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ABSTRACT Currently available wearables are usually based on a single sensor node with integrated
capabilities for classifying different activities. The next generation of cooperative wearables could be able
to identify not only activities, but also to evaluate them qualitatively using the data of several sensor nodes
attached to the body, to provide detailed feedback for the improvement of the execution. Especially within
the application domains of sports and health-care, such immediate feedback to the execution of body
movements is crucial for (re-)learning and improving motor skills. To enable such systems for a broad range
of activities, generalized approaches for human motion assessment within sensor networks are required.
In this paper, we present a generalized trainable activity assessment chain (AAC) for the online assessment
of periodic human activity within a wireless body area network. AAC evaluates the execution of separate
movements of a prior trained activity on a fine-grained quality scale. We connect qualitative assessment
with human knowledge by projecting the AAC on the hierarchical decomposition of motion performed by
the human body as well as establishing the assessment on a kinematic evaluation of biomechanically distinct
motion fragments. We evaluate AAC in a real-world setting and show that AAC successfully delimits the
movements of correctly performed activity from faulty executions and provides detailed reasons for the
activity assessment.

INDEX TERMS Body sensor networks, distributed computing, motion analysis, physical activity
assessment, biomechanics, multilevel systems.

I. INTRODUCTION
Body-worn sensor systems, so-called wearables, in the form
of fitness bracelets and smart watches become part of every-
day life. These systems already allow to classify various
activities of the user (walking, running, swimming, etc.)
and determining the intensity of particular activities
(e.g., by counting). Most current available systems are based
on a single wearable sensor node, e.g., [1]–[3], but wire-
less systems based on multiple sensor nodes equipped with
appropriate wireless communication devices (WBAN) are
already emerging, e.g., [4]. Underlying technology is mainly
driven by advances in the field of micro-electro-mechanical

systems (MEMS) and research in activity recognition (AR)
[5]–[8] over the past decades.

Beyond the classification of activities, a WBAN equipped
with inertial sensors contains great potential for qualitative
activity analysis [9]. Especially the use of multiple nodes
attached to the particular limbs of the human body enables
the analysis of the human motion in its entirety. While
AR investigates ‘‘which’’ activity was performed at a specific
point in time and thus groups together different instances of
a movement and generalizes them into an activity, activity
assessment (AA) investigates ‘‘how well’’ a known specific
activity is performed and thus aims at distinguishing the
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different instances of one particular activity in quality. If the
quality of an activity can be determined, a feedback to the
quality becomes possible. Feedback relating to the quality
of execution of an activity is a very interesting field, espe-
cially within the application domains of sports and health-
care. In sports training and physical rehabilitation, feedback
regarding wrong body movements is crucial for learning and
improvement of motor skills and physical fitness [10]–[12].
In this context, it is advantageous that the feedback is close
to the execution of corresponding movements of the activity.
Real-time feedback, e.g., in the form of haptic feedback [13],
which is made available to the quality of an activity per-
formed by the user, not only allows immediate improvement
in performance [14]–[16], but also warning of movements
that could possibly lead to injuries [17], [18].

Since parts of an activity to be assessed must first be
recognized, research in AA is closely linked to the current
research inAR. Bulling et al. [6] give a tutorial to the typically
used general-purpose framework called activity recognition
chain (ARC). The ARC comprises raw data acquisition of
multiple sensor nodes, preprocessing of the data to remove
noise and interfering artifacts, data segmentation, feature
extraction and selection, and finally activity classification
and decision fusion. Many of the current AR approaches
are focused on improving the basic processes of the ARC.
Khan et al. [19] investigate optimal sampling rates for
accelerometry based AR to reduce system requirements
related to energy consumption or memory whilst retain-
ing recognition accuracy. Banos et al. [20] investigate sig-
nal segmentation and present a study that analyzes the
effects of the windowing process on AR system performance.
Ghasemzadeh et al. [21] present a feature selection approach
that considers classification accuracy as well as the energy
consumption required for feature computation. Alternatively,
Ghasemzadeh et al. [22] investigate the energy consumption
of the ARC by distributing the classification problem on
several weak classifiers with different energy consumption.
Thus, the energy consumption of the ARC can be optimized
for a desired accuracy by a suitable set of weak classifiers.
Saez et al. [23] compare various state-of-the-art classification
techniques for cross-person activity recognition. For collab-
orative decision-making based on the data of multiple sensor
nodes, data fusion algorithms are of fundamental impor-
tance. Gravina et al. [5] provides a comprehensive survey
on multi-sensor fusion in the area of WBANs. Furthermore,
Fortino et al. [24] present the open-source signal processing
framework SPINE [25] for the rapid prototyping of
WBAN applications. The framework supports the basic pro-
cesses of the ARC at programming level and is specif-
ically designed to support distributed online processing
in WBANs.

More complex approaches in AR focus on generic activity
recognition and use the concept of hierarchical decomposi-
tion of activities in time series sub-patterns. These approaches
in general utilize processes of the ARC to classify low-
level sub-patterns of activities first, to identify higher-level

activities as sequential or concurrent combinations of sub-
patterns. These approaches contribute to real-world prob-
lems, for example: AR on streaming data to identify activities
of interest among other activities [26], [27], recognition of
concurrent and interleaved activities [28], [29], training of
AR systems based on limited training data [30], or sharing
AR systems across platforms [31]. Galzarano et al. [32]
extend the SPINE framework with a task-oriented paradigm
so that distributed and collaborative in-network applications
can be programmed as a set of tasks that are to be instantiated
on the sensor nodes of theWBAN. Thus, the authors consider
the requirements for the realization of more complex activity
recognition systems by supporting the modular implemen-
tation of higher-level process chains distributed on multiple
sensor nodes.

While a lot of work regarding generalized systems for
AR already exists, research on generalized AA is very scarce.
In our work, we propose a trainable process chain as a gen-
eralized concept for the distributed assessment of activities
within a WBAN. In this context, it is worthwhile to distin-
guish between different types of activities in relation to their
temporal nature. Bulling et al. [6] categorize activities such as
periodic, static, and sporadic. Periodic or cyclic activities are
characterized by a series of recurring similar movements such
as walking, running, rowing, cycling or many other physical
rehabilitation exercises. Static activities are characterized by
a lack of movement and are mainly determined by the posture
of the human body, such as standing, sitting or driving a car
while sporadic or non-cyclical activities consist of different
types of movements, such as cooking or tidying up. For the
qualitative assessment of activities, cyclical activities are of
particular interest, since a correct or incorrect execution of
the repetitive movement has a cumulative effect on the final
result of the activity. Therefore, in this work, we focus on
the assessment of cyclic activities. Our main contributions are
threefold:
• We summarized the state of the art of AA in WBANs
and derive functional and semantic requirements for
generalized activity assessment.

• We present the generalized process chain AAC for the
detailed assessment of cyclic activity, which is designed
to work in a fully distributed fashion within a WBAN
and thus enables immediate feedback to particular faults
of the execution of an activity.

• We implement AAC and evaluate the applicability and
the practical value in a real-world case-study of indoor
rowing.

The remainder of this paper is organized as follows.
In Section II, we investigate methods of quality quantiza-
tion used in current work of AA followed by the resulting
requirements for our work in Section III. In Section IV and V,
we present the multi-layered concept of AAC as well as
details of the implementation.We evaluate the AAC in a small
case study based on indoor rowing activity in Section VI and
present the results in Section VII. In Section VIII, we dis-
cuss the results regarding the requirements in Section III
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as well as open issues. We close with our conclusion
in Section IX.

II. RELATED WORK
Velloso et al. [33] refer to a general term of quality defined
by the International Organization for Standardization (ISO),
which define quality ‘‘as the degree to which a set of inher-
ent characteristic fulfills requirements’’ [34]. Furthermore,
the authors define a qualitative activity recognition system
‘‘as a software artifact that observes the user’s execution of
an activity and compares it to a specification’’. Therefore,
a reference is necessary that describes the requirements of
which the quality is to be measured.While most of the related
work follows a similar concept of quality, they can be divided
by the way the reference is created and how a deviation from
it is measured.

A. MODEL DRIVEN
Most of the existing approaches are driven by expert
knowledge of the specific application domain they have
been designed for. These model-driven or knowledge-driven
approaches are powerful because they rely on a deep under-
standing of the modeled activity and can benefit from
scientifically-based relationships. They start with an abstract
model of application dependent knowledge and then imple-
ment and apply the model through sensed data. Manu-
ally modeling each domain-specific feature based on expert
knowledge leads to a semantically clear term of quality in the
context of the modeled activity.

Thompson et al. [35] present a wireless sensor network,
consisting of four sensor nodes, attached to the legs of horses.
Acceleration and angular data are streamed via bluetooth to
a smart phone in the riders pocket. From these data, they
derive measurements of key performance attributes that are
of relevance for describing the characteristics of dressage
movements. Based on these attributes, the system provides
a quality feedback in the form of spider plots for the rider,
which is related to international dressage guidelines.

Ladah et al. [36] utilize two wrist-worn accelerometers
to capture a climber’s movements in natural settings. The
approach filters out climbing moves from background activ-
ity and provides climbing skill assessment by utilizing a
domain-specific quality model based on features which are
relevant for rock climbing.

The aforementioned approaches have the advantage that,
based on the semantic expert knowledge included in the
implemented domain-specific assessment model, feedback
concerning the assessment of the activity can be easily
connected to the knowledge of the application domain.
In addition, after implementation, these approaches do
not necessarily need an inertial training, neither of cor-
rectly nor of incorrectly conducted samples of the activity.
Hence, no inertial configuration effort is necessary. However,
domain-specific modeling does not generalize well, as the
implemented domain-specific logic cannot be easily applied
to other application domains.

B. DATA DRIVEN
Enabled by machine learning, data-driven approaches use
generalization algorithms to learn a quality model from
motion data. Depending on which data is used to learn the
quality model, this work can be further distinguished in
explicit and implicit machine learning approaches.

1) EXPLICIT MACHINE LEARNING (EML)
EML approaches learn a model for each quality class to be
distinguished by using a supervised training of a classifier
on appropriately performed activity samples. Thus, AA is
translated into a classification task, as is the case with AR.
Subsequent new samples of the activity are assigned to one
of the previously trained quality classes.

Yurtman andBarshan [37] use the sensor data of five sensor
nodes attached to the limbs of the human body to learn a
quality model for physical therapy exercises. Within the data,
they distinguish between eight exercises and three differ-
ent quality classes. For classification, they propose a multi-
template multi-match dynamic time warping algorithm to
detect multiple occurrences of more than one exercise type in
the recording of a physical therapy session. Velloso et al. [33]
extract statistical features from the inertial data of four sensor
nodes attached to the upper human body and a dumbbell
to distinguish five qualities of the execution of a weight-
lifting exercise. To reduce the amount of the resulting fea-
tures, they use an automatic feature selection algorithm,
followed by a Random Forest approach for classification.
Ghasemzadeh et al. [38] utilize five sensor nodes, two nodes
on a golf club and three on the upper human body, to measure
acceleration and angular velocities of golf swings. Based
on this data, they distinguish between nine different quality
classes related to the wrist rotation of the golfer to provide
feedback on quality of movements for the purpose of golf
training. Adelsberger and Tröster [39] investigate the assess-
ment of weight-lifting activity. For this purpose, they use the
acceleration data of two sensor nodes, which are attached to
thewrist and hip of the human body. The authors use a support
vector machine algorithm to determine whether completed
weight-lifting movements are assigned to a beginner or expe-
rienced athlete.

As a result of the supervised training of a quality class
which should be detected, the domain-specific meaning of
the different quality classes is known. Thus, an appropri-
ate semantic feedback to the assessment of an activity is
possible. Systems using this approach can be transferred
more easily to other application domains where an appro-
priate training of correctly as well as incorrectly conducted
activity samples is possible. Depending on the intended
granularity of the assessment of an activity, the inertial
training of the quality classes can be expensive. Never-
theless, the training of all intended quality classes is not
always possible. Especially in motor learning or physiother-
apy applications, the accomplishment of the purposefully
incorrectly performed activity is not recommended. In this
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case, the approach is restricted to applications where histori-
cal data on incorrectly performed samples of the activity is
available. Another drawback of the EML approach is that
the resolution of the assessment is limited to the amount of
explicit trained quality classes. Khan et al. [40], address this
by assigning relative quality labels through pairwise compar-
ison of explicit trained activity samples by a domain expert
and thus providing a quality scale. New activity samples are
assessed by ranking them within the prior trained quality
scale.

EML approaches successfully demonstrate that AR can be
used to detect erroneous activity executions, but the inher-
ent requirement to train defective activity samples limits
these approaches to applications where this is possible and
affordable.

2) IMPLICIT MACHINE LEARNING (IML)
IML approaches learning their quality model from ground
truth data representing activity samples at the best afford-
able quality only. Upcoming activity samples are assessed
by delimitation of the previously modeled ideal quality class
against motion data which do not correspond to the trained
activity. Hence, this approachmakes use of algorithms known
from the null class problem [6], also known as the problem
of the ‘‘other class’’ [26] respectively. This can be seen as
a form of implicit learning, in other words, learning about
faulty conduction of the activity without knowing the faults
in particular.

For example, in [12] and [41], the data from several inertial
sensors is merged centrally into a kinematic body model
representing the pose of the user. Based on the angular data
of this model, a Hidden Markov Model is used to detect
movements of a particular fitness activity. In a second step
manual selected feature values, which were extracted from
the raw data of a recognized movement, are checked for
predetermined thresholds. If a feature value exceeds the cor-
responding threshold, the movement is reported as faulty.
Velloso et al. [33] describe a similar approach, with the
difference that the body model is calculated from the data of
a Microsoft Kinect sensor. Alternatively, in [42], sub parts
of movements of an activity are recognized separately. Fur-
ther execution of movements of a prior trained activity are
assessed by the amount of correct classified sub-patterns of
the movements.

As for the EML approach, a supervised training is needed
for generalization across application domains. But the train-
ing is limited to the correct conduction of samples of the
intended activity only, which results in a reduced inertial
configuration effort. As the supervised training did not com-
prise any faulty activity samples, this method did not include
semantic knowledge corresponding to faulty conductions by
default.

III. REQUIREMENTS
Model-driven approaches cannot be reused across application
domains and are expensive to develop. EML approaches can

be reused, but require a relatively complex training of all
quality levels that is not possible in any application
domain. The IML approach requires the least training and
generalizes best, but while model-driven approaches and
EML approaches are semantically clear, IML approaches are
not, by default.

We focus on the sustainable development of a generalized
process chain for the evaluation of activities. Because the
IMLmethod generalizes across multiple application domains
best, we use this method.

A. SEMANTIC PROPERTIES
Semantic properties connect algorithms of activity recog-
nition and assessment with human knowledge [43]. Espe-
cially when it comes to using the result of a system for the
assessment of activities by humans, this connection is of
crucial importance. As a drawback, the IML approach lacks
in semantic knowledge, included by design (e.g., how is the
assessment composed and what can I do to improve my per-
formance). We address this gap by adding biomechanically
modeled aspects to the processes chain. As in [42], we estab-
lish the assessment of an activity on biomechanically distinct
motion fragments (see Fig. 1b) and aggregate the motion
assessments on different abstraction layers concerning the
hierarchical decomposition of a motion performed by the
human body (see Fig. 1a). Thus, we add temporal and spatial
context to the assessment. In contrast to [42], we realize
the fragment assessment by detailed evaluation of the fea-
ture values which characterize a motion fragment. Therefore,
we implement a descriptive set of kinematic features that
give intuitive reason to the assessment of a motion fragment
(see Fig. 1c).

FIGURE 1. (a) and (b) Spatial and temporal decomposition of an activity
conducted by the human body as well as (c) the role of kinematic
features.

B. DISTRIBUTED COMPUTING
Almost all of the above mentioned related work for
AA require the centralized computation of the data of the par-
ticular sensor nodes [33], [35]–[37], [39], [41]. Centralized
systems are tied to communicate with the central base station.
This typically results in a lack of mobility or in a temporal
separation of data collection and their evaluation.We propose
the distributed computation of the sensor data within the
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FIGURE 2. (a) Processes of the AAC and their assignment to various abstraction layers (Fragment, Body Part, Body) as well as to different data
flows (Recognition, Reasoning, Assessment). (b) Quality aggregation model.

network, as a more promising approach to support human
motion directly [42], [44]. If the sensor nodes of the WBAN
are independently able to decide on the quality of a part of a
movement of an activity, they can provide a direct feedback
to a particular motion, independent of any infrastructure and
while the activity is carried out, so as to allow use in daily
activities outside a laboratory.

IV. ACTIVITY ASSESSMENT CHAIN
For the implementation of the IML method, taking into
account the above-mentioned semantic demands, we pro-
pose the concept of AAC for generalized AA within body
area networks, as depicted in Fig. 2a. The AAC consists
of a sequential flow of processes which are assigned to
abstraction layers related to the hierarchical decomposition
of motion performed by the human body, namely: raw data
layer, fragment layer, body part layer, and body layer. The
AAC contains processes known from AR which are marked
with a grey background. We distribute the work load within
the WBAN by processing the motion data of a certain body
part concerning the first three layers directly on a node which
is attached to the respective limb. On the last layer, the data
computed on the sensor nodes attached to multiple body parts
are exchanged and fused to achieve the whole picture of the
body movement. Each abstraction layer contains processes of
three data flows which accomplish different functions within
the AAC: recognition, reasoning, and assessment.

A. RECOGNITION
The recognition flow involves processes aiming for the basic
identification of the trained activity and implements a typ-
ical ARC. On the raw data layer, the segmentation process
recognizes biomechanically distinct motion segments within
the processed raw data stream that contain information about
a potential activity. Typically, before segmentation, the raw
data passes a filter process to reduce noise and interfering

information on the raw data signal. On the fragment layer,
recognized segments are identified and labeled by the frag-
ment classification process based on features extracted by
a feature extraction process. On the body part layer, in the
resulting temporal sequence of classified motion fragments,
a sequential pattern mining process identifies accomplished
body part movements of the conducted activity. On the body
layer, several concurrently identified body part movements
are collected and combined by the concurrent pattern mining
process to obtain the body movement in its entirety.

B. REASONING
In a real-world setting not all parts of a continuous data
stream are relevant for the trained activity, e.g., when dis-
rupting the trained activity with other activities. To avoid
diffusing assessments, the reasoning flow discards motion
data which do not correspond to the trained activity and
thus handles the problem of the ‘‘other class’’ on multi-
ple layers. On each abstraction layer, a delimitation process
verifies the decision of the preceding recognition process
and thus determines which motion data will be handled by
the subsequent assessment process and which motion data
will be discarded. Depending on the algorithm utilized for
recognition, the delimitation process can be included in the
preceding recognition process.

C. ASSESSMENT
The assessment of biomechanically distinct motion frag-
ments that pass through the delimitation process on the frag-
ment layer ensures that the assessment can be intuitively
linked to natural parts of movements of an activity (see
Fig. 2b). The fragment quality (QF) can be derived on the
detailed evaluations (QX) of the features extracted by the
feature extraction process. The quality of recognized body
part movements (QP) as well as the body quality (QB) can be
aggregated from the assessments of the respective previous
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abstraction layer. Assessments on the fragment layer contain
temporal semantic as they are connected to successive motion
fragments. Assessments on the body part layer contain spatial
semantic by their assignment to body parts.

D. WBAN
TheAAC is designed to run online and completely distributed
within a WBAN. Hence, we respect the limited resources
of wearable wireless sensor nodes: computational power,
memory, and energy. With the abstraction of the raw data
by feature extraction and numerical classification early at
the fragment layer, memory needed for the expensive raw
data buffering is bounded to the size of a single motion
fragment. Additionally, the complexity of the data processing
at higher abstraction layers is reduced to save computational
power at subsequent processes of the AAC. Up to the body
part layer, no data has to be exchanged between the sensor
nodes. For the body layer, only a few data characterizing
body part movements are exchanged between sensor nodes
to support recognition, reasoning, and assessment (e.g., time
stamp, duration, and quality). Thus, we respect the energy
consumption needed for costly wireless communication.

V. IMPLEMENTATION
The implementation considers a training phase and a feed-
back phase. While the training phase allows the customiza-
tion of the system to a particular activity conducted by a
determined person, within the feedback phase the system
provides the assessment related to the conduction of the
activity. During both phases the WBAN is attached to the
body of the user. Once a motion is carried out by the user,
sensor data are gathered and analyzed for a plurality of sen-
sor nodes of the WBAN. As almost all movements of the
human body are made possible by the joints and are mainly
rotational [45], [46], we focus on angular motion data gath-
ered from a three-axis gyroscope. We apply a Butterworth
low-pass filter of second order with a cutoff frequency of 3 Hz
for the reduction of noise and interfering information within
the angular motion signal.

A. SEGMENTATION
The segmentation process within the AAC aims to divide
the raw data measured by a sensor node for a particular
limb of the human body into biomechanically distinct motion
segments, e.g., flexion or extension of a body part. Therefore,
we implemented the zero velocity crossing (ZVC) based
segmentation algorithm presented in [42], as related results
demonstrate that this approach reliably produces segments of
angular raw data based on kinematics of human motion.

Typically, ZVC approaches identify segmentation
points (SP), where the velocity value changes in sign, indi-
cating that a joint has changed the direction of movement.
Due to their simplicity, ZVC approaches are very fast and can
operate online on sensor nodes with limited resources [47]
but they tend to over-segment with noise or as the number of
degrees of freedom (DoF) increases [48].

To overcome these drawbacks, the approach we imple-
mented provides, in a first step, segmentation candidates (SC)
for each of the axes, x, y, and z of the gyroscope (see
Fig. 3). To respect noisy data, the approach detects an SC
by monitoring whether the angular signal enters or leaves a
corridor around zero. This corridor is defined by a threshold
vector θ = (θx , θy, θz) for each axis separately. The first
SP is detected as soon as the angular signal of one of the
axes leaves the corridor. In order to determine the principal
DoFwith respect to the current angular movement performed,
the covered angles αx , αy and αz between the preceding SP
and the current SC are calculated separately for each axis and
compared with each other. An SP is detected if the SC meets
the following requirements:

FIGURE 3. Biomechanical segmentation of angular data with two DoF
(x , y ): Segmentation begins by leaving the corridor at SP1 by y . The first
segment is terminated by SP2, which is justified by the angle αx covered
by x at that time (αx > αy ). The second segment is terminated by SP2,
which is justified by the angle αy currently covered by y (αy > αx ).

• First, the covered angle of the corresponding axis has
to be above the covered angles of the other axes, so that
the SP can be regarded as caused by the principal motion
axis, which determines the motion segment decisively.

• Secondly, the covered angle has to be above a minimum
angle β such that the SC under consideration delineates
a segment with a significant rotation for the trained
activity.

A successfully detected SP indicates the end of a current
motion segment and the start of a newmotion segment.While
αx , αy and αz are determined online during the segmentation
process, β and θ are previously determined as segmentation
parameters by an automated validation process during the
training phase as presented in [42]. Thus, the segmentation
algorithm adapts to the individually performed activity of
the user with regard to noise, relevant DoFs and intensity of
angular motion.

B. FRAGMENT LAYER
As soon as biomechanical motion segments are separated,
features are extracted from the raw data to identify motion
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fragments and label them as potential parts of the trained
activity as well as for activity assessment.

Within the feature extraction process on the fragment
layer, we use four kinematic feature-types [10] applied sep-
arately to the three axis of the angular motion data obtained
from the gyroscope. We measure displacement (DP), max-
imum velocity (MV), average velocity (AV), and time-to-
peak (TTP). We compute DP straightforwardly by computing
the integral from the angular velocity signal. It is worth
mentioning that motion segments built by the utilized biome-
chanical segmentation algorithm in general comprise small
data sequences of a few seconds. Thus, the error gener-
ated during integration is tolerable. By TTP, we measure
the time from the beginning of the motion fragment until
the maximum of the velocity signal is reached and divide
the value by the length of the motion fragment. In total,
we compute a feature vector x = (x1, x2, . . . , xn) composed
of n = 12 feature values from the raw data of any motion
segment.

As in [42], during the training phase, we derive a set of
classes representing themotion fragments of the trained activ-
ity. We utilize k-means cluster analysis of the feature vectors
extracted from motion fragments of movements that where
performed during the training of the activity. The number
of partitions k is provided by the number of motion frag-
ments expected for a movement of the trained activity. Each
class c ∈ {1, . . . , k} is represented by a prototypical feature
vector w ∈ Rn.

Within the feedback phase, for the classification of
motion segments, we implement a classical nearest pro-
totype classifier [49] utilizing the set W of prototypes
w ∈ Rn, known from training. The class of an unclas-
sified feature vector x of a new segment is defined
by Eq. 1.

c(x) := c(arg min
w∈W
{d(w, x)}) (1)

We normalize x before classification and utilize the
Euclidean distance measure as distance measure d .
For delimitation, we consider the minimum bound-
ing hyper rectangle RTc covering the set V T

c of
feature vectors v, which represents all motion frag-
ments observed during the training (T) for class c,
see Eq. 2.

RTc :=
n∏
i=1

[vT ,ci∧ , v
T ,c
i∨ ] with


vT ,ci∧ := min

v∈V Tc
vi

vT ,ci∨ := max
v∈V Tc

vi
(2)

The training contains only examples of the cor-
rectly performed activity. Hence, we add a margin
to the intervals of RTc so that motion fragments can
pass through the delimitation process even if they con-
tain a limited error in their execution. This results
in an extended (E) hyper rectangle REc , see

Eq. 3, δ > 0.

REc :=
n∏
i=1

[vE,ci∧ , v
E,c
i∨ ] with

vE,ci∧ := vT ,ci∧ − δ · (v
T ,c
i − v

T ,c
i∧ )

vE,ci∨ := vT ,ci∨ + δ · (v
T ,c
i∨ − v

T ,c
i )

vT ,ci = mean
v∈V Tc

vi
(3)

We define that any feature vector x outside of REc did
not represent the classified motion fragment of the trained
activity. Hence, we relax the classification and reject x and
the motion segment respectively, i.e., x belongs to the ‘‘other
class’’. Each motion segment that passes through the delim-
itation process is regarded as a fragment of a movement
of the trained activity and is evaluated by focusing on the
position of x in the decision space in detail. Depending on
its class c(x), we compute the quality qX = qX ,ci for each
feature xi, i = 1, . . . , n, vE,ci∧ ≤ xi ≤ vE,ci∨ , by quantizing the
error with a linear function that crosses the range of values
between RTc and REc , as defined in Eq. 4 and shown in Fig. 4.

qX ,ci (xi) =


1− (vT ,ci∧ − xi)/(v

T ,c
i∧ − v

E,c
i∧ ) if xi < vT ,ci∧

1− (xi − v
T ,c
i∨ )/(vE,ci∨ − v

T ,c
i∨ ) if xi > vT ,ci∨

1 otherwise

(4)

FIGURE 4. Quality Assessment Model: The quality of each feature is
determined with respect to the position of its value within the
boundaries calculated from training data.

We determine the fragment quality qF as the mean of
the single feature qualities of x, i.e., qF = qFc (x) =
mean
i=1,...,n

qX ,ci (xi). The scaling parameter δ defines the tolerance

of error accepted for the motion fragment layer as well as the
value range for quality quantization.

After classification, delimitation, and assessment, a recog-
nized motion fragment is represented by a tuple f = f (x) =
(c, tFs , t

F
e , q

F ) where c represents the class label, tFs the start
time, tFe the end-time, and qF the assigned fragment quality.

C. BODY PART LAYER
On the body part layer, we consider sequences of recognized
motion fragments f . The associated sequence of classes c
is compared to a reference sequence of classes which rep-
resents the sequence of classifications determined for the
trained activity at the dedicated body part out of the training
data, as in [42]. As distance measure for the comparison,
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we use the Levenshtein distance, which is a well-known
metric in AR [28], [29], [42]. If the measure is below a
predefined threshold γ , a sequence of motion fragments is
recognized as a certain body part motion. Assume a body part
motion is characterized by a sequence of J motion fragments
S = {f1, f2, . . . , fJ } then we define the quality of the
body part motion qP by the mean of the qualities of the
motion fragments which the body part motion consists of,
i.e., qP = mean

f ∈S
qF (f ).

Motion fragments which do not belong to any match are
considered as motion of the ‘‘other class’’ and thus rejected.

After sequential pattern mining, delimitation, and aggrega-
tion of fragment qualities, a recognized body part movement
is represented by a tuple m = (id, tPs , t

P
e , q

P) where id is the
node id, tPs the start time, and tPe the end time of the body part
movement, and qP the quality of the body part motion.

D. BODY LAYER
On the body layer, we consider in parallel recognized body
part movements m of several sensor nodes. Incoming body
part movements are stored in a buffer M of size r , where
r is determined by the number of sensor nodes attached to
the body. For recognition of the overall body movement,
we consider the difference between the latest start and the
earliest end of a body part motion m in M . The relative
temporal coverage u(M ) of buffered body part movements is
determined by Eq. 5.

u(M ) = (min
m∈M

tPe −max
m∈M

tPs )/(max
m∈M

tPe − min
m∈M

tPs ) (5)

Given a minimum coverage threshold pT , a body move-
ment is recognized if u(M ) ≥ pT . The threshold pT is defined
by the minimum coverage determined for a movement of the
training data: pT := uTmin · ε, 0 < ε ≤ 1. Incoming body
part movements supersede the body part movement m ∈ M
which ends first. Body part motions, which are not part of
a recognized body movement, are rejected and assumed as
motion of the ‘‘other class’’. Finally, the body quality qB

for a recognized body movement is computed by the mean
of the qualities of the respective body part movements, i.e.,
qB = mean

m∈M
qP(m).

The triple δ, γ , and ε controls the sensitivity of the
reasoning flow of the AAC. A small δ, small γ , and big
ε induce a sensitive delimitation on the abstractions layers
closely to the trained activity. A bigger δ, bigger γ , and
smaller ε induce more tolerance for error within the evaluated
activity.

VI. USE CASE: INDOOR ROWING
For evaluation, we choose the assessment of rowing activity
on an indoor rowing machine. A rowing machine is typi-
cally used to improve the rowing performance outside the
water (e.g., when it is not possible to row on the water in
winter) or to improve general fitness (e.g., in a health club).
While performing the rowing activity with the right technique

is beneficial for improving performance, improper rowing
can lead to injuries [50], [51]. Thus, a precise and subtle
technique of the rower is required to row efficiently and to
avoid injuries. It is therefore essential to assist the user of a
rowing machine with a feedback on the correct execution of
the rowing activity.

A. HARDWARE SETUP
Driven by the needs of the application domain for distributed
activity assessment within WBANs, we make use of the
sensor board F4VI2 [52] (see Fig. 5, bottom). The sensor
board provides a compact form factor of 35.5mm · 24.3mm
and resources that allow us to cache longer chunks of data and
process the data within short time slots. We are implementing
this on the F4VI2 by utilizing the Cortex-M4 microcontroller
STM32F415RGT with a maximum of 168 MHz, 1 Mbyte
Flash, 192 Kbyte SRAM, as well as DSP support and FPU
unit. For the experiment, we use the data of the three-axis
gyroscope of the integrated nine degrees of freedom motion
tracking device MPU9150 at a sampling frequency of 100Hz.
For the attachment of the sensor board to the human body,
we integrated the F4VI2 (k) together with a miniaturized
Bluetooth module (j) and a very small 110 mAh battery (l)
into a reference housing. The translucent cover of the housing
contains a small curved part (m) over the LED (n) to enable
the clear perception of the LED light for interaction with user.
With the aid of Velcro tape, the housing can be easily attached
to the extremities of the human body.

FIGURE 5. Hardware setup. (top) Placement. (bottom) Node
configuration.

For characterization of the rowing activity, we use three
F4VI2 sensor nodes attached to the human body (see
Fig. 5, top). We add one node to the right wrist (RW), one
node to the upper back (UB), and one node to the upper
right leg (RL). The rowing activity was performed on a Con-
cept 2 indoor rowingmachine of type D. The sensor nodes are
synchronized in time by broadcast at the start-up sequence.
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B. MOTION MODEL
Rowing is a continuous motion comprising a sequence of
strokes. The rowing cycle at an indoor rowing machine com-
prises two major phases: drive and recovery. Regarding this,
two positions are relevant: catch and finish. The drive phase
starts with the catch of the handle and is initiated with a push
from the legs. After the legs are almost extended, the rower
first begins to lean back and then the arms begin to draw the
handle toward the body until the finish position is reached.
The recovery phase begins at the finish and is initiated with
the arms straightening followed by the trunk rising. If the
arms are almost straight and the trunk reaches the upright
position, the legs begin to flex until the shins are vertical and
the catch position is reached again.

The rowing activity mainly causes motion along the sagit-
tal plane of the human body. With respect to the experimental
setup and the assembly of the sensor nodes, we expect
angular motion to be measured primarily on the y-axis of
UB and RL. During the rowing activity the hands are fixed by
grasping the handle of the rowing machine. Thus, we expect
motion to be measured at the y-axis as well as at the z-axis
of RW but less angular motion is measured on the x-axis of
RW during rowing.

For the evaluation, we consider five technical faults based
on descriptions of an established indoor rowing training
guide [53].

1) Leaning back too less: At the finish the rower does not
lean back far enough. The stroke does not reach the
maximum speed and the full potential of the back is
not used. This error affects mainly the angular displace-
ment and speed of movement of the back during the
recovery and the drive.

2) Leaning back too much: The rower leans back too far.
The energy costs for leaning back too far are greater
than the gain from rowing a longer stroke. As with the
first error, this error affects the movement of the back
during recovery and drive, but in the opposite way.

3) Jerky finish: While ending the drive, the rower acceler-
ates the handle too much. The jerky movement of the
handle is powered by the legs and the arms. Instead of
pulling the handle toward the body, he pulls himself
forward towards the handle. This error affects the speed
of the movement of the arms, legs and upper body
during the drive. The movement during recovery is less
affected by this error.

4) Unfinished stroke: The rower does not complete the
pull of the handle toward the body and wastes a few
centimeters of the stroke. The stroke does not reach
the maximum speed and the full potential of the arm
muscles is not used. This error mainly affects the angu-
lar displacement and speed of movement of the arms
within the drive and the recovery.

5) Rushing the slide: The rower rushes down the slide
during the recovery. He accelerates and moves his body
too fast so that he wastes energy to stop the move-
ment before he reaches the catch position. This error is

characterized by a faulty speed of the movements of
the legs and the upper body during the recovery. The
movement within the drive is not affected.

In the following, we refer to correctly accomplished rowing
strokes with quality C and to faulty accomplished rowing
strokes with quality E1 to E5, based on the above list of
technical faults.

C. EXPERIMENTAL SETUP
We record rowing activity of two rowing athletes RA1 and
RA2 with several years of rowing experience. The rowing
activity was supervised by an expert with more than ten years
of rowing experience and documented by a video camera. All
subjects are instructed by the expert to perform a continuous
sequence of rowing activity in the six different qualities:
C and E1-E5. Every subject starts the rowing session with
two sequences of 22 correctly performed strokes. There-
after the subject performs five sequences of 22 technically
incorrect strokes according to the quality classes E1-E5.
In total, every subject performs 154 strokes. The recorded
motion data contain periods of resting between rowing
sequences as well as the period of attaching the sen-
sor nodes at the beginning of the session. The length of
the period of attaching the sensor nodes at the begin-
ning of the session differs for RA1 and RA2 by about
4 minutes. In total, the rowing session of RA1 resulted in
a data set of about 16 minutes for RA1 and 19 minutes
for RA2.
We apply the AAC to the respective data of each sub-

ject separately. We train the AAC on the first sequence of
22 correctly performed strokes. We skip the first and the last
stroke, as these are influenced by taking and putting back
the handle respectively, and train the AAC on the remaining
20 strokes. Taking the phases of a rowing stroke into account,
a movement of the rowing activity is made by a sequence
of two motion fragments: drive and recovery. Thus, for the
clustering of motion fragments on the fragment layer, we set
the number of clusters to k = 2.

For activity recognition and assessment, the rest of the
session including 22 strokes of quality C and 110 strokes of
quality E1−E5 is processed by the trained AAC.We provide
δ = 50, γ = 0, and ε = 0.6, as this tolerance configuration
recognizes correctly conducted as well as faulty strokes of
the rowing activity, while other motion is rejected very well.
The configuration of the delimitation process on the fragment
layer with δ = 50 means, that motion fragments can pass
through the delimitation process on this layer, even if they
contain a 50-fold higher deviation of a feature from the pro-
totype than the maximum deviation measured in the training
data. Thus, motion fragments can contain a large error before
they are rejected. The tolerance configuration on the body
part layer is due to the very short sequence of two motion
fragments, that makes a movement of the rowing activity. The
configuration of γ = 0 on the body part layer means that a
rowing movement passes through the respective delimitation
process only if the corresponding motion sequence contains
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no error at all. The configuration of ε affects the threshold
for the minimal coverage required for body part movements
to form a body movement. The value ε = 0.6 causes that
body part movements of a recognized body movement must
overlap at least 0.6 times of the smallest coverage value mea-
sure within the training data to pass through the delimitation
process on the body layer.

VII. RESULTS
The ability to divide the raw data stream into biomechanically
distinct motion segments reliably, is critical to the subsequent
recognition, delimitation, and assessment processes. Thus,
we first validate whether the segments separated on the raw
data layer match the fragments of the motionmodel described
in Section VI-B. We then evaluate the results of the recog-
nition and the reasoning flow followed by focusing on the
assessment of the rowing activity.

A. SEGMENTATION
The segmentation is done by all nodes of the body area
network separately. For RA1 andRA2 together, the number of
segmentation candidates (SC) and recognized segmentation
points (SP) are depicted in Table 1. The numbers are shown
for the individual sensor nodes (UB, RL, RW), for the angular
axes (SP X, SP Y, SP Z), and for each in total.

TABLE 1. Number of considered segmentation candidates (SC) and
recognized segmentation points (SP).

For all nodes, the large majority of SCs are rejected
by the segmentation algorithm with a similar rate between
86% and 89%. A number of 2131 SPs meets the requirements
of the segmentation algorithm, to have been caused by the
principal motion axis and to delineate a segment with a
significant rotation for the trained rowing activity. Only a
small number of SPs is caused by motion on the z-axis or the
y-axis. With 85%, most SPs are caused by motion on the y-
axis, which is what we expected for the rowing model with
respect to the experimental setup.

Fig. 6 exemplary depicts the segmented angular data of the
rowing activity measured at the various sensor nodes. The
two alternating phases, drive and recovery, which make up
the rowing activity, are well separated from each other at
the characteristic catch position as well as at the finish posi-
tion respectively. The implemented segmentation algorithm is
able to handle the problem of over-segmentation, determines
the most significant motion axis automatically, and reliably
delineates the phases of the rowing activity within a continu-
ous angular data stream.

FIGURE 6. Filtered and segmented angular data of the three sensor
nodes (top) UB, (middle) RW, and (bottom) RL for three rowing
strokes of quality C conducted by RA1.

B. RECOGNITION & REASONING
The delineated motion segments separated at the raw data
layer are processed by the remaining abstraction layers of the
proposed AAC. At the body layer the AAC recognized 92.4%
of the 264 accomplished rowing strokes. 120 strokes are
recognized for RA1 and 124 strokes for RA2. Every detected
stroke belongs to a stroke sequence. The AAC missed 20
accomplished strokes. Almost all belong to the start or the end
of a stroke sequence. In addition, one stroke of RA2within the
stroke sequence E5 could not be detected on the body layer.

As previously mentioned, the first and the last stroke of
a stroke sequence are influenced by taking and putting back
the handle of the rowing machine. Thus, it could be expected
that these strokes contain motion data which did not represent
the stroke and therefore these strokes are not recognized
correctly.

Since the additional missed stroke of RA2 is within a
sequence of rowing strokes, we evaluate the processing of
this stroke throughout the ACC in detail. The rowing stroke
was correctly recognized upon the body part layer for the
sensor nodes RW and RL, but not recognized by UB. On the
body part layer of UB, the sequence of the classified motion
fragments of the respective stroke did not match the trained
reference sequence. The reason for this is that, at the frag-
ment layer, the recovery-fragment of the stroke was falsely
classified by UB as a drive-fragment. The raw data of the
corresponding stroke as well as the preceding and the suc-
ceeding stroke are shown in Fig. 7. It can be seen that the
segmentation of the raw data of the stroke sequence matches
with the motion model, but the angular data of the respective
recovery phase differ significantly from the raw data of the
recovery phases of the preceding and the subsequent stroke,
which have been classified correctly by UB.

The number of motion fragments recognized on the
fragment layer (In) and the number of motion fragments
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FIGURE 7. Filtered and segmented angular data of sensor node UB with
respect to the missed stroke of RA2 within rowing sequence E5.

remaining after running through the AAC (Out), as well as
the number of motion fragments separately rejected on the
respective abstraction layers, are shown in Table 2. On the
fragment layer, motion fragments are rejected due to large
deviations of at least one value of the kinematic feature vector
of the respective motion fragment from the trained prototype.
On the body part layer, motion fragments are rejected if
they do not arrive in the chronological sequence as they did
during the training. On the body layer, body movements and
thus the motion fragments associated therewith are rejected
if the respective body part movements are not recognized in
a suitable time interval or if at least one of the sensor nodes
did not recognize a movement at all on the body part layer.

TABLE 2. Number of motion fragments discarded by the delimitation
process on the respective abstraction layers: for the rowing athletes
RA1 and RA2, various sensor nodes, as well as in total.

In detail, for RA1 and RA2 and all sensor nodes
together, 2137 segments are recognized on the fragment layer.
For RA2, more segments were identified than for RA1, which
is due to the longer attachment period. Through cooperation
of the sensor nodes, 31.5% of the recognized segments are
rejected on all certain abstraction layers. Of the rejected
segments at all, 24.5% were rejected at the fragment layer,
41.6% on the body part layer and 33.9% on the body layer.
The smallest number of motion fragments was rejected on the
fragment layer, followed by rejections on the body layer.Most
of the rejections are due to an inappropriate chronological
sequence of recognized motion fragments on the body part
layer.

All sensor nodes and all abstraction layers contribute to the
delimitation of the ‘‘other class’’. The rejection rates on the
respective abstraction layers match the configuration of the
feedback phase as set out in Section VI-C. It can be seen that
the AAC is able of recognizing correctly conducted strokes as
well as faulty ones, while rejecting any motion that belongs
to the ‘‘other class’’. These results represent a very good

recognition and delimitation accuracy and provide a strong
basis for the following assessment of the activity.

C. ASSESSMENT
For the evaluation of the assessment capability of the AAC,
we skip both the first and the last two strokes of each stroke
sequence to ensure that the recognized strokes are not affected
by the starting or by the ending of the stroke sequence.

The assessment of a rowing stroke is made up of the
ratings of the three sensor nodes. These, in turn, are based
on the assessment of two motion fragments each. For each
motion fragment of a rowing stroke, 12 kinematic features are
available for evaluation. In total, the quality assessment of a
recognized rowing stroke on the body layer is based upon the
values of 72 features. Each feature of the recognized rowing
stroke is evaluated by the quality assessment model with
respect to its position within the decision space, as shown
in Fig. 4.

The final assessment of the 216 rowing strokes recognized
on the body layer is shown in Fig. 8. Caused by the respective
rowing error, an average of 25% of the 72 available features
exceed the boundary defined by RTc during the training. The
particular remaining part of the features is within the respec-
tive boundary and rated with 100%. Thus, all ratings on the
body layer are in a small range above 98%.

FIGURE 8. Body layer assessment of 216 rowing strokes, which were
executed in different qualities (C, E1-E5) by RA1 and RA2.

The depicted assessments show a similar pattern of the
ratings of the different quality classes of RA1 and RA2.
As expected, the correctly performed strokes are rated with
the highest quality and clearly stand out from the incor-
rectly performed strokes. 97.8% of the incorrectly performed
strokes are rated with a lower quality than the minimum
quality reached by the respective correctly performed strokes.

Four strokes of E4 executed by RA2 are rated with a quality
above or equal to the minimum quality of respective correctly
performed strokes. The box plots for E1-E5 are comparatively
tall, meaning a larger distribution of the assessments than for
the correctly performed strokes.

The review of the video data, recorded while the rowing
motion was carried out, states the distribution for E1-E5.
Correct strokes are trained as usual for RA1 and RA2. Thus,
rowing strokes at quality C at constant level is easier than the
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FIGURE 9. Detailed fragment layer assessment of the rowing activity performed in various qualities (E1-E5) by RA1.

simulation of a particular technical error. In addition, the error
in strokes of E1 and E4 includes only small deviations to
strokes of respective quality C. The error of the back in
E1 is estimated by the expert for RA2 in average to 6◦ and
for RA1 in average to 14◦ compared to the back in the
respective quality C. The error of the handle for RA1 in
E4 amounts to 4cm in average to the respective quality C
and thus causes only minimal deviations of the angular
motion.

Furthermore, we evaluate the temporal and spatial seman-
tic in terms of which features of which motion fragment and
which body part give reasons for the assessment. By refer-
ence to the aggregation model shown in Fig. 2b, we build
12-D spider plots for the visualization of the feature assess-
ments. To focus on themost characteristic assessment pattern,
we calculate the median for the quality classes E1-E5 from
the feature assessments of all evaluated strokes. The resulting
spider plots for E1 to E5 of RA1 are depicted in Fig. 9. It can
be seen, that for all qualities and for all sensor nodes the y-
axis implies the most relevant data. Furthermore, the motion
fragments, the body parts, as well as the kinematic feature
values which influence the evaluation most, can be deter-
mined from the spider graph. These findings, compared to
the error descriptions in Section VI-B, provide information
on whether the evaluations can be linked with the respective
error descriptions. E.g., the assessment pattern of E1 is dom-
inated by an error of DP-Y as well as AV-Y of UB within the
drive and the recovery respectively. As E1 is defined by an
angular error of the back at the finish and the rotation on the y-
axis of UB correlates to the rotation of the back on the sagittal
plane of the human body, the assessment of E1 conducted by
RA1 can be easily connected to the error description of E1.
Similar observations can be made for E2, E3 and E5.

For E4, a correlation between the error description and
the assessments pattern is less evident. The assessment is
influenced by features assigned to the drive as well as to the
recovery. The worst rated features for E4 are MV-Y (97.2%)
of RL followed by DP-X (97.2%) of RL at the drive and
DP-Y (97.5%) of UB at the drive. We expected to measure
the worst error on RW because E4 is defined by an unfinished
arm movement. The worst feature quality of RW is measured
with DP-Y at the drive (98.6%).

D. CONTRIBUTION OF SENSOR NODES
To evaluate the contribution of different combinations of sen-
sor nodes to the assessment of the rowing activity, we apply
the AAC with the above mentioned configuration to the
possible seven combinations of the three sensor nodes. Based
on the resulting assessments on the body layer, we determine
the absolute separation value (ASV) to compare the ability of
different configurations to distinguish between correctly and
incorrectly accomplished rowing activity. With mErrQ− as the
number of faulty accomplished rowing strokes evaluated with
a lower quality than any correctly accomplished stroke and
mErrall as the number of all faulty accomplished rowing strokes,
ASV is defined as in Eq. 6. Furthermore, we determine the
true positive rate (TPR) as well as the positive prediction
value (PPV) to evaluate the capability of the configurations
to identify the stroke from the continuous motion. With
TP as the number of executed strokes which were recognized
correctly, FN as the number of executed strokes which were
not recognized, and FP as the number of falsely recognized
strokes not belonging to an executed stroke, TPR and PPV
are calculated as in Eq. 7 and Eq. 8.

ASV := mErrQ−/m
Err
all (6)

TPR := TP/(TP+ FN ) (7)

PPV := TP/(TP+ FP) (8)

While TPR states the extent to which the performed
movements of the rowing activity have been recognized,
PPV makes a statement about the extent to which the AAC
can distinguish untrained activity from the trained rowing
activity. ASV, PPV, and TPR are shown in Fig. 10 for each
configuration. The AAC, when based on a single sensor node,
can detect more than 95% of the movements of the rowing
activity. However, the ability to distinguish untrained activ-
ities and erroneous movements differs depending on where
a sensor node has been attached. Based on a single sensor
node attached to the upper body, ASV, PPV and TPR achieve
results of at least 90%,whereas for the single node on the right
wrist, ASV and PPV are much lower. Configurations with
two sensor nodes contain a higher potential to separate faulty
strokes from correct ones than single node configurations,
while the configuration containing all three sensor nodes has
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FIGURE 10. Comparison of the recognition and assessment capability of
various combinations of sensor nodes.

the greatest potential. The sensor node, which is attached
to the wrist, has the least influence on assessment of the
stroke activity, while the node attached to the upper body
contributes most to the separation of faulty executed strokes
from correct executed strokes. The configuration based on the
sensor nodes RL and UB achieves almost the same results as
the configuration based on all three sensor nodes. For both
configurations, 92.4%of all conducted strokes are recognized
and every recognized stroke belongs to a stroke sequence.
However, the additional use of RW results in a 1.7% improved
ASV value.

VIII. DISCUSSION
The results of our case study demonstrate the practical value
of the AAC as almost all strokes of the rowing activity are rec-
ognized, all motion of the ‘‘other class’’ is rejected and clear
differentiation between rowing strokes in different qualities
is possible. Therefore, no further application-related expert
knowledge was implemented in the system. The configura-
tion of the AAC is limited to the specification of the number
of expected motion fragments for the training phase and the
specification of the tolerance parameters δ, γ , and ε for the
feedback phase. Nevertheless, due to the biomechanically
modeled aspects integrated in the abstraction layers of the
process chain, the AAC gives detailed insights concerning
the reason of the activity assessment. For enough significant
deviations of the conducted rowing activity from the trained
activity, the AAC can provide a reasonable feedback, which
can be used to identify the cause of the error and improve the
performance.

With the case study, we have shown the practical applica-
bility of the AAC on indoor rowing motion. The movements
of indoor rowing are in large parts restricted by the system
of the rowing ergometer. This largely results in motion con-
ducted along one DoF of the respective evaluated body parts.
While we show in [42] that the results for segmentation and
recognition of more flexible motion models are promising,
it is necessary to investigate in further studies how the full
system behaves with different motion models and how far the
results are comparable.

We show that multi-layered recognition and reasoning
flows contribute to the successful delimitation of untrained
motion to trained motion. In this context, our experimental
data contain periods of resting between rowing sequences as

well as periods of attaching the sensor nodes to the body.
In further experiments, the proportion of untrained move-
ments should be increased to further evaluate the delimiting
ability of the system.

Due to the multi-layered assessment flow, the AAC can
provide detailed reasons for the biomechanical aspects from
which an assessment is made, e.g., which features of which
motion fragment and which body part defer from the correct
execution of the activity. Based on this information, feedback
can be given to the user. A possible feedback which can be
generated for quality class E1 of the case study is ‘‘Adjust
the angular displacement of the first motion fragment of the
current conducted movement’’. As the IML approach did not
include any knowledge concerning the application depended
technical terms, for formulation of the feedback within the
application depended language an additional semantic layer
is needed. Such layer could be used to map from the biome-
chanical based information provided by the ACC to an
application depended feedback formulation. E.g., for E5 the
feedback could be ‘‘Do more lean back during the drive’’.

The AAC is designed to run distributed on the sensor nodes
of the WBAN. Each sensor node recognizes and evaluates
a part of the motion independently. Depending on the body
part to which a sensor node is attached and to which extent
the corresponding body part is relevant for the execution
of the activity, each sensor node contributes differently to
the overall body evaluation. Based on the exchange of less
data between the sensor nodes, a reliable assessment with
respect to ASV, PPV and TPR of the entire body movement
of an activity is generated, whereupon immediate feedback
to the user is possible when the movement has ended. As the
sensor nodes evaluate parts of the movements independently,
feedback to motion fragments is even possible before the end
of a movement, e.g., directly on the body part by vibration.
In this case, dependent on the particular body part, a less
reliable recognition with respect to PPV and TPR must be
tolerated.

Due to the individual training of the AAC and especially
of the biomechanical segmentation algorithm on a particular
activity, segments of the trained activity can be accurately
separated. In return, the AAC is restricted to a single trained
activity at a time. Nevertheless, one way to support multiple
activities is to combine this approach with existing activity
recognition approaches, based on a slidingwindow segmenta-
tion, to first predict the current performed activity. In a second
step, the parameter for the biomechanical segmentation for
the activity can be loaded to support the activity assessment
based on a precise segmentation of the activity.

Based on an IML approach, the concept of the AAC
enables the generalized assessment of cyclical activities
across application domains. In Section V, we present a def-
inite implementation of the AAC. However, different algo-
rithms can be used for the respective processes of the process
chain. For further development and evaluation of the AAC,
the integration into the open source framework SPINE is
conceivable since SPINE already supports the basic processes
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of the ARC. In particular, the task-oriented approach pre-
sented in [32] can be beneficial to the development and the
evaluation of different algorithms for particular processes and
help to manage the complexity of the process chain.

IX. CONCLUSION
We summarize the current solution space for quality quantifi-
cation in AR.While for AR a lot of work towards generalized
systems exist, this is not the case for AA. Moreover, most
of the available work require the centralized computation
of the data of the sensor nodes. Hence, we introduced and
analyzed the concept of AAC, which is a generalized train-
able activity assessment chain for distributed online evalu-
ation of periodic activity within WBANs. The AAC lever-
ages the position of a characteristic set of kinematic fea-
tures in the decision space to reject untrained motion and to
achieve a fine-grained evaluation of biomechanically distinct
motion fragments. To include spatial and temporal semantics,
AACfirst decomposes the humanmotion and then aggregates
multiple levels of the resulting hierarchical structure. Our
case study shows that AAC can be applied with minor config-
uration effort to indoor rowing activity and is not only able to
clearly distinguish rowing activity from other motion but also
to provide a detailed reasonable assessment of rowing strokes
in different qualities. Thus, an immediate informational feed-
back to the user concerning the cause of the error, which
is calculated fully distributed within the WBAN, becomes
possible. Since each sensor node can recognize and evaluate
a part of the motion of an activity independently, immediate
feedback to motion parts is possible even during the execu-
tion of the motion. The results of our study are promising.
In future work, we will compare AAC to additional motion
scenarios as well as evaluate the configuration parameters of
AAC in detail. In addition, we will investigate an additional
application-dependent semantic layer, which is able to map
from the biomechanically based assessment of an activity to
a domain-specific formulated error description.
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