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Abstract

This paper introduces a formal model, an architecture and a prototype implemen-
tation for usage control on GRID systems.

The usage control model (UCON) is a new access control paradigm proposed by
Park and Sandhu that encompasses and extends several existing models (e.g. MAC,
DAC, Bell-Lapadula, RBAC, etc). Its main novelty is based on continuity of the
access monitoring and mutability of attributes of subjects and objects.

We identified this model as a perfect candidate for managing access/usage control
in GRID systems due to their peculiarities, where continuity of control is a central
issue. Here we adapt the original UCON model to develop a full model for usage
control in GRID systems. We use as policy specification language a process descrip-
tion language and show how this is suitable to model the usage policy models of the
original UCON model. We also describe a possible architecture to implement the
usage control model. Moreover, we describe a prototype implementation for usage
control of GRID computational services, and we show how our language can be used
to define a security policy that regulates the usage of network communications to
protect the local computational service from the applications that are executed on
behalf of remote GRID users.

1 Overview

The GRID is a distributed computing environment where each participant share a set of
his resources with the others [10], [12]. This environment may be based on the concept
of Virtual Organization (VO). A VO is a set of individuals and/or institutions, e.g. com-
panies, universities, research centers, industries and so on, who share their resources. A
GRID user exploits this environment by composing the available GRID resources in the
most proper way to solve its problem. These resources are heterogeneous, and could be
computational, storage, software repositories and so on. The Open Grid Forum commu-
nity [24] developed a standard to share resources on the GRID, the Open Grid Service
Infrastructure (OGSI) [31], that is based on the concept of GRID services.

The Globus Toolkit 4 [9], is the reference implementation of the OGSI standard, and
in this paper we refer to this implementation as GRID environment (although the model

∗This work has been partially supported by the EU project FP6-033817 GRIDTRUST (Trust and Security
for Next Generation Grids).
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developed applies to any possible implementation). However, alternative GRID environ-
ments are available, such as Gridbus [3], Legion [5], WebOS [32], and Unicore [8].

Security is a very important matter in the GRID environment. As a matter of fact,
VO participants belong to distinct administrative domains that adopt different security
mechanisms and apply distinct security policies. Moreover, VO participants are possibly
unknown, new participants can join the VO during the VO life, and no trust relationships
may exist a priori among the VO participants. Another security relevant feature of the
GRID environment is that accesses to GRID services could be long-lived, i.e. they could
last hours or even days. In this case, the access right that has been granted at a given time,
on the basis of a set of conditions, could authorize an access that lasts even when these
conditions do not hold anymore. Hence, the GRID environment features are different
from a common distributed environment, and the GRID security requirements need the
adoption of a complex security and trust model. These requirements are detailed in [11],
[15] and [23], and they include authentication, delegation, authorization, privacy, message
confidentiality and integrity, trust, policy and access control enforcement. In this paper,
we mainly focus on access control and in particular in authorization aspects. As a matter
of fact, the native Globus authorization system is too simple to satisfy the requirements of
this environment. To this aim, some external authorization systems have been integrated
within the Globus toolkit, as described in Section 2.

However, none of these systems check whether the user access right is still valid during
the access to the resources. The lack of the monitoring continuity is a crucial limitation.
Recently, Sandhu and Park in [26], [27] and [34] defined a conceptual model based on this
concept of continuity, called usage control (UCON). The idea is to extend and systematize
previous access control models. The two cornerstones of this approach are the continuity
of usage control and mutability of attributes of subjects and objects that allow a richer
authorization management.

In [2], [21], [17] and [20] we advocated the adoption of UCON in the GRID environ-
ment, and this paper describes a full usage control model and an architecture for GRIDs
based on these ideas. As a matter of fact, the features of the UCON model allow to
deal with sequences of accesses to GRID services and with long-lived accesses, that are
peculiarities of GRID systems.

This paper is organized as follows. Section 2 describes some related works. Section
3 describes the main features of the usage control model. Section 4 describes our policy
language and Section 5 shows how it is possible with the policy constructs to encode the
UCON models. Section 6 describes the architecture to enforce the policies previously
defined, and Section 7 describes an example of application of the UCON approach to the
monitoring of applications executed on GRID computational services on behalf of remote
GRID users. Finally, Section 8 gives some final comments.

2 Related Work

The Globus Security Infrastructure (GSI) assigns a unique GRID identity to each GRID
participant. This identity is represented by a X.509 certificate signed by the VO certifica-
tion authority, that includes the owner identity string, also denoted as distinguished name
(DN), and its public key. This certificate is used by the owner for authentication on other
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GRID services services. Once the authentication is successfully performed, the Globus
standard authorization service, called gridmap, maps the GRID user into a local user with
the proper set of right, by exploiting the information in a configuration file. Each entry
of the gridmap file specifies, for each DN, the local users that has to be exploited to log
the corresponding GRID user. Hence, Globus provides a coarse grained access control on
the resource, because the security policy that is enforced is based only on the privileges
paired with the local account by the operating system of the GRID resource. This implies
that the assignment of an access right to a user is static, because the same user will have
the same access rights at each access (to update the access rights an administrative action
is required). Moreover, once the standard authorization service granted the access right to
a user, no further controls are executed while the access is in progress.

This section describes some attempts to enhance the Globus Security Infrastructure by
integrating advanced authorization systems.

The Community Authorization Service, CAS, has been proposed by the Globus team
in [13] and [25]. CAS is a service that stores a database of VO policies, i.e. policies
that determine the actions each GRID user is allowed to do as VO member. This service
issues to GRID users proxy certificates that embed CAS policy assertions. A GRID user
that wants to access a GRID service requests to the CAS service a proper credential to
access this service. This credential will be presented by the GRID user to the service it
wants to exploit. This approach requires CAS-enabled services, i.e. services that are able
to understand and enforce the policies included in the credentials released by the CAS.
However, these policies are coarse grained, because they only decide which of the local
services can be accessed by the GRID user. Moreover, in this solution a GRID user can
only enjoy trust granted from their membership to a specific CAS, which is independent
from his previous behavior in accessing other GRID sites.

An alternative approach that integrates an existing authorization system in the GRID
environment has been proposed by Keahey and Welch. In [16], they describe some of
the shortcomings of the current Globus authorization system and they state the need for a
more powerful authorization system. In [30], they address this issue by integrating Akenti
within the Globus toolkit. “Akenti is an authorization service (PDP) that uses authenti-
cated X.509 certificates to establish identity and distributed digitally signed authorization
policy certificates to make access decisions about distributed resources” [29]. Each cer-
tificate includes the attributes assigned by the VO to the GRID user. The system finds out
from the resource policy the attributes required to access the resource, and matches them
with the ones owned by the GRID user.

Another solution to adopt an advanced authorization system in the GRID environment
has been presented by Stell, Sinnot and Watt in [28]. They integrate a role based access
control infrastructure, PERMIS, with the Globus toolkit to provide control on user rights.
PERMIS is “a role based access control infrastructure that uses X.509 certificates to store
users’ role. All access control decisions are driven by an authorization policy, which is
itself stored in a X.509 attribute certificate..” [4]. PERMIS supports classical hierarchical
RBAC, in which roles are allocated to users and privileges to roles. Its limit depends on
the weakness of role’s relationships in which senior roles inherit privileges from junior
roles. These relations are not always satisfactory to express complex policies.

Other solutions to provide an authorization system in the GRID environment has been
proposed, such as Virtual Organizion Membership Service (VOMS) [1]. In VOMS a VO
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has a hierarchical structure with groups and subgroups; a user in a VO is characterized
by a set of attribute, 3-tuples of the form group, role, capability. The combined values of
all these 3-tuples form a unique attribute, the Fully Qualified Attribute Name (FQAN). A
user contacts one or more VOMS server in order to obtain the authorization informations
granted by a VO to him. To access a GRID service the user creates a proxy certificate con-
taining the information received from the VOMS Servers. To perform the authorization
process the information is extracted from the user’s proxy and combined with the local
policy.

However, in the previous solutions rights are still static, because they depend on cre-
dentials that can be modified only by administrative actions, and the existence of a right is
evaluated only before granting the access, and no further controls are executed while the
access is in progress.

In [37], the inventors of the UCON model propose its adoption in collaborative com-
puting systems, such as the GRID environment. In their architecture, they propose a
centralized Attribute repository (AR) for attribute management, that works in push mode
(i.e. the attributes value is submitted to the authorization service by the user himself) for
immutable attributes, and in pull mode (i.e. the attributes value are collected by the autho-
rization service just before their use) for mutable attributes. To specify UCON policies,
they use the extensible access control markup language (XACML).

3 Usage Control Model

UCON is a new access control model that addresses the problems of modern distributed
environments. One of the key features of UCON is that the existence of a right for a
subject is not static, but it depends on dynamic factors. This is possible because, while
the standard access control model is based on authorizations only, UCON extends this
model with other two factors that are evaluated to decide whether to grant the requested
right: obligations and conditions. Moreover, this model introduces mutable attributes
paired with subjects and objects and, consequently, introduces the continuity of policy
enforcement. In the following, we recall the UCON core components: subject, objects,
attributes, authorizations, obligations, conditions and rights.

3.1 Subjects and Objects

The subject is the entity that exercises rights, i.e. that executes access operations on
objects. An object, instead, is an entity that is accessed by subjects through access oper-
ations. As an example, a subject could be a user of an operating system, an object could
be a file of this operating system, and the subject could access this file performing a write
or read operation. Both subjects and objects are paired with attributes.

3.2 Attributes

In the UCON model, attributes are paired both with subjects and objects, and define the
subjects and the objects instances. Attributes can be mutable and immutable. Immutable
attributes typically describe features of subjects or objects that are rarely updated, and
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their update requires an administrative action. Mutable attributes, instead, are updated
often, as consequence of the actions performed by the subject on the objects. An impor-
tant attribute of the subject is the identity. Identity is an immutable attribute, because it
does not change as a consequence of the accesses that this subject performs. A mutable
attribute paired with a subject could be the number of accesses to a given resource he
performed. The value of this attribute is obviously affected by the accesses performed by
subject to the resource. Another example of mutable attribute could be the reputation of
the subject. As a matter of fact, also the reputation of a subject could change as a conse-
quence of the accesses performed by the subject to objects. Attributes are also paired with
objects. Examples of immutable attributes of an object depends on the resource itself.
For a computational resource, possible attributes are the identifier of the resource and its
physical features, such as the available memory space, the CPUs speed, the available disk
space, and so on. The attributes of a file, instead, could be the price for reading it, or its
level of security (e.g. normal or critical file).

In the UCON model, mutable attributes can be updated before (preUpdate), during
(onUpdate), or after (postUpdate) that execution of the access action. If the attribute is
updated before the action, the new value could be exploited to evaluate the authorization
predicate and to determine the right to execute this action, while if the attribute is updated
after the execution of the action, the new value will be exploited for the next actions. The
onUpdate of attributes is meaningful only for long-lived actions, when onAuthorizations
or onObligations are adopted. When defining the security policy for a resource, the most
proper attribute updating mode has to be chosen. As an example, if the reading of a file
is with charge, if the application tries to open a file, the security policy could state that
at first, the subject balance attribute is checked, then the action is executed and then the
subject balance attribute is updated (postUpdate).

3.3 Rights

Rights are the privileges that subjects can exercise on objects. Traditional access con-
trol systems view rights as static entities, for instance represented by the access matrix.
Instead, UCON determines the existence of a right dynamically, when the subject try to
access the object. Hence, if the same subject accesses the same object two times, the
UCON model could grant him different access rights. Figure 1 represents rights as the re-
sult of the usage decision process that takes into account all the other UCON components.

3.4 Authorizations

Authorizations are functional predicates that evaluate subjects and objects attributes and
the requested right according to a set of authorization rules, to take the usage decision. The
authorization process exploits both the attributes of the subject and of the object. As an
example, an attribute of file F could be the price to open it, and an attribute of user U could
be the pre-paid credit. In this case, the authorization process checks whether the credit of
U is enough to perform the open action on F. The evaluation of the authorization predicate
can be performed before executing the action (preAuthorization), or while the action is in
progress (onAuthorization). With reference to the previous example, the pre Authorization
is applied to check the credit of the subject before the file opening. OnAuthorization
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Figure 1: UCON components.

can be exploited in case of long-lived actions. As an example, the right to execute the
application could be paired with the onAuthorization predicate that is satisfied only if the
reputation attribute of the subject is above a given threshold. In this case, if during the
execution of the application the value of the reputation attribute goes below the threshold,
the right to continue the execution of the application is revoked to the subject.

3.5 Conditions

Conditions are environmental or system-oriented decision factors, i.e. dynamic factors
that does not depend upon subjects or objects. Conditions are evaluated at runtime, when
the subject attempts to perform the access. The evaluation of a condition can be executed
before (preCondition) or during (onCondition) the action. For instance, if the access to an
object can be executed during the day time only, a preCondition that is satisfied only if the
current time is in-between the 8.00AM and 8.00PM can be defined. OnConditions can be
used in case of long-lived actions. As an example, if the previous access is a long-lived
one, an onCondition that is satisfied only if the current time is in-between the 8.00AM and
8.00PM, could be paired with this access too. In this case, if the access has been started
at 9.00AM and is still active at 8.00PM, the onCondition revokes the access right to the
subject.

3.6 Obligations

Obligations are UCON decision factors that are used to verify whether the subject has
satisfied some mandatory requirements before performing an action (preObligation), or
whether the subject continuously satisfies these requirements while performing the ac-
cess (onObligation). PreObligation can be viewed as a kind of history function to check
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Figure 2: Mutability of attributes and continuity of decision.

whether certain activities have been fulfilled or not before granting a right. As an example,
a policy could require that an user has to register, or to accept a license agreement before
accessing a service. The subject that should satisfy the obligation (obligation subject)
could be distinct from the subject that requested the access.

3.7 Continuous Usage Control

The mutability of subject and object attributes introduces the necessity to execute the
usage decision process continuously in time. This is particularly important in the case of
long-lived accesses, i.e. accesses that lasts hours or even days. As a matter of fact, while
the access is in progress, the conditions and the attribute values that previously granted
the access right to the subject could have been changed in a way such that the access
right does not hold anymore. In this case, the access is revoked. Figure 2 represents the
mutability of attributes and the continuity of access decision.

4 Policy specification

The policy language allows to represent and combine the UCON components described in
the previous section to implement the UCON model. Hence, the security policy describes
the order in which the security-relevant actions can be performed, which authorizations,
conditions and obligations must be satisfied in order to allow a given action, which autho-
rizations, conditions and obligations must hold during the execution of actions, and which
updates must be performed and when.

This section simply describes the components and composition operators of the policy
language, while Section 5 defines the set of actions that can be used in the policy and
shows how this language can be exploited to represent UCON policies.

We decided to adopt an operational policy language (e.g., see [2], [22] and [20]) that
we feel is close to user’s expertise than others more denotational. Since, we deal with
sequence of actions, potentially involving different entities, we decided to use a POlicy
Language based on Process Algebra (POLPA). Other variants are possible and indeed
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concurrency theory present many variants of process description languages. However, for
the purposes of this document, the chosen policy language seems enough expressive to
model the basic features of UCON models as next sections will show.

A policy results from the composition of security-relevant actions, predicates and
variable assignments through some composition operators, as described by the follow-
ing grammar:

P ::= ⊥ ‖ � ‖ α(�x).P ‖ p(�x).P ‖ �x := �e.P ‖ PorP ‖ Pparα1,..,αnP ‖ {P} ‖ Z

where P is a policy, α(�x) is a security-relevant action, p(�x) is a predicate, �x are variables
and Z is a constant process definition Z

.
= P .

The informal semantics is the following:

• ⊥ is the deny-All operator;

• � is the allow-All operator;

• α(�x).P is the sequential operator, and represents the possibility of performing an
action α(�x) and then behave as P ;

• p(�x).P behaves as P in the case the predicate p(�x) is true;

• �x := �e.P assigns to variables �x the values of the expressions �e and then behaves as
P 1;

• P1orP2 is the alternative operator, and represents the non deterministic choice be-
tween P1 and P2;

• P1parα1,...,αnP2 is the synchronous parallel operator. It expresses that both P1 and
P2 policies must be simultaneously satisfied. This is used when the two policies
deal with actions (in α1, . . . , αn);

• {P} is the atomic evaluation, and represents the fact that P is evaluated in an atomic
manner, by allowing at the same time testing and writing of variables. P here is
assumed only to have actions, predicates and assignments;

• Z is the constant process. We assume that there is a specification for the process
Z

.
= P and Z behaves as P .

As usual for (process) description languages, derived operators may be defined.
For instance, P1parP2 is the parallel operator, and represents the interleaved execu-

tion of P1 and P2. It is used when the policies P1 and P2 deal with disjoint actions. The
policy sequence operator P1; P2 may be implemented using the policy languages opera-
tors (and control variables) (e.g., see [14]). It allows to put two process behaviours in
sequence. By using the constant definition, the sequence and the parallel operators, the
iteration and replication operators, i(P) and r(P) resp., can be derived. Informally,
i(P) behaves as the iteration of P zero or more times, while r(P) is the parallel com-
position of the same process an unbounded number of times.

1The assignment command could be also any generic (remote) procedure call in a programming lan-
guage as Java. However for the purposes of this document, the assignment suffices.
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As an example, given that α and β represent actions and p and q are predicates, the
following rule:

p(�x).α(�x).q(�y).β(�y)

describes a behaviour that includes the actions α, whose parameters �x enjoy the condi-
tions represented by the predicate p, followed by the action β, whose parameters �y enjoy
the conditions represented by the predicate q. Hence, this rule defines an ordering among
the actions represented by α and β, because β can be executed only after α. The predicate
p specifies the controls to be performed on the parameters and on the results of α, through
conditions on �x. However, the predicate q could also include conditions on �x to test the
result of α.

Many different execution patterns may be described with this language. For instance,
if we wish that the action δ is performed only after that α, β and γ have been performed
(in any order) we may define the following policy:

(α par β par γ); δ

5 Encoding different UCON models

Here we follow a similar approach of [36] and we consider a set of actions that model the
potential activities involved in the UCON process. Every action refers to an access request
where a subject s that wants to access an object o through an operation that requires the
right r. Here and in the following, we suppose that for each operation a a proper right ra

has been defined, hence we use r to represent both the operation that the subject wants to
perform and the required right. Given that the triple (s, o, r) represents the access request,
we consider the following set of actions:

• tryaccess(s, o, r): performed by subject s when performing a new access request
(s, o, r).

• permitaccess(s, o, r): performed by the system when granting the access request
(s, o, r).

• denyaccess(s, o, r): performed by the system when rejecting the access request
(s, o, r).

• revokeaccess(s, o, r): performed by the system when revoking an ongoing access
(s, o, r).

• endaccess(s, o, r): performed by a subject s when ending an access (s, o, r).

• update(attribute): performed by the system to update a subject or an object at-
tribute.

As previously said, the UCON model could be applied to define a security policy
to regulate the interactions with the local resources of the applications executed by the
computational service on behalf of remote GRID users. In this case, the action:
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tryaccess(app id, socket, accept(sd, addr, addrlen, newsd))

is used to represent the attempt of the application app id to access the socket
resource to execute the operation accept() to wait for an incoming network connection.
An attribute of the application app id is the distinguished name of the GRID user that
submitted it to the computational resource, and this attribute could be used in the decision
process. Instead, the action:

endaccess(app id, socket, accept(sd, addr, addrlen, newsd))

is used to represent that the execution of the access previously described has been
terminated.

We show the flexibility of our framework by encoding different UCON models. As a
matter of fact, UCON is actually a family of models with several parameters. The presence
of Authorizations (A), oBligations (B) and Conditions (C) as well as the mutability of
attributes (immutable (0), preUpdate (1), onUpdate (2), postUpdate (3)) are the factors to
be considered. Our policy language can encode the UCON core models derived from the
combination of these factors, and here we list all 16 basic models.

5.1 PreAuthorization without update (PreA0)

The preAuthorization model without update is shown below, where pA(s, o, r) is the pred-
icate that grants authorization to the subject s to execute the operation r on the object
o. Contrarily to the model in [36], we do not distinguish among different authoriza-
tion/update operations, i.e. pre/post/on since the kind of authorization/update is implicitly
defined by the relative temporal position with respect the other usage control actions in
the policy.

tryaccess(s, o, r).
pA(s, o, r).
permitaccess(s, o, r).
endaccess(s, o, r)

The previous policy says that after the access request has been performed by the sub-
ject (through the action tryaccess(s, o, r)), the authorization predicate pA(s, o, r) must be
satisfied in order that the system issues the permitaccess(s, o, r) action that allows the
execution of the required operation.

5.2 PreAuthorization with preUpdate (PreA1)

The preAuthorization model with preUpdate phase is shown below.

tryaccess(s, o, r).
pA(s, o, r).
update(s, o, r).
permitaccess(s, o, r).
endaccess(s, o, r)
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With respect to the previous example, in this case the update(s, o, r) action is executed
by the system before issuing the permitaccess(s, o, r) action, that allows the execution
of the required operation.

5.3 PreAuthorization with postUpdate (PreA3)

The preAuthorization model with postUpdate phase is shown below.

tryaccess(s, o, r).
pA(s, o, r).
permitaccess(s, o, r).
endaccess(s, o, r).
update(s, o, r)

The difference with the previous example is that, in this case, the update(s, o, r) action
is executed after the endaccess(s, o, r) action, i.e. after that the operation r has been
executed.

5.4 OnAuthorization without update (OnA0)

We show here a policy that specifies the ongoing authorization model without update.
Here the predicate pA denotes the negation of the predicate pA, expressing the authoriza-
tion condition. It basically means that after granting the permission to execute an access,
if the authorization condition does not hold anymore this permission should be revoked
even if the access is still in progress.

tryaccess(s, o, r).
permitaccess(s, o, r).
(endaccess(s, o, r) or (pA(s, o, r).revokeaccess(s, o, r)))

In this case, the system authorizes the access as soon as it receives the request. As a
matter of fact, the permitaccess(s, o, r) action immediately follows the tryaccess(s, o, r)
one. However, while the access is in progress, i.e. before the endaccess(s, o, r) action
has been received by the system, the predicate pA(s, o, r) is repeatedly tested, and if it
is satisfied the revokeaccess(s, o, r) action is executed by the system, i.e. the access is
interrupted before it naturally ends.

5.5 OnAuthorization with preUpdate (OnA1)

The onAuthorization model with preUpdate phase is shown below.

tryaccess(s, o, r).
update(s, o, r).
permitaccess(s, o, r).
(endaccess(s, o, r) or (pA(s, o, r).revokeaccess(s, o, r)))

The main difference with respect to the previous model is that an update is performed
before granting the access.
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5.6 OnAuthorization with onUpdate (OnA2)

The onAuthorization model with onUpdate phase is shown below.

tryaccess(s, o, r).
permitaccess(s, o, r).
update(s, o, r).
(endaccess(s, o, r) or pA(s, o, r).revokeaccess(s, o, r))

In this model, the update is executed after that the access has been premitted, and
before that the access ends, either naturally or because of a revoke action.

5.7 OnAuthorization with postUpdate (OnA3)

The onAuthorization model with postUpdate phase is shown below.

tryaccess(s, o, r).
permitaccess(s, o, r).
(endaccess(s, o, r) or (pA(s, o, r).revokeaccess(s, o, r)));
update(s, o, r)

In this case the update is performed after that the access is terminated, either naturally
or because of a revoke action.

5.8 PreObligations without update (PreB0)

We show here a policy that specifies the PreObligations model without update. Here the
predicate pB expresses obligations which subject has to fulfil before the object usage.

tryaccess(s, o, r).
pB(s, o, r).
permitaccess(s, o, r).
endaccess(s, o, r)

5.9 PreObligations with preUpdate (PreB1)

The PreObligations model with preUpdate phase is shown below.

tryaccess(s, o, r).
pB(s, o, r).
update(s, o, r).
permitaccess(s, o, r).
endaccess(s, o, r)
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5.10 PreObligations with postUpdate (PreB3)

The PreObligations model with postUpdate phase is shown below.

tryaccess(s, o, r).
pB(s, o, r).
permitaccess(s, o, r).
endaccess(s, o, r).
update(s, o, r)

5.11 OnObligations without update (OnB0)

We show here a policy that specifies the ongoing obligations model without update. Here
pB is the obligation to be fulfilled and pB its negation.

tryaccess(s, o, r).
permitaccess(s, o, r).
(endaccess(s, o, r) or (pB(s, o, r).revokeaccess(s, o, r)))

5.12 OnObligations with preUpdate (OnB1)

The OnObligations model with preUpdate phase is shown below.

tryaccess(s, o, r).
update(s, o, r).
permitaccess(s, o, r).
(endaccess(s, o, r) or (pB(s, o, r).revokeaccess(s, o, r)))

5.13 OnObligations with onUpdate (OnB2)

The OnObligations model with onUpdate phase is shown below.

tryaccess(s, o, r).
permitaccess(s, o, r).
update(s, o, r).
(endaccess(s, o, r) or pB(s, o, r).revokeaccess(s, o, r))

5.14 OnObligations with postUpdate (OnB3)

The OnObligations model with postUpdate phase is shown below.

tryaccess(s, o, r).
permitaccess(s, o, r).
(endaccess(s, o, r) or (pB(s, o, r).revokeaccess(s, o, r)));
update(s, o, r)
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5.15 PreConditions without update (PreC0)

We show here a policy that specifies the PreConditions model without update. Here the
predicate pC denotes the system condition which has to be fulfiled.

tryaccess(s, o, r).
pC(s, o, r).
permitaccess(s, o, r).
endaccess(s, o, r)

5.16 OnConditions without update (OnC0)

We show here a policy that specifies the ongoing conditions model without update. Here
the predicate pC denotes the negation of the predicate pC , expressing the system condition.

tryaccess(s, o, r).
permitaccess(s, o, r).
(endaccess(s, o, r) or (pC(s, o, r).revokeaccess(s, o, r)))

6 Architecture

This section describes an architecture for the Usage Control Service, i.e. a system to
evaluate and to enforce the UCON policies in a GRID environment. The main components
of this architecture and their interactions are drawn in Figure 3. The architecture is based
on a Policy Enforcement Point (PEP) and a Policy Decision Point (PDP), such as most of
the common authorization systems.

The PEP should be integrated in the GRID environment middleware, e.g. into the
Globus architecture, and implements the tryaccess(s, o, r) and the endaccess(s, o, r) ac-
tions. To this aim, the PEP should be able to intercept the invocations of security relevant
operations performed by the GRID user, to suspend them before starting and to interrupt
the security relevant operations while in progress. Security relevant operations are the
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ones that define accesses (s, o, r), performed by the GRID user s on the GRID resource o,
to execute the operation r (r represents also the right required to execute the access on o).
Moreover, once an access (s, o, r) has been permitted and is in progress, the PEP should
be able to detect when it terminates to issue the endaccess(s, o, r) action. The specific
components of the Globus architecture where the PEP should be integrated depend on the
resources we want to monitor and on the set of security relevant accesses we are interested
in. For example, Section 7 describes a prototype implementation of this architecture for
monitoring GRID computational services, where the PEP has been integrated within the
application execution environment to monitor the accesses to the local resources (e.g. files
or sockets) performed by the applications executed on behalf of remote GRID users.

The tryaccess(s, o, r) command is transmitted by the PEP to the PDP, that decides
whether the access can be executed or not. The PEP suspends the access (s, o, r) until the
policy evaluation has been executed. The PEP also transmits the endaccess(s, o, r) action
to the PDP, when an access that has been granted is terminated.

The PDP is the component of the architecture that performs the usage decision pro-
cess. The PDP, at first, gets the security policy from a repository, and it builds its internal
data structures for the policy representation. The policy is expressed with the language
previously described, and could be defined by the GRID resource provider, local policy, by
the VO, global policy, or by both. Here we suppose that the PDP reads the policy resulting
from the merging of local and VO policies, i.e. that the merging of the two policies and the
resolution of possible conflicts has been executed in a previous step. After the initializa-
tion step, the PDP waits for a message from the PEP. The PDP is invoked by the PEP every
time that the subject attempts to access a resource. It exploits its internal representation of
the policy to determine whether the access should be allowed or not and, consequently, it
returns permitaccess(s, o, r) or denyaccess(s, o, r) to the PEP, that enforces it. The PDP
is also invoked by the PEP every time that an access that was in progress terminates, with
the endaccess(s, o, r) action. However, the PDP is always active, because if required by
the policy, the PDP continuously evaluates a set of given authorizations, conditions and
obligations while an access is in progress, and it could invoke the PEP to terminate it
through the revokeaccess(s, o, r) action. Hence, the revokeaccess(s, o, r) action can be
sent by the PDP to the PEP before that the PEP sends the endaccess(s, o, r) action to the
PDP. This is a main novelty of the UCON model with respect to prior access control work,
where the PDP is usually only passive. To enforce the revokeaccess(s, o, r) action, the
PEP should be able to interrupt an access that is in progress.

The other components of the architecture are the managers for attributes, conditions
and obligations. The Condition Manager is invoked by the PDP every time that the se-
curity policy, to allow the current action, requires the evaluation of a condition. The
Condition Manager interacts with the underlying system to get the required environmen-
tal information. For example, the Condition Manager could retrieve the current time, the
current workload of the system, the current amount of free memory, and so on. The At-
tribute Manager, instead, is in charge of retrieving the value of attributes. Hence, when the
PDP needs the value of an attribute to evaluate an authorization predicate, it invokes the
Attribute Manager. The PDP also invokes the Attribute Manager to update the value of an
attribute. Due to the distributed nature of the GRID environment, the Attribute Manager
could be a very complex component of the architecture. The Obligation Manager moni-
tors the execution of obligations. If the obligation is controllable, the Obligation Manager
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can ask the subject to perform it. Instead, if the obligation is observable only, the Obli-
gation Manager simply tests it. The Obligation Manager returns true to the PDP if the
obligation is satisfied, or false otherwise. As an example, an obligation could state that
an email of agreement is sent to the obligation subject that must accept the agreement by
replying to this mail. In this case, the Obligation Manager sends the email of agreement
and waits for the reply before returning true to the PDP.

From the functional point of view, the execution flow of the UCON service when an
access to a resource is attempted is the following. As soon as a GRID user performs
an operation r that attempts to access a resource o that is monitored by the PEP, the PEP
suspends the access and issues the tryaccess(s, o, r) action to the PDP. The PDP examines
the security policy to determine which authorizations, conditions and obligations have to
be evaluated to decide whether to allow the current access. To this aim, the PDP retrieves
the subject and object attributes required for the usage decision process from the Attribute
Manager. These attributes are exploited to evaluate the authorization predicates. If the
policy includes the evaluation of some condition predicates, the PDP retrieve the value of
the required environmental variables from the Condition Manager. If the policy requires
the evaluation of an obligation predicate, the PDP asks the Obligation Manager to evaluate
it.

If all the decision factors are satisfied, the usage decision process grants the right r
to the user. The preUpdates of the attributes are executed by the Attribute Manager that
is invoked by the PDP. Then, the PDP returns the permitaccess(s, o, r) command to the
PEP that, in turn, resumes the execution of the access (s, o, r) it suspended before.

Now the access is in progress and we have two possible behaviours. The first pos-
sibility is that the access operation r is entirely executed and it finishes normally. In
this case, the PEP intercepts the end access event and it forwards it to the PDP through
the endaccess(s, o, r) action. The PDP performs the postUpdates of the attributes through
the Attribute Manager. In the GRID environment, where the attributes may be represented
through credentials issued by many authorities, the update procedure could be very com-
plex (see for instance some discussions in [35]).

The other possibility is that the policy includes an ongoing predicate for the access that
now is in progress. Let us suppose that the policy includes an onAuthorization predicate.
In this case, the value of the attributes that are evaluated in the authorization predicate
are repeatedly collected from the Attribute Manager and if these values change when the
access is in progress, i.e. before the endaccess(s, o, r) is received from the PEP, and the
new result of the usage decision process does not allow the access anymore, then the PDP
issues a revokeaccess(s, o, r) command to the PEP. The PEP, in turn, interrupts the access
(s, o, r) to the resource. This could require that the GRID services have been modified
to provide a proper interface to accept the interruption command from the PEP and to
implement the service interruption.

7 A prototype for GRID Computational Services

This section describes the prototype of UCON service we developed to protect GRID
computational services. As a matter of fact, the sharing of computational services on
the GRID implies that GRID service providers execute unknown applications on their
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Figure 4: Integration of the Usage Control Service in the Globus computational service
architecture

computational resources on behalf of potentially unknown GRID users. In particular,
we focused on GRID computational services that execute Java applications, because the
portability of Java code addresses the problem due to the heterogeneous computational
resources that are shared on the GRID.

The UCON service prototype monitors the accesses to local resource performed by
applications executed on behalf of remote GRID users. Hence, the accesses (s, o, r) to
be monitored are the ones performed by the Java applications that have been submitted
on the computational service. In particular, the subject s of the access is the GRID user
that submitted the application. The identity of this GRID user, i.e. the DN of his GRID
identity certificate, is an attribute of the subject, and it could be required by the usage
decision process. The objects o of the accesses are the local system resources that we want
to protect from the application, e.g. files or sockets. The accesses that can be performed
on these objects are represented by the operating system call that involves these resources.
For example, if the object is a file, the open, read, write and close system calls are accesses
that should be monitored.

The architecture of the prototype is shown in Figure 4. Since we want to monitor
the applications executed on GRID computational services, the PEP should be embedded
in the GRID node execution environment in a way such that it is able to intercept the
system calls that are invoked by the applications. Since the execution of Java application
is completely mediated by the Java Virtual Machine (JVM), in our prototype the PEP was
embedded in the JVM itself. In particular, the PEP was embedded in the code of the
methods of Java core classes that access the resources to be monitored. Moreover, the
Globus Resource Allocation and Management service (GRAM), that is the component
that implements the computational service in Globus, has been modified to invoke the
version of the JVM that includes the PEP.
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The Condition Manager collects the values of some environmental variables that de-
scribe the GRID node current status. For each distinct environmental factor, a specific
interaction between the Condition Manager and the underlying system has been imple-
mented. The Attribute Manager is in charge of retrieving and updating the value of
attributes. In our prototype, we adopted the Role-based Trust Management Language
(RTML, [18, 33]) to manage trust and reputation attributes. In particular, we exploited
the framework for the management of trust and reputation in distributed environment we
defined and implemented in [6]. However, the architecture is parametric, and the Attribute
Manager can be replaced or extended with other systems.

Table 1 shows an example of policy that regulates the usage of server sockets in GRID
computational services. The first four lines of the policy concern the execution of a
socket system call, to create a new communication socket. tryaccess(app id, socket,
socket(x1, x2, x3, sd)) is the action that the PEP sends to the PDP when a socket system
call has been invoked by the application, where app id is the identifier of the application,
socket is the object that is accessed, and socket(x1, x2, x3, sd) represents the socket
system call with its parameters and result. The predicates in the second line represent a
preAuthorization, because they are evaluated before granting the right to create the socket,
i.e. before the permitaccess(app id, socket, socket(x1, x2, x3, sd)) action. These pred-
icates involve the parameters of the socket system call (represented by x1, x2, x3) and
specify that only TCP sockets can be opened. Hence, if these predicates are satisfied, the
policy states that the permitaccess(app id, socket, socket(x1, x2, x3, sd)) action is sent
by the PDP (line 3), and the PEP, that receives it, resumes the socket system call that
was suspended. Instead, if the predicates are not satisfied, the permitaccess(app id, socket,
socket(x1, x2, x3, sd)) action is not executed. If no other rules in the policy allows the cur-
rent access, the PDP sends the denyaccess(app id, socket, socket(x1, x2, x3, sd)) action
to the PEP, that does not resume the suspended access and interrupts the execution of the
application. However, the PEP could also be configured to return an error (i.e. a Java
exception) to the application that requested the access. The forth line of the policy con-
cerns the endaccess() action, that is issued by the PEP when the socket system call
terminates.

The ninth line concerns the execution of an accept system call, that is issued by
the Java application to open a server sockets and that waits for an incoming connec-
tion. Line 10 specifies preAuthorization predicates, that check that the socket descrip-
tor sd is the one that has been returned by the previous socket system call, and that
the reputation of the GRID user that submitted the application is equal or greater than
a given threshold T. The reputation of a GRID user is represented with an attribute,
and is managed by the Attribute Manager. Hence, to evaluate the authorization predi-
cate, the PDP invokes the Attribute Manager to get the current value of the reputation
attribute of the GRID user. This check is executed before permitting the execution of
the system call, i.e. before the permitaccess(app id, socket, accept(x9, x10, x11, x12))
action in line 11. The accept system call ends when a remote client requests a con-
nection with the local socket. Since we cannot predict when a remote host will connect
with the local socket, we consider this system call a long-lived action. Hence, the pol-
icy includes an onAuthorization predicate paired with this system call (line 12). This
predicate is evaluated during the execution of the accept system call, and the execu-
tion is interrupted by the PDP if the value of the reputation attribute of the subject is
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tryaccess(app id, socket, socket(x1,x2,x3,sd)). line 1
[(x1 = AF INET),(x2 = STREAM), (x3 = TCP)]. line 2
permitaccess(app id, socket, socket(x1,x2,x3,sd)). line 3
endaccess(app id, socket, socket(x1,x2,x3,sd)). line 4
tryaccess(app id, socket, listen(x5, x6, x7, x8)). line 5
[(x5 = sd)]. line 6
permitaccess(app id, socket, listen(x5, x6, x7, x8)). line 7
endaccess(app id, socket, listen(x5, x6, x7, x8)). line 8
tryaccess(app id, socket, accept(x9, x10, x11, x12)). line 9
[(x9 = sd), (app id.reputation ≥ T)]. line 10
permitaccess(app id, socket, accept(x9, x10, x11, x12)). line 11
( ([(app id.reputation < T)]. line 12

revokeaccess(app id, socket, accept(x9, x10, x11, x12)) ) line 13
or line 14

endaccess(app id, socket, accept(x9, x10, x11, x12)) line 15
); line 16
i( line 17

(tryaccess(app id, socket, send(x13, x14, x15, x16, x17)). line 18
[(x13 = sd), (app id.reputation = 10)]. line 19
permitaccess(app id, socket, send(x13, x14, x15, x16, x17)). line 20
endaccess(app id, socket, send(x13, x14, x15, x16, x17)) ) line 21

or line 22
(tryaccess(app id, socket, recv(x18, x19, x20, x21, x22)). line 23
[(x18 = sd)]. line 24
permitaccess(app id, socket, recv(x18, x19, x20, x21, x22)). line 25
endaccess(app id, socket, recv(x18, x19, x20, x21, x22)) ) line 26

); line 27
tryaccess(app id, socket, close(x23,x24)). line 28
[(x23 = sd)]. line 29
permitaccess(app id, socket, close(x23,x24)). line 30
endaccess(app id, socket, close(x23,x24)) line 31

Table 1: Example of security policy for computational services.

lower than T. The PDP interrupts the execution of the accept system call by sending
a revokeaccess(app id, socket, accept(x9, x10, x11, x12)) to the PEP (line 13). The con-
trol on the reputation of a GRID user is continuous because the reputation is a mutable
attribute, and it could be updated as a consequence of the accesses to GRID resources
performed by the subject. Hence, the value of the reputation could change during the
execution of the accept system call. From the theoretical point of view, the predicate
should be evaluated continuously, but in the actual PDP implementation the predicate is
evaluated iteratively every x seconds, where x is a PDP configuration parameter.
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tryaccess(app id, file, open(x1,x2,x3,fd)).
[(x1=S),(x2=READ),(app id.reputation ≥ T)].
permitaccess(app id, file,open(x1,x2,x3,fd).
endaccess(app id, file,open(x1,x2,x3,fd).
i(

tryaccess(app id, file, read(x5,x6,x7,x8)).
[eq(x5, fd)].
permitaccess(app id, file, read(x5,x6,x7,x8)).
endaccess(app id, file, read(x5,x6,x7,x8))

);
tryaccess(app id, file,close(x9,x10)).
[eq(x9, fd)].
permitaccess(app id, file,close(x9,x10)).
endaccess(app id, file,close(x9,x10))

Table 2: Security policy used for performance evaluation
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Figure 5: Experimental results

The rest of the policy allows the application to send and receive data on the previously
created socket and, finally, to close it.

7.1 Performance Evaluation

The UCON service introduces an overhead in the performances of the GRID computa-
tional service, that is due to the decisional process performed to allow each security rele-
vant operation. In this section we evaluate this overhead by performing some experiments
to measure the execution time of a test application with and without the UCON service.
The application that is executed by the computational service is a very simple one, that
opens a file, writes a set of data, and closes the file, The UCON policy that is enforced
is shown in Table 2. This policy, when the user attempts to open a file, checks whether
this file belongs to a given set S, and evaluates the user reputation, that should be not less
than a given threshould T. Figure 5 reports the execution time for files of 1 Kbyte and 100
Kbytes.

The overhead in the first experiment is about 13% of the computational time. About
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2% is due to the evaluation of the user reputation attribute, that is done one time only,
i.e. when the user opens the file, and that is implemented through a RTML credential
evaluation. In the second experiment, the overall overhead is 11% of the total execution
time, and in this case, the impact of the evaluation of the user reputation attribute is
negligible.

However, the overhead that is introduced by the usage control monitoring depends on
several factors. One factor is the complexity of the security policy, because simpler secu-
rity policies take less time to be evaluated. Another factor that impacts on the overhead
is the application itself. As matter of fact, if the application is computational-intensive,
i.e. it executes mainly computation and performs a few security relevant operations, the
monitoring overhead refers to large computation times, and it is typically negligible. Oth-
erwise, if the application mainly performs security relevant operations, the overhead for
monitoring them heavily impacts on the final execution time. Hence, the application we
used for our tests is the worst case, because this application does not perform any com-
putation and each action it performs is monitored by our framework and, consequently,
introduces overhead.

8 Conclusion

This paper introduced a formal model and a general architecture to adopt the usage control
model (UCON) on GRID systems. As a matter of fact, the new features introduced by the
UCON model, decision continuity and attribute mutability, can be successfully exploited
in the GRID environment, where accesses could last hours or even days. This result is
part of our ongoing effort for enhancing GRID security developed in a series of works
(e.g. see [2], [21], [17] and [20]). The framework we proposed is very generic, although
the prototype implementation we presented has been developed to protect computational
services running under the Globus toolkit. The experiments done with the prototype have
shown that the overhead introduced by monitoring the application executed by a GRID
computational resource using our framework is acceptable. Recently, the adoption of the
UCON model for enhancing the security of the GRID environment has been also proposed
by the inventors of the model [37].
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