210,914 research outputs found

    On Usage Control for GRID Systems

    Get PDF
    This paper introduces a formal model, an architecture and a prototype implementation for usage control on GRID systems. The usage control model (UCON) is a new access control paradigm proposed by Park and Sandhu that encompasses and extends several existing models (e.g. MAC, DAC, Bell-Lapadula, RBAC, etc). Its main novelty is based on continuity of the access monitoring and mutability of attributes of subjects and objects. We identified this model as a perfect candidate for managing access/usage control in GRID systems due to their peculiarities, where continuity of control is a central issue. Here we adapt the original UCON model to develop a full model for usage control in GRID systems. We use as policy specification language a process description language and show how this is suitable to model the usage policy models of the original UCON model. We also describe a possible architecture to implement the usage control model. Moreover, we describe a prototype implementation for usage control of GRID computational services, and we show how our language can be used to define a security policy that regulates the usage of network communications to protect the local computational service from the applications that are executed on behalf of remote GRID users

    On Usage Control for Data Grids: Models, Architectures, and Specifications

    Get PDF
    This thesis reasons on usage control in Data Grids, by presenting models, architectures and specifications. This work is a step toward a continuous monitoring and control of the data access and usage in a Data Grid. First, the thesis presents a background on Grids, security, and security for Grids, by making an abstraction to the current Grid implementations. We argue that usage control in Data Grids should be considered as a process composed by two black boxes. We analysed the requirements for Grid security, and propose a distributed usage control model suitable for Grids and distributed systems alike. Then, we apply such model to a Data Grid abstraction, and present a usage control architecture for Data Grids that uses the functional components of the currents Grids. We also present an abstract specification for an enforcing mechanism for usage control policies. To do so, we use a formal requirement engineering methodology with a bottom-up approach, that proves that the specification is sound and complete. With the methodology, we show formally that such abstract specification can enforce all the different typologies of usage control policies. Finally, we consider how existing prototypes can fit in the proposed architecture, and the advantages derived from using Semantic Grid techologies for the specification of policies subjects and objects

    A dependable model for attaining maximum authetication security procedure in a grid based environment

    Get PDF
    Grid computing is an emergent computing innovation which offers endless access to computing infrastructure across various organizations (academia and industry). Since this technology allows aggregation of various computer systems for usage by different users to run applications, the information stored on it which may be sensitive and private, remains vulnerable. According to related research on the attribute based access control for grid computing there is no adequate and appropriate security mechanism to authorize and authenticate users before accessing information on a grid system. The issue of security in grid technology has not been fully addressed even though it is a precondition for optimizing grid usability. Having realized the paucity of security guarantees, this research work focuses on developing a model for securing data and applications deployed on a grid on the basis of double identity authentication and public key. The implementation of the model has undoubtedly guaranteed the security of sensitive information on a grid vis-α-vis strict adherence to security policies and protocols

    A Dependable Model for Attaining Maximum Authentication Security Procedure in a Grid Based Environment

    Get PDF
    Grid computing is an emergent computing innovation which offers endless access to computing infrastructure across various organizations (academia and industry). Since this technology allows aggregation of various computer systems for usage by different users to run applications, the information stored on it which may be sensitive and private, remains vulnerable. According to related research on the attribute based access control for grid computing there is no adequate and appropriate security mechanism to authorize and authenticate users before accessing information on a grid system. The issue of security in grid technology has not been fully addressed even though it is a precondition for optimizing grid usability. Having realized the paucity of security guarantees, this research work focuses on developing a model for securing data and applications deployed on a grid on the basis of double identity authentication and public key. The implementation of the model has undoubtedly guaranteed the security of sensitive information on a grid vis-a-vis strict adherence to security policies and protocols

    Supporting security-oriented, collaborative nanoCMOS electronics research

    Get PDF
    Grid technologies support collaborative e-Research typified by multiple institutions and resources seamlessly shared to tackle common research problems. The rules for collaboration and resource sharing are commonly achieved through establishment and management of virtual organizations (VOs) where policies on access and usage of resources by collaborators are defined and enforced by sites involved in the collaboration. The expression and enforcement of these rules is made through access control systems where roles/privileges are defined and associated with individuals as digitally signed attribute certificates which collaborating sites then use to authorize access to resources. Key to this approach is that the roles are assigned to the right individuals in the VO; the attribute certificates are only presented to the appropriate resources in the VO; it is transparent to the end user researchers, and finally that it is manageable for resource providers and administrators in the collaboration. In this paper, we present a security model and implementation improving the overall usability and security of resources used in Grid-based e-Research collaborations through exploitation of the Internet2 Shibboleth technology. This is explored in the context of a major new security focused project at the National e-Science Centre (NeSC) at the University of Glasgow in the nanoCMOS electronics domain

    Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Get PDF
    The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery's age and usage

    TransEnergy - a tool for energy storage optimization, peak power and energy consumption reduction in DC electric railway systems

    Get PDF
    Electrified railways are large users of electrical power at a time when grid supply conversion to renewable energy production is making supply to the grid less predictable and environmental concerns demand reduction in energy use. These developments make it desirable to control and reduce both total energy usage and peak power demand of railway systems. While AC systems have a well-developed ability to regenerate power to the grid, high transmission losses in DC systems make local storage of energy a more attractive option. A model has been created integrating a versatile and configurable database-driven generic rail network model with a power supply network representative of DC electric railways. The work is intended as a high-level design tool to explore system wide behaviors prior to detailed final design modelling of specific technologies. To validate our method, predictions of train motion and power demand have been compared with data from the Merseyrail network in the UK. Simulating a full day of traffic for the Wirral Line of Merseyrail (237 services on two routes) with the assumption of energy storage being available at each electrical sub-station revealed the dependence of storage effectiveness on the timetable and traffic density at specific locations. The model is combined with a genetic algorithm to optimise system parameters (storage size, charge/discharge power limits, timetable, train driving style/trajectory) and also enables identification of cases in which poorly specified storage technology would have little impact on peak power and energy consumption

    Demand Response of HVACs in Large Residential Communities Based on Experimental Developments

    Get PDF
    Heating, ventilation, and air-conditioning (HVAC) systems contribute the largest electricity usage for a residential community. Modeling of the HVAC systems facilitate the study of demand response (DR) at both the residential and the power system level. In this paper, the equivalent thermal model of a reference house was proposed. Parameters for the reference house were determined based on the systematic study of experimental data obtained from fully instrumented field demonstrators. The aggregated HVAC load was modeled based on the reference house while considering a realistic distribution of HVAC parameters derived from data that was provided by one of the largest smart grid field demonstrators in rural America. A sequential DR as part of a Virtual Power Plant (VPP) control was proposed to reduce both ramping rate and peak power at the aggregated level, while maintaining human comfort according to ASHRAE standard

    Involvement of smart end-users in a Smart Grid

    Get PDF
    To reach the 20-20-20 goals set by EU in 2009, all parts of the electricity system must be made more efficient. The previous fit-and-forget system must be left behind for a more active grid design. This also means that end-users must become an active part of the power grid. Consumers should be able to actively sell and buy their own energy and control their own usage of energy, or allow for a third party to handle this. A large part of the smart grid will be realized by using computer technology and telecommunication, which can send information to the different parts of the electricity grid. This makes it possible to make complex decisions, based on large quantities of collected data, concerning the most beneficial grid control decisions. This also enables energy efficiency throughout the entire electricity grid, all the way from production through transmission and distribution, including customer premises. This will help Finland reach the 202020 goals, but also achieve a function of the electricity grid that aligns with today’s expectations and demand for functionality. In this thesis the features that may arise from the development of a new smarter electricity grid has been investigated and how these functions align with the ordinary electricity consumers' interest and expectations on functionality. Demand response, distributed generation, energy storage systems, home automation systems and interactive user interfaces are some of the discussed features. The behavior of the end-users was researched through literature studies and by analyzing customer contacts at Fortum. The analysis showed two main reasons for contacting Fortum. Forced contacts, like customers moving, are matters that could be solved to some extent by interactive user-interfaces. The investigative contacts showed customer interest in electricity prices and agreements but also problems with understanding the electricity bill. In this thesis the Rogers' model for diffusion of innovations has also been described and used to analyze smart grid and smart house technology. The main result of the thesis is the definition of a collection of smart house functionalities that would serve as a good base for the development of added value services.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    Transmission and Distribution Co-Simulation and Applications

    Get PDF
    As the penetration of flexible loads and distributed energy resources (DERs) increases in distribution networks, demand dispatch schemes need to consider the effects of large-scale load control on distribution grid reliability. Thus, we need demand dispatch schemes that actively ensure that distribution grid operational constraints are network-admissible and still deliver valuable market services. In this context, this work develops and evaluates the performance of a new network-admissible version of the device-driven demand dispatch scheme called Packetized Energy Management (PEM). Specifically, this work develops and investigates the live grid constraint-based coordinator and metrics for performance evaluation. The effects of grid measurements for a practical-sized, 2,522-bus, unbalanced distribution test feeder with a 3000 flexible kW-scale loads operating under the network-admissible PEM scheme is discussed. The results demonstrate the value of live grid measurements in managing distribution grid operational constraints while PEM can effectively deliver frequency regulation services. Increased penetration of flexible loads and DERs on distribution system (DS) will lead to increased interaction of transmission and distribution (T&D) system operators to ensure reliable operation of the interconnected power grids, as well as the control actions at LV/MV grid in aggregation will have significant impact on the transmission systems (TS). Thus, a need arises to study the coupling of the transmission and distribution (T&D) systems. Therefore, this work develops a co-simulation platform based on decoupled approach to study integrated T&D systems collectively. Additionally, the results of a decoupled method applied for solving T&D power flow co-simulation is benchmarked against the collaborator developed unified solution which proves the accuracy of the decoupled approach. The existing approaches in the literature to study steady-state interaction of TS-DS have several shortcomings including that the existing methods exhibit scalability, solve-time and computational memory usage concerns. In this regard, this work develops comprehensive mathematical models of T&D systems for integrated power flow analysis and brings advancements from the algorithmic perspective to efficiently solve large-scale T&D circuits. Further, the models are implemented in low-cost CPU-GPU hybrid computing platform to further speed up the computational performance. The efficacy of the proposed models, solution algorithms, and their hardware implementation are demonstrated with more than 13,000 nodes using an integrated system that consists of 2383-bus Polish TS and multiple instances of medium voltage part of the IEEE 8,500-node DS. Case studies demonstrate that the proposed approach is scalable and can provide more than tenfold speed up on the solve time of very large-scale integrated T&D systems. Overall, this work develops practically applicable and efficient demand dispatch coordinator able to integrate DERs into DS while ensuring the grid operational constraints are not violated. Additionally, the dynamics introduced in the DS with such integration that travels to TS is also studied collectively using integrated T&D co-simulation and in the final step, a mathematically comprehensive model tackles the scalability, solve-time and computational memory usage concerns for large scale integrated T&D co-simulation and applications
    • 

    corecore