8,050 research outputs found

    Implementing 5D BIM on construction projects: Contractor perspectives from the UK construction sector

    Get PDF
    This is an accepted manuscript of an article published by Emerald in Journal of Engineering, Design and Technology on 09/05/2020: https://doi.org/10.1108/JEDT-01-2020-0007 The accepted version of the publication may differ from the final published version.Purpose The purpose of this paper is to report on primary research findings that sought to investigate and analyse salient issues on the implementation of 5D building information modelling (BIM) from the UK contractors’ perspective. Previous research and efforts have predominantly focussed on the use of technologies for cost estimation and quantity takeoff within a more traditional-led procurement, with a paucity of research focussing on how 5D BIM could facilitate costing within contractor-led procurement. This study fills this current knowledge gap and enhances the understanding of the specific costing challenges faced by contractors in contractor-led projects, leading to the development of 5D framework for use in future projects. Design/methodology/approach To develop a fully detailed understanding of the challenges and issues being faced in this regard, a phenomenological, qualitative-based study was undertaken through interviews involving 21 participants from UK-wide construction organisations. A thematic data analytical process was applied to the data to derive key issues, and this was then used to inform the development of a 5D-BIM costing framework. Findings Multi-disciplinary findings reveal a range of issues faced by contractors when implementing 5D BIM. These exist at strategic, operational and technological levels which require addressing successful implementation of 5D BIM on contractor-led projects adhering to Level 2 BIM standards. These findings cut across the range of stakeholders on contractor-led projects. Ultimately, the findings suggest strong commitment and leadership from organisational management are required to facilitate cost savings and generate accurate cost information. Practical implications This study highlights key issues for any party seeking to effectively deploy 5D BIM on a contractor-led construction project. A considerable cultural shift towards automating and digitising cost functions virtually, stronger collaborative working relationship relative to costing in design development, construction practice, maintenance and operation is required. Originality/value By analysing findings from primary research data, the work concludes with the development of a 5D BIM costing framework to support contractor-led projects which can be implemented to ensure that 5D BIM is successfully implemented

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Quality management approach of product data models for shipbuilding

    Get PDF
    A quality management approach to manage the quality of ship product model data is discussed. It aims to improve and to automate product data model control to make the design and production processes more reliable. This approach is supporting an efficient correction of decient structural designs under visual guidance towards the identied problems. Two international standards ISO STEP-59 and ISO/PAS 26183:2006 are utilized in this thesis

    Ontology-Driven Semantic Annotations for Multiple Engineering Viewpoints in Computer Aided Design

    Get PDF
    Engineering design involves a series of activities to handle data, including capturing and storing data, retrieval and manipulation of data. This also applies throughout the entire product lifecycle (PLC). Unfortunately, a closed loop of knowledge and information management system has not been implemented for the PLC. As part of product lifecycle management (PLM) approaches, computer-aided design (CAD) systems are extensively used from embodiment and detail design stages in mechanical engineering. However, current CAD systems lack the ability to handle semantically-rich information, thus to represent, manage and use knowledge among multidisciplinary engineers, and to integrate various tools/services with distributed data and knowledge. To address these challenges, a general-purpose semantic annotation approach based on CAD systems in the mechanical engineering domain is proposed, which contributes to knowledge management and reuse, data interoperability and tool integration. In present-day PLM systems, annotation approaches are currently embedded in software applications and use diverse data and anchor representations, making them static, inflexible and difficult to incorporate with external systems. This research will argue that it is possible to take a generalised approach to annotation with formal annotation content structures and anchoring mechanisms described using general-purpose ontologies. In this way viewpoint-oriented annotation may readily be captured, represented and incorporated into PLM systems together with existing annotations in a common framework, and the knowledge collected or generated from multiple engineering viewpoints may be reasoned with to derive additional knowledge to enable downstream processes. Therefore, knowledge can be propagated and evolved through the PLC. Within this framework, a knowledge modelling methodology has also been proposed for developing knowledge models in various situations. In addition, a prototype system has been designed and developed in order to evaluate the core contributions of this proposed concept. According to an evaluation plan, cost estimation and finite element analysis as case studies have been used to validate the usefulness, feasibility and generality of the proposed framework. Discussion has been carried out based on this evaluation. As a conclusion, the presented research work has met the original aim and objectives, and can be improved further. At the end, some research directions have been suggested.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program

    Get PDF
    Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    CAD/CAM integration based on machining features for prismatic parts

    Get PDF
    The development of CAD and CAM technology has significantly increased efficiency in each individual area. The independent development, however, greatly restrained the improvement of overall efficiency from design to manufacturing. The simple integration between CAD and CAM systems has been achieved. Current integrated CAD/CAM systems can share the same geometry model of a product in a neutral or proprietary format. However, the process plan information of the product from CAPP systems cannot serve as a starting point for CAM systems to generate tool paths and NC programs. The user still needs to manually create the machining operations and define geometry, cutting tool, and various parameters for each operation. Features play an important role in the recent research on CAD/CAM integration. This thesis investigated the integration of CAD/CAM systems based on machining features. The focus of the research is to connect CAPP systems and CAM systems by machining features, to reduce the unnecessary user interface and to automate the process of tool path preparation. Machining features are utilized to define machining geometries and eliminate the necessity of user interventions in UG. A prototype is developed to demonstrate the CAD/CAM integration based on machining features for prismatic parts. The prototype integration layer is implemented in conjunction with an existing CAPP system, FBMach, and a commercial CAD/CAM system, Unigraphics. Not only geometry information of the product but also the process plan information and machining feature information are directly available to the CAM system and tool paths can be automatically generated from solid models and process plans

    Institute for Computational Mechanics in Propulsion (ICOMP) fourth annual review, 1989

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated jointly by Case Western Reserve University and the NASA Lewis Research Center. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1989 are described

    A survey on 3D CAD model quality assurance and testing

    Get PDF
    [EN] A new taxonomy of issues related to CAD model quality is presented, which distinguishes between explicit and procedural models. For each type of model, morphologic, syntactic, and semantic errors are characterized. The taxonomy was validated successfully when used to classify quality testing tools, which are aimed at detecting and repairing data errors that may affect the simplification, interoperability, and reusability of CAD models. The study shows that low semantic level errors that hamper simplification are reasonably covered in explicit representations, although many CAD quality testers are still unaffordable for Small and Medium Enterprises, both in terms of cost and training time. Interoperability has been reasonably solved by standards like STEP AP 203 and AP214, but model reusability is not feasible in explicit representations. Procedural representations are promising, as interactive modeling editors automatically prevent most morphologic errors derived from unsuitable modeling strategies. Interoperability problems between procedural representations are expected to decrease dramatically with STEP AP242. Higher semantic aspects of quality such as assurance of design intent, however, are hardly supported by current CAD quality testers. (C) 2016 Elsevier Ltd. All rights reserved.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).GonzĂĄlez-Lluch, C.; Company, P.; Contero, M.; Camba, J.; Plumed, R. (2017). A survey on 3D CAD model quality assurance and testing. Computer-Aided Design. 83:64-79. https://doi.org/10.1016/j.cad.2016.10.003S64798
    • …
    corecore