
On Usage Control for Data Grids:
Models, Architectures, and

Specifications

Federico Stagni

Submitted in total fulfilment of the requirements
of the degree of Doctor of Philosophy

March 2009

University of Ferrara

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università di Ferrara

https://core.ac.uk/display/158821365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis reasons on usage control in Data Grids, by present-
ing models, architectures and specifications. This work is a step
toward a continuous monitoring and control of the data access and
usage in a Data Grid. First, the thesis presents a background on
Grids, security, and security for Grids, by making an abstraction
to the current Grid implementations. We argue that usage con-
trol in Data Grids should be considered as a process composed
by two black boxes. We analysed the requirements for Grid se-
curity, and propose a distributed usage control model suitable for
Grids and distributed systems alike. Then, we apply such model
to a Data Grid abstraction, and present a usage control architec-
ture for Data Grids that uses the functional components of the
currents Grids. We also present an abstract specification for an
enforcing mechanism for usage control policies. To do so, we use
a formal requirement engineering methodology with a bottom-up
approach, that proves that the specification is sound and complete.
With the methodology, we show formally that such abstract spec-
ification can enforce all the different typologies of usage control
policies. Finally, we consider how existing prototypes can fit in
the proposed architecture, and the advantages derived from using
Semantic Grid techologies for the specification of policies subjects
and objects.

1

Declaration
This dissertation is the result of my own work, except where explicit

reference is made to the work of others, and has not been submitted for
another qualification to this or any other university

2

For my father

3

Contents

1 Introduction 9
1.1 Problem Statement . 9
1.2 Approach . 9
1.3 Organization of the thesis . 10

I Background On Grids and Security 11

2 Notions About Grids 13
2.1 Grid systems definitions and abstractions 13

2.1.1 Grid and the power Grid 16
2.2 On the construction of Grid systems 17

2.2.1 Grids Architectural Layers 17
2.2.2 The OGF and OGSA 18

2.3 Grid Systems Taxonomy . 19
2.4 Notions about Data Grids . 21

2.4.1 An abstraction of a Data Grid 22

3 Notions about Computer Security 27
3.1 The CIA triad . 27
3.2 Access Control . 28

3.2.1 Authentication, authorization, accounting and auditing 29
3.3 Usage Control . 30
3.4 Security Frameworks . 31

4 Notions About Usage Control For Grids 35
4.1 Basic Grid usage control concepts 35

4.1.1 Authentication . 36
4.1.2 Authorization . 37

4.2 Models for usage control on Data Grids 38
4.2.1 The “Grid usage” model 38
4.2.2 The “local usage” model 39

4.3 Policy framework models for Data Grids 40
4.4 OGSA Recommandations . 42

II Working Instruments 45

5 Security Policy Models 47
5.1 Categorization of Policy Models 47
5.2 The UCONabc Usage Control Model 48

5.2.1 UCON informal specification 49
5.2.2 UCON formal specification 53

5

CONTENTS

5.2.3 An UCON policy example 56

6 Software Engineering Instruments 59
6.1 Notions about Software Development Process 59
6.2 Software Architectures . 61
6.3 Formal methods . 61
6.4 Goal-oriented Approaches and KAOS 63
6.5 Engineering a Security Software 65

III Models, Architectures, and Specifications 69

7 Foundations for Usage Control on Data Grids 71
7.1 Security Requirements for Grids 71

7.1.1 General Security Requirements 71
7.1.2 Requirements for Data Grids Usage Control 73

7.2 A Grid Usage Control Model 76
7.2.1 The Distributed Usage Control Model 76
7.2.2 D-UCM for Data Grids 78

8 Grid Authentication for Usage Control systems 83
8.1 The Virtual Organization Membership Service 83
8.2 Recent VOMS enhancements 84

8.2.1 The OASIS Security Assertion Markup Language . . . 85
8.2.2 Service Interface . 86
8.2.3 Asserting Attributes Using SAML Assertions 86
8.2.4 Sending SAML Assertions to Grid Services 88

8.3 Scenarios . 88
8.4 Related Works and VOMS Alternatives 89

9 Controlling the Grid Authorization: a Usage Control Archi-
tecture for Data Grids 93
9.1 A Concrete Data Grid Usage Control Architecture 93

9.1.1 Architecture Analysis 99
9.2 An Abstract Specification of Enforcement Mechanism for Us-

age Control . 100
9.3 Related Works . 104

9.3.1 The Gridmap File . 104
9.3.2 The Community Authorization Service 105
9.3.3 G-PBox . 105
9.3.4 PERMIS . 105
9.3.5 GOLD . 106
9.3.6 The GT4 AuthZ framework 106
9.3.7 OASIS . 107

6

CONTENTS

9.3.8 GPlazma . 107
9.3.9 Local Centre Authorization Service (LCAS) 107
9.3.10 The gLite Java authorization framework (gJAF) . . . 107

10 Validating Policy Enforcement using a Goal-Oriented Ap-
proach 109
10.1 A Methodology for Validating the Enforcement of UCON

Policies . 109
10.1.1 Goal-based Policy Refinement 110
10.1.2 Goal Operationalisation 112

10.2 Validating the Enforcement Mechanism 112
10.2.1 UCON PreA0 . 112
10.2.2 UCON PreA1 . 116
10.2.3 UCON PreA3 . 121
10.2.4 UCON OnA0 . 125
10.2.5 UCON OnA1 . 127
10.2.6 UCON OnA2 . 130
10.2.7 UCON OnA3 . 133
10.2.8 UCON PreB0 . 136
10.2.9 UCON PreB1, UCON PreB3, UCON OnB0, UCON

OnB1, UCON OnB2, UCON OnB3 139
10.2.10UCON PreC0 . 139
10.2.11UCON OnC0 . 142
10.2.12Denying and Revoking the access 144
10.2.13Correcteness of the Operationalisation 152
10.2.14Encoding a Strategy 153

10.3 Related Works . 153

11 Conclusion and Future Work 155
11.1 Summary and Results . 155
11.2 Future Works . 158

11.2.1 On Completing the Software Engineering Process . . . 158
11.2.2 On the Use of Semantic Grid Technologies 159

7

1
Introduction

1.1 Problem Statement

Data Grids are an innovative technology taking advantage of existing com-
puter science concepts in file systems, database systems and Grid comput-
ing. A Data Grid provides services that help users discover, transfer, and
manipulate large datasets stored in distributed repositories and create and
manage copies of these datasets. However, as in any resource sharing en-
vironment, robust and rigorous treatment of data security in a Data Grid
is vital. Moreover, since data is being shared over multiple administrative
domains over the Grid, continuous monitoring and control of the data access
is required.

This thesis wants to solve some of the Data Grids security problems, by
applying usage control techniques. Usage control extends traditional access
control by controlling data access as well as usage.

1.2 Approach

We consider Grid security as a process composed by two black boxes: Grid
Authentication and Grid Authorization. We present solutions for both.

We develop here a usage control model suitable for multi-authoritative
distributed systems. We base this model on the UCONabc model proposed
by Park and Sandhu [77]. One of the main contributions of the thesis is
a Data Grid usage control architecture using the functional components of
the current Grids, as presented by the Open Grid Forum (OGF) group on
Grid authorization [18].

In doing so, we use formal goal-oriented methodology elaborated from
KAOS [99].

We also make a proposal for extending the Grid usage control architec-
ture with Semantic information for the specification of UCON subjects and
objects. This way we can control the policy granularity.

9

CHAPTER 1. INTRODUCTION

1.3 Organization of the thesis

The thesis has been divided in three Parts. Part I is about Grids theory and
systems, general security concepts and security for Grids. It includes Chap-
ter 2, which explains what is a Grid, Chapter 3, which encapsulates general
concepts found in the computer security world, and Chapter 4, which ex-
plains some basic notions about controlling the usage of Grid data. These
notions will remain valid throughout the whole thesis. Part II summarizes
the working instruments used for producing the results of the thesis. It is
composed by two Chapters. Chapter 5 explains what is a security policy
model, focussing on the UCON usage control model. Chapter 6 explains the
software engineering instruments used in the proceedings of the work. Part
III explains the models, architectures and specifications produced in the the-
sis. Chapter 7 explains the foundations for developing a software for usage
control for Data Grids, including a distributed usage control model. Chapter
8 is about the re-engineering of a software, the VOMS tool, which provides
an extended Grid authentication. Chapter 9 shows two architectures for
Data Grid usage control, focussing on the authorization part. Chapter 10
shows a methodology for verifying a formal software specification using the
KAOS formal requirement engineering methodology. Then, the methodol-
ogy is applied for verifying that a formal abstract architecture specification,
showed in Chapter 9, is correct. Finally, in Chapter 11 readers may find the
conclusions of the thesis, and ideas for future works.

10

Part I

Background On Grids and
Security

11

2
Notions About Grids

This Chapter serves as an introduction for Grids. The work produced within
this thesis is done having in mind a definite vision of what is a Grid. There’s
definitely the need for such a vision. Throughout the years, many commer-
cial and non-commercial institutes produced implementations of some kind
of a distributed system, calling it “a Grid”. It’s fair to say that the term
“Grid” now assumes different meanings according to the different implemen-
tors.

We don’t deal with any particolar implementation, but we deal with a
vision of what’s a Grid and its purpose. This Chapter explains a brief Grid
taxonomy, and uses abstractions for describing the Grid elements. As is our
goal, we focus on Data Grids.

2.1 Grid systems definitions and abstractions

Grid systems and technologies have evolved over nearly a decade; yet, there
is still no widely accepted definition for Grids [73]. Grids can be viewed
as successors to distributed computing environments, but still no one ar-
ticulated the real differences between the two. One of the most accepted
common views defines the Grid as a high-performance distributed environ-
ment; some Grid practitioners take into consideration its geographically
distributed, multi-domain feature, while others define Grids based on the
number of resources they unify, and so on.

In [33], Foster defines the Grid as

Flexible, secure, coordinated resource sharing among dynamic
collections of individuals, institutions, and resources.

In [41] and in [39], Grimshaw talks of the Grid as

A single seamless computational environment in which cycles,
communication, and data are shared, and in which the worksta-
tion across the continent is no less than one down the hall.

and as

13

CHAPTER 2. NOTIONS ABOUT GRIDS

A wide-area environment that transparently consists of work-
stations, personal computers, graphic rendering engines, super-
computers and non-traditional devices: e.g., TVs, toasters, etc...

In [40], the same author defines the Grid as

A collection of geographically separated resources (people, com-
puters, instruments, databases) connected by a high speed net-
work [...distinguished by...] a software layer, often called mid-
dleware, which transforms a collection of independent resources
into a single, coherent, virtual machine.

We believe that a good definition of a Grid should take in consideration
abstraction and resource virtualization. According to Nemeth and Sun-
deram [72], the key properties that make Grid different from conventional
distributed systems are:

1. resources are abstracted and form virtual pools;

2. users who require access to resources of the virtual pools are differ-
ent from users who have valid accounts and login rights to physical
resources;

3. mapping functions are available for entities translating from virtual to
physical resources and users;

4. the number of resources in the pool is in the order of thousands or
greater.

Grids are then realized by providing users and resource abstractions, and
mapping functionalities.

Grid users abstraction through Virtual Organizations

A Grid users abstraction is realized through the concept of Virtual Organi-
zation (VO) [33]. In a VO, a varying number of participants with various
degrees of prior relationships, join in order to share resources. Resource
sharing is conditional: Resource Providers (RPs) make resources available
subject to a number of constraints on who can use them, when, and for what
reasons. Such constraints are agreed between RPs and VOs. The concept
of Virtual Organizations is what distinguishes the Grid as a concept from
other known domains of computing (such as distributed computing, clus-
ter computing). VO participants are abstract users that are dynamically
mapped into physical ones during the assignment of a process to a physical
resource. Within a certain VO, the user can have a number of different
attributes. These attributes can be considered during the mapping phase
to improve the capabilities for a dynamic distribution of resources. Usually

14

2.1. GRID SYSTEMS DEFINITIONS AND ABSTRACTIONS

VO managers can add or withdraw a user membership, and they can update
the user attributes like group or role. In fig. 2.1 we provide an overview
of the theoretical relationships that take place inside a VO between users,
RPs, resources and middlewares.

Virtual
Organization

Resource

User
Resource
Owners

1 *

1

*

*

1 *

*

*

1 *

Figure 2.1: Relationships in a Virtual Organization [104]

Resource Abstraction

Resource abstraction is realized through virtual pools. Grid Information
systems provide Grid users with attributes and capabilities of the underlying
resource. VO users don’t need a priori knowledge about the actual type,
state and features of the physical resources part of the dynamic pool to
which (s)he has access rights. VO users can delegate to a Grid system the
selection of a suitable physical resource that matches the description of the
abstract one. In this way, it is possible to optimize the usage of the available
resources amongst a large community of users.

Mapping Functionalities

Mapping functionalities provide a map between physical resources and phys-
ical users for the actual execution of the user process. To do so, mapping
services use informations provided by the virtual layers of abstract resources
and abstract users. Such a mapping is performed as an effect of a user re-
quest.

Normally, a site administrator can decide to map a certain group of users
of a certain VO to a set of resources with some kind of priority access. The
mapping performed by the Grid system should be able to deal with either

15

CHAPTER 2. NOTIONS ABOUT GRIDS

Figure 2.2: Abstraction of a Grid System [4]

the characteristics that the target resource must have and the characteris-
tics that the target resource may have. It can also take into account the
optimization of the resource distribution.

Figure 2.2, which is taken from [4], shows the whole virtualization pro-
cess.

2.1.1 Grid and the power Grid

The Grid is usually compared with an electrical power Grid. For instance,
electrical devices can be plugged into sockets, which provide a well-defined
quantity of power. The user of the device isn’t concerned as to where the
power comes from, nor how it is delivered. It is also irrelevant whether
the power was generated by a coal, nuclear or hydroelectric plant: this
heterogeneity is masked by the power Grid.

Recently, this analogy have been expounded in [22], where the authors
highlight some differences between the power Grid and the computational
Grids. Computational Grids must harness not only the processing power of
hardware resources such as individual Personal Computers (PCs) and site
clusters, but must also deal with more complex resources such as databases.
Whereas any device with a plug may draw power from the electrical power
Grid, there is no ‘universal adapter’ for Grid computing systems. Many
heterogeneous compute resources exist, and it must be possible for all to
gain access to the Grid (inter-Grid compatibility must also be assured).
Likewise, software applications running on the Grid need an easy way to
‘plug in’ to computing resources. Another important point is security: in

16

2.2. ON THE CONSTRUCTION OF GRID SYSTEMS

a Grid environment, providing a secure way for users to run applications
on remote resources, which they do not necessarily own, is still not clear.
Many of the issues regarding Grid security will be introduced in subsequent
Sections.

It is fair to say that the added complexity of Computational Grids limits
the effectiveness of the power Grid analogy. However, the idea of computing
power as a utility is certainly appealing and could eventually become a
reality. This potential is only beginning to be realised with Grid computing
but with a steadily increasing requirement for computational power, Grid
systems are set to become more prevalent through necessity.

2.2 On the construction of Grid systems

Grids are complex computing systems. For their construction, there are
three fundamental Grid blocks to consider:

1. Grid Design Grid engineers must specify an overall design before
they start work. The design identifies the fundamental components of
a Grid’s purpose and function. Usually a design is called a Grid archi-
tecture (for more in-depth explanations on the software architecture
concept, see Section 6.2).

2. Hardware As every computing infrastructure, a Grid depends on
underlying hardware. Simply put, without computers and networks,
you can not have a Grid!

3. The middleware The middleware is the crucial software component
of the Grid. Without a middleware, Grid computing becomes impossi-
ble. Since Grid resources are different and disparate, there’s the need
for a software stack enabling enterprise application integration to cre-
ate a coherent whole: that’s the middleware. The middleware concept
can be found also in operating systems software theory and in some
kind of applications software.

2.2.1 Grids Architectural Layers

A Grid architecture is often described in terms of “layers”, where each layer
has a specific function. The layers that we consider are the usual Grid Layers
as described in [51].

• The bottom layer is the network layer, which connects Grid resources.
Networks are an essential piece of the Grid hardware. Networks link
the different computers that form part of a Grid, allowing them to be
handled as one huge computer.

17

CHAPTER 2. NOTIONS ABOUT GRIDS

• Next in line is the resource layer, through which actual Grid resources,
such as computers, storage systems, electronic data catalogues, sensors
and telescopes are connected to the network. The physical infrastruc-
ture of a Grid is often called the Grid“fabric”.

• The third layer is the middleware layer which, as said, provides the
tools that enable the various elements to participate in a Grid. The
middleware layer may be composed of several layers itself, like a layer
of resource and connectivity protocols, and a higher layer of collective
services. Protocols used inside resource and connectivity layers handle
all “Grid-specific” network transactions between different computers
and Grid resources. The collective services use information protocols,
which obtain information about the structure and state of the resources
on the Grid, and management protocols, which negotiate access to
resources in a uniform way.

• The top-layer is the application layer ; this is the layer that Grid users
“see” and interact with. Grid applications can follow in a wide vari-
ety, althogh right now Grid technologies are mailny used by large scale
scientific applications known to be part of the vast e-Science world.
e-Science is a discipline that envisages using high-end computing, stor-
age, networking and Web technologies together to facilitate collabora-
tive, data-intensive scientific research. This requires new paradigms in
Internet computing that address issues such as multi-domain applica-
tions, co-operation and co-ordination of resource owners and blurring
of system boundaries. Grid computing is one such paradigm.

These layers are shown in Figure 2.3, which some readers may remind
from [38]. Some authors make further differentations among the layers, but
for what concern this thesis it is enough to have this simple four-layers
granularity.

In Section 4.3 we will refer to this kind of classifications when defining
the different policy framework models for Grids. In that case we will use an
even simpler three-layers granularity.

2.2.2 The OGF and OGSA

Key to the realization of this Grid vision is standardization. Ensuring fun-
damental Grid requirements like interoperability, security, robustness and
scalability between heterogeneous systems can be achieved using a Web Ser-
vice Architecture (WSA) [13], which is an incarnation of a Service Oriented
Architecture (SOA) in the context of the World Wide Web. SOA is the lead-
ing architectural style of the newly developed Grid technologies. Therefore,
in order to achieve cross-Grid interoperability, the scientific community de-
fines and implements standard interfaces for common services in the light of

18

2.3. GRID SYSTEMS TAXONOMY

Figure 2.3: Grid layers [38]

a SOA context. Examples of such interfaces are the Basic Execution Service
(BES) [30], that provides a Web Service (WS) interface for submitting jobs
to computational resources, the Data Access Integration Service (DAIS) [5],
and the Resource Usage Service (RUS) [2].

The Open Grid Forum (OGF) is a community of users, developers, and
vendors leading the global standardization effort for Grid computing. The
work of OGF is carried out through community-initiated working groups,
which develop standards and specifications in cooperation with other leading
standards organizations, software vendors, and users. The OGF produced
the Open Grid Services Architecture (OGSA) [32], which describes an ar-
chitecture for a service-oriented Grid environment for business and scientific
use.

2.3 Grid Systems Taxonomy

After a dozen years’ research on Grids, scientists are now capable to differ-
entiate between different kind of Grids. According to [52], Grid systems can
be placed into the categories shown in Figure 2.4, which are Computational
Grids, Data Grids and Service Grids.

The Computational Grid category denotes systems that have higher ag-
gregate computational capacity available for single applications than the
capacity of any constituent machine in the system. These systems can be
further subdivided into two more categories:

19

CHAPTER 2. NOTIONS ABOUT GRIDS

Grid Systems

Computat ional
Grid

Data
Grid

Service
Grid

Distr ibuted
Super Computating

High
Throughput

On-Demand

Collaborative

Mult imedia

Figure 2.4: A Grid system taxonomy [105]

• a distributed supercomputing Grid executes the application in parallel
on multiple machines to reduce the completion time of a job. Appli-
cations that require distributed supercomputing are grand challenge
problems such as weather modeling.

• A high throughput Grid increases the completion rate of a stream of
jobs and are well suited for ‘parameter sweep’ type applications such
as the Monte Carlo simulations which are widely used by HEP (High
Energy Physics) experiments.

The Data Grid category is for systems that provide an infrastructure for
synthesizing new information from data repositories such as digital libraries
or data warehouses that are distributed in a wide area network. Compu-
tational Grids also need to provide data services but the major difference
between a Data Grid and a Computational Grid is the specialized infras-
tructure provided to applications for storage management and data access.
Many Grid initiatives, like the EGEE1 project, are working on developing
large-scale data organization, catalog, management, and access technologies.
Data Grid technologies are one the main subjects of this thesis. That’s why
a more in-deep view into data Grids can be found in Section 2.4.

The service Grid category is for systems that provide services that are
not provided by any single machine. This category is further subdivided:

• a collaborative Grid connects users and applications into collabora-
tive workgroups. These systems enable real time interactions between
humans and applications via a virtual workspace.

• An on-demand Grid dynamically aggregates different resources to pro-
vide new services.

• A multimedia Grid provides an infrastructure for real-time multimedia
applications.

1Enabling Grids for E-sciencE

20

2.4. NOTIONS ABOUT DATA GRIDS

Even if most ongoing research activities developing Grid systems fall
into one of the above categories, it should be noted that these classifications
are starting to become conceptual today, since many of the current Grid
systems exhibit the functionalities of several categories. Just to make an
example, the already cited EGEE project is the result of the combination of
multiple past projects, and now encompasses views and functionalities from
computational, data and service Grids.

2.4 Notions about Data Grids

In Section 2.2.1 we said that today many Grid applications follow in the vast
e-Science world. Most of the times, these applications involve the production
of large datasets (viz. data collections) from simulations or from large-
scale experiments. Datasets are typically stored on mass storage systems,
such as tape libraries or disk arrays. The datasets must be accessed by
users in different locations. Users may create local copies or replicas of
the datasets to reduce latencies involved in wide-area data transfers. A
replica may be a complete or a partial copy of the original dataset. A
replica management system or data replication mechanism allows users to
create, register, and manage replicas, or to update new replica versions if
the original datasets are modified. Some systems may also create replicas
on its own. Metadata, or data about data, is information that describes the
datasets. A metadata system could contain attributes such as name, time
of creation, size on disk, and time of last modification. Metadata may also
contain specific information such as details of the process that produced the
data. A replica catalog contains information about locations of datasets and
associated replicas and the metadata associated with these datasets. Users
query the catalog using metadata attributes to conduct operations such as
locating the nearest replica of a particular dataset.

These datasets have to be shared among large groups of researchers
spread worldwide, and their analysis is highly compute-intensive requiring
dedicated resources. Data Grids primarily deal with providing services and
infrastructure for distributed data-intensive applications, and thus are par-
ticularly useful for running E-science applications.

Often cited examples for Data Grids are the ones being set up for an-
alyzing the huge amounts of data that are being generated by the CMS
(Compact Muon Solenoid), ATLAS (A Toroidal LHC ApparatuS), ALICE
(A Large Ion Collider Experiment), and LHCb (LHC beauty) experiments
at the Large Hadron Collider (LHC) [55] at CERN. These Data Grids will
involve thousands of physicists spread over hundreds of institutions world-
wide and will be replicating and analyzing terabytes of data daily.

Data Grids [105, 21] are an innovative technology taking advantage of ex-
isting computer science concepts in file systems, database systems and Grid

21

CHAPTER 2. NOTIONS ABOUT GRIDS

computing. A Data Grid provides services that help users discover, transfer,
and manipulate large datasets stored in distributed repositories and create
and manage copies of these datasets. As a minimum, a Data Grid provides
two basic functionalities: a high-performance reliable data transfer mecha-
nism and a scalable replica discovery and management mechanism. In order
to enable researchers to derive maximum benefits out of the infrastructure,
there are a set of functionalities that every Data Grid should be able to
perform:

• ability to search through numerous available datasets for the required
dataset;

• ability to discover suitable data resources for accessing the data and
computational resources for performing analysis;

• ability to select suitable computational resources and process data on
them;

• ability for resource owners to manage access permissions.

Thus, seamless organisation, well-defined architecture and intelligent re-
source allocation and scheduling are also required to ensure that users realise
their utilities from the Data Grid infrastructure.

The explosion in popularity of Data Grids in scientific and commercial
settings has led to a variety of systems offering solutions for dealing with
distributed data-intensive applications. Unfortunately, this has also led to
difficulty in evaluating these solutions because of the confusion in pinpoint-
ing their exact target areas. Also, there exist a few different mechanisms
with similar properties for supporting a distributed data-intensive infras-
tructure.

In order to help ourselves with future reasonings on Data Grids security,
following within this Section we are providing a Data Grid abstraction.
Interested readers may find a good taxonomy for Data Grids in [105].

2.4.1 An abstraction of a Data Grid

Data Grids are distributed system which can contain a variety of data re-
sources. These resources may use different data models to structure the
data, different physical media to store it, different software systems to man-
age it, different schema to describe it, and different protocols and interfaces
to access it. The data may be stored locally or remotely; may be unique
or replicated; may be materialized or derived on demand. Different levels
of virtualizations over these data resources should be provided. Virtualiza-
tions provide abstract views that hide these distinctions and allow the data
resources to be manipulated without regard to their nature.

In a Data Grid there are two kinds of resources to be managed: Grid
Data and Grid storage space:

22

2.4. NOTIONS ABOUT DATA GRIDS

• a Grid Data (GD) is any kind of data that can be located, trans-
ferred, replicated and manipulated: client services should be able to
access dispersed GD, independently from its physical location, through
a Data Grid Management System (DGMS) [66]. A DGMS is a soft-
ware system used to manage Data Grids through the use of multiple
abstraction mechanisms that hide the complexity of distributed data
and heterogeneous resources. This naming capability allows users to
refer to specific data resources in a physical storage system using a
high level logical identifier.

• a Grid storage space (GSS) is a storage space shared between multiple
VOs, and managed by a Grid Storage Element (SE). An SE (e.g.
the Storage Resource Manager [42]) is an interface to mass storage
systems, providing a uniform control interface and enabling the Grid
to efficiently use the storage.

It’s not necessary for a GD to be stored in GSS only, while a GSS may
also contain data that can not be relocated, viz. are not GD.

DGMS implementations should follow the OGF recommendations for
providing implementation guidelines and standards to implement GD loca-
tion independence. Data resources have to be recognized by name without
any location information. The Open Grid Services Architecture (OGSA)
work on data architecture [6] identifies a scheme with the following three
levels of naming:

• Human-Oriented name (HON): based on a naming scheme that is
designed to be easily interpreted by humans, viz. human-readable and
human-parsable. The HONs represent the key by which the users find
the actual locations of their files. They are user friendly high-level
identifiers. A DGMS could let the users organize them with a direc-
tory structure to simulate a global namespace. A same data resource
could be addressed by various HONs by different users, similarly to
the concept of alias.

• Abstract name (AN): a persistent name suitable for machine pro-
cessing that does not necessarily contain location information. ANs
are given to each data when it is managed by a DGMS. An AN is a
unique identity to hide the data replication: a same AN can correspond
to different replicas.

• Address: specifies the location of a data resource. An address pro-
vides an abstraction of the data namespace living into a storage re-
source to allow different data access paths. Each replica has its own
address and it specifies implicitly which storage resource needs to be

23

CHAPTER 2. NOTIONS ABOUT GRIDS

What could
remain hidden

What Grid Users
should deal with

Human-Oriented Names

HON
1

HON
2

HON n

Abstract Names

AN

AN

A1

A
2

nA

Addresses

1

n

Figure 2.5: Data naming in Grid.

contacted to extract the data. Usually, users do not need to be di-
rectly exposed to addresses, but only to the logical namespace defined
by HONs.

To provide the users the illusion of a single file system, a DGMS has
to keep track of HONs to AN and Addresses mappings in a scalable man-
ner. Figure 2.5 describes the relationship on terms. Within this Figure,
we highlighted what Grid users should deal with, and what could remain
hidden 2. The HON level is usually organized as (virtual) distributed file
systems. There’s no real reason the Data Grid organization to be known to
simple users, thus the AN and addresses levels does not need to be known
in advance.

Anyway, as we said earlier, many implementations still let the users
specificying the addresses they want to use when submitting jobs. This
is the reason why we distinguish two kind of access. Figure 2.6 shows a
simplified logical view of a Data Grid. The Figure shows the two kinds of
data accesses:

1. clients (e.g. Grid users) may access a GD knowing just the HON by
performing what we call a Grid access;

2. clients may access a GD and non-GD data directly accessing them on
the SE when the address is known, thus performing what we call a
direct access.

2Actually, some DGMS implementations let the users interrogate the Addresses di-
rectly. We personally believe that future implementations will leave this level transparent
to simple users

24

2.4. NOTIONS ABOUT DATA GRIDS

ANnAN 1

HON
1

HON
2

Client Service

HON
n

Naming
-

Data Catalog/
Discovery

SVC

SE Interface SE Interface
Data
SVC

-
Data

Resource

nAddr2AddrAddr 1

1. Grid
Access

2. Direct
Access

Figure 2.6: A logical view of a Data Grid

25

CHAPTER 2. NOTIONS ABOUT GRIDS

The simplicistics concepts we wrote within this Section have been ex-
panded and implemented by Grid developers in many Data Grid projects.
For example, in EGEE the most used DGMS is the LHC File Catalog (LFC)
[67], where human oriented names are called logical file names (LFNs). The
replicas (addresses) are identified by Site URLs (SURLs). Each replica has
its own SURL, specifying implicitly which Storage Element needs to be con-
tacted to extract the data. The SURL is a valid URL that can be used as an
argument in an SRM [42] interface. Usually, users are not directly exposed
to SURLs, but only to the logical namespace defined by LFNs. The Grid
Catalogs provide the mappings needed for the services to actually locate the
files. The illusion of a single file system is given to the users. To maintain
this illusion, the Grid data management middleware has to keep track of
SURL - LFN mappings in a scalable manner. Also, the identifier of a file
entity has to be kept unique at all times. In order to achieve this, a Global
Unique Identifier (GUID), which correspond to an abstract name, is given
to each file when it is created on the Grid.

26

3
Notions about Computer Security

This Chapter introduces notions about Computer Security. The concepts we
introduce here are somewhat general, but nonetheless useful for those readers
who do not know much about the topic. They represents the cornerstones
for reasoning of security for Grids.

Computer security is a branch of technology known as information se-
curity as applied to computers. General computer security includes diverse
things, like controlling authorized (and unauthorized) computer usage, man-
aging computer accounts and user privileges, copy protection, virus protec-
tion, software metering, database security, but also avoiding denial of service
(DOS) attacks, or even software licensing.

In the early days of computer security, cryptography was viewed as a so-
lution for all the computer security problems. Right now, there is a plethora
of new computer security problems. This means, that, most of the time, you
can’t rely on just the mathematics given you by cryptography [89], which is
still the base of security, but other techniques are need on top to solve other
types of problems. This Chapter highlights some of them.

3.1 The CIA triad

A large amount of effort has gone into trying to define computer security.
For over twenty years security practitioners has held that confidentiality,
integrity and availability (known as the CIA Triad) are the core principles
of information security.

• Confidentiality is not much more than privacy [89]. Confidentiality
is the property of preventing disclosure of information to unautho-
rized individuals or systems. The bulk of computer security research
has centered around confidentiality. Many people use confidential-
ity and security as synonyms. Breaches of confidentiality take many
forms. Permitting someone to look over your shoulder at your com-
puter screen while you have confidential data displayed on it could be
a breach of confidentiality. If a laptop computer containing sensitive
information about a company’s employees is stolen or sold, it could

27

CHAPTER 3. NOTIONS ABOUT COMPUTER SECURITY

result in a breach of confidentiality. Giving out confidential informa-
tion over the telephone is a breach of confidentiality if the caller is not
authorized to have the information.

• Integrity is harder to precisely define. One good definition is: “every
piece of data is as the last authorized modifier left it”. Integrity is
about the security of writing data. Integrity is violated when an em-
ployee (accidentally or with malicious intent) deletes important data
files, when a computer virus infects a computer, when an employee is
able to modify his own salary in a payroll database, when an unau-
thorized user vandalizes a web site, when someone is able to cast a
very large number of votes in an online poll, and so on. But integrity
could be violated without malicious intent, like mis-typying someone’s
address. Sometimes bulk updates to a database could alter data in
an incorrect way, leaving the integrity of the data compromised. As
it’s obvious by reading these definitions, integrity is closely related to
confidentiality. The latter is about unauthorized reading of data (and
programs); the former is about unouthorized writing. Some security
techniques want to achieve both goals.

• Availability is much broader than computer security. Availability
has been defined as “the property that a product’s services are ac-
cessible when needed and without undue delay,” or “the property of
being accessible and usable upon demand by an authorized entity.”
In the context of security, availability is about ensuring that an at-
tacker can’t prevent legitimate users from having reasonable access to
their systems. High availability systems aim to remain available at
all times, preventing service disruptions due to power outages, hard-
ware failures, and system upgrades. Ensuring availability also involves
preventing DoS attacks.

In 2002, Donn Parker proposed with [78] an alternative model for the
classic CIA triad that he called the six atomic elements of information. The
elements are confidentiality, possession, integrity, authenticity, availability,
and utility. The merits of the Parkerian hexad are a subject of debate
amongst security professionals. For what concern this thesis, we are happy
with the classic CIA triad definition.

3.2 Access Control

Access control is the ability to permit or deny the access to a particular
resource by a particular entity. In other words, we want to make sure that
authorized people are able to do whatever they are authorized to do, and
that everyone else is not. Access control systems want to assure that confi-
dentiality, integrity and availability are maintained.

28

3.2. ACCESS CONTROL

In a general sense, access control is a problem much bigger than just
computers: access control mechanisms may be used in managing physical
resources (such as a movie theater, to which only ticketholders should be
admitted), logical resources (a bank account, with a limited number of peo-
ple authorized to make a withdrawal), or digital resources (for example, a
private text document on a computer, which only certain users should be
able to read).

In all access control definitions, there is some subject that has to access
to some object. The subject is often a user, but could also be a computer
program or a process. The object is a file in a computer, or another computer
program. More recently, an object may be a service of a Service Oriented
Architecture (SoA) [13]. A same entity could be a subject in an access
control relationship and an object in another.

Access control is a big deal for almost everyone. And it is difficult to do
properly.

3.2.1 Authentication, authorization, accounting and audit-
ing

In a very general sense, access control systems should include authentication,
authorization, and accounting capabilities.

• Authentication deals with the verification of the identity of an entity
within a network: it is the process of establishing the digital identity
of one entity to another entity. Authentication is accomplished via the
presentation of an identity and its corresponding credentials. Exam-
ples of types of credentials are passwords, one-time tokens or digital
certificates.

• Authorization deals with the verification of an action that an en-
tity can perform after authentication was performed successfully. It
refers to the granting of specific types of privileges (including ”no
privilege”). Authorization may be based on restrictions, for example
time-of-day restrictions, or physical location restrictions, or restric-
tions against multiple logins by the same user. Most of the time the
granting of a privilege constitutes the ability to use a certain type of
service.

• Accounting refers to the tracking of the consumption of network
resources by users. In other words, accountability identifies what a
subject (or all subjects associated with a user) did. Accountability uses
such system components as audit trails (records) and logs to associate a
subject with its actions. The information recorded should be sufficient
to map the subject to a controlling user.

29

CHAPTER 3. NOTIONS ABOUT COMPUTER SECURITY

Sometimes, a fourth “A”, which stands for auditing, transforms the AAA
acronym in AAAA. Auditing is a manual or systematic measurable technical
assessment of a system or application. All these concepts are well known
and documented. Interested readers may found more notions in [107].

In the years, many access control models (ACM) have been proposed,
and some of them implemented. These ACMs want to solve confidentiality
and integrity requirements. ACMs don’t usually take in consideration au-
thentication and accounting problematics, but propose models for solving
authorization problematics. We will make a brief comparison of ACMs in
Section 5.

3.3 Usage Control

Usage control claims to provide a new intellectual foundation for access
control. Usage control extends traditional access control by controlling data
access as well as usage [77, 80].

Traditional access control models show limitations to cover modern dig-
ital environments. The main technical challenge stands in controlling not
only data access, but data usage. Access control and trust management
require enlargement of their scope to enable richer, finer, and persistent
controls on digital objects regardless of their locations. Though Digital
Rights Management (DRM) has opened up closed system restrictions, the
discipline still lacks well-defined policies and models.

Controlling usage of sensitive information requires protection of digital
information that may be critical to nations or organizations. Intelligence
community and B2B (business to business) transactions are good examples
for this purpose. Other relatively new goals are IPR (Intellectual Property
Rights) protection or digital copyrights protection. Content providers’ in-
terest largely belongs here so they can realize maximum revenue. Privacy
has been rarely studied in the context of controlling usage of digital infor-
mation, but is beginning to get more public attention. The aim of usage
control techniques is to cover all these purposes in a systematic way.

Until some years ago, while the fundamentals of access control appeared
to be well understood, this was not the case for usage control. Some recent
research helped understanding these fundamentals, and today there is quite
a consensus upon the foundations of usage control mechanisms, even if this
is still a widely researched topic.

This thesis is about usage control systems, as they can be applied to
Grids and distributed systems alike. The readers will find many informations
on usage control systems and techniques throughout the thesis.

From now on, we will not talk more about access control models and
systems. We consider usage control as a better substitute for access control.

Usage control models and systems represent the new, and improved, access

30

3.4. SECURITY FRAMEWORKS

control models and systems.

A very important result, which we will be used throughout the thesis, is
represented by the UCONabc usage control model [87]. A good explanation
of it can be found in Section 5.2.

3.4 Security Frameworks

Security Frameworks address the application of security services in disparate
environments, but we believe their utility is mainly for distributed systems.
Security Frameworks provide protection for systems and objects within sys-
tems, and with the interactions between systems.

One of the first definitions for Security Frameworks came from an ITU-T
technical report [47]. ITU-T recognizes the basic entities and functions in-
volved in access (usage) control as the initiator, the Access Control Enforce-
ment function (AEF), the Access Control Decision Function (ADF), and the
target : initiators represent both the human beings and computer-based en-
tities that use or attempt to use targets. Targets represent computer-based
or communications entities to which usage is attempted or that are accessed
by initiators. The AEF ensures that only allowable accesses, as determined
by the ADF, are performed by the initiator on the target. When the initia-
tor makes a request to perform a particular usage on the target, the AEF
informs the ADF that a decision is required so that a determination can be
made. In order to perform this decision, the ADF is provided with the usage
request and some Access Control Decision Information (ADI), comprising
the initiator ADI, the target ADI, the access request ADI and eventually
some attributes helping the decision. The other inputs to the ADF are the
access control policy rules. The decision is conveyed to the AEF which then
either allows the access request to pass to the target or takes other appro-
priate actions. Figure 3.1 describes the relationship on terms, while Figure
3.2 describes the ADF interface.

Figure 3.1: Fundamental Access Control Functions [47]

A concept that was just outlined by ITU-T is the policy concept. What
happened is that recently the relationship between the Access Control Func-

31

CHAPTER 3. NOTIONS ABOUT COMPUTER SECURITY

Figure 3.2: Access Decision Function [47]

tions of ITU-T has been implemented in the form of security policies and
policy points.

We are not aware of commonly accepted definitions of security policies,
although there exists an RFC [109] documenting policies and policy points
terminology. Wheter such a definition exists or not, we may say thar a
security policy is composed of a set rules that define how certain subjects
may interact with certain objects. In literature, subjects are normally users,
or processes acting behind a user, but subjects could also be groups of users,
collective names, or services.

Security policy rules may specify that some subjects can, or cannot have
an access to some objects. In literature terms like “positive authorization”,
“permission”, “privilege” or “right” are used to indicate that a subject can
have an access to an object. Instead, if a rule states that a subject cannot
have an access to an object, it is called a “negative authorization”, “prohibi-
tion”, “negative permissions” or “denials”. Another important type of rules
are the “obligations”, which states that a subject is obliged to perform one
or more actions in order to gain a permission. Historically, the term “autho-
rization” is used to describe equally a positive or a negative authorization,
but within this thesis we will use this term in a narrow sense. Instead, we
prefer the term “right”. These concepts will become more clear in section
5.2.

For what concern the policy points, there are quite accepted definitions.
Most of them have been popularized by the widespread acceptance behind
the eXtensible Access Control Markup Lunguage (XACML) [74], whose data
flow diagram is shown in Figure 3.3.

Policy Decision Point (PDP): the point where decisions about the
policies are made. It evaluates applicable policies and renders authoriza-
tion decisions. In a loosely coupled distributed environment a local to a
resource (designated) PDP can call other PDPs requesting for evaluating

32

3.4. SECURITY FRAMEWORKS

policy components related to their domain of authority to provide a final
decision.

Policy Enforcement Point (PEP): the point where the policy deci-
sions are actually enforced. This is the system entity that performs access
control, by making decision requests and enforcing authorization decisions.

Policy Authority Point (PAP): the point that owns the authority
over the PDPs. We should remind that sometimes PAP indicates the Policy
Administration Point, which is the system entity that creates and administer
the policies.

Policy Information Point (PIP): the system entity that act as a
source of attribute values.

Figure 3.3: The XACML Data Flow Diagram [74]

The PDP-PEP interaction is the key for a good policy distribution.
There are two possible basic implementations, the pull model and the push
model. The pull model is the more used one, in which a supplicant first
ask for the resource PEP to authorize himself, and then the PEP ask to
an external PDP for the final decision. During the policy evaluation, the

33

CHAPTER 3. NOTIONS ABOUT COMPUTER SECURITY

PDP may also request specific user attributes from a Policy Information
Point (PIP), or asking an authentication service for user identity confirma-
tion. When the PDP identifies the applicable policy instance, it collects the
required context information, evaluates the request against the policy, and
communicate the decision back to the PEP. After receiving a PDP decision,
the PEP conveys the service request to the resource, that may also have a
locally determined policy implying additional restrictions on resource usage
and/or access.

34

4
Notions About Usage Control For Grids

The goal of this Chapter is double. First of all, it introduces our general
vision of security, and particularly usage control, for Grids. Secondly, shows
OGF’s view of Grid authorization, and some security tools used in today’s
production Grids.

Authentication, authorization and accounting (AAA) systems have been
implemented and used in different Grid middlewares, but Grid systems in
use today do not address usage controls in a systematic way. Grid communi-
ties spent a lot of time talking about security requirements. Unfortunately,
until now not all the them are satisfied by any existing security infrastruc-
ture. In developing Grid security systems, some of them have not even been
considered. Just to make an example, while there are many requirements
concerning Grid authorization, historically in Globus [90] an authenticated
user is an authorized user. This emphasizes the authentication aspect, but
Grids need complex authorization mechanisms. With this thesis, one of our
aim is to enable new Grid infrastructure developer to create more secure
systems, capable to attract new Grid users and applications. With new
security frameworks, we should be able to define “who can do what, when
and where” whatever the requirements and the set of cases to satisfy. With
this Section, we will look at existing security concepts for Grids, models and
implementations. We will have a look in particular to existing access and
usage control models for Data Grids.

We published a small portion of the work reported in this Chapter in
[37].

4.1 Basic Grid usage control concepts

A Usage Control system is a security architecture, which can be defined as
“a set of features and services that tackles a set of security requirements
and can handle a set of cases”. A Grid middleware should encompass such
security architecture.

Within a Grid usage control architecture, we can distinguish two virtual
black boxes: the authentication box and the authorization box:

35

CHAPTER 4. NOTIONS ABOUT USAGE CONTROL FOR GRIDS

• authentication deals with the verification of the identity of an entity
within a network. An implementation should provide an agnostic plug
point for multiple authentication mechanisms, and the means for con-
veying the specific mechanism used in any given authentication oper-
ation.

• Authorization deals with the verification of an action that an entity
can perform after authentication was performed successfully. The goal
of an authorization system is to provide a light-weight, configurable,
and easily deployable policy-engine-chaining infrastructure that is ag-
nostic to back-end enforcers and evaluators, as well as the run-time
container infrastructure and the state model that hosts them. The
framework allows for a combined and flexible decision making process,
taking into account information, assertions and policies from a variety
of authorities.

We can make a brief comparison between the high-level techniques be-
sides authentication and authorization. The first link in the Grid security
chain is authentication. Grid resources authenticate remote users using ba-
sically two ways: the first uses a session key, and the second, which is the
mostly used too, uses the Public Key Interface (PKI). On the other hand,
we need a Privilege Management Infrastructure (PMI): a PMI is to autho-
rization what a PKI is to authentication [17]. Just to make an example,
we can express some user’s attributes using the X.509 Attribute Certificate
(AC) [27], which maintains a strong binding between a user’s name and
its attributes. Certification Authorities (CAs) digitally sign a public key
certificate; in a similar way, the entity that signs an AC is called an At-
tribute Authority (AA), while the root of trust of the PMI is called the
Source of Authority (SOA), which may delegate its power to subordinate
AAs. Like Certificate Revocation List (CRL), an AA could issue an At-
tribute Certificate Revocation List (ACRL) [45] to revoke privileges from
an AC. Obviously, ACs is just one of the possible solutions to join users and
their attributes.

We can roughly divide the process to reach access to a Grid resource in
3 levels: first of all there’s a Grid authentication process, then authorization
on a Grid-ID base, and finally local enforcement. In Figure 4.1 you can see
the all-round security process. This Figure has been taken from [37].

4.1.1 Authentication

In a Grid environment the authentication model is normally based on the
concept of trusted third parties (TTPs): the first link in the authentication
chain is the certification authorities (CAs), which in practice are trust an-
chors for VOs. This model makes use of the Public Key Infrastructure (PKI)
technology: CAs issue X.509 certificates [45], where essentially a unique

36

4.1. BASIC GRID USAGE CONTROL CONCEPTS

Figure 4.1: The Grid usage control process [37]

identity name and the public key of an entity are bound through the digi-
tal signature of that CA. It is possible that some Grid service may require
further authentication and verification controls, but these issues are out of
the scope of a Grid authentication service, because they suppose a specific
contract between the user and the resource, outside the Grid security infras-
tructure. An authentication service must define distinctly the Grid identity
of any user: this means that every user inside a Grid is given some creden-
tials for her description and identification. With description we mean not
only user’s VOs, but his/her role inside every VO he is member of. We will
refer to this kind of enhanced, extended, authentication as of Grid Authen-
tication. A Grid Authentication is the first step for a Grid Usage Control
process.

4.1.2 Authorization

Authentication frameworks should provide a coarse-grained granularity with
some kind of credentials, like VO, groups and roles, or alternatively a se-
mantic description of the Grid user. An authorization service should then
make use of these information for fine-grained usage decisions, using a secu-
rity policy framework that uses concepts like the ones we outlined in Section
3.4. We don’t expand Grid authorization concepts here, since they represent
one of the main topics of the thesis. Some existing authorization models are
reviewed in the next Section.

37

CHAPTER 4. NOTIONS ABOUT USAGE CONTROL FOR GRIDS

4.2 Models for usage control on Data Grids

Doing a parallel with what is stated in [75], there are basically two ways of
enforcing usage control in a Grid: the “Grid usage” and the “local usage”.

4.2.1 The “Grid usage” model

With the “Grid usage” model, users can only access their data via Grid tools
and services. What this means in practice is that a storage element would
have a service user-id, which is assigned the all the data it stores. A second
component runs under this identity and interacts with the user, acting as
a server for the usage control needs of users, data, storage elements and
security administrators. This server checks the user’s permission from some
kind of catalogs, probably using a policy server, and delivers the content
from the storage element.

There is a set of motivations behind choosing this model. First of all,
there is a uniform usage control semantics, identical at all Grid sites. The
user should not have to know in advance about peculiarities of site usage
control mechanisms: this is one of the pre-requisites for ubiquitous Grid
computing.

A second motivation is in providing support for resources with weak
usage control possibilities. Today very few Storage Elements provided by
the Grid sites have ACL capabilities: by enforcing security through the
Grid, these storages should acquire this capability indirectly. For example,
the access control implementations of the SRM v1.1 specification does not
include any explicit operation to manipulate permissions. Although the
v2.1 interface adds some functions, only few implementations support or
plan to support access control at the level of basic Unix permissions, and no
implementation at this time supports POSIX [97] ACLs.

A third advantage is that there is no need to assign local users to every
new user, i.e. all the user administration does not have to be repeated at
every site at each SE.

With this “Grid usage” model, the data security is enforced by the Grid
middleware. All the GD (Grid Data), even if are stored on a GSS (Grid Stor-
age Space), are owned by the middleware system. The middleware access
service should then be capable to access the files on the SE directly. This
means that the only accepted data identifiers should be Human-Oriented
Names and Abstract Names, and that there should not be the possibility
for “back-door” access through any address, unless the SE provides ACL
capabilities. The SE may be then set up to also accept the user’s credentials
directly by adding a line to the given file’s ACL. This solution is impracti-
tal. Since many SRM interfaces does not yet properly support ACLs in a
standard way, the “local knowledge” requested goes against the ubiquitous
nature of the Grid. Obviously, the policy server may be distributed, as an

38

4.2. MODELS FOR USAGE CONTROL ON DATA GRIDS

instance, at each SE. This way, the local administrator would retain full
control over the local resources.

The main disadvantage behind this model is that data already existing
in storage spaces that are going to be “Gridified” would need to go through
a migration step while going “into” the Grid. This step would mean to
synchronize the authorization information with the Grid catalogs and to
change the ownership of these files. For new data this should not be an
issue. However, if it is decided un-gridify the files, they would need to be
migrated back to be owned by local users.

From the site administrator’s point of view this model has the disadvan-
tage of trusting a service affiliated with a VO. To overcome this problem
this server could be deployed at each site and be run under the control of
the site administrators.

4.2.2 The “local usage” model

Allowing local access in parallel to Grid access implies that the site imple-
ments mapping from Grid identities to local user-ids. This means that
the enforcement of usage control permissions is responsibility of the local
SE implementations. In this model if a Grid service has to act on the user’s
behalf, then it needs the user’s credential to be delegated.

The main advantage behind this model is that the file access is completly
controlled by the site admins, via their mapping mechanism and permission
system of their SE. There is no need to consult any external service. A
second advantage is that there is no need to migrate data from/to the Grid.
Traditional GSS access is possible as before, since the resource owners control
the system with or without the Grid the same way they did before.

This model has the disadvantage of potential inconsistencies in usage
control settings, since data on the Data Grid is usually replicated on many
different sites. In theory one could synchronize the usage control settings
on replicated data in the whole distributed environment (the catalogs have
all the necessary information), but there are a couple of problems in doing
that: first of all, this synchronization would create a large amount of network
traffic, and most importantly, the differences in the ACL implementations
of the SEs represent a hard mountain to climb. Not mentioning the poor
adaptability of the whole system. In summary, security is only as good as
the local SRM can enforce it, and if data is replicated to a less secure storage
elsewhere, it may be more readily compromised than originally foreseen by
the user.

Within the “local usage” model, every Grid user has to be known to the
SE and has to have an associated account: local user management has to be
synchronized with Grid user management. This adds to the administration
burden for sites who cannot do automatic user mapping updates.

Since the local resource authenticates every user individually, every level

39

CHAPTER 4. NOTIONS ABOUT USAGE CONTROL FOR GRIDS

of name mapping is accepted as file identifyers, thus not only Human-
Oriented Names and abstract names, but also addresses.

4.3 Policy framework models for Data Grids

We now look at how the authorization problems explained in Section 4.1
can be implemented using the policy-based security frameworks explained
in Section 3.4. To do so, we refer to the classification of [34].

The models are distinguished by the layering of the two basic policy
points, the PDP and the PEP. The layers that we consider are three of
the usual Grid Layers as described in [51], and in Section 2.2. The top-
layer is the Application Layer. The bottom layer is the Resource Layer and
in-between we have the Middleware Layer.

When speaking of Grid Data (GD) and Grid storage space (GSS) man-
agement and usage (see Section 2.4.1), the PDP is the logical entity that
stores the authorization information for the GD and GSS, and the PEP is
the actual data access service that will enforce the decision of the PDP.
Of course there needs to be a strong trust relationship between PEPs and
PDPs entities, i.e. the enforcement has to trust the decision maker. Policy
frameworks are, at least in a logical sense, part of Data Grid Management
Systems (DMGS, see Section 2.4.1), which, as said, in the OGSA work on
data architecture, implements a three-level naming for GD. Thus, the level
the PDP is in terms of data identification and data naming influences the
subject of the authorization policies handled by the PDPs.

For the matter of the discussion, both PDP and PEP are considered
as virtual entities: they could be realized as a single central instance or
with a set of distributed instances. In the latter case, there is the need for
synchronization across the instances.

In [34], Frohner distinguishes between six models, which are illustated in
Figure 4.2. The differences between this models is only in which layer we put
the policy decision and enforcement points. However, these have profound
implications for the trust relationships between VOs and sites, and on the
way these models are implemented. All these models have pros and cons,
but we will not highlight them here, since interested readers can find these
information in [34].

• In this first model, both the PDP and the PEP are on the resource
layer. In this model, the SE available on the Grid sites is responsible
for deciding and enforcing the authorization of the user. To do this,
implementations have to use the local ACLs provided by the storage
services (e.g. SRM implementations). This model can easily imple-
ments the “Local usage” model of Section 4.2.2.

• In the second model, the PDP is provided by the middleware and

40

4.3. POLICY FRAMEWORK MODELS FOR DATA GRIDS

VO

Site

Site

Middleware
layer

Application
layer

Resource
layer

PEP
PEPPEP

PEPPDP

PDP

PDP

PDP

Model 1 Model 2 Model 3 Model 4 Model 5

PEP

PDP

PDP

PEP

Model 6

Figure 4.2: Security models for data management (inspired from [34])

not the resource. This means that there is a strong trust relationship
between the resource and the middleware component that stores the
authorization information.

• In the third model, both PDP and PEP are placed in the middleware
layer. This means that all data access and usage has to go through
the Grid middleware service. Thus, this model implements the “Grid
usage” model of Section 4.2.1. If the middleware layer has both the
PDP and PEP, the security semantics can be completely decoupled
from the underlying data storage implementation. The middleware
can then enforce any kind of semantics on top of the storage, even
richer ones that the data store on the current resource can actually
provide.

• In the fourth and fifth models the PDP is a VO service and is outside
of the sites control. Model 4 places the PEP on the resource layer and
model 5 in the middleware layer. This model has the advantage that
the PDP in the application layer may be a single central instance, so
the synchronization of authorization information between sites may
not be an issue anymore.

• In the sixth model, both the PDP and PEP are in the application
layer. This model has the downside that sites lose control over who is
actually able to use their resources.

Within this thesis, we develop our own policy framework model, which
slighlty differs from the ones we saw in this Section. A comparison between
this models and the new one can be found in Section 7.2.2.

41

CHAPTER 4. NOTIONS ABOUT USAGE CONTROL FOR GRIDS

4.4 OGSA Recommandations

The aim of the OGF’s OGSA authorization working group1 is to define the
specifications needed to allow for interoperability and pluggability of usage
control components from multiple Grid authentication and authorization
domains in the OGSA framework. The group leverages security work that
is ongoing in the Web Service (WS) community (e.g. SAML [16], XACML
[74], and the WS-Security [70] set of specifications) and defines profiles on
how these should be used by Grid services.

The group provides an information document reviewing the functional
components of Grid service provider authorization service middleware [18].
In the OGSA work, great attention is put on credentials, defined as attribute
assertions digitally signed by the issuer (i.e. a security token) so that it can
be cryptographically validated. Credentials can be issued by the Credential
Issuing Services (CISs) of an Identity Provider (IP) or an Attribute Author-
ity (AA) (e.g. the Virtual Organization Membership Service (VOMS) [3], see
Section 8.1). The credentials can be embedded in an Attribute Certificate
extension [27], and/or in a proxy certificate [98], or using a SAML token.
Credentials can then be validated by a Credential Validation Service (CVS),
that return the valid attributes of the subject. This first phase defines the
Grid identity of every Grid user, and it’s the first step of a Grid usage control
process. Therefore, it corresponds to the extended “Grid Authentication”
we discussed in Section 4.1.1.

Many of the other functional components follow the same terminology
we wrote in Section 3.4. A Policy Decision Point (PDP) is the component
responsible for returning an authorization decision given the user’s access re-
quest and the user’s valid attributes. The Policy Enforcement Point (PEP)
enforces the results returned from a policy engine (normally a PDP). The
Context Handler (CH) is responsible for handling the communications be-
tween PEPs, CVSs and PDPs. This second phase it’s the second step of a
Grid usage control process. Therefore, it corresponds to the “Grid Autho-
rization” we discussed in Section 4.1.2.

The interactions between the functional components defined by OGSA
can be constructed in four different ways, according to whether the creden-
tials and the authorization decisions are pulled or pushed. For example,
Figure 4.3 shows the case where an access requestor (a Grid User) pushes
his/her credentials to a PEP. Then, after the CH obtained valid attributes
from the CVS, a PDP is interrogated for an authorization decision, which
in the end is returned to the PEP.

The case showed in Figure 4.3 is probably the most used and appealing
one. The other three cases are shown in Figures 4.4 4.5 4.6 for completeness,
but we’re not going to work with them in the framework of this thesis.

1https://forge.gridforum.org/sf/projects/ogsa-authz

42

4.4. OGSA RECOMMANDATIONS

Client Service CIS1. Pull Credentials

PEP

AuthN

2. Push
Credentials

optional
local
CISCVS

Context
Handler

3. Request
Usage

Decision

4. AuthNName
/ID

PDP

6. Request
UD with valid

attr ibutes

5. Optional
pul l more

Credentials

7. Usage Decision

Figure 4.3: OGSA functional components. The credentials are pushed to
the PEP.

Examples of all 4 modes of operation are already implemented.

Client Service CIS1. Pull Credentials

PEP

AuthN

2. Push
Credentials

optional
local
CISCVS

Context
Handler

4. AuthNName
/ID

PDP

6. Request
UD with valid

attr ibutes

5. Optional
pul l more

Credentials

7. Usage Decision

Figure 4.4: OGSA functional components. The credentials are pushed to
the PEP. The CH is not separate from the PEP.

OGSA recommandations have to be taken seriously in consideration
when building a security architecture for Grids and Data Grids. Within
this thesis, we will propose in Section 9.1 a concrete architecture capable
to handle a complete usage control process, as it explained in Section 4.1,
that uses the functional components endorsed by OGSA and explained with
the current Section. Moreover, the OGSA recommandations on the use of
standards have been considered as a requirement in the re-engineering of a
“Grid Authentication” service, which will be explained in Chapter 8.

43

CHAPTER 4. NOTIONS ABOUT USAGE CONTROL FOR GRIDS

Client Service CIS

4. Pull
Credentials

PEP

AuthN

optional
local
CISCVS

Context
Handler

2. Request
Usage

Decision

3. AuthNName
/ID

PDP

6. Request
UD with valid

attr ibutes

5. Optional
pul l more

Credentials

7. Usage Decision

1. ID

Figure 4.5: OGSA functional components. The credentials are pushed to
the PEP.

Client Service CIS

PEP

AuthN

1. ID

optional
local
CISCVS

Context
Handler

2. AuthNName
/ID

PDP

5. Request
UD with valid

attr ibutes

4. Optional
pul l more

Credentials

6. Usage Decision

3. Pull
Credentials

Figure 4.6: OGSA functional components. The credentials are pushed to
the PEP. The CH is not separate from the PEP.

44

Part II

Working Instruments

45

5
Security Policy Models

This Chapter introduces existing and surveyed policy models in the liter-
ature, and in particular it focusses on the UCONabc usage control model.
UCON is a well-known usage control model we adopted as one of the corner-
stone of our work. Its full understing is then necessary for all that follows.

5.1 Categorization of Policy Models

There is a great number of existing security policy models in the literature.
Some address the same issues, some address different ones. For instance
some models are dedicated to activity sequence control, others to the users
structuring. Within this work, we don’t want to review the whole bunch of
security policy models that can be found in literature. A good review can
be found in [64], where, for documentation reasons, they make a distinction
between four families of security policy models: the access control models,
the flow control models, the administration models and the usage control
models. Within this work, we mainly focus on usage control models.

Access control models [12] enable us to specify which actions the sub-
jects are allowed to carry out on which objects, thus protecting resources
and services from unauthorized access. There is a large number of Access
Control Models developed in the literature. Examples of the most histori-
cally important ones are the Discretionary Access Control (DAC) [49] and
the widely used and expanded Role Based Access Control (RBAC) [88].

Flow control models [63] aim at providing an efficient response to one of
the main problems of access control models: in access control, if programs
more precisely processes are considered as subjects, then a malicious process
might illegally transmit some unauthorized data. Therefore in flow control
models, the objective is to control the access to data i.e. the contents by
controlling the information flow.

Administration models can be used for managing a large scale informa-
tion system that can usually not be done by a single system security officer
(SSO). In good administration models, the security policy must evolve in
order to always match the information system security requirements. For
these reasons, appropriate administrative procedures are designed in order

47

CHAPTER 5. SECURITY POLICY MODELS

to state which users are allowed, among other tasks, to add, modify or delete
authorizations. A set of such procedures can be viewed as a meta-policy. Ex-
amples of Administration models are the Mandatory Access Control (MAC)
[29], the The ARBAC97 model for role-based administration of roles [86],
and the Organization-based Access Control (OrBAC) [64].

Usage control models [87, 80] are the result of recent research works that
started in the field of digital right management (DRM), but is infact compre-
hensive enough to encompass traditional access control, trust management,
and DRM. Usage control models like UCONabc [77, 111] unifies these ar-
eas systematically in a single framework and goes beyond its original scope.
Even if usage control approach has ancestors in the access control frame-
works, it comes out as a different and new approach. First of all, while
traditional access controls utilize only authorizations for decision process,
usage control methods generalize access control and cover authorizations,
obligations, conditions, continuity (ongoing controls), and mutability. In
access control, some permissions are granted to subjects to access “static”
objects, in other words, objects that are usually stored within the subjects
organization. Usage control is based on a different paradigm in which ob-
jects no longer stand in a computer system but are also shared or sent
through Internet to private computers or PDAs, MP3 players, etc., owned
by numerous and unknown clients.

Within the framework of the thesis, we focus on usage control models,
and adapt them for the case of distributed systems with multiple SSO. We
assume that programs, processes and services are trustful.

5.2 The UCONabc Usage Control Model

The UCONabc usage control model is a recent framework defined by Park
and Sandhu [77, 87] for the specification of usage control policies. The main
novelty of the UCON model lies in the fact that subjects and objects may
have attributes that are mutable, thereby facilitating the continuity of the
decision making and policy enforcement processes. Additionally, while de-
cisions in standard access control models are based on policy authorizations
only, the UCON model introduces two other decision factors, namely obliga-
tions and conditions. All of these features render the UCON model attrac-
tive for specifying security policies in distributed systems and Data Grids
alike, especially considering the plethora of various security needs coming
from the different Data Grid applications. Next, we describe the elements of
the UCON model, first in a conceptual and informal way, and subsequently
in a more formal one. The material provided in this Section has been mostly
taken from [77] and [111].

48

5.2. THE UCONABC USAGE CONTROL MODEL

5.2.1 UCON informal specification

The UCON model is made up of several components:

• Subjects and Objects: A subject is an entity that holds or exercises
certain rights on objects, i.e. that executes access operations on ob-
jects. Both subjects and objects are defined and represented by their
attributes. A subject usually represents an individual human being,
but in UCON it may or may not have a unique identity. If autho-
rization is done with a user’s unique identity, accountability can be
provided. If not, anonymity can be supported. An object, instead, is
an entity that is accessed by subjects through access operations.

• Rights: Rights are the privileges that subjects can exercise on objects.
Traditional access control systems view rights as static concepts, for
instance access matrices, which do not change over time or have a
slow rate of change. Instead, UCON determines the existence of a
right dynamically, whenever a subject attempts to access and exercise
a right on some object. Hence, if the same subject accesses the same
object several times, the UCON policy could grant the subject differ-
ent access rights each time based on changing attributes of the subject
and/or the object. Even mutations is the system and environment
the subjects and objects “live”, can affect the decision process and
therefore the right. The usage decision functions indicated in Fig-
ure 5.1 make this determination based on subject attributes, object
attributes, authorizations, obligations, and conditions predicates. In
general, rights include rights for direct use of objects (such as read),
delegation of rights, and rights for administering access (such as mod-
ify subject and object attributes that in turn determine access rights).
In this thesis, we do not consider delegation rights and administra-
tive rights. Rights can be divided into many functional categories.
The DRM community usually classifies rights as being in one of the
two most fundamental rights categories: view and modify, sometimes
augmented with creation and deletion. Another similar classification
distinguishes between create, read, update and delete, also known as
CRUD.

• Attributes: Both subjects and objects have attributes. Subject and
object attributes are properties or capabilities that can be used for
the usage decision process. Examples of subject attributes include
identities, group names, roles, memberships, security clearance, and
so on. Examples of object attributes are security labels, ownerships
or classes. The general concept of attribute-based access control is
commonplace in the access control literature and as such this aspect
of UCONabc builds upon familiar concepts. UCON attributes can be

49

CHAPTER 5. SECURITY POLICY MODELS

mutable, i.e. they can change over time, or immutable, i.e. they are
constant over time. An example of a mutable attribute is the number
of times that a subject accesses an object, whereas an immutable is a
subject’s or an object’s identity.

• Authorizations, Obligations and Conditions Predicates: Predicates are
logical statements about the subjects’ and objects’ attributes and the
requested right. Predicates can be either authorization, obligation
or condition predicates or any combination of these. Authorization
predicates express a set rules that determine whether to grant the re-
quested right or not. The authorization predicate could exploit both
attributes of the subject and of the object. Authorizations can be ei-
ther pre-authorizations (preA) or ongoing-authorizations (onA). preA
is performed before a requested right is exercised and onA is per-
formed while the right is exercised. onA may be performed continu-
ously or periodically during the time span of access. In general, most
traditional access control policies including MAC, DAC, RBAC, and
Trust Management (TM) utilize some form of pre-authorization for
their decisions. Obligations are UCON decision factors that are used
to verify whether the subject has satisfied some mandatory require-
ments. Similarly for the case of Authorizations, we distinguish between
preB, i.e obligations to be satisfied before performing an action, and
onB obligations to be continuously satisfied while performing the ac-
tion. Usually, Obligations refer to future requirements that must be
obeyed. Traditional access control has hardly recognized the obliga-
tion concept. Finally, conditions are environmental or system-oriented
decision factors, i.e. dynamic factors that do not depend on subjects
or objects. Conditions are evaluated at runtime when the subject at-
tempts to perform the access. A condition can be evaluated before
(preC) or during an action (onC). Unlike authorizations or obliga-
tions, condition variables cannot be mutable, since conditions are not
under direct control of individual subjects. Certain authorizations and
obligations may require updates on subject attributes and/or object
attributes. These updates can be either pre, ongoing, or post. In-
stead, evaluation of conditions cannot update any subject or object
attributes.

The interactions between the described components are shown in Figure
5.1.

UCONabc is actually a family of models with several parameters. In [77],
Park and Sandhu introduce a classification based on the following three
criteria: decision factors that consist of authorizations, obligations, and
conditions, continuity of decision, being either pre or ongoing with respect
to the access in question, and mutability that can allow updates on subject

50

5.2. THE UCONABC USAGE CONTROL MODEL

Figure 5.1: The UCONabc model components [77]

or object attributes at different times. If all attributes are immutable, no
updates are possible as a consequence of the decision process. This case is
denoted as ‘0.’ With mutable attributes, updates are possible before (pre),
during (ongoing), or after (post) the right is exercised, denoted as ‘1, 2, and
3,’ respectively. Based on these criteria, Park and Sandhu enumerate the
model space shown in Figure 5.1. Cases that are not likely to be useful in
practice are marked as ‘N.’

0 1 2 3
(immutable) (pre-update) (ongoing-update) (post-update)

preA Y Y N Y
onA Y Y Y Y
preB Y Y N Y
onA Y Y Y Y
preC Y N N N
onC Y N N N

Table 5.1: The UCONabc core models [77]

All of the UCONabc core models makes for a fairly complex model. From
a model point of view, the resulting complexity is appropriate for modern
cyberspace. We will make some considerations regarding this complexity in
Section 9.1.1.

UCONabc is a very powerful usage control model, that is capable to
embrace a vast number of previously studied and deployed security models.
We now show its capabilities using some examples:

51

CHAPTER 5. SECURITY POLICY MODELS

• UCONpreA models: authorizations have been considered as the core of
access control and extensively discussed since the beginning of access
control discipline. Traditionally, access control research has focused on
pre-authorizations in which a usage decision is made before a requested
right is exercised. UCONpreA models utilize these pre-authorizations
for their usage decision processes. Traditional access controls such as
MAC, DAC, and RBAC are likely to belong to UCONpreA0 . With
attribute mutability, we introduce update(ATT(s/o) actions. Within
UCONpreA1 , the meaning of preUpdate(ATT(s)) is that subject at-
tributes are updated before the access request is evaluated. UCONpreA3

introduce postUpdate procedures to modify subject and object at-
tributes after the access is ended. Exactly what values can be used
in computing the update is left unspecified in the model. These could
be subject or object attributes, and other variables. For example, cer-
tain authorization processes of DRM (e.g., membership-based digital
library) can be expressed with policies pertaining to the UCONpreA1

and UCONpreA3 core models.

• UCONonA models: In an UCONonA model, usage requests are al-
lowed without any ‘pre’ decision-making. However, authorization de-
cisions are made continuously or repeatedly while usage rights are
exercised. If certain requirements become dis-satisfied, the currently
allowed usage right is revoked and its exercise is stopped. Ongoing-
authorizations have been seldom discussed in access control literature.
By utilizing ongoing-authorizations, monitoring is actively involved
in usage decisions while a requested right is exercised. This kind of
continuous control is especially useful for relatively long-lived usage
rights. In UCONonA , Park and Sandhu develop four detailed mod-
els. UCONonA0 is immutable ongoing-authorization model that has
no update procedure included. UCONonA1 is ongoing-authorization
model with pre-updates. UCONonA2 and UCONonA3 include ongo-
ing updates and post updates, respectively. In many cases, ongoing-
authorizations are likely to occur together with pre-authorizations. For
example, suppose that an onA policy screens certain certificate revo-
cation lists periodically to check whether the users identity certificate
is revoked or not. While this is a case of ongoing authorizations, this
makes sense only when the certificate has already been evaluated at
the time of the request. This can be an example of UCONonA0 model.
UCONonA1 , UCONonA2 , and UCONonA3 add pre-update, ongoing-
update, and post-update procedures, respectively. With UCONonA

models, we can express revocation policies using the usage start time
(with an UCONonA13 policy), longest idle time (with an UCONonA123

policy), and so on.

52

5.2. THE UCONABC USAGE CONTROL MODEL

• UCONpreB models: UCONpreB introduces pre-obligations that have
to be fulfilled at the time of a request and before access is allowed.
preB is a kind of history function that checks whether certain obliga-
tions have been fulfilled or not and return true or false for the usage
decision. Suppose a user has to provide his name and email address
to download a company’s white papers, or suppose a user has to click
‘Accept’ on a license agreement to access a web portal. Here, the user
has to fulfill the required actions before access is allowed. UCONpreB

models consist of 2 steps. First step is to select required obligation
elements for the requested usage. This selection may utilize subject
and/or object attributes. Second step is to evaluate whether the se-
lected obligation elements have been fulfilled without any error (e.g.,
invalid e-mail addresses). In UCONpreB models, a request may require
multiple pre-obligation elements to be fulfilled.

• UCONonB models: UCONonB models are similar to UCONpreB models
except that obligations have to be fulfilled while rights are exercised.
Ongoing-obligations may have to be fulfilled periodically or continu-
ously. An example for the need of a UCONonB policy is a free Internet
service provider requiring users to watch an advertisement while they
are connected to the server. As long as the advertisement window is
active, the usage is allowed.

• UCONpreC models: As described earlier, conditions define certain en-
vironmental restrictions that have to be satisfied for usages. Unlike
authorization and obligation models, condition models cannot be mu-
table. UCONpreC introduces pre-conditions predicate that has to be
evaluated before requested rights are exercised. Checking CPU-id or
an IP address before a usage allowance is an example of UCONpreC0 .

• UCONonC models: The UCONonC0 model introduces an ongoing-conditions
predicate (onC) for monitoring selected condition elements.

5.2.2 UCON formal specification

When speaking of security, it’s hard to be precise in Engligh, Chinese, or
whatever common language in use. Security practitioners and security engi-
neers should try to lower the number of mistakes that can be made. A precise
specification is the key to avoid a number of errors. That’s why mathematics
should be the language of choice when speaking about security.

Mathematics is nature’s way of letting you know how sloppy
your writing is.

Leslie Lamport

53

CHAPTER 5. SECURITY POLICY MODELS

Anyhow, the mathematics written by most mathematicians and scien-
tists isn’t precise enough. More formal mathematicians, like the logicians,
have developed ways of eliminating these imprecisions.

Formal mathematics is nature’s way of letting you know how
sloppy your mathematics is.

Leslie Lamport

There are many examples of logic languages in literature, but the ones
most used in computer science are the Lamport’s temporal logic of actions
(TLA) [53] and the Linear Temporal Logic (LTL) [101].

A logical specification provides a tool to precisely define policies for sys-
tem designers and administrators.

In [111], Park and Sandhu propose a formalization of the UCON model
with a temporal logic, while in their previous works the UCON model was
informal and conceptual. The formalization gives the precise meaning of
the new features of UCON, such as the mutability of attributes and the
continuity of usage control decisions. To build the logic model and formal
specification, Park and Sandhu use an extended form of Lamport’s Tempo-
ral Logic of Actions (TLA) [53]. The basic components include predicates
between subject, object, and system attributes, as well as actions performed
by the system or subjects. A usage control policy is a logic formula built
from these components that has to be satisfied by a UCON model. This
formalization is important for two reasons: first of all, it’s a precise formu-
lation of concepts that should not be ambiguous. Second, it gives us the
possibility to use formal software requirement engineering methods. This
last point will be clear after reading Sections 6.4 and 10.2. Within this the-
sis, we consider the UCON formalization as an important building block for
our work. Anyhow, we’re not going to make a complete review of the Park
and Sandhu’s work. Rather, we stress some points which we consider most
important.

There are two types of actions in UCON: usage control actions and
obligation actions. Figure 5.2 illustrates the different usage control actions
that subjects and systems can perform in the UCON model [111]. These
actions relate to the different phases of an object’s usage: the subject’s
attempt to access an object, the system’s decision regarding such attempt
and the subject/object attributes updates performed by the system.

Given that the triple (s,o,r) represents the subject s requesting the
right r for accessing the object o, Park and Sandhu consider the following
set of actions:

• tryaccess(s,o,r): performed by a subject s when performing a new
access request (s,o,r).

• permitaccess(s,o,r): performed by the system when granting the
access request (s,o,r).

54

5.2. THE UCONABC USAGE CONTROL MODEL

Figure 5.2: The UCON actions model [111]

• denyaccess(s,o,r): performed by the system when rejecting the ac-
cess request (s,o,r).

• revokeaccess(s,o,r): performed by the system when revoking an
ongoing access (s,o,r).

• endaccess(s,o,r): performed by a subject s when ending an access
(s,o,r).

• update(s,o,r): performed by the system to update a subject or an
object attribute when performing an access request (s,o,r).

Obligation actions must be performed by a subject before or during
an access. For an access (s,o,r), an obligation is an action described by
ob(sb,ob), where ob is the obligation action name and ob(sb) and ob(ob)
are the obligation subject and object respectively. Note that in an obligation
action, predicates are not used for control decisions, but for identifying what
obligations are required.

The logical model of UCON is a 5-tuple: M = (S, Pa, Pc, Aa, Ab) where

• S is a set of sequences of system states;

• Pa is a finite set of authorization predicates built from the attributes
of subjects and objects;

• Pc is a finite set of condition predicates built from the system at-
tributes;

• Aa is a finite set of usage control actions;

• Ab is a finite set of obligation actions.

[111] provides logical specifications of the authorization, obligation and
condition core models presented in Figure 5.1. We don’t replicate all of

55

CHAPTER 5. SECURITY POLICY MODELS

them here. A general preassumption is that all predicates and actions are
computable, e.g., a predicate is a computable function of attribute values.
As a matter of example, the usage control policy for the UCONpreA0 family
of core models is:

permitaccess(s, o, r) → �
(
tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pn)

)
while the usage control policy for the UCONpreA2 family of core models is:

permitaccess(s, o, r) → �
(
tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pn)

)
permitaccess(s, o, r) → ♢

(
onupdate(attribute) ∧ ♢endaccess(s, o, r)

)
and the usage control policy for the UCONonB3 family of core models is:

2

(
¬

(∧
i(pi1∧· · ·∧pik → obi)

)
∧

(
state(s, o, r) = accessing

)
→ revokeaccess(s, o, r)

)
endaccess(s, o, r) → ♢postupdate(attribute)

revokeaccess(s, o, r) → ♢postupdate(attribute)

These logical specifications provide a good degree of precision, but, as
the reader will see in chapter 10.2, they are not able to encode all the
information necessary for a really precise definition of an UCON policy.
For this reason, we found these definitions helpful for understanding UCON
policies, but not of real usefulness when applying formal software engineering
techniques. What we’re saying is that there is a lack of preciseness for what
concern the exact sequence of actions needed for enforcing some types of
UCON policies.

It should be noted that all the UCON authorization policies are defined
for positive permissions. For an access request, if there is no policy to enable
the permission according to the attribute values, then the access is denied
by default. This is sometimes called the closed system assumption, whereby
no policy is specified to deny an access in a system. The same holds for
obligation and condition core models.

5.2.3 An UCON policy example

We now show an example of an UCON policy, that can be applied by a
Data Grid application, that show the expressive power of UCON, together
with its complexity. In order to specify our policy example, we include the
following types:

• V O, set of Virtual Organisation (VO) identification names;

56

5.2. THE UCONABC USAGE CONTROL MODEL

• AN , set of Abstract Names; and

• PL, set of privacy level identification names, ranging, for example,
from “free” to “restricted”.

The policy makes use of the following user attributes:

• vo : V O, the VO a user is affiliated to. Since this attribute can not
be modified as a side-effect of subject’s actions, but only with an ad-
ministrative action, it is considered as an immutable attribute. For
simplicity, we assume that an user is affiliated to only one VO. For
user u, we use notation u.vo to denote the VO to which s/he is affili-
ated.

• assigned : V O×AN → N+, a permanent, immutable attribute storing
the number of maximum concurrent access to an abstract name by a
user behind a VO.

• usage : V O ×AN → N, a temporary or permanent mutable attribute
storing the number of current concurrent access to an abstract name
by the user behind a VO.

The policy also uses the following abstract name attribute:

• privacy : PL, an immutable attribute encoding the privacy level of
the AN.

The policy example states that each time a user is permitted to read
an abstract name, the u.usage value is less than the u.assigned value. If
this condition happens to be true, before effectively granting an access the
u.usage value is augmented, so that subsequent access by the same user
should evaluate the policy again. Additionally, the same policy states that
each time a user is reading an abstract name, the an.privacy value must be
set to “free”. If this condition fails, for example when the an.privacy value
is set to “restricted”, i.e after an admistrator action or at a determined point
of time, then the read access is revoked. Whether the access is revoked, or
if the user simply end it, the u.usage value is reduced.

This policy is complex enough to show a traditional authorization policy,
enforced before the effective usage, together with an on-going authorization
policy, which must be enforced during the read phase. Moreover, it shows
updates to one of the user attributes, performed before effectively granting
the access and after the end of it. Put this in UCON terms, the policy is a
combination of an UCONpreA1 policy and of an UCONonA3 .

Figure 5.3 shows an UML diagram of the sequence of operations cor-
responding to our example policy. We refer to Chapters 9 and 10 for a
clarification of the objects and the actions used in the Figure.

57

CHAPTER 5. SECURITY POLICY MODELS

Access Request

USER DGMS

PDP
interface

PDP
predicate
Validator

PDP
Attr ibute
Manager

TryAccess

ValidatePredicates

ValidationReply

UpdateAttr ibutes

UpdateDone

PermitRead
ValidatePredicates

ValidationReply

RevokeRead

UpdateAttr ibutes

UpdateDone

Figure 5.3: Sequence diagram corresponding to our example UCON policy

58

6
Software Engineering Instruments

One of the objectives of this theses is helping software developers to pro-
duce a highly capable framework for managing access and usage control, to
be used by Data Grids, and by distributed systems with similar security
requirements. It’s easy to say that a security software like this should be
the result of a proper software engineering process.

Whithin this Chapter, fist of all we overview the software development
process in use. After that, we look more carefully at some parts of the
software development process we used within this theses.

6.1 Notions about Software Development Process

A software development process is a structure imposed on the development
of a software product. In the last dozen years, software engineers proposed
different repeatable and predictable processes for improving software pro-
ductivity and quality. As a result, there are several models for software
development, each describing approaches to a variety of tasks or activities.
Software development processes are by either using some formalization of the
seemingly unruly task of writing software, or by the application of project
management techniques to writing software.

A software development process is composed by a set of tasks. The se-
quence these tasks are executed, and the interactions among them differen-
tiates a model from another. Basically, the tasks are: requirement analysis,
architecture, specification, design, implementation, testing, deployment and
maintenance

• The most important task in creating a software product is doing the
requirements analysis. We call stakeholders the people affected by
the systems. And stakeholders have requirements that need to be satis-
fied. Once the general requirements are gleaned from the stakeholder,
an analysis of the scope of the development should be determined and
clearly stated.

• The architecture of a software system, or software architecture,
is the structure or structures of the system, which comprise software

59

CHAPTER 6. SOFTWARE ENGINEERING INSTRUMENTS

elements, and the relatioships among them. Architecture is concerned
with making sure the software system will meet the requirements of the
product, as well as ensuring that future requirements can be addressed.

• Specification is the task of precisely describing the software to be
written, possibly in a rigorous way. Safety-critical software systems
are often carefully specified prior to application development. Speci-
fications are most important for external interfaces that must remain
stable.

• Design software means using a specification and an architecture for
designing a candidate software solution.

• Implementation is the part of the process where software engineers
actually program the code for the project.

• Software testing is an integral and important part of the software
development process.

• Deployment starts after the code is appropriately tested, is approved
for release and sold or otherwise distributed into a production envi-
ronment.

• Maintenance is about enhancing software to cope with newly discov-
ered problems or new requirements of the software.

A software development process use all or most of the above tasks, some-
times repeating some or all of them more than once for the same software.
Some notorious development processes can be categorized as prescriptive or
agile.

The prescriptive processes represent the older software engineering paradigm.
The oldest of all is the waterfall process, where the developers follow the
above steps in order, thus after each step is finished, the process proceeds
to the next step. This approach is usually used in high risk projects. It
is not a “fast” development process. Other prescriptive processes are the
incremental model, the RAD (Rapid Application Development) model, or
the spiral model.

The Agile software development models are built on the foundation of
iterative development. Agile models have a more people-centric viewpoint
than traditional approaches, by using more feedbacks rather than planning,
as their primary control mechanism.

There is a rich literature on software engineering process, but we have no
interests in it. Our interests are in some more specific part of the software
engineering landscape, namely software architectures and formal software
engineering methods.

60

6.2. SOFTWARE ARCHITECTURES

6.2 Software Architectures

In Chapter 9 we will show two software architectures. They are an important
result of the work contained in this thesis. But what’s exactly a software
architecture? There are many definitions of it, but we like the one given
Rozansky and Woods in [84]:

The architecture of a software-intensive system is the struc-
ture or structures of the system, which comprise software ele-
ments, the externally visible properties of those elements, and
the relationships among them

The key parts of these definitions are system’s structure and externally
visible properties.

• The system structures may be static or dynamic. The static structures
define the system internal design-time elements and their arrange-
ments. The dynamic structures define the system runtime elements
and their interacions.

• The externally visible properties are externally visible behavior (what
the system does) and quality properties (how the system does it).
While the former defines the functional interactions between the sys-
tem and its elements, the latters identify non-functional properties like
performance, security or scalability.

We strongly believe in the importance of a well structured software de-
velopment process. Producing a well-documented and understood software
architecture is a big part of such a process.

6.3 Formal methods

Formal methods are mathematical approaches to solving software (and hard-
ware) problems at the requirements, specification and design levels. Formal
methods are most likely to be applied in environments and applications
where the software is safety critical.

There is plenty of support for formal methods and notations in the liter-
ature. Examples of formal methods include the B-Method [1], Petri nets [68]
and VDM. Various formal specification notations are available, such as the
Z notation [91]. Formal software development is starting to grow, with the
application of the Object Constraint Language (OCL) [83]. Another emerg-
ing trend in software development is to write a specification in some form
of logic and then to directly execute the logic as though it were a program.

Formal specification is simply a matter of being more explicit and spe-
cific in defining the requirements of software. At the simplest level this can

61

CHAPTER 6. SOFTWARE ENGINEERING INSTRUMENTS

take the form of Design by Contract, where functions and procedures spec-
ify pre- and post-conditions and loops and objects include a set of invariant
properties. In the more rigorous case formal specification involves build-
ing an explicit mathematical definition of the requirements of the software.
Using such a definition one can prove the correctness of the system, or sim-
ply prove theorems about properties of the system. An implementation can
also be checked against such a formalised specification, verifying that the
implemented code does indeed do precisely what the requirements claim.
At the most rigorous level the initial formal requirement specification can
be expanded, through (mathematically rigorous) refinement, to ever more
specific and detailed specifications resulting eventually in executable code.

All of these different levels allow a significantly greater degree of analysis
of the software, be it improved static and runtime checking with contracts,
to more complex data flow analysis and proof with more complete specifi-
cations. In the same way that static types allow more rigorous checking at
compile time, catching a lot of simple errors, contracts and specifications
allow even more analysis and checking, catching even more errors at the
early stages of development when they are most easily and efficiently fixed.

Not every project really needs formal specification, but there are a great
many software projects that could benefit greatly from some level of formal
specification - a great many more than make use of it at present. Formal
specification doesn’t need to be used for a whole project, only those parts
of it that are sensitive to error. Likewise any network services could easily
benefit from formal specification on the network facing portions of the code
to significantly reduce the possibility of exploits: it is far easier to audit
and verify code that has been properly specified. Security software, and im-
plementations of cryptographic protocols, are far safer if formally specified:
with cryptography the protocols are often rigorously checked, and many
exploits relate to errors where the implementation fails to correctly follow
the protocol. Finally mission critical business software, where downtime
can costs millions of dollars, could most assuredly benefit form the extra
assurances that formal specification and verification can provide.

Formal specification isn’t a silver bullet, and it isn’t the right choice for
every project. On the other hand you can use as much specification and
verification as is suitable for your project. You can apply formal specifica-
tion only to the portions that are critical, and develop the rest normally.
More importantly, the techniques, languages and tools for formal specifica-
tion continue to improve. The more powerful the methods and the tools,
the more projects for which formal specification becomes a viable option.
In an increasingly network oriented computing world where security and
software assurance is becoming increasingly important, the place for formal
specification is growing.

62

6.4. GOAL-ORIENTED APPROACHES AND KAOS

6.4 Goal-oriented Approaches and KAOS

Goal-oriented approaches have been recognized to be essential components
in many formal software engineering approaches. For example, one of the
fields where they are used most stands in Requirement Engineering.

A goal is a prescriptive description of system properties, formulated in
non-operational terms. A system includes not only the software to be de-
veloped but also its environment. Goals are refined and operationalised in a
top-down manner as the system is designed, or with a bottom up approach
while re-engineering existing systems. The approach also supports adverse
environments, composed of possibly malicious external agents trying to un-
dermine the system goal rather than to collaborate in the goal fulfillment.
As a Grid system is typically composed of a large number of nodes inter-
acting in an open and possibly adverse environment, this approach fits our
needs well.

One of the requirement engineering methodology that makes use of goals
is Knowledge acquisition in automated specification (KAOS). KAOS
is a generic methodology based on capturing, structuring and precise for-
mulation of system goals [99].

A KAOS model is composed of a number of sub-models, these include:

• The goal model captures and structures the assumed and required
properties of a system by formalising a property as a top-level goal
which is then refined to intermediate subgoals and finally to low-level
requirements representing goals that can be operationalised. Goals
may be organized in AND/OR refinement-abstraction hierarchies, where
higher-level goals are generally strategic, coarse-grained and involve
multiple agents whereas lower-level goals are technical, fine-grained
and involve fewer agents. In such structures, AND-refinement links
relate a goal to a set of sub-goals possibly conjoined with domain
properties or environment assumptions; this means that satisfying all
subgoals in the refinement is a sufficient condition in the domain for
satisfying the goal. OR-refinement links relate a goal to a set of alter-
native refinements.

• The agent model assigns goals to agents in a realizable way. Agents
include software components that exist or are to be developed, external
devices, and humans in the environment. Discovering the responsible
agents is the criterion to stop a goal-refinement process.

• The object model is used to identify the concepts of the application
domain that are relevant with respect to the requirements and to pro-
vide static constraints on the operational systems that will satisfy the
requirements. The object model consists of objects from the domain

63

CHAPTER 6. SOFTWARE ENGINEERING INSTRUMENTS

and objects introduced to express requirements or constraints on the
operational system.

• The operation model details, at state-transition level, the actions
an agent has to perform to reach the goals it is responsible for.

The KAOS language has a two-layer structure: an outer conceptual mod-
elling layer for declaring concepts (such as goals, objects, agents, etc) and
links between concepts (such as goal refinements, responsibility assignments
of goals to agents, etc.); and an inner formal assertion layer for formally
defining concepts.

The rigor of the KAOS methodology stems from the fact that any con-
cepts defined within its sub-models incorporate formal definitions using Lin-
ear Temporal Logic (LTL) [101] formulae. LTL formalae consist of combi-
nations of the usual first-order predicate logic operators (∧ ∨ ¬ →↔) along
with the following temporal operators about the predicate P and Q:

• �P , which says that P is always true from now on;

• ♢P , which says that P will be true sometime in the future;

• ◦P , which says that P will be true in the next state;

• �P , which says that P was always true till now;

• �P , which says that P was true at sometime in the past;

• •P , which says that P was true in the previous state;

• PSQ, which says that Q has been true since a time when P was true;

• PUQ, which says that P will be true until a time when Q will be true.

We also write (P ⇒ Q) to mean �(P → Q) and (P ⇔ Q) to mean (P ⇒
Q) ∧ (P ⇐ Q).

Figure 6.1 shows an overview of the KAOS models and their inter-
relations. This example has been widely taken from [56], and shows excerpt
of the goal, object, agent and operation models for a meeting scheduling
problem. Within the goal model of Figure 6.1, the top-level goal [Conve-
nientMeetingHeld] is AND-refined into the subgoals [PrtcptsCnstrKnown],
[ConvenientMeetingPlanned], and [PrtcptsInformed]. The goal [PrtcptsCn-
strKnown] has two alternative, OR-refinements. The goals are further re-
fined until the leaf goals are identified as either assumptions of the system, or
requirements. Then, analyzing the goal model, we can identify the objects of
the system, their relations, and the agents involved. Figure 6.1 shows that,
for the case of the meeting scheduling problem, two objects are identified
and shown in the object model. The leaf goal [PrtcptsCstrRequested] is a
requirement of the system and can be assigned alternatively to the Scheduler

64

6.5. ENGINEERING A SECURITY SOFTWARE

software agent or to the Initiator agent. From the agent model and the goal
model, we can identify the operations of the system. Figure 6.1 shows how
the operation model uses domain pre- and post- conditions of the operation
[SendCstrRequest] to capture what any sending of a constraint request is
about in the application domain.

Within this thesis, we will use a methodology for validating that an ab-
stract specification for enforcing UCONabc policies is sound and complete.
Such methodology, which will be explained in Section 10.1, is liberally in-
spired from KAOS.

6.5 Engineering a Security Software

The biggest problem in computer security today is that many
practitioners don’t know what the problem is. Simply put, it’s the
software! You may have the world’s best firewall, but if you let
people access an application through the firewall and the code is
remotely exploitable, then the firewall will not do any good (not
to mention that the firewall is often a piece of fallible software
itself). The same can be said of cryptography. In fact, 85% of
CERT security advisories1 could not be prevented by cryptogra-
phy
Bruce Schneier

In Section 6.1 we made a very brief survey on the software development
processes in the literature. One of the questions that need an answer is: what
is, if there is one, a software development process for a security software?
And why is a good software development practice so important?

The most obvious answer is that we want to help producing good soft-
ware. A good software is a highly capable product, with few bugs and
vulnerabilities. As stated in [106], the major source of vulnerability has
been recognized to be poor-quality software. Internet-enabled applications
present the larger category of security risks. Obviously, Grid middlewares
and applications follow in this category.

Secure software practitioners advocates to think of software security as
risk management. Software security risks come in two main flavours: ar-
chitectural problems and implementation errors. Even if we produced some
working code, we can not help much with the second kind of problems.
There are good books on programming good software with security in mind
out there, like [106] or even the more general [62]. Anyway, we did our best
for integrating security in the architectures shown in Chapter 9.

1CERT is an organization that studies Internet security vulnerabilities. See
http://www.cert.org

65

CHAPTER 6. SOFTWARE ENGINEERING INSTRUMENTS

Object Model

Goal Model

Agent Model

Operation Model

ConvenientMeetingHeld

PrtcptsCnstrKnwn PrtcpntsInformedConvenientMeetingPlanned

Prtcpnt MeetingIntended

PrtcptsCnstRequested

Resp

 Scheduler

 Init iator

Resp

Inter-model
Consistency Rule

Operat ion
DomPre
DomPost
ReqTrigFor

SendCnstRequest
 CstrRequested(p,m)
CstrRequested(p,m)
[PrtcpntConstrRequested]

Figure 6.1: Overview of the KAOS models

66

6.5. ENGINEERING A SECURITY SOFTWARE

The most important prerequisite to software risk management is adopt-
ing a high-quality software engineering methodology. Software that is prop-
erly engineered goes through a well-structured process from requirements
design, through detailed specification, to actual implementation. A com-
pressed development schedule means that software engineering processes
are often thrown out of the window. Sometimes software specifications are
very poorly written (if they exist at all). We think this is just awful. That’s
the reason why, within this theses, we produced a formal software specifi-
cation for one of the most critical software systems to be produced. Such
architecture may be found in Section 9.2. For its production, we used a
formal software requirement engineering methodology we will review in Sec-
tion 6.4, while the next Section overviews the formal methods of software
engineering.

67

Part III

Models, Architectures, and
Specifications

69

7
Foundations for Usage Control on Data

Grids

This Chapter shows the foundations for studying and developing usage con-
trol techniques on data Grids. First of all, we review old and new require-
ments concerning Grid security, with a focus on Data Grids. Such require-
ments guided the work that can be found in subsequent Chapters. The
second part of this Chapter presents a distributed security model suitable
for Grids and distributed systems alike. Such model, although linear and
simple, couldn’t be found in any precedent literature on policy security mod-
els. Then, we show how to apply such model to Data Grids.

7.1 Security Requirements for Grids

In distributed systems design, security cannot be orthogonalized as a con-
cept: securing the system cannot be done separately, since security may
have a profound impact on the actual architecture and design. In Grid
infrastructures there are many constraints due to security considerations.

On the other hand, the Grid infrastructure, and the Grid applications,
have an influence on the way the security models, sytems, frameworks and
services are designed, developed and deployed.

In this Section first of all we will outline the basic security concepts that
concern Grid developments and deployements. Then, we will concentrate
on Usage Control requirements for Data Grids.

7.1.1 General Security Requirements

In section 2, we’ve made a really brief history of the evolving of the concept
of Grid, concerning Computing Grids and Data Grids, and we also showed a
simplified taxonomy for Grids. To understand all the security requirements,
we have to think to who is using these Grid typologies now, who is going
to use Grid technologies soon, and who wish to use them, but can not trust
them for some security reasons [37]. At the present time, the majority of
Grid middlewares and tools are growing behind some specific needs, mainly

71

CHAPTER 7. FOUNDATIONS FOR USAGE CONTROL ON DATA
GRIDS

HEP (High Energy Physics) experiments. HEP applications produce and
consume a considerably high amount of data with heavy impact on the
bandwith, but probably they don’t need a high security system, because the
main purpose of this activities is to be fast. At the same time, other Grid
middlewares grow for chemicals or bioinformatics necessities, with different,
tighter, security requirements.

A growing number of researchers and VOs will born. They will use Grids,
peer-to-peer systems, or whatever distributed paradigm will be in place that
could help with their computing needs. These VOs may pose new security
requirements. Just to make the simplest example, in the next generation of
Grids file sharing, a user will want to give access to his/her files only to a
limited set of people, identified by some kind of property. To do this, there’s
the need for a high control over who is authorized to view or modify the
data [44].

A problem comes from the fact that security is, indeed, a cost: perfor-
mance, scalability, manageability, maintainability, usability of a Grid have
an effective relation with the security service. For this reason, some appli-
cations (and specifically their users) could consider strict security checks as
an annoyance, an aggravation.

Every Grid application may have a specific set of security requirements,
and a Grid middleware should be capable to deal with a vast number of
those. In other words, a Grid security framework should deal with different
protection functionalities. Different Grid applications should be able to
determine the way the Grid guarantees data integrity and confidentiality.
Different Grid authentication and authorization capabilities need to be in
place. The solution is to conceive a really flexible system, with no explicit
bindings with a specific application.

The next generation Data Grid elements should be able to publish the
Quality of Protection (QoP) they can assure to the data they own. The
QoP exposed by DGMS, network, SEs and other software elements would
be decisive for the entire Data Grid system. Security negotiations should be
used to establish secure sessions between the endpoints. A security infras-
tructure featuring support for negotiations and establishment of end-to-end
and/or hop-to-hop security associations has broader applicability to gen-
eral networked environments like Grids. Security negotiations require some
brokering agent to mediate between the endpoints.

In the literature, or simply by surfing the web, the readers may also find
many requirements which we consider too technical to be listed here: we
are not interested in design-time or development-time requirements. We are
interested in those requirements that helps us identifying suitable security
models for Grids, and for the specification of Data Grid security architec-
tures.

That being said, we recognize in the CIA triad (Confidentiality, Integrity
and Availability) of Section 3.1 the building block behind a Grid security

72

7.1. SECURITY REQUIREMENTS FOR GRIDS

infrastructure. Another important property should be data lifecycle man-
agement, which is the process of managing data throughout its lifecycle.
Fault tolerance is a desirable feature especially when transfers of large data
occur. Grid services should also be able to trust each others.

7.1.2 Requirements for Data Grids Usage Control

We don’t have a single source of requirements for Data Grids Usage Control
frameworks. Some of the requirements that are listed here can be found in
[102] or in [34], but we believe they do not represent a comprehensive list.

1. A Grid Security Model. A Data Grid usage control framework
should implement a Grid security and policy model. Referring to what
we wrote in Sections 4.2.1 and 4.2.2, the Grid security model of choice
should be the “Grid usage” model, since relying on local (SE) security
implementations makes impossible creating a flexible system.

The other downside of using local ACL implementations is the lack of
standardization. The only attempt for a standardization of ACLs has
been made within POSIX. The POSIX.1e ACLs [97] are an estension of
the POSIX.1 permission model, the standard 9-bit access permissions
of the UNIX systems. The extended ACLs support more fine-grained
and complex permission scenarios, that are difficult or impossible to
implement with the minimal model. Unfortunately, the work behind
ACLs never became a POSIX formal standard, and at the time of
writing there’s a wild mix of implementations with subtle differences
and incompatibilities. We aren’t going to explain how they work, we
just say that they can be applied to files and directories, increasing
flexibility and security. For our purposes, the worst problems come
when we have to preserve permissions in a distributed system: it’s
very difficult to implement a system able to preserve as much infor-
mation as possible. There are a number of complications that make
the operation prone to implementation errors, especially when we have
different kernels and file systems. The semantics of ACLs differ widely
among UNIX systems alone, not to speak of non-UNIX ones.

That being said, it’s now clear that the model of choice from the
Grid user’s point of view should be the Grid security mode since this
integrates the site peculiarities into a uniform security model where
every grid site looks the same.

For what regards a policy model, we believe that none of those pre-
sented in Section 4.3 can be used effectively. For more information,
see the “Multiple Authoritative Points” requirement in this Section.

2. Separating the Policy from the Infrastructure. As a conce-
quence of the previous requirement, a future authorization service will

73

CHAPTER 7. FOUNDATIONS FOR USAGE CONTROL ON DATA
GRIDS

separate authorization infrastructure from the policy itself, providing
only secure environment and mechanism for site-authority controlled
policy enforcement. The policy evaluation engine will be implemented
as a separate service that will be able to call external separate decision
points.

3. Multiple Authoritative Points. In a distributed system like a Grid,
there may be small to larger number of different resources, each one
controlled by a different policy officer. Each policy officer is a Source of
Authority (SoA) for an authoritative point, viz. authoritative sources of
authorizations and usage control. When a client service is requesting
the permission to access a single remote resource, a number of policies
maintained by different SoAs may have to be evaluated. What this
means is that the VO should be able to decide users’ membership
policies and users’ authorization policies for which it is authoritative,
and, in parallel, that resource owners should be able to decide the
users’ authorization policies for which they are authoritative.

Figure 7.1: Framework for combining authorization policy from different
parties. [96]

This requirement was historically advocated by the Globus and EGEE
security teams. A picturial illustration of it can be found in Figure
7.1. This Figure shows that VOs, sites, and other stakeholders all par-
ticipate in the definition of policies to be evaluated, i.e. they are au-

74

7.1. SECURITY REQUIREMENTS FOR GRIDS

thoritative points. VO policies, user attributes, site policies, resource
attributes, together with policies from other stakeholders and/or dele-
gation policies, are to be evaluated by at least one (logical) authoriza-
tion service, and enforced by at least one (logical) enforcement service.
Up to now, there is no existing Grid usage control framework coping
with this requirement. This is the main reason why in Section 7.2 we
present a usage control model for Grids and distributed systems that
is capable to cope with this requirement.

4. Security Policy Characteristics. The policy model should be ca-
pable to encompass traditional access control models. Moreover, the
policy model should not pose constraint on the degree/level of granu-
larity of usage control, ranging from storage space level to individual
data access restrictions.

5. Standard Languages and Protocols. A usage control framework
should be based on a recognized policy expression language and ex-
change format, and should use a Request/Response protocol to allow
intra-site and multiple site scalability. This implies the investigation
for the use of “standard” format languages and protocols.

Some security experts advocate that some (not all) of the proposed
security “standards”, which are mostly XML-based languages, still
suffers from instability and poor expressibility. This is the case, for
example, of P. Gutmann [43]. Going beyond these kind of discussions
is not one of the purposes of this thesis.

Personally, we agree that some of the proposed standards are not ma-
ture enough to be used effectively. For example, we believe that the
adoption of standard policy languages, like for example XACML, could
represent a limit to the number of policy models such a language could
be able to express. Within this thesis, we don’t make an analysis of ex-
isting security policy languages. Some others have tried [26, 71], even
if we have no notions about comparative studies including XACML.

Even if standard languages may pose limitations, we still consider them
as parts of the requirements for a Data Grid usage control implemen-
tation. For example, in Chapter 8, we show how we used a security
standard language while re-engineering a Grid Attribute Authority.

6. Domain Trust. A usage control framework should be able to ex-
plicitly trust or not trust usage control decisions coming from other
domains. This means that a trust service should be in place. Within
this work, we don’t plan to solve this requirement. Instead, we consider
the existence of a trust service as a pre-requisite for a usage control
service.

75

CHAPTER 7. FOUNDATIONS FOR USAGE CONTROL ON DATA
GRIDS

7. Other Requirements

• authorization should be largely based on the VO internal struc-
ture;

• the dinamicity level should not affect the performance of the
whole system;

• the security service should be mostly a black box from a user
perspective, even if there is a minimum the user should be aware
and need to know, especially for what regards the management
of credentials.

• users could be members of any number of VOs;

• users could have any number of roles within a VO;

• it should not be possible to successfully carry out an action or
successfully submit a job where the authorization is not valid;

• it should be possible to determine the list of resources to which
a user has access and what actions they are allowed to carry out
in the VO(s) and role(s) set for the current session;

• it should be possible to determine if a certain user in the current
session has access to a certain resource and what actions they
may carry out on that resource;

• the authorization method should be application independent;

• the authorization decision making process should be the same/-
consistent within a VO;

• it should be possible for a VO manager to add/remove a user
and/or a role from a VO;

• the authorization requirements on Grid Data (GD) access shall
hold regardless of replication;

• and, most of all, the whole service must be scalable; regarding
this last requirement, we will make some further consideration in
Section 11.2.

7.2 A Grid Usage Control Model

In this section we define a usage control model for Grids and distributed
systems. Then, we will apply this model to the Data Grid abstraction of
Section 2.4.

7.2.1 The Distributed Usage Control Model

Up to now, there’s no existing security model that can cope with the inner
nature of Grids. Some of the security requirements of a (Data) Grid can not

76

7.2. A GRID USAGE CONTROL MODEL

be satisfied by simply applying the policy models we reviewed in Section
5 to a Data Grid. For example, one of the most important requirements
for Data Grids Usage Control that can be found in Section 7.1.2 is about
ensuring the presence of multiple authoritative points (number 3 of the list).
The model we propose in this Section can deal with such requirement.

Within the model we propose, that we call Distributed Usage Control
Model (D-UCM), policy officers could impose the evaluation of local policies.
We say that a single usage decision comes from the evaluation of a workflow
of local usage control steps. For example, when the workflow of a complete
usage control is made of three separate usage control steps, each one of the
three must be satisfied.If one of the usage control steps can not be satisfied,
the entire usage is not permitted.

G-S

G-R

G-O

Global
UsageDecision

Usage
Decision
for AP-2

Authoritative Point 2

L-S 2 L-O 2

L-R 2

Usage
Decision
for AP-3

Authoritative Point 3

L-S 3 L-O 3

L-R 3

Usage
Decision
for AP-1

Authoritative Point 1

L-S 1 L-O 1

L-R 1

Figure 7.2: The Distributed Usage Control Model

Figure 7.2 shows a pictorial overview of D-UCM. Within this Figure, we
show that three distict authoritative points each impose the evaluation of
a local usage decision (L-UD) step. Each step have to be satisfied for the
enforcing of a global usage decision (G-UD). A central workflow orchestrator,
with responsibility for the G-UD, is needed.

Within this model, the evaluation of a L-UD step is seen as an atomic
action. The model doesn’t pose any constraint neither on the way authori-
tative points enforce usage control steps, nor on the nature of the security
policies that have to be evaluated to reach a L-UD. For example, a L-UD
may require the evaluation of a vast number of distributed and concurrent
policies, but all this machinery is under the responsibility of the local Source
of Authority (SoA).

A G-UD is based on a global subject (G-S), a global object (G-O) and a
requested global right (G-R). To reach a L-UD, each SoA encode G-S, G-O
and G-R respectively in a local subject (L-S), local object (L-O) and local

77

CHAPTER 7. FOUNDATIONS FOR USAGE CONTROL ON DATA
GRIDS

right (L-R). The relation between the global and local subjects, objects and
rights is dependent from the application using the model.

We believe we can apply this model not only to Data Grids, but to all
those distributed applications with the same requirements of distributed,
multiple authoritative points. Therefore, the challenge for controlling the
resource usage in Grids and distributed systems is knowing which are the
authoritative points involved in a usage request.

7.2.2 D-UCM for Data Grids

We now apply the distributed usage control model (D-UCM) of Section 5.2
to the Data Grid. For what concern the Data Grid environment, we choose
the UCONabc usage control model as policy model because of its high ca-
pabilities. UCONabc satisfies the requirement on policy models of Section
7.1.2 (number 4 of the list).

Usage
Decision 1S1

R1

A1 B1 C1

Usage
Decision 2

S2

R2

O2

A2 B2 C2

S

R

O

O1

Global
Usage

Decision

Authori tat ive
point 1

Authori tat ive
point 2

Figure 7.3: A 2-step D-UCM, where each step enforces a policy pertaing to
the UCONabc model

We now consider the terminology introduced in Section 2.4. In a Data
Grid, GDs (Grid Data) are stored (and transferred and replicated) in GSSs
(Grid Storage Speces) by the SEs (Storage Elements). A client performing
an access to a GD should be authorized to access the data itself, and to

78

7.2. A GRID USAGE CONTROL MODEL

use the GSS. Therefore, the policies of the single steps should be written
by those policy officers which are SoA for the GDs (e.g. VO admins or
simply VO participants), and by those policy officers which are SoA for the
GSSs (e.g. SE admins). Therefore, we identified two authoritative points,
which are DGMS and SEs. A Complete usage control in Data Grid then
follows a two-steps workflow. From now on, we refer to each of these steps
as data usage control (D-UC) and storage usage control (S-UC). Each step
corresponds to the enforcing of (at least) a UCONabc policy.

We now pose some constraints on the relation between G-S, G-O, G-R
and L-S, L-O and L-R of D-UC and S-UC. Each single L-S represents the
G-S as it is recognized by respectively the DGMS and the SE. Similarly, the
L-R represents the G-R as it is recognized by the DGMS and by the SE.
The object of the D-UC is the unique identifier of a GD, i.e. the abstract
name. The object of S-UC is, instead, the GSS itself. By doing this neat
separation between the objects of D-UC and S-UC, we highlight the role of
the authoritative points. Moreover, by doing this separation, the policies of
the different steps will never overlap. Figure 7.4 shows this two-step usage
control.

Figure 7.5 compares security models for Data Grids as seen in [34],
and summarized in Section 4.3, with the distributed security model we are
proposing within this thesis. As it’s clear by looking at this Figure, the real
difference stands with the usage of two (UCON) PDPs, one for each usage
control step.

We believe that, by applying this simple distributed security model, we
are capable to solve one of the most challenging security problem that af-
fects Grids, but also many distributed models, that is the centralization of
security policy management and enforcement. This model logically split the
authorization decision function by using multiple, non-overlapping, autho-
rization services. For what regards its application to Data Grids, as will
be made clear in Section 9.1, such separation is achieved with two UCON
PDPs connected by an orchestrator.

79

CHAPTER 7. FOUNDATIONS FOR USAGE CONTROL ON DATA
GRIDS

HON
2

Client Service

2AddrAddr 1

Grid
Access

(GA)

Direct
Access

(DA)

GA-1

GA-2a

GA-2b

DA-2

DA-1
Data
SVC

-
SE level

-
Data

Resource

Naming
-

DGMS
-

Data Catalog/
Discovery

SVC

Data
Usage

Decision

R

S O

A B C

Storage
Usage-Dec

@ SE1

R

S O

A B C

Storage
Usage-Dec

@ SE2

R

S O

A B C

Figure 7.4: The two-steps Grid usage control

80

7.2. A GRID USAGE CONTROL MODEL

VO

Site

Site

Middleware
layer

Application
layer

Resource
layer

PEP
PEPPEP

PEP

PEP
PDP

PDP

PDP

PDP

PDPPDP

Model 1 Model 2 Model 3 Model 4 Model 5 Distr ibuted
Model

PEP

PDP

tradit ional models

PDP

PEP

Model 6

Figure 7.5: Comparison of security models for Data Grids (inspired from
[34])

81

8
Grid Authentication for Usage Control

systems

This thesis wants to help solving some of the Data Grids security problems
by applying usage control models and techiques. As we said in Section 4.1,
we consider usage control as a process composed by two steps, i.e. the “Grid
Authentication” and the “Grid Authorization” boxes. Even if most of the
thesis is dedicated to the Grid authorization phase, this Chapter shows our
work for a Grid Authentication service.

An authentication service defines the Grid identity of Grid users, with
a set of credentials for her description and identification. Using the OGSA
words, the “Grid Authentication” is achieved through the use of one or more
CIS (Credential Information Service) of an Attribute Authority (AA).

Within this Chapter, we show the re-engineering of the Virtual Organi-
zation Membership Service (VOMS), an AA for Grids we already mentioned
in Section 4.4. VOMS is a de facto standard when coming to AA for Grids.
The re-engineering wants to achieve the “standard languages and protocols”
requirement we mentioned in Section 7.1.2 (number 5 of the list), through
the use of the SAML Security Assertion Markup Language.

We published a good potyion of the work reported in this Chapter in
[104] and [103].

8.1 The Virtual Organization Membership Service

The Virtual Organization Membership Service (VOMS) is an AA focussing
on Virtual Organization Management. It releases signed assertions contain-
ing attributes expressing a user membership and position in a VO. Such
assertions can be used by Grid Services to drive usage control decisions. By
using VOMS, users can be organized in a hierarchical structure.

VOMS is composed by a number of software elements, and the most
important is the AA-element, which is the main VOMS server. It works
as a net server, one instance per VO, auditing for incoming connections
requesting attributes. All connections between the server and its clients
are mutually authenticated, therefore each client is authorized to retrieve

83

CHAPTER 8. GRID AUTHENTICATION FOR USAGE CONTROL
SYSTEMS

informations only for herself.
Currently, three different types of attributes may be returned by a VOMS

server:

• groups: they represent an organizational structure. There is a root
group, representing the whole organization, and a series of subgroups,
up to any depth. By convention, the root group has always the same
name as the managed VO. A user may belong to any number of groups,
and group membership information will always be present in the as-
sertions, without the possibility for the users to hide it.

• Roles: since not all the users within a group have equal rights, it is
a common situation when some of the members of a particular group
need some additional privileges. This situation is represented by roles,
which are specific of a group and are granted only if explicitly requested
by a user.

• Generic attributes: these attributes are in the form name = value,
where both name and value could be freely chosen by a VO. They are
also called Tag attributes, and like groups, they will always be present
in the released credentials.

In its current version, used in production Grids like EGEE, VOMS re-
leases its groups and roles attributes using the Fully Qualified Attribute
Name (FQAN) attribute [23] to encode the position of a subject in a VO.
Each FQAN contains informations regarding the VO, groups and roles the
user is member of. A FQAN has the following format:

<group>/<sub-group(s)>/Role=<role>

This syntax means that the user holds the role <role> in the group <group>,
where the first group is always the name of the VO. Examples of valid
FQANs are:

/cms
/cms/Role=VO-Admin
/cms/production/montecarlo/Role=writer

The order in which the FQANs are presented is significant, since it is
the order in which the holder wished the FQANs to be evaluated. In the
present service, VOMS encodes FQANs using X.509 Attribute Certificates
(ACs). [45, 27]

8.2 Recent VOMS enhancements

In the context of the OMII-Europe project, we re-engineered VOMS [104]
to support authorization standards emerging from the OGF. We give here
a brief explanation of the work.

84

8.2. RECENT VOMS ENHANCEMENTS

VOMS is widely used in the Grid community, thus the aim of our effort
is to retain the functionalities of the current service, and extend it with
a standard Web Service interface that uses the Security Assertion Markup
Language (SAML). Besides the protocol, the new service uses SAML As-
sertions to contain the subjects’ attributes. The service is not meant to
be a replacement of the old one, but aim at making the VOMS framework
supporting the wider possibile range of use patterns. A driving use case has
been those Grid middlewares not using proxy certificates [45], which right
now is the delegating mechanism used by many middlewares.

The main interactions between a client and the re-engineered VOMS
service are shown in fig. 8.1.

ASSERTION
SAML
SIGNED

Client

Target
System

GRID
MIDDLEWARE

WS−CLIENT
(SAML SCHEMA)

SAML−BASED VOMS

Authentication

SAML request

SAML Response

Server
DB

AUTHZ

SIGNED
SAML
ASSERTIONS

APACHE TOMCAT SERVER

Figure 8.1: Interactions between a client, a re-engineered VOMS service and
a target system [104]

8.2.1 The OASIS Security Assertion Markup Language

The Security Assertion Markup Language (SAML) is developed by the Secu-
rity Services Technical Committee of OASIS. It is an XML-based framework
that allows business entities to make assertions regarding the identity, at-
tributes, and entitlements of a subject (an entity that is often a human
user) to other entities, such as a partner company or another enterprise
application.

We are interested in its capability of releasing attribute-based informa-
tion to be used for authorization purposes, where, for example, one web site
can communicate identity information about a subject to another web site,
in order to support some authorization decisions.

SAML defines Assertions, packages of information that supply one or
more statements by a SAML authority, among which are Attribute Asser-
tions. It also defines protocols to request Assertions from SAML authorities,
and bindings into standards messaging or communication protocols [15].

85

CHAPTER 8. GRID AUTHENTICATION FOR USAGE CONTROL
SYSTEMS

8.2.2 Service Interface

The VOMS SAML service exposes an interface according to SAML pro-
tocols [16] and bindings [15]. The service supports a single operation,
whose input is a <samlp:AttributeQuery> element and the output is a
<samlp:Response> element. The <samlp:AttributeQuery> element con-
tains the subject for which the requestor wants to retrieve attributes, and
eventually which attributes she is interested in. A successfull <samlp:Response>
contains a <saml:Assertion> element with the requested attributes. The
elements <samlp:AttributeQuery> and <saml:Assertion> are used ac-
cording to the SAML profile for X.509 subjects [82].

8.2.3 Asserting Attributes Using SAML Assertions

When the service authorizes a request, a <samlp:Response> is used to re-
turn a <saml:Assertion> containing a <saml:AttributeStatement> with
the subject’s attributes. In the following, we sketch an example of a SAML
assertion (some XML tags and attributes are omitted for brevity). Following
the VOMS logic, an assertion must identify the VOMS server that released
it, the entity (normally a user) whose assertion is addressed, and the VOMS
attributes.

1 <saml:Assertion ... >
<saml:Issuer >

3 CN=omii002.cnaf.infn.it,L=...
</saml:Issuer >

5 <saml:Subject >
<saml:NameID

7 Format="urn:.. :x509SubjectName"
CN=Federico Stagni , OU=... >

9 </saml:NameID >
</saml:Subject >

11 <saml:AttributeStatement >
...

13 </saml:AttributeStatement >
</saml:Assertion >

Line 7 must be an uri in conformance with [82], while line 3 must indicate
the distinguished name of the issuer host. Line 8 identifies the distinguished
name of the assertion’s subject. The <saml:Subject> element may con-
tain a <saml:SubjectConfirmation> element to confirm the identity of the
involved subject. The assertion may contain a signature.

Expressing the VOMS attributes using SAML

The core functionality of VOMS is expressing attributes, but the Fully Qual-
ified Attribute Name attribute used by VOMS and the generic “tag” at-
tribute don’t map naturally to SAML, thus we need to use the following

86

8.2. RECENT VOMS ENHANCEMENTS

<saml:Attribute> elements: vo, group and role for the FQAN, and a fourth
tag attribute.

Concerning the <saml:AttributeVaue> containing the VOMS attributes,
we defined a new complexType type, the FQANType, in order to carry the
priority attribute of group and role. Such a type is simply an extension of
the <xs:token> type, which is itself a built-in type over <xs:string> that
represents a tokenized string in the W3C recommendation of XML [108].
The following XML schema fragment defines the FQANType complex type:

<complexType name="FQANType">
2 <simpleContent >

<extension base="xs:token">
4 <attribute name="priority"

type="xs:positiveInteger"/>
6 </extension >

</simpleContent >
8 </complexType >

Similarly, we defined two new complexType types to carry a tag at-
tribute. The TAGType type contains a sequence of TAGValue types, which
are extension of the <xs:string> XML type. Both the XML schema follow:

<complexType name="TAGType">
2 <attribute name="TAGname"

type="xs:string" use="required"/>
4 <attribute name="TAGdescription"

type="xs:string" use="optional"/>
6 <sequence >

<element ref="TAGValue"
8 minoccours="1"

maxoccours="unbounded"/>
10 </sequence >
</complexType >

12

<complexType name="TAGValue">
14 <simpleContent >

<extension base="xs:string">
16 <attribute name="qualifier"

type="xs:normalizedString"
18 use="required"/>

</extension >
20 </simpleContent >
</complexType >

The qualifier attribute of TagValue may be empty, indicating that its
content should be assigned directly to the user.

87

CHAPTER 8. GRID AUTHENTICATION FOR USAGE CONTROL
SYSTEMS

8.2.4 Sending SAML Assertions to Grid Services

In the AC based VOMS, there are command line tools that allow an AC
retrieved from a VOMS AA to be embedded in a proxy certificate: over the
years, this has proved a very convenient way of sending AC to Grid Services.
Some tools using SAML Assertions are using the same proxy-based logic. For
example, the Globus Toolkit 4 1 Community Authorization Service (CAS)
[31] binds authorization Assertions to a proxy. GridShib [10] does the same
with authentication Assertions. The Web Service Security specification [70]
defines a way to send SAML security tokens as part of the SOAP Header
[69]. We have preferred this solution, being based on an already consolidated
standard and allowing support for services not supporting the use of proxy
certificates for authentication. Following is an example of a SOAP message
carrying a SAML Assertion (omitted for brevity):

1 <soap:Envelope xmlns:soap="...">
<soap:Header >

3 <wsse:Security wsse="...">
<saml:Assertion xmlns:saml="...">

5
</saml:Assertion xmlns:saml="...">

7 </wsse:Security >
</soap:Header >

9 <soap:Body >
...

11 </soap:Body >
</soap:Envelope >

At the moment of writing, we are discussing with other similar VO man-
agement tool implementors a common SAML Attribute profile, that will
define the format for SAML Attributes of interest for VOs.

8.3 Scenarios

In VOs, participants join in order to share resources, and essential is the abil-
ity to share any resources, independently from the middleware the resources
are using. However, such a situation is very seldom seen nowadays, since
VOs tend to be confined to a specific middleware distribution, and sharing
resources using different middlewares raises a number of problems. Grid
Authentication is great issue when trying to share resources that use differ-
ent middlewares. As it is shown in the next Chapter, Grid authorization is
a complex task, since RPs should be able to enforce authorization policies
defined by the VOs, by external stakeholders and by the RPs themsevels. In
order to develop a consistent authorization framework, such policies could
use environment informations and context data, and must use user attributes

1http://www.globus.org/toolkit

88

8.4. RELATED WORKS AND VOMS ALTERNATIVES

like the ones provided by VOMS. Therefore, attributes defined by VOMS
must be available and understood on any shared resource.

The use of standard languages, protocols, and bindings aims at wider
and easier support of VOMS on more middlewares. This is going to increase
the range of resources that VOs using VOMS will be able to share. Also
users in the VO will be able to choose their favourite client applications. An
architectural sketch of such scenario is shown in fig. 8.2.

 VO

VOMS

client tier

VO

attributes

Client 1

Middleware A

service tier

Client 2

Middleware B

Resource 2

Middleware B

Resource 1

Middleware A

SAML

Figure 8.2: Sharing resources using different middlewares [104]

8.4 Related Works and VOMS Alternatives

In today’s Grids, there are not many competitors with VOMS, which as said
is a de-facto standard when coming to Grid Authentication services. One
of the possible alternative is represented by GridShib. The GridShib [10]
project aims at integrating PKIs with both site authentication infrastructure
and Shibboleth [46]. Shibboleth, which is based on SAML is an identity
management system designed to provide federated identity, acting as an
Attribute Authority. Shibboleth is used as the attribute source.

Another possible alternative can be represented by the Semantic Grids,
which are an evolutionary approach for Grids with roots in the Semantic

89

CHAPTER 8. GRID AUTHENTICATION FOR USAGE CONTROL
SYSTEMS

Web [11] vision. Since the preliminary Tim Berners-Lee’s vision of the web
evolution, the Semantic Web has become a field receiving great attention.
Technologies, specifications, data interchange formats and notations studied
and developed for the Semantic Web have recently attracted the scientific
community.

Projects like OntoGrid2 proved the interest of the Grid community in
Semantic Web technologies. The challenge is the sharing and deployment of
knowledge to be used for the development of innovative Grid infrastructure,
and for Grid applications: the Semantic Grid. As stated in [24], the Semantic
Grid is an extension of the Grid in which rich resource metadata is exposed
and handled explicitly, and shared and managed via Grid protocols. The
layering of an explicit semantic infrastructure over the Grid infrastructure
potentially leads to increased interoperability and greater flexibility.

In a Semantic Grid, following the terminology introduced in [24], each
Grid Entity is associated to a Knowledge Entity (KE) through a Semantic
Binding. KEs are special types of Grid Entities that represent or could op-
erate with some form of knowledge. Examples of KEs are ontologies, rules,
knowledge bases or even free text descriptions that encapsulate knowledge
that can be shared. Semantic Bindings are the entities that come into exis-
tence to represent the association of a Grid Entity with one or more KE.

Example of KEs representing the Grid Entity Grid User and the Grid
Data (GD) are shown in Figure 8.3. A semantic-aware DGMS could asso-
ciate a data KE like this one to each of the managed abstract names. The
Grid User KE graph is inspired from [24], while GD graph has been derived
from the CCLRC scientific metadata model [95]. These examples are not
meant to be complete. We also note that a GD description normally makes
use of application-dependent metadata, thus in a real system, a KE of a GD
could be much more complicated than the one shown here. Each Grid User
is simply described through the use of three fields: the Institution he/she is
affiliated with, the Investigation he/she takes part in, and the Job or Role
he/she is doing as part of the Institution. Instead, each GD is described not
only by the Type (e.g. file, or stream), but also by the Program of work, the
supported Study, and by an Investigation. The interested reader should refer
to [95] for an complete explanation of these fields. Examples of valid values
for the Institution field could be “INFN” or “STFC”, while values for the
Investigation field could be “measurement”, “simulation” or “experiment”.

User Knowledge Entities like the one we put in Figure 8.3 can be used,
for example, to represent who is a Grid User in a Grid, what’s her role
inside a VO, and what are the experiments she takes part in. KEs can be
considered as credentials to better identify users in a Grid, thus implicitly
realizing the Grid Authentication phase.

2web address: http://www.ontogrid.net

90

8.4. RELATED WORKS AND VOMS ALTERNATIVES

Affi l iated with

Takes part inWork as

Grid User Inst i tut ion

Job/Role Investigation

Identif ied as
Takes part in

Grid Data

Type
Programme

Investigation

Supports a
Performs an

Study

Figure 8.3: An example for a Grid user and a GD Knowledge Entity

91

9
Controlling the Grid Authorization: a

Usage Control Architecture for Data Grids

In this Chapter, we define two software systems architectures: the first is a
concrete architecture, the second an abstract one. The concrete architecture
outlines the different software elements of a usage control system for Data
Grids. The abstract architecture provides the KAOS agent and operation
models view of the UCON PDP component of the concrete architecture.
The reason we propose an abstract specification is because by doing so we
can abstract some important aspects and do the validation using them. In
fact, this abstract architecture will be validated in the next Chapter. This
way, we will show that our architecture indeed enforce UCON policies; such
a validation would be too complicate in the case of a concrete architecture,
since there are too much details important for implementation, but not
necessary for the validation.

A good portion of the work reported in this Chapter is going to be
published in [92].

9.1 A Concrete Data Grid Usage Control Architecture

In this Section, we use notions extracted from the OGF’s OGSA authoriza-
tion working group presented in Section 4.4 to introduce a concrete archi-
tecture of a usage control system for Data Grids. The proposed architecture
is an implementation of the Distributed Usage Control Model (D-UCM) as
applied to Data Grid that we introduced in Section 7.2 and with the Figure
7.4.

Figures 9.1 and 9.2 show the architecture. Each usage control step of
the D-UCM uses the authorization functional components defined by OGSA.
Both the Figures show exactly the same architecture, but while 9.1 uses the
standard UML component diagram, 9.2 is instead drawed using the “box and
lines” style. We show both because we feel that non-UML expert readers
would find the second Figure easier to read and understand.

The architecture encompasses the extended “Grid authentication” and
the “Grid Authorization” steps we explained early in this theses in Section

93

CHAPTER 9. CONTROLLING THE GRID AUTHORIZATION: A
USAGE CONTROL ARCHITECTURE FOR DATA GRIDS

4.1. The “Grid authentication” step has been explained with good details
in Section 8. This Section encompasses both, but we concentrate mainly on
the “Grid Authorization” step, which, as will become clearer, is an UCON
policy-based framework.

Policy-based security mechanisms adopt an almost standard terminol-
ogy when defining authorization architectures, which distinguishes between
different kinds of Policy Points. In Section 3.4 we already explained them.
However, since usage control extends access control in many ways, we pro-
vide more UCON-specific definitions of the software elements of Figures 9.1
and 9.2:

• an UCON Policy Decision Point (UCON PDP) is the compo-
nent responsible for returning an usage decision given the user’s us-
age request (i.e. the right requested), the user’s valid attributes, the
object’s valid attributes, and the satisfaction of authorizations, obli-
gations and conditions predicates. A UCON PDP should be capable
to interpret, i.e. enforce, policies pertaining to the UCONabc usage
control framework.

• An UCON Policy Enforcement Point (UCON PEP) enforces
rights returned from an UCON PDP: while UCON PDPs interpret
UCONabc policies, UCON PEPs enforce the results coming from an
UCONabc policy interpretation (enforcement) process. PEPs enforce
rights and right revocations translating these ones in an application-
dependent format.

• An UCON Policy Information Point (UCON PIP) is a reposi-
tory for attribute values, both mutable and immutable. Attributes are
used for the evaluation of UCON policies

• An UCON Policy Administration Point (UCON PAP) is a
repository where UCON policies are stored and managed.

• A Context Handler (CH) is responsible for handling the commu-
nications between PEPs, PDPs and possible PIPs.

• A System Information/Accounting Service (SIAS) acts as a
source for system attributes. This component, in addition to the im-
mutable attributes and the meta-data repositories, acts as a source of
information for the PDP.

These definitions highlight a common confusion with the term “enforce-
ment”. From now on, within this thesis, the terms policy interpretation and
policy enforcement are used in an interchangeable way.

As can be seen within the Figures, a Client Service is an access requestor
(normally, a Grid User) that pushes the credentials obtained from a VO

94

9.1. A CONCRETE DATA GRID USAGE CONTROL
ARCHITECTURE

CIS, the Credential Issuing Service explained in Section 4.4, to a Data Grid
Service. As explained in Section 8, a good example of a VO CIS is VOMS.
Using the terminology introduced in Section 2.4.1, a Data Grid Service could
be either a DGMS (when performing a Grid access) or a SE (when perfoming
a Direct Access).

DGMS and SE are clients to a super-PEP software element, which can
communicate with the CHs (OGSA’s Context Handler, again see Section
4.4) located at the DGMS and SEs. Each CH obtains valid attributes from
the CVS (OGSA’s Credential Validation Service). Then, the local UCON
PDP is interrogated for an usage decision. From a UCON point of view,
valid attributes released by a CVS are examples of immutable (persistent)
attributes.

The super-PEP is the software element responsible for performing both
the usage control steps requested. Among the possible solutions for this
element, a centralized service or a collaborative one. For instance, one could
consider POLPA [61], a policy language suitable for expressing sequence of
actions as well as conjunctions and disjunctions of such sequences. These
policies could be useful to orchestrate other usage control steps in a workflow
(as well as to model single access actions in a usage control step). A possible
initial solution in this line of thought is envisaged in [7]. Due to the fact
that a super-PEP may be located at DGMS or at SE level, we consider it
as a mobile agent.

A complex UCON PDP should be able to evaluate policies where the
predicates are statements about the subjects’ and objects’ attributes. Five
software elements make up the UCON PDP:

• the Reference Monitor (RM) is a gateway for all the authorization
decisions. Referring to the actions shown in Figure 5.2, the RM can
receive TryAccess and EndAccess invocations, and is responsible for
issuing the PermitAccess, DenyAccess or RevokeAccess operations.

• The Authorization Predicate Validator (PV) takes care of validat-
ing the authorization policy predicates. It can perform the AuthzPredicateValidation
operation.

• the Obligation Monitor (OM) checks if subject fulfilled the obliga-
tions. It can perform the ObligationsSat operation.

• the Condition Monitor (CM) takes care of validating the condition
policy predicates. It can perform the CondsPredicateValidation
operation.

• the Attribute Manager (AM) updates the UCON mutable attributes
and return their values. It can perform the AttributeUpdate opera-
tion.

95

CHAPTER 9. CONTROLLING THE GRID AUTHORIZATION: A
USAGE CONTROL ARCHITECTURE FOR DATA GRIDS

In Section 9.2, which follows, each of these software elements is described
in an abstract specification using a subset of the KAOS models, which are
the agent and operation models.

External components are needed to supply the UCON PDP with the
needed information:

• an UCON policy repository provides the PDP with the UCON policies
to be evaluated;

• a meta-data repository provides the PDP with the optional immutable
object attributes;

• a mutable attributes repository stores the UCON mutable attributes
of the subjects and objects;

• the Grid/SE Accounting SVC is a System Information/Accounting
Service (SIAS) acting as a source for system attributes.

For an access, the PDP collects the immutable subject and object at-
tributes, as well as search for the UCON policies to be enforced. The policy
is selected using the access requestor ID (the UCON subject), and the UCON
object requested. Mutable subject and object attributes, as well as system
attributes, are pulled by the PDP from the mutable attribute repository,
and from the Grid accounting service. The updates of mutable subjects’
and objects’ attributes are performed by the AM sub-component.

For the data usage control step, we apply the following restrictions:

• an UCON subject is represented by a DGMS user ID, which is the
way the access requestor Grid user ID is recognized by the DGMS;

• an UCON object is represented by the abstract name requested by
the DGMS user ID;

• an UCON right always follows in one of the fundamental rights cate-
gories, which are view (read) and modify (write), possibly augmented
with creation and deletion;

• subject attributes are mutable or persistent security descriptors of
the Client Services (e.g. the number of data accessed);

• object attributes are mutable or persistent security description of
the abstract name (e.g. the privacy level, or the maximum number of
contemporary access).

For the storage usage control step, we apply the following restrictions:

• an UCON subject is an SE user ID, which is the way the access
requestor Grid user ID is recognized by the SE;

96

9.1. A CONCRETE DATA GRID USAGE CONTROL
ARCHITECTURE

S
u

p
e

r-
P

E
P

C
o

n
te

x
t

H
a

n
d

le
r

<
<

e
x

te
rn

a
l>

>
M

e
ta

-D
a

ta
R

e
p

o
si

to
ry

(P
IP

)

D
G

M
S

U
C

O
N

 P
o

lic
y

R
e

p
o

si
to

ry
(P

A
P

)

M
u

ta
b

le
A

tt
ri

b
u

te
s

R
e

p
o

si
to

ry
(P

IP
)

<
<

e
x

te
rn

a
l>

>
S

y
s

te
m

 I
n

fo
rm

a
ti

o
n

a
n

d
 A

cc
o

u
n

ti
n

g
 S

V
C

(S
IA

S
)

A
tt

ri
b

u
te

M
a

n
a

g
e

r

A
u

th
Z

P
re

d
ic

a
te

V
a

li
d

a
to

r

O
b

li
g

a
ti

o
n

M
o

n
it

o
r

C
o

n
d

it
io

n
M

o
n

it
o

r

V
a
l
i
d
a
t
e

A
u
t
h
Z

P
r
e
d
s

R
e

fe
re

n
ce

M
o

n
it

o
r

V
a
l
i
d
a
t
e

O
b
l

P
r
e
d
s

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

V
a
l
i
d
a
t
e

C
o
n
d

P
r
e
d
s

Q
u
e
r
y

f
o
r

P
o
l
i
c
i
e
s

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

A
t
t
r
i
b
u
t
e

M
a
n
a
g
e
m
e
n
t

D
G

M
S

 U
C

O
N

 P
D

P

C
o

n
te

x
t

H
a

n
d

le
r

<
<

e
x

te
rn

a
l>

>
V

O
 C

IS

<
<

e
x

te
rn

a
l>

>
C

V
S

<
<

e
x

te
rn

a
l>

>
C

li
e

n
t

S
e

rv
ic

e

<
<

e
x

te
rn

a
l>

>
D

G
M

S

Q
u
e
r
y

f
o
r

C
r
e
d
e
n
t
i
a
l
s

V
a
l
i
d
a
t
i
o
n

<
<

e
x

te
rn

a
l>

>
S

E
 1

S
E

P
E

P

Q
u
e
r
y

f
o
r

e
n
f
o
r
c
i
n
g

U
s
a
g
e

D
e
c
i
s
i
o
n

Q
u
e
r
y

f
o
r

U
s
a
g
e

D
e
c
i
s
i
o
n

Q
u
e
r
y

f
o
r

U
s
a
g
e

D
e
c
i
s
i
o
n

Q
u
e
r
y

f
o
r

H
O
N

Q
u
e
r
y

f
o
r

A
d
d
r
e
s
s

<
<

e
x

te
rn

a
l>

>
Im

m
u

ta
b

le
A

tt
ri

b
u

te
s

R
e

p
o

si
to

ry
(P

IP
)

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

<
<

e
x

te
rn

a
l>

>
Im

m
u

ta
b

le
A

tt
ri

b
u

te
s

R
e

p
o

si
to

ry
(P

IP
)

Q
u
e
r
y

f
o
r

C
r
e
d
e
n
t
i
a
l
s

Q
u
e
r
y

f
o
r

P
o
l
i
c
y

E
n
f
o
r
c
e
m
e
n
t

<
<

e
x

te
rn

a
l>

>
M

e
ta

-D
a

ta
R

e
p

o
si

to
ry

(P
IP

)

D
G

M
S

U
C

O
N

 P
o

lic
y

R
e

p
o

si
to

ry
(P

A
P

)

M
u

ta
b

le
A

tt
ri

b
u

te
s

R
e

p
o

si
to

ry
(P

IP
)

<
<

e
x

te
rn

a
l>

>
S

y
s

te
m

 I
n

fo
rm

a
ti

o
n

a
n

d
 A

cc
o

u
n

ti
n

g
 S

V
C

(S
IA

S
)

A
tt

ri
b

u
te

M
a

n
a

g
e

r

A
u

th
Z

P
re

d
ic

a
te

V
a

li
d

a
to

r

O
b

li
g

a
ti

o
n

M
o

n
it

o
r

C
o

n
d

it
io

n
M

o
n

it
o

r

V
a
l
i
d
a
t
e

A
u
t
h
Z

P
r
e
d
s

R
e

fe
re

n
ce

M
o

n
it

o
r

V
a
l
i
d
a
t
e

O
b
l

P
r
e
d
s

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

V
a
l
i
d
a
t
e

C
o
n
d

P
r
e
d
s

Q
u
e
r
y

f
o
r

P
o
l
i
c
i
e
s

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

A
t
t
r
i
b
u
t
e

M
a
n
a
g
e
m
e
n
t

S
E

 U
C

O
N

 P
D

P

Q
u
e
r
y

f
o
r

P
o
l
i
c
y

E
n
f
o
r
c
e
m
e
n
t

Q
u
e
r
y

f
o
r

U
s
a
g
e

D
e
c
i
s
i
o
n

Q
u
e
r
y

f
o
r

A
t
t
r
i
b
u
t
e
s

<
<

e
x

te
rn

a
l>

>
C

V
S

Q
u
e
r
y

f
o
r

C
r
e
d
e
n
t
i
a
l
s

V
a
l
i
d
a
t
i
o
n

Figure 9.1: Data-Grid usage control architecture (drawed using the UML
component model)

97

CHAPTER 9. CONTROLLING THE GRID AUTHORIZATION: A
USAGE CONTROL ARCHITECTURE FOR DATA GRIDS

2
a

C
li

e
n

t
S

e
rv

ic
e

V
O

 C
IS

1
.

P
u

ll
C

re
d

e
n

ti
a

ls

P
u

sh
C

re
d

e
n

ti
a

ls

C
V

S
C

o
n

te
x

t
H

a
n

d
le

r

R
e

q
u

e
st

 U
sa

g
e

D
e

ci
si

o
n

D
-U

C
 2

.
V

a
lid

C

re
d

e
n

ti
a

ls

D
-U

C
 8

.
U

sa
g

e
D

e
ci

si
o

n

S
E

1
P

E
P

D
G

M
S

R
e

fe
re

n
ce

M
o

n
it

o
r

A
u

th
Z

P
re

d
ic

a
te

V
a

li
d

a
to

r

A
tt

ri
b

u
te

M
a

n
a

g
e

r

D
-U

C
 7

.
M

u
ta

b
le

A
tt

ri
b

u
te

s

D
G

M
S

U
C

O
N

P
D

P

D
-U

C
 6

.
U

C
O

N
p

o
li

c
y

D
-U

C
 5

.
Im

m
u

ta
b

le
o

b
je

ct
 (

A
N

)
a

tt
ri

b
u

te
s

O
b

li
g

a
ti

o
n

M
o

n
it

o
r

C
o

n
d

it
io

n
M

o
n

it
o

r

D
-U

C
 7

.
S

ys
te

m
A

tt
ri

b
u

te
s

V
O

 U
C

O
N

p
o

li
c

y
re

p
o

s
it

o
ry

(P
A

P
)

M
e

ta
-d

a
ta

re
p

o
s

it
o

ry
(P

IP
)

V
O

 M
u

ta
b

le
A

tt
ri

b
u

te
s

re
p

o
s

it
o

ry
(P

A
P

)

G
ri

d
A

c
c

o
u

n
ti

n
g

S
V

C
 (

S
IA

S
)

R
e

fe
re

n
ce

M
o

n
it

o
r

A
u

th
Z

P
re

d
ic

a
te

V
a

li
d

a
to

r

A
tt

ri
b

u
te

M
a

n
a

g
e

r

S
E

U
C

O
N

P
D

P

O
b

li
g

a
ti

o
n

M
o

n
it

o
r

C
o

n
d

it
io

n
M

o
n

it
o

r

S
E

 U
C

O
N

p
o

li
c

y
re

p
o

s
it

o
ry

(P
A

P
)

M
e

ta
-d

a
ta

re
p

o
s

it
o

ry
(P

IP
)

S
E

 M
u

ta
b

le
A

tt
ri

b
u

te
s

re
p

o
s

it
o

ry
(P

A
P

)

G
ri

d
/S

E
A

c
c

o
u

n
ti

n
g

S
V

C
 (

S
IA

S
)

C
o

n
te

x
t

H
a

n
d

le
r

C
V

S

D
-U

C
 3

.
Im

m
u

ta
b

le
s

u
b

je
c

t
(c

li
e

n
t)

a
tt

ri
b

u
te

s

= =U
C

c
o

m
p

o
n

e
n

t

D
a

ta
 G

ri
d

c
o

m
p

o
n

e
n

t

S
E

1
2

b

Im
m

u
ta

b
le

A
tt

ri
b

u
te

s
re

p
o

s
it

o
ry

(P
IP

)

su
p

e
r

-
P

E
P

3
a 3
b

D
-U

C
 1

.
R

e
q

u
e

st
U

sa
g

e
D

e
ci

si
o

n

S
-U

C
 1

.
R

e
q

u
e

st
U

sa
g

e
D

e
ci

si
o

n

D
-U

C
 4

.
Q

u
e

ry
 P

D
P

S
-U

C
 2

.
V

a
lid

C

re
d

e
n

ti
a

ls

S
-U

C
 3

.
Im

m
u

ta
b

le
s

u
b

je
c

t
(c

li
e

n
t)

a
tt

ri
b

u
te

s
Im

m
u

ta
b

le
A

tt
ri

b
u

te
s

re
p

o
s

it
o

ry
(P

IP
)

S
-U

C
 4

.
Q

u
e

ry
 P

D
P

S
-U

C
 5

.
Im

m
u

ta
b

le
o

b
je

ct
 (

A
N

)
a

tt
ri

b
u

te
s

S
-U

C
 6

.
U

C
O

N
p

o
li

c
y

S
-U

C
 7

.
M

u
ta

b
le

A
tt

ri
b

u
te

s S
-U

C
 7

.
S

ys
te

m
A

tt
ri

b
u

te
s

4
 E

ff
e

c
ti

v
e

e
n

fo
rc

e
m

e
n

t

S
-U

C
 8

.
U

sa
g

e
D

e
ci

si
o

n

Figure 9.2: Data-Grid usage control architecture (drawed using the “box
and lines” style

98

9.1. A CONCRETE DATA GRID USAGE CONTROL
ARCHITECTURE

• an UCON object is the GSS where the GD is located;

• an UCON right depends from the SE interface implementation in
use;

• subject attributes are security descriptors of the Client Services;

• object attributes are security descriptors of the GSS.

9.1.1 Architecture Analysis

Main pros

• The whole architecture is modular, flexible, and presents a high
capability level. A number of policy officers are capable of specifying
policies pertaining to a vast number core models, and these policies
will never overlap. Moreover, each SoA maintain a local authority over
its resources, and there’s no need for policy syncronization.

Main Cons

• Complexity. The proposed architecture has a high degree of com-
plexity. We are aware of the fact that

Complexity is the worst enemy of security.
Bruce Schneier

There are reasons for such complexity, and simplification possibilities.
All the software elements composing the UCON PDP have been rec-
ognized as requirements for enforcing UCONabc policies. To do so, we
used notions that are partially extracted from the KAOS requirement
engineering methodology to produce an abstract specification of all
the UCON PDP architectural elements and operations. Such work
can be found in Chapter 10, and is also partially available in [93]). We
also demonstrated that such specification is capable to enforce all the
UCONabc types of policies, as they are formally specified in [111].

An overall simplification is possible: since UCON is a family of core
models, simpler UCON PDPs would enforce not all, but a number of
UCON core models. For example, the Obligation Monitor component
is not necessary if there are no needs for enforcing UCONb policies.

• Performance and Trust. Other big problems may be represented by
the performance of an implementation, and by the trust relationships
between the sites, but since right now there’s not a single complete
implementation of the architecture, we leave this problem to future
works on the topic.

99

CHAPTER 9. CONTROLLING THE GRID AUTHORIZATION: A
USAGE CONTROL ARCHITECTURE FOR DATA GRIDS

Issues

• Policy strategy. At the end of Section 5.2, we mentioned that an
enforcement mechanism for UCON policies should be able to enforce
not only the single operations, but the sequence these operations are
invoked. In order for an UCON PDP to be an enforcement mecha-
nism for all the UCON core policy models, a way to encode the policy
strategy (i.e. the sequentiality of the operations) is needed. A possi-
bility lies in the use of an operational policy language like the already
cited PoLPA, where the policy specification itself encodes the strat-
egy. Otherwise, an external scheduler can be used for the particular
UCONabc sub-model to which the policy pertains.

• Obligations. Checking the obligations satisfaction is still an issue.
An introductury work on usage control obligations can be found in
[81]. We don’t plan to solve such issue within this thesis.

We believe this concrete architecture can be of real use for implementors
and developers.

9.2 An Abstract Specification of Enforcement Mecha-
nism for Usage Control

We define here an abstract specification of the UCON PDP component de-
fined in the previous Section using the agent and operation models as they
are provided by KAOS. The operations are partially inferred from the UCON
formal representation defined in [111] and in Section 5.2.2. Figure 9.3 illus-
trates the abstract version of the UCON PDP components using the KAOS
agent/operation models.

We published an initial version of what can be found in this Section in
[93].

The Reference Monitor (RM) element can receive TryAccess and EndAccess
operation invocations, and is responsible to itself make the PermitAccess,
DenyAccess or RevokeAccess operation invocations. The Authorization
Predicate Validator (APV) element can be invoked for the validation of the
authorization predicates by performing the AuthZPredicateValidation op-
eration. The Obligation Monitor (OM) can be invoked for the validation of
the obligation predicates by performing the OblPredicateValidation op-
eration. The Condition Monitor (CM) can be invoked for validating autho-
rization predicates by performing the CondPredicateValidation operation.
The Attribute Manager (AM) can be invoked for the update of the UCON
attributes with the AttributeUpdate operation.

Next, we give a written operational software specification of most of the
operations shown in Figure 9.3 using the KAOS operation model. TryAccess

100

9.2. AN ABSTRACT SPECIFICATION OF ENFORCEMENT
MECHANISM FOR USAGE CONTROL

 AuthZ Predicate Validator

AuthZPredicate

AuthZValidationResponse

AuthZPredicateValidation Perf

In

Out

Attr ibuteUpdate Perf

In

In

In

 Attr ibute Manager

Attr ibute

Operation

Value

Out

Out

 Obligation Monitor

OblPredicate

OblValidationResponse

OblPredicateValidation Perf

In

Out

 Condition Monitor

CondPredicate

CondValidationResponse

CondPredicateValidation Perf

In

Out

 Reference Monitor Subject

Object

Right

DenyAccess Perf

In

In

In

RevokeAccess

Perf

PermitAccess

Perf

EndAccess

TryAccess

Perf

Perf

In

In

In

In

In

In

In

In

In

In

Figure 9.3: Pictorial abstract specification of an UCONabc enforcement
mechanism, encoded using the KAOS agent model

101

CHAPTER 9. CONTROLLING THE GRID AUTHORIZATION: A
USAGE CONTROL ARCHITECTURE FOR DATA GRIDS

and EndAccess are not specified since they are issued by the UCON subject
(i.e. the Access Requester), which we consider as an agent in the environment
and hence is not part of the enforcement mechanism. Each operation defines
a state-transition in the application domain defined through domain pre-
and post-conditions. Operations have input and output fields; for example,
a subject (s), an object (o) and a right (r) are inputs for PermitAccess,
DenyAccess and RevokeAccess.

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right

Operation: DenyAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.DenyAccess(s, o, r)
Input: subject, object, right
ReqPre-Condition: APV.validate(¬ap1 ∨ . . .∨ ¬apn) ∨

OM.validate(¬op1 ∨ . . .∨ ¬opn) ∨
CM.validate(¬cp1 ∨ . . .∨ ¬cpn)

Operation: RevokeAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.RevokeAccess(s, o, r)
Input: subject, object, right
ReqPre- Condition:
ReqPre-Condition: APV.validate(¬ap1 ∨ . . .∨ ¬apn) ∨

OM.validate(¬op1 ∨ . . .∨ ¬opn) ∨
CM.validate(¬cp1 ∨ . . .∨ ¬cpn)

Operation: AuthZPredicateValidation
Performed By: AuthZ Predicate Validator
Domain Pre-Condition: true
Domain Post-Condition: APV.validate(ap1 ∧ . . .∧ apn)
Input: AuthZPredicate
Output: AuthZValidationResponse

102

9.2. AN ABSTRACT SPECIFICATION OF ENFORCEMENT
MECHANISM FOR USAGE CONTROL

Operation: OblPredicateValidation
Performed By: Obligation Monitor
Domain Pre-Condition: true
Domain Post-Condition: OM.validate(op1 ∧ . . .∧ opn)
Input: OblPredicate
Output: OblValidationResponse

Operation: CondPredicateValidation
Performed By: Condition Monitor
Domain Pre-Condition: true
Domain Post-Condition: CM.validate(cp1 ∧ . . .∧ cpn)
Input: CondPredicate
Output: CondValidationResponse

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition: true
Domain Post-Condition: AM.update(s, o, r)
Input: Attribute, Operation, Value
Output: Attribute, Value

Objects of this operations model are subject, object, right, AuthZPredi-
cate, AuthZValidationResponse, OblPredicate, OblValidationResponse, Cond-
Predicate, CondValidationResponse, Attribute, Operation and Value. None
of these objects have attributes.

In KAOS, an important distinction is made between (descriptive) do-
main pre-/post-conditions and (prescriptive) required pre-, post- and trigger
conditions. The required pre-condition captures a permission to perform
the operation only if the condition is true; by contrast, the required post-
condition defines some additional conditions that any application of the
operation must establish. The required trigger condition captures an obli-
gation to perform the operation if the condition becomes true provided the
domain precondition is true. More details on the formal semantics of KAOS
operations is provided in [58].

Most of the operations presented above don’t specify any pre-, post- or
trigger conditions, since these are dependent on the order the single opera-
tions are invoked. Such order is encoded in the UCONabc sub-models. For
example, in the simplest case of a PreA0 model, a PermitAccess operation
can be issued by the RM when the output of the AuthZPredicateValidation
operation – AuthZValidationResponse – is positive. Instead, in a PreA1

103

CHAPTER 9. CONTROLLING THE GRID AUTHORIZATION: A
USAGE CONTROL ARCHITECTURE FOR DATA GRIDS

model a PermitAccess operation can be issued only after the attributes
are updated, i.e. after the AM performed the AttributeUpdate operation
requested. As we show in Section 5.2.3, since a single policy can be a combi-
nation of multiple UCONabc core models, control flow of operations can be
even more complicated including an explicit sequentiality of the operations.

Every UCON model encodes a different sequentiality. Within the rest
of this paper we will show the KAOS operational specification for all the
UCONabc sub-models. We will show that the derived operations always en-
code the same state-transitions as specified by those in this Section, but since
the sequentiality of the single operations is different a model from each other,
the Required Pre-, Post- and Trigger Conditions will be model-dependents.
We can then be able, for each UCON model, to formally infer a strategy to
encode the sequentiality of the operations just looking at the Required Pre-,
Post- and Trigger Conditions specified within the operational specification
of each UCONabc sub-model. A similar approach was introduced in [9]. As
it is said in the former Section, a possibility for the encoding of such strat-
egy directly in the policy is the use of an operational policy language like
POLPA, where the policy itself encode the strategy. When writing UCON
policies using other policy languages, a possibility to encode the strategy is
the use of an external scheduler.

In Section 10.2, we shall present our methodology for validating that
the abstract operations described above can indeed operationalise, using
prescriptive conditions, the policy requirements for all the UCONabc sub-
models.

9.3 Related Works

We are not aware of any other in-deep software engineering works on usage
control for Grids and Data Grids. Even if there are prototypes following
the UCON model, which we will list in Section 11.2, none of them have ever
been applied to a Grid environment. That’s why, within this Section, we
only review some of the security tools used in today’s Grids. Some of them
had, or still have, a widespread use, other have been used for limited scope.
This is by no means a comprehensive list.

9.3.1 The Gridmap File

One of the first attempt to provide authorization in Grid was in the form of
the Globus Gridmap File. This file was simply a list of the authorized users,
identified by a distinguished name, and the equivalent local user account
name they are to be mapped into. This solution is infeasible for the next
generation Grids, because the resource owner can not set a policy for who
is allowed to do what, and maximize the workload of the resource admin-

104

9.3. RELATED WORKS

istrator who must keep track of all the authorized users. The Gridmap file
isn’t scalable nor flexible.

9.3.2 The Community Authorization Service

The Globus team developed the Community Authorization Service (CAS)
[31]. CAS allows for a separation of concerns between site policies and
VO policies. It allows the resource owner to grant access to a portion of
his/her resource to a VO. The CAS server acts as a trusted intermediary
between VO users and resources: the users first contact the CAS asking for a
permission to use a resource, the CAS server consults its policy, and grants
or deny the access. The biggest of CAS’s problems is that it completely
removes control from site administrators, and that it requires a VO to know
everything about the configuration of its farms.

9.3.3 G-PBox

One of the most interesting authorization framework is the Grid Policy Box
(G-PBox)[14] which can be used for the representation and management of
policies for Grid infrastructures. It is an approach for the management of
policy repositories hierarchically distributed to independent, administrative-
based layers, where each layer contains only policies regarding itself. It fol-
lows the classic PEP-PDP interaction, where PDPs/PAPs can be attached
to VO, grid site and sub-site layers. G-PBox is composed by a server, which
is the PDP, and an administration Graphical User Interface (GUI). The
PDP is a XACML (specification version 2.0) engine and Java, C++ and
C libraries for PEP communication are supplied. The GUI offers facilities
for policy and distribution management, which means that it allows to cre-
ate/remove/modify/move arbitrary XACML policies and policy sets and to
send/receive policies to/from other PBoxes. G-PBox is a tool intended for
authorization purposes and it relies on an external AA. In particular, it
is already configured with a VOMS plug-in to retrieve informations from
VOMS servers.

9.3.4 PERMIS

PERMIS [19, 20] dictates a hierarchical Role Based Access Control (RBAC,
see Section 5) through the use of X.509 ACs [27], used to store users’ roles
and XML-based authorization policies. When a user makes an access re-
quest, the PEP authenticates him/her and asks the PDP for an autho-
rization response, which makes a granted or denied decision. A credential
validation service (CVS) validates the users’ attributes that are to be used
by a local PDP. PERMIS requires the Sources of Authority (SoA) to set the
policies for every resource they own. A PERMIS policy says who the users
are that are covered by the policy, what roles/attributes are supported, who

105

CHAPTER 9. CONTROLLING THE GRID AUTHORIZATION: A
USAGE CONTROL ARCHITECTURE FOR DATA GRIDS

is allowed to allocate the roles to the users, what resources are covered by
the policy, what actions are supported by the resources (e.g. read, write,
delete), and what privileges (actions on resources) are granted to each role.
PERMIS then checks the X.509 ACs that are possessed by the user, and sees
if these conform to the policy, and if they are sufficient to grant the access
being requested. Despite PERMIS is a fast-evolving and flexible tool, there
are still some issues. The most important one regards the recognition of
authority over multiple, hierarchical PDPs: PERMIS recognizes only two
different administrative domains, the VO and the target domain, while we
believe that Grids need more flexibility, recognizing VO level, site level, farm
level and sub-farm level like in G-PBox. On the other hand, we consider
the inner flexibility of multiple attribute sources as a risk, and a limit to the
usability of the service, since we prefer the traditional grid-way of having
just one source of attribute values (roles), which is the VO itself.

9.3.5 GOLD

GOLD, [76] modeled to satisfy the requirements of a chemical VO, im-
plements a simple RBAC extension named task-based access control. Its
purpose is to distinguish between roles and their instances using a context
information, that’s the task being run. Services can use the task to deter-
mine whether the requestor has enough permissions to perform operations,
or access resources. Access rights can be dynamically activated and de-
activated using contracts that define pre- and post-conditions. Evaluating
GOLD, we’re raising three questions: first of all, is the task information
really useful for the security of an e-Science application? Secondly, what’s
the cost of the maintenance of the contract information? Third, aren’t con-
tracts part of the workflow management, rather than security? We think
that task-based access control is a bit confusing, since contracts should be
handled by a workflow management system, rather than being part of a
security infrastructure. Moreover, since only some roles should be able to
submit determinate tasks, checking that such task is in action at a resource
is useless: simple RBAC can control which processes can run just using the
role information. The only real access control happens when a user submits
a workflow application claiming the usage of a non-context-related resource.
Other problems lie in the non-hierarchical nature of the roles, the lack of the
recognition of authority (same problem of PERMIS), and overall the cost of
the maintenance of such a system.

9.3.6 The GT4 AuthZ framework

The GT4 AuthZ framework [54] is the last attempt by the Globus team
to develop an authorization service. It is an implementation of the XACML
[74] authorization model, although its master PDP is only responsible for

106

9.3. RELATED WORKS

the coordination of external authorization sources, like PERMIS or old grid-
map-files. External AAs like VOMS can provide attributes.

9.3.7 OASIS

OASIS [8] is a dynamic RBAC tool, where roles are completely decentral-
ized and dynamically activated. We think that such a model, besides its
great flexibility, is not feasible for a Grid since we pose serious concerns on
its scalability.

9.3.8 GPlazma

gPLAZMA [25] is an authorization tool for dCache [35]. It queries PRIMA
[59] for an authorization decision, while user attributes come from external
AAs like VOMS. Its implementation is too much application-specific to be
considered as a comparable service.

9.3.9 Local Centre Authorization Service (LCAS)

The Local Centre Authorization Service (LCAS) handles authorization
requests to the gLite gatekeeper. The authorization decision of the LCAS
is based upon the users’ certificate and the job specification.

9.3.10 The gLite Java authorization framework (gJAF)

The gLite Java authorization framework (gJAF) is an agnostic autho-
rization infrastructure, where hooks are provided for external authorization
plug-in modules in order to route authorization requests to external policy
systems.

107

10
Validating Policy Enforcement using a

Goal-Oriented Approach

Within this Chapter, we present a formal software engineering methodology
which is liberally inspired from KAOS. We then apply the methodology for a
validation of the abstract UCON PDP specification we wrote in Section 9.2.
The work demonstrates that the specification can enforce policies pertaing
to all the UCON models.

10.1 A Methodology for Validating the Enforcement
of UCON Policies

We published an initial version of what can be found in this Section and in
the following Sections of this Chapter in [93].

Within this Section, we explain how we used some KAOS models for the
validation of an abstract specification. This methodology is used for validat-
ing the enforcement mechanism of UCONabc policies showed in Section 9.2.
With this methodology, we used a goal-oriented approach not only used
in the usual top-down manner where goals are refined to system require-
ments and the latter operationalised, but also in a bottom-up way. Some
middleware is assumed to exist and it is abstracted to a KAOS operational
specification and then used to validate that it indeed can operationalise
system requirements in a correct manner.

We propose a validation methodology defined along the following steps:

• Step 1: In this step, we start from the bottom by abstracting a
middleware architecture into the KAOS agent/operation models. In
our case of the UCON enforcement architecture, this step results in
the abstract specification of Section 9.2.

• Step 2: Next, we define a UCON family of policies as a top-level
KAOS goal. van Lamsweerde proposed in [100] the elicitation of
security-related goals using application-specific instantiations of generic
specification patterns, like Confidentiality, Integrity, Availability, etc.

109

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

In other words, the top-level goal of the goal model would consist of
the policy the system should enforce. In the case of the UCONabc

model, formal policy specifications for all the UCON policy models
were defined in [111], which we will try to use as our top-level goals.

• Step 3: The top-level goal, i.e. the policy, is then decomposed through
a series of refinements following the KAOS refinement approach. In
this refinement process, certain completeness, consistency and min-
imality properties must be respected [56, Section 3.2.4.4]. This step
ends when bottom-level system requirements are reached, which model
the most low-level refinement of the top-level policy. Section 10.1.1 ex-
plains with details this step and the former one.

• Step 4: The last step is to validate that the operationalisation of Step
1 is a correct operationalisation. This implies that the operations must
be complete, consistent and minimal with respect to the requirements
[58]. Section 10.1.2 explains with details this last step.

Step 1 above is similar to classical abstraction methodologies, while Steps
2 and 3 above are inspired by the goal-driven policy refinement approach
introduced by Bandara et al in [9], itself based on the ideas of [65]. Step
4 is our main contribution, which merges the bottom-up and the top-down
approaches.

10.1.1 Goal-based Policy Refinement

Policy refinement concerns with transforming a high-level and abstract pol-
icy specification into a low-level and concrete one [65]. It includes:

• determining the resources that are needed to satisfy the requirements
of a policy;

• translating the high-level policies into operational policies that can be
enforced;

• verifying that the lower level policies actually meet the requirements
specified by the high-level policy.

Here, we follow the goal-based approach to policy refinement introduced
by Bandara et al in [9], which is based on KAOS goal-refinement. KAOS is
appropriate for this task since it includes a rigurous notation for representing
goals and strategies to refine a goal into a set of subgoals. These subgoals
imply the parent goal and are more detailed. Goals are refined until they can
be operationalised — i.e. effectively enforced — and are assigned to agents
(see Section 6.4 and [99]). Goals can be formalised using linear temporal
logic (LTL) [101], which is the formal language used to define the semantic of

110

10.1. A METHODOLOGY FOR VALIDATING THE ENFORCEMENT
OF UCON POLICIES

UCON [111]. Verifications can then be made on goal refinements to ensure
that the system meets the goals and that the goal model is well-formed.

A goal refinement is correct if it is complete, consistent, and minimal.
A set of goals {G1, G2, . . . , Gn} refines a goal G in the domain D if the
following conditions hold:

G1, . . . , Gn, D ⇒ G (completeness)
G1, . . . , Gn, D ̸⇒ false (consistency)∧

j ̸=iGj , D ̸⇒ G for each i ∈ [1..n] (minimality)

We start from a general refinement to justify the need for an enforcing
mechanism; considering that:

In UCONabc, a subject s is permitted to exercise the right r on the object
o if s is allowed to have the right r on o. In LTL this is written:

∀ s:subject, o:object, r:right
2 permitaccess(s, o, r) → allowed(s, o, r)

A right r may be granted after the evaluation of an UCON policy, i.e. af-
ter the enforcing of an UCON Pre{ABC} policy from an UCON policy en-
forcing mechanism. Alternatively, a policy could be enforced after the right
is granted, but before it is actually ended or revoked: this is the case for
UCON On{ABC} policies. When attribute updates are required, a policy
enforcement could happen before, during or after the right grant. In any
case, when an access is permitted then a policy is somehow enforced:

∀ s:subject, o:object, r:right
2 permitaccess(s, o, r) → enforce(UCON policy)

Next, we need to clearly define the meaning of the enforce(UCON_policy)
predicate. Basically, each UCON_policy denotes a UCON model as defined
by Sandhu. For each UCONabc sub-model, we define when to enforce the
policy with respect to the permitaccess(s,o,r) action. For example, each
policy pertaining to a PreA0, PreB0, PreC0 models need to be enforced only
before the access is actually granted. Instead, each policy pertaining to a
PreA3 or PreB3 models need to be enforced not only before the access, but
also after the end of it. Moreover, each On policy has to be partially en-
forced during the access period. The subsequent refinements will specify the
sequentiality of the actions needed to enforce the policy model. Following
this methodology we are capable to derive a precise abstract specification of
the service, and to infer a strategy for the policy enforcement.

There are several assumptions made in the policy refinement. First, all
predicates and actions are computable. Then, each UCON policy is referred

111

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

as a set of logical formulae for a single usage process (s,o,r), and the
interactions between concurrent usage processes are not captured. We also
assume that before an access request is generated, the requesting subject
and the target object exist in the system. Another assumption is that the
time line is bounded during the life time of a single usage process, viz. the
tryaccess is always the first action in a single usage process.

10.1.2 Goal Operationalisation

The Operationalization of goals is the last step remaining to apply the
methodology of Section 10.1. This step consists in identifying operations
relevant to the goals and deriving requirements on operations so that the
goals are satisfied. There are two sub-steps. The first is about identifying
operations, with their specific state transitions. Only elementary domain
pre- and post-conditions are identified. Such domain pre- and post- condi-
tions do not ensure the goal from which they are derived, and that’s why
we need to derive requirements on operations. The identified operations are
strengthened with required pre-, trigger, and post conditions, so that the
goals are satisfied. Formal techniques for deriving operations and require-
ments on operations from goals can be found in [56].

Once goals have been refined into subgoals that are realizable by single
agents, the next step of the goal-oriented process consists in deriving the
operations that are relevant to the goals, and the requirements on these
operations so that the goals are satisfied. Within [56], we found many generic
patterns which we re-used.

10.2 Validating the Enforcement Mechanism

Within this section, we use the methodology explained in the former Section
to validate the abstract specification as shown in section 9.2 is capable to
enforce policies pertaining to all the UCONabc core models.

10.2.1 UCON PreA0

In the UCON PreA0 core model, a usage control decision is determined by
authorizations before the usage, and there is no attribute update before,
during, or after this usage. Discretionary access control (DAC) model with
access control list (ACL) can be expressed with a preA0 policy. A subject
attribute is its identity, and an object attribute is an access control list
acl of pairs (id, r), where id is a subjects identity, and r is a right with
which this subject can access this object. The predicate to be satified is
((s.id, r) ∈ o.acl).

We require the policy to be enforced in the state before the access is
permitted. The top goal follows. enforce(UCON_PreA0) means that the

112

10.2. VALIDATING THE ENFORCEMENT MECHANISM

enforcement mechanism is capable to enforce a policy pertaining to the
UCON PreA0 family of core models. A similar consideration stands for all
the following goal models that can be found in this Chapter.

Goal [PermitPreA0]
RefinedTo: [Permit], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)

permitaccess(s, o, r) ⇒ • enforce(UCON PreA0)

We then apply a first goal refinement as shown in Figure 10.1, while the
formal sub-goals’ definitions follow. We can use tools such as the FAUST
toolkit [79] to demostrate that the refinement is correct.

PermitPreA0

Permit CheckPredicates TryToAccess

Figure 10.1: Initial goal refinement of an UCON PreA0 core model

This first refinement, as well as many of those that will follow in the
text, are examples of refinements following the milestone pattern.

Goal [Permit]
Refines: [PermitPreA0]
RefinedTo: [Permit Monitor/Control], [PermitToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • (ap1 ∧ . . .∧ apn)

Goal [CheckPredicates]
Refines: [PermitPreA0]
RefinedTo: [CP Monitor/Control], [PredicatesValidation]
FormalDef: (∀ s:subject, o:object, r:right)
(ap1 ∧ . . .∧ apn) ⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreA0]

113

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

FormalDef: (∀ s:subject, o:object, r:right)
tryaccess(s, o, r) ⇒ • enforce(UCON PreA0)

Even if [TryToAccess] is a final goal (an assumption of the system),
neither [Permit] nor [CheckPredicates] are final goals, so they have to be re-
fined further. In Figure 10.2 is shown the completion of the goal refinement,
and the formal definitions of each of the shown sub-goal follows in the text.
We apply accuracy and actuation goals to resolve the lack of monitorabil-
ity and controllability as suggested in [57]. We identify two requirement
goals, [PermitToAccess] and [PredicatesValidation], and assign two agents,
the Reference Monitor and the AuthZ Predicate Validator to respectively
take care to each of them.

Permit CheckPredicates

Permit Monitor/Control PermitToAccess CP Monitor/Control PredicatesValidation

Figure 10.2: Goal model for an UCON PreA0 core model

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, APV:AuthZ Predicate Validator)
permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
(ap1 ∧ . . .∧ apn) ⇔ APV.validate(ap1 ∧ . . .∧ apn)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, APV:Predicate Validator)
RM.permitaccess(s, o, r) ⇒ • APV.validate(ap1 ∧ . . .∧ apn)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, APV:Predicate Validator)
(ap1 ∧ . . .∧ apn) ⇔ APV.validate(ap1 ∧ . . .∧ apn)

114

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Goal [PredicatesValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, APV:Predicate Validator)
APV.validate(ap1 ∧ . . .∧ apn) ⇒ • tryaccess(s, o, r)
Resp: AuthZ Predicate Validator

We are now capable to derive the KAOS agent and operation mod-
els. Figure 10.3 shows the KAOS operation model, together with the agen-
t/responsibility model. As the reader can see, we identify two operations:
PermitAccess and AuthZPredicateValidation.

PermitToAccess

PredicatesValidation

Resp

Resp

 Reference Monitor

 AuthZPredicate Validator

 Subject

Object

Right

PermitAccess Perf

In

In

In

AuthZPredicate

AuthZValidationResponse

AuthZPredicateValidation

In

Out

Perf

Figure 10.3: Excerpt of the operation model for an UCON PreA0 enforce-
ment mechanism

Next follows the KAOS operational specification for the UCON PreA0

enforcement mechanism, derived using the KAOS operationalization pat-
terns presented in [58]. The semantic of the KAOS operations defines a set
of proof obligations verifying that realising an operation when the required
trigger, pre- and post- conditions of a goal are true implies the goal. In this
sense, a proof of the semantic of each operation in relation to the required
conditions validates that enforcement operations implement (i.e. enforce)
the corresponding policies.

Operation: PermitAccess

115

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]: APV.validate(ap1 ∧ . . .∧ apn)

Operation: AuthZPredicateValidation
Performed By: AuthZ Predicate Validator
Domain Pre-Condition: true
Domain Post-Condition: APV.validate(ap1 ∧ . . .∧ apn)
Input: AuthZPredicate
Output: AuthZValidationResponse
ReqPre for [PredicatesValidation]: tryaccess(s, o, r)

The only difference between these operations and those shown in section
9.2 is in the specification of the Required Pre-Condition clause. This clause
is required to ensure that the goals assigned to the individual agents are
met. As we said at the end of Section 9.2, they are dependent from the
order of the operations as specified by the model definition.

10.2.2 UCON PreA1

In the UCON PreA1 core model, a usage control decision is determined by
authorizations before the usage, and one or more subject or object attributes
are updated before this usage. As an example of policy, in a DRM pay-per-
use application, a subject has a numerical valued attribute of credit, and
an object has a numerical valued attribute of value. A read access can
be approved when a subjects credit is more than an objects value. Before
the access can start, an update to the subjects credit is performed by the
system by subtracting the objects value. This attribute update is a preUp-
date, and the predicate to be satisfied is, for example, (Alice.credit ≥
ebook1.value).

What we’re showing here is very similar to what is shown in section
10.2.1, and same can be said for all the next paragraph of section 10.2.
Since the policy enforcing happens only before the access is permitted, the
top goal is the following:

Goal [PermitPreA1]
RefinedTo: [Permit], [Update], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • enforce(UCON PreA1)

116

10.2. VALIDATING THE ENFORCEMENT MECHANISM

We then apply a first goal refinement as shown in Figure 10.4, while the
formal sub-goals’ definitions follow in the text.

PermitPreA1

Permit CheckPredicates TryToAccessUpdate

Figure 10.4: Initial goal refinement of an UCON PreA1 core model

Goal [Permit]
Refines: [PermitPreA1]
RefinedTo: [Permit Monitor/Control], [PermitToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • update(s,o,r)

Goal [Update]
Refines: [PermitPreA1]
RefinedTo: [Update Monitor/Control], [UpdateTheAttributes]
FormalDef: (∀ s:subject, o:object, r:right)
update(s, o, r) ⇒ • (ap1 ∧ . . .∧ apn)

Goal [CheckPredicates]
Refines: [PermitPreA1]
RefinedTo: [CP Monitor/Control], [PredicatesValidation]
FormalDef: (∀ s:subject, o:object, r:right)
(ap1 ∧ . . .∧ apn) ⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreA1]
FormalDef: (∀ s:subject, o:object, r:right)
tryaccess(s, o, r) ⇒ • enforce(UCON PreA1)

The goals [Update], [Permit] and [CheckPredicates] are not final goals,
so they have to be refined further on. In Figure 10.5 is shown the completion

117

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

of the goal refinement, and the formal definitions of each sub-goals follow
in the text. We apply accuracy and actuation goals, and identify three re-
quirement goals: [PermitToAccess], [UpdateTheAttributes] and [Predicates
Validation]. We assign them three agents: the Reference Monitor the At-
tribute Manager and the AuthZ Predicate Validator.

Permit CheckPredicates

Permit Monitor/Control

PermitToAccess

CP Monitor/Control

PredicatesValidation

Update

Update Monitor/Control

UpdateTheAttr ibutes

Figure 10.5: Goal model for an UCON PreA1 core model

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, AM:Attribute Manager)
permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, AM:Attribute Manager)
RM.permitaccess(s, o, r) ⇒ • AM.update(s, o, r)
Resp: Reference Monitor

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

AM:Attribute Manager, APV:AuthZ Predicate Validator)
update(s, o, r) ⇔ AM.update(s, o, r)
(ap1 ∧ . . .∧ apn) ⇔ PV.validate(ap1 ∧ . . .∧ apn)

Goal [UpdateTheAttributes]
Refines: [Update]

118

10.2. VALIDATING THE ENFORCEMENT MECHANISM

FormalDef: (∀ s:subject, o:object, r:right,
AM:AttributeManager, APV:AuthZ Predicate Validator)

AM.update(s, o, r) ⇒ • APV.validate(ap1 ∧ . . .∧ apn)
Resp: Attribute Manager

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, APV:AuthZ Predicate Validator)
(ap1 ∧ . . .∧ apn) ⇔ APV.validate(ap1 ∧ . . .∧ apn)
tryaccess(s, o, r) ⇔ tryaccess(s, o, r)

Goal [Predicates Validation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right,

APV:AuthZ Predicate Validator)
APV.validate(ap1 ∧ . . .∧ apn)
⇒ • tryaccess(s, o, r)
Resp: AuthZ Predicate Validator

Figure 10.6 shows the KAOS operation model, together with the agen-
t/responsibility model. We identify three operations.

Next follows the formal KAOS operational specification of the UCON
PreA1 enforcement mechanism.

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]: AM.update(s, o, r)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition: true
Domain Post-Condition: AM.update(att)
Input: Attribute, Operation, Value
Output: Attribute, Value
ReqPre for [UpdateTheAttributes]: APV.validate(ap1 ∧ . . .∧ apn)

119

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

PermitToAccess

PredicatesValidation

Resp

Resp

 Reference Monitor

 AuthZ Predicate Validator

 Subject

Object

Right

PermitAccess Perf

In

In

In

AuthZ Predicate

AuthZValidationResponse

AuthZPredicateValidation

In

Out

UpdateTheAttr ibutes

Resp

Attr ibuteUpdate Perf

In

In

In

 Attr ibute Manager

Attr ibute

Operation

Value

Out

Out

Perf

Figure 10.6: Excerpt of the operation model for an UCON PreA1 enforce-
ment mechanism

Operation: AuthZPredicateValidation
Performed By: AuthZ Predicate Validator
Domain Pre-Condition: true
Domain Post-Condition: APV.validate(p1 ∧ . . .∧ pn)
Input: AuthZPredicate
Output: AuthZValidationResponse
ReqPre for [Predicates Validation]: tryaccess(s, o, r)

As in section 10.2.1, the only difference between these operations and
those shown in section 9.2 is the specification of the Required Pre-Condition
clause.

120

10.2. VALIDATING THE ENFORCEMENT MECHANISM

10.2.3 UCON PreA3

In the UCON PreA3 core model, a usage control decision is determined by
authorizations before the usage, and one or more subject or object attributes
are updated after this usage. An example is: in a DRM membership-based
application, a subject s has attributes expense and group, and a file o
has attributes group and cost. A subject can read any file in his/her own
group. The predicate to be satisfied is (s.group = o.group). The expense
is updated by adding the cost of the file after the access: s.expense′ =
s.expense + o.cost.

The policy enforcing happens before and after the access is permitted.
The top-goal, [PermitPreA3], is easily refined in the goals [PermitPreA3-pre]
and [PermitPreA3-post] as specified below.

Goal [PermitPreA3]
RefinedTo: [PermitPreA3-pre], [PermitPreA3-post]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • enforce(UCON PreA3) ∧ ◦ enforce(UCON PreA3)

Goal [PermitPreA3-pre]
RefinedTo: [Permit], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • enforce(UCON PreA3)

Goal [PermitPreA3-post]
RefinedTo: [End], [Update], [PreA3-completed]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ ◦ enforce(UCON PreA3)

The first part of the goal refinement is shown in Figure 10.7. The formal
sub-goals’ definitions follow.

Goal [Permit]
Refines: [PermitPreA3-pre]
RefinedTo: [Permit Monitor/Control], [PermitToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • (ap1 ∧ . . .∧ apn)

Goal [CheckPredicates]
Refines: [PermitPreA3-pre]
RefinedTo: [CP Monitor/Control], [PredicatesValidation]

121

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

PermitPreA3-pre

Permit CheckPredicates TryToAccess Update

PermitPreA3

PermitPreA3-post

End PreA3-completed

Figure 10.7: Initial goal refinement of an UCON PreA3 core model

FormalDef: (∀ s:subject, o:object, r:right)
(p1 ∧ . . .∧ pn) ⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreA3-pre]
FormalDef: (∀ s:subject, o:object, r:right)
tryaccess(s, o, r) ⇒ • enforce(UCON PreA3)

Goal [End]
Refines: [PermitPreA3-post]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ ◦ endaccess(s, o, r)

Goal [Update]
Refines: [PermitPreA3-post]
RefinedTo: [Update Monitor/Control], [UpdateAfterEnd]
FormalDef: (∀ s:subject, o:object, r:right)
endaccess(s, o, r) ⇒ ◦ update(s, o, r)

Goal [PreA3-completed]
Refines: [PermitPreA3-post]
FormalDef: (∀ s:subject, o:object, r:right)
update(s, o, r) ⇒ ◦ enforce(UCON PreA3)

The goals [Permit], [CheckPredicates] and [Update] have to be refined
further. In Figure 10.8 is shown the completion of the goal refinement,

122

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Permit CheckPredicates

Permit Monitor/Control

PermitToAccess

CP Monitor/Control

PredicatesValidation

Update

Update Monitor/Control

UpdateAfterEnd

Figure 10.8: Goal model for an UCON PreA3 core model

and the formal definitions of each sub-goals follow in the text. We iden-
tify three requirement goals, [PermitToAccess], [PredicatesValidation] and
[UpdateAfterEnd], and assign the already known agents Reference Monitor,
AuthZ Predicate Validator and Attribute Manager to respectively take care
to each of them.

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, APV:AuthZ Predicate Validator)
permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
(ap1 ∧ . . .∧ apn) ⇔ APV.validate(ap1 ∧ . . .∧ apn)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, APV:AuthZ Predicate Validator)
RM.permitaccess(s, o, r) ⇒ • APV.validate(ap1 ∧ . . .∧ apn)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, APV:AuthZ Predicate Validator)
(ap1 ∧ . . .∧ apn) ⇔ APV.validate(ap1 ∧ . . .∧ apn)
tryaccess(s, o, r) ⇔ tryaccess(s, o, r)

Goal [PredicatesValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, APV:AuthZ Predicate Validator)
APV.validate(ap1 ∧ . . .∧ apn) ⇒ • tryaccess(s, o, r)

123

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

Resp: AuthZ Predicate Validator

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right, AM:Attribute Manager)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [UpdateAfterEnd]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right, AM:AttributeManager)
endaccess(s, o, r) ⇒ ◦ AM.update(s, o, r)
Resp: Attribute Manager

The Figure of the KAOS operation model for this UCON sub-model is
not shown, since it’s pretty much the same as of Figure 10.6. The formal
specifications of the three operations are shown next:

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]: APV.validate(ap1 ∧ . . .∧ apn)

Operation: AuthZPredicateValidation
Performed By: AuthZ Predicate Validator
Domain Pre-Condition: true
Domain Post-Condition: APV.validate(ap1 ∧ . . .∧ apn)
Input: AuthZPredicate
Output: AuthZValidationResponse
ReqPre for [PredicatesValidation]: tryaccess(s, o, r)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition: true
Domain Post-Condition: AM.update(att)
Input: Attribute, Operation, Value
Output: Attribute, Value
ReqPre for [UpdateAfterEnd]: endaccess(s, o, r)

124

10.2. VALIDATING THE ENFORCEMENT MECHANISM

As previous sections, the only difference between these operations and
those shown in section 9.2 is the specification of the Required Pre-Condition
clause.

10.2.4 UCON OnA0

In the UCON OnA0 core model, a usage control decision is determined by
authorizations during the usage, and there is no attribute update before,
during, or after this usage. The policy enforcing happens after the access is
permitted, and before it is ended by the user. The access can be revoked
when the predicates are not satisfied. An example of a policy pertaining to a
OnA0 core model is the following: in an VO, a user Bob (with role employee)
has a temporary position to conduct a short-term project with a certificate
of temp_cert. While Bob is accessing some sensitive information, his digital
certificate (temp_cert) for this project is being checked repeatedly. If his
certificate number is in the Certification Revocation List (CRL) of the
VO, his temporary role membership is revoked and he cannot access the
information any more. There are no attribute updates, and the predicate to
be satisfied is simply temp_cert ∈ CRL.

The top goals is following.

Goal [PermitOnA0]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ (ap1 ∧ . . .∧ apn)

∧ 3≤d

(
revokeaccess(s, o, r) ∨ endaccess(s, o, r)

)
Where d is a finite time slice, that is necessary since unbounded achieve

goals are not realizable. The goal refinement is shown in Figure 10.9.
We now apply accuracy and actuation goals (not shown for brevity)

to resolve the lack of monitorability and controllability, identifying three
requirement goals, [PermitToAccess], [Revoke], and [end] and assign two
agents, the Reference Monitor and the AuthZ Predicate Validator to respec-
tively take care to each of them.

Goal [OnPermit]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ APV.validate(ap1 ∧ . . .∧ apn)
Resp: Reference Monitor

Goal [EventualRevokeOrEnd]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ 3≤d (revokeaccess(s, o, r) ∨ endaccess(s, o, r)
Resp: Reference Monitor

125

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

EventualRevoke

PermitOnA0

EventualRevokeOrEnd

EventualEnd

OnPemit

Figure 10.9: Goal refinement of an UCON OnA0 core model

Goal [EventualRevoke]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.revokeaccess(s, o, r)
Resp: Reference Monitor

Goal [EventualEnd]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.endaccess(s, o, r)

The KAOS operational specifications for the UCON OnA0 enforcement
mechanism follow in the text. The only difference between these operations
and their equivalent shown in section 9.2 is the specification of the Required
Pre and Post-Condition clauses. The RevokeAccess operation will be shown
in Section 10.2.12

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true

126

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPost for [OnPermit]: APV.validate(ap1 ∧ . . .∧ apn)

10.2.5 UCON OnA1

In the UCON OnA1 core model, a usage control decision is determined by
authorizations during the usage, and there is one or more attribute updates
before this usage. An example of policy could be similar to the one of
section 10.2.4, with the further constraint that Bob can not access more
than MAX_files at the same time, with the number of current accessed
file stored in the accessed_files attribute. The predicate to be satis-
fied is the following: (accessed_files ≤ MAX_files), with the preUpdate
s.accessed_files′ = s.accessed_files +1.

The top goals is following.

Goal [PermitOnA1]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • enforce(UCON OnA1)

∧ (ap1 ∧ . . .∧ apn)
∧ 3≤d

(
revokeaccess(s, o, r) ∨ endaccess(s, o, r)

)
Where d is a finite time slice, that is necessary since unbounded achieve

goals are not realizable. The goal refinement is shown in Figure 10.10.

EventualRevoke

PermitOnA1

EventualRevokeOrEnd

EventualEnd

OnPemit

PermitOnA1-pre

TryToAccessPermit Update

Figure 10.10: Goal refinement of an UCON OnA1 core model

We also apply accuracy and actuation goals, which we don’t show here,
to resolve the lack of monitorability and controllability, identifying three

127

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

requirement goals, [onPermit], [EventualRevoke], and [UpdateBeforePermit]
and assign two agents, the Reference Monitor and the Attribute Manager
to take care of them.

Goal [PermitOnA1-pre]
RefinedTo: [Permit], [Update], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • enforce(UCON OnA1)

Goal [OnPermit]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ APV.validate(ap1 ∧ . . .∧ apn)
Resp: Reference Monitor

Goal [EventualRevokeOrEnd]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ 3≤d (revokeaccess(s, o, r) ∨ endaccess(s, o, r)
Resp: Reference Monitor

Goal [EventualRevoke]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.revokeaccess(s, o, r)
Resp: Reference Monitor

Goal [EventualEnd]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.endaccess(s, o, r)

The second part of the goal refinement can be found in 10.11, while the
formal sub-goals’ definitions follow.

Goal [Permit]
Refines: [PermitOnA1-pre]
RefinedTo: [Permit Monitor/Control], [PermitToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • update(s, o, r)

Goal [Update]
Refines: [PermitOnA1-pre]

128

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Update

Update Monitor/Control

UpdateBeforePermit

Permit

Permit Monitor/Control

PermitToAccess

Figure 10.11: Completion goal refinement of an UCON OnA1 core model

RefinedTo: [Update Monitor/Control], [UpdateBeforePermit]
FormalDef: (∀ s:subject, o:object, r:right)
update(s, o, r) ⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitOnA1-pre]
FormalDef: (∀ s:subject, o:object, r:right)
tryaccess(s, o, r) ⇒ • enforce(UCON OnA1)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, AM:Attribute Manager)
RM.permitaccess(s, o, r) ⇒ • AM.update(s, o, r)
Resp: Reference Monitor

Goal [UpdateBeforePermit]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right, AM:Attribute Manager)
AM.update(s, o, r) ⇒ • tryaccess(s, o, r)
Resp: Attribute Manager

The KAOS operational specifications for the UCON OnA1 enforcement
mechanism follow in the text. The only difference between these operations
and their equivalent shown in section 9.2 is the specification of the Required
Pre and Post-Condition clauses. The RevokeAccess operation will be shown
in Section 10.2.12

129

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPre for [PermitToAccess]: AM.update(s, o, r)
ReqPost for [OnPermit]: APV.validate(ap1 ∧ . . .∧ apn)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition: ¬ AM.update(s, o, r)
Domain Post-Condition: AM.update(s, o, r)
Input: subject, object, right
ReqPre for [UpdateBeforePermit]: tryaccess(s, o, r)

10.2.6 UCON OnA2

In the UCON OnA2 core model, a usage control decision is determined by
authorizations during the usage, and there is one or more attribute updates
during this usage. The policy enforcing happens before, during and after
the access is permitted. The top goal is:

The top goals is following.

Goal [PermitOnA2]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ (ap1 ∧ . . .∧ apn)

∧ 3≤c update(s, o, r)
∧ 3≤d

(
revokeaccess(s, o, r) ∨ endaccess(s, o, r)

)
Where d and e are finite time slices, that are necessary since unbounded

achieve goals are not realizable, with c < d. The goal refinement is shown
in Figure 10.13.

We also apply accuracy and actuation goals, which we don’t show here,
to resolve the lack of monitorability and controllability, identifying three re-
quirement goals, [OnPermit], [EventualRevoke] and [OnUpdate] and assign
two agents, the Reference Monitor and the Attribute Manager to take care
of them.

Goal [OnPermit]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ APV.validate(ap1 ∧ . . .∧ apn)
Resp: Reference Monitor

130

10.2. VALIDATING THE ENFORCEMENT MECHANISM

EventualRevoke

PermitOnA2

EventualRevokeOrEnd

EventualEnd

OnPemit

Update

Update Monitor/Control

UpdateAfterPermit

Figure 10.12: Goal refinement of an UCON OnA2 core model

Goal [Update]
Refines: [PermitOnA2]
RefinedTo: [Update Monitor/Control], [UpdateAfterPermit]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ ◦ update(s, o, r)

Goal [EventualRevokeOrEnd]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ 3≤d (revokeaccess(s, o, r) ∨ endaccess(s, o, r)
Resp: Reference Monitor

Goal [PermitOnA3-post]
RefinedTo: [EndOrRevoke], [Update], [OnUpdateCompleted]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ ♢ enforce(UCON OnA3)

131

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

Goal [EventualRevoke]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.revokeaccess(s, o, r)
Resp: Reference Monitor

Goal [EventualEnd]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.endaccess(s, o, r)

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, AM:Attribute Manager)
permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [UpdateAfterPermit]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, AM:Attribute Manager)
RM.permitaccess(s, o, r) ⇒ ◦ AM.update(s, o, r)
Resp: Attribute Manager

The KAOS operational specifications for the UCON OnA0 enforcement
mechanism follow in the text. The only difference between these operations
and their equivalent shown in section 9.2 is the specification of the Required
Pre and Post-Condition clauses. The RevokeAccess operation will be shown
in Section 10.2.12

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPost for [OnPermit]: APV.validate(ap1 ∧ . . .∧ apn)

Operation: AttributeUpdate
Performed By: Attribute Manager

132

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Domain Pre-Condition: true
Domain Post-Condition: AM.update(s, o, r)
Input: subject, object, right
ReqPre for [UpdateAfterPermit]: RM.permitaccess(s, o, r)

10.2.7 UCON OnA3

In the UCON OnA3 core model, a usage control decision is determined by
authorizations during the usage, and there is one or more attribute updates
after this usage. The example policy at the beginning of section 10.2.5
can be completed with the following postUpdate: s.accessed_files′ =
s.accessed_files −1.

The top goals is following.

Goal [PermitOnA3]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ (ap1 ∧ . . .∧ apn)

∧ 3≤d

(
revokeaccess(s, o, r) ∨ endaccess(s, o, r)

)
∧ 3≤e enforce(UCON OnA3)

Where d and e are finite time slices, that are necessary since unbounded
achieve goals are not realizable, with e > d. The goal refinement is shown
in Figure 10.13.

We also apply accuracy and actuation goals, which we don’t show here,
to resolve the lack of monitorability and controllability, identifying three
requirement goals, [OnPermit], [EventualRevoke] and [UpdateAfterEnd] and
assign two agents, the Reference Monitor and the Attribute Manager to take
care of them.

Goal [OnPermit]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ APV.validate(ap1 ∧ . . .∧ apn)
Resp: Reference Monitor

Goal [EventualRevokeOrEnd]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ 3≤d (revokeaccess(s, o, r) ∨ endaccess(s, o, r)
Resp: Reference Monitor

Goal [PermitOnA3-post]
RefinedTo: [EndOrRevoke], [Update], [OnUpdateCompleted]
FormalDef: (∀ s:subject, o:object, r:right)

133

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

EventualRevoke

PermitOnA3

EventualRevokeOrEnd

EventualEnd

OnPemit

PermitOnA3-post

Update

PostUpdateCompletedEndOrRevoke

Update Monitor/Control

UpdateAfterEnd

Figure 10.13: Goal refinement of an UCON OnA3 core model

permitaccess(s, o, r) ⇒ ♢ enforce(UCON OnA3)

Goal [EventualRevoke]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.revokeaccess(s, o, r)
Resp: Reference Monitor

Goal [EventualEnd]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.endaccess(s, o, r)

Goal [Update]
Refines: [PermitOnA3-post]

134

10.2. VALIDATING THE ENFORCEMENT MECHANISM

RefinedTo: [Update Monitor/Control], [UpdateAfterEnd]
FormalDef: (∀ s:subject, o:object, r:right)
endaccess(s, o, r) ⇒ ♢ update(s, o, r)

Goal [PostUpdateCompleted]
Refines: [PermitOnA3-post]
FormalDef: (∀ s:subject, o:object, r:right)
update(s, o, r) ⇒ ♢ enforce(UCON OnA3)

Goal [Update Monitor/Control]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right, AM:Attribute Manager)
update(s, o, r) ⇔ AM.update(s, o, r)

Goal [UpdateAfterEnd]
Refines: [Update]
FormalDef: (∀ s:subject, o:object, r:right, AM:Attribute Manager)
endaccess(s, o, r) ⇒ ♢ AM.update(s, o, r)
Resp: Attribute Manager

The KAOS operational specifications for the UCON OnA3 enforcement
mechanism follow in the text. The only difference between these operations
and their equivalent shown in section 9.2 is the specification of the Required
Pre and Post-Condition clauses. The RevokeAccess operation will be shown
in Section 10.2.12

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPost for [OnPermit]: APV.validate(ap1 ∧ . . .∧ apn)

Operation: AttributeUpdate
Performed By: Attribute Manager
Domain Pre-Condition: true
Domain Post-Condition: AM.update(s, o, r)
Input: subject, object, right
ReqPre for [UpdateAfterEnd]: endaccess(s, o, r)

135

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

10.2.8 UCON PreB0

In the UCON PreB0 core model, a usage control decision is determined by
obligations before the usage, and there is no attribute update before, during,
or after this usage. We require the policy to be enforced in the state before
the access is permitted. The top goal is then the following:

Goal [PermitPreB0]
RefinedTo: [Permit], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)

permitaccess(s, o, r) ⇒ • enforce(UCON PreB0)

We then apply a first goal refinement as shown in Figure 10.14, while
the formal sub-goals’ definitions follow.

PermitPreB0

Permit CheckPredicates TryToAccess

Figure 10.14: Initial goal refinement of an UCON PreB0 core model

Goal [Permit]
Refines: [PermitPreB0]
RefinedTo: [Permit Monitor/Control], [PermitToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • (op1 ∧ . . .∧ opn)

Goal [CheckPredicates]
Refines: [PermitPreB0]
RefinedTo: [CP Monitor/Control], [PredicatesValidation]
FormalDef: (∀ s:subject, o:object, r:right)
(op1 ∧ . . .∧ opn) ⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreB0]

136

10.2. VALIDATING THE ENFORCEMENT MECHANISM

FormalDef: (∀ s:subject, o:object, r:right)
tryaccess(s, o, r) ⇒ • enforce(UCON PreB0)

Neither [Permit] nor [CheckPredicates] are final goals, so they have to be
refined further. In Figure 10.15 is shown the completion of the goal refine-
ment, and the formal definitions of each of the shown sub-goal follows in the
text. In a very similar way to what we have done in Section 10.2.1, we apply
accuracy and actuation goals, and identify two requirement goals, [Permit-
ToAccess] and [PredicatesValidation], and assign two agents, the Reference
Monitor and the Obligation Validator to respectively take care to each of
them.

Permit CheckPredicates

Permit Monitor/Control PermitToAccess CP Monitor/Control PredicatesValidation

Figure 10.15: Goal model for an UCON PreB0 core model

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, OM:Obligation Monitor)
permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)
(op1 ∧ . . .∧ opn) ⇔ OM.validate(op1 ∧ . . .∧ opn)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, OM:Obligation Monitor)
RM.permitaccess(s, o, r) ⇒ • OM.validate(op1 ∧ . . .∧ opn)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, OM:Obligation Monitor)
(op1 ∧ . . .∧ opn) ⇔ OM.validate(op1 ∧ . . .∧ opn)

137

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

Goal [PredicatesValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, OM:Obligation Monitor)
OM.validate(op1 ∧ . . .∧ opn) ⇒ • tryaccess(s, o, r)
Resp: Obligation Monitor

We are now capable to derive the KAOS agent and operation models.
Figure 10.16 shows the KAOS operation model, together with the agen-
t/responsibility model. As the reader can see, we identify two operations:
PermitAccess and OblPredicateValidation.

PermitToAccess

PredicatesValidation

Resp

Resp

 Reference Monitor

 OblPredicate Validator

 Subject

Object

Right

PermitAccess Perf

In

In

In

OblPredicate

OblValidationResponse

OblPredicateValidation

In

Out

Perf

Figure 10.16: Excerpt of the operation model for an UCON PreB0 enforce-
ment mechanism

Next follows the KAOS operational specification for the UCON PreB0

enforcement mechanism, derived using the KAOS operationalization pat-
terns presented in [58].

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: ¬ RM.permitaccess(s, o, r)
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right

138

10.2. VALIDATING THE ENFORCEMENT MECHANISM

ReqPre for [PermitToAccess]: OM.validate(op1 ∧ . . .∧ opn)

Operation: OblPredicateValidation
Performed By: Obligation Monitor
Domain Pre-Condition: ¬ OM.validate(op1 ∧ . . .∧ opn)
Domain Post-Condition: OM.validate(op1 ∧ . . .∧ opn)
Input: OblPredicate
Output: OblValidationResponse
ReqPre for [PredicatesValidation]: tryaccess(s, o, r)

As usual, the only difference between these operations and those shown
in section 9.2 is in the specification of the Required Pre-Condition clause.

10.2.9 UCON PreB1, UCON PreB3, UCON OnB0, UCON
OnB1, UCON OnB2, UCON OnB3

As the reader has already noted, most of the Sections in this Chapter are
similar one to another. Especially, the last Section 10.2.8 is very similar
to Section 10.2.1: the only differences between the two are in the fact that
Section 10.2.1 treats Authorizations, while 10.2.8 is all about Obligations.
A same reasoning can be made about all the other Sections about UCONB:
a Section on UCON PreB1 would be similar to Section 10.2.2, the one on
PreB3 would be similar to Section 10.2.3, one on OnB0 to 10.2.4, and so on.
That’s the reason we don’t expand these Sections.

10.2.10 UCON PreC0

In the UCON PreC0 core model, a usage control decision is determined by
conditions before the usage, and, as is the case for usage control based on
conditions, there is no attribute update before, during, or after this usage.
This Section is very similar to Section 10.2.1.

We require the policy to be enforced in the state before the access is
permitted. The top goal is then the following:

Goal [PermitPreC0]
RefinedTo: [Permit], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)

permitaccess(s, o, r) ⇒ • enforce(UCON PreC0)

We then apply a first goal refinement as shown in Figure 10.17, while
the formal sub-goals’ definitions follow.

139

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

PermitPreC0

Permit CheckPredicates TryToAccess

Figure 10.17: Initial goal refinement of an UCON PreC0 core model

Goal [Permit]
Refines: [PermitPreC0]
RefinedTo: [Permit Monitor/Control], [PermitToAccess]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ • (cp1 ∧ . . .∧ cpn)

Goal [CheckPredicates]
Refines: [PermitPreC0]
RefinedTo: [CP Monitor/Control], [PredicatesValidation]
FormalDef: (∀ s:subject, o:object, r:right)
(cp1 ∧ . . .∧ cpn) ⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [PermitPreA0]
FormalDef: (∀ s:subject, o:object, r:right)
tryaccess(s, o, r) ⇒ • enforce(UCON PreC0)

[Permit] and [CheckPredicates] are not final goals, so they have to be
refined further. In Figure 10.18 is shown the completion of the goal refine-
ment, and the formal definitions of each of the shown sub-goal follows in the
text. We identify two requirement goals, [PermitToAccess] and [Predicates-
Validation], and assign two agents, the Reference Monitor and the Condition
Monitor to respectively take care to each of them.

Goal [Permit Monitor/Control]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, CM:Condition Monitor)
permitaccess(s, o, r) ⇔ RM.permitaccess(s, o, r)

140

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Permit CheckPredicates

Permit Monitor/Control PermitToAccess CP Monitor/Control PredicatesValidation

Figure 10.18: Goal model for an UCON PreC0 core model

(cp1 ∧ . . .∧ cpn) ⇔ CM.validate(cp1 ∧ . . .∧ cpn)

Goal [PermitToAccess]
Refines: [Permit]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, CM:Condition Monitor)
RM.permitaccess(s, o, r) ⇒ • CM.validate(cp1 ∧ . . .∧ cpn)
Resp: Reference Monitor

Goal [CP Monitor/Control]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, CM:Condition Monitor)
(cp1 ∧ . . .∧ cpn) ⇔ CM.validate(cp1 ∧ . . .∧ cpn)

Goal [PredicatesValidation]
Refines: [CheckPredicates]
FormalDef: (∀ s:subject, o:object, r:right, CM:Condition Monitor)
APV.validate(cp1 ∧ . . .∧ cpn) ⇒ • tryaccess(s, o, r)
Resp: Condition Monitor

Figure 10.19 shows the KAOS operation model, together with the agen-
t/responsibility model. We identify a couple of operations: PermitAccess
and CondPredicateValidation:

Next follows the KAOS operational specification for the UCON PreC0

enforcement mechanism:

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)

141

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

PermitToAccess

PredicatesValidation

Resp

Resp

 Reference Monitor

 Condition Monitor

 Subject

Object

Right

PermitAccess Perf

In

In

In

CondPredicate

CondValidationResponse

CondPredicateValidation

In

Out

Perf

Figure 10.19: Excerpt of the operation model for an UCON PreC0 enforce-
ment mechanism

Input: subject, object, right
ReqPre for [PermitToAccess]: CM.validate(cp1 ∧ . . .∧ cpn)

Operation: CondPredicateValidation
Performed By: Condition Monitor
Domain Pre-Condition: true
Domain Post-Condition: CM.validate(cp1 ∧ . . .∧ cpn)
Input: CondPredicate
Output: CondValidationResponse
ReqPre for [PredicatesValidation]: tryaccess(s, o, r)

The only difference between these operations and those shown in Section
9.2 is in the specification of the Required Pre-Condition clause.

10.2.11 UCON OnC0

In the UCON OnC0 core model, a usage control decision is determined by
conditions during the usage. The policy enforcing happens after the access

142

10.2. VALIDATING THE ENFORCEMENT MECHANISM

is permitted, and before it is ended by the user. The access can be revoked
when the predicates are not satisfied. The top goals follow:

The top goals is following.

Goal [PermitOnC0]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ (ap1 ∧ . . .∧ apn)

∧ 3≤d

(
revokeaccess(s, o, r) ∨ endaccess(s, o, r)

)
Where d is a finite time slice, that is necessary since unbounded achieve

goals are not realizable. The goal refinement is shown in Figure 10.20.

Figure 10.20: Goal refinement of an UCON OnC0 core model

We now apply accuracy and actuation goals (not shown for brevity) to
resolve the lack of monitorability and controllability, identifying two require-
ment goals, [PermitToAccess] and [EventualRevoke], and assign an agent,
the Reference Monitor to take care of them.

Goal [OnPermit]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ CM.validate(cp1 ∧ . . .∧ cpn)
Resp: Reference Monitor

143

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

Goal [EventualRevokeOrEnd]
FormalDef: (∀ s:subject, o:object, r:right)
permitaccess(s, o, r) ⇒ 3≤d (revokeaccess(s, o, r) ∨ endaccess(s, o, r)
Resp: Reference Monitor

Goal [EventualRevoke]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.revokeaccess(s, o, r)
Resp: Reference Monitor

Goal [EventualEnd]
FormalDef: (∀ s:subject, o:object, r:right)
RM.permitaccess(s, o, r) ⇒ 3≤d RM.endaccess(s, o, r)

The KAOS operational specifications for the UCON OnA0 enforcement
mechanism follow in the text. The only difference between these operations
and their equivalent shown in section 9.2 is the specification of the Required
Pre and Post-Condition clauses. The RevokeAccess operation will be shown
in Section 10.2.12

Operation: PermitAccess
Performed By: Reference Monitor
Domain Pre-Condition: true
Domain Post-Condition: RM.permitaccess(s, o, r)
Input: subject, object, right
ReqPost for [OnPermit]: CM.validate(cp1 ∧ . . .∧ cpn)

10.2.12 Denying and Revoking the access

A careful reader may have noted that in the previos sections we didn’t model
neither the DenyAccess nor the RevokeAccess operations. The reason lies
in the fact that we refined only positive permissions. Within this Section
we show the refinements of DenyAccess and RevokeAccess.

Denying the access

In UCON, an access is denied when, after a tryaccess(s,o,r), the pred-
icates are not satisfied. A DenyAccess operation can be issued only when
evaluating Pre{ABC} policies. The refinement shown here is valid for all
the UCON Pre{ABC} models.

The top goal is the following:

144

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Goal [AccessDenied]
RefinedTo: [Deny], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)

denyaccess(s, o, r) ⇒ • policyNotSatisfied(s, o, r)

This goal can be easily refined in the formal sub-goals’ definitions as
follow. The first part of the refinement is shown in Figure 10.21.

AccessDenied

Deny TryToAccessCheckPredicates

Figure 10.21: Initial goal refinement for the deny access goal

Goal [Deny]
Refines: [AccessDenied]
FormalDef: (∀ s:subject, o:object, r:right)
denyaccess(s, o, r) ⇒ • ((¬ap1 ∨ . . .∨ ¬apn) ∨

(¬op1 ∨ . . .∨ ¬opn) ∨
(¬cp1 ∨ . . .∨ ¬cpn))

Goal [CheckPredicates]
Refines: [AccessDenied]
RefinedTo: [CP Monitor/Control], [PredicatesInValidation]
FormalDef: (∀ s:subject, o:object, r:right)
((¬ap1 ∨ . . .∨ ¬apn) ∨

(¬op1 ∨ . . .∨ ¬opn) ∨
(¬cp1 ∨ . . .∨ ¬cpn)) ⇒ • tryaccess(s, o, r)

Goal [TryToAccess]
Refines: [AccessDenied]
FormalDef: (∀ s:subject, o:object, r:right)
tryaccess(s, o, r) ⇒ • policyNotSatisfied(s, o, r)

Even if [TryToAccess] is a final goal (an assumption of the system),
neither [Deny] nor [CheckPredicates] are finals, so they have to be refined

145

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

further. In Figure 10.22 is shown the completion of the goal refinement,
and the formal definitions of each sub-goals follow in the text. We ap-
ply accuracy and actuation goals to resolve the lack of monitorability and
controllability. We identify two requirement goals, [DenyTheAccess] and
[PredicatesInValidation], and assign two agents, the Reference Monitor and
Predicate Validator to respectively take care to each of them.

Deny CheckPredicates

AuthZDenied

CondPredicatesInValidation

OblDenied CondDenied

AuthZPredicatesInValidation OblPredicatesInValidation

Figure 10.22: Completion of the goal refinement for the deny access

The goal [Deny] is OR-refined in three goals, which we apply actuation
goals in a very similar manner to what we did in the previous chapter. They
result in the following three requirements: [AuthZDenied], [OblDenied] and
[CondDenied]:

Goal [AuthZDenied]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, APV:AuthZ Predicate Validator)
RM:denyaccess(s, o, r) ⇒ • APV.validate((¬ap1 ∨ . . .∨ ¬apn))
Resp: Reference Monitor

Goal [OblDenied]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, OM:Obligation Monitor)
RM.denyaccess(s, o, r) ⇒ • OM.validate((¬op1 ∨ . . .∨ ¬opn))
Resp: Reference Monitor

Goal [CondDenied]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, CM:Condition Monitor)
RM.denyaccess(s, o, r) ⇒ • (¬cp1 ∨ . . .∨ ¬cpn)

146

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Resp: Reference Monitor

The goal [CheckPredicates] is AND-refined in three goals, which we ap-
ply actuation goals. The result consists in the following three requirements:
[AuthZPredsInvalidation], [OblPredsInvalidation] and [CondPredsInvalida-
tion]:

Goal [AuthZPredicatesInValidation]
FormalDef: (∀ s:subject, o:object, r:right, APV:AuthZ Predicate Validator)
APV.validate(¬ ap1 ∨ . . .∨ ¬ apn)
⇒ • tryaccess(s, o, r)
Resp: AuthZ Predicate Validator

Goal [OblPredicatesInValidation]
FormalDef: (∀ s:subject, o:object, r:right, OM:Obligation Monitor)
OM.validate(¬ op1 ∨ . . .∨ ¬ opn)
⇒ • tryaccess(s, o, r)
Resp: Obligation Monitor

Goal [CondPredicatesInValidation]
FormalDef: (∀ s:subject, o:object, r:right, CM:Condition Monitor)
CM.validate(¬ cp1 ∨ . . .∨ ¬ cpn))
⇒ • tryaccess(s, o, r)
Resp: Condition Monitor

We are now capable to derive the KAOS agent and operation models.
Figure 10.23 the operation model, together with the agent/responsibility
model. We identify four operations. The first operation, DenyAccess, comes
from the operationalization of the requirements [AuthZDenied], [OblDe-
nied] and [CondDenied]. The second (AuthZPredicateValidation), third
(OblPredicateValidation) and fourth (CondPredicateValidation) ones
are similar to those already seen in the previous sections.

Next follows the formal specification of the operations.

Operation: DenyAccess
Performed By: Reference Monitor
Domain Pre-Condition: ¬ RM.denyaccess(s, o, r)
Domain Post-Condition: RM.denyaccess(s, o, r)
Input: subject, object, right
ReqPre for [AuthZDenied], [OblDenied] and [CondDenied]:

APV.validate(¬ ap1 ∨ . . .∨ ¬ apn) ∨

147

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

AuthZDenied

Resp

 Reference Monitor Subject

Object

Right

DenyAccess Perf

In

In

In

 AuthZ Predicate Validator

AuthZPredicate

AuthZValidationResponse

AuthZPredicateValidation Perf

In

Out

 Obligation Monitor

OblPredicate

OblValidationResponse

OblPredicateValidation Perf

In

Out

 Condition Monitor

CondPredicate

CondValidationResponse

CondPredicateValidation Perf

In

Out

OblDenied

Resp

CondDenied

Resp

AuthZPredicatesInvalidation

Resp

Resp

Resp

AuthZPredicatesInvalidation

AuthZPredicatesInvalidation

Figure 10.23: Operation model for an enforcing mechanism to deny an access

OM.validate(¬ op1 ∨ . . .∨ ¬ opn) ∨
CM.validate(¬ cp1 ∨ . . .∨ ¬ cpn)

Operation: AuthZPredicateValidation
Performed By: Predicate Validator
Domain Pre-Condition: ¬ APV.validate(¬ ap1 ∨ . . .∨ ¬ apn)
Domain Post-Condition: APV.validate(¬ ap1 ∨ . . .∨ ¬ apn)
Input: AuthZPredicate
Output: AuthZValidationResponse
ReqPre for [AuthZPredicatesInValidation]: tryaccess(s, o, r)

Operation: OblPredicateValidation
Performed By: Obligation Monitor

148

10.2. VALIDATING THE ENFORCEMENT MECHANISM

Domain Pre-Condition: ¬ OM.validate(¬ op1 ∨ . . .∨ ¬ opn)
Domain Post-Condition: OM.validate(¬ op1 ∨ . . .∨ ¬ opn)
Input: OblPredicate
Output: OblValidationResponse
ReqPre for [OblPredicatesInValidation]: tryaccess(s, o, r)

Operation: CondPredicateValidation
Performed By: Condition Monitor
Domain Pre-Condition: ¬ CM.validate(¬ cp1 ∨ . . .∨ ¬ cpn)
Domain Post-Condition: CM.validate(¬ cp1 ∨ . . .∨ ¬ cpn)
Input: CondPredicate
Output: CondValidationResponse
ReqPre for [CondPredicatesInValidation]: tryaccess(s, o, r)

If we don’t consider the predicates to be (in)validated, there is no dif-
ference between the operations as specified here and those shown in section
9.2.

Revoking the access

In UCON, an access is revoked when, during an ongoing access, the pred-
icates are not (more) satisfied. A RevokeAccess operation can be issued
only when evaluating a On{ABC} policies. The refinement shown here is
valid for all the On{ABC} models.

The top goal is the following:

Goal [AccessRevoked]
RefinedTo: [Revoke], [CheckPredicates], [PolicyOnceSatisfied]
FormalDef: (∀ s:subject, o:object, r:right)

revokeaccess(s, o, r) ⇒ • policyNotMoreSatisfied(s, o, r)

This goal can be easily refined in the formal sub-goals’ definitions as
follow. The complete refinement is shown in Figure 10.24.

Goal [Revoke]
Refines: [AccessRevoked]
FormalDef: (∀ s:subject, o:object, r:right)
revokeaccess(s, o, r) ⇒ (• (¬ ap1 ∨ . . .∨ ¬ apn) ∨

(¬op1 ∨ . . .∨ ¬opn) ∨
(¬cp1 ∨ . . .∨ ¬cpn))

149

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

AccessRevoked

Revoke PolicyOnceSatisfiedCheckPredicates

RevokeByCondRevokeByAuthZ RevokeByObl

Figure 10.24: Goal refinement for the revoke access goal

Goal [CheckPredicates]
Refines: [AccessRevoked]
FormalDef: (∀ s:subject, o:object, r:right)
((¬ap1 ∨ . . .∨ ¬apn) ∨

(¬op1 ∨ . . .∨ ¬opn) ∨
(¬cp1 ∨ . . .∨ ¬cpn)) ⇒ • PolicyChecked(s, o, r)

Goal [PolicyOnceSatisfied]
Refines: [AccessDenied]
FormalDef: (∀ s:subject, o:object, r:right)
PolicyChecked(s, o, r) ⇒ • policyNotMoreSatisfied(s, o, r)

The PolicyChecked(s, o, r) predicate used in the goals [CheckPredi-
cates] and [PolicyOnceSatisfied] is a place-holder dependent from the type of
UCON On{ABC} model being evaluated. The goals [CheckPredicates] and
[PolicyOnceSatisfied] are final goals (they are assumptions of the system),
while [revoke] has to be refined further. The formal definitions of each sub-
goal follows in the text. As usual, we apply accuracy and actuation goals
to resolve the lack of monitorability and controllability, but as is the former
section, they are not shown here. We identify the requirement final goals
[RevokeByAuthZ], [RevokeByObl] and [RevokeByCond], and assign it the
Reference Monitor agent.

Goal [RevokeByAuthZ]

150

10.2. VALIDATING THE ENFORCEMENT MECHANISM

FormalDef: (∀ s:subject, o:object, r:right,
RM:Reference Monitor, APV:AuthZ Predicate Validator)

RM:revokeaccess(s, o, r) ⇒ • APV.validate((¬ap1 ∨ . . .∨ ¬apn))
Resp: Reference Monitor

Goal [RevokeByObl]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, OM:Obligation Monitor)
RM.revokeaccess(s, o, r) ⇒ • OM.validate((¬op1 ∨ . . .∨ ¬opn))
Resp: Reference Monitor

Goal [RevokeByCond]
FormalDef: (∀ s:subject, o:object, r:right,

RM:Reference Monitor, CM:Condition Monitor)
RM.revokeaccess(s, o, r) ⇒ • (¬cp1 ∨ . . .∨ ¬cpn)
Resp: Reference Monitor

We are now capable to derive the KAOS agent and operation models.
Figure 10.25 shows them, together with the agent/responsibility model. The
formal specification of the operation identified follows.

RevokeByAuthZ

Resp

 Reference Monitor Subject

Object

Right

RevokeAccess Perf

In

In

In

RevokeByObl

Resp

RevokeByCond

Resp

Figure 10.25: Operation model for an enforcing mechanism to revoke an
access

Operation: RevokeAccess
Performed By: Reference Monitor
Domain Pre-Condition: ¬ RM.revokeaccess(s, o, r)
Domain Post-Condition: RM.revokeaccess(s, o, r)
Input: subject, object, right
ReqPre for [RevokeByAuthZ], [RevokeByObl] and [RevokeByCond]:

APV.validate(¬ ap1 ∨ . . .∨ ¬ apn) ∨
OM.validate(¬ op1 ∨ . . .∨ ¬ opn) ∨
CM.validate(¬ cp1 ∨ . . .∨ ¬ cpn)

151

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

As expected, If we don’t consider the predicates to be (in)validated, there
is no difference between this operation as specified here and the one shown
in section 9.2.

10.2.13 Correcteness of the Operationalisation

The correctness of the operationalisation of the above policy requirements
is defined in the following property, which captures the completeness, mini-
mality and consistency properties as stated in [58].

Correctness of Operationalisation. The operationalisation of the requirements
[PermitToAccess], [PredicatesValidation], [UpdateTheAttributes], [UpdateAfter-
Permit], [OnValidation] and [UpdateAfterEnd] by the operations PermitAccess,
AuthZPredicateValidation, OblPredicateValidation, CondPredicateValidation
and AttributeUpdate is correct. This is shown by proving the following:

∀Op ∈{PermitAccess,
AttributeUpdate,
AuthZPredicateValidation,
OblPredicateValidation,
CondPredicateValidation
AuthZDenied,
OblDenied,
CondDenied,
AuthZPredicateinValidation,
OblPredicateinValidation,
CondPredicateinValidation,
RevokeByAuthZ,
RevokeByObl,
RevokeByCond}

R ∈ {ReqPre,ReqPost},
G ∈ {[PredicatesV alidation],

[UpdateTheAttributes],
[UpdateAfterPermit],
[OnV alidation],
[UpdateAfterEnd],
[DenyAccess],
[RevokeAccess]}:

[|Op.R|] � G ∧ G � [|Op.R|] ∧ [|Op.R|] 2 False

with respect to the definitions of [| |] and � as given in [58]. The [| |]
relation gives the meaning of the pre/post/trigger conditions of operations

152

10.3. RELATED WORKS

and � represents the usual derivation operator in logic given premises on its
left side. �

10.2.14 Encoding a Strategy

It is worth noting here that the sequentiality of operations determines the
specific policy they can operationalise. When deriving the KAOS opera-
tional specification for all the UCONabc sub-models, we note that the de-
rived operations always encode the same state-transitions as specified by
those in Section 9.2, but since the sequentiality of the operations is differ-
ent in each model, the Required Pre-, Post- and Trigger Conditions become
model-dependent. We are able, for each UCON sub-model, to formally infer
a strategy to encode the sequentiality of the operations by just looking at
the Required Pre-, Post- and Trigger Conditions specified within the formal
operational specification of each UCONabc sub-model. It should be obvious
that, in order for the abstract specification presented in Section 9.2 to be
an enforcement mechanism for all policies, that a way to encode the pol-
icy strategy is needed. A possibility lies in the use of an operational policy
language like POLPA [60], where the policy specification itself encodes the
strategy. Otherwise, an external scheduler can be used for the particular
UCONabc sub-model to which the policy pertains.

10.3 Related Works

The work reported in this Chapter is associated to two strands of related
works: policy refinement and derivation of enforcement mechanisms. The
use of goal-refinement for refining policies as presented here was introduced
by Bandara et al in [9]. However, their emphasis is on applying abduction
techniques in order to determine the sequence of events needed to achieve a
goal given a system architecture that already include enforcing components.
Close to Bandera’s work is the work of [85], which also refines policies by
applying requirement engineering and model checking techniques based on
a temporal logic formalisation similar to the one used in this paper. His
approach allows one to find system executions aimed at fulfilling low-level
goals that logically entail high-level strategic guidelines. From system exe-
cutions, policy information is abstracted and eventually encoded into a set
of refined policies specified in Ponder. Above approaches have been applied
to the networking management domain.

An alternative approach to policy refinement is presented by Chadwick
et al in [94], based on the existence of a resource hierarchy. Their work
exploits Semantic-Web technology to automate the refinement process. We
consider the representation of a resource hierachy as an interesting idea and
plan to study as future work the inclusion of resource hierarchy in goal-based
approaches to policy refinement.

153

CHAPTER 10. VALIDATING POLICY ENFORCEMENT USING A
GOAL-ORIENTED APPROACH

In relation to the derivation of enforcement mechanims, Janicke et al
present in [48] a framework for the derivation of enforcement mechanisms
that guarantee compliance with the policies. Their work is based on formal-
ising the policies in Interval Temporal Logic (ITL) and concentrates only on
history-based access control policies. Our work is more operational and we
consider it could be linked better to current efforts to implementing usage
control for Grids, such as [110] and [60]

154

11
Conclusion and Future Work

This thesis is about usage control for Data Grids. We analysed usage con-
trol models, techniques and systems, and we applied them to a Data Grid
abstraction. This work is a step toward a continuous monitoring and control
of the data access and usage in a Data Grid. Regardless, much work has
still to be done.

11.1 Summary and Results

In Chapter 3 we explained some general concepts found in the computer se-
curity world, and Section 3.3 is central when summarizing our idea on usage
control, which we consider as the new, and improved, access control. Then,
we used Chapter 4 to explain some basic ideas about controlling the usage
of Grid data: the notions we put in that Chapter remained valid throughout
the whole thesis. Basically, we consider Grid security as a process, which
is composed by two black boxes: an (extended) Grid Authentication box,
which is followed by a Grid Authorization box. Later, throughout the the-
sis, we presented solutions for both. Chapter 4 is also used to explain the
possible application models for controlling the usage of Grid data, the policy
framework models developed in the past, the OGF recommendations, and
also review some security tools used by today’s Data Grids.

Figure 11.1 is used to explain the status of the whole Grid usage control
process as was found at the beginning of the whole work of the thesis. The
developement of each black box has been analysed as a software engineering
process, that goes from requirements analysis to maintainance, passing from
architecture, design and implementation phases. A further step, standard
compliant, is added, since the use of standards is becoming very important
for the Grid community.

As can be seen by looking at Figure 11.1, the extended Grid authen-
tication was covered by at least one (good) software tool. Instead, autho-
rization decisions about the usage of Grid data still lacked even a model
suitable to accomodate the security requirements of a Data Grid. Some
of the tools we reviewed in Section 9.3 are used in today’s Data Grids to
accomodate their authorization needs, but none of them can solve all the

155

CHAPTER 11. CONCLUSION AND FUTURE WORK

Requirements
Model

Architecture
Specification

Design
Implementat ion

Testing
Deployement
Maintenance

Standard compliant

Requirements
Model

Architecture
Specification

Design
Implementat ion

Testing
Deployement
Maintenance

Standard compliant

(old version)

(old version)

(old version)

(old version)

(old version)

Figure 11.1: Status of Grid authentication and authorization before this
thesis

security requirements we explained in Section 7.1. That’s why, in Chapter
7, we showed the foundations for developing a software for usage control
for Data Grids, including a distributed usage control model. Such model
is suitable for multi-authoritative distributed systems, and can make use of
policies pertaining to the UCONabc models.

Chapter 8 is about the re-engineering of a software, the VOMS tool,
which provides an extended Grid authentication tool which is standard com-
pliant. Later, in Chapter 9, we showed two architectures for Data Grid usage
control, one concrete and one abstract, focussing on the authorization part.
The second of these architecture is an abstract specification, which is verified
with a methodology derived from the KAOS formal requirement engineering
process. Such methodology is a brand-new, bottom up methodology, which
has been developed for this thesis to show that the abstract architecture
specification, showed in Chapter 9, is correct.

In summary, this thesis has presented a distributed usage control model
suitable for Data Grids, a usage-based Data-Grid authorization architecture
with strong reference to the OGSA work on Grid authorization architec-
ture, a usage control architecture for Semantic Data-Grids, and a rigorous
approach to the design of an enforcement mechanism for UCONabc usage
control policies. We concentrated on the UCON model proposed by Park
and Sandhu and studied its application for the case of Data Grid Man-
agement Systems (DGMS). Our approach consists in applying the KAOS
requirements-engineering methodology to the design of the enforcement mech-

156

11.1. SUMMARY AND RESULTS

anism. The starting point is the definition of an abstract specification of the
enforcement mechanism. Then, we applied KAOS to each of the UCONabc

sub-models to prove that the specification is correct. The UCONabc policies
can be refined into concrete ones — which could be enforced by the resulting
system — by applying KAOS goal refinement. We also presented some ideas
on the use of Semantic Grid techologies for controlling the granularity of us-
age control, and thus making UCON appropriate for its usage by different
Grid applications running on the same middleware.

The results of this work are summarized with Figure 11.2, which is a
companion to Figure 11.1. The Grid authentication step has been analysed,
and a re-engineering work has been shown. The Grid authorization black
box has been analysed in deep. Models, architectures and specifications has
been proposed. In the following Section we will list some prototypes that can
be considered when implementing the “Grid Authorization box”, together
with their pros and cons.

Requirements
Model

Architecture
Specification

Design
Implementat ion

Testing
Deployement
Maintenance

Standard compliant

Requirements
Model

Architecture
Specification

Design
Implementat ion

Testing
Deployement
Maintenance

Standard compliant

(new version)

(new version)

(new version)

(new version)

(new version)

(prototypes)

(prototypes)

(prototypes)

Figure 11.2: Status of Grid authentication and authorization after this thesis

We consider this thesis as a step toward an integrated usage control
framework for Data Grids. We also believe that many of the ideas presented
here can be adapted for the case of computational Grids and distributed
systems alike.

157

CHAPTER 11. CONCLUSION AND FUTURE WORK

11.2 Future Works

Future works may follow at least the following two strands: the first is about
completing the engineering process, thus designing, implementing, testing
and deploying the architectures and specifications that can be found in this
thesis. The second strand takes in consideration the management of policies
in a large environment, by using semantic Grid technologies.

11.2.1 On Completing the Software Engineering Process

Going from a theoretical analysis of Usage Control enforcement, as presented
in this work, to its concrete application, on Data Grids or on other collab-
orative, pervasive computing systems, poses a number of questions. We are
not aware of specific usage control frameworks for Data Grids, although
there are already some running implementations for other scenarios.

In [60], Martinelli and Mori provide a model for usage control for compu-
tational Grids for the Globus Toolkit, following Sandhu’s UCON model. The
prototype implements the standard PEP-PDP architecture, and the PoLPA
policy language is used to encode UCON policies. The PEP has been inte-
grated within the application execution environment to monitor the accesses
to the local resources performed by the applications executed on behalf of
remote GRID users. The PDP gets the security policy from a repository, and
builds its internal data structures for the policy representation. The PDP
is invoked by the PEP every time the subject attempts to access a resource.
It exploits its representation and determine whether the access should be
allowed or not, returning to the PEP permit and deny invocations. The
PDP continuously evaluates a set of given authorizations, conditions and
obligations while an access is in progress, and it could invoke the PEP to
terminate it through a revoke action. The architecture comprises the man-
agers for attributes, conditions and obligations. The Condition Manager is
invoked by the PDP every time the security policy requires the evaluation of
a condition. The Attribute Manager is in charge of retrieving and updating
the value of attributes. The Obligation Manager monitors the execution of
obligations.

The authors claim that one of the strengths of this prototype is repre-
sented by its policy language, which is PoLPA. Anyway, PoLPA may repre-
sent a weakness when considering a possible deployement of this software on
a Grid infrastructure, since it’s not a standard, and this contrasts with re-
quirement number 5 of those we listed in Section 7.1.2. Other deployements
problems come from the fact that Martinelli and Mori focussed on single
GRID computational services. We argue that the adaptation of UCON to
Data Grid poses a greater number of issues to be solved. This thesis high-
lighted a number of them. Anyway, we believe that, with some adaptations,
this prototype could be part of a larger Distributed Usage Control imple-

158

11.2. FUTURE WORKS

mentation for Data Grids.
In [110], Zhang et al propose a UCON prototype implementation. The

security architecture leverages a centralized attribute repository in each VO
and a usage monitor in each Resource Provider (RP) for attribute manage-
ment. Both PDP and PEP are located on the RP side. For an access, the
PDP collects the subject, object and system attributes, and makes the us-
age control decision, which is enforced by the PEP. The immutable subject
attributes are pushed to the PDP by the requesting subject.

The policies are specified with XACML, which, as recognized by the
same authors, seems suffers of several limitations to exactly encode UCON
policies. The fact that even a standard language like XACML does not
provide sufficient expressive capability leads to considerations that we leave
as future works. As is the case for the former one, this prototype has not
been applied to an actual (Data) Grid security architecture, like the OGSA
one.

Another prototype that has to be considered for the implementation of
the super-PEP architectural element (see Section 9.1) is envisaged in [7],
which is a work from the same authors of [60], and again uses PoLPA,
this time not as a policy language, but as an orchestrator language. An
alternative, standard orchestrator language, is represented by the Business
Process Execution Language (BPEL) [50].

Even if these prototypes should be considered when implementing a
Data Grid usage control architecture, none of them consider the inner multi-
authoritative nature of Data Grids and their specific issues.

11.2.2 On the Use of Semantic Grid Technologies

We published some of the ideas for future work that we report in this Section
in [36].

In the near future, data on the order of hundreds of petabytes will be
spread in multiple storage systems worldwide dispersed in, potentially, bil-
lions of replicated data items. The creation, definition and enforcement of
usage control policies may represent an issue in terms of management, scal-
ability, governability and consistency. For example, in current hierarchical
file systems, access control is made specifying the authorizations on every
one of billions of files. If usage and access control techniques are to be re-
ally useful in a large pervasive environment, they should be able to solve
the scalability and governability problems presented by the more traditional
access control models, such as Identity Based Access Control (IBAC) — nor-
mally implemented using Access Control Lists (ACLs) — or even the more
flexible Role Based Access Control (RBAC) [28]. In the implementations of
traditional access control models, when an authorization policy changes for
a specific user or role, the security manager must implement the adjustment
in every entry involved, potentially all. Moreover, frequent authorization

159

CHAPTER 11. CONCLUSION AND FUTURE WORK

mutations and a big number of users or roles make worse the possibility of
the authorization system being managed in an effective way. These factor
may generate a policy explosion phenomenon. What’s needed is a mecha-
nism for keeping under control the policy granularity. A simple solution lies
in the semantic binding assertions regarding Grid users and resources, as
exposed in a Semantic Grid.

UCON subjects and objects may be semantic concepts extracted from
those VO ontologies or scientific model ontologies used in the Semantic Grid,
like those we explained in Section 8.4. Before going any further, we make
a clear distinction between semantic attributes and UCON attributes. Se-
mantic attributes can globally describe users, data and resources properties,
but are not meant to be security attributes. Instead, the UCON attributes
define only subjects’ and objects’ security properties, and for many of them
there is no need to be known outside the usage control service. For example,
consider the following UCON PreA1+3 policy, viz. a pre-authorization policy
with pre and post attribute updates (written in POLPA, where . represents
sequence of actions):

TryAccess(John_Doe , file_xyz , view).
2 PredicateValidation(

[John_Doe.openedFiles <
4 John_Doe.MAX_openedFiles]).

AttributeUpdate(
6 John_Doe.openedFiles , add , 1).

PermitAccess(John_Doe , file_xyz , view).
8 EndAccess(John_Doe , file_xyz , view).

AttributeUpdate(
10 John_Doe.openedFiles , reduce , 1).

The subject is the user John_Doe, the object is the abstract name file_xyz,
and the UCON (Grid) right requested is simply view. This policy makes use
of two John Doe’s attributes in the predicate at lines 2-4, openedFiles and
MAX_openedFiles, and updates openedFiles at lines 5-6 and 9-10. The
attribute openedFiles represents the number of files accessed at the same
time by John_Doe, while MAX_openedFiles represents the maximum num-
ber of files that can be accessed at the same time. These attributes don’t
need to be known outside the usage control service, because they are used
to store security properties and don’t describe semantic characteristics of
the user. We argue that no UCON attribute, neither mutable or persistent,
could be considered as a semantic one.

Semantic Grid technologies come in play for the definition of the UCON
subjects and objects. A semantic-aware UCON PDP is depicted in Figure
11.3, and is obviously much similar to the one presented in Section 9.1 with
Figures 9.1 and 9.2. In a Semantic Grid, the client service (i.e. the Grid
User) and the data to be accessed (e.g. the abstract name managed by the
DGMS) are represented by a Knowledge Entities (KE) (see Section 8.4).

160

11.2. FUTURE WORKS

For what concerns the DGMS, the metadata repository can be used to store
the KE of the abstract names. Even if in Semantic Grids specific Grid Users
will keep asking to access specific Grid Data, a semantic-aware PDP would
search for applicable policies using the multiple fields of the KEs of both the
Grid user and the resource to be accessed. In this way, two or more policies
could be applicable for a single access request, thus generating more than a
single policy control for a single access request.

When no policy is applicable, the access is denied. When multiple UCON
Pre{ABC} policies are to be evaluated, even if just one is satisfied, then the
access will be permitted. When multiple UCON On{AB} policies are to
be evaluated, even if just one is no more satisfied, then the access will be
revoked.

2. User
Knowledge

Entity

Reference
Monitor

AuthZ
Predicate
Validator

Attr ibute
Manager

4. Mutable
Attr ibutes

UCON
PDP

VO UCON
policy

repository

3. UCON
policy

3. Immutable
object (AN)
attr ibutes

Meta-data
repository

Mutable
Attr ibutes
repository

5. Usage
Decision 1. Immutable

subject (cl ient)
at tr ibutes

Obligation
Monitor

Condition
Monitor

4. System
Attr ibutes

Grid
Accounting

SVC

2. Data
Knowledge Entity

Client Service
(Grid User)

Figure 11.3: A semantic-aware UCON PDP

A security administrator can control the policy granularity using the
semantic fields shown in Figure 8.3 for the definition of collective policies,
like the following simple PreA0 policy (written in POLPA):

TryAccess(Institution:STFC , Study:ISIS , read).
2 PredicateValidation ([]).

PermitAccess(Institution:STFC , Study:ISIS , read).
4 EndAccess(Institution:STFC , Study:ISIS , read).

This policy states that each User associated with the Institution STFC
can read those GD pertaining to the ISIS study. UCON attributes can be
associated to these UCON subjects and objects.

The possibility to control the policy granularity, and thus to avoid the
policy explosion is of particular interest for those VOs that consider the

161

CHAPTER 11. CONCLUSION AND FUTURE WORK

specification of a per-user, per-role or per-data policies a useless effort. High
Energy Physics VOs usually fall in this category.

162

Bibliography

[1] J.R. Abrial, M.K.O. Lee, D. Neilson, PN Scharbach, and I. Sørensen.
The B-method. In Proceedings of the 4th International Symposium
of VDM Europe on Formal Software Development, volume 2, pages
398–405. Springer.

[2] J. Ainsworth, S. Newhouse, and J. MacLaren. Re-
source usage service (rus) based on ws-i basic profile 1.00.
www.ogf.org/Public Comment Docs/Documents/Apr-2007/ogsa-
bes-v33.pdf, 2006.

[3] Roberto Alfieri, Roberto Cecchini, Vincenzo Ciaschini, Luca
dell’Agnello, Ákos Frohner, Károly Lörentey, and Fabio Spataro. From
gridmap-file to voms: managing authorization in a grid environment.
Future Generation Comp. Syst., 21(4):549–558, 2005.

[4] S. Andreozzi. On the Quality-Based Evaluation and Selection of Grid
Services. PhD thesis, University of Bologna, Department of Computer
Science, Apr 2006.

[5] M. Antonioletti, M. Atkinson, A. Krause, S. Laws, S. Malaika, N. W.
Paton, D. Pearson, and G. Riccardi. Web services data access and
integration - the core (ws-dai) specification, version 1.0, 2006.

[6] M. Antonioletti, D. Berry, A. Chervenak, P.r Kunszt, A. Luniewski,
S. Laws, and M. Morgan. Ogsa data architecture v0.6.6. Technical
report, Open Grid Forum, 2007.

[7] Benjamin Aziz, Alvaro Arenas, Fabio Martinelli, Ilaria Matteucci, and
Paolo Mori. Controlling usage in business process workflows through
fine-grained security policies. In Springer, editor, 5th International
Conference on Trust, Privacy& Security in Digital Business, 2008.

[8] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based access
control and its support for active security. ACM Transactions on
Information and System Security (TISSEC), 5(4):492–540, November
2002.

[9] Arosha K. Bandara, Emil C. Lupu, Jonathan Moffett, and Alessandra
Russo. A Goal-based Approach to Policy Refinement. In 5th IEEE
Workshop on Policies for Distributed Systems and Networks. IEEE
Computer Society, 2004.

[10] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch,
R. Ananthakrishnan, B. Baker, M. Goode, and K. Keahey. Iden-
tity federation and attribute-based authorization through the globus
toolkit, shibboleth, gridshib, and myproxy, Apr 2006.

163

BIBLIOGRAPHY

[11] Tim Berners-Lee. Semantic web road map.
http://www.w3.org/DesignIssues/Semantic.html, 1998.

[12] E. Bertino and E. Ferrari. A logical framework for reasoning about
access control models. ACM Transactions on Information and System
Security (TISSEC), 6(1):71–127, 2003.

[13] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,
C. Ferris, and D. Or-chard. Web services architecture, 2004.
http://www.w3.org/TR/ws-arch/.

[14] A. Caltroni, V. Ciaschini, A. Ferraro, A. Ghiselli, G. Rubini, and
R. Zappi. G-pbox: A policy framework for grid environments. In
Proceedings of the International CHEP 2004, Interlaken, Switzerland,
2004.

[15] S. Cantor, F. Hirsch, J. Kemp, R. Philpott, and E. Maler.
Bindings for the oasis security assertion markup language (saml)
v2.0. http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-
2.0-os.pdf, 2005.

[16] S. Cantor, J. Kemp, R. Philpott, and E. Maler. Oasis se-
curity assertion markup language (saml) tc. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=security, 2005.

[17] D. Chadwick. An x.509 role-base privilege management infrastructure.
Technical report, 2002.

[18] D. Chadwick. Functional components of grid service provider authori-
sation service middleware. Technical report, Open Grid Forum, 2008.

[19] David Chadwick, Gansen Zhao, Sassa Otenko, Romain Laborde, Liny-
ing Su, and Tuan-Anh Nguyen. Building a modular authorisation in-
frastructure. In The UK e-Science All Hands Meeting, Nottingham,
September 2006.

[20] DW Chadwick and A Otenko. Implementing Role Based Access Con-
trols using X.509 Privilege Management - the PERMIS Authorisa-
tion Infrastructure. In Borka Jerman-Blazic, Wolfgang Schneider, and
Tomaz Klobucar, editors, Security and Privacy in Advanced Network-
ing Technologies, NATO Science Series, pages 26–39. IOS Press, un-
known 2004. Proceedings of the NATO Advanced Networking Work-
shop on Advanced Security Technologies in Networking, Bled, Slove-
nia, 15-18 September 2003.

[21] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke.
The data grid: Towards an architecture for the distributed manage-
ment and analysis of large scientific datasets, 1999.

164

BIBLIOGRAPHY

[22] Madhu Chetty and Rajkumar Buyya. Weaving computational grids:
How analogous are they with electrical grids? Computing in Science
and Engg., 4(4):61–71, 2002.

[23] V. Ciaschini, V. Venturi, and A. Ceccanti. The voms attribute certifi-
cate format. Technical report, OGSA Authorization working group,
Jan 26, 2005.

[24] Óscar Corcho, Pinar Alper, Ioannis Kotsiopoulos, Paolo Missier, Sean
Bechhofer, and Carole A. Goble. An overview of s-ogsa: A reference
semantic grid architecture. J. Web Sem., 4(2):102–115, 2006.

[25] dCACHE Group. grid-aware pluggable authorization management.

[26] Sandrine Duflos, Gladys Diaz, Valérie Gay, and Eric Horlait. A com-
parative study of policy specification languages for secure distributed
applications. 2506:157–??, 2002.

[27] S. Farrell and R. Housley. An Internet Attribute Certificate Profile for
Authorization. RFC 3281 (Proposed Standard), April 2002.

[28] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli.
Proposed nist standard for role-based access control. ACM Trans-
actions on Information and System Security (TISSEC), (3):224–274,
2001.

[29] M.D.F. Ferraiolo, M.D.M. Gilbert, and M.N. Lynch. AN EXAMINA-
TION OF FEDERAL AND COMMERCIAL ACCESS CONTROL
POLICY NEEDS. National Computer Security Conference, 1993
(16th) Proceedings: Information Systems Security: User Choices,
1995.

[30] I. Foster, A. Grimshaw, P. Lane, W. Lee, S. Newhouse, S. Pickles,
D. Pulsipher, C. Smith, and M. Theimer. Ogsa basic execution service
version 1.0, 2007.

[31] I. Foster, C. Kesselman, L. Pearlman, S. Tuecke, and V. Welch. The
community authorization service: Status and future. In In Proceedings
of Computing in High Energy Physics 03 (CHEP ’03), 2003.

[32] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid
Computing: Making the Global Infrastructure a Reality, chapter The
Physiology of the Grid, pages 217–249. Wiley, 2003.

[33] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. International Jounral of
Supercomputer Applications, 15(3), 2001.

165

BIBLIOGRAPHY

[34] A Frohner, Peter Z Kunszt, R Brito da Rocha, and E Laure. Security
of distributed data management. Technical Report EGEE-TR-2006-
003. EGEE-TR-2006-DATASEC, 2006.

[35] Patrick Fuhrmann and Volker Gülzow. dcache, storage system for the
future. In Euro-Par, pages 1106–1113, 2006.

[36] A. Ghiselli, L. Magnoni, F. Stagni, and R. Zappi. Enriched namespace
to support content-aware authorization policies. Journal of Physics:
Conference Series, 2007.

[37] Antonia Ghiselli, Federico Stagni, and Riccardo Zappi. Review of se-
curity models applied to distributed data access. In Euro-Par Work-
shops, pages 34–48, 2006.

[38] Francois Grey, Matti Heikkurinen, Rosy Mondardini, and
Robindra Prabhu. How does grid computing work?, May 2008.
http://www.gridcafe.org/version1/gridatwork/architecture.html.

[39] A. S. Grimshaw and W. A. Wulf. Legion-a view from 50,000 feet. In
HPDC ’96: Proceedings of the 5th IEEE International Symposium on
High Performance Distributed Computing, page 89, Washington, DC,
USA, 1996. IEEE Computer Society.

[40] Andrew Grimshaw, Adam Ferrari, and Katherine Holcomb.
Metacomputing– what’s in it for me? greg lindahl.

[41] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C.
Weaver, and Jr. Paul F. Reynolds. Legion: The next logical step to-
ward a nationwide virtual computer. Technical report, Charlottesville,
VA, USA, 1994.

[42] The Storage Resource Management Working Group. An internet at-
tribute certificate profile for authorization. http://sdm.lbl.gov/srm-
wg/doc/SRM.v2.2.pdf, may 2008.

[43] P. Gutmann. Why xml security is broken.
http://www.cs.auckland.ac.nz/ pgut001/pubs/xmlsec.txt, 2004.

[44] HealthGrid. Healthgrid white paper. Technical Report HealthGrid-
White Paper-Draft v.1.1-5, HealthGrid, 2004.

[45] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 3280 (Proposed Standard), April 2002. Updated by
RFCs 4325, 4630.

[46] Internet2/MACE. The shibboleth project.

166

BIBLIOGRAPHY

[47] ITU-T. Information technology open systems interconnection secu-
rity frameworks for open systems: Access control framework. Techni-
cal report, ITU-T, 1995.

[48] Helge Janicke, Antonio Cau, Francois Siewe, and Hussein Zedan. De-
riving Enforcement Mechanisms from Policies. In Eighth IEEE Inter-
national Workshop on Policies for Distributed Systems and Networks.
IEEE Computer Society, 2007.

[49] C.S. Jordan. Guide to Understanding Discretionary Access Control in
Trusted Systems. DIANE Publishing, 1987.

[50] D. Jordan and J. Evdemon. Web services business pro-
cess execution language version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, 2007.

[51] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers, November 1998.

[52] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A
taxonomy and survey of grid resource management systems for dis-
tributed computing. Software: Practice and Experience, 32:135–164,
2002.

[53] L. Lamport. Specifying systems. Addison-Wesley, 2003.

[54] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman.
A multipolicy authorization framework for grid security. In Proc. Fifth
IEEE Symposium on Network Computing and Application, July 2006.

[55] P. Lebrun. The Large Hadron Collider, a megascience project. Pre-
pared for INFN Eloisatron Project: 38th Workshop, Erice, Italy, 3-11
Aug 1999.

[56] E. Letier. Reasoning about Agents in Goal-Oriented Requirements En-
gineering. PhD in informatics, Universit Catholique de Louvain, Uni-
versit Catholique de Louvain, Dpt. Ingnierie Informatique, Belgium,
2001.

[57] E. Letier and A. van Lamsweerde. Agent-based tactics for goal-
oriented requirements elaboration. 2001.

[58] E. Letier and A. van Lamsweerde. Deriving Operational Software
Specifications from System Goals. In FSE’10: 10th ACM S1GSOFT
Symp. on the Foundations of Software Engineering, 2002.

[59] M. Lorch, D. B. Adams, D. Kafura, M. S. R. Koneni, A. Rathi, and
S. Shah. The prima system for privilege management, authorization

167

BIBLIOGRAPHY

and enforcement in grid environments. In GRID ’03: Proceedings
of the Fourth International Workshop on Grid Computing, page 109,
Washington, DC, USA, 2003. IEEE Computer Society.

[60] Fabio Martinelli and Paolo Mori. A Model for Usage Control in GRID
systems. In Grid-STP 2007, International Conference on Security,
Trust and Privacy in Grid Systems. IEEE Computer Society, 2007.

[61] Fabio Martinelli, Paolo Mori, and Anna Vaccarelli. Towards contin-
uous usage control on grid computational services. In ICAS/ICNS,
page 82, 2005.

[62] Steve McConnell. Code complete: a practical handbook of software
construction. Microsoft Press, Redmond, WA, USA, 1993.

[63] J. McLean and NAVAL RESEARCH LAB WASHINGTON DC CEN-
TER FOR HIGH ASSURANCE COMPUTING SYSTEMS (CHACS.
Security Models and Information Flow, 1990.

[64] A. Mige. Definition of a formal framework for specifying security poli-
cies - The Or-BAC model. PhD in informatics, Ecole Nationale Su-
prieure des Tlcommunications, Ecole Nationale Suprieure des Tlcom-
munications, 2005.

[65] Jonathan D. Moffett and Morris S. Sloman. Policy Hierarchies for Dis-
tributed System Management. IEEE JSAC Special Issue on Network
Management, 11(9), 11 1993.

[66] R. Moore, A. Jagatheesan, A. Rajasekar, M. Wan, and W. Schroeder.
Data Grid Management Systems. In Proceedings of the 21stIEEE/-
NASA Conference on Mass Storage Systems and Technologies, Mary-
laand, USA, 2004.

[67] C. Munro and B. Koblitz. Performance comparison of the lcg2 and
glite file catalogues. In Nucl. Instrum. Methods Phys. Res., 10th Inter-
national Workshop on Advanced Computing and Analysis Techniques
in Physics Research, pages 48–52, 2006.

[68] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, 1989.

[69] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web
service security: Saml token profile 1.1. http://docs.oasis-
open.org/wss/v1.1/wss-v1.1-spec-pr-SAMLTokenProfile-01.pdf, 2006.

[70] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker.
Web service security: Soap message security 1.1 (ws-security
2004). http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-
SOAPMessageSecurity-01.pdf, 2006.

168

BIBLIOGRAPHY

[71] Syed Naqvi, Philippe Massonet, and Alvaro Arenas. A study of lan-
guages for the specification of grid security policies. Technical Report
TR-0037, Institute on Knowledge and Data Management, CoreGRID
- Network of Excellence, April 2006.

[72] Z. Nemeth and V. Sunderam. Characterizing grids: Attributes, defi-
nitions, and formalisms. Journal of Grid Computing, 1(1):9–23, 2003.

[73] Zsolt Nmeth and Vaidy Sunderam. Virtualization in grids: A seman-
tical approach. In Jos C. Cunha and Omer F. Rana, editors, Grid
Computing: Software Environments and Tools. Springer, 2006.

[74] OASIS. Oasis extensible access control markup language (xacml) tc.
http://www.oasis-open.org/committees/xacml, 2005.

[75] A. Frohner P. Kunszt. glite data management security model disus-
sion, 2005.

[76] S. Parastatidis P. Periorellis. Task based access control for virtual
organizations. In 4th International workshop on scientific engineering
of distributed java applications, pages 38–47, November 2004.

[77] J. Park and R.S. Sandhu. The UCONabc Usage Control Model.
ACM Transactions on Information and System Security, 7(1):128–174,
February 2004.

[78] Donn Parker. Toward a New Framework for Information Security,
chapter 5. Robert Gezelter, 2002.

[79] C. Ponsard, P. Massonet, J. F. Molderez, A. Rifaut, A. van Lam-
sweerde, and Tran Van Hung. Early Verification and Validation of
Mission Critical Systems. Journal of Formal Methods in System De-
sign, 30(3), 2007.

[80] Alexander Pretschner, Manuel Hilty, and David Basin. Distributed
usage control. Communications of the ACM, September 2006.

[81] Alexander Pretschner, Fabio Massacci, and Manuel Hilty. Usage con-
trol in service-oriented architectures. In TrustBus, pages 83–93, 2007.

[82] R. Randall and R. Philpott. Saml attribute sharing pro-
file for x.509 authentication-based systems. www.oasis-
open.org/committees/download.php/18058/, 2006.

[83] M. Richters and M. Gogolla. On Formalizing the UML Object Con-
straint Language OCL. LECTURE NOTES IN COMPUTER SCI-
ENCE, pages 449–464, 1998.

169

BIBLIOGRAPHY

[84] Nick Rozanski and Eóin Woods. Software Systems Architec-
ture: Working With Stakeholders Using Viewpoints and Perspectives.
Addison-Wesley Professional, April 2005.

[85] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas, G. Pavlou,
and A. Lafuente. Using Linear Temporal Model Checking for Goal-
Oriented Policy Refinement Frameworks. In Sixth IEEE International
Workshop on Policies for Distributed Systems and Networks. IEEE,
2005.

[86] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model
for role-based administration of roles. ACM Transactions on Informa-
tion and System Security (TISSEC), 2(1):105–135, 1999.

[87] Ravi S. Sandhu and Jaehong Park. Usage Control: A Vision for Next
Generation Access Control. In MMM-ACNS, pages 17–31, 2003.

[88] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-
Based Access Control Models. COMPUTER, pages 38–47, 1996.

[89] Bruce Schneier. Secrets and Lies : Digital Security in a Networked
World. Wiley, January 2004.

[90] The Globus security team. Gt 4.0 security.
http://www.globus.org/toolkit/docs/4.0/security/, 2005.

[91] J.M. Spivey. The Z notation. Prentice Hall New York, 1989.

[92] F. Stagni, A. Arenas, B. Aziz, and F. Martinelli. On usage control in
data grids. In Proceedings of The 3rd IFIP International Conference
on Trust Management (TM’09). Springer, 2009.

[93] Federico Stagni, Alvaro E. Arenas, and Benjamin Aziz. On usage
control in data grids. Technical Report TR-0154, Institute on Knowl-
edge and Data Management, CoreGRID - Network of Excellence, June
2008.

[94] Linying Su, David W. Chadwick, Andrew Basden, and James A. Cun-
ningham. Automated Decomposition of Access Control Policies. In
Sixth IEEE International Workshop on Policies for Distributed Sys-
tems and Networks, pages 3–13. IEEE Computer Society, 2005.

[95] S. Sufi and B. M. Matthews. The cclrc scientific metadata model: a
metadata model for the exploitation of scientific studies and associated
data. In Knowledge and Data Management in Grids, 2005.

[96] EGEE JRA2 team. Egee global security architecture for web and
legacy services. deliverable EGEE-JRA3-TEC-487004-DJRA3.1-v1-1,
EGEE JRA3, 2004.

170

BIBLIOGRAPHY

[97] W. Trmper. Summary about posix.1e.
http://wt.xpilot.org/publications/posix.1e, 1999.

[98] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson.
Internet x.509 public key infrastructure (pki) proxy certificate profile.
RFC 3820 (Proposed Standard), jun 2004.

[99] A. van Lamsweerde. Requirements Engineering in the Year 00: A
Research Perspective. In International Conference on Software Engi-
neering, pages 5–19, 2000.

[100] Axel van Lamsweerde. Elaborating security requirements by con-
struction of intentional anti-models. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering, pages 148–
157, Washington, DC, USA, 2004. IEEE Computer Society.

[101] Moshe Y. Vardi. Branching vs. linear time: Final showdown. In
Tiziana Margaria and Wang Yi, editors, Proceedings of the 7th In-
ternational Conference On Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2001), volume 2031 of Lecture Notes
in Computer Science, pages 1–22, Genova, Italy, April 2001. Springer.

[102] G. Venekamp. Activity user requirements. deliverable EGEE-JRA3-
TEC-485295-UserReq-v1-0, EGEE JRA3, 2004.

[103] V. Venturi, M. Riedel, A.S. Memon, M.S. Memon, F. Stagni, B. Sch
uller, D. Mallmann, B. Tweddell, A. Gianoli, V. Ciaschini, S. van de
Berghe, D. Snelling, and A. Streit. Using saml-based voms for autho-
rization within web services-based unicore grids. LNCS. in conjunction
with EuroPar 2007, SPRINGER, August 2007.

[104] Valerio Venturi, Federico Stagni, Alberto Gianoli, Andrea Ceccanti,
and Vincenzo Ciaschini. Virtual organization management across mid-
dleware boundaries. In E-SCIENCE ’07: Proceedings of the Third
IEEE International Conference on e-Science and Grid Computing,
pages 545–552, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[105] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamoha-
narao. A Taxonomy of Data Grids for Distributed Data Sharing,
Management, and Processing. ACM Comput. Surv., 38(1):3, 2006.

[106] J. Viega and G. Mcgraw. Building secure software: how to avoid
security problems the right way. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

171

BIBLIOGRAPHY

[107] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross,
B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence. AAA Au-
thorization Framework. RFC 2904 (Informational), August 2000.

[108] P. Walmsley, D. C. Fallside, H. S. Thompson, D. Beech, M. Mal-
oney, N. Mendelsohn, and P. V. Biron A. Malhotra. Xml schema.
http://www.w3.org/TR, 2004.

[109] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Ter-
minology for Policy-Based Management. RFC 3198 (Informational),
November 2001.

[110] Xinwen Zhang, Masayuki Nakae, Michael J. Covington, and Ravi
Sandhu. Toward a usage-based security framework for collaborative
computing systems. ACM Trans. Inf. Syst. Secur., 11(1):1–36, 2008.

[111] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong
Park. Formal Model and Policy Specification of Usage Control. ACM
Transactions on Information and System Security, 8(4):351–387, 2005.

172

List of Figures

2.1 Relationships in a Virtual Organization [104] 15
2.2 Abstraction of a Grid System [4] 16
2.3 Grid layers [38] . 19
2.4 A Grid system taxonomy [105] 20
2.5 Data naming in Grid. 24
2.6 A logical view of a Data Grid 25

3.1 Fundamental Access Control Functions [47] 31
3.2 Access Decision Function [47] 32
3.3 The XACML Data Flow Diagram [74] 33

4.1 The Grid usage control process [37] 37
4.2 Security models for data management (inspired from [34]) . . 41
4.3 OGSA functional components. The credentials are pushed to

the PEP. 43
4.4 OGSA functional components. The credentials are pushed to

the PEP. The CH is not separate from the PEP. 43
4.5 OGSA functional components. The credentials are pushed to

the PEP. 44
4.6 OGSA functional components. The credentials are pushed to

the PEP. The CH is not separate from the PEP. 44

5.1 The UCONabc model components [77] 51
5.2 The UCON actions model [111] 55
5.3 Sequence diagram corresponding to our example UCON policy 58

6.1 Overview of the KAOS models 66

7.1 Framework for combining authorization policy from different
parties. [96] . 74

7.2 The Distributed Usage Control Model 77
7.3 A 2-step D-UCM, where each step enforces a policy pertaing

to the UCONabc model . 78
7.4 The two-steps Grid usage control 80
7.5 Comparison of security models for Data Grids (inspired from

[34]) . 81

8.1 Interactions between a client, a re-engineered VOMS service
and a target system [104] . 85

8.2 Sharing resources using different middlewares [104] 89
8.3 An example for a Grid user and a GD Knowledge Entity . . . 91

9.1 Data-Grid usage control architecture (drawed using the UML
component model) . 97

173

LIST OF FIGURES

9.2 Data-Grid usage control architecture (drawed using the “box
and lines” style . 98

9.3 Pictorial abstract specification of an UCONabc enforcement
mechanism, encoded using the KAOS agent model 101

10.1 Initial goal refinement of an UCON PreA0 core model 113
10.2 Goal model for an UCON PreA0 core model 114
10.3 Excerpt of the operation model for an UCON PreA0 enforce-

ment mechanism . 115
10.4 Initial goal refinement of an UCON PreA1 core model 117
10.5 Goal model for an UCON PreA1 core model 118
10.6 Excerpt of the operation model for an UCON PreA1 enforce-

ment mechanism . 120
10.7 Initial goal refinement of an UCON PreA3 core model 122
10.8 Goal model for an UCON PreA3 core model 123
10.9 Goal refinement of an UCON OnA0 core model 126
10.10Goal refinement of an UCON OnA1 core model 127
10.11Completion goal refinement of an UCON OnA1 core model . 129
10.12Goal refinement of an UCON OnA2 core model 131
10.13Goal refinement of an UCON OnA3 core model 134
10.14Initial goal refinement of an UCON PreB0 core model 136
10.15Goal model for an UCON PreB0 core model 137
10.16Excerpt of the operation model for an UCON PreB0 enforce-

ment mechanism . 138
10.17Initial goal refinement of an UCON PreC0 core model 140
10.18Goal model for an UCON PreC0 core model 141
10.19Excerpt of the operation model for an UCON PreC0 enforce-

ment mechanism . 142
10.20Goal refinement of an UCON OnC0 core model 143
10.21Initial goal refinement for the deny access goal 145
10.22Completion of the goal refinement for the deny access 146
10.23Operation model for an enforcing mechanism to deny an access148
10.24Goal refinement for the revoke access goal 150
10.25Operation model for an enforcing mechanism to revoke an

access . 151

11.1 Status of Grid authentication and authorization before this
thesis . 156

11.2 Status of Grid authentication and authorization after this thesis157
11.3 A semantic-aware UCON PDP 161

174

List of Tables

5.1 The UCONabc core models [77] 51

175

