RFID within the IoT 

starts from a clean slate would  not be feasible either 

from a financial or an organizational point of v iew. 

Electronic Product Codes  (EPC) developed by SG-1 

and EPCglobal, Object Identifiers (OID) according to 

the ISO/ITU standard, Ubiquitous IDs (uID) in wide 

use in Japan as well as  a variety of other schemes 

commonly  employed in RFID and barcode encodings, 

often in an industry-specific manner, are in  current 

common use for the identification of b illions of al-

ready tagged objects. 

Although it is not possible to cover each one of 

these schemes in detail in this paper, we note that all 

schemes follow a similar pattern to structure their 

codes. Specifically, each code starts with a prefix 

which identifies the particular type of code that fol-

lows, for example within the EPC system, the prefix 

of 00110000 identifies the remainder of the codes as 

a Serialized Global Trade Item Number of length 96 

bits (SGTIN-96). The remainder of the code is then 

typically organized in a hierarch ical manner to enable 

code allocation delegation across regions or organi-

zations.  In the case of SGTIN-96 codes for example, 

the code will include the company prefix identifying 

the manufacturer of the particular product, the item 

reference identifying the product type and finally a 

serial number that is unique to the particular product 

item. Similar structures exist for OID (specified un-

der Section 9834-8:2009 of ISO/IEC) and uID alt-

hough of course identifier space management and 

regulation are carried out through their respective 

organizational custodians. 

3.3. Identifier resolution systems 

Notwithstanding the specific choice of identifier 

use, any IoT system that incorporates RFID-tagged 

entities must provide an automated way to discover 

informat ion associated with a  particular identifier as 

well as control access to this information in a manner 

that ensures secure operation and privacy protection. 



In the content of IoT RFID, this system capability is 

referred to as the Identifier Resolution Service(s).  

Many of the current proposals for IRSs provide 

specifications for scheme-specific services: for ex-

ample, EPCglobal [55] provides resolution services 

that cater only for EPC codes issued within their eco-

systems. Ongoing work by ISO/IEC JTC 1/SC 6/W G 

9 and ITU-T Q12/SG17 has developed an OID re-

solver specification known as X.oid -res or the SG17 

ORS (OID Resolution Service). In contrast to that 

work, IoT applications require an open and inclusive 

approach. For example, the extensive experience and 

experimentation in this area conducted within the 

Internet Engineering Task Force (IETF) and specifi-

cally  the work carried  out on the HIP (RFC 5201) 

and LISP (RFC 6115) protocols and on scalable In-

ternet-scale resolution systems [39] offers valuable 

lessons on how to enable IoT-scale IRS that can cater 

to all types of RFID irrespective of the specific 

UUID scheme employed. At the time of writ ing, 

there is no commonly accepted standard but certain 

developments point the way towards a usable solu-

tion [81]. 

4. CNN communication technologies 

While RFID systems mainly aim at  communi-

cating the identification of a given object, CNNs 

serve more general purposes  regarding interaction 

with the physical world. CNN devices are often tiny 

computers provided with sensing and/or acting capa-

bilities, which however may exhib it computational 

constraints such as RAM in the order of ~10 kB or an 

8-/16-bit  processor, as well as energy constraints 

since many such devices will run on a limited energy 

source (e.g. a coin cell battery).  

This Section introduces the main  wireless or wired 

communicat ion technologies used in the CNN space. 

Many such technologies typically  provide on ly Phys-

ical layer (PHY) and Medium Access Control layer 

(MAC) functionality, although some of them are de-

fined as part of a larger protocol stack. As shown in 

this Section, a wide range of CNN technologies is 

available. However, each technology may have spe-

cific characteristics and may be better suited for a 

limited set of environments and scenarios. 

The set of technologies presented in this Section 

comprises IEEE 802.15.4, Bluetooth Low Energy 

(BLE), ITU-T G.9959, Digital Enhanced Cordless 

Telecommunications Ultra Low Energy (DECT-

ULE), Near Field Communication (NFC), W i-Fi, 

LoRaWAN, Sigfox, Narrowband IoT (NB-IoT), 

Power Line Communicat ion (PLC) and Master-

Slave/Token Passing (MS/TP).  The main features of 

these technologies are summarized in Table 4.  

4.1. IEEE 802.15.4 

IEEE 802.15.4 is a family  of wireless technologies 

intended to enable monitoring and control applica-

tions for Wireless Personal Area Network (WPAN). 

Publication of its first version in 2003 was a mile-

stone, since for the first time, an open standard tar-

geted low-rate communication, with a focus on sim-

plicity and low energy consumption [9].  

IEEE 802.15.4 was not designed for a specific ap-

plication domain. Instead, it is intended as a generic 

technology, and it has become the basis of relevant 

protocol architectures, supporting IPv6, and also non-

IP-based protocol solutions such as ZigBee (see Sec-

tion 5). Nevertheless, IEEE 802.15.4 has been opti-

mized for specific environments, such as the IEEE 

802.15.4e Time Slotted Channel Hopping (TSCH) 

mode, designed to overcome impairments in industri-

al environments [94]. In fact, TSCH is also used in 

standard protocol stacks on top of IEEE 802.15.4 for 

industrial environments such as ISA 100.11a and 

WirelessHART. 

4.2. BLE 

BLE was released in 2010 as a low-energy variant 

of classic Bluetooth [37]. Since BLE can partially 

reuse Bluetooth hardware, a device that supports 

classic Bluetooth can also support BLE for low addi-

tional cost. Therefore, BLE can leverage its wide-

spread presence in smartphones, which can be used 

to collect data from or send commands to surround-

ing sensors and actuators. The smartphone can also 

be used as a gateway for interaction between sensors, 

actuators, and the Internet. In addit ion, BLE has be-

come dominant in the areas of wearables, tablets, and 

other consumer electronics devices  [1]. 

4.3. ITU-T G.9959 (Z-Wave) 

ITU-T G.9959 is an  open standard that specifies 

the lower layers of the Z-Wave technology. Z-Wave 

is a wireless protocol stack that was born as a propr i-

etary technology, which has been specifically de-

signed for home automation [38]. 
 



Table 4. Main features of IoT  technologies 

Technology Medium  Frequency Band 
(MHz) 

Range 
(m) 

Bit rate  
(kbit/s) 

Network topology Responsible organization 

IEEE 802.15.4 Wireless 868/915/2400 < 10
2
 20/40/250 Star and mesh IEEE 

BLE Wireless 2400 < 10
2
 1000 Star and mesh Bluetooth SIG 

ITU-T G.9959 Wireless 868/915 ~ 10
2
 9.6/40/100 Mesh ITU-T 

DECT -ULE Wireless 1900 < 3·10
2
 1152 Star ETSI 

NFC Wireless 13.56 < 2·10
-1

 106/212/424 Point-to-point NFC Forum 

IEEE 802.11ah Wireless < 1000 < 10
3
 150-7800 Star IEEE 

LoRaWAN Wireless 433/868/915 > 10
5
 0.25-50 Star LoRaWAN Alliance 

Sigfox Wireless 868/902 > 10
5
 0.1-0.6 Star Sigfox 

NB-IoT  Wireless Several (licensed) > 10
5
 60/30 (uplink/down.) Star 3GPP 

PLC Wired < 0.5  > 10
3
 500 (IEEE 1901.2) Mesh IEEE, ITU-T 

MS/TP Wired Baseband < 10
3
 115.2 Multidrop bus ANSI/ASHRAE 

 

4.4. DECT-ULE 

DECT-ULE is a low-energy variant o f DECT, 

which is the main technology used for voice and data 

communicat ion for indoor cordless telephony [94]. 

Use of DECT-ULE has been proposed in order to 

enable communication between a gateway and sen-

sors or actuators in the home, by exploit ing the 

strong presence of DECT equipment.  

4.5. NFC 

NFC is a wireless technology that provides very 

short range (e.g. ~10 cm). This feature offers intrinsic 

security properties, since it minimizes opportunities 

for unauthorized devices to capture transmitted data. 

NFC allows different communication modes, such as 

card emulation (e.g. for payment applications), reader 

mode, and peer-to-peer communication [41].   

4.6. IEEE 802.11 

IEEE 802.11 is a massively successful Wireless 

Local Area Network (W LAN) family of standards , 

often referred to as Wi-Fi. While its design includes 

power-saving mechanisms, it has not been a clear 

choice for energy-constrained devices, given its im-

plementation complexity and overall power con-

sumption. In order to fill the gap of IEEE 802.11 for 

sensor/actuator applications, IEEE 802.11ah has been 

recently designed for low energy consumption, lower 

bit rate and increased range, enabling sensor data 

collection application areas such as smart grid [8].    

4.7. LoRaWAN 

LoRaWAN is an unlicensed band wireless tech-

nology that belongs in the emerging Low Power 

Wide Area Network (LPWAN) category. LoRaWAN 

uses LoRa technology at the physical layer, and it 

allows an increased communication range up to the 

order of 10s of kms. Based on a star topology, 

whereby a gateway co llects data from up to  hundreds 

of thousands of devices such as sensors, it offers a 

low infrastructure cost, at the expense of severe mes-

sage rate and bit rate limitations  [29].    

4.8. Sigfox 

Sigfox is another flagship LPWAN wireless tech-

nology, therefore it offers long range and low in fra-

structure coverage for a massive amount of devices , 

at the expense of very  reduced bit  and message rates. 

This technology operates in unlicensed frequency 

bands, and it is managed by the company that is also 

called Sigfox. Like other LPWAN technologies, it is 

based on the star topology, and a communication 

range in the order of 10s of kms is achievable [29]. 

4.9. NB-IoT 

Narrowband IoT (NB-IoT) is another emerging 

technology that is often considered to be in the 

LPWAN category [93]. NB-IoT has been defined in 

the Release 13 specification by 3GPP, it is based on 

licensed spectrum, and it also offers support of a 

large number of devices per single base station, at 

low bit rates. 



4.10. PLC 

Power Line Communicat ion (PLC) defines a fami-

ly of technologies that leverage power grid in fra-

structure as a means for communication. While PLC 

is based on using a wired  medium, it  is subject to 

interference, therefore it is subject to impairments 

similar to those of wireless media.  There exist low b it 

rate PLC variants such as IEEE 1901.2 or ITU-T 

G.9903, which are often used in smart home or relat-

ed applications such as smart grid [42]. 

4.11. MS/TP 

Master Slave / Token Passing (MS/TP) is a wired 

technology that belongs to the BACnet family of 

standards for building automat ion. Devices that use 

MS/TP are typically grid-powered. While the de-

scribed features do not pose the same degree of limi-

tations as other technologies overviewed in this Sec-

tion, devices that use MS/TP are constrained, and the 

physical layer, based on RS-485 specification, offers 

low bit rates [62]. 

5. CNN protocol architectures 

The previous Section provided an overview of the 

main communications technologies used in IoT ap-

plications. This Section presents the main protocol 

architectures, i.e. complete sets of communication 

protocols, from the PHY to the application layer in 

the IoT space. We first focus on IP-based architec-

tures, and then we overview non-IP-based stacks. 

5.1. IP-based architectures 

In order to obtain the maximum benefit from sen-

sors and actuators, they need to be connected to the 

Internet, which allows the highest degree of flexibil-

ity (i.e. making it possible to communicate with these 

devices remotely) and interoperability (i.e . Internet 

connectivity maximizes the number of devices that 

one device can talk to). 

Running IP can be considered the most suitable 

method for many constrained devices to achieve In-

ternet connectivity. IP is an open protocol, it  was 

designed for interoperability, and it  simplifies appli-

cation development, since applications run on well-

known services on top of IP, regardless of the under-

lying technology [39]. 

The least constrained devices (e.g. class 2 or great-

er [14]) are considered to be able to run a traditional 

IP-based protocol stack (e.g. using HTTP, TCP, and 

IP, on top of common network interfaces, see Fig. 6-

left, especially when such devices are grid-powered.  

However, the most constrained devices, and/or 

those that are energy-constrained, cannot afford the 

more trad itional protocol stack, due to lack of suffi-

cient computational power and energy availability. 

For this reason, the IETF engaged in 2005 in a dec-

ade-long process to define adaptations, optimizations 

and new protocols for a first version of an IPv6-based 

lightweight protocol stack for constrained devices. 

IPv6 was assumed at the core of the stack, since IPv4 

faces the problem of address exhaustion, and also 

because IPv6 is provided with tools for device self-

configuration. The lightweight, IoT-specific protocol 

stack (see Fig. 6-right) comprises an adaptation layer 

below IPv6 [83], the IPv6 Routing Protocol for Low-

power and lossy networks (RPL)[78], and the Con-

strained Application Protocol (CoAP) [84].  

IPv6 over Low power WPAN (6LoWPAN) is an 

adaptation layer that was designed in order to support 

IPv6 over IEEE 802.15.4 networks. Among others, 

6LoWPAN provides IPv6 (and UDP) header co m-

pression, packet fragmentation and reassembly (giv-

en the short IEEE 802.15.4 frame size), and an adap-

tation of the IPv6 Neighbor Discovery protocol for 

energy-constrained devices [83].  

The 6LoWPAN work has been extended to several 

other technologies. For example, as of the writ ing, 

the IETF effort called  6Lo  has adapted 6LoWPAN 

for interfaces such as BLE, DECT-ULE, ITU-T 

G.9959, MS/TP, and NFC [1]. On the other hand, the 

effort called  IPv6 over Time Slotted Channel Hop-

ping (6TiSCH) has enabled IPv6 support over IEEE 

802.15.4e TSCH mode [94]. Finally, the IETF has 

recently targeted IPv6 support over LPWAN tech-

nologies, such as Sigfox, LoRaWAN and NB-IoT 

[64]. While this effort also provides header compres-

sion and fragmentation, the extremely severe com-

municat ion constraints in some of the considered 

technologies, requires this adaptation layer to go sig-

nificantly beyond 6LoWPAN-style adaptation.  

At the network layer, for networks that follow a 

multihop topology (e.g. the mesh topology), a routing 

protocol is needed. RPL was designed for sensor data 

collection applications. In fact, RPL is optimized 

when all nodes in a network need to report data to a 

single destination, by minimizing routing table 

memory requirements and message overhead. How-

ever, RPL is not optimal for any-to-any operation and 

requires additional mechanisms in such case [22]. 
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Fig. 6. IP-based protocol architectures, including typical applica-
tion layer and transport layer protocols: classic architecture (left) 
and IoT-specific architecture (right). RPL is only used for mult i-
hop topology IoT networks  

Finally, at the application layer, CoAP was de-

signed to follow the Representational State Transfer 

(REST) principles, which are also used in the World 

Wide Web (WWW) [13]. CoAP can be viewed  as a 

lightweight cousin of HTTP, as it allows the manipu-

lation of resources identified by Uniform Resource 

Identifiers (URIs), and messages are self-contained, 

albeit with a lightweight binary header, and based (by 

default) on UDP. 

5.2. Non-IP-based architectures 

There exist also complete protocol architectures 

for sensor and/or actuator devices that are not based 

on IP. For example, ZigBee defined its own upper 

layer functionality on top of IEEE 802.15.4. BLE and 

Z-Wave are other non-IP-based complete protocol 

stacks. Internet connectivity for non-IP-based proto-

col stacks can be achieved by means of Protocol 

Translation Gateways (PTGs), which pose manage-

ment issues and limit application development. Nev-

ertheless, ZigBee, BLE and Z-Wave also support 

protocol stack variants that are based on IP.  

6. Discussion 

In this paper, we discussed selected smart envi-

ronments of key relevance to research in Section 2; 

and, reviewed alternative IoT communication solu-

tions fundamental to enabling such smart environ-

ments in  Sections 3-5. In this Sect ion, we reflect on 

different aspects of how smart environments are sup-

ported by underlying IoT communication solutions.  

In the first part of this Section, we identify and re-

flect on crucial features of IoT solutions and then 

proceed to discuss the main challenges for the appli-

cations of these IoT solutions in smart environments.  

6.1. IoT solutions features and smart environments 

The following features of IoT solutions used in the 

selected smart environments are discussed first, spe-

cifically the  type of sensors used, CNN topology, 

technology capabilities, and computing approach (see 

Table 5).  

6.1.1. Type of sensors 

A smart environment will typically be instrument-

ed with dedicated sensors that measure physical pa-

rameters of interest. Such sensors may be statically 

located at points of interest within the target envi-

ronment for example a home, a factory, a city, specif-

ic locations on or in the human body and so forth. 

However, the popularity o f the s martphone as the 

main user device generates opportunities to explo it 

the informat ion captured by smartphone sensors , 

even if these sensors have not been designed for the 

specific use case. However, this paradigm involves 

several challenges (detailed in Section 6.2). 

In the smart factory, smartphones are not typically 

used to enrich the sensing capabilit ies of the envi-

ronment, since dedicated systems focus on the pa-

rameters of interest while prov iding the robustness, 

reliability and determin is tic behavior highly required 

in this context. On the other hand, smart homes may 

leverage presence of the smartphone (and the user) as 

an additional input to that offered by dedicated sen-

sors deployed in the home.  

In a smart manufacturing environment, analog and 

digital sensors are commonly  used to monitor the 

status of Industry 4.0 automation applications, for 

predictive maintenance, or to diagnose production 

processes under the toughest operating conditions. 

That is why sensors must meet higher quality stand-

ards compared to sensors deployed in less harsh con-

ditions such smart home environments. These sensors 

may need to be more resistant to dust, moisture, 

chemicals, vibrations, shocks or high temperatures  in 

order to prevent them from failing or their perfor-

mance from degradation. 

6.1.2. CNN topology 

In many smart environments , the CNN used fol-

lows a mesh network topology which is more com-

plex than alternatives such as the star topology. In 

fact, a bespoke routing solution typically based on 

use of a dynamic routing protocol, is needed in this 

setting. Despite this requirement, the mesh topology 

is attractive because it o ffers two significant ad-



vantages. First, it allows overcoming the network 

range limitations of a star topology, especially  when 

link range is reduced for example to just a few tens of 

meters.  Secondly, it offers path diversity thus avoid-

ing the single-point of failure issue of a star topology, 

which relies on the availab ility of a central device. 

This may help coping with link quality issues in 

wireless systems (e.g. due to multipath propagation, 

interference, etc.) or in noisy wired systems (e.g. 

PLC). Both smart homes and smart factories typical-

ly use mesh networks for wireless sensor systems. In 

smart cities, while IEEE 802.15.4 mesh networks 

have been deployed in some experiments , LPWAN 

technologies have recently gained high momentum. 

LPWAN technologies follow the star topology, and 

offer a high link range, therefore they allow city-wide 

coverage of devices such as sensors at a low in fra-

structure cost. 

6.1.3. Technologies 

Smart homes benefit from a larger variety of avail-

able technologies among all s mart environments con-

sidered. Some of these technologies have been de-

signed specifically for s mart home scenarios (e.g. 

ITU-T G.9959) or leverage infrastructure typically 

available at a  home (e.g. PLC and DECT-ULE). 

Nevertheless, general purpose technologies such as 

IEEE 802.15.4, Bluetooth LE or Wi-Fi are also 

commonly used in smart homes. 

At the other end of the spectrum, CNN technolo-

gies used in smart factories are typically based on 

IEEE 802.15.4e TSCH, which  appears to be domi-

nant in this setting. 

Smart cities employ both general-purpose CNN 

technologies (e.g. IEEE 802.15.4), technologies not 

specifically developed for CNNs (e.g. 4G or Wi-Fi), 

and moreover, have recently leveraged the emerging 

LPWAN technologies, such as LoRaWAN, Sigfox or 

NB-IoT. 

Finally, s mart health applicat ion scenarios benefit 

from the technologies used in the physical environ-

ment where s mart health applications are carried out. 

Note that many smart health applications are home-

centric, therefore leveraging s mart  home technolo-

gies. In other cases, smart health users exploit the 

connectivity means provided by the smartphone.  

6.1.4. Computing approach 

IoT applications require services and support for 

storing, managing and processing the data collected 

from devices such as sensors. There exist different 

trends in this regard, where Cloud computing and 

Fog computing appear to be the most relevant ap-

proaches. The former leverages remote platforms 

available via the Internet, whereas in  the latter, pro-

cessing and storage is carried out locally, near the 

IoT device. Fog computing is suitable when low la-

tency is required, and/or as a scalable solution when 

the number of devices is very high. 

In smart homes, Cloud computing is the main par-

adigm for co llected data processing and storage, gen-

erally intended for s mart  home monitoring and non-

critical control operations. In this type of applications , 

Cloud computing is suitable, since latency require-

ments are not strict. On the other hand, real-t ime in-

teractions are also common in s mart homes, often 

involving humans in the loop: for example, a user 

turns on a lightbulb by pressing a button on a remote 

control. In such case, direct interaction between the 

communicat ing devices is a good fit, and neither 

cloud nor Fog computing are strictly needed.  

In smart cit ies, a combination of cloud and Fog 

computing provides a suitable approach. The latter 

allows low latency, while p roviding support for han-

dling the data collected by the potentially h igh num-

ber of IoT devices in a city.  

In smart factories, the production network con-

nects a wide variety of sensors and actuators , for ex-

ample, to monitor a variety of machine-health pa-

rameters, and to stream data via a gateway to busi-

ness intelligence and administration systems within 

the smart factory – such as Enterprise Resource 

Planning (ERP) applications and Manufacturing Exe-

cution Systems (MES) – to manage the entire lifecy-

cle of the product. To  support these smart manufac-

turing application cases, data is frequently processed 

in real-time in a distributed manner on top of a fog 

(or real-t ime edge) computing analytics architecture 

for efficiency reasons. Indeed, with latency require-

ments in the range of milliseconds, timely data pro-

cessing is key for industrial control and manufactur-

ing applications.  Rather than executing all data pro-

cessing jobs in the cloud, by offloading to the fog 

layer i.e. closer to the production floor, a smart man-

ufacturing company can minimize latency and opera-

tional expense. Cloud computing also has its place as 

well in Industry 4.0. The production network may 

provide connectivity and share data across the inter-

net to cloud services of other manufacturing enter-

prises and suppliers. The objective of this increased 

transparency is a seamless integration with supply 

chain and logistic networks and a more streamlined 

automated production environment.   



Table 5. Main features of IoT  solutions in smart environments 

Smart environment Type of sensors  CNN topology Technologies Computing approach 

Smart home Dedicated Mesh and Star IEEE 802.15.4 
Bluetooth LE 
Wi-Fi 
ITU-T G.9959 

DECT-ULE 
PLC 

Cloud 

Smartphone N/A Wi-Fi 

Smart city Dedicated Star LoRaWAN 
Sigfox 
NB-IoT  

Cloud and Fog 

Dedicated Mesh IEEE 802.15.4 

Smartphone N/A 4G, Wi-Fi 

Smart factory Dedicated Mesh IEEE 802.15.4 TSCH Fog 

 
 

6.2. Challenges 

The following challenges for IoT solutions in 

smart environments are considered: interoperability 

and standardization, adaptation and personalizat ion, 

and entity identification and virtualization. 

6.2.1. Interoperability and standardization 

The concept of IoT is strongly driven by the de-

velopment of standards (either de facto or de jure) 

that address all layers from the physical to the appli-

cation layer.  Their majority have direct application 

in smart environments (see Section 4) and are still in 

continuous evolution. For example, in the context of 

smart factories, the networked production in Industry 

4.0 requires interoperability between different ma-

chines. To address this concern, the OPC Unified 

Architecture (OPC UA) provides a secure, scalable 

and open platform for reliab le machine-to-machine 

communicat ion. OPC UA employs standard transport 

protocols and encodings to ensure connectivity be-

tween, fo r example, embedded controllers and h igh-

end enterprise service environments  [40]. It offers 

configuration capabilities fo r alarms  and event notifi-

cations, and from a security perspective, it provides 

authentication capabilities for users, clients and serv-

ers to manage the integrity of their communicat ion. 

Many industrial control and automation applications 

and production networks are typically time sensitive. 

To ensure a precise time distribution across manufac-

turing systems, many networks are adopting the 

IEEE Time Sensitive Networking (TSN) unified 

standard for this purpose [51]. In  other contexts, such 

as smart homes, smart health or smart cities, the 

standardization process is often not as advanced as 

for the smart industry but still present and rich.  

However, while, on the one hand, the presence of 

standards certifies the maturity of the technology, on 

the other hand the large number of standards and the 

fact that they have often significant overlaps certifies 

that the area is lively and that the market is fast-

developing and still looking for an equilibrium. From 

the point of view of the users, the richness of the of-

fer in terms of solutions based on standards is cer-

tainly positive and it limits potential vendor locks -in, 

however, the fact that standards are often not easily 

interoperable may  lead  to standard locks -in. In a con-

text of a fast-developing market in which standards 

may become easily obsolete, standards lock-in could 

be problemat ic and limit ing for the further market 

development. For this reason, the interoperability of 

different IoT standards (for example by the defin ition 

of suitable gateways) may become, in  perspective, a 

critical aspect. 

6.2.2. Adaptation and personalization 

A growing trend towards personalization, both in 

leisure and professional smart environments, triggers 

greater demands of transparency and interoperability. 

Sensor and actuator networks that operated well in 

isolation will face new connectivity and adaptation  

challenges for opening up IoT networks to different 

stakeholders, computing paradigms (mobile, fog, 

cloud), and technologies that will drive the personali-

zation. 

An important challenge is how to adapt the way 

the algorithms use the data processed to give the best 

possible experience to the user of the solution or to 

someone that will take in formation from the pro-

cessing. In the previous Sections we showed that 

despite considerable effort being devoted to this 

problem several challenges remain to make sensors 

and actuators work together in ambient environments. 

Two features are important for new technologies to 



be accepted and used long-term: they have to provide 

useful and verified in formation and be relatively 

simple to install, understand and maintain. 

In the examples that have been cited as applica-

tions above, smart  environments (smart homes, smart 

city, smart manufactories) or s mart health, these two 

points are crucial fo r the technology not to be aban-

doned. For well-being or health, devices are reputed 

to be abandoned quickly [23] as people are at the 

beginning motivated by the information that is 

brought, but this informat ion is insufficient to moti-

vate the use for a long time. For instance, if an act ivi-

ty tracking device is not able to detect the amount of 

activity that you do because the threshold defining it 

does not fit your use, it will have no use (for instance, 

an incorrect  threshold for walk detection on the co m-

bination IMU/changes of heartrate in fitness applica-

tions). That is why such a device will “learn” in the 

first few days how the person behaves. Another ex-

ample is for distress. The goal of several researches 

on that topic is for instance to build systems that will 

be able to  monitor the activity of an  elderly person at 

home to detect changes in his behavior and infer 

some possible health-related problems that should 

need warning the family or the medical staff or to 

detect distress situations such as fall. Analyzing the 

activity to detect changes of behavior (for instance in 

repartition of walk/stand/sit/lie down) needs having 

learnt the ones of the person in a first place, but also 

to be able to detect what is a change. For instance, for 

devices measuring heart rate and activ ity, does an 

episode of fever, that will increase the heart rate, 

have to be considered as relevant for the adaptation 

of the thresholds of detections of anomalies in the 

values? Incremental learning algorithms can allow to 

create models that will evolve with t ime, but an im-

portant question is when to adapt the model and 

when to warn? This very important question is the 

basis of all that kind of d istress/health monitoring 

because we must not launch too much alarm, but we 
also must absolutely not miss an event.  

The second important property is their relat ive 

simplicity to use, install and maintain a new technol-

ogy. Installation and maintenance is primarily a tech-

nological and design problem. But  for the eas iness of 

use, the algorithms embedded will have a role to p lay. 

An important topic that we can discuss to ease user 

experience is the adaptation of the environment be-

havior to the user, so that it will not disturb his way 

of living. Some research projects are going through 

this problem (e.g. [48,49,76]), are on-going and are 

in their early stages. The idea is to use system traces 

and what are called implicit and explicit feedbacks 

from the user to adapt continuously the behavior of 

the system. These feedbacks are either a co mment 

that the user does to the system saying that he does 

not like the action that has been done or are actions 

of the user that are in contradiction with  the behavior 

of the system. Analyzing the way a person lives with-

in the smart environment to detect such discrepancies 

in the data is still very costly but important for the 

experience of the user and the usability of the sys-

tems. If we want s mart environments and ambient 

assisted living be more and more used and dissemi-

nated, these systems have to be simple and adapted to 

the person, not the contrary. 

6.2.3. Entity identification and virtualization 

IoT technologies bring together a variety o f d is-

tinct elements and functionalities to construct inte-

grated systems of increasing complexity consisting of 

numerous interacting complements. Entity identifica-

tion is a core ingredient for managing this complexity 

and ensuring that assembly and commissioning of 

fully functional systems is successful as well as en-

sure trustworthy operating in the context of flexible 

and dynamic operations. In turn, this suggests the 

need for IoT un iversal identification as well as for 

supporting services to resolve entity codes and relate 

them to associated meta-data. Note that IoT entities 

may  incorporate widely  heterogenous types including 

physical objects, manufactured artefacts and devices, 

locations, humans and other living animals and plants, 

as well as the built environment and locations. Alt-

hough attempts have been made to use communica-

tion identifiers for this purpose, there are many rea-

sons that suggest that this is not a general solution 

including their typically  limited  scope with a specific 

communicat ions context, mult ihoming and surrogacy 

relationships between entities and their communica-

tion interfaces as well as the well understood need for 

separation of entity identifier and IoT location at-

tachment point.  

Furthermore, entity identifiers offer a core ingredi-

ent for the development of effective ways to validate 

trust relationships between IoT entities and systems 

and control access to sensitive resources. Last but not 

least, entity identification is a core requirement to-

wards object virtualizat ion on the IoT which is con-

sidered a key development towards interoperability 

due its ability to track and synchronize across phys i-

cal and digital resources. 



7. Conclusions 

Wireless networking is a core ingredient in a varie-

ty of IoT-enabled smart systems including homes, 

digital healthcare, smart factories and cit ies. Yet, 

choosing the right technology that best meets the 

requirements of a specific system can be a challeng-

ing task for the system architect due to the large di-

versity of options. In this paper, we have explored the 

advantages and limitations of d ifferent options with a 

view to p rovide guidance for the designer of smart 

systems in making an effective and efficient choice 

that best matches the goals of their work. 

In conducting this survey, we recognise that low 

power wireless networking is in a state of flux as a 

consequence of the rapid  development of innovative 

IoT solutions, which stretch the limits of current 

technologies. To this end, in this paper we have also 

explored areas of current and future development that 

investigate ways in which current technological limi-

tations can be addressed. In particular, we have iden-

tified key  research questions relating to interoperabil-

ity and standardisation, adaptation and personalisa-

tion and entity virtualization that are expected to e x-

tend the functionality of current smart environments. 

As a final reflection, we position our work against 

the other contributions in this thematic issue. We 

note that the exchange of data allowed  by IoT tech-

nologies and systems is a starting point for creating 

smart environments powered by artificial and ambi-

ent intelligence [33]. The process of building smart 

environments may also leverage the inputs from oth-

er systems, such as computer vision ones [73]. This 

whole process requires considering the human aspect, 

since the human is in fact, either d irect ly or indirect ly, 

the main subject of smart environments  [20]. How-

ever, designing smart environments involves grand 

societal challenges, from both technical and social 

points of view, that will require the efforts of the 

community in upcoming years [88]. 
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