
NASA Conference Publication 301 3

Fourth Conference on
Artificial Intelligence for

Space Applications

Compiled by
S . L. O’Dell
J. S. Denton

and M. Vereen
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

Proceedings of a conference sponsored by
the University of Alabama in Huntsville and

the National Aeronautics and Space Administration
and held in Huntsville, Alabama

November 15 and 16, 1988

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1988

https://ntrs.nasa.gov/search.jsp?R=19890006178 2020-03-20T05:00:38+00:00Z

Foreword

During the past four years, interest in the use of Artificial Intelligence technology to support
America's exploration of space has continued to grow. Much of this increased interest can be
attributed to the successful development of prototype knowledge-based systems built by the
National Aeronautics and Space Administration (NASA), NASA contractors, and other
members of the aerospace community. Not only do these prototype systems demonstrate the
feasibility of applying AI technology to the solution of specific problems but also they serve to
expose technical decision makers to the potential of this technology in other contexts. This
effect is noted in the final report of the Space Station Advanced Automation Study, a study
which was conducted by a small group of the country's most experienced practitioners of
knowledge-based systems and which was conducted for the Space Station Level I Strategic
Plans and Programs Division, Office of Space Station, NASA Headquarters. Indeed, this
"blue ribbon" group, formed to analyze the current and future potential of knowledge-based
systems on Space Station, found the climate for the acceptance of this technology to be "very
good" and the attitude of future Space Station crew members towards these systems to be
"overwhelmingly positive. "

NASA's Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville
(UAH) are sponsoring the Fourth Conference on Artificial Intelligence for Space Applications,
AISA'88, to promote discussion of the possibilities created by this work. Additionally, the
sponsors seek to provide an opportunity for those who apply artificial intelligence methods to
space related problems to identify common goals, to compare the effectiveness of the various
approaches being employed, and to discuss issues of general interest. Towards these ends, the
technical/program committee chose sixty papers to be presented in the eighteen technical
sessions of the conference. These eighteen sessions cover a broad range of topics in the
knowledge-based systems area and also consider hardware issues, robotics applications, and
vision concerns to name a few other topics.

The Proceedings of the Fourth Conference on Artijicial Intelligence for Space Applications
contain the papers (or abstracts of papers) presented at AISA'88. The sponsors hope that these
proceedings will be useful as a reference to various AI activities in progress and will contribute
to the literature of applications of Artificial Intelligence.

Judith S. Denton

PRM=BDINO PAGE BLAIVR NOT FILMED

iii

Fourth Conference on
Artificial Intelligence for Space Applications

Huntsville, Alabama
1988 November 15-16

Conference Director
Judith Denton, NASA/MSFC

Technical/Program Go-Chairpersons
Michael Freeman, NASA/MSFC James Johannes , UAH

Technical Committee
Rowland Burns, NASA/MSFC Caroline Wang, NASA/MSFC
Elaine Hinman, NASA/MSFC Greg Franks, NASA/MSFC
Bill Selig, NASA/MSFC Bryan Walls, NASA/MSFC
Dan Hays, UAH Bernard Schroer, UAH

Pat Ryan, UAH

Coordinators

AI Working Group
Mary Vereen, NASA/MSFC

Brochures and Programs
Diane Vaughan, NASA/MSFC

Logistics NASA/HSFC Attendance
James Parker, NASA/MSFC David Allen, NASA/MSFC

NASA Participation Professional Exhibits
Thomas Dollman, NASA/MSFC Michael Whitley, NASA/MSFC

Proceedings Publicity
Stephen O'Dell, NASA/MSFC Frank Vinz, NASA/MSFC

Tu torial s Vendors
Gerry Higgins, NASA/MSFC Gary Workman, UAH

Arrangements
Karen Mack, UAH Kathy Landman, UAH

Advisor
Gabriel Wallace, NASA/MSFC

V PRECEDING PAGE BLANK N W FILMEB

TABLE OF CONTENTS

REAL TIME

Considerations in Development of Expert Systems for Real-Time Space
Applications [ABSTRACT]

S. Murugesan .. 1

Real-Time Control for Manufacturing Space Shuttle Main Engines: Work in
Progress

Corinne C. Ruokangus . 5

Solutions to Time Variant Problems of Real-Time Expert Systems
Show-Way Yeh, Chuan-lin Wu, and Chaw-Kwei Hung 19

DESIGN KNOWLEDGE CAPTURE

Functional Reasoning in Diagnostic Problem Solving
Jon Sticklen, W. E. Bond, and D. C. St. Clair 29

The Elements of Design Knowledge Capture
Michael S. Freeman . 39

KAM: A Tool to Simplify the Knowledge Acquisition Process
Gary A. Gettig . 47

MANAGEMENT

Design of an Expert System for Estimating the Cost of New Knowledge in
High-Energy Astrophysics [ABSTRACT]

Edward L. Bosworth, Jr., and A. J. Fennelly 57

Issues in Management of Artificial Intelligence Based Projects
P. A. Kiss and Michael S. Freeman 59

Development of an Expert Planning System for OSSA [ABSTRACT]
B. Groundwater, M. F. Lembeck, and L. Sarsfield 67

ROBOTICS

Planning Actions in Robot Automated Operations
A. Das .. 69

Integration of Task Level Planning and Diagnosis for an Intelligent Robot
Arthur Gerstenfeld . 7 5

A Graphical, Rule Based Robotic Interface System
James W. McKee and John Wolfsberger 85

KNOWLEDGE REPRESENTATION

PDA: A Coupling of Knowledge and Memory for Case-Based Reasoning [ABSTRACT]
S. Bharwani, J. Walls, and E. Blevins 93

Approximate Spatial Reasoning [ABSTRACT]
Soumitra Dutta .. 95

Representation and Matching of Knowledge to Design Digital Systems
J. U. Jones and S. G. Shiva ... 97

FAULT DIAGNOSTICS I

Vulnerability-Attention Analysis for Space-Related Activities
Dan Hays, Sung Yong Lee, and John Wolfsberger 107

Graph-Based Real-Time Fault Diagnostics
S. Padalkar, G. Karsai, and J. Sztipanovits 115

Automatic Detection of Electric Power Troubles (ADEPT)
Caroline Wang, Hugh Zeanah, Audie Anderson, Clint Patrick, Mike Brady,
and Donnie Ford ... 125

AUTOMATIC PROGRAMMING

An Overview of Very High Level Software Design Methods
Maryam Asdjodi and James W. Hooper 131

Artificial Intelligence Approaches to Software Engineering
James D. Johannes and James R. MacDonald 141

Automatic Programming for Critical Application [ABSTRACT]
Raj L. Loganantharaj .. 151

Using Automatic Programming for Simulating Reliability Network Models
Fan T. Tseng, Bernard J. Schroer, S. X. Zhang,
and John W. Wolfsberger ... 153

KNOWLEDGE BASE / DATA BASE

Object Oriented Studies into Artificial Space Debris
J. M. Adamson and G. Marshall ... 163

Extending the Data Dictionary for Data/Knowledge Management
Cecile L. Hydrick and Sara J. Graves 173

Case-Based Reasoning: The Marriage of Knowledge Base and Data Base
Kirt Pulaski and Cyprian Casadaban 183

Expert System Validation in Prolog [ABSTRACT]
Todd Stock, Rolf Stachowitz, Chin-Liang Chang, and Jacqueline Combs . . . 191

viii

SCHEDULING

Expert System for On-Board Satellite Scheduling and Control
John M. Barry and Charisse Sary 193

Dypas: A Dynamic Payload Scheduler for Shuttle Missions [ABSTRACT]
Stephen Davis ... 205

A Knowledge-Based Decision Support System f o r Payload Scheduling
Rajesh Tyagi and Fan T. Tseng ... 207

A CLIPS Prototype for Autonomous Power System Control
James M. Vezina and Leon Sterling 211

VISION

A Hardware Implementation of a Relaxation Algorithm to Segment Images
Antonio G. Loda’ and Heggere S. Ranganath 221

Using AGNESS (A Generalized Network-based Expert System Shell) for Matching
Images [ABSTRACT]

Ting-Chuen Pong, Chung-Mong Lee, and James Slagle 231

Automatic Inspection of Analog and Digital Meters in a Robot Vision System
Mohan M. Trivedi, Suresh Marapane, and Chu Xin Chen 233

DESIGN KNOWLEDGE CAPTURE I1

Knowledge-Based Approach to System Integration [ABSTRACT]
W. Blokland, C. Krishnamurthy, C. Biegl, and J. Sztipanovits 243

Successful Expert Systems for Space Shuttle Payload Integration
Keith Morris .. 245

Automated Knowledge Base Development from CAD/CAE Databases
R. Glenn Wright and Mary Blanchard 253

LEARNING

Dynamic Reasoning in a Knowledge-Based System
Anand S. Rao and Norman Y. Foo .. 261

Strategies for Adding Adaptive Learning Mechanisms to Rule-Based Diagnostic
Expert Systems

D. C. St. Clair, C. L. Sabharwal, W. E. Bond, and Keith Hacke 271
An Architecture for an Autonomous Learning Robot

Brian Tillotson ... 281

ix

ROBOTICS DESIGN USING SIMULATION

Toward a Computational Theory for Motion Understanding:
Animators Model

The Expert

Ahmed S . Mohamed and William W. Armstrong 289

Graphic Simulation Test Bed for Robotics Applications in a Workstation
Environment

J. Springfield, A. Mutammara, G. Karsai, G. E. Cook, J. Sztipanovits,
and K. Fernandez . 303

Design of a Simulation Environment for Laboratory Management by Robot
Organ i za ti ons

Bernard P. Zeigler, Francois E. Cellier, and Jerzy W. Rozenblit 313

EXPLANATION SYSTEMS

Explanation Production by Expert Planners
Susan Bridges and James D. Johannes 323

Knowledge Representation Issues for Explaining Plans
Mary Ellen Prince and James D. Johannes 331

Simple Explanations and Reasoning: From Philosophy of Science to Expert
Systems

Daniel Rochowiak .. 341

TELEMETRY MONITORING

Controlling Basins of Attraction in a Neural Network-Based Telemetry
Monitor

Benjamin Bell and James L. Eilbert 349

An Expert System for Satellite and Instrument Data Anomaly and Fault
I sol a ti on

Carl Busse .. 356

A Multiprocessing Architecture for Real-Time Monitoring [ABSTRACT]
James L. Schmidt, Simon M. Kao, Jackson Y. Read, Scott M. Weitzenkamp
and Thomas J. Laffey .. 369

FUTURE SPACE APPLICATIONS

PI-in-a-Box: Intelligent Onboard Assistant for Spaceborne Experiments in
Vestibular Physiology

Silvano Colombano, Laurence Young, Nancy Wogrin, and Don Rosenthal 371

Artificial Intelligence Applications in Space and SDI - A Survey
Harvey E. Fiala . 381

X

Concepts for Autonomous Flight Control for a Balloon on Mars
Thomas F. Heinsheimer, Robyn C. Friend, and Neil G. Siege1 3 9 1

A Very Large Area Network (VLAN) Knowledge-Base Applied to Space
Communication Problems

Carol S. Zander . 401

Ada in AI or AI in Ada? On Developing a Rationale for Integration
Philippe E. Collard and Andre Goforth 411

PLANNING

Automated Scheduling and Planning (ASAP) in Future Ground Control Systems
Sam Matlin .. 421

A Dynamic Case-Based Planning System for Space Station Application
F. Oppacher and D. Deugo . 431

Towards a Knowledge-Based System to Assist the Brazilian Data-Collecting
System Operation

V. Rodrigues, P. 0. Simoni, P. P. B. Oliveira, C. A . Oliveira,
and C. A . M. Nogueira .. 441

FAULT DIAGNOSTICS I1

Use of an Expert System Data Analysis Manager for Space Shuttle Main Engine
Test Evaluation

Ken Abernethy . 451

Spacecraft Environmental Anomalies Expert System
H. C. Koons and D. J. Gorney .. 457

Using Hypermedia to Develop an Intelligent Tutorial/Diagnostic System for
the Space Shuttle Main Engine Controller Lab

Daniel O'Reilly, Robert Williams, and Kevin Yarbrough 467
Object - Ori en t ed Fault Tree Evaluation Program for Quantitative Analysis

F. A . Patterson-Hine and B. V. Koen 477

ADDENDA

Considerations in Development of Expert Systems for Real-Time Space
Applications

S. Murugesan .. 487

INDEX OF AUTHORS ... 497

xi

- - e

C o n s i d e r a t i o n s i n Deve lopmen t o f E x p e r t S y s t e m s f o r
Real-Time S p a c e A p p l i c a t i o n s *

S. Murugesan
NASA Ames Research C e n t e r
Moffet t F i e l d , CA 94035

Abstract

O v e r t h e y e a r s demand o n s p a c e s y s t e m s h a v e b e e n i n c r e a s e d
t r e m e n d o u s l y a n d t h i s t r e n d w i l l c o n t i n u e f o r t h e n e a r f u t u r e .
The e n h a n c e d c a p a b i l i t i e s o f s p a c e s y s t e m s , h o w e v e r , c a n o n l y
b e met w i t h i n c r e a s e d c o m p l e x i t y a n d s o p h i s t i c a t i o n of o n b o a r d
a n d g r o u n d s y s t e m s , a n d a r t i f i c i a l i n t e l l i g e n c e a n d e x p e r t
s y s t e m c o n c e p t s h a v e a s i g n i f i c a n t r o l e i n s p a c e a p p l i c a t i o n s .

E x p e r t s y s t e m s c o u l d f a c i l i t a t e a u t o n o m o u s d e c i s i o n
m a k i n g , i m p r o v e d f a u l t d i a g n o s i s and r e p a i r , e n h a n c e d
p e r f o r m a n c e a n d l ess r e l i a n c e o n g r o u n d s u p p o r t . However , some
r e q u i r e m e n t s h a v e t o b e f u l f i l l e d b e f o r e p r a c t i c a l u s e of
f l i g h t - w o r t h y e x p e r t s y s t e m s f o r o n b o a r d (a n d g r o u n d)
o p e r a t i o n s .

T h i s p a p e r d i s c u s s e s some o f t h e c h a r a c t e r i s t i c s a n d
i m p o r t a n t c o n s i d e r a t i o n s i n d e s i g n , d e v e l o p m e n t , i m p l e m e n t a t i o n
a n d u s e of e x p e r t s y s t e m s f o r r e a l - l i f e s p a c e a p p l i c a t i o n s .
F u r t h e r , i t d e s c r i b e s a t y p i c a l l i f e c y c l e o f e x p e r t s y s t e m
d e v e l o p m e n t a n d i t s u s a g e .

C h a r a c t e r i s t i c s : E x p e r t s y s t e m s f o r real-t ime c r i t i c a l
s p a c e a p p l i c a t i o n s n e e d t o h a v e t h e f o l l o w i n g c h a r a c t e r i s t i c s :

0 R o b u s t n e s s

0 Real-time e x e c u t i o n (h i g h e x e c u t i o n s p e e d c o m p a t i b l e
w i t h p h y s i c a l r e q u i r e m e n t s)

0 Real-world i n p u t s from v a r i o u s s u b s y s t e m s i n
o p e r a t i o n

0 I n t e r a c t i v e i n p u t s from o p e r a t o r s , o t h e r e x p e r t
s y s t e m s a n d g r o u n d commands

0 E x t r e m e l y h i g h r e l i a b i l i t y o f o p e r a t i o n i n t h e i r
a p p l i c a t i o n e n v i r o n m e n t

0 H i g h d e g r e e of c o r r e c t n e s s a n d c o n s i s t e n c y of
d e c i s i o n s

* The paper by S . Murugesan appears i n t h i s volume, beginning on page 487.

0 T e s t a b i l i t y u n d e r v a r i o u s o p e r a t i o n a l m o d e s , f a i l u r e s
a n d c r e d i b l e c o n t i n g e n c i e s

- V a l i d a t i o n a n d V e r i f i c a t i o n (V & V) a n d
It p r o o f - of - c o n c e p t l1

0 T o l e r a n c e t o f a i l u r e s o f hardware, s o f t w a r e
(k n o w l e d g e base , i n f e r e n c e e n g i n e , o p e r a t i n g s y s t e m ,
e t c .) , i n p u t / o u t p u t n e t w o r k s a n d m o n i t o r i n g d e v i c e s

0 C o o r d i n a t i o n w i t h o t h e r e x p e r t s y s t e m s ; i n t e r a c t i o n
w i t h a common d a t a / k n o w l e d g e base

0 F a i l - s a f e o p e r a t i o n s and g r a c e f u l p e r f o r m a n c e
d e g r a d a t i o n

0 R e a l i s a b i l i t y w i t h minimum hardware and power
c o n s u m p t i o n m e e t i n g o t h e r MIL-STD r e q u i r e m e n t s

0 S y m b o l i c a n d da t a p r o c e s s i n g c a p a b i l i t i e s

0 A c c o m a d a b i l i t y t o c h a n g e / m o d i f i c a t i o n

D e v e l o p m e n t : D e v e l o p m e n t o f e x p e r t s y s t e m s h o u l d b e
c o n s i d e r e d a s a s y s t e m e n g i n e e r i n g a c t i v i t y e n c o m p a s s i n g many
t a s k s . The l i f e c y c l e mode l o f e x p e r t s y s t e m i s somewhat
d i f f e r e n t from w e l l - a c c e p t e d sof tware l i f e c y c l e , t h o u g h t h e r e
a r e many c o m m o n a l i t i e s . Major p h a s e s i n l i f e c y c l e o f e x p e r t
s y s t e m d e v e l o p m e n t i n c l u d e :

0 P r o b l e m identification/specification

0 A c q u i s i t i o n of domain k n o w l e d g e from e x p e r t s ,
p r e v i o u s case h i s t o r y , o p e r a t i o n a n d d e s i g n d o c u m e n t s

0 F o r m u l a t i o n o f k n o w l e d g e b a s e , k n o w l e d g e
r e p r e s e n t a t i o n

0 Choice (a n d / o r d e v e l o p m e n t) of s u i t a b l e
i n f e r e n c i n g / r e a s o n i n g schemes a n d p r o c e d u r e s

0 T e s t i n g of e x p e r t s y s t e m sof tware (r e s i d i n g i n
d e v e l o p m e n t t o o l s) u n d e r s t a t i c (n o n r e a l - t i m e) and
real- t ime e n v i r o n m e n t s

- Review human domain e x p e r t s a n d s p e c i a l i s t s ;
r e v i s i o n s

2

0 I n t e g r a t i o n of hardware d e l i v e r a b l e s a n d c o m p i l e d
' e x p e r t so f tware '

0 T e s t i n g u n d e r s i m u l a t e d a n d r e a l - l i f e e n v i r o n m e n t s
u n d e r v a r i o u s o p e r a t i o n a l a n d f a i l u r e modes

- Reviews by human domain e x p e r t s a n d s p e c i a l i s t s ;
r e v i s i o n s

0 D e l i v e r y of f l i g h t - w o r t h y E x p e r t S y s t e m ; m a i n t e n a n c e
a n d u p g r a d a t i o n

* The paper by S. Murugesan appears in this volume, beginning on page 487.

3

Real-Time Control for Manufacturing Space Shuttle Main Engines:
Work in Progress

Corinne C. Ruokangas
Rockwell Science Center, Palo Alto Laboratory

444 High Street, Suite 400
Palo Alto, CA 94301

mokangas@score.st.edu

ABSTRACT

During the manufacture of space-based assemblies such as Space Shuttle Main Engines,
flexibility is required due to the high-cost and low-volume nature of the end products. Various
systems have been developed pursuing the goal of adaptive, flexible manufacturing for several
space applications, including an Advanced Robotic Welding System [Sliwinski 871 for the
manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic
Welding System (AROWS) is an on-going joint effort, funded by NASA, between
NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne
and the Science Center. AROWS includes two levels of flexible control of both motion and
process parameters: Off-line programming using both geometric and weld-process data bases, and
real-time control incorporating multiple sensors during weld execution. Both control systems
were implemented using conventional hardware and software architectures. The feasibility of
enhancing the real-time control system using the problem-solving architecture of Schemer
[Ruokangas 881 is being investigated and is described in this paper.

Schemer is a knowledge-based system designed to provide more complex real-time
control by supporting real-time response to multiple and conflicting interrupts, and problem
solving under time and resource constraints; on-going research supports the incorporation of
techniques from decision analysis. The Schemer architecture is event driven and is similar to a
blackboard system. It supports the interruption, suspension, and resumption of problem solving
tasks, concepts which are essential to providing real-time response to changes in the environment
[Fehling 871. Schemer provides support for intelligent real-time modification of Off-line
programming plans and resolution of sensor conflicts.

This paper summarizes the development of a prototype system for simulation of real-time
control of robot motion and the welding process using multiple sensors. The system provides
simulation of prioritized, event-driven responses to multiple sensors affecting multiple processes,
with the sensors providing both cooperative and conflicting information. A single vision sensor
is used to modify robot motion. In parallel with modifications of motion, multiple penetration
sensor systems are simulated to affect weld-current values. Further development of the system
will include additional sensor fusion techniques such as decision theory methods, and plan
transformation rules. While the current implementation is on a Symbolics 3600 series system in
Common Lisp, other hardware platforms are being evaluated for additional studies towards
implementation in manufacturing.

PREEDING PAGE SLANk NOT FILMED

5

INTRODUCTION.

AI in Space A~~lications

There is widespread interest throughout the aerospace community in the application of
Artificial Intelligence (AI) developments to both space and earth based activities, including
efforts in planning, scheduling, and real-time control. Effective utilization of key AI
components can support NASA in future space exploration, including Space Station and
Mars Rover projects, satellites, and spacecraft communications and control.

"The primary goal of AI is to make machines smarter" Winston 871, that is, to provide
more autonomous systems which are more useful, competent and less demanding of human
interaction. Significant development of space exploration and space-related projects, both
flight and ground based, relies on the development and implementation of autonomous
systems. An autonomous system, operating in a complex, dynamic environment such as
space or manufacturing, should have the capability to both define and execute plans to
achieve its goals. In many environments, limitations of time, information, and other critical
resources constrain the determination and use of the plans. The system must be able to
manage its reasoning and other activities to make the best use of available resources.
Problem-solving under these conditions has been referred to as resource- bounded
problem-solving - "controlling and adapting problem-solving actions to meet critical,
contextually-determined constraints" [Fehling 881. One arena in which resource-bounded
problem-solving autonomous systems will prove invaluable is the manufacturing of
space-based assemblies which must be robust enough to operate in remote locations. This
paper discusses the development of such a system, to be applied to the manufacture of Space
Shuttle Main Engine Components.

A research area which holds promise for influencing advancements in autonomous
systems is intelligent real-time control, or problem-solving under time constraints.
Commercial AI shells, designed for the development of consulting type systems, provide
inadequate support for real-time process control systems, i.e. those which require problem
solving in a dynamic processing environment, in an interruptible and prioritized event-driven
manner. Implementation of intelligent, flexible real-time control in real world environments
has proven to be a considerable challenge to the AI research community. The
resource-bounded problem-solving architecture described in this paper addresses several of
the fundamental challenges intrinsic to intelligent real-time control, such as appropriate
response to multiple and varying priorities of interrupts, and conflict resolution.

SSME Background

The flexible real-time control architecture described in this paper can be applied in
various areas of motion and process control throughout manufacturing and aerospace
activities. The specific application discussed here is the automated welding of complex parts
of the Space Shuttle Main Engine (SSME), which could be advanced by a high degree of
run-time adaptivity both for seam following and weld process modification. The SSME is a
low-volume, high precision product. Because part geometries vary significantly, it is
difficult to accurately predict the variations in geometric position and process parameters
defined in a robotic welding schedule. During weld execution, the welding process itself can
induce heat distortions, further complicating the task of automatic welding. In 1983, a
development project was initiated by NASA Marshall Space Flight Center to support
robot-based welding of components of the SSME. At that time, commercial robot systems
did not provide either the desired adaptive real-time control nor off-line programming for
motion and process control; the goal of the project was development of a technology base for
penetration sensors, seam-tracking sensors, and integrated off-line generation of process
commands [Sliwinski 871. The Advanced Robotic Welding System (AROWS), developed
by the cooperative effort of two Rockwell divisions and demonstrated for NASA in late
1987, incorporated two levels of adaptive control, as shown in figure 1.
6

Off-line Programming (OLP) was based on existing geometric data bases and
weld parameter data bases developed by interaction with Rocketdyne welding
engineers. The overall function of the OLP system was initial generation of both
motion and process commands, using graphical simulation.

motulonng -
Initial Pen'n
ACOUSlk
Emissions

The adaptive real-time control system included the development and
implementation of both motion correction and weld penetration sensors, as well as
the Sensor Controller for overall coordination of the sensor subsystems and control
of the robot and weld parameters during weld execution.

Off-line Programming
Controller

Weld Parameter ID.,,,)

On-line Programming System

u
Rob! Work Cell with Sensors and Sensor Contmller

Figure 1 : The adaptive control elements of the Advanced Robotic Welding System:
Off-Line Programming and Real-time control

AI for Control Applications: Schemer

Conventional control and programming environments are often limited in several key areas.
In commercially available AI shells, techniques are used which surmount several of these
limitations; however, these shells are primarily designed to develop consultative, off-line systems
rather than on-line or real-time systems. Schemer supports the application of AI techniques to
real- time problem-solving environments. Specifically, Schemer is being used to enhance the
real-time control of a robot and welding equipment for manufacture of the Space Shuttle Main
Engines, utilizing a simulation environment developed at Rockwell Palo Alto Laboratory.

Limitations to Conventional Systems: Conventional control theory is frequently limited in its
ability to provide control for unstable processes and for systems without quantitative models
[Coughanowr 651. A typical closed-loop control system gathers information from sensors,
calculates an error between the sensor value and a desired setpoint, and applies an offset based on
this error. To be successful, these systems rely on both accurate and repeatable sensor signal
processing, and on control based on models of the dynamics of the process being manipulated.
However, accurate processing of sensor signals requires a model relating information from the
sensor to the process under control; if the sensor is under development, it is not well understood
and a complete model is frequently not available. If randomness is found in the sensor data, or
conflicting indications are determined between sensors, these inconsistencies in data can propagate
to induce oscillations in the process under control.

7

In addition, conventional programming environments do not support iterative prototyping
and modification. These techniques are essential to the development of incompletely specified
systems, since modifications must be applied to the overall system as information becomes
available. The ability to deal with uncertainty is an important concept, since models are frequently
incompletely defined; most conventional environments do not support this concept.

{L * Several systems or shells such as KEEm and A R F
are available for the development of consultant type systems, also known as expert systems.
These shells provide symbolic representation and inferencing, and heuristic search. Applications
include Prospector, Mycin, and ADDAMX [Garcia 871. The applications are frequently
diagnostic, tutorial or predictive [Hayes-Roth 831 in style, and primarily provide off-line rather
than on-line or real-time control. They are also commonly fragile in dealing with unanticipated
conditions, not incorporating the concept of graceful degradation.

Real-time Control - Schemer; While incorporating the strengths of AI shells, such as
symbolic representation and rapid prototyping, the Schemer architecture was also designed to
respond to varying priorities of interrupts occurring in dynamic environments. Schemer is
event-driven, and thereby provides appropriate response to multiple asynchronous interrupts. It
provides the basis for adaptive problem-solving under time and resource constraints; in addition, it
can incorporate various problem-solving techniques, both mathematically and heuristic based.
Hence, it is appropriate for use in real-time control. While Schemer is an architecture, it has been
implemented in several variations. The current implementation, discussed in this paper, was
developed at Rockwell Palo Alto Labs (WAL). In addition, research is on-going at RPAL both in
terms of the architecture and additional implementations.

AROWS -Schemer; The specific application discussed in this paper is the enhancement of
real-time control of the Advanced Robotic Welding System (AROWS) using Schemer in simulation
mode. The existing real-time control system, based on conventional hardware and software, has
been constrained by the lack of models of both the overall welding process and of the sensors.
The sensors were developed in parallel with the implementation of the existing controller; no
detailed models relating sensor data to the weld process are available. In addition, it is possible for
the sensors to generate conflicting information. Due to these constraints and the complexity of the
process, it was determined that Schemer should be applied in a feasibility study to determine the
impact of an AI architecure on the operation of the real-time controller. In this manner, the initial
concepts of the real-time controller may be enhanced without the restrictions inherent to the sensor
development process; parallel efforts continue in sensor research. The use of Schemer for this
application was found to be appropriate, both in the ability to respond to multiple interrupts from
various sources and in the ability to iteratively develop, modify and augment the application in a
clear manner. The details of this feasibility study and the effectiveness of Schemer in this
particular environment are provided in subsequent sections.

Further directions. AROWS -Schemer; Additional future efforts with respect to this
particular project could include interfacing with actual workcell components. While the simulated
data has been generated in a manner to map closely onto actual sensor data, some unforeseen
problems could arise in interfacing with specific hardware platforms or specific sensor systems.
Schemer has been designed, however, to support the concept of graceful degradation, as opposed
to many expert systems which are brittle in situations which exceed their expertise. The Schemer
response to previously undefined states will be based on its ability to deal correctly with
continuous data and its lack of dependence on explicitly stated rules.

8

,
SCHEMER BACKGROUND

Schemer Archit-

Schemer is a resource-bounded problem-solving architecture, with multiple implementations.
The AROWS-Schemer application has been developed on a Common Lisp implementation
currently running on Symbolics 3600 series systems, Macintosh I1 systems, and Xerox 1100
series systems. Schemer supports the interruption, suspension, and resumption of individual
problem solving tasks, concepts which are essential to providing real-time response to changes in
the environment.

Schemer has proven especially useful as the problem-solving architecture for systems that
must perform satisfactorily in complex, dynamic environments. Successful Schemer applications
have been built for a number of real-time, "process management" applications such as diagnosis or
control of complex manufacturing processes [D'Ambrosio 871, automated performance
management of advanced avionics systems [Guffey 861 and monitoring and task-management in a
distributed information processing system Pehling 84 1.

As shown in Figure 2, the Schemer architecture is similar to a blackboard architecture.

IH
~t
c
d

K
n

1

d
8
e

S
P

0
W

e

a
c
e

- - + - I -
Schedule Proccsr-history

Input Buffer

Output Buffer

ACTIVITY
CYCLE

W
Figure 2: The Schemer Architecture:

A Top Level Controller providing prioritized intermptibility,
and Shared Knowledge Space for communication, containing Handlers, Schedule, and History

The architecture is comprised of three major components:
Problem solving elements called Handlers or Procedural Elements (PES), containing
procedural and/or declarative knowledge;
A global store, called Shared Knowledge Space, containing the Handlers as well as a
current, prioritized Schedule of pending executable Handlers, and an audit trail,
called the History;
A Top Level Controller (TLC) that manages the system's activity.

The Shared Knowledge Space includes areas for communication with the environment (Input
and Output Buffers), for communication of information between various problem solving elements
(Handlers), and for state recording.

The overall control structure, the Top Level Controller, provides the prioritized
intermptibility of the system. As indicated in figure 2, the TLC contains four Managers consisting
of highly optimized code; the minimized execution time of a complete cycle provides maximum
interruptibility. The TLC performs data transfer, determines which Handlers may be executed,
maintains a variable-priority schedule, and causes Handler execution.

9

In the design of the Schemer architecture, every Handler is interruptible, and maintains its
own local data space. The executable body of a handler may be a Common Lisp expression, a set
of invocations of other Handlers, or an embedded Schemer.

This triad of major architectural components has been implemented in several instantiations.
Following are further details of the specific implementation used for the AROWS-Schemer.

Schemer Implementation: TLC + PES

This particular Schemer system implementation contains the basic elements interacting
through a Shared Knowledge Space: the Top-Level Controller (TLC) which serves as the
management structure, and Procedural Elements (PES) which serve as the problem solving
elements. The TLC controls execution of the overall process. The PES include executable bodies
and reference the Data Stores for inter-element communications and local state storage. The Shared
Knowledge Space consists of the Schedule, a Data Store, and Ports.

The TLC consists of four managers, which repeatedly execute in the order indicated in figure
3. Since each manager consists of minimal code, the cycle responds rapidly to events in the
environment, and in a prioritized manner. The PROCESS MANAGER executes the body of the
first Procedural Element on the Schedule. The INTERFACE MANAGER queries all input / output
(VO) Ports to determine. if any new data transfers a~ possible; it transfers all data available at input
Ports to internal data storage areas, and transfers out-bound data from internal data storage to
output Ports. The EVENT MANAGER, based on changes in internal Data Stores, determines if
any Procedural Elements can be executed, i.e. whether the mgger conditions of any Procedural
Elements have been satisfied, and enters these elements on the Schedule. The SCHEDULE
MANAGER then executes any initializer code for new Procedural Elements on the Schedule, and
orders the elements by priority. The cycle then repeats, with the PROCESS MANAGER executing
the body of the highest priority Procedural Element on the Schedule.

r External
.I-.* data elements

..--
MANAGER MANAGER

MANAGER MANAGER
Rc-q-rchcdulc,
b a d on pnonues.

new clancnts

B d on mtahll data v r b r ~
ddermm m y tnggm l h a ~

alc uurfied \ '
\ - S C H E M E R A

Figure 3: Overview of Schemer system implementation,
including cyclic execution of the four managers in the Top Level Controller

and the relationship of the Schedule, Procedural Elements, and external events.

ocedural Elemenb: Procedural Elements (PES) are structures containing the Lisp or
Schemer code to be executed based on the current state of the overall system. In addition to codr.
PES also contain local variables, a list of relevant shared variables, and as appropriate, trigger
conditions, initializing code, and priority levels. PES may be activated in three manners: 1) their
trigger conditions may be met, and they are scheduled by the Event Manager 2) another PE, during
10

its execution, may explicitly schedule them for deferred execution, and 3) another PE may explicitly
call them immediately, as a "sub-routine" to the original PE. In general, a PE includes a trigger
definition, priority, and initialization code to be executed as it is placed onto the Schedule; PES that
are activated by other PES need not incorporate all of these elements. Normally, PES which must
respond to asynchronous events in the environment are triggerable with high priority levels. PES
requiring lower priority treatment, frequently of lower time-criticality, are activated within triggered
PES. Possible elements of a PE are shown in figure 4, with sample values included.

PROCEDURAL ELEMENT STRUCTURE
comDonent sample values

BODY I INNER SCHEMER
[TRIGGER] (> confidence-ael confidence-ae2)
[BASE-PRIORJTY] or6inary
[INITIALIZER] 0
SHARED-VARIABLES

(setf mod-current ael)

(mod-current ae 1 confidence-ael confidence-ae2)
PERSISTENT-VARIABLES ()
ACTIVATION-VARIABLES ()

Figure 4: Structure of a Procedural Element, including optional fields and sample values

Future Schemer Enhancements

Resource-bounded problem-solving requires that the system be aware of its current and past
activities and its future commitments, as well as the relationship of these factors to conditions in the
environment. However, in most realistic environments, the information available to the system is
most frequently incomplete, and subject to change. The system must be able to deal with
uncertainty in its knowledge of the world, and use what knowledge it has to bring about effective
actions. An initial aspect to reaching a solution to incomplete information is the ability to respond to
changes in the dynamic environment by the prioritized execution of specific tasks triggered by the
specific state; the existing Schemer implementation incorporates this capability. An additional
solution is the incorporation of the ability to deal with uncertainty, specifically by using a
probabilistic decision-theoretic approach. Such an approach to control reasoning can prescribe how
the problem-solving system can select among multiple, alternative problem-solving methods on the
basis of how well each method satisfies the basic problem requirements, resource constraints, state
of infomation, and the system's priorities and attitude toward risk. Mathematical decision-theory
[Savage 721 can be used to provide a rigorous, verifiable and domain-independent basis for
problem-solving control. Development is currently in progress to incorporate into Schemer the
control of a system's actions based on decision analysis [Breese 881; a basic mechanism is under
development in the form of a set of general, domain-independent principles according to which the
system controls and coordinates its actions under uncertainty.

Additionally, parallel research efforts are involved in modifying the TLC cycle, so that
Managers are not necessarily executed in a defined loop. Rather, the Managers themselves will be
event-driven. This supports implementation of the Schemer architecture in a parallel processor
environment.

11

SPACE SHUTTLE MAIN ENGINE APPLICATION

The use of Schemer to enhance the existing real-time control system for the robotic welding
of Space Shuttle Main Engines has been implemented as a simulation of the existing sensor
controller tasks. The AROWS-Schemer application is a prototype system for simulation of both the
robot motion and the weld process based on modification of pre-programmed values by multiple
sensors. The existing application incorporates trend analysis, combination of sensor values over
time and of cooperating sensors, use of confidence factors, and resolution of conflicting sensor
data.

As indicated in figure 5, the application simulates and further enhances the actual work cell
activities. That is, it accepts as initial input pre-programmed values for both the robot motion and
the weld process parameter of current. During weld execution it coalesces data from multiple
sensors to modify the pre-programmed values to more exactly match the actual variations in part
geometxy and material.

Figure 5 : Pre-programmed motion and weld-process values are combined
during weld execution with multiple sensor values.

As in the actual work cell, the real-time sensors are vision for cross-seam motion
correction, and penetration sensors for weld-current correction [Gutow 87, Smith 871. The
Schemer simulation, however, is enhanced by the incorporation of multiple, interacting sensors.
While the vision sensor is interleaved in time with the penetration sensors, there are both
cooperative and conflicting penetration sensors. An initial penetration sensor monitors the weld
until it determines that weld penetration has occurred, and modifies the pre-programmed
weld-current to achieve initial weld penetration; at that time, the acoustic emission (AE) Sensors
begin penetration monitoring. Two AE sensors mounted at separate positions on the work piece
generate possibly conflicting values which are inversely proportional to penetration; the
pre-programmed weld-current value is modified by the AE value with the highest confidence factor.

The simulation is graphical, and uses lists of position and current values as initial input; it
then responds to sensor values as they are entered asynchronously by the user (vision) or as
simulated signals (penetration sensors). The output is graphical, indicating the corrected motion
and current values. At this point in the feasibility study, no actual sensor data is used as input, and
no formatted commands are generated for the workcell; at the time the system is implemented on a
hardware platform more suited to a factory environment, these capabilities could be incorporated.

prop-

The initial goal of this project was determination of the feasibility of using Schemer to
enhance the existing conventional sensor controller. The defined milestones included

graphical simulation of a single process (motion) modified by a single sensor (vision)
incorporation of multiple sensors modifying independent processes

- the initial vision sensor modified the motion process

I 12

- a generic penetration sensor modified the weld-current process parameter

complex sensor interaction, including cooperating sensors, conflicting sensors, error
checking, sensors affecting multiple processes

The two sensors did not interact in any fashion beyond co-existence.

All milestones have been achieved; details of the milestone for complex sensor interaction are
described in the following section. The Schemer environment was found to be appropriate for the
development of this control system; it provides an environment for easy prototyping, partitioning of
tasks, and response to changes in the dynamic welding process. Additional efforts include the
incorporation of decision analysis techniques for quantitative model definition and use, further
interaction with welding engineers for qualitative model definition, use of actual sensor-generated
data, and implementation on a hardware platform suited to the factory environment.

Demonstra ti0 I? of co mplex Sensor Interaction. Affecting Multiple Processes

The Procedural Elements defined in the AROWS-Schemer are listed in table 1. In general,
each senscr is simulated bv a PE, and displayed on screen by use of implementation-specific
monitor/window routines.

Procedural Element

Time-Update

OLP-update

Posn-Out

Black-Box

Current-PE

AE-PE

Initial-Pen

PurDose
generate pseudo-run-time

determine next Off-Line-hgrammed (OW) motion value

combine OLP and vision sensor values, sPnd to Robot;
triggered by existence of new OLP or new vision value

called by Posn-Out to perform geometric calculations

combine OLP weld-current value with offsets from
penetration sensors; triggered by existence of new penetration
sensor values

generates new values from multiple AE sensors, including
confidence factor based on simple trend analysis

generates modifications for weld-current until penetration
occurs

Table 1: Procedural Elements of AROWS-Schemer and their purpose

An example of a specific PE is shown in figure 6. This PE performs the function of
combining the appropriate Off-Line-Programmed position value with the most recently determined
vision sensor value for cross-seam correction. It initiates executior, of another PE ("Black-Box")
for the actual geometric calculation, and is triggered by the existence of either a new OLP value or a
new vision cross-seam value.

13

Figure 6: An example Procedural Element, Posn-Out
which runs at high priority to insure the robot always has the most recent corrected position value.

Qnfl ic t Resolution: There are several situations where conflicts may arise between
sensors. In general, similar sensors monitoring a process may provide conflicting information
about that process based on sensor irregularities, or dissimilar sensors may generate conflicting data
due to variations in processing algorithms and their applicability to a specific task. There are
several strategies which could be used to resolve the conflict: one sensor could be designated as the
primary sensor, with the secondary sensor data used only when process history indicates invalidity
of the primary sensor; world models could be used, including trend analysis of sensor data as well
as the specifks of the task, or sensor determined confidence factors could be compared.

In the AROWS-Schemer, two Acoustic Emission (AE) sensors are simulated, each
generating independent data. The choice of correct weld-current modification must be made
between the two independent values at each time slice, as time progresses under control of
Time-Update. Both sensors are treated at qua l priority level, and simple trend analysis is used to
generated confidence factors in each set of data, as indicated by equation (1).

confidence = 100 - abs [A this sensor's previous & current values]
- abs [A current value and last applied value 3

The AE with the higher confidence factor is then applied to the pre-programmed weld current. As
calculated, the confidence factor tends to minimize the variations in the applied value of the AE
sensors, i.e. the sensor value that is most consistent with both its previous value and with the last
applied value is chosen. Hence, the pre-programmed values receive a higher weighting factor than
"noise" in the sensor values. This is an ad hoc method of defining confidence, with no
experimental basis. A mathematically based technique that will provide a more formal basis is
described in the next section.

(1)

Examples of the application during execution are shown in figures 7-9, as time progresses.
The initial pre-programmed values are indicated by dark circles and lines for both robot motion (a
circular overlay weld) and weld-current (three pre-programmed levels are indicated). During
execution, the user may generate varying vision sensor values by keyboard input; these are applied,
after emor checking, to the robot-motion values as cross-seam offsets. The corrected values are
indicated by clear circles and dashed lines. Concurrently, at the beginning of the weld, an

I 14

ORIGINAL PAGE IS
OF POOR QUALln

Initial-Penetration sensor determines the correction to be applied to the weld-current. Penetration
sensor values are combined over time before being applied as offsets to the pre-programmed
weld-current values, yielding a smoothed correction to the initial values. Once weld-penetration
has occurred, the AE sensors become active for monitoring penetration and modifying weld-current
to maintain penetration. The AE value which is actually applied is indicated in the AE screen area
by darkened circles.

Figure 7: Simulation screen
dump, at time = 14.

Initial penenation sensor has
just completed control of current,
and AE sensors now begin to compete.

Vision sensor has modified
the pre-programmed path, as
indicated by clear circles.

Figures 8,9: Additional m e n dumps during execution of simulation,
taken at time = 46, 87, including more acoustic emissions and vision data

15

Decision Analvsis Techniaua Although not yet incorporated in the Schemer architecture,
decision analysis methods are being applied toward this application. Influence diagrams are used to
represent the model upon which decisions are based; the principles explicitly represent and respond
to uncertainty and incomplete information [Breese 881. An influence diagram has been defined for
the use of the vision sensor, and probabilistic relations have been defined. At the time of this
writing, no automated application of the influence diagram has been incorporated. It is expected
that the influence diagram will be used both in the initial model definition, i.e. as an input to the
AROWS-Schemer demonstration, and in real-time decision making within Schemer. An initial
influence diagram is shown in figure 10.

Figure 10: Influence Diagram for the vision sensor affected pre-programmed motion values

The influence diagram represents the information known at the time a decision is made, for
example "Robot Arm Move" is based on both the pre-programmed values and the vision sensor
value. The vision sensor value is affected by the actual offset of the electrode from the seam, as
well as the quality of the vision sensor itself, in terms of the general seam being processed and with
respect to a recent set of images acquired. The overall quality of the weld, with respect to position,
is determined by the offset of the electrode from the actual seam. All of these relationships can be
defined in a probabilistic manner, and solved for the optimum decisions, providing a mathematically
based model for the control of the workcell.

Future efforts: While the existing system uses keyboard input for the vision sensor, value
could be gained by using a filtered random number generator to create the vision sensor values. In
this mode, additional signal processing and trend analysis could be used as the basis of geometric
plan transformation, depending on the specific task and the trends detected in the sensor values.
Influence diagrams are also under development for representation of the complete set of work cell
activities, that is the dependence of weld quality on penetration as well as position accuracy. In this
case, the detailed interaction of sensors could be simulated and a more accurate model of the
decision processes could be developed. Finally, while the current implementation is on a
Symbolics 3600 series system in Common Lisp, the Schemer implementation itself ports to any
hardware platform supporting Common Lisp. Efforts are continuing to determine an appropriate
system, and are influenced by the capabilities of existing conventional systems in the work cell.
When an appropriate platform has been determined, additional efforts could include actual sensor
data acquisition as well as command generation.

16

SUMMARY

I A prototype system has been described which successfully applies a resource-bounded
problem-solving architecture to simulated real-time control of robotic welding of Space Shuttle Main
Engine (SSME) assemblies. The Schemer architecture supports real-time response to multiple
sensor interrupts, both cooperative and conflicting. It is event-driven and responds to varying
priorities in an adaptive manner; the implementation is general, and can be ported to platforms
supporting Common Lisp. Schemer can be used in support of real-time control in both space-based
and manufacturing environments, and provides the basis for prioritized dynamic response to
changing environments, as well as the ability to incorporate mathematically based techniques from
the field of decision analysis. The Schemer architecture was found to be appropriate for the
development of an SSME manufacturing control system; it provides an environment for easy
prototyping, partitioning of tasks, and response to changes in the dynamic welding process. The
S SME application exemplifies the strengths of this knowledge-based architecture over conventional
architectures, especially in the ability to respond immediately and in a prioritized manner to changes
in a dynamic processing environment and the ability to apply both mathematically and heuristically
based knowledge to a real-time activity.

ACKNOWLEDGEMENTS

The work described in this report was funded under NASA contract NAS8-4oooO mod 130.
The author is indebted to members of Rockwell Science Center, Palo Alto Laboratory: to Michael
R. Fehling and B. Michael Wilber for their definition and implementation of the Schemer
architecture, to Jack Breese for his direction in decision analysis techniques, to Greg Arnold for his
expertise in the existing sensor controller efforts, and to Art Altman for his editing support. In
addition, appreciation is extended to Rocketdyne personnel Matthew A. Smith and David Gutow for
their exisiting work in acoustic emission and vision sensors, respectively; to Joseph M.F. Lee of
Rockwell Science Center as Project Manager; and to Fred Schramm as NASA Contract Monitor.

REFERENCES

[Breese 88a] Breese, John S . , Eric J. Horvitz, and Max Henrion, "Decision Theory In Expert
Systems and Artificial Intelligence", Technical Report 3, Rockwell International, 1988

[Breese 88b] Breese, John S . and Michael R. Fehling, "Decision-Theoretic Control of Problem
Solving: Principles and Architecture", Proceedings AAAI Workshop on Uncertainty in Artificial
Intelligence, 1988

[Coughanowr 651 Coughanowr, D.R., Process Svstems Analysis and Control, McGraw-Hill,
1965

[D'ambrosio 871 D'Ambrosio, Bruce, M.R.Fehling, S.Forrest P.Raulefs, and M. Wilber,
"Real-Time Process Management for Materials Composition in Chemical Manufacturing",
IEEEExpert, June 1987

[Fehling 871 Fehling, Michael R. and John S . Breese, "A Computational Model for the
Decision-Theoretic Control of Problem Solving under Uncertainty", Technical Report,
Rockwell International, 1988

[Guffey 861 Guffey, J., "AI takes Off: Expert Systems that are Solving In-Flight Avionics
Problems", Aviation Week and Space Technology, February 1986

[Garcia 871 Garcia, Raul C., "An Expert System To Analyze High Frequency Dependent Data
for the Space Shuttle Main Engine Turbopumps", Proceedings AI for Space Applications, 1987

[Gutow 871 Gutow, David, Member Technical Staff, Advanced Automation and Robotics,
Rocketdyne, Private communications

17

[Hayes-Roth 831 Hayes-Roth, Frederick, Donald A. Waterman, Douglas B.Lenat, Building Exnert

[Ruokangas 881 Ruokangas, Corinne C., B.M. Wilber, D.L.Larner, and M.C.Anderson,

[Savage 721

[Sliwinski 871 Sliwinski, Karen E. and Corinne C. Ruokangas "Adaptive Robotic GTA Welding

[Smith 871 Smith, Matthew A., Member Technical Staff, Advanced Process Instrumentation,

[Winston 871 Winston, Patrick H., "Artificial Intelligence: A Perspective", AI in the 1980's and

SystemL Addison-Wesley, 1983

"Schemer: A User's Guide", Technical Note, Rockwell Palo Alto Lab,1988

Savage, L.J. The Foundation of Statistics, Dover:New York, 1972

for the SSME: An Integrated System", Conference Proceedings Robots 11, 1987

Rocketdyne, Private communications

Bevond. MIT Press, 1987

18

- - .
N89- 1 5 5 5 2

Solutions to Time Variant Problems of
Real-Time Expert Systems"

Show-Way Yeh and Chuan-lin Wu
Department of Electrical and Computer Engineering

The University of Texas
Austin, TX 78712

Chaw-Kwei Hung
Information Division

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, Ca 91109

ABSTRACT: Real-time expert systems for monitoring and control are driven by input
data which changes with time. One of the subtle problems of this field is the propagation
of time variant problems from rule to rule. This propagation problem is even compli-
cated under a multiprogramming environment where the expert system may issue test
commands to the system to get data and to access time consuming devices to retrieve
data for concurrent reasoning. There are two approaches which have been used to handle
the flood of input data. Snapshots can be taken to freeze the system from time to time.
The expert system treats the system as a stationary one and traces changes by comparing
consecutive snapshots. In the other approach, when an input is available, the rules associ-
ated with it are evaluated. For both approaches, if the premise condition of a fired rule is
changed to being false, the downstream rules should be deactivated. If the status change
is due to disappearance of a transient problem, actions taken by the fired downstream
rules which are no longer true may need to be undone. If a downstream rule is being
evaluated, it should not be fired. Three mechanisms for solving this problem are dis-
cussed in this paper: forward tracing, backward checking, and censor setting. In the for-
ward tracing mechanism, when the premise conditions of a fired rule become false, the
premise conditions of downstream rules which have been fired or are being evaluated due
to the firing of that rule are reevaluated. A tree with its root at the rule being deactivated
is traversed. In the backward checking mechanism, when a rule is being fired, the expert
system checks back on the premise conditions of the upstream rules that result in evalua-
tion of the rule to see whether it should be fired. The root of the tree being traversed is
the rule being fired. In the censor setting mechanism, when a rule is to be evaluated, a
censor is constructed based on the premise conditions of the upstream rules and the cen-
sor is evaluated just before the rule is fired. Unlike the backward checking mechanism,
this one doesn't search the upstream rules. This paper explores the details of implemen-
tation of the three mechanisms.

1. Introduction

A real-time expert system is data-driven and is different from the conventional
expert systems. For a conventional expert system, the premise conditions of rules do not
change with time during the entire transaction, and the reasoning is directed by the opera-
tor. Establishing proper communication protocols between the expert system and the
sensors and processors in the underlying system enables the expert system to monitor the

* This work is supported by Jet Propulsion Laboratory under contract GK857812.
19

underlying system and issue commands to control the underlying system directly. For a
real-time expert system, the reasoning is mggered by the input data which are collected
from the underlying system it controls [Cot87, Laf88, Lei87, M0086, Pat85, Sau831. The
premise conditions of rules are predicates on the input data and on conclusions of other
rules. Since the input data vary with time, the premise conditions of the real-time expert
system rules vary accordingly. If a premise condition of a rule includes a predicate on the
conclusion of another rule, then, if the premise condition of the latter is changed, the
premise condition of the former will be affected because the conclusion of the latter is
changed. That is, if the firing of a rule depends on another rule, then the changing of the
premise condition of the latter will propagate to the former. This time variant propaga-
tion will continue if the conclusion of the former is a premise condition of other rules.

The input data come to the real-time expert system from processors or sensors dis-
tributed in the underlying system. Since the data vary with time, the real-time expert sys-
tem also needs to reason in a time variant manner. The real-time expert system may take
snapshots of the underlying system periodically. That is, it freezes the underlying system
from time to time. Changes are traced by pairwise comparison of consecutive snapshots.
The real-time expert system reasons using the input data from each snapshot and the
changes between every two consecutive snapshots. If any changes are detected, the real-
time expert system starts to investigate whether there are any problems. There is another
mechanism in which, when an input data item is available, the system immediately inves-
tigates what happened and, if something has changed, takes actions if necessary.

This paper discusses problems of the time variant property of real-time expert sys-
tems. Although the underlying system addressed in this paper is assumed to be a real-
time network system and all examples are based on network management, the problems
are common to real-time monitor and control expert systems in all the various other
application areas. The reader can easily convert the analogous problems to those of other
real-time monitor and control expert systems. Section 2 describes the time variant prob-
lems of the real-time expert systems in detail and defines some of the terms we are using.
Section 3 presents the reasons why a multiprogramming environment is necessary for
some real- time systems. In a multiprogramming environment, a concurrency control
mechanism is necessary to fire and to stop the firing of rules. Three mechanisms of deac-
tivating rules being evaluated, forward tracing, backward checking, and dynamically cen-
sor setting, are discussed in section 4, 5 , and 6. A comparison of these three mechanisms
are presented in section 7. Finally, a brief conclusion is given in section 8.

2. Time Variant Problems

If any premise condition of a rule is a part of the conclusion of another rule, then the
former is called a downstream rule of the latter and the latter is called an upstream rule of
the former. If X is a downstream rule of Y and Y is a downstream rule of Z then X is
called a downstream rule of 2 and Z is called an upstream rule of X .

When the premise conditions of a fired rule become false, all downstream rules
which have been fired or are being evaluated on the basis of the firing of that rule need to
be reevaluated. For example, suppose that we have the following four rules:

i f A then B and F
ifB and C then D
if0 then E
if F or G then H

20

Suppose that A becomes true at time T for a short period of time and C is true after time
T as well. Then the above four rules should be fired sequentially after T. Suppose that
by the time the rule if B and C then D is being evaluated A becomes false. Then all four
of these rules should not be fired. For the already fired rule, i f A then B and F, since
actions of B and F have been done, complementary actions may need to be performed.
For the rule being evaluated, i fB and C then D, evaluation should be stopped and the rule
should not be fired. The rule if0 then E doesn’t need to be evaluated.

If delay is tolerable, a transient time interval may be defined for each rule, and a
rule is to be fired when the premise conditions remain true longer than the predefined
interval [Lei86]. However, if there is not enough time available to make sure that the
problem persists, actions should be taken place immediately and complementary actions
should be taken if the problem is disappears. For example, if the real-time monitor and
control expert system of a network receives a report saying that a command packet keeps
being refused by another node and the packet must be received by the destination space-
craft in a very short time, the expert system may send commands to the sender to change
the routing table to send the packet along the secondary path to the destination to meet
the time limit constraint. However, the reason for refusal to receive packets may be that
the input buffers of the receiver are temporarily full because too many nodes are sending
packets to it at the same time. After the expert system sends the changing command to
the sender, it may receive a report saying that the problem is gone. So, the expert system
must send another command to the sender to change the routing table back to the original
one to keep the traffic balanced.

Also, when an error has been corrected, the fired rules which managed the error
should be deactivated. For example, if a node is dead, the routing tables of other nodes
need to be changed to bypass the error. Once the node has been fixed, the routing tables
need to be changed back to the original ones.

For all these cases, rules which have been fired need to be deactivated and evalua-
tion of rules needs to be stopped when the premise conditions of upstream rules which
resulted in firing or evaluation of the rules are changed to being false.

3. Execution Environment

Since the input data change with time, the actions to be taken will vary accordingly
from one time to another. To maintain the whole system, changes in input data and
actions taken in the past may need to be recorded somewhere in the system so that the
expert system may trace what happened to the underlying system in the past. For exam-
ple, suppose that each node in a network records the inbound and outbound packet
headers in the network management database. Suppose that the expert system is reported
that a packet is lost. Let C of the rule i fB and C then D be the predicate of evaluation of
recorded headers in the file storage of remote nodes. When the expert system evaluates
C, it will send commands to all nodes along the path of the lost packet to retrieve the his-
tory headers to determine where is the problem. Before the data returns, the evaluating
process can do nothing but waiting.

Meanwhile, the real-time expert system may need some current data from the
underlying system to make decision. It may issue commands to processors or sensors in
the underlying system to perform certain tests. For example, the rule i f A then B and F is
to determine that a node has generated noise. Suppose it is fied. Futhermore, let C of the
rule if B and C then D be the predicate to evaluate the test value of the interface card of
the node. The expert system will issue a command to the troublesome node to perform

21

the test. The expert system will make decision based on the test result.

Retrieving history data from remote data bases and instructing certain processors or
sensors to perform tests usually are time consuming. When the expert system needs to
do it, it cannot continue processing anything. On the other hand, while the expert system
is waiting for the remote data or test results, the expert system cannot stop to wait
because the underlying system status is changing and the flood of input data continues to
arrive.

To process the new data and to manage new problems while the expert system is
waiting, new processes need to be created. Therefore, expert systems of this kind must be
implemented in a multiprogramming environment. A process is suspended when it needs
to wait for information which is not currently available in the local system. It is resumed
when the information for which it is waiting becomes available.

The time variant problems are even worse in the multiprogramming environment.
For example, while a process is evaluating the rule i fB and C then D, the input data asso-
ciated with A may be changed by another process such that A becomes false. The latter,
after deactivating the rule ifA rhen B and F will find that, since B has been changed to be
false, the rule if B and C rhen D needs to be reevaluated. So, two processes may not
know each other and work independently and concurrently. They may evaluate the same
rule and get different conclusions. Finally, conflict actions may be taken.

For convenience, we define the following terms. A process which evaluates the
premise condition of a rule which is not fired and fires that rule if the premise condition
becomes true is called an activating process. When input data are changed such that the
premise condition of a rule becomes true, the rule will be fired and the conclusion will be
committed to be true. If the commitment makes the premise condition of another down-
stream rule to be true, an activating process will fire the downstream rule, too. So, the
activating process will propagate to the downstream rules until no downstream rules can
be fired. On the other hand, A process which evaluates the premise condition of a rule
which has been fired and deactivates that rule if the premise condition becomes false is
called a deactivating process. When input data are changed such that the premise condi-
tion of a fired rule becomes false, the rule will be deactivated, complementary actions
will be taken, and the conclusion will be committed to be false. If the commitment makes
the premise condition of another fired downstream rule to be false, a deactivating process
will deactivate the downstream rule, too. So, the deactivating process will propagate to
the downstream rules until no fired downstream rules need to be fired.

If the rule i f F or G then H is not fired and two activating processes evaluate F and
G concurrently and respectively, then both processes will find that the premise condition
becomes true and the rule will be fired twice. If the actions are expensive, for example, if
H is to issue commands to some processors to perform certain tests, we want the actions
to be taken only once. This problem can be easily solved by write-locking the firing
status of each rule when an activating process checks to see whether the rule is fired or
not. Similarly, if the rule i f l ? and C then D has been fired and two deactivating processes
evaluate B and C concurrently and respectively, then both processes will find that the
premise condition becomes false and the rule will be deactivated twice. If the comple-
mentary actions are expensive, we want that the complementary actions are taken only
once. This problem can be easily solved by write-locking the firing status of each rule,
too.

22

Comparing a deactivating process with an activating process, we can find they are
similar. When a deactivating process evaluates the premise condition of a fired rule, if
the complement of the premise condition is true, it deactivates the rule and takes comple-
mentary actions. To deactivate a rule is just like to "fire" a rule to take the complemen-
tary actions. For example, the complement rule of the rule i f A then B and F is ifA(past)
and not A(now) then (not (B and F)) or if (B and F) and not A then (not (B and F)) . To
deactivate the first rule is the same as to activate either the second rule or the third rule.

However, since the expert system is to monitor and control the underlying system,
the rules are to handle problems. If an activating process fires rules, most likely, the asso-
ciated actions will lead the underlying to abnormal state to avoid the problems. In con-
trast with the activating process, when a deactivating process deactivates a fired rule, it
usually means that the problems managed by the fired rule are gone. The associated com-
plementary actions are to lead the underlying system back to normal state. Usually, the
running cost of the underlying system in a normal state is lower than that in an abnormal
state. Therefore, if the problems are transient, we prefer that the deactivating processes
have higher priority to "catch up" the associated "front runing" activating processes to
stop them to keep the system in the normal states as much as possible. That is, we want
that when a rule is fired, it is consistent with the current status of the input data. Three
mechanisms, forward tracing, backward checking, and dynamic censor setting, of doing
so are discussed.

4. Forward Tracing

In forward tracing, we just let the deactivating processes have higher priority than
the activating processes. When the premise conditions of a fired rule become false, the
premise conditions of the downstream rules which have been fired or are being evaluated
due to the firing of that rule are reevaluated. The fired downstream rules are deactivated
and the downstream rules being evaluated are stopped if the premise conditions become
to be false. The deactivating process will traverse a tree rooted at the rule whose premise
condition has just been changed to being false. Each leaf node is the first downstream
rule which has not been fired or has been fired by other rules.

To deactivate a fired rule, the complementary actions are dependent on the actions
of the rule. For example, if the action is to use alternative routing table, the complemen-
tary action is to use the principal routing table; if the action is to double the time-out
period, the complementary action is to use the original time-out. There are not systematic
ways to develop the complementary actions. They need to be developed rule by rule.

For the rules used as examples in the previous sections, when the rule if B and C
then D is evaluated, B may be read into a working buffer. Then, when A becomes false,
since the deactivating process has higher priority, B may be changed to being false
before the activating process finishes evaluating the rule. The activating process acting
on this rule may not know that B has been changed to being false and continues to evalu-
ate the rule. Consequently, this rule and the rule if0 then E will be ked.

It is apparent that concurrency control mechanisms are needed to make sure that
changes of input data can affect the evaluation of the rules being evaluated. The tradi-
tional locking mechanisms may not be adequate to solve this problem because the deac-
tivating process is designed to update data which have been read by the activating pro-
cess. If the traditional locking mechanisms are applied, the activating process will read-
lock the items it reads. This prevents the deactivating process from updating the items
they have been locked. The deactivating process can never "catch up" with the "front

23

running" activating processes. Since the deactivating process has higher priority than the
activating process, the traditional locking mechanisms are not applicable for the forward
tracing mechanism.

Soft lock [Ege86, Yeh871 is a locking mechanism for software design data base sys-
tems. Since a designer may spend a long time figuring out how to design or update an
item which can be a requirement, a specification, a circuit design, or a module of code,
for each item there may be several versions. The designer may wish to reference others'
work while he is doing his own. If the traditional locking mechanisms are applied to
these systems, no one can update an item which is being referenced by others and no one
can reference an item which is being updated by others. This will block designers from
continuing with their work. Soft lock is designed to set a conflict mark on an item when a
conflict between two transactions is detected. The two designers will be informed either
as soon as the conflict is detected or at the end of the transaction that ends sooner. Then,
the designers will resolve the conflict.

Similarly, we may allow the deactivating process to break a soft lock set by the
activating process. When the activating process starts to evaluate a rule, it softly locks
the premise conditions and then reads them. When the deactivating process wants to
change any premise condition of a rule, it checks first whether a soft read lock has been
set on the premise condition. If yes, it breaks the lock and updates the value. Finally,
when the activating process finishes evaluating the rule, it checks to see if any soft locks
have been broken. If yes, it reevaluates the rule. Otherwise, it fires the rule and unlocks
the locks.

For the OR rule if F or G then H , when A is true, F is true. No matter whether G is
true or false, this rule will be fired. But, G may become true at any time. If, when A
becomes false, G has become true, this rule will not be deactivated and is a leaf node of
the tree which is being traversed by the deactivating process.

Obviously, there is no guarantee that all deactivating processes can "catch up" with
the activating processes.

5. Backward Checking

To overcome the drawback of forward tracing that the deactivating process may not
be able to "catch up" with the associated activating processes acting on downstream rules
before the rules are ked, the expert system may check back on the premise conditions of
all upstream rules to see whether any of them have been changed right before the rule
being evaluated is fired. Backward checking means that when a rule is being fired, the
expert system checks the premise conditions of the upstream rules which result in evalua-
tion of the rule to see whether they are still true.

For the rules used as examples in the previous sections, when the rule i f B and C
then D is finished being evaluated, the expert system checks back to see whether B and
C are still true. Since B is produced from A being true, the expert system needs to check
whether A and C are still true. That is, a tree rooted at the rule being evaluated is
traversed. Similarly, when the rule if0 then E is finished being evaluated, the expert sys-
tem checks back to see whether D is still true. Since D is produced from B and C being
true and B is produced from A being true, the expert system needs to check back to see
whether A and C are still true.

24

For the rule i f F or G then H if only F or G changes to being false and the other
remains true, the rule cannot be deactivated. Since F is produced by the rule i f A then B
and F, the backward checking mechanism needs to check the premise conditions of both
rules. Only if both A and G become false should the rule be deactivated. If only one of
F and G is true and the other is false or unknown when the rule is evaluated, then the
checking back mechanism only checks the upstream rules of the predicate whose truth
value is true.

The rule is fired only if its premise conditions are still true. If there is not enough
time to check back, the rule is fired without checking back. Since the forward deactivat-
ing process and the backward checking process head toward each other, they will meet
each other somewhere in the middle. This guarantees that if a premise condition is
changed, all downstream rules which are being evaluated will not be fired if the change
will deactivate them.

The locking mechanism needed for the backward checking mechanism is similar to
that for the forward tracing mechanism. The backward checking activating process will
softly lock the premise conditions of an upstream rule before it starts to evaluate the
premise conditions. The deactivating process can break soft locks to update the premise
conditions. The locks on the rules which have been fired can be traditional locks or soft
locks.

6. Dynamically Setting Censors

In the backward checking mechanism, when a rule is evaluated, all premise condi-
tions of the upstream rules need to be checked. A drawback of this mechanism is that the
upstream rules need to be searched and searching may be expensive.

Variable precision logic rules have the form i f X then Y unless 2. If, when X is true,
Y is true with a high probability x and is false only if 2 is true with low probability 1-x,
then, if there is not enough time to evaluate Z, we may fire the rule i f X then Y . The pro-
bability of getting the correct result is high. Z is called a censor [Mic86, Had861.

Dynamically setting censors means that, when a rule is to be evaluated, a censor is
constructed based on the premise conditions of the upstream rules and the censor is
evaluated just before the rule is fired. For the rules in the previous sections, suppose A
and C are predicates on input data and are true. The rule i f A then B and F will be
evaluated and be fired. When it is being evaluated, the rule is reconstructed as $ A then B
and F unless (not A) . This rule will not be fired if A becomes false while the rule is
being evaluated. If A continues to be true and this rule is fired, since B becomes true, the
rule i f B and C then D should be fired. Therefore, since what may be changed are A and
C, before we evaluate the rule, the rule is reconstructed to be i f B and C then D unless
(not A or not C). Then, if A or C changes to being false while this rule is being
evaluated, this rule will not be fired. Similarly, when we are to evaluate the rule if0 then
E is to be evaluated, since what the activating process needs to check is A and C, we
reconstruct the rule to be if0 then E unless (not A or not C). It will not be fired if A or
C becomes false while it is being evaluated.

The censor looks awful if the premise condition of the rule is AND of predicates
because all of the predicates are taken into the censor. If the premise condition of a rule
is inclusive OR of predicates, then the censor is the complements of the predicate which
makes the rule to be fired. This is because that the censor is to prevent from transient

25

problems. When the rule is about to be fired, what we wony about is whether the premise
conditions of the upstream rules have been changed such that the current rule should not
be fired. For example, if F is changed to being true and the truth value of G is unknown,
the rule i f F or G then H should be evaluated and to be fired. But, before evaluating it, it
is reconstructed to be if F or G then H unless (not A) where the censor is inherited from
the rule i f A then B and F by F . So, when the activating process finds that this rule should
be fired, it checks to see whether A is still true. If yes, fires the rule. Otherwise, it stops
itself.

This mechanism only evaluates predicates on input data. The upstream rules are not
evaluated and are not searched. When evaluating a rule results from firing other rules, it
is easy to construct the censor. It is the combination of the censors of the upstream rules
and the input data of the current rule. For example, the premise of the first rule, A, is a
predicate on the input data. Its censor is the complement of the predicate. For the
second rule, B is a predicate which is the conclusion of the first rule. The censor of the
first rule is inherited. C is a predicate on the input data. So, the censor is the inclusive
OR of the inherited predicate from the first rule and the complement of C. For the third
rule, the premise predicate is the conclusion of the second rule. So, the censor of the
second rule is inherited to be the censor of the third rule. For the fourth rule, since the
premise condition is the inclusive OR of two predicates, the censor is the complement of
the one which makes the rule be evaluated. If the predicate is conclusion of an upstream
rule, the censor is inherited from the upstream rule.

Some of the problems can never be transient problems. For example, if a packet is
reported to be lost by the operator, this problem cannot be gone in a short time. Another
kind of problem, for example, error rate of a link is detected to be a little bit too high 10
times in an hour. If it is detected only once, that may be tolerable. But, the problem is
detected by counting how many times it happened. Once the number is higher than the
threshold, the problem is identified. To count the number of times, once the high error
rate is detected, it will counted once and not be changed. For this kind of problem, since
no transient problem, censor is not necessary. That is, censor is set only when the input
data do be able to be changed transiently.

7. Comparison of the Three Mechanisms

The simplest one among the three mechanisms is the forward tracing mechanism.
Since it doesn’t guarantee that the activating processes can be caught up by the associ-
ated deactivating processes when input data of upstream rules are changed to being true
transiently and then are changed to being false, if the cost of firing the rule is expensive,
this mechanism should not be used. The other two mechanisms guarantee that if the
input data of upstream rules are changed to make the rules false while the rule is being
evaluated, the activating process will be stopped. The backward checking mechanism
needs to search the upstream rules to reevaluate the predicates. It not only reevaluates the
input data associated with the rule being evaluated, but also reevaluates the intermediate
predicates. While the dynamic setting censor mechanism only reevaluates the input data
and doesn’t need to search for the intermediate upstream rules. So, the backward check-
ing is less efficient than the dynamic setting censor mechanism. If the actions of a rule
are very expensive and the rule needs to be evaluated in very short time, dynamic setting
censor mechanism is the best choice.

8. Conclusion

26

In this paper, we address some characteristics of real-time monitor and control
expert systems. The input data are collected from the underlying system and are changing
with time. When the input data change, the rules which have been fired or are being fired
on the basis of the changed data need to be reevaluated. When the premise condition of a
rule is changed, the downstream rules need to be reevaluated, too. That is, the time
dependent changes may propagate from rule to rule. If a fired rule needs to be deac-
tivated, complementary actions need to be taken to overcome the change. If the premise
condition of a rule that is being evaluated is changed, the activating process needs to be
stopped. This time variant problem gets worse in the multiprogramming environment.
Three mechanisms are discussed in this paper. In the forward tracing mechanism, the
deactivating process has higher priority than the activating process. This mechanism
cannot guarantee that the deactivating process can catch up with the activating process.
To overcome this drawback, a backward checking mechanism may be used that, when a
rule is about to be fired, checks the upstream rules to see whether the rule still should be
fired. The drawback of this mechanism is that extra searching is needed and is expensive.
In the censor setting mechanism, changes of input data are inherited from rule to rule to
eliminate the searching overhead of the backward checking mechanism. Since the back-
ward checking and the dynamically setting censor mechanisms need some redundant
work, the rules need to be investigated one by one to determine whether it has transient
problem. If not, these two mechanisms should not be applied.

Reference

[Cot871

[Dvo871

Ege861

Fer861

[Goy871

[Had861

[JPL86]

wt871

lLafs 81

[Lei871

[Mic86]

Cotthem, H., Mathonet, R., and Vanryckeghem, L., "Dantes--An Expert System
Shell Dedicated to Real-Time Network Troubleshooting", Workshop on Expert
Systems and Network Operation, IEEE, ICC, 1987.
Dvorak, D., "Expert Systems for Monitoring and Control--A Survey", Univer-
sity of Texas at Austin Technical Report AI87-55, May 1987.
Ege, A., Ellis C., and Wexelblat, A., "Design and Implementation of GOR-
DION, An Object Base Management System", MCC Tec. Rep. No. STP-139-
86(Q), April 1986.
Fertig, K., Andrews, A., and Wang, C., "Knowledge-Based Management and
Control of Communications Networks", Milcom'86,28.6.
Goyal, S., and Kopeikina, L., "Evolution of Intelligent Telecommunication Net-
works", Workshop on Expert Systems and Network Operation, IEEE, ICC,
1987.
Haddawy, P., "Implementation of and Experiments with a Variable Precision
Logic Inference System", AAAI, 1986.
"Technical Requirements for the GCF Upgrade Task", JPL, 4800 Oak Grove
Dr., Pasadena, CA 91 109,1986.
Katsuyama, Y., "Expert System for Digital Transmission Network Trouble-
Shooting", Workshop on Expert Systems and Network Operation, IEEE, ICC,
1987.
Laffey, T., Cox, P., Schmidt, J., Kao, S., and Read, J., "Real-Time Knowledge-
Based Systems", AI Magazine, Spring 1988, pp 28-45.
Leinweber, D., "Real-Time Expert Systems for Space Applications", AFCEA
Symposium "Space Technological Challenges for the Future", US Naval
Academy, 1987.
Michalski, R, and Winston, P., "Variable Precision Logic", Artificial Intelli-
gence, Vol29, No 2,1986.

27

[Moo861 Moore, R., "Expert Systems in &-Line Process Control", hoc. CPC-3 Conf.,
1986.

pat851 Paterson, A., Sachs, P., and Turner, M., "ESCORT: the Application of Causal
Knowledge to Real-Time Process Control", Expert Systems 85, Cambridge
University Press 1985.
Reddy, Y., and Uppuluri, S., "Intelligent Systems Technology in Network
Operations Management", IEEE ICC, 1986,39.1.
Sauers, R., and Walsh, R., "On the Requirements of Future Expert Systems",
Roc. 8th UCAI, 1983.
Terplan, K., "Communication Network Management", Prentice-Hall, Inc., 1987.
Yeh, S., Ellis, C., Ege, A., and Korth, H., "Mean Value Performance Analysis
of Two Locking Mechanisms in Centralized Design Environment", Interna-
tional Journal of Information Science, 1988.

[Red861

[Sa11831

[Ter87]
[Yeh87]

28

N89- 1 5 5 5 3 CL

Functional Reasoning in Diagnostic Problem Solving*

Jon Sticklen 1
A W S Group - CPS Dept

A714 Wells Hall - Michigan State University
East Lansing, MI 48824-1027

W. E. Bond and D. C. St. Clair 2
McDonnell Douglas

Research Laboratories
St. Louis, MO 63166

1 Abstract

and space systems currently under development. The authors are applying a method of
modeling and reasoning about deep knowledge based on a functional viewpoint. The
approach recognizes a level of device understanding which is intermediate between a
compiled level of typical Expert Systems, and a deep level at which large-scale device
behavior is derived from known properties of device structure and component behavior. At
this intermediate functional level, a device is modeled in three steps. First, a component
decomposition of the device is defined. Second, the functionality of each device/subdevice
is abstractly identified. Third, the state sequences which implement each function are
specified. Given a functional representation and a set of initial conditions, the functional
reasoner acts as a consequence finder. The output of the consequence finder can be utilized
in diagnostic problem solving. The paper also discusses ways in which this functional
approach may find application in the aerospace field.

This work is one facet of an integrated approach to diagnostic problem solving for aircraft

2 Introduction
Over the last decade there has been a calling for deep-level reasoning capabilities [11,15]

in knowledge-based systems. This calling has, in general, expressed two intuitions:

* Partial support for this research is from the McDonnell Douglas Independent Research and
Development program. Dr. Sticklen is also currently supported as an Ameritech Fellow at
MSU, and by equipment grants from Apple Computer and Texas Instruments.

Part of the research reported here was performed while Dr. Sticklen was associated with the
Laboratory for Artificial Intelligence Research, the Ohio State University.

Dr. St. Clair is also Professor of Computer Science at the University of Missouri-Rolla
Graduate Engineering Center in St. Louis, MO.

29

1. The first intuition is that domain experts have many layers of understanding
about their areas of expertise, ranging from highly cornpiled knowledge to
deep-level understanding which is not tuned specifically to a particular
problem solving task. The ability to layer understanding has consequences
both for problem solving and for the explanation of problem solving.

2. The second intuition is that approaches to knowledge-based systems which
rely solely on patterns of data to establish working hypotheses will not, in
the final analysis, be robust enough to support large systems. Although
there have been convincing arguments that highly compiled systems can, in
principle, be complete [7], there nonetheless is a practical difficulty in
endowing a system with all of the patterns it is likely to need during
problem solving. The central issue is that problem solvers should be able to
deal with novel situations. If pre-stored patterns of data formed the only
cornerstone to problem solving, it would be very difficult to deal with such
novelty.

Although there is general agreement that deep reasoning capabilities are desirable, there
is no apparent consensus on how to model such deep knowledge, nor on how to reason
about it. In fact, there is no clear consensus on what the terms “deep-level understanding”
or “deep-level reasoning” mean.

Recently, Sticklen [22,23] developed an integrated approach to diagnostic reasoning in
the medical domain. One component of his diagnostic architecture is a deep-level reasoner
which acts as a adjunct problem solver to a compiled level unit. The authors of this paper
have recently begun to apply and extend Sticklen’s approach in the domain of aerospace
systems. In this paper, the rudiments of the methodology are described, its utility for
aerospace problems is pointed out, and the points of contact between the research reported
here and other lines of inquiry are described.

3 Functional Approach

causal net approach [16,17,18,26] and the naivephysics approach [1,9,10,12,13]. The
causal net approach centers on representing deep knowledge via a causal net structure.
Deep reasoning then means controlling the process of navigating the causal net. The naive
physics approach centers on deriving the functionality of a device from the function and
structure of its constituent subdevices.

Prior research in deep reasoning methods have typically fallen into two broad areas: the

On close examination, the causal net approach appears to be a compiled problem solving
approach operating in the representation framework of a semantic net. The naive physics
approach is aimed at deriving the behavior of a system from its components. However,
there is a level of device understanding that is intermediate between compiled level
understanding and the level at which composite behavior is derived. That middle ground of

30

device understanding centers on the known purpose to which a device is put; Le., on the
function of the device and its subdevices.

Starting from the broad framework of the Generic Task (GT) theory of knowledge based
systems [3,4,5], and building on the initial representational framework provided by
Sembugamoorthy and Chandrasekaran 1201, the present approach to representing and
reasoning about devices via deep-level knowledge incorporates facets of the two other
approaches.

3.1 Underlying Intuitions

where a device is defined as “a naturally occurring or artifactual assemblage whose
purposes-goals-functions are known.” Any physical object can, in principle, be described
in terms of its physical properties, but once the use of a device is understood,
comprehension has progressed to a higher level.

Device level understanding is distinguishable from the “attribute description” level by the
indexing capability gained at the device level; e.g., if a car’s purpose is understood to be
centered around transportation, then its color attribute is irrelevant. The color attribute of a
stealth aircraft, on the other hand, is highly relevant to its purpose, and hence would find a
place in a functional representation.

Intuition 2: Device Decomposition. Device complexity is managed by decomposing the
device into a number of components until a level is reached at which one can grasp how
subdevices at that level operate. Understanding the operation of the overall device can then
be stated in terms of the operation of the components.

Intuition 3: Indexing. As device decomposition proceeds, understanding of the device is
organized in terms of the purposes of the device; i.e., in terms of its functions. It is
important to note that in the functional approach, device functionality is given, not derived.

Intuition 4: Composability. Intuition #2 above dealt with decomposing a complex device
into a number of subdevices. Intuition #3 is that we organize our understanding about each
of those subdevices in terms of their individual functions/goals. Both #2 and #3 can be
characterized as dealing with the static representation of device understanding. Note, that
the complexity of device understanding is managed by a process of decomposition. Thus,
the process of reasoning about a particular device in a particular situation must have the
ability to dynamically select those parts of device functionality which are relevant to the
current situation.

Intuition I : Limitation to Devices. First, concern is limited to the world of devices,

Intuition 5: Information Processing Task. The last intuition concerns the input-output
relation of the task set for using the functional representation. In more formal terms, this is
called the Information Processing Task (IPT) [141. The IPT for functional level reasoning
is a focused consequencefinding in which the problem solver is given a set of initial
conditions about either the state of the device or the nonavailability of some of the normal

31

functions of the device. The output is the consequent changes that take place in state
variables of the device.

r

Function: Open of CLOTHESPIN
ToMake: teeth-more-open
Provided: (pressure-point-force-applied

GreaterThan restoring-force
B y : OpenBehavior

3.2 Functional Representation and Reasoning

Building on earlier work by Sembugamoorthy and Chandrasekaran [20], Sticklen
[22,23], developed methods of representing and reasoning about functional level
phenomena, including a family of languages for representation and a full consequence
finding algorithm. A description of this functional approach follows.

3.2 .I Representation

The functional level description of a device includes three core components: a
description of device structure, a description of the functions of the device, and a
description of the behaviors of the device which carry out given functions. To illustrate the
various components of the functional representation, consider the simple device shown in
Figure 1 and the partially complete functional description shown in Figures 2 and 3.

r 1

1 I

Figure 1: Simple Device -
A Clothespin

Device: CLOTBESPlN
MDN~CCJ: (A M l

Fwrionr: (Open,

PIVOT]
SPRING, ...)

Clore, r l noid, ...I

Figure 2 Part of Device Specification Figure 4: A Behavior of
for Clothespin Device Clothspin

The device description shown in Figure 2 includes two items: a listing of the subdevices
which compose the current device, and a listing of the functionalities of which the device is
capable. It is possible to conceive of a clothespin as made of many different sets of sub-
devices. A characteristic of the functional level description is that there are many possible
ways of decomposing a device into its components. The decomposition selected depends
on the reasoning purposes for which the representation is constructed.

32

The function description of Figure 3 contains three items:

1. a Provided clause which states the conditions under which the function is
applicable. The Provided clause may be thought of as a precondition for the
behaviors which carry out the function.

2. a ToMuke clause which states the result(s) that will be obtained if the
invoked function completes successfully. The ToMake clause may be
thought of as a postcondition for the behaviors that carry out the function.

3. a By clause which states the behavior(s) carrying out the function.

The function declarations within the functional description provide a means of knowing
what can be achieved (the ToMake clause), what must be true for a given function to be
applicable (the Provided clause), and a pointer for where to look if a more detailed
description is needed of how the function achieves its goal (the By clause).

in Figure 4.
The description of behavior at the functional level contains two ingredients, as illustrated

1. Partial state descriptions of the device. For example, teeth-more-open is a
purtiul state of the Clothespin device. It does not represent a total state
description of the Clothespin.

2 . Annotated links between states. These l i n k s represent both the temporal
flow of one state leading to another, and the reason that one state follows
another. Note that the annotation could be a pointer to another function or
behavior, or to a non-decomposable fragment of world knowledge.

From the above discussion, the following facets of the functional description of a device
can be seen.

1. The functional representation of a device is a conceptual abstraction of what a
device is and how it works. The “what it is” part is represented as a collection of
subdevices related by a Componentof relation. The “how it works” is represented
as the functionalities of which it is capable and the behaviors that accomplish those
functions.

2 . The functional description allows a natural modularity in understanding devices.
This modularity is important in three specific ways. First, a subdevice of the
overall device may be replaced with another totally different subdevice which
accomplishes the same functions. Second, in understanding from the top level how
the device functions, one is normally led via a chain of

device => function => behavior => sub-device ...
to lower and lower levels of sub-devices. However, this path of understanding
may be terminated before the lowest levels of the device are reached. Once a level
is reached at which a particular functionality of some underlying sub-device may be

3 3

“assumed true,” further probing along the current path is unnecessary. This ability
to probe only as far as needed follows directly from the modularity of
representation adopted.

Third, and most importantly, since the functional representation is organized around
fragments of device understanding, the ability to dynamically compose answers is
pivotal. Without significant modularity, such composability would not be possible.

3.2.2 Functional Reasoning

As noted above, the Information Processing Task of the functional approach is a type of
consequence finding. The consequence finding is undertaken in response to a particular set
of conditions, and amounts to building up a full state change diagram from the relevant
fragments that exist in the behaviors of the functional representation. Sticklen [22]
describes the operation of the consequence finding portions of the functional reasoner in
full detail. Informally, the consequence finding steps in the functional approach can be
described as follows.

First, the current nondefault conditions of the device are input. The consequence finder
uses these initial conditions to index the applicable functions of the device by examination
of the preconditions of each function. Through a filtering operation, the highest level
applicable functions are selected as starting points. As one of the selected functions is
taken, each implementing behavior is retrieved. A behavior is represented as a directed
graph structure having two types of nodes: one representing changes in device state, the
other representing a “knowledge pointer” to the reason for the state change. The
knowledge pointers are of two types: decomposable and nondecomposable.

knowledge pointers. Not all functions and behaviors are applicable in a particular situation
since all preconditions must be met before a function or behavior can be used. With that
selectivity taken into account, the process is not unlike the process of macro expansion in
typical computer science terms.

Following the second step, a particularized causal net like structure for the current device
and situation is produced. Each node in this structure represents a change in a state variable
in the device. The overall consequences on the device are then determined by simply
traversing the structure and “adding up the results” of all the state changes that have
occurred. Moreover, because a record of the preconditions of applied functionshehaviors
can be easily maintained, it is also possible to state the consequence finding results in terms
of assumptions which must hold in order for the derived consequences to be valid.

Next, the consequence finder recursively expands each one of the decomposable

4 Functional Reasoning in Diagnosis

[2,6,2 1,22,24], each diagnostic hypothesis is represented by a classification specialist.
For diagnostic systems based on compiled classificatory problem solvers

34

Each of these specialists must be able to establish its own viability, given the particular
device/situation under consideration. One way of establishing this hypothesis is to rely on
compiled associations in one way or another. To depend solely on such compiled
knowledge assumes that novel situations will not be encountered. In general, this
assumption is not valid.

derive associational links that can be used for hypothesis establishment, and the
assumptions that must hold for the links to be valid. In order for a compiled level
diagnostic hypothesis to make use of a functional level consequence finder, the diagnostic
hypothesis needs one additional knowledge structure - a representation of what the
diagnostic hypothesis means in functional terms. Given such initial conditions, the
functional reasoning process derives the consequences for the device. At the diagnostic
level, results of the functionally based consequence finding can be used as patterns which
should be present if a particular diagnostic hypothesis is valid for the current case. Sticklen
has described this interaction between a deep problem solver and a compiled level problem
solver in detail [22].

The Function Level Consequence Finding strategy, as outlined above, provides a way to

5 Functional Reasoning in Aerospace Applications
To date, the functional approach described has been applied primarily in the medical

domain. However, a preliminary examination of several typical aerospace systems
(electronic, hydraulic, and a fuel system) indicates that this approach is also applicable to
engineered systems, especially as a aid to the desigdredesign process, as well as in trouble
shooting situations.

During the design stage, an engineer will initially define the high-level functionality of a
device. Then the device design is refined by specifying subdevice functionality. When
sufficient detail has been developed, specific components and interconnections are chosen
to implement the low-level functionality. This process is fully supported by the functional
approach described. In addition, the functional approach appears to support specific
implementation requirements:

1 . The ability to handle systems that exhibit both steady-state and dynamic
behaviors (example-both the operation of a fuel system under constant
demand conditions as well as the conditions that occur. when the engine
being supplied goes from 50% to 100% power). Many diagnostic
procedures assume a system that is operating under steady-state conditions.
Although many failure conditions can be detected using that assumption,
other failures occur only during device transients.

2. The ability to identify situations that produce both “hard” failures and also
situations where a device fails to perform “to specifications.” Many
diagnostic systems assume that a failure will occur in a distinct manner.
This assumption is incorrect in some instances. Instead, the system may

35

malfunction by failing to perform to desired specifications or by producing
symptoms which are not distinctive.

3. The ability to explicitly address device connectivity. Aerospace systems are
often constructed by assembling a large number of interconnected
components. The representation of connectivity should be explicit. This
representation allows the designer to quickly wire together functional units.
It also provides the ability to perform quick reconfigurations for design
modifications.

To be successful, the approach must be able to interface with design and test
environments. It is anticipated that the functional approach will allow considerations of
testability to enter in the design process much earlier.

6 Discussion

of devices has been described, and a method to use the results of functional reasoning in
diagnostic problem solving has been sketched. Recently, several other lines of research
have been reported which attempt diagnostic problem solving from first principles, for
example, see Reiter [191. This recent body of work is largely an extension of the
diagnostic outlook taken by Davis [8] and others who set out to perform diagnostic
problem solving directly from a deep level. On the other hand, the functional approach
described here integrates both a compiled level and a deep-level problem solver into a single
composite unit in which the compiled level problem solver can play the important role of
focusing the deep-level problem solver.

approach can also be applied to some of the problems associated with the issue of design
knowledge capture [25]. Design knowledge capture is the process of organizing design
knowledge in a machine-interpretable form. Design knowledge is composed of the specific
design solution description together with the underlying rationale for the solution. The
design description defines what the solution does and why it does so. The rationale
includes the information used by the designers, the analyses that were performed, and the
decisions that were made to produce the solution. Because the central aspect of the
functional approach is the organization of knowledge about how a device works, it directly
provides a description of what the device does and how it performs its function. It also
provides an active representation which can be used in the future to simulate the operation
of the device or to perform diagnostics.

In this report, a functional approach to representing and reasoning with deep knowledge

Beyond its uses in diagnostic problem solving for aerospace systems, a functional

7 References
1. Bylander, T. 1986. “Consolidation: A Method for Reasoning about the Behavior

of Devices.” Ph.D. The Ohio State University, Columbus, Ohio.

36

2.

3.

4 .

5 .

6.

7 .

8 .

9 .

10.

11 .

12.

13.

14.

15.

16.

17.

Chandrasekaran, B. 1982. “Decomposition of Domain Knowledge into
Knowledge Sources: The MDX Approach.” Proc. 4th Nut. Con$ Canadian
Society for Computational Studies of Intelligence.

Chandrasekaran, B. 1983. “Towards a Taxonomy of Problem-Solving Types.”
AI Magazine, 9-17.

Chandrasekaran, B. 1985. “Generic Tasks in Knowledge-Based Reasoning:
Characterizing and Designing Expert Systems at the ”Right” Level of
Abstraction.” Proceedings of The IEEE Second Annual Conference on Artijkial
Intelligence Applications, IEEE.
Chandrasekaran, B. 1986. “Generic Tasks in Knowledge-Based Reasoning:
High-Level Building Blocks for Expert System Design.” IEEE Expert, 23-30.

Chandrasekaran, B., F. Gomez, S. Mittal and J. W. Smith. 1979. “An Approach
to Medical Diagnosis Based on Conceptual Structures.” Proceedings of IJCAI 6.

Chandrasekaran, B. and S. Mittal. 1983. “On Deep versus Compiled Knowledge
Approaches to Medical Diagnosis.” International Journal of Man-Machine
Studies, 425-436.

Davis, R. 1984. “Diagnostic Reasoning Based on Structure and Behavior.”
Artijicial Intelligence, 347-410.

de Kleer, J. and J. S. Brown. 1984. “A Qualitative Physics Based on
Confluences.” Artijicial Intelligence, 7-83.

Forbus, K. D. 1984. “Qualitative Process Theory.” Artificial Intelligence,

Hart, P. 1982. “Directions for AI in the 80s.” SIGART News Letter.
Kuipers, B. 1984. “Commonsense Reasoning about Causality: Deriving
Behavior from Structure.” Artificial Intelligence, 169-203.

Kuipers, B. and J. P. Kassirer. 1984. “Causal Reasoning in Medicine: Analysis
of a Protocol.” Cognitive Science, 363-385.

Marr, D. 1982. “Vision.” W.H. Freeman.

Michie, D. 1982. “High-road and Low-road Programs.” AI Magazine, 21-22.

Patil, R. S. 198 1. “Causal Representation of Patient Illness For Electrolyte And
Acid-Base Diagnosis.” Ph.D. M.I.T., Cambridge, MA.

Pople, H. 1977. “The Formation of Composite Hypotheses in Diagnostic
Problem Solving: An Exercise in Synthetic Reasoning.” Proceedings of IJCAI 5,

85-168.

1030-1037.

3 7

18.

19.

20.

21.

22.

23.

24.

25.

26.

Pople, H. 1979. “Heuristic Methods for Imposing Structure On Ill Structured
Problems: The Structuring of Medical Diagnosis.” In Artificial Intelligence In
Medicine, P. Szolovits. 119-189. Westview Press.

Reiter, R. 1987. “A Theory of Diagnosis from First Principles.” Artificial
Intelligence, 57-95.

Sembugamoorthy, V. and B. Chandrasekaran. “Functional Representation of
Devices and Compilation of Diagnostic Problem-Solving Systems.” In
Experience, Memory, and Learning, J. Kolodner and C. Reisbeck. Lawrence
Erlbaum Associates.

Smith, J. W. 1986. “RED: A Classificatory and Abductive Expert System.”
Ph.D. The Ohio State University, Columbus, Ohio.

Sticklen, J. 1987. “MDX2: An Integrated Medical Diagnostic System.” Ph.D.
The Ohio State University, Columbus, Ohio.
Sticklen, J. and B. Chandrasekaran. 1985. “Use Of Deep Level Reasoning in
Medical Diagnosis.” Proceedings of The Expert Systems in Government
Symposium.

Sticklen, J., B. Chandrasekaran and J. R. Josephson. 1985. “Control Issues in
Classificatory Diagnosis.” Proceedings of IJCAI 9.

Sticklen, J. and B. Chandrasekaran. 1988. “Using a Functional Approach for
Knowledge Acquisition.” Proceeding of 4th Banff Conference on Knowledge
Acquisition, in press.

Weiss, S . , C. Kulikowski and A. Safir. 1977. “A Model-Based Consultation
System for the Long-Term Management of Glaucoma.” Proceedings of IJCAI 5,
826-832.

38

The Elements of
Design Knowledge Capture

Dr. Michael S. Freeman
National Aeronautics and Space Administration

Systems Engineering Division
Systems Analysis and Integration Laboratory

Marshall Space Flight Center AL 35812

Abstract
This paper will present the basic constituents of a design knowledge capture

effort. This will include a discussion of the types of knowledge to be captured in such
an effort and the difference between design knowledge capture and more traditional
knowledge base construction. These differences include both knowledge base
structure and knowledge acquisition approach. The motivation for establishing a
design knowledge capture effort as an integral part of major NASA programs will be
outlined, along with the current NASA position on that subject. Finally the approach
taken in design knowledge capture for Space Station will be contrasted with that used
in the HSTDEK project.

Although Design Knowledge Capture (DKC) has become a subject of strong
interest in the Artificial Intelligence (AI) community, and is a critical element of
some major new NASA programs such as Space Station Freedom, there still exists
considerable confusion as to its nature, scope and feasibility. This is aggravated by an
ambiguity inherent in the term itself, and the natural inclination to view DKC as just
a "scaled-up" knowledge based system development task. In this paper I will try to
clarify some of the differences between DKC and typical knowledge engineering
projects, identify some of the challenges inherent in these differences, describe the
approaches being taken in NASA to meet these challenges, and discuss the
needdbenefits which justify the effort being made to develop a methodology for DKC.
As will be discussed in more detail below, i t is my opinion that an ability to integrate
DKC with the traditional engineering activities which comprise a NASA system
development project will be essential to the success of the missions we are
undertaking in the next decade, and beyond. It is also an outstanding opportunity for
NASA to develop new technology which can have a pervasive and significant impact
on American industry, fundamentally changing the way we perceive technological
progress. NASA is responding to this challenge by setting itself the goal becoming a
world leader in the area of intelligent autonomous systems for aerospace
applications, and has set up an aggressive program for research, development,
validation, and demonstration of DKC technology. The Hubble Space Telescope
DesignEngineering Knowledgebase (HSTDEK) Project is the primary focus for DKC
development in NASA at the present time, although other significant activities exist.
As the lead center for the HSTDEK Project, Marshall Space Flight Center has made a
strong commitment to the utilization of knowledge based systems in future missions.

39

In order to distinguish DKC as a special type of knowledge engineering
activity, it will benefit us to first review some basic nomenclature. Artificial
Intelligence is "the part of computer science concerned with designing intelligent
computer systems, that is, systems that exhibit the the characteristics we associate
with intell igence in human behavior - understanding language, learning,
reasoning, solving problems, and so on". [l] It is in the area of problem solving that
AI has seen its greatest practical successes, in the form of "Expert Systems" which
emulate in software and hardware the ability of some person (or persons) recognized
as having exceptional skills in solving a particular type of problem. The ability of a
computer system to mimic such skills can be very valuable, as has been widely
discussed in AI, and business, literature of the past few years. The process of
capturing such skills in a form ("Knowledge Representations") amenable to
implementation in a computer system (a "Knowledge Base") is called "Knowledge
Acquisition", and a number of highly sophisticated tools have been developed to
support this type of activity. These range from symbolic languages such as LISP and
PROLOG, to single-paradigm tools (or "shells") such as Rulemaster and VP-Expert, and
on to multi-paradigm development environments such as KEE and ART. The ability of
these tools to support development of expert systems and the commercial success of
the systems built using those tools have reinforced each other, resulting in better
tools for constructing expert systems. But it also has caused the development of these
tools to focus closely on the needs of expert systems at the expense of more
generalized capabilities. This has, in turn, constrained the pursuit of intelligent
systems with broader objectives [2]. These broader focus intelligent systems are
called "Knowledge Based Systems" (KBS), of which expert systems are a subset. Where
expert systems attempt to capture the scarce expertise available only from one or a
very few widely recognized experts, knowledge based systems attempt to formalize
the more general problem solving techniques more typical of competent engineers.
For this reason they are less tied to a narrow application area, or "domain".

The goal of a DKC effort, as stated for NASA's Hubble Space Telescope
DesignEngineering Knowledgebase Project, is to enable major projects to capture
the desigdengineering expertise they have acquired during the development of
their systems in a knowledge base capable of supporting multiple applications [3].
Because of the nature of the expertise to be captured, these applications are
knowledge based systems rather than expert systems. The knowledge utilized in
developing a major aerospace system spans many technical disciplines, applied by a
large number of engineers. In the past, some isolated areas of this expertise might be
singled out as especially valuable or unique, and an expert system development
project initiated. The premise behind DKC is that, given the complexity, cost, and
operational lifetime of current major systems, a much broader and better integrated
cross section of the expertise will be required to insure long term mission success.

It is not possible at this point in the development of a DKC methodology to
rigorously delimit the scope or type of expertise which must be captured. In order to
approach the question at all, we must distinguish between a knowledge base and a
knowledge based system. A knowledge base typically consists of a "domain model" of
some activity or component of a system coupled with expertise on how the elements
of that model interact in some context. A knowledge based system utilizes the contents
of the knowledge base, augmented with application specific expertise, to achieve
some goal. In expert systems the domain model is so specifically tailored to a specific
narrow application that the domain knowledge is difficult or impossible to separate
from the application. In other words, the contents of the knowledge base cannot
easily be reused to support multiple applications. Since DKC is intended to result in a

4 0

knowledge base capable of supporting multiple applications, this is a significant
difference. One consequence of this difference is that tools developed to build expert
systems provide limited support to a DKC effort. Another effect is that a thorough DKC
effort can be expected to result in a knowledge base much larger than other
knowledge engineering activities.

In addition to inherent large-scale, multi-application characteristics, a DKC
knowledge base also must involve the integration of multiple technical disciplines. A
typical expert system will focus on only one technical discipline, such as
biochemistry, VLSI electronics, or mathematics. DKC, therefore, poses formidable
systems engineering (as well as knowledge engineering) problems. A typical NASA
development team may represent thirty or more major technical disciplines, with
consultants in narrower areas. Between contractor and civil service engineers, there
may be hundreds of people involved in the development process. Current technology
is adequate to build isolated expert systems in most of these disciplines. The challenge
for DKC is to develop a methodology which will integrate the expertise of these
various disciplines into a knowledge base in which they can be jointly applied to
solve problems which cross discipline boundaries. At present, a systems engineering
approach can be facilitated in a DKC project by establishing from the beginning
some target applications to be supported by the DKC knowledge base which involve
multiple technical disciplines, and address the system at an integrated (as well as
component) level. Two good candidates which currently require a great deal of
manpower to support in NASA projects are fault diagnosis (including Failure Modes
Effects Analysis and Critical Items Lists) and training for operational support. By
insuring that the DKC knowledge base can support these specific functions, as well as
meet its general knowledge capture goals, we can provide both a near term return on
investment and enhanced long term support. The state of the art in knowledge
engineering and/or project requirements may result in the choice of other
applications. For example, support for evolutionary design might be a better
application than training, but the use of a KBS to support general design is still in
the realm of research.

Given the distinction made earlier knowledge bases and knowledge based
systems, it becomes clear that the very term Design Knowledge Capture is ambiguous.
Design is not a domain which can be modelled; instead, we have design expertise of
differing levels of generality which can be utilized in various applications. We might
therefore build a knowledge based svstem to support our design activities. But we also
refer to the result of these design activities as the "design" of our system. In building
a DKC knowledge base we certainly will want to capture as much of this design da.ta as
possible in our domain model to support many different applications such as fault
diagnosis, operations planning, and even evolutionary design. Additionally, much of
that expertise acquired during system development which we want to retain consists
of knowing how to design systems such as this one, and why this one was designed as
it was. With regard to DKC, it appears that the best way to resolve these ambiguities is
to consider design data, and rationale behind specific design decisions, as elements of
the domain model, and thus of the knowledge base. More general design expertise
should be considered as components of a knowledge based system for design, even
though it was applied in this specific design instance.

With these clarifications, the DKC goal stated earlier should be more easily
understood. The nature of DKC makes it a tremendous, but not insurmountable,
challenge to our fledgling knowledge engineering capabilities. Much work remains
to be done to develop a workable methodology and adequate tool set for DKC. NASA has
set itself the goal of being a leader in the development and application of this
technology. There are a number of reasons why this technology is especially critical
to NASA [4], several of which will be discused below.

41

for Developjng a W o d o l o g v for DKC:

As Plato recommended in his "Republic", concepts are often best understood by
examining them in the context of systems where they are applied on a large scale.
Many of the systems developed by NASA represent a vast effort by hundreds of
people encompassing dozens of technical disciplines. By considering what motivates
NASA to pursue the development of DKC methodology, it should become clear that
many of these motivations also apply in smaller projects. This discussion will
therefore focus on the rationale which has led NASA to commit itself to major DKC
efforts in near-term, large scale projects such as Space Station Freedom.

The importance of intelligent or knowledge based systems for NASA missions
has been explicitly recognized on several occasions, both within and without the
agency. Perhaps the most striking was the enactment of Public Law 98-371, which
stated a requirement that:

"The Administrator shall establish an Advanced Technology Advisory
Committee in conjunction with NASA's Space Station program and that
the Committee shall prepare a report by April 1, 1985, identifying
specific space station systems which advance automation and robotics
technologies, not in use in existing spacecraft, and that the
development of such systems shall be estimated to cost no less than 10
per centum of the total Space Station costs." [5]

The seriousness with which Congress approached the use of automation and
intelligent systems is reflected in the goal established for NASA's System Autonomy
Technology Program:

"The general goal to establish and maintain NASA as a world leader in
this area of intelligent autonomous systems for aerospace applications
will be achieved by significantly advancing the required technologies,
by validating these technologies in operational environments, and by
developing and maintaining world-class technical expertise, facilities
and tools within the NASA organization," [6]

The Systems Autonomy Technology Program (SATP) Plan has identified development
of a system knowledge base as "the central, most important technology development
area" and points out that "this process must start during the design phase, where the
final design represents a first baseline of factual information from which factual
knowledge for the system knowledge base can be extracted". [7]

Development of intelligent systems to support NASA missions has, so far, been
a matter of building individual expert systems to support particular applications. This
is a very expensive process for many reasons, including the scarcity of personnel
trained in knowledge engineering. The most costly activity is that of knowledge
acquisition; capture of the required expertise from several sources such as
documentation, data products, interviews with design and test engineers, etc. There
are, as mentioned earlier, a great number of applications which could be supported
by knowledge based systems utilizing this expertise. Taking one example, consider
the effort required to develop a fault diagnostic expert system for each of the major
components for a system if we treat each technical discipline as requiring a separate
KBS. There will be enormous duplication of effort if we build a electrical fault
diagnostic expert system, thermal fault diagnostic expert system, mechanical fault
diagnostic expert system, etc. Furthermore, the benefits of using an integrated
analysis (where thermal data are used to help diagnose an electrical problem, for

4 2

example) would be totally lost. When you next consider that there are many other
applications which are desirable to support our missions that could also use much of
the same expertise, such as command planning, power load scheduling, evolutionary
design, and so forth, then it becomes very clear that an organized, consistent
approach to knowledge acquisition is both more effective and more efficient. To
maximize these benefits, knowledge acquisition should be done as part of a DKC effort
integrated with the development process itself. It is simply not possible to maintain
the "standing armies" of engineers now used to support short term missions such as
shuttle flights or Spacelab missions in an era where fifteen to thirty year
operational phases are planned. The recognition of this fact has led NASA to initiate
DKC efforts on its major new programs.

In 1987 NASA initiated the Hubble Space Telescope DesigdEngineering
Knowledgebase (HSTDEK) Project. The primary goal of the HSTDEK Project is to enable
major NASA projects to capture the design/engineering expertise they have acquired
during the development of their systems in a knowledge base capable of supporting
multiple applications. In order to accomplish this, current knowledge engineering
technology must be extended in several areas, the new technology must be validated,
and a mechanism established for transferring it to users within NASA. Six specific
objectives have been identified for the project:

1. Develop a methodology for constructing multi-application, large-
scale knowledge bases.

2. Develop a methodology for acquiring knowledge from multiple
domain experts representing different technical disciplines, and
integrating it into a single knowledge base.

3. Develop an approach for integrating knowledge engineering into
the traditional engineering activitiesof a system development effort.

4. Validate this new technology in the context of a major NASA
program: construction of a deep, comprehensive knowledge base for
the Hubble Space Telescope.

5 . Develop an in-house knowledge engineering capability for NASA to
apply this new technology and support its validation.

6. Establish a program for making this new technology available to
major new NASA projects, beginning with Space Station and AXAF.

This is the major effort within NASA to develop and put in place a DKC methodology.
It is a joint effort between Marshall Space Flight Center (MSFC) and Ames Research
Center. The basic research described in the first objective is being pursued by the
Knowledge Systems Laboratory at Stanford University. Knowledge engineers at
Lockheed and MSFC are the primary researchers on the second objective, while the
third objective is the focus of a grant with the University of Alabama in Huntsville.
The last three objectives are being handled as MSFC internal activities. HSTDEK is a
five year project, funded by the Office of Aeronautics and Space Technology at NASA
Headquarters. As shown in the objectives listed above, it includes research elements
as well as a demonstration of DKC technology in the Hubble Space Telescope domain,
which is expected to be of direct benefit to the HST during Orbital Verification of the
system, and also during long term operations.

There exists a high degree of similarity in the development process for most
major NASA projects. It is expected that the methodology for design knowledge
capture developed in HSTDEK and validated in the Hubble Space Telescope domain will

4 3

be immediately applicable in support of Space Station, AXAF, and other major NASA
projects. The long operational lifetimes of these projects require DKC to meet
operational objectives. In addition to retaining the design and engineering expertise
developed on these projects, which usually dissipates rapidly during their
operational phase, a systems knowledge base incorporating this expertise will
greatly facilitate the construction of knowledge based systems for multiple
applications. The problem becomes that of enhancing the knowledge base with
respect to that particular application rather than starting from scratch each time.
The enhanced system autonomy and productivity of ground/flight crew will result
in improved mission efficiency, an extension of our capability to achieve mission
goals, and an improved probability of mission success. The projected benefits to the
HST Program reflect a limited subset of the expected payoffs of this project, and will
now be discussed.

The planned operational lifetime of the HST is fifteen years. Even if design
data can be maintained over that period by current manual/electronic means, the
design and engineering expertise which provides the context for that data cannot.
The HSTDEK knowledge base will provide a vehicle for making that expertise
available to HST personnel throughout its lifetime. As part of its technology
validation effort, HSTDEK will produce two knowledge based systems which will
support specific HST applications: HSTORE and GESST. The HST Operational Readiness
Expert (HSTORE) will support the Orbital Verification mission at MSFC immediately
following launch of the HST with regard to telemetry monitoring and fault diagnosis
of the Electrical Power System and the Pointing Control System, as well as planning
for a potential Maintenance and Refurbishment (M&R) mission. The use of this
system to reduce the MSFC manpower required for one and a half years of limited
operational support is being investigated. This is estimated to result in a 50% decrease
in the contractor support required for this purpose (approximately five man years
reduction), as well as a faster response to anomalies. The Ground-based Expert System
for Space Telescope (GESST) will support HST operations at GSFC, adding support for
the Data Management System, Instrumentation and Control System, Mechanisms and
Structures, and Thermal Control System, as well as scheduling, training and design
applications. The operational impact of GESST has not yet been evaluated, but should
certainly reduce GSFC reliance on MSFC and contractor experts, expedite operational
support, and possibly reduce manpower required for operations. A contractor
developing an AXAF proposal has unofficially estimated that the staffing per shift for
that program can be reduced from 10 to 3 by use of HSTDEK technology. Considering
the backlog of astronomers wishing to use the HST, the use of GESST to quickly
diagnose (or even forecast and prevent) failures could result in an effective increase
in that most valuable commodity, observing time, by reducing down-time. Similarly,
an enhanced capability to plan maintenance and refurbishment missions should
result in their occurring less frequently, which is a cost-savings in both dollars,
shuttle time, and HST observing time. Another payoff from HSTDEK will be the HST
knowledge base itself, which will be made available to AXAF and other NASA
programs as a design aid. In addition to the HSTDEK technology deliverables per se,
ten MSFC engineers will be given the training and experience needed to develop
knowledge based systems. As they leave HSTDEK to work in other projects, a
significant payoff will be their enhanced ability to use this technology. Coupled with
the exposure gained from use of knowledge based systems to support the HST, a very
high visibility NASA program, this technology transfer mechanism should result in
a new generation of sophisticated knowledge based systems in NASA. HSTDEK has
already generated an increased awareness of the potential of knowledge based
systems in MSFC management, and more interest in applying this technology to NASA
domains in the AI community.

4 4

This increased awareness has directly resulted in the incorporation of a
requirement for DKC in the Phase C/D Request for Proposal issued for AXAF. Both
bidders on that contract addressed the DKC issue in their proposal, and the winner
(TRW) will now proceed to implement their DKC program. It is inappropriate to
discuss specifics at this point since negotiations a re still in progress, but the
presence of even a limited DKC element in AXAF planning is a very positive step for
the technology, and a validation of its perceived importance in NASA.

By far the greatest challenge, and the strongest requirement, for DKC in NASA
is the development of Space Station Freedom. In response to the Congressional
direction discussed above, NASA prepared a document titled Process Requirements for
Design Knowledce CaD - ture, whose objective is "to define design knowledge capture
requirements placed on the work package contractors in support of the Space Station
design community." [8] This document goes on to say that DKC is intended to include
both design objects and designer's knowledge. The response of bidders for the work
package contracts in the area of DKC varied greatly in both the depth and scope of
their proposed approaches. The Space Station Program Office has given the
responsibility for consolidating procedures and data relating to DKC to the Systems
Engineering and Integration Information Planning Group. This group includes
members from the Program Office, the Work Package Centers, and the International
Partners. One current objective of the group is to revise the Process Requirements
Document for DKC, and provide a coordinated input to the Space Station Program
Requirements Document. Unfortunately, the planning for DKC at that level is now
focused on use of the Technical Management Information System to capture text
oriented design information, rather than integration of knowledge engineering
tools with the traditional engineering activities. Discussions with the Space Station
Strategic Plans and Programs Division as part of a recent Advanced Automation Study
[9] has resulted in the definition of a three year task beginning in Fiscal Year 1989
to assess the ability of the Software Support Environment (SSE) workstations which
will be used for development of all Space Station operational software to support the
DKC activity. This task will

"Build upon on-going Design Knowledge Capture (DKC) and use SSE
Workstations as mechanism for performing DKC activities; define DKC
capabilities (and information content requirements) by working with a
fully designed spacecraft and assess the potential of the SSE Workstation
and i t s software to perform portions of SS DKC; identify
hardware/software modifications required to the SSE Workstation to
support DKC."[101

This task will apply and extend the experience gained in HSTDEK in order to develop a
plan for initiating a full DKC effort for Space Station. This approach will treat
knowledge based systems as elements of the planned SS operational software set.

NASA is therefore aggressively pursuing the development of DKC methodology
and planning for its incorporation in major new programs, including the Hubble
Space Telescope, Advanced X-Ray Astronomical Facility, and Space Station Freedom.
Given the magnitude of the design and engineering efforts required to develop these
systems, and their projected fifteen to thirty year operational lifetimes, there is
simply no practical way to complete their missions without the use of Design
Knowledge Capture.

4 5

References

1 .

2.

3.

4.

5.

6.

7.

8 .

9 .

10.

Barr, A., and Feigenbaum, E. A. (Eds.) The Handbook of Artificial IntelliFence,
Volume 0 ne, William Kaufman, Inc., Los Gatos CA, 1981, Page 3.

Freeman, M. S., "An Investigation of Multi-User Expert Systems", Dissertation,
University of Alabama in Huntsville, May 1987.

"Systems Autonomy Technology Program (SATP) Plan" (FY 89 Draft),
NASA/Ames Research Center, August 1988, page A-160.

Freeman, M. S., and Hooper, J. W., "Factors Affecting the Development of Expert
Systems in NASA", First Conference on Artificial Intelligence for Space
Applications, NASA/Marshall Space Flight Center and the University of
Alabama in Huntsville, October 1985.

"National Aeronautics and Space Administration Research and Development, 98
Stat. 1227, Research and Program Management Report" Public Law 98-371, July
1984.

"Systems Autonomy Technology Program (SATP) Plan" (FY89 Draft),
NASA/Ames Research Center, August 1988, Foreword.

"Systems Autonomy Technology Program (SATP) Plan", NASA TM 100999,
NASA/Ames Research Center, December 1987, Page 16.

"Process Requirements for Design Knowledge Capture", JSC 30471, Johnson
Space Center, December 15, 1986, Page 1-2.

"Space Station Advanced Automation Study Final report", Strategic Plans and
Programs Division, Office of Space Station, NASA Headquarters, May 1988.

Program Operating Plan (POP) 88-2 Guidelines for the Space Station Transition
Definition Program, Office of Space Station, NASA Headquarters, May 16, 1988,
Page 2-11.

46

N89- 1 5 5 5 5
KAll : A TOOL TO SIMPLIFY THE KNOWLEDGE ACQUISITION PROCESS

Gary A . Gett ig

Phase Linear S y s t e m s , Inc.
9300 Lee Highway

Fairfax, Virginia 22031

ABSTaACT

Analysts, knowledge engineers and information specialists
are faced with increasing vol.umes of time-sensitive data in text
form, either as free text or highly structured text records.
Rapid access to the relevant data in these sources is essential.
However, due to the volume and organization of the contents, and
limitations of human memory and association, frequently a)
important information is not located in time; b) reams of
irrelevant data are searched; and c) interesting or critical
associations are missed due to physical or temporal gaps involved
in working with large files.

The Knowledge Acquisition Module (KAM) i s a microcomputer-
based expert system designed to assist knowledge engineers,
analysts, and other specialists in extracting useful knowledge
from large volumes of digitized text and text-based files. KAM
formulates non-explicit, ambiguous, or vague relations, r '.es,

library of system rules o r heuristics is maintained to control
the extraction of rules, relations, assertions, and other
patterns from the text. These heuristics can be added, deleted
or customized by the user. The user can further control the
extraction process with optional topic specifications. This
allows the user to cluster extracts based on specified topics.

and facts into a manageable and consistent formal code. A

Because KAM formalizes diverse knowledge, it: can be used by
a variety of expert systems and automated reasoning applications.
KAM can also perform important roles in computer-assisted
training and s k i l l development.

Current research efforts include the applicability of
neural networks to aid in the extraction process and the
conversion of these extracts into standard formats.

INTRODUCTION

As technology advances, reams of information are being put
onto electronic media daily. The Federal government alone
maintains thousands of databases and there are several agencies
such as DTIC and NTIC whose primary mission is to provide
information to user communities. With this wealth of informarton

47

at hand, a tool to access and retrieve relevant information in a
comprehensive and timely fashion would greatly enhance
productivity. This is especially true when developing an expert
system.

Knowledge acquisition is one of the biggest obstacles facing
anyone who is attempting to build an expert system. More time is
spent on it than any other phase of the expert system life cycle.
The first step in knowledge acquisition is domain orientation.
This initial gathering of information about a domain is where the
Knowledge Acquisition Module (KAM) is the most powerful.

Knowledge engineers generally know little of the subject
they are attempting to model. It is often necessary to spend
weeks doing background research. This involves reading through
many documents and databases, most of which are irrelevant.

During this process, the knowledge engineer may miss
valuable information due to time constraints or lack of a
structured methodology to locate it. The knowledge engineer may
also miss important relationships between objects or ideas. This
is caused by temporal relationships within the documentation such
that the knowledge engineer can no longer remember previous data
and how it relates to what is being read. In addition, spacial
gaps in text of related information make it difficult to obtain a
comprehensive understanding of a topic or follow lines of
reasoning to a conclusion. The above problems are compounded if
more than one person is assigned to do the background reading.

The Knowledge Acquisition Module is a word-based natural
language processor designed to extract specific knowledge from
large volumes of text based files. These files can be in the
form of a wordprocessor document, ascii text file, or a highly
structured database. Information can reside on disk, in memory,
or be ported in via a communication line.

METHODS OF EXTRACTION

A variety of different methods are used to extract
information from text. These methods can work at the word,
syntax, semantic, or pragmatic level. KAM expounds on two of
these methods. The first, context analysis, works at both the
word and syntax levels. Words can have a myriad of different
meanings when presented alone. Groups of words, however, can
have a very specific meaning. This meaning defines an idea or
context. For example, while scanning a paragraph the word "BAT"
is found. "BAT" can mean several things when viewed by itself.
"BAT" could be a noun or a verb, each having a variety of
different meanings. Figure 1 gives a sample of some of the
different meanings of the word "BAT".

48

Figure 1. Stand alone meanings of various words
Adapted from [Uebster2]

BAT (noun) -
1. a solid stick
2 . a sharp blow
3 . a wooden instrument used for hitting a ball in

various games
4. a paddle used in various games
5. rate of speed
6. a flying nocturnal mammal
7 . a hag or a witch

BAT (verb) -
1. to strike or hit
2 . to discuss at length
3 . to wander aimlessly
4. to wink

BASE (noun) -
1. the bottom or lower part of something
2 . a main ingredient
3 . fundamental part of something
4. the starting place
5. bitter tasting compound
6 . the four stations at the corner of a base-all field
7 . a center of operations

BASE (verb) -
1. to make, f o r m , or serve as a b a s e for
2 . to find a base or basis for (used with on or upon)

BASE (adj) -
1. of little height
2 . low in place or position
3 . resembling a villain
4. being of low value or inferior properties
5. lacking higher values

DIAMOND (noun) -
1. a native crystalline carbon (gem)
2 . a square or rhombus shaped figure
3 . something that resembles a diamond
4. a baseball infield

DIAMOND (verb) -
1. to adorn with diamonds

49

Figure 2. Conceptual Grouping of Battle
Adapted from [Websterl]

Battle(noun) -
engagement
action
clash -

assault -
brawl, broil, conflict

aggression
offense -

aggression, assailment, onslaught
onfall, onslaught

charge
drive -

attack -

initiative, push
raid, blitz, militarization, seizure

combat -
action

contest -
competition, rivalry, warfare

Battle(verb) -
war -

challenge
struggle -
scrimmage -

assault -

bombard -

endeavor, essay, attempt

affray, skirmish, melee

engage, aggress, beset, storm

blitz, bomb
shell -

barrage, strike
bombard, cannonade, rake

fight -
strive, debate, dispute, resist

buck -
dispute, duel, repel, traverse, pulverize,
unseat, duel

oppugn -
contend

50

The next word that might be encountered is "BASE". BAS E
is even more complex than "BAT". As can be seen in Figure 1,
 BASE^* has different meanings as an adjective, a verb, or a noun.
The third word located may be "DIAMOND", which has various
meanings as well. But observe what happens whe'n '*BAT", "BASE",
and "DIAMOND" are put together. The context that the paragraph
was alluding to becomes apparent - that of baseball. This was
accomplished without baseball being explicitly stated within the
document. KAM allows the user to perform this type of analysis
through a user defined topical grouping. This grouping can be
done at the sentence level, through the use of rules, or at the
paragraph level with special topical clusterings. Meanings can
also be derived using KAM at the syntactic level by the order and
spacial relationships of these words in the topical clusterings.

The second method, conceptual grouping, works in KAM
primarily at the word level. It can, however, be modified to
include phrases. Conceptual grouping is accomplished by linking
with a thesaurus or dictionary of synonyms in order to fully
cover the meaning of a specified topic. By specifying one topic
and then calling a thesaurus, one will be able to discover links
between related ideas that would have otherwise gone undetected
by a person searching through large volumes of text. For
example, suppose one wanted to discover how a certain document
pertains to 'battle'. One could specify 'battle' in the topics
list and have KAM help link to related words and concepts. One
can even specify the conceptual depth one is required to achieve.
Figure 2 shows how easy it is to achieve a high level of
conceptual dependency.

KAM uses the thesaurus to break out the user specified
topics into parts of speech. It then follows the same part of
speech while digging deeper for concepts. For instance, the verb
'battle' chains to the verb 'fight' when looking for related
concepts and not to the noun 'fight'. This is to curtail the
combinatorial explosion which would result if no constraints were
placed on the concept grouping. This can, however, be turned off
if necessary. The part of speech of the word can also be
specified when giving the topic.

As can be seen from Figure 2 , going beyond the third
processing level causes two problems to occur. First, the topics
become circular and further depth traversal is unnecessary. This
can be seen in the case when the noun 'battle' chains to
'assault', which in turn chains to 'offense'. 'Offense' then
chains to ' aggression' which was already established by
'assault'. The deeper the level the more circular chaining
becomes. The second problem, which is the most difficult to
manage, is that a topic tends to veer too heavily from its
intended course, resulting in unintended generalizations. The
question of when to stop is a matter of how deeply one needs to
go to understand or reveal the relationships that are tryin: to
be uncovered. Conceptual grouping is also useful in pickirrg up

51

trends and biases in documents that would have otherwise gone
unnoticed.

HOW KAH WORKS

KAM identifies word relationships by their contextual and
conceptual dependencies. It will use any text-based or database
file to formulate ambiguous or vague relationships, and non-
explicit rules or facts into manageable clusters of related
information. KAM can also integrate several documents to
eliminate spacial gaps between relevant information. The driving
force behind KAM is the heuristic file set up by the user. This
heuristic file consists of rule forms used in the extraction
process. These forms can have associated with them their own set
of topics and exceptions. For example, Figure 3 gives a simple
heuristic file set up to extract rule forms on the paragraph
given below.

"These instructions pertain to the successful care
and operation of the M K - 5 0 automatic weapons under
h u m i d , tropical climate conditions. Special
precautions may be followed for properly maintaining
the lubrication of the cartridge ejection mechanism.
If moisture is allowed to build up inside the weapon,
jamming may occur during automatic firing. The ammo
clip may be removed if jamming does occur. Always be
careful to set the safety before attempting to dislodge
jammed shells from the barrel. Note that the M K - 5 0 is
quite unlike its Uzi counterpart in the fabrication of
the bolt and firing pin mechanisms. Therefore, it is
important to take precautions in the removal of the
firing pin, lest the spring action will come loose."

The extracts produced from this example are presented in
Figure 4. Several interesting points can be illustrated from
this example. The first is the use of priorities to resolve
conflicts that arise in the extraction process. The fact
"important" was not extracted because of the higher priority of
the rule "comma-lest". Second, the overall generality of the
rule forms allows them to be applied generically to many
situations. While this example is. simple, large heuristic files
can be developed and maintained for various applications. In
addition, a general heuristic file can be used to extract
information from a text file which can, in turn, be used to
customize another heuristic file. This is useful when little is
known about the particular domain. Thirdly, KAM can use these
extractions to aid in constructing rules and facts for direct use
by various expert system shells. Below is an example of how KAM
incarporates two o f the extracts into Goldworks frames.

52

(G - 1 (PRINT-NAME) (DOC-STRING KAM d e f a u l t f rame) (IS
KAMFRAME) (SYNTAX RULE) (IF (m o i s t u r e i s a l l o w e d t o
b u i l d up i n s i d e t h e weapon)) (THEN (jamming may o c c u r
d u r i n g a u t o m a t i c f i r i n g)))

(G - 2 (PRINT-NAME) (DOC-STRING KAM d e f a u l t frame) (IS
KAMFRAME) (SYNTAX RULE) (IF (jamming d o e s o c c u r))
(THEN (The ammo c l i p may b e r e m o v e d)))

T h i s example d o e s n o t imp ly t h a t a l l e x t r a c t s i n t h e raw
form a r e s u i t e d f o r d i r e c t p l a c e m e n t i n t o a n e x p e r t s y s t e m b u t a
good p e r c e n t a g e c a n be i n c o r p o r a t e d w i t h c a r e f u l d e s i g n o f t h e
h e u r i s t i c f i l e .

A n o t h e r f e a t u r e o f KAM i s t h a t i t a l l o w s t h e u s e r t o p e r f o r m
c o n t e x t a n a l y s i s and c o n c e p t u a l g r o u p i n g s on p a r a g r a p h s s o t h a t
r e l a t e d p a r a g r a p h s a r e c l u s t e r e d t o g e t h e r . T h i s w i l l e l i m i n a t e
s p a c i a l gaps i n r e l a t e d i n f o r m a t i o n and a l l o w s p e c i a l h e u r i s t i c
f i l e s t o b e d e s i g n e d s p e c i f i c a l l y f o r t h e s e r e l a t e d p a r a g r a p h s .

Figure 3. Sample Heuristic Pile

RULE i f -comma RULE c o m m a - l e s t
I F [1+] , [1 +] . [I +] , [O - 0] LEST [1 +] .

FORM : IF 1 THEN 2 FORM : IF NOT 1 THEN 3
PRIORITY : 1 PRIORITY : 1
END END

RULE l o n e - i f
[1+] IF [1+] .

FORM : IF 1 THEN 2 .
PRIORITY : 1
END

FACT i m p o r t a n t

FORM : NOTE 1 IMPORTANT 2
PRIORITY : 3
END

[1+] IMPORTANT [1+]

FACT a l w a y s

FORM : ALWAYS 2
PRIORITY : 3
END

[I +] ALWAYS [I +] .

Figure 4. Rule Forms : Generated by KAM

1. IF moisture is allowed to build up inside the weapon
THEN jamming may occur during automatic firing

2 . IF jamming does occur
THEN the ammo clip may be removed

3 . IF NOT Therefore, it is important to take precautions
in the removal of the firing pin

THEN the spring action will come loose

4 . FACT : Always be careful to set the safety before
attempting to dislodge jammed shells from the
b a r r e l

RESEARCH TOPICS

There are several areas of research that are currently
being addressed. The major thrust is in the area of resolving
ambiguous pronouns within the rule forms. This is one of the
more difficult problems to solve in natural language processing.
The method currently being used by KAM is to allow a toggle
between the source text and the extract generated s o that the
user can resolve any ambiguities. However, if communication
lines are used, source reference is impossible. One way to
address this problem is to have KAM aid the user in identifying
pronoun references s o that user would not have to go back to the
original source. This aid would come in the form of KAM giving a
selection of possible pronoun sources along with a certainty
ranking. Current work is being done in this area with neural
networks using back-propagation [Allen]. The idea is to have a
neural network learn how to identify pronoun references by having
it learn from previous examples and generalizing about new
instances.

Other areas of interest include how to better control the
level of conceptual grouping and how to more efficiently convert
the extracts to standard formats such as schemas, frames, and
user defined structures. The user defined structures hold the
most promise since they allow the user to better control the
extraction process. This would allow KAM to perform functions
throughout the expert system life cycle.

5 4

CONCLUSIONS

KAM provides a simple, robust, and easy-to-use tool for
knowledge acquisition. Through the use of context analysis and
conceptual grouping, one can cluster paragraphs on selected
topics. Specially designed heuristic files can then be used to
extract rule forms from the clustered paragraphs. This is
usually the most efficient way of approaching the problem of
extracting particular information from huge quantities of text.
This process can, however, be carried out in reverse.

KAM allows complete control over the extraction and
clustering process. In addition to global topics and exceptions,
each rule form can have its own special topics and exceptions.
This allows the user to better refine the extraction process.

The user can specify to KAM the exact form to use during
extraction. The user can also design a template that determines
what form the extract will be in. This feature is useful when
the extracts are going to be ported into an expert system shell
or any other standard format.

The flexibility of KAM allows it to be tailored to just
about any ap p 1 i cat ion. One of the more interesting ones is
training and skill development in a particular domain. Knowledge
and skills are obtained much faster when irrelevant information
is filtered out.

REFERENCES

Allen, Robert B. "Natural Language and Back-Propagation:
Demonstratives, Analogies, Pronoun Reference, and
Translation", Proceedinns of the First International
Conference on Neural Networks. San Dieeo. June 21-24, IEEE
Press, 1987.

[Websterl] "Webster's Collegiate Thesaurus", Merriam-Webster
Inc., 1976.

[Webster2] "Webster's Ninth New Collegiate Dictionary", Merriam-
Webster Inc., 1988.

55

N89- 1 5 5 5 6

D e s i g n of a n E x p e r t S y s t e m f o r
E s t i m a t i n g t h e Cost o f h e w Knowledge

i n High E n e r g y A s t r o p h y s i c s

Edward L . B o s w o r t h , J r . , P h . D ,
A s s i s t a n t P r o f e s s o r of Computer S c i e n c e
T h e U n i v e r s i t y o f Alabama i n H u n t s v i l l e

a n d

A . J . F e n n e l l y , Ph.D.
C h i e f S c i e n t i s t , A p p l i e d S c i e n c e B r a n c h

T e l e d y n e Brown E n g i n e e r i n g
H u n t s v i l l e , AL

The H i g h E n e r g y A s t r o p h y s i c s C o s t i n g Tool (H E A C T) i s a
combined E x p e r t S y s t e m / N u m e r i c a l S i m u l a t i o n t o e v a l u a t e
s e n s o r s a n d e x p e r i m e n t s p r o p o s e d f o r space p l a t f o r m s i n o r d e r
t o d e t e r m i n e t h e i r e x p e c t e d p e r f o r m a n c e a n d t o assess t h e
amoun t and q u a l i t y of' s c i e n t i f i c i n f o r m a t i o n l i k e l y t o b e
g a t h e r e d by s u c h e x p e r i m e n t s . T h e e n d p r o d u c t o f t h i s t o o l
w i l l b e b o t h a c o s t e s t ima te f o r t h e e x p e r i m e n t p a c k a g e as
d e p l o y e d a n d a l s o a n es t imate of t h e amount o f new s c i e n t i f i c
k n o w l e d g e (b o t h new d a t a and r e d u c t i o n s i n t h e u n c e r t a i n t i e s
o f p r e v i o u s m e a s u r e m e n t s) w h i c h would r e s u l t from t h e a c t u a l
d e p l o y m e n t a n d o p e r a t i o n of t h a t e x p e r i m e n t package .

The n u m e r i c a l s i m u l a t i o n p a r t o f HEACT w i l l c o n t a i n
c o m p o n e n t s t o 1) c a l c u l a t e t h e h i g h e n e r g y s i g n a t u r e s o f b o t h
a c t u a l a n d p r o p o s e d c l a s s e s of a s t r o p h y s i c a l o b j e c t s , a n d 2)
mode l t h e r e s p o n s e and r e s o l u t i o n of t h e c a n d i d a t e s e n s o r s
f o r o b s e r v i n g t h o s e o b j e c t s . The r u l e b a s e d p a r t o f t h e
HEACT w i l l be b a s e d o n k n o w l e d g e i n t h e a r eas of e x p e r i m e n t
d e s i g n , i n s t r u m e n t s e l e c t i o n , a n d s y s t e m i n t e g r a t i o n
d e v e l o p e d f rom e x p e r i e n c e w i t h e x i s t i n g h i g h e n e r g y
a s t r o p h y s i c s o b s e r v a t o r i e s , b o t h o r b i t i n g a n d l o f t e d b y
r o c k e t s o r b a l l o o n s .

T h i s p a p e r w i l l p r e s e n t m a i n l y r e s u l t s from t h e d e s i g n
of t h e r u l e - b a s e d p a r t of HEACT. I t w i l l f o c u s o n t h e
s t r u c t u r e of t h e r u l e s a n d t h e s t r u c t u r e s u s e d t o r e p r e s e n t
t h e k n o w l e d g e r e l a t e d t o t h e d e s i g n a n d i n t e g r a t i o n of s u c h
e x p e r i m e n t s . Me thods f o r i n t e g r a t i n g t h e r e s u l t s from
n u m e r i c a l s i m u l a t i o n s i n t o t h e e x p e r t s y s t e m w i l l a l s o b e
d i s c u s s e d .

5 1

Issues in Management of Artificial
Intelligence Based Projects

P. A. Kiss Dr. Michael S. Freeman
The BDM Corporat ion Sys tems Eng inee r ing Divis ion
950 Explorer Boulevard Systems Analysis a n d
Huntsville, AL 35806 I n t e g r a t i o n L a b o r a t o r y

Marshal l Space Flight Center AL

1.0 A b s t r a c t

Now that AI is gaining acceptance, it is important to examine some of the
obstacles that still stand in the way of its progress. Ironically, many of these
obstacles are related to management and are aggravated by the very characteristics
that make AI useful. The purpose of this paper is to heighten awareness of
management issues in AI development and to focus attention on their resolution.

2.0 I n t r o d u c t i o n

For the purpose of this paper, the emphasis is on the subset of AI known as
Knowledge Based Systems (KBS). However, much of the discussion can be
extrapolated to other areas of Artificial Intelligence (AI) with minor modifications.
In order to discuss the future needs of AI technology, it is useful to look at the
present state of the art and some trends that have emerged. Over the past few years, a
great abundance of small prototype KBSs have been built. These have been
developed, using various Knowledge Engineering tools, to solve limited domain
problems with reasonable success. However, larger systems that are tackling full
scale customer problems have been much slower in coming. This has created a wait
and see attitude toward the use of KBS in many customers minds.

Those organizations that are in the forefront of technology and have been
developing KB systems, are looking more and more at integrating KBS into the
mainstream of computing technology as opposed to stand-alone environments. Thus,
an emphasis on total system approaches are emerging. System engineering
approaches traditionally look at such things as: l ife cycle management,
documentation, quality, testing, and cost among others. These trends lead to the
conclusion that rigorous methodologies are needed for AI development and
integration. It is the issues that arise from the desire to apply rigorous methodologies
to AI that the rest of this paper is focused on.

3.0 D i s c u s s i o n

There are a number of perspectives of AI that can be examined. One is the
view of the AI technologist. This view sees AI as a leading edge technology to be
explored as a solution to every problem and developed as an art form. Then there is
the view of the old style engineer that rejects AI as a bag of risky tricks. Perhaps the
most important view is that of the end customers. They are looking for the solutions
to problems at the best overall price. Since the customer is the person paying for the
work, system engineers should have their needs in mind when designing and
developing systems to solve problems. Let us examine the implications of this last
perspec t ive .

59

Although tremendous strides have been made by micro computers, most
organizations use mini and main frame computers for the bulk of their
computational problems. These environments typically include in excess of 100,000
lines of software (S / W) code, data bases along with their management systems
running in an integrated fashion. Whether being added to or being designed and
developed from the ground up, it is these environments that must be considered
when looking at the use of AI to solve a significant customer problem. From this
perspective, KBS is another piece of S/W that should run on (or with)
existing/planned hardware and be integrated with the other functions of the
environments. Accepting this premise, let us proceed by examining how KBS
development might fit into the mainstream of S/W engineering and what the
ramifications might be.

3.1 TvDical So ftware Deve lopment Process . Perhaps the most rigorous S/W
development methodology is the one developed for Department of Defense programs
in the form of DOD Standard 2167A. Most other S / W development life cycles can be
extracted as a variation or subset of the DOD one. Figure 3-1 shows a typical S/W
development life cycle. Since it is familiar to most, only the briefest description of
the phases is given here.

In the Concept Definition phase, the basic ideas for the systems are developed
through studies and trade analyses. Here the requirements are developed and
documented in the form of top-level system design specifications and operational
concepts. These requirements may be allocated to major system components.

In the Preliminary Design phase, the Design Specifications is finalized and a
preliminary design is generated. Here the generation of interface and data base
specifications takes place along with the development and validation of critical
methods (such as algorithms), and test planning. All of which is presented at a
Preliminary Design Reviews (PDR).

In the Detailed Design phase, the system is finalized in terms of Detailed
Specifications, interfaces, and data base specifications. System test plans are
developed along with operations manuals, and prototype testing and simulation takes
place. This phase culminates in a Critical Design Review (CDR). The Development
phase consists of coding the software according to the designs and specifications.
During this phase, detailed test procedures are also developed. The Formal Test phase
consists of a hierarchy of test and validation activities. These incrementally test and
integrate the system prior to final acceptance and delivery. In the Maintenance
phase, the system is kept running properly with occasional corrections and updates
as necessary.

3.2 Idealized K BS Development. Most KBS have been developed on a seat of the
pants basis. The methodology applied was greatly dependent on the particular
building tool being used and on the background of the developers. Presented below
is a more formal and somewhat idealized KBS development cycle.

Being with a Problem Identification phase that analyzes the problems and
determines which portions are applicable to a KBS solution. In this phase, basic
concepts and approaches are developed for the appropriate domains along with a
development plan. The key participants and their roles are identified and a cost and
benefits analyses the effort is performed.

Next, the Prototype phase develops a full understanding of the domain and task
via the building of an initial capability. This prototype is used to develop a detailed
design along with performance criteria, test cases, and selection of the tools and
target environment. During the Development phase, the prototype is expanded to its
full functionality. The user interface is developed and it is converted to fit the target

60

Figure 3-1. Standard Software Development Life Cycle

DCR

PDR
C o n c e p t

D e f i n i t i o n
CDR

P r e l i m .
D e s i g n

TRR D e t a i l e d
D e s i g n A c c e p t a n c e /

D e v e l o p m e n t

T e s t

M a i n t e n a n c e

Figure 3-2.
Standard

DCR
n

Integrated KBS Development in the
Software Development Life Cycle

I D e s i g n

P r o b l e m
I d e n t i f i c a t i o n

CDR

c e /
Y

I- P r o t o t y p i n g

I D e v e l o p m e n t

T e s t I
M a i n t e n a n c e I

A c c e p't a n c e /

T e s t I i

M a i n t e n a n c e

1

61

environment. In the Evaluation phase, the system is tested against agreed upon
criteria and is operated by experts against new scenarios. Here, if necessary,
interfaces to other systems and data bases can take place and system performance
can be enhanced before final delivery, documentation and training. In the
Maintenance Phase, the system is corrected and updated as necessary for optimal
opera t ions .

3.3 ~. In In order to gain full benefits from the Idealized
KBS methodology above, it needs to be integrated into a typical S / W development life
cycle. Figure 3-2 shows how the two may be overlayed in an integrated development
that contained a KBS component imbedded in a larger S/W system.

This proposed combination naturally imposes some of methodology rigor of the
standard S / W development cycle onto that of the KBS components. That in turn leads
to the examination and discussion of weaknesses that exist today in the management
of Knowledge Based Systems.

3 .4 Areas to De velop. By systematically examining each phase of a KBS
development cycle, and comparing it to the corresponding standard S / W life cycle
phase, areas needing development come to light. A top-level cut has been done, and
below are some of the areas ripe for further attention and development.

Beginning with the problem Identification phase (in Concept Definition), the
first question should be "what are proper applications for KBS solutions?" This is not
a trivial question since many problems can be solved by classical methods better
than by Knowledge Based ones. Although many simple tests of applicability exist,
there are few in depth methodologies widely accepted. It is suggested that such a
methodology (exemplified in Figure 3-3) can be developed by assessing: problem
characteristics, future role of the subsystem, design characteristics, organization
values and impacts, required performance, and operational environments, to name
the major areas. Decision trees can be put together by decomposing the above areas
to lower levels and adding weights to them as appropriate. Once the methodology is
fully developed, it can be calibrated by running it against existing KBS and their
associated successes in the field.

In conjunction with the technology selection, process should be a costbenefit
analysis. This might be based on such things as the benefits of replicating an expert,
or the savings compared to solving the problem via a different approach. More
specifically, the key cost areas for developing a KBS are; knowledge engineering
time, domain expert's time, users' time, design, development, and test for prototype
and delivered KBS, hardware, and management. The benefits may include; increased
productivity, new services or products, elimination of systems or procedures,
improvements in quality, fewer or less qualified staff needs, and increase in
equipment life. The above factors need to be quantified for each system and traded
against each other.

For the sake of this discussion, let us consider a medical advisor application.
Such applications are widely accepted as appropriate for a knowledge based system,
as opposed to standard software. For this reason, we can expect that any costbenefit
assessment will be favorable.

The next hurdle during Concept Definition (early prototyping) is to
characterize the requirements/specifications. One method, shown in Figure 3-4, is to
capture the functional requirements and decompose them as far as practical. Once a
decomposition exists, the relationships between functions can be developed. This
process is important because it will highlight the boundaries to the applicability of
of KBS solutions. Taking the perspective that some parts of a problem can be straight-
forward and solvable by conventional methods may reduce the complexity of the KBS

62

Figure 3-3. Selection Methodology for KBS Applications

Problem /

S e l e c t i o n

D e s i g n ' V a l u e s / \

D e c i s i o n

S t a n d -
A l o n e

Language Hardware

0 - 5 0 Non-KBS Application

4 0 - 8 0 Marginal

7 0 - 1 0 0 KBS Application

:e
Operat iona l

Envmt.

D

63

rn a
l4
Q

L
0 cr

e
0 .-
.I
Y

v)
0 a
0 u
E

z -
Q
e
0

u
e
1
R

.I *

W
I

2
Q
rn

n'
m
W
L
1
pa

kl
.I

6 4

U

components. One example is the "Determine Anomalies" function in Figure 3-4. This
may be accomplished by a conventional database-driven limit checking program.
Another example is the area of scheduling problems. Some solutions can be broken
up into heuristic and algorithmic components. In addition to functional
specifications, performance specifications should be developed for KBS. These a re
important since they affect the hardware and software selections made for the
systems. The most important performance characteristics can be along the lines of
quality, quantity, speed, or interfaces. In the medical advisor example, quality can be
specified in terms of the percentage of correct diagnoses and/or recommendations.
Quantity o r speed can be assessed in terms of how quickly (once the required input
data is provided) a diagnosis o r recommendation can be completed. Finally, the
interfaces should be specified in terms of the user's needs and the delivery
environment. In this case a doctor may be the user, with an interactive interface as
well as access to a database of patient history information, and traditional software to
perform initial anomaly screening.

As the development of a system moves through the design phases, much
emphasis is placed on documentation and reviews. In the case of KBS, documentation
standards and review milestones are not well defined. The establishment of
Preliminary and Critical Design Review (PDR, CDR) milestones for KBS should be
considered an important part of system management. They are valuable for the
developers to work toward, and for the customers/reviewers to understand the
product being developed and gain confidence in its capability.

At PDR the knowledge gained from prototyping should be presented as i t
relates to the full KBS. The detailed functionality and performance requirements of
the KBS should be documented. Some possibilities for the documentation are:
functional decompositions, logic networks, decision flows, interface diagrams, and
operational concept descriptions. Naturally, some of the KBS development tool outputs
can be used for documentation, but most are usually more appropriate for a CDR level
review. At CDR, the focus should be on the full integrated system. The knowledge base
should be complete and captured by the development tool. Text level documentation
should be provided describing interfaces between the KBS and other system
components. Full screen level user interfaces should be defined and presented. There
is a considerable amount of work still to be done in the area of KBS documentation
s tandards.

A final area to be addressed here is that of testing and validation of KBS. This is
perhaps their most important and also weakest area from the perspective of
traditional operational systems. It is important because operational systems need to
be trusted by users. Failure of a $300M dollar satellite, the life support system of a
space vehicle, or your doctor's diagnostic advisor is likely to be viewed by users as
not merely undesirable, but catastrophic. If a KBS is to be a key component of
successful operation, then users will demand a high degree of confidence in their
reliability. The AI community is of several opinions with regard to methods for
testing KBS, ranging from the position that testing KBS is no different from testing
any other software system, to a belief that KBS are so different that present methods
cannot be applied to them. Nevertheless, major KBS have been built and put into
operation successfully using variants of traditional; methods. Development of a
reliable methodology for verification and validation of KBS must still be considered a
high priority issue from the management perspective.

Some approaches can be outlined for achieving the required level of
reliability in KBS. One is to explore the use of multiple concurrent KBS to provide
redundancy in critical applications. This can be done through the use of multiple
copies of the KBS in a voting arrangement, such as is used with traditional software
systems in the shuttle today. Another is to develop multiple KBS addressing the same
application, but drawing on different knowledge sources to cross validate each other.

65

A third approach is to develop the same KBS using different development tools. This
latter approach is more cost effective than the second because knowledge acquisition
(typically the most costly activity in KBS development) is done only once.

4.0 C o n c l u s i o n

There are other areas of the software development life cycle which give rise to
problems when applied to KBS. As the technology matures, and the issues discussed
here are resolved, other issues will become more important. However, progress
toward resolution of these issues, and development of a methodology for building
KBS, will be crucial in gaining the support by management required for KBS
technology to be integrated with traditional systems in operational environments.

66

N89: 1 5 5 5 8

Development of an Expert Planning System for OSSA

by

B. Groundwater, M.F. Lembeck, and L. Sarsfield

Science Applications International, Inc.
400 Virginia Avenue, S.W., Suite 810

Washington, D.C. 20024

Work performed under Contract #NAS W-4092
Technical Monitor:

Mr. Alphonso Diaz
Assisttant Associate Administrator

NASA Office of Space Science andApplications

This paper presents concepts related to preliminary work for the development of an
expert planning system for NASA's Office for Space Science and Applications (OSSA). The
expert system will function as a planner's decision aid in preparing mission plans
encompassing sets of proposed OSSA space science initiatives. These plans in turn will be
checked against budgetary and technical constraints and tested for constraint violations.
Appropriate advice will be generated by the system for making modifications to the plans to
bring them in line with the constraints.

The OSSA Planning Expert System (OPES) has been designed to function as an integral
part of the OSSA mission planning process. It will be able to suggest a "best plan," be able to
accept and check a user-suggested strawman plan, and should provide a quick response to user
requests and actions. OPES will be written in the "C" programming language and have a
transparent user interface running under Windows 386 on a Compaq 386/20 machine.

human planners familiar with the OSSA planning domain. Given mission priorities and budget
guidelines, the system first sets the launch dates for each mission. It will check to make sure
that planetary launch windows and precursor mission relationships are not violated. Additional
levels of constraints will then be considered, checking such things as the availability of a
suitable launch vehicle, total mission launch mass required vs. the identified launch mass
capability, and the total power required by the payload at its destination vs. the actual power
available. System output will be in the form of Gantt charts, spreadsheet hardcopy, and other
presentation quality materials detailing the resulting OSSA mission plan.

The system's sorted knowledge and inference procedures will model the expertise of

67

- .

N09-15559
c

PLANNING ACTIONS IN ROBOT AUTOMATED OPERATIONS

A. Das
Computer and Info. Sci. Dept.

Alabama A&M University
Normal, AL 35762

ABSTRACT

Action planning in robot automated operations requires
intelligent task level programming. Invoking intelligence
necessiates a typical blackboard based architecture, where, a
plan is a vector between the start frame and the goal frame.
This vector is composed of partially ordered bases. A partial
ordering of bases presents good and bad sides in action
planning. Partial ordering demands nonmonotonic reasoning via
default reasoning. This demands the use of a temporal data base
management system.

INTRODUCTION

Advanced technology for the space station and the US
economy necessiates substantial use of general purpose
automation and robotics requiring new generation machine
intelligence and robotics technology. Three years ago, on this
issue, NASA's Advanced Technolog Advisory Committee published a
set of 13-point recommendations[l]. Intelligent plan adoption by
robots is one major vital curriculum. Its ultimate purpose is to
imply multi-level environment perception and modelling,
decisional autonomy ranging from general planning to specific
task operating, autonomous mobility capacity, sophisticated high
level man-machine interface and efficient execution control
systems. However, vagaries of the real world , its geometry,
inexactness and noise pose large practical problems t o the
researcher and this forces investigations to have excercised on
a handful of toy examples.

Recently, an attempt has been made to create an
architecture for simulating intelligence in robot automated
assembly operation[2]. In this architecture the reasoning system
works with a two-dimensional system configuration, a task level
configuration (embeded to high level plans and common sense
reasoning) and a robot level configuration (numeric activities
to live with ordinary geometric world). In programming robots
the task level operations are specified according to their
expected effects on objects, detailed kinetics of motion even as
functions of inputs are not considered directly. In the process
of task level programming every new robot level task(geometric
world) is seen as a clusture of incremental planning at the task
level(p1ans and reasons). Any problem in this incremental
planning working with this two-dimensional system configuration
is resolved by a blackboard based problem solver[6]. In &is
blackboard, all classes of temporal, spatial and event class

PRECEDING PAGE BLANK HOT FILMED 69

relationships invoked by the task structure are examined, and
suitable prescriptions generated. The current architecture looks
at task level plans vectors connecting the start frame to the
goal frame and are composed of bases <R,T>s, where R represents
robot level parameters and T represents task level plan
configuration operative in the geometric world given by R. <R,T>s
are seen to form a partially ordered set to admit mutations with
time .

This paper gives a closer look at the preconditions
existing in action planning for a robot at the task level. The
implicability of partial ordering of <R,T>s is questioned and
associated problems are formulated with common sense reasoning.
It is observed that this leads to reasoning by default[9]
bringing task level planning in the paradigm of nonmonotonic
reasoning. A demand for a temporal data base system[3] for
action planning seems inevitable.

PLAN VECTOR ON A BLACKBOARD

In ref.2 a plan is a vector in the robot level task level
configuration space:

C1<Ri,T.> + C <R T > 2 rn' n 3
where C1 ,C2,.....,Cnare real or complex numbers. <R,T>s are
bases that mutate with time, also. They comprise a partially
ordered set. A blackboard is a problem solver[3] enriched with
highly domain specific heuristic knowledge. Ref.2 discusses the
diagnosis of the simple case of the movement of the robot arm on
a blackboard. Since the robot does not do only one single job,
and since most of the tasks require repetition of the same
subtasks several time, a comparative diagnostics is attributable
on the black board. Two or more plans are compared side by side.
Searching "plan-invoking macros" becomes more effective. There
are problems, however.

WHY PARTIAL ORDER ?

In eq.1 <R,T>s are partially ordered bases. This gives
freedom in forming the plan vector intelligently. The total
geometric space configuration assumed in performing a job may
then be seen as composed of a series of subtasks. Each of these
subtasks was constructed out of realizable <R,T>s. Thus two plan
vectors designed for totally two different jobs may be known as
differeing by additions, subtractions and modifications of some
<R,T>s. One plan, say, is goint to the grocery store and
another, going to the doctor's office. These two are implemented
in this way:

Grocery

Go 2 miles straight.
Turn left, go straight.
Turn left, go straight.
Turn right, go straight.

Doctor's Office

Go 2 miles straight.
Turn left, go straight.
Turn left, go straight.
Turn right, go straight.

70

Turn left, go straight.
Turn left, go straight.

Turn left, go straight.
Turn right, gostraight.

These two plans differ in their final turn. Bases <R,T>s are
partially ordered in both these plans. Therefore, if one plan is
implemented successfully and the other is not, a comparative
diagnostic measures can be worked out(possib1y searching common
macros in both the cases). If on the other hand <R,T>s were
totally ordered, the two plans differ without any flexibility of
having a match between them.

POSSIBLE TROUBLES IN PARTIALLY ORDERED <R,T>s

The aforsaid example of comparing two plans on the basis of
partially ordered bases <R,T>s requires that a strong table
management system admonishing context dependent properties of
<R,T>s need be present(A comparative diagnostics of a faulty
plan, or, an working plan showing bugs later requires all the
macros in correct order invoking the two plans). If in the
second plan, for example, a fault is observed in the last right
turn, then the comparative diagnostics rquires an account of the
past history in correct order in both the plans. If you have
known how to go to the grocery store(P1an 1) then going to the
doctor's office (plan 2) needs a little modification in the final
phase. Tracing the two plan vectors side by side with <R,T>s
implementing them is necessary in case of bugs observed in one
(or both) of them. Such tracing of history also requires
cataloging and comparing time of occurrence of all subtasks,
their duration needs to be noted too. To understand why you
could not reach the doctorls office requires answering a question
like how long did you take to perform the first two left turns,
for example. Temporal ramifications of <R,T>s and managing their
order of context dependency causes trouble in working with
partially ordered <R,T>s. Obviously, it is a horrendous task.

THREE MORE PROBLEMS

Three more problems will arise in comparative diagnostics,
infact, in any reasoning about action. These three problems are
the frame problem of McCarthy and Hayes[8], qualification problem
of McCarthy[7] and the ramification problem of Finger[4].

The frame problem enters into comparative diagnostics when
two or more plan vectors are compared basis by basis, or subtasks
by subtasks to determine which of them remain invariant in time
while the action is taking place. If I succeed in going to the
grocery shop but fail to go to the doctor's office, it
was necessary to be determined that these two plans differed only
in their final turn (as seen before). No interim unwarrented
turn is admissible in both the plans, they were framed by
preconditions.

This framing of preconditions lead to the second problem
called qualification problem. It arises because the number .of
preconditions are always very large. Imagine all of the

7 1

possibilities that prevented me in taking the last right turn
while going to the doctor's office. Probably, my car broke down.
probably, it was raining heavily and I missed the road sign.
Probably, I stopped somewhere before the final turn to buy coffee
and while taking off took a different direction. Probably, in
the last right turn there was a detour sign forcing direction
change. It is very unaffordable to pin point all these worldly
possibilities.

The third problem is the ramification problem which is very
severe in comparative diagnostics because it is unreasonable to
explicitly record all the consequences of actions. In both our
examples of plans on going to grocery and doctor's office a great
number of possible consequences may occur which may not have any
consequence at all. In going to the grocery store after making
the first left turn I may see the fish market and buy some fish
and after the next turn I may find my sister's home nearby and
deliver part of the fish to her. The applicability of these
ramifications for one plan will not be the same for the other.
Moreover, the comparative diagnostician will not be able to
work out which ramifications are supposed to show up any time f o r
any plan vector under investigation. Inference in default logic
may be a way out.

INFER <R,,Ty> FROM THE INABILITY TO INFER <R,,T,>

All the ramifications of any plan vector must be expressible
using bonafide bases <R,T>s. It turns out that if there are n
<R,T>s in a plan vector, any one single new <R,T> for admitting a
new event or action in the plan vector will require n
verfications for consistency with existing constraints.
Therefore, reasoning with default logic automatically sets in:
facts persists in the absence of information to the contrary. If
I want to compare my faulty plan not leading to the doctor's
office with the successful plan leading to the grocery store, all
the possible ramifications that may be present in both successful
and unsuccessful plans needs to be assumed existing, because they
cannot be verified. This is expressed using Reiters default
rules[9] :

<R 1 T> do (a , t)
Which states that if <R,T> is true in time (or situation) t and
<R,T> are still consistent after the action a, then we can infer
<R,T> after the action. Computational problems still persists,
though. To determine what is true after an action has been
performed, the default frame axiom must be examined once for
every fact of interest[5].

PLANNING ACTIONS

Within the context of above mentioned observations and
7 2

conditions planning actions needs a strong nonmonotonic
reasoning system for its support. The three immediately visible
reasons for this are: the presence of incomplete information
requires default reasoning, a changing world must be described by
a changing data base, temporary assumptions about partial
solution may be required for generating a complete solution[lO].
In the present model the bases <R,T>s chronologically mutate in
time between the start frame and the goal frame. This manifests
a temporal data base system which is an extension of clasical
predicate calculus data base. Mutations of <R,T>s also means
that temporal information is incomplete, that is, our knowledge
on the occurrence of events totally admits to partial ordering of
<R,T>s to implement a plan. Such a system can be fruitfully
dealt with a data base system called the time map manager or
TMM[3]. Such a TMM admits shallow temporal reasoning to be
consistent with the default reasoning system, because by default
a deductive reasoning system works with a small number of
calculations. Shallow reasoning systems provide the TMM with a
mechanism for monitoring the continued validity of conditional
predictions. Thus, the TMM rearranges tasks to take advantage of
existing preconditions and warns of unexpected dangerous
interaction between the effects of unrelated tasks.

CONCLUSION

The comparative diagnostics on a blackboard with the help of
a time map manager is akin to visually scanning a massive amount
of data organized in the form of a map. This brings a graphical
picture to action planning. Default reasoning makes this action
planning a nonmonotonic shallow reasoning system. Hints are
there that using the time map manager a comparative diagnositcs
on a blackboard may be able to overcome some classical problems
associated with partial ordering of cR,T>s. It is currently
under investigation.

REFERENCES

Cohen, A. and Erickson, J.D., "Future Uses of Machine
Intelligence and Robotics for the Space Station and
Implications for the U.S. Economyt1, IEEE Journ. Robotics &
Automation, Vol. RA-1, No.3 (1985) 117-123.

Das. A. and Saha. H., IIEmbedding Intelligence In Robot
Automated Assembly", Proc. First Int. Conf. on Indus. &
Engng. Appln. of A.1 & Expert Systems, Tullahoma,
Tennessee, June 1-3 (1988) 1083-1088.

Dean, T.L. and McDermott. D.V., IITemporal Data Base
Managementt1, Artif. Intell. Vol. 32, No-1 (1987) 1-55.

Finger, J.J., !!Exploiting Constraints In Design Synthesis",
Ph.D. thesis, Stanford Univ., Stanford, CA (1987).

Ginsberg, M.L. and Smith, D.E., I1Reasoning About Actions I:
7 3

A Possible Worlds Approach", Artif. Intell. Vol. 35, No. 2
(1988) 165-195.

Hayes-Roth. B., IvA Blackboard Architecture For Controlg1,
Artif. Intell. Vol. 26, No. 3 (1985) 251-321.

McCarthy. J., llEpistomological Problems of Artificial
Intel1igence1l, Proc. IJCAI-77, Cambridge, Mass (1977) 1038-
1044.

McCarthy.J. and Hayes.P.J., "Some Philosophical Problems
From The Standpoint of A.1." in Machine Intelligence-4, ed.
by Me1tzer.B. and Michie. D., American Elseveir, N.Y. (1969)
463-502.

Reiter. R., A Logic For Default Reasoning", Artif. Intell.
V O ~ . 13, NO. 1 (1980) 81-132.

[lo] See for example, Artificial Intelligence by Rich. E.,
McGraw-Hill Book Co., NY, 1983.

74

N89-15560

Integration of Task Level Planning
and Diagnosis for an Intelligent Robot

Arthur Gerstenfeld
Professor of Management

Worcester Polytechnic Institute
Worcester, MA 01609

Abstract

This paper describes an AI and robotics research project
being conducted for NASA. The applications of our findings are
for robots performing tasks in space.

The use of robots in the future must go beyond present
applications and will depend on the ability of a robot to adapt
to a changing environment and to deal with unexpected scenarios
(i.e., picking up parts that are not exactly where they were
expected to be). The objective of this research project was to
demonstrate the feasibility of incorporating high level
planning into a robot enabling it to deal with anomalous
situations in order to minimize the need for constant human
instruction.

Our heuristics can be used by a robot to apply information
about previous actions towards accomplishing future objectives
more efficiently. Our system uses a decision network that
represents the plan for accomplishing a task. This enables the
robot to modify its plan based on results of previous actions.
Our system serves as a method for minimizing the need for
constant human instruction in telerobotics.

This paper describes the integration of expert systems and
simulation as a valuable tool that goes far beyond this
project. Simulation can be expected to be used increasingly as
both hardware and software improve. Similarly, the ability to
merge an expert system with simulation means that we can add
intelligence to the system.

This paper describes a satellite in space that has a
malfunction. The expert system uses a series of heuristics in
order to guide the robot to the proper location. This is part
of task level planning.

The final part of the paper suggests directions for future
research. Having shown the feasibility of an expert system
embedded in a simulation, the paper then discusses how the
system can be integrated with the MSFC graphics system.

Integration of Task Level Planning
and Diagnosis for an Intelligent Robot

Arthur Gerstenfeld*

I ntroduc ti .on

It has been recognized for some time that intelligent
telerobot architecture will become an increasingly important
force in space activities [Reference 11. There has been a
great amount of previous research which has focussed on these
issues [References 2-27]. At this point we are focussing on
one part of the architecture, namely task level planning. The
balance of this paper will describe our research in that area
and some thoughts for future directions.

Project Objectives

1. The first objective was to show the feasibility of having a
robot in space exhibit some autonomous behavior.

2. The second objective was to demonstrate the ability for the
robot to use intelligent planning and replanning.

3 . The third objective was to show how the system can be
adaptable to different satellites or space station
configurations.

4 . The fourth objective was keep the "man-in-the-loop" so that
when the search did not yield the expected results, then ground
control can redirect the search.

5. The fifth objective was to develop a feasibility model and
demonstrate it at MSFC.

The objectives are shown graphically in Figure 1.

*Dr. Gerstenfeld received his Ph.D. from MIT and holds the
position of Professor having an endowed chair at Worcester
Polytechnic Institute (WPI). He is president of UFA, Inc.
where the research described in this paper has (and is) taking
place.

76

c Sensor

Part
L o c a t e d

E n v l r o n r n e n t

P a r t N o t
L o c a t e d

G r a s p

Work Carried Out

1

after n trier)
Contact Ground
Control or Astronaut

The work carried out can best be understood by referring
to Figure 2. The robot is instructed to replace module A, The
robot, however, is located at module H. Therefore, it must
plan how to get from where it is located to the required
location.

phase I P r o j e c t O b j e c t i v e s

In order to do that planning we showed how it was
necessary for the robot sensor to obtain two orientations:

(I-'. rnan-'n-'oop)

1. Present location (i.e. "€I")

2. Module directly above (i.e. "D")

77

It is necessary for the robot to know the module above in
order to gain orientation. This can be thought of as a person
who is lost and he locates the street he is on but that is not
enough. He must also know one other point (another street o r
landmark) in order to determine his orientation.

Having determined that the robot is at H and oriented so
that D is directly above it - the decision can then be made
that the robot must:

Move UP "1"
Move 4 to LEFT

After moving up 1 and 4 to left the robot may still not
locate module A due to other discrepancies. In that case the
robot will use further heuristic search using the same
principle as described above. This can be done recursively
until a solution is found or instructed otherwise by a human in
the loop.

A second example is that the robot is at "G" and must move
to "L". His orientation shows that "K" is above the robot and
the robot then reasons that it must move 1 down and 1 to the
right.

E G H

I \ J K

A Simulated Satellite with Different Modules

Figure 2

78

We, therefore, observe that each movement for the robot
does not have to be given to it. Rather the robot can reason
and perform intelligent search. During Phase I we designed the
computer code necessary to accomplish independent search.

The work carried out included the building of a simulation
on a COMPAQ 3 8 6 . We designed the computer code to integrate
the graphics and artificial intelligence.

Results Obtained

The results obtained can best be understood by referring
to Figure 3 in terms of goals and subgoals. For example, in
Figure 3 let us assume the goal is to locate a particular part
of a satellite. This could also be a part on space station
exterior or interior.

Figure 3 shows that:

0 Subgoal 1 is "Recognize current location"

it is necessary to have two further subgoals as follows:
In order for the robot to regognize its present location

0 Subgoal 1.1 is "Identify the place where the robot is
cur rent 1 y loc at ed 'I

This is achieved by an action as follows:
"Use vision system to locate a point straight ahead".

This can best be thought of by thinking of a person lost
in an area he does not know. The person must first look for a
street sign to identify the street where he is standing.
Having achieved the above it is necessary for the robot to find
one other point. For the example we used, the other point was
the module directly above the current module.

By using the analogy again of the lost person, once he
found out what street he was located on he then had to locate
one other marker. Let us assume that his eyes moved up and he
located a cross street to the one on which he was standing.
Referring to Figure 3 that is the following action:

Use vision system to look for the module that is directly
above the current module.

Having now established the locations of the robot (and its
orientation) the subgoal 2 is as follows:

0 Plan moves from current location to module (o r part) X.

The action in that case is to:
Use heuristics and world model to plan moves to module X.

79

This can be thought of again as the lost person who has now
sufficiently identified his location and orientation then
planning his move to his destination.

Goal:
Locate Module 1 (or part) X

A Subgoal-1 :

I Recognize current I location

dentify the place where
he robot is cunently

Recognize the
arientation of

I
Action:
Use vision system
to locate a point 1 straight ahead

the 1

Subgoal-2:
Plan moves from
current location
to Module
(or part) X

f >

+- Subgoal-3:
Move telerobot to I Module (or part) X

Action:
Robot moves to

Action:
Use heuristics and

I I world model to plan I
moves to module X

Use vision system
to look for the module
directly above the
current module

Different levels of declslon-making In the system

Figure 3

The final subgoal is:
0 Move telerobot to a particular location or part

The action associated with that goal is as follows:
Robot moves to new location

We showed this process of goals, subgoals, and actions
using a model of a satellite. In this case we limited our
investigation so that the input from the sensors were given by
the user of the simulation. This can be visualized in Figure
4 .

Future Directions

1. Development of an AI planner to generate task level path
commands to a satellite servicer robot.

2. To integrate our system with the graphical simulation model
at MSFC.

ao

3 . To include a model of a generic satellite with subsystems,
e.g. power, altitude control, communications, etc.

4 . To develop a diagnosis system that will be used to
identify a list of possible failed subsystems.

5. To demonstrate higher level task planning by performing
diagnosis and robot path planning in order to replace (or
repair) a subsystem.

Our approach can best be understood by considering
Figure 5. We shall be focussing on the task decomposition
modules and show how they can perform real-time planning. The
task decomposition modules plan and execute the decomposition
of high level goals into low level actions.

Figure 4 shows on the right, the operator interface. On
the left the global memory. The task (which might be "locate
tool A" or "replace module B" is shown in H4 of Figure 1.
Having received the task requirement the system would then
check the world model by moving one square to the left in
Figure 1 to M4. This is integrated with the sensory
information shown in G4 for Figure 1.

The control system architecture is shown in Figure 5. The
level we are focussing on is Level 4 , which decomposes the
object task commands specified in terms of actions performed on
objects.

SENSORY WORLD TASK

DETECT MODEL PLAN
INTEGRATE EVALUATE EXECUTE

MODELING DECOMPOSITION PROCESSING

STATE VARIABLES
EVALUATION FCNS

PROGRAM FILES

Fig.4 A hierarchical control system architecture for intelligent vehicles.

81

SERVICEIREPAIR
MISSION I CONTROL

SERVICE PARTS, TOOLS

ORDERS

5 INVENTORY

ANIPULATOR

DYNAMICS

PAN ZOOM
FOCUS

, . .
POWER

ACTU AT0 R S

Figure 5

A six level hirearchical control system proposed for
multiple autonomous vehicles.

References:

1. Albus, James S., Harry G. McCain, and Ronald Lumia,
"NASA/NBS Std. Ref. Model for Telerobot Control System
Architecture" (NASREM) , U.S. Department of Commerce Technical
Note 1235, 1987.

2. Berning, S., D.P. Glasson and G.A. Matchett, "Functionality
and Architectures for an Adaptive Tactical Navigator System",
Proceedings NAECON, Dayton, Ohio, May 1987.

3. Brooks, R.A., "Solving The Find-Path Problem by Good
Represenation of Free Space," Proceedings of National
Conference on A.I., pp. 381-386, 1982.

4 . Cohen, P.R., Heuristic Reasoning About Uncertainty: An
Artificial Intelligence Approach, Potman, London, 1985.

82 - - &

5. CrOmarty, A.S., D.G. Shapirot, and M.R. Fehling, "Still
planners run deep: Shallow reasoning for fast replanning,"
Proceedings SPIE-Conference on Applications of Artificial
Intelligence, No. 485, pp. 138-145, 1984.

6. Crowley, J.L., "Dynamic World Modeling for an Intelligent
Mobile Robot," Proceedings of 7th International Conference on
Pattern Recognition, pp. 207-210.

7. Delaney, J.R., R.T. Lacoss, and P.E. Green, "Distributed
Estimation in the MIT/LL DSN Testbed," Proceedings American
Control Conference, pp. 305-311, San Francisco, CA, June 22,
1983 .
8. Duda, R.O., P.E. Horb, and N.J. Nasson, "Subjective
Bayesian Methods for Rule-Based Inference Systems," Technical
Note 124, AI Center, SRI International, Menlo Park, CA, 1976.

9. Erman, F., Hayes-Roth, V.R. Lesser, and R.D. Reddy, "The
HEARSAY-I1 Speech Understanding System: Integrating Knowledge
to Resolve Uncertainty," ACM Computing Surveys, Vol. 12, pp.
213-253, 1980.

10. Evers, D.C., D.M. Smith, and C.J. Staros, "Interfacing an
Intelligent Decision Maker to a Real-Time Control System",
Proceedings SPIE on Applications of Artificial Intelligence,
Vol. 485, pp. 60-64, 1984.

11. Gerstenfeld, A,, "Social and Economic Effects of
Industrial Robots", Proceedings of International Conference on
Industrial Robots, Paris, France, 1982.

12. Girealt, G., R. Sobek, and R. Chatila, "A Multi-Level
Planning and Navigation System for a Mobile Robot; a First
Approach to HILARE," Proceedinqs of 6th International Joint
Conference on A.I., pp. 335-337, 1979.

13. Glasson, D.P., and J.L. Pomarede, "Adaptive Tactical
Navigation-Phase I1 Concept Development," Report No.
AFWAL-TR-86-1066, The Analytic Sciences Corporation, Reading,
MA, September 1986.

14. Green, P.E., "Resource Control in a Real Time Target
Tracking Process," Proceedings Fifteenth Asilomar Conference on
Circuits, Systems, and Computers, pp. 424-428, Pacific Grove,
CA, November 9, 1981.

15. Green, P.E., "Distributed Acoustic Surveillance and
Tracking," Proceedings Distributed Sensor Networks Workshop,
pp. 117-141, M.I.T. Lincoln Laboratory, Lexington, MA, January
6, 1982.

8 3

16. Green, P.E., "AF: A Framework for Real-Time Distributed
Cooperative Problem Solving," Presented at the 1985 Distributed
AI Workshop, Sea Ranch, CA, Artificial Intelligence Research
Group, Worcester Polytechnic Institute, Worcester, MA, November
1985.

17. Green, P.E., "The Activation Frame Method f o r Real-Time
Expert Systems," Technical Report EE85PG04, Department of
Electrical Engineering, Worcester Polytechnic Institute,
Worcester, MA, October 12, 1985.

18. Green, P.E., "Issues in the Application of Artificial
Intelligence Techniques to Real-Time Robotic Systems,"
Proceedings 1986 ASME Computers in Engineering-Conference,
Chicago, IL, July, 1986.

19. Green, P.E., "Resource Limitation Issues in Real-Time
Intelligent Systems," Proceedinqs SPIE Conference on
Applications of Artificial Intelligence 111, Vol. 635, Orlando,
FL, April 1986.

20. Green, P.E., "Working Paper on the Incremental Evidence
Technique", Technical Report EE86TAIRG03, Worcester Polytechnic
Institute, Worcester, MA, September 1986,

21. Green, P.E., "Real Time Intelligent Issues in the
Development of the Adaptive Tactical Navigator," Proceedings of
SOAR Conference, Johnson Space Center, 1987.

22. Green, P.E., "AF: A Framework for Real-Time Distributed
Cooperative Problem Solving," Collected Paper of the 1985
Distributed AI Workshop, Sea Ranch, CA, pp; 337-356, November
1985.

23. Green, P.E. "Resource Control in a Real-Time Taruet
Tracking Process, " Proceedings Fifteenth Asilomar Conference on
Circuits, Systems and Computers, pp. 424-428, Pacific Grove,
CA, November 9, 1981.

24. Greer, T.H., "Artificial Intelligence: A New Dimension in
EW," Defense Electronics, pp. 108-128, October 1985.

25. Ichikawa, Y., and N. Ozaki, "Autonomous Mobile Robot,"
Journal of Robotic Systems, Vol. 2 (11, pp. 135-144, 1985.

26. Jones, H.L. and A.L. Pisano, "Adaptive Tactical
Navigation: Report No. AFWAL-TR-85-1015, the Analytic Sciences
Corporation, Reading, MA, April 1985.

27. Kiersey, D.M., J.S. Mitchel, D.W. Payton, and E.P. Preyss,
"Multilevel path planning for autonomous vehicles,"
Proceedings SPIE Conference on Applications of Artificial
Intelligence, No. 485, pp. 133-137, 1984.

84

A Graphical, Rule Based Robotic Interface System

James W. McKee
University of Alabama, Huntsville

Box 212, RI-A4
Huntsville, Alabama 35899

John Wolfsberger
NASA/MSFC

EB 42
Huntsville, Alabama 35812

ABSTRACT

The ability of a human to take control of a robotic
system is essential in any use of robots in space in order to
handle unforeseen changes in the robot's work environment or
scheduled tasks. But in cases in which the work environment
is known, a human controlling a robotls every move by remote
control is both time consuming and frustrating to the human.

A system is needed in which the user can give the
robotic system commands to perform tasks but need not tell
the system how to perform the tasks. To be useful, this
system should to be able to plan and perform the tasks faster
than a telerobotic system. The interface between the user
and the robot system must be natural and meaningful to the
user.

This paper describes a high level user,interface program
under development at the University of Alabama, Huntsville.
The authors propose in this paper a graphical interface in
which the user selects objects to be manipulated by
selecting representations of the objects on projections of a
3-D model of the work environment. The user may move in the
work environment by changing the viewpoint of the
pro j ections .

The interface uses a rule based program to transform
user selection of items on a graphics display of the robot's
work environment into commands for the robot. The program
first determines if the desired task is possible given the
abilities of the robot and any constraints on the object. If
the task is possible, the program determines what movements
the robot needs to make to perform the task. The movements
are transformed into commands for the robot. The information
defining the robot, the work environment, and how objects may
be moved is stored in a s e t of data bases accessible to the
program and displayable to the user.

85

Introduction

The graphical user interface, to be described in this
paper, is part of a project to develop a software system
that will enable users to control robots from a task level
instead of having to either teach the robot the path or
write programs in the robotls language or when using
simulation programs specify points in the works space and
actions to be performed [3] .

There are two objectives of this project which have a
strong influence on the requirements of the graphical user
interface. The first objective is to divide the software
into functional modules such that new versions of any module
may be "plugged in" and the system tested. The second
objective is to be able to incorporate into the system the
knowledge and expertise that a person usually needs to have
to create programs for the robot.

We have divided this project into four modules: user
interface, path planning, environment calibration, and robot
code generation.

The user interface module will contain the graphical
descriptions and all the knowledge, rules, and constraints
about the robot and the work space. The function of a robot
is to move objects. The user interface is the means by which
the user tells the system which objects are to be moved and
where. The graphical user interface being presented in this
paper is only one of many possible user interface modules.

From the robot task requirements and the given geometric
and dynamical constraints on the robot motion, the path
planning module will define a path in the robot work space
that will avoid collisions and satisfy the constraints on the
joint dynamics.

The environment calibration module will allow the robot
to calibrate itself to a task board or other objects in the
work space. The module will also allow the system to verify
that what the robot l1seesg8 in the work space is what it
should see.

The robot code generation module transforms the internal
motion representation data into movement commands for a
particular robot.

Graphical User Interface

The user interface module has been divided into three
projects: object definition user interface (O D U I) , object
movement user interface (O M U I) , and rule based task planner
(RBTP). The ODUI program allows the user to create nekL
objects and enter the objects into the system data base. The-

86

OMUI allows the user to move around in the work space and
select objects to be moved. Once the user selects an object
and its destination, the RBTP determines if the object can be
moved and if so makes a list of fixed and flexible paths.

To support the graphics requirements on this project,
the user interface software is being developed on a Silicon
Graphics 3020 graphics station. The Silicon Graphics
computer is connected to a PUMA 562 robot by a RS232 line and
running the DDCMP protocol. This will be used as the
hardware configuration for system tests.

Object definition user interface

The purpose of the ODUI software is to allows a user to
create objects in the system. An object is a set of data
that contains the following types of information: name,
geometric description, physical attributes, movement and
positional constraints, and construction list.

The objective of this module is to make it easy for a
user to create the graphical description of objects that will
form the environment or are to be moved. The graphical
information will be used by the OMUI, the path planner module
and the environment calibration module. This is also how the
user creates the knowledge base of the physical attributes
and movement constraints of the object that the expert system
will need to determine if and how objects are to be moved.
The software being developed is intended to be a flexible
framework by which to store the knowledge data. This
software itself does not interpret or process any of the
knowledge data.

The user interface consists of levels of mouse
selectable pop-out menus buttons. The top level menu allows
the user to examine objects, edit objects, create objects, or
delete objects.

Objects are essentially data bases. To examine an
object, the user views the various lists of data in the
objects data base. This could be by viewing projections of
the graphical representation of the object or by viewing, in
text, format the contents of the other list of the object.

Each object is created with its own local coordinate
system. All references to the position of the object are
with respect to the origin of the object's coordinate system.
The object's geometric description and positional constraints
are defined in this coordinate system.

This is the key by which
the object is referenced when used to form another object or
when moved. Any object can be used as a template to create

Each object has a unique name.

87

copies of itself. The user must supply a unique name for the
new object when creating a new object from a template.

One or more objects may .be combined with or without
added graphics to create a new object. When an object is
incorporated into a new object, the name of the object being
incorporated and its rotation and translation are placed in
the new object's construction list.

The user through a process of creating objects and
combining objects builds up the robot, the environment and
the robot work space. Starting from the top and working
down, the robot work space contains everything and is an
object which is composed of two objects: the environment and
the robot. The robot is an object composed of objects that
are the links of the robot and a data base of the kinematic
equations for the links.

The environment is composed three types of objects:
movable objects, receptacle objects, and the task board
object . Movable objects are objects that have been se l ec ted
by the user to be movable by the robot. Receptacle objects
are objects in which or on which movable objects may be
placed. Movable objects may only be moved from one
receptacle object to another receptacle object.

The task board is everything else in the environment.
The task board object is needed for the geometric description
it generates in the path planner module and the environment
calibration module and to give the user a geometric feel for
where the other objects are located.

Receptacle objects contain the information about how
and where movable objects may be placed. For example, a
receptacle object could be a hole. In this case the hole
would carry the information about the size and shape of a
movable object that could be placed in the hole and the fact
that the object must be inserted. Another type of receptacle
object would be a pad. A pad would contain the information
that a movable object could be placed on it. The pad could
also contain the information about the orientation of the
movable object when it placed on the pad. More than one
receptacle object may be placed at the same geometric
location, each designed for a particular class of movable
objects.

Graphical descriptions are created by the user "drawingtt
simultaneously in three orthogonal projection windows. The
size and position of the windows on the monitor is user
controllable. Descriptions are created by combining volumes
and surfaces. There is a set of primitive volumes that
include cones, cylinders, and rectangles. These primitiv-
may be stretched to whatever size is needed. Surfaces are

88

planar polygons. The user combines these volumes and
surfaces to create graphic descriptions of the objects.

Object movement user interface

The objective of the OMUI software is to allow the user
to select objects and indicate where they are to be moved in
the robot s work space. The user sees on the graphics
monitor a two-dimensional projection of the three dimensional
work space of the robot.

The user may translate, rotate, and zoom the work space.
The user may select one of these three modes of moving the
work space by mouse selectable menu buttons on the side of
the screen. Once an option has been selected, the user
controls the direction of motion of the work space by
pressing one or more of the buttons on the mouse and the rate
of motion by the motion of the mouse.

The cursor mode is another mouse selectable menu button.
Once the cursor mode is selected, the user may select what
information about objects will be displayed as the curser
moves over their projection. The user may turn on object
highlighting, object name display, and/or object data
display. The highlighting switch causes the movable objects
and receptacle objects to be highlighted when the cursor
moves onto them. The object name switch causes the name(s)
of the object(s) under the cursor to be displayed. The
object data display switch allows the user to examine any of
the knowledge data for selected objects.

Once the work space is in the desired orientation and
magnification, the user may move a curser around on the
surface of the projection. After the cursor mode is
selected, the cursor is moved by pressing the right button on
the mouse as the mouse is moved. A movable object is grabbed
by clicking the middle button of the mouse when the cursor is
on the object. Only movable objects may be grabbed. The
destination is selected by moving the cursor onto a
receptacle object and clicking the left mouse button. The
object is dropped if the left button is clicked anywhere
else, in which case there is no change in the geometric
configuration.

At the present time only one object movement can be
selected in a session. A future enhancement will be to be
able to create lists of object movements that are to be
carried out in succession with the environment being updated
after each object movement.

8 9

Rule based task planner

Once a movable object has been grabbed and a destination
receptacle object selected, the RBTP must determine if it is
possible to move the object. The RBTP generates a set of
knot points for the geometric path of the movable object. A
knot is a pose (x, y, z , roll, pitch, yaw) through which the
movable object is to pass. Connecting the knot points are
fixed and flexible paths.

A fixed path is a path on which the pose of the movable
object is defined along the whole path. On a flexible path
the pose of the object is defined only at the end points.
The RBTP will also collect from the knowledge base of the
object a set of any applicable constraints on the movement of
the object. Constraints could be items such as a maximum
acceleration, allowable tilt angles on the object, maximum
gripping pressure, etc.

From the information in the data bases of the source and
destination receptacle objects, the RBTP creates the set of
knots and the fixed paths. For example, assume the source
receptacle object was a pad, the movable object was a peg,
and the destination receptacle object was a hole. Then the
path of the object could consist of a fixed path, a flexible
path and a fixed path. The f.irst fixed path would be the
path to pick the peg up off the pad. The second fixed path
would be the path to insert the peg into the hole to the
desired depth. And the flexible path would be between the
end of the first fixed path and the start of the second fixed
path.

For each flexible path, the path planning module will
create a near optimum, collision-free path that does not
violate any of the dynamic constraints on the joints of the
robot or any of the constraints on the movement of the
object .

Since we are building a software system, the expert
system software must be capable of being incorporated into
the overall software. Therefore, it was decided to have the
expert system run on the Silicon Graphics computer. Although
LISP is available on the Silicon Graphics, it was decided to
use CLIPS. CLIPS is a forward chaining expert system shell
written in C. The source code for CLIPS is commercially
available [1 3 . Harrington [21 has compared CLIPS, LISP,
Prolog, and OPS5 and has concluded IIBecause of its
embedability, its expandability, and its smaller size, CLIPS
would be the better selection for embedding low-level ES
capability within a control systemt1.

9 0

Conclusions

This paper has presented an overview of the software
being developed at the University of Alabama, Huntsville to
enable a user to control a robot from a task level. The main
emphasis of the project is to develop a set of software
modules that work together as a system. This presentation
has concentrated on the user interface portion of the
project and how the requirements of the overall system have
affected the design of the user.interface portion.

Acknowledgements

Research for this paper has been supported in part by a grant
form the Science, Technology and Energy Division of the
Alabama Department of Economic and Community Affairs.
However, any opinions, findings, conclusions or
recommendations expressed herein are those of the authors and
do not necessarily reflect the views of ADECA and the State
of Alabama.

References

[l] Giarratano, J. C., CLIPS User's Guide, CLIPS Reference
Manual, COSMIC Program # MSC-21208, 382 E. Broad St. Athens,
GA, 30602.

[2] Harrington, J. B., ItCLIPS as a Knowledge Based
Language,lI Third Conference on Artificial Intellisence for
SDace ApDlications, Huntsville, November 2-3, 1987, pp.33-40.

[3] Mckee, J. W. and Wol'fsberger, J., "High Level
Intelligent Control of Telerobotic Systems,l' Conference on
Space and Military Applications of Automation and Robotics,
June, 1988, Huntsville.

91

N89-15562
c.

P D A : A C o u p l i n g of Knowledge a n d Memory
f o r Case-based R e a s o n i n g

S / B h a r w a n i " , J . Walls a n d E . B l e v i n s

M a r t i n mariet ta Manned S p a c e S y s t e m s
MSFC, H u n t s v i l l e , AL

T o p i c : Compute r A d v i s o r

Keywords : C o n c e p t u a l Memory, C a s u a l D e p e n d e n c y , S i m i l a r i t y

Abstract

There i s l i t t l e d o u b t a b o u t t h e r o l e of k n o w l e d g e i n a u t o n o m o u s
i n t e l l i g e n t r e a s o n i n g . P r o b l e m s o l v i n g i n most d o m a i n s
r e q u i r e s r e f e r e n c e t o p a s t k n o w l e d g e a n d e x p e r i e n c e w h e t h e r
s u c h k n o w l e d g e i s r e p r e s e n t e d a s r u l e s , d e c i s i o n t r e e s ,
n e t w o r k s o r a n y v a r i a n t o f a t t r i b u t e d g r a p h s . R e g a r d l e s s o f
t h e r e p r e s e n t a t i o n a l form e m p l o y e d , d e s i g n e r s o f e x p e r t s y s t e m s
r a r e l y make a d i s t i n c t i o n b e t w e e n t h e s t a t i c a n d d y n a m i c
a s p e c t s o f t h e s y s t e m ' s k n o w l e d g e base.

T h e c u r r e n t p a p e r c l e a r l y d i s t i n g u i s h e s b e t w e e n k n o w l e d g e - b a s e d
a n d memory-based r e a s o n i n g where t h e former i n i t s most p u r e
s e n s e i s c h a r a c t e r i z e d b y a s t a t i c k n o w l e d g e base r e s u l t i n g i n
a r e l a t i v e l y b r i t t l e e x p e r t s y s t e m w h i l e t h e l a t t e r i s d y n a m i c
a n d a n a l o g o u s t o t h e f u n c t i o n s of human memory w h i c h l e a r n s
from e x p e r i e n c e .

The p a p e r d i s c u s s e s t h e d e s i g n of a n a d v i s o r y s y s t e m w h i c h
c o m b i n e s a k n o w l e d g e base c o n s i s t i n g of domain v o c a b u l a r y a n d
d e f a u l t d e p e n d e n c i e s b e t w e e n c o n c e p t s w i t h a d y n a m i c c o n c e p t u a l
memory w h i c h s t o r e s e x p e r i e n t i a l k n o w l e d g e i n t h e form o f
cases . The case memory o r g a n i z e s p a s t e x p e r i e n c e i n t h e form
o f MOPS (memory o r g a n i z a t i o n p a c k e t s) a n d sub-MOPS. Each MOP
c o n s i s t s o f a c o n t e x t frame a n d a s e t of i n d i c e s . T h e c o n t e x t
frame c o n t a i n s i n f o r m a t i o n a b o u t t h e f e a t u r e s (n o r m s) t h a t a r e
common t o a l l t h e e v e n t s a n d sub-MOPS t h a t a r e i n d e x e d u n d e r
i t .

Case memory i s d e s i g n e d t o a c h i e v e max ima l c l u s t e r i n g of cases
by s i m i l a r i t y o f i m p o r t a n t f e a t u r e s . The memory i s a l s o
s e l f - o r g a n i z i n g i n t h e s e n s e t h a t i t s t r i v e s t o m i n i m i z e t h e
search e f f o r t f o r t h e r e t r i e v a l o f r e l e v a n t cases . I t
a c c o m p l i s h e s t h i s b y i d e n t i f y i n g s i m i l a r i t i e s b e t w e e n i n d i c e s
i n terms o f t h e o rde r (f i r s t o r d e r , s e c o n d o r d e r , l o g a r i t h m i c ,

PRECEDING PAGE BLANK NOT FILMED
93

e t c .) o f t h e r e s p o n s e models a n d m e r g i n g them i n t o g e n e r a l i z e d
sub-MOPS when p o s s i b l e .

Problem s o l v i n g i s a c c o m p l i s h e d by e i t h e r r e f e r r i n g t o a p a s t
s i m i l a r case i f o n e i s f o u n d i n memory, o r by t r i g g e r i n g t h e
a c q u i s i t i o n m i s s i n g k n o w l e d g e . N e w k n o w l e d g e i s a c q u i r e d b y a
c a r e f u l l y c o n t r o l l e d d e s i g n o f e x p e r i m e n t s fo l lowed by a n a l y s i s
a n d s t a t i s t i c a l m o d e l i n g of r e s u l t s t o d e r i v e c a s u a l
r e l a t i o n s h i p s b e t w e e n c o n c e p t s . T h e models a r e r e p r e s e n t e d
w i t h i n t h e cases t h a t p r o v i d e t h e c o n t e x t i n w h i c h s u c h models
a r e r e l e v a n t a n d h e n c e a p p l i c a b l e .

94

A p p r o x i m a t e S p a t i a l R e a s o n i n g *

Soumi t r a D u t t a

Compute r S c i e n c e D i v i s i o n
U n i v e r s i t y o f C a l i f o r n i a

B e r k e l e y , C A 94720

Abs t rac t

I t i s a t r u i s m t h a t much of human r e a s o n i n g i s a p p r o x i m a t e
i n n a t u r e . F o r m a l models o f r e a s o n i n g t r a d i t i o n a l l y t r y t o b e
p r e c i s e a n d r e j e c t t h e f u z z i n e s s o f c o n c e p t s i n n a t u r a l u s e a n d
r e p l a c e them w i t h n o n - f u z z y s c i e n t i f i c e x p l i c a t a by a p r o c e s s
o f p r e c i s i a t i o n . A s a n a l t e r n a t e t o t h i s a p p r o a c h , i t h a s b e e n
s u g g e s t e d t h a t r a t h e r t h a n r e g a r d human r e a s o n i n g p r o c e s s e s as
t h e m s e l v e s " a p p r o x i m a t i n g q 1 t o some more r e f i n e d a n d e x a c t
l o g i c a l p r o c e s s t h a t c a n b e c a r r i e d o u t w i t h mathematical
p r e c i s i o n , t h e e s s e n c e a n d power of human r e a s o n i n g i s i n i t s
c a p a b i l i t y t o g r a s p a n d u s e i n e x a c t c o n c e p t s d i r e c t l y . T h i s
v i e w i s s u p p o r t e d by t h e w i d e s p r e a d f u z z i n e s s o f s i m p l e
e v e r y d a y terms (e . g . , n e a r , t a l l) a n d t h e c o m p l e x i t y of
o r d i n a r y t a s k s (e . g . , c l e a n i n g a room). S p a t i a l r e a s o n i n g i s
a n a r ea w h e r e humans c o n s i s t e n t l y r e a s o n a p p r o x i m a t e l y w i t h
d e m o n s t r a b l y good r e s u l t s . C o n s i d e r t h e case of c r o s s i n g a
t r a f f i c i n t e r s e c t i o n . We o n l y h a v e a n a p p r o x i m a t e i dea o f t h e
l o c a t i o n s a n d s p e e d s of v a r i o u s o b s t a c l e s (e . g . , p e r s o n s a n d
v e h i c l e s c r o s s i n g t h e i n t e r s e c t i o n) , b u t w e n e v e r t h e l e s s manage
t o c r o s s s u c h t r a f f i c i n t e r s e c t i o n s w i t h o u t a n y h a r m . T h e
d e t a i l s of o u r m e n t a l p r o c e s s e s wh ich e n a b l e u s t o c a r r y o u t
s u c h i n t r i c a t e t a s k s i n s u c h a n a p p a r e n t l y s i m p l e m a n n e r a r e
n o t we l l u n d e r s t o o d . However , i t i s i m p o r t a n t t h a t we t r y t o
i n c o r p o r a t e s u c h a p p r o x i m a t e r e a s o n i n g t e c h n i q u e s i n o u r
c o m p u t e r s y s t e m s . A p p r o x i m a t e s p a t i a l r e a s o n i n g i s v e r y
i m p o r t a n t f o r i n t e l l i g e n t m o b i l e a g e n t s (e . g . , r o b o t s) ,
s p e c i a l l y f o r t h o s e o p e r a t i n g i n u n c e r t a i n o r unknown o r
d y n a m i c d o m a i n s . I n s u c h s i t u a t i o n s , s e v e r a l f a c t o r s make t h e
u s e of a p p r o x i m a t e r e a s o n i n g t e c h n i q u e s i m p e r a t i v e :

[l] I t may b e d i f f i c u l t o r sometimes e v e n i m p o s s i b l e t o
c o l l e c t p r e c i s e i n f o r m a t i o n a b o u t t h e e n v i r o n m e n t .

* T h i s work h a s b e e n p a r t i a l l y s u p p o r t e d by N A S A G r a n t
NCC-2-275

[2] Most r ea l w o r l d r o b o t s h a v e t o o p e r a t e i n t h e face of r e a l
c o n s t r a i n t s s u c h as l i m i t e d memory a n d time f o r c o l l e c t i n g
o b s e r v a t i o n s / m a k i n g i n f e r e n c e s .

[3] Many r e a l w o r l d e n v i r o n m e n t s a r e h o s t i l e i n t h e s e n s e t h a t
t h e y a r e d y n a m i c , u n c e r t a i n a n d o f t e n h a z a r d o u s . I n s u c h
s i t u a t i o n s , t h e a g e n t s h o u l d b e a b l e t o dea l e f f e c t i v e l y
w i t h s u d d e n s t i m u l i p r e s e n t e d b y t h e e n v i r o n m e n t .

I n t h i s p a p e r w e p r e s e n t a mode l f o r a p p r o x i m a t e s p a t i a l
r e a s o n i n g u s i n g f u z z y l o g i c t o r e p r e s e n t t h e i m p r e c i s i o n i n t h e
e n v i r o n m e n t . We d e v e l o p a l g o r i t h m s t o r e a s o n f rom a p p r o x i m a t e
s p a t i a l i n f o r m a t i o n s u c h a s :

A i s a b o u t 5 mi les away a n d i s coming towards me q u i t e f a s t .

B i s q u i t e n e a r C , b u t i s f a r n o r t h of D .

B i s moving much f a s t e r t h a n C .

T h e k i n d of s p a t i a l i n f o r m a t i o n d e a l t w i t h has two n o t a b l e
c h a r a c t e r i s t i c s : i t i s a p p r o x i m a t e a n d may b e i n c o m p l e t e . We
r e p o r t o n a l g o r i t h m s t h a t c a n b e u s e d t o r e a s o n s p a t i a l l y from
s u c h a p p r o x i m a t e i n f o r m a t i o n . T h i s i s o u r o n g o i n g research a n d
t h u s we r e p o r t i n i t i a l r e s u l t s . I n p a r t i c u l a r w e p r e s e n t
a l g o r i t h m s f o r d e t e r m i n i n g a p p r o x i m a t e r e l a t i v e p o s i t i o n s of
o b j e c t s , i n b o t h s t a t i c a n d d y n a m i c d o m a i n s . These a l g o r i t h m s
h a v e t h e a t t r a c t i v e f e a t u r e s of b e i n g b o t h f o r m a l l y a d e q u a t e
(i . e . , c o m p l e t e a n d c o n s i s t e n t) a n d c o m p u t a t i o n a l l y t r a c t a b l e
(p o l y n o m i a l t i m e) . T h i s i s a f i r s t s t e p t o w a r d s t h e
f o r m u l a t i o n of a p p r o x i m a t e p a t h p l a n n i n g a l g o r i t h m s . We
fo resee t r e m e n d o u s a p p l i c a t i o n s of s u c h a p p r o x i m a t e r e a s o n i n g
m e t h o d s i n r o b o t s o p e r a t i n g i n b o t h s p a c e a n d o n e a r t h . I t
w i l l may b e t h e case t h a t t h e s e a p p r o x i m a t e r e a s o n i n g m e t h o d s
h o l d t h e u l t i m a t e s o l u t i o n t o t a c k l i n g t h e m i n d - b o g g l i n g
c o m p l e x i t y of t h e r e a l wor ld w h i c h now l i m i t t h e p e r f o r m a n c e of
t h e s e r o b o t s .

9 6

N89- 15564
c

REPRESENTATION AND MATCHING OF KNOWLEDGE TO DESIGN
DIGITAL SYSTEMS

J. U. Jones S. G. Shiva
Rockwell International Computer Science Department
555 Discovery Drive University of Alabama in Huntsville
Huntsville, Alabama 35805 Huntsville, Alabama 35899

ABSTRACT
In this paper, we describe a knowledge-based expert system

that provides an approach to solve a problem requiring an expert
with considerable domain expertise and facts about available
digital hardware building blocks. To design digital hardware
systems from their high level VHDL (Very High Speed Integrated
Circuit Hardware Description Language) representation to their
finished form, a special data representation is required. This
data representation as well as the functioning of the overall
system is described.

1. INTRODUCTION
Automatic hardware synthesis is important, because the com-

plexity of integrated circuits has became as high as millions of
transistors per device. Yet, the turn around time available for
each design has become shorter and shorter due to competition.
Design aids such as logic minimization tools, wire routers,
simulation tools, and hardware synthesis systems have been
developed; but they do not approach the efficiency of manual
hardware design. Overviews of hardware synthesis systems can be
found in [2 , 6] .

The Department of Defense initiated the Very High Speed
Integrated Circuit (VHSIC) Program to aid in the production of
military integrated circuits [7] . To create an integrated design
tool taking the designer through all phases of development,
testing and evaluation, the VHSIC Hardware Description Language
(VHDL) was developed [8 , 9] . Research in the area of developing an
expert system which would function as an integrated design tool
has been done at the University of Alabama in Huntsville (UAH) by
Green [3] and Klon [4] . Green designed the University of Alabama
Hardware Expert Synthesis System (UHESS) which serves as a
prototype design consultant in the selection of VHSIC chips. Klon
investigated the issues concerning interfacing UHESS to VHDL. He
extended Green's knowledge base representation data structure and
named it a hologram, which was used to synthesize sample hardware
designs.

2 . THE EXPERT SYSTEM
To design digital hardware, first a VHDL source code is

developed and input into the expert system. The expert system
translates this source code into a hologram representation. The
design library contains holograms of modules that have been
designed earlier. These holograms can be at different levels of
sophistication (detail). They may contain only one gate, a combi-

This paper extends Klonls hologram representation.

97

national circuit, a complex circuit like a printer interface
board, or a whole microcomputer.

Once a hologram representation is given, the inference
engine can begin to search the library for similar ones. The
outcome of this search could be: a matching hologram found, a
similar hologram or holograms are found, or a similar hologram
does not exist. In each case the actions to be taken to define
subholograms are described later in this paper.

When hologram representations are defined for the subholog-
rams, the procedure described above can be used recursively un-
til, the top hologram description is decomposed into a tree with
nodes of subholograms where the leaf node holograms can be
found in the library. The phase just described is the requirement
decomposition phase. The next phase is the synthesis. Here chil-
dren nodes are synthesized to become the parent hologram. This
process begins at the leaf nodes and propagates actual design
constraints upward on the tree until the root node is reached.

The difficulty lies in the fact that design uses nonmonoto-
nic reasoning. The correctness of design assumptions can be
verified only by exploring all consequences of the assumptions.
Wrong assumptions can be taken during the analysis as well as the
synthesis phase going from lower level nodes toward higher level
subholograms. The source of incorrect decisions can be pinpointed
and another design assumption has to be taken. All consequences
of the previous incorrect decisions have to be traced and
replaced with the consequences of the new decision. Therefore,
the synthesis process can be described as a constant back and
forth motion between analysis and synthesis, but eventually will
end up at the root node. At that point the finished circuit
design is output and incorporated into the library. Figure 1
shows the digital circuit design process.

Another difficulty is that in digital circuit design there
is no one best design; there may be several equivalent good
designs. There is a question wheather alternative designs are
better. O r if they are better, what is it that makes them better?
There are several options a design could be optimized for. Number
of components, cost, speed, size, heat generated, and long life
are a few examples. To optimize a design to any of these
requirements or any combination of them requires a different
approach. This problem could be solved two ways: one is that the
hardware synthesizer develops all alternatives with a nonde-
terministic design approach; the other is that the physical
device constraints are taken into account early on in the design.
It is easily seen that the nondeterministic design approach
would take many iterations, and in most cases would be ineffi-
cient. Therefore, the purely top down design methodology can not
be used, and a combination of top down and bottom up design
methodology is needed. Some actual device constraints have to be
taken into consideration at the design specification (VHDL code
generation) phase. This implies that the way the specification is
written in VHDL has a very large effect on the implementation.

nals. Figure 2 shows an abbreviated hologram for an ALU. The
hologram description contains a hologram name, type, port assig-
nments, element (or submodule description), a netlist which shows
how the elements are interconnected, and rules containing infor-
mation on the use of the hologram. Figure 3 depicts the abbre-
viated hologram structure for the ALU.

The hologram representation holds advantages over pure pro-
totype or pure semantic network representation. Comparison of two

NAME: ALU
TYPE: MODULE
IN: A, BUS

B, BUS
S, BIT
CLK, BIT
COMP, BIT

OUT: C, BUS
LOCAL: Y, BUS
ELEMENT ASSIGNMENTS:

1, EIGHT BIT - ADDER

3, TWOS - COMP
2, SHIFTER

A; (L U , (2,2)
B; (3,2)
s; (2,3)
CLK; (2,1), (3,l)
COMP; (3,3)
C; (1,3), (2,4)
Y; (1,2), (3,4)

NETLISTS :

HEURISTICS: RULE071
RULE076

NAME: BUS
TYPE: SIGNAL
DESCRIPTOR: 8 , BIT
CONDITIONS: 5, MA., MAX
HEURISTICS: RULE062

RULE065

NAME: BIT
TYPE: SIGNAL
MODIFIER: TERMINAL

NAME: EIGHT BIT - ADDER
TYPE: MODULE ...
NAME: SHIFTER
TYPE: MODULE ...
NAME: TWOS COMP
TYPE: MODUZE ...

Figure 2. Abbreviated hologram for an ALU. [4]

EIGHT BIT SHIFTER I
.... I(

-MODULE RELATION uu - - SIGNAL RELATION . .
Figure 3. Abbreviated hologram structure for an ALU. [4]

100

semantic nets is slow since the whole network has to be traver-
sed. But new meanings can be easily created. Pure prototype
representation does not facilitate easy creation of new meanings;
but comparison is easy since only the root modules and signals
need to be compared. The hologram provides mechanisms for both
the dynamic creation of new meanings and easy comparison.

To extend this work several designs were implemented from a
hologram representation to a finished design. During these inves-
tigations, properties of the hologram required for easy automatic
synthesis were developed. For automatic hardware synthesis the
hologram data structure has to facilitate easy decomposition,
easy similarity assessment, and should be a vehicle for name
unification. (Similar modules may have different port names, and
the number of ports do not have to match.) To facilitate these
requirements, the hologram should contain slots of information
pertaining to the detailed functioning of the hologram and
attribute slots for easy determination of similarity.

3.1. Decomposition
For easy automatic decomposition and name unification the

function of the hologram should be in a special form. Consider
the functioning of a digital circuit. Here, the inputs are tran-
sformed to intermediate signals by a function, and these interme-
diate signals are transformed to the next level of intermediate
signals by another function, and so on until the output signals
are generated. Consider the analogy between these functions and
primitives of a language. Then a language comes to mind whose
primitives are the functions of actual hardware devices. Let us
call this language the Actual Device Language (ADL). If the
function of a hologram can be expressed in this language, the
hardware design is done, in theory (on a high level), because it
does not take into consideration lower level design constraints
(such as propagation delay, power supply requirement etc . . .) .
Each leaf node in the design tree is an Actual Design Primitive,
each intermediate node is an aggregate of Actual Design Primi-
tives having as many subfunctions as there are submodules. There-
fore, each function definition at a higher level is expressed as
a number of subfunctions, where the subfunctions have subfun-
ctions and so on.

In the decomposition or analysis phase, holograms are com-
pared to library holograms, and if no matching (or similar)
hologram is found, the hologram is simply decomposed to its
subholograms. Figure 4 shows selected Actual Device Primitives,
and Figure 5 depicts a hologram function which can be decomposed
into subfunctions. As can be seen from the examples, the Actual
Device Primitives are procedure-like and readable. Actual signal
names take the place of ENABLE or INPUT1.

3 . 2 . Similarity Assesment
The data model for the knowledge base is a hyper-semantic

data model. An overview of traditional and semantic data models
can be found in [SI. To compare holograms to library holograms
each hologram contains slots for attributes. The collection of

101

a . , b u f f e r

I N P U T -- OUTPUT

b . , two-to-one mul t ip l exe r

I F (ENABLE AND CLOCK) THEN INPUTl -- STORE -* OUTPUT
ELSE I F (NOT ENABLE AND CLOCK) THEN INPUT2 --STORE --OUTPUT
ELSE STORE -* OUTPUT

c . , D-latch wi th 3 - s t a t e ou tput

I F NOT OUT - CONT THEN I F I N P - EN THEN INPUT -+STORE --OUTPUT
ELSE STORE -+ OUTPUT

ELSE Z --OUTPUT

F igure 4 . Example Actual Device P r i m i t i v e s

FUNCTION: MULTIPLEXER WITH 3-STATE BUFFER
FUNCTION 1.

I F (ENABLE AND CLK) THEN I N P U T l -- STORE -+ OUTPUT1
ELSE I F (NOT ENABLE AND CLK) THEN INPUT2 -+STORE --OUTPUT1
ELSE STORE -+ OUTPUT1

I F NOT OUTPUT2 - CONTROL THEN OUTPUT1 --OUTPUT2
ELSE Z -4 OUTPUT2

FUNCTION 2 .

F igu re 5 . Example f u n c t i o n of a s imple module

t h e s e a t t r i b u t e va lues uniquely d e s c r i b e t h e hologram. Each
hologram has a f u n c t i o n a t t r i b u t e (k e y a t t r i b u t e) which w i l l
p l a c e i t i n t o a d e v i c e c l a s s (adde r , ALU, p r o c e s s o r . . .) . The rest
of t h e a t t r i b u t e s a r e d iv ided i n t o two c l a s s e s : one, t h e primary
a t t r i b u t e s which a r e a s s o c i a t e d wi th t h e f u n c t i o n i n g of t h e
dev ice , and second, t h e secondary a t t r i b u t e s expres s t h e p h y s i c a l
p r o p e r t i e s o f t h e dev ice . For example, f o r an adder t h e primary
a t t r i b u t e s would be: number of b i t s , f u l l , ou tpu t t y p e ..., and
secondary a t t r i b u t e s : p ropagat ion d e l a y , f a n i n , f a n o u t , power
supply needed e tc .

Each e n t i t y c l a s s has a r e s t r i c t e d a t t r i b u t e set a s s o c i a t e d
wi th i t . This set is l a r g e enough t h a t d e v i c e s can be unique.
Also each a t t r i b u t e of t h i s set has a r e s t r i c t e d domain which i s
t h e set o f va lues an a t t r i b u t e can c o n t a i n . Typing of t h e a t t r i -
bu te s i s enforced . The a t t r i b u t e s belong t o t h e enumerated d a t a
type , and t h e i r va lue i s the i r o r d i n a l va lue . For each c l a s s of
e n t i t i e s each a t t r i b u t e is a s s o c i a t e d w i t h a set of h e u r i s t i c s ,
from t h i s set a des igna ted one w i l l be used a t t h e e v a l u a t i o n of
t h e s i m i l a r i t y of t h e a t t r i b u t e . The knowledge/data schema f o r
t h e knowledge base i s shown i n F igu re 6 . Because t h e knowledge
base is very l a r g e , t h e uniform handl ing o f knowledge and d a t a is
necessary t o ensu re f l e x i b i l i t y o f des ign .

A t t h e comparison o f holograms belonging t o t h e same c l a s s ,

102

CLASS

ATTRIBUTE
SET

4

"is c o n s t r a i n t onii ENTITY - - - SUBCLASS
(ALU)

f i r s t

F i g u r e

t h e p r imary

6 . Abbrev ia t ed

a t t r i b u t e s a r e
t h e a t t r i b u t e of t h e c a n d i d a t e

knowledge/data schema

p r o c e s s e d . Based on t h e v a l u e o f
d e v i c e and on t h e v a l u e o f t h e

same t y p e of a t t r i b u t e o f t h e d e v i c e t o be matched, and on t h e
a s s o c i a t e d h e u r i s t i c , a s c o r e i s g e n e r a t e d . The s c o r e s of t h e
pr imary a t t r i b u t e s a r e added t o g e t h e r and a set of d e v i c e s w i t h
t h e h i g h e s t s c o r e a r e s e l e c t e d f o r f u r t h e r p r o c e s s i n g . The sum o f
s c o r e s f o r t h e secondary a t t r i b u t e s a r e g e n e r a t e d f o r t h i s set
and added t o t h e sum o f pr imary s c o r e s . The d e v i c e w i t h t h e
h i g h e s t compos i t e s c o r e is s e l e c t e d , and i t s s i m i l a r i t y t o t h e
d e v i c e t o be matched is g e n e r a t e d comparing i t s s c o r e t o t h e
maximum a t t a i n a b l e s c o r e . S e l e c t i n g a c t u a l d e v i c e s u s i n g a t t r i -
b u t e s and s c o r e s i s shown i n T a b l e 1. F i g u r e 7 d e p i c t s a new
hologram, which c o n t a i n s a f u n c t i o n d e f i n i t i o n and a t t r i b u t e s .

3 . 3 . Name u n i f i c a t i o n
For p o r t name u n i f i c a t i o n t h e r e needs t o be a way t o i d e n t i -

f y which names co r re spond t o each o t h e r i n two holograms. S imple
p o s i t i o n a l c o r r e s p o n d a n c e can be used i n p o r t l i s ts (i f t h e r e i s

103

ATTR 8 0 8 2
TO
MATCH ATTRIBUTES ATTR SCORE ATTR SCORE

FULL FULL FULL 1 FULL 1
16 BIT NUMBER 1 0 . 0 6 2 0 . 1 2
- NO OF COMP SINGL SINGL
- EXTRA FUNC GATED 0 . 8 - 1

SUM. 1 . 8 6 2.12

1 8 3 8 3 , 2 8 3

ATTR SCORE

FULL 1
4 0 , 2 5
SINGL

1

2 . 2 5

-

~

ATTR SCORE

ATTR - W R S SN74LS83A SN7483A SN74LS283
TO PRI
MATCH ATTRIBUTES ATTR SCORE ATTR SCORE ATTR SCORE

LS SERIES LS 1 - 0.9 LS 1
1 FANIN 1 1 1 1 1 1
10 FANOUT 5 0.9 5 0 . 9 5 0.9
1 . 5 COST 1.6 0.9 1.7 0 . 8 1.4 1

SUM 6.05 5 . 8 5 6 . 1 5

FULL 1
1 0 . 0 6
DUAL 0 . 0 6
CYSAV 0 . 8

SN74S283

ATTR SCORE

S 0.8
1 1
5 0.9
1.6 0.9

5 . 8 5

1.92

Table 1 . Example of selecting devices

HOLOGRAM DESCRIPTION: ARITHMETIC LOGIC UNIT
TYPE: MODULE
KEY ATTRIBUTE: ALU
BIT ATTRIBUTE : 8
SERIES ATTRIBUTE: LS
FUNCTION:

NUMBER OF SUBFUNCTIONS: 3
FUNCTION 1:

FUNCTION : LEFT SHIFT ZERO FILL
ATTRIBUTES : PO~ITIVE-EN,P~SITIVE - EDGE - TRIG,^ - STATE
IF (S AND CLK) THEN LSZF(A) -+C

FUNCTION 2:
FUNCTION : TWOS COMP
ATTRIBUTES : POSITIVE EN,POSITIVE EDGE - TRIG
IF(COMP AND CLK) THEN-TCOMP(B) -+-Y

FUNCTION 3 :
FUNCTION : ADD
ATTRIBUTES : POSITIVE EN,3 STATE
IF COMP THEN ADD(A,Y)--+C-

IN: A, BUS
B, BUS
S, BIT
CLK, BIT
COMP, BIT . . .

Figure 7. A new abbreviated hologram

104

a convention for port ordering), if the number of ports and their
functions match. There is a harder problem if the number of ports
and/or their functions do not match. Since each hologram has a
function description generated from Actual Device Primitives, the
two functions can be compared and names falling in the same
position textually can be unified.

4 . A METHOD TO DEVELOP A ROOT LEVEL HOLOGRAM
A method to translate a VHDL code to a hologram represen-

tation without function definition and attributes has been deve-
loped by Klon [4] . To generate the function description of the
hologram and the attribute set, an extension of the compiler is
necessary. This extension of the compiler will recognize blocks
of codes behaving as registers, adders, gates etc. An alternate
method is to have device templates as standard components in
VHDL which can be filled in at specification definition time. In
both cases the attributes will be generated after the hologram
function is defined. A method to develop chip level models in
VHDL is described in [l].

5 . ANALYSIS AND SYNTHESIS PHASE OF THE DESIGN
In the analysis phase the root hologram or specification

hologram is decomposed into a tree of modules which have additio-
nal connections between them (i.e. signals). The modules corres-
pond to the hierarchy of structural building blocks and the
signals are the connections between them.

When a matching hologram is found in the library, it means
that the hologram's score attribute is equal to the highest
attainable score. Then the hologram and the subtree attached to
it are copied with some name unifications. When a similar holog-
ram is found, then the attribute deficiencies are analyzed, and
an apropriate action is taken to correct the deficiency. For
example if a 16 bit D-latch is needed but the hologram selected
only has 4 bits, then four subholograms w i l l be created one f o r
each device. If there is no way to correct the deficiencies, the
hologram will be decomposed to its subfunctions and if there are
no subfunctions the help of the designer is requested.

Synthesis begins when the root hologram is decomposed, and
all leaf nodes are actual devices. Physical device parameters are
propagated upward to intermediate holograms until at the root
node they are compared to the design requirements. If the design
meets the requirements partially, then the source of the problem
is, pinpointed and additional requirements are input to the
system so as to explore alternative designs.

Once a design is finished , several alternatives can be
generated by changing the VHDL code or by adding additional
restrictions. To see how a VHDL description can influence
the implementation, consider the following. In VHDL several
styles of hardware design are supported. These styles are the
structural, data-flow, and behavioral styles of descriptions.
Additionally in the data-flow design style, it is possible to
have control logic and data inextricably woven together; or

105

separate, much like in a state-machine model. These descriptions
are equivalent in contextual meaning or semantics. However they
imply a different hardware implementation.

6. CONCLUSIONS
In this paper a way to design digital hardware automatically

is described. First a VHDL code is developed which is translated
to a data structure named hologram. This data structure is a
combination of production rules, frames, and semantic networks.
Rules facilitate the inclusion of knowledge particular to the
hologram, frames help organize heterogenous data, and the seman-
tic networks facilitate the dynamic creation of new designs. The
hologram also contains attributes for easy comparison with
knowledge base holograms. The decomposition and name unification
of holograms is made possible by the function description of the
hologram, which is written in a language whose primitives are
the functions of actual hardware devices. This hologram is input
to the analyzer and synthesizer of the expert system, which after
several iterations produces a hardware design. If this design
only partially meets the requirements, additional requirements
are given and the process is repeated until a design which meets
the requirements is generated.

REFERENCES

131

[41

[51

Armstrong J. R. "Chip Level Modeling with VHDL," E.E. Dept.,
Va., Tech, Blacksburg, Va., June 1987.
Goering, R. "Silicon Compilers Bridge the Gap between
Concepts and Silicon, "Computer Desiqn", November 1987, pp.
67-80.
Green C. R."Development of an Expert Hardware Synthesis
svstem. doctoral d issertation, Universitv of Alabama in -. -
Huntsville, Al. December 1985.
Klon, P.F. "On Interfacing HDL to Knowledge Bases", doctoral
dissertation, University of Alabama in Huntsville, Alabama,
May 1986.
Potter, W. D. and Trueblood, R. P. "Traditional, Semantic,
and Hyper-Semantic Approaches to Data Modeling" Computer,
June 1988, pp. 53-63.
Shiva, S. G. "Automatic Hardware Synthesisll, Proceedings
of the IEEE, Vol. 71, No. 1, January 1983, pp.76-78.
vanderheiden, Robert M. "VHSIC: Midterm Report on a Dynamic
Circuit Program, "Defense Electronics, February 1982, pp.

"VHDL Language Reference Manual", Draft Standard 1076/B, CAD
Language Systems, Inc., Rockville, MD, May 1987.
"VHDL Tutorial for IEEE Standard 1076 VHDL", CAD Language
Systems, Inc., Rockville, MD, May 1987.

54-62.

106

Vulnerability-Attention Analysis for Space-Related Activities

Dan Hays and Sung Yong Lee
Johnson Research Center, Miversity of Alabama in Huntsville

John Wolfsberger. NASA - Marshall Space Flight Center

Abstract.
structures and processes are discussed. Identification of vulnerable areas
usually depends more on particular and often detailed knowledge than on
algorithmic o r mathematical procedures. In some cases, machine inference can
facilitate the identification. The analysis scheme proposed first establishes the
geometry of the process, then marks areas that are conditionally vulnerable.
This provides a basis for advice on the kinds of human attention o r machine
sensing and control that can make the risks tolerable.

Techniques for representing and analyzing trouble spots in

Introduction

This paper outlines the main elements of a scheme for analyzing and
representing the vulnerability of a structure o r process, and for indicating kinds of
intelligent attention that could avoid or repair problems at the vulnerable points or
regions.

We want to provide tools, mostly computer-based, for depicting trouble spots and
fo r noting their causes and effects. Distinctively, the analysis is explicit about
agents, either human o r machine-resident, that may be involved in noticing and
doing something about potentially harmful situations. The more usual approach is
to focus mainly on the devices and processes themselves. However, vulnerability
and attention are closely related. Generally, unattended processes a re more likely
to develop problems, perhaps serious ones. When problems develop in such
situations, further problems often ensue. Conversely, attention itself, whether
coming from humans o r from sensor arrangemenb, may be open to certain
problems such as overload or faulty coordination.

Viewed as an artificial intelligence problem, vulnerability-attention analysis is
more a matter of knowledge representation than machine inference, though in
handling causal patterns it seems likely that automated techniques could probably
save some time. Again, it seems that things go wrong in similar ways for similar
structures, so that if structural similarity can be established, then an inference
system might suggest looking fo r certain kinds of problems.

Outline of the Analysis

The steps of the analysis are as follows:
1. Describe the structure o r process.
2 . Identify vulnerable parts, given specified circumstances.

107

3. Analyze the causal antecedents of the problems.
4 . Trace effects.
5 . Based on this analysis, recommend kinds of intelligence and attention that

6. Analyze the allocation of intelligent resources relative to availability,
can be applied to avoid or correct the problems.

involvement in routine operations, and so on.

There are three domains of information in the analysis:
0 the structure or process itself,

the broader and less well defined realm of factors that could impact the

0 the sentient resources and their organization.
focal structure or process, and

The structure o r process domain-which describes and characterizes the
machine, the manufacturing sequence, the managerial procedure-may be the best
understood of the three. I t is also likely to be somewhat idealized. The second
domain, covering various causal factors that can affect the key process o r
structure, may also be idealized, though conditions of ordinary use are likely to be
well enough understood. Objectively, the number of potentially influential external
factors is almost always greater than internal sources. Balancing this diversity of
possible external causes of problems is the fact that many systems almost always
function within a small range of environments. Information about the third
domain, that of the sentient resources, is likely to be more variable. If they are
humans and only interact occasionally, o r if these humans are the designers and
testers of the system, they will often be taken f o r granted, or at least not subject to
scrutiny and analysis as part of the system. Generally it seems to be the case that
humans who might be involved in detecting and guarding against vulnerabilities
will not be considered so systematically as the machines, unless they are involved
in operational steps of machine-based processes, in which case they are likely to be
treated as components of a mechanized system and paced as such. If the sentient
resources are themselves mechanical, they will be treated as part of the physical
structure. When the attention of humans is non-routine, for example when some
sort of managerial supervision is involved, o r when attention is needed only
occasionally, as when maintenance o r repair is required, the human resources are
not likely to be as well planned, since these matters are often not so predictable. In
some situations, the human resources may be slighted to no ill effect, when some
persons are clever enough to juggle many complex processes. An unjustified reason
for skimping on human attention to risky processes is because the accident has nut
happened yet, o r simply to cut costs.

We believe that all humans associated with a system will have an epistemic or
knowledge-related role, whether o r not this is planned by system designers. They
may also have an action role in the process itself.
represent the dynamics of knowledge in relation to machine and procedure is a
major goal of our investigation.

Attempting to understand and

108

About Vulnerability

Though vulnerability may be thought of as being a property of objects (intrinsic
vulnerabih’ty), it has to do both with the structure o r process and with its
environment. Trans-situational vulnerability of a system and its parts can be
characterized, a sort of “others things equal” Vulnerability. But it is usually more
informative to describe contingent vulnerabii’ify, where susceptibility to problems
changes with outside factors, history, and so on..

LIke much of engineering thought, the ordinary concept of vulnerability focuses
on the object (device, process, etc.) rather than on its situations of use. However, it
directly implicates situational factors much more clearly than do terms like “risk”
o r “weakness”: a structure is thought of as being vulnerable to something and
perhaps as being vulnerable in certain ways.

To say that something o r someone is vulnerable means that it may receive
effects, ordinarily from external sources. The additional connotation is that the
effects may be harmful, o r may change the recipient’s structure significantly. On
examination, practically anything in the universe can be affected by something,
resulting either in a change of state o r configuration fui’tiinafe vui’nerabii’ify). .
Nevertheless the concept is useful since not everything is equally affected by
everything else. Thinking of which parts are relatively vulnerable, o r of the
overall vulnerability of certain systems, reminds us of some of the associated
causal scenarios that could result in changes worth noting, and prepares us to deal
with unwanted change.

Students in both engineering and psychology classes were asked to identify the
vulnerable aspects of various entities (objects, devices, procedures, people and
relationships). They did this easily. In many cases, they linked the undesirable
results to a part of the entity, for example, a pump that wears out. In other cases
the problematic region was seen more globally, as in a software system that
crashed readily but from diverse and unpredictable causes rather than from
something more localized such as parameter passing between procedures.
Frequently, design problems seem implicated. Students seem to characterize
ordinary conditions of use when asked to conceptualize vulnerable aspects of
machines. Vulnerable behavior of persons is more often thought of as contingent
on unusual circumstances (being away o r in a new situation, f o r example), o r as
depending on apparently volitional but statistically unlikely actions of the
participants. Without going further into discussion of these exercises, the
implication is that identifying points of vulnerability seems a natural way to think.
Llstlng the vulnerabflity of parts is convenient for cataloguing things to watch out
for both within a system during operation and in its environment. (Such a list
could, of course, obscure causal relations, o r lead one to think that the part is
somehow responsible for the things that could happen to it involving potent outside
sources. 1

109

Representation of Causes and Effects

Even a bare listing of risky areas can be helpful to someone who must deal
responsibly with a system. A surface vulnerability description can help channel
attention and avoid surprises, even when causes of potential problems o r remedies
for them are not thoroughly understood.

Causal analysis of events o r conditions leading to problems will make the
depiction more thorough and probably easier to conceptualize.

The depiction of causal paths leading to problems in a structure o r process is
more of a challenge than just describing the basic system (itself not always an easy
task if the system is large or has complex relationships). This is so for several
reasons :

0 In some cases, more than one causal sequence could lead to the same costly
result.

0 Causal factors and processes could conceivably be very numerous.
Frequently they will reside largely in sources outside the basic system, including
ones that a re not in the ordinary environment of the system.

0 Antecedent circumstances may be described loosely. (Our experience is that
level of abstraction problems are likely and pernicious.)

0 Causes of problems may not be understood. Thus there may be nothing to
represent. (We conjecture that heuristically programmed computer advisory
systems might suggest problem areas that could be explored.)

One aim of the analysis is to provide graphic representations of causal processes.
In doing so, we would like to combine the more abstract tradition of engineering
analysis which list causes and effects analytically ("A and B causes event C, which
in the case of state D also causes E to happen.") with the kinds of depiction of linked
parts o r pictures of structures and processes that has been more common in recent
computation (for example, in the renderings of semi-animated devices in various A I
programs). In vulnerability representations that we have been exploring, causal
depictions are linked to parts o r regions of a basic schematic o r diagram. In some
cases, the causal sequences are almost entirely internal to the parts of the focal
system, so they can be shown as highlights or certain parameter values of the the
basic depiction. In most cases, though, a representation of external events, states,
entities, etc. needs to be included, if only as verbal labels. Generally it is the case
that alternate causal paths, o r simply lists of possible sources and kinds and
problems, must be represented for a given combination of system part o r region
and vulnerability type. Thus, a basic kind of interface with a vulnerability
representation would be the familiar one of "selecting" a part o r region, o r a type
of failure (or change), then choosing from a display of alternative possibilities and

110

paths leading to this kind of problem, from a menu, a pop-up, o r similar artifice.
Because of variations in level of understanding of caural factors, it may not be
possible to draw diagrams in all cases. Verbal descriptions are often informative,
though for analysis by the system one would probably want more information on
connectedness to be included.

A now-classic format for causal depiction is lshikawa diagrams (see Juran &
Gryna, 1980, p. 111>, where alternative causal “hypotheses” about failure of parts of
systems are attached to arrows which point to parts of an industrial process.

When it comes to showing the ~f?iicfs of a problematic state o r event, their
representation will often be more closely tied to the representation of the focal
system, since many of the effects may spread within its structure. However, there
may also be various effects on the environment. Some are immediate but ride-
effects, remote consequences, and other unwieldy contingencies may come about.
Generally, the more connected a system is to the outside, either physically o r
epistemically, the more effects will be representable.

Problems with causal depictions and with causal analysis in general should be
noted. Shoham (1988) is one who has recently criticized causal diagrams as being
oversimplifications. We feel that they may be useful even if they are something of
a simplification of what goes on. Even so, tendencies to oversimplify, to assume
that the conceptual space is the real world, to be optimistic about one’s favorite
devices, to look for simplified causal villains, and so on, must be kept in mind.

Comparisons with Traditional Analysis

Vulnerability-attention analysis does not pretend to compete with traditional
analyses of failure or fault. It might be thought of as a representation scheme for
some of the material uncovered o r formulated under standard methodologies. But
some similarities and differences are worth noting.

We think that there is an advantage in representing the actual structure o r
process in some degree of detail. By contrast, note that probably the most highly
developed fault analysis methodology, fault tree analysis barlow et al., 19751,
depicts Boolean combinations of causal factors and events, rooted in descriptions of
major conjectured failure states. Working in a causal space, with a manageable
algebra, allows risk coefficients to be computed in a fairly straightforward way,
and parts of the causal tree to be scrutinized. It is a strong methodobgy. The
kinds of descriptions urged here, which summarize the geometry of the focal
system, together with causal depictions associated with points or regions of the
system diagram, a re not so neat when it comes to managing them mathematically.
However, they have the advantage of calling to mind physical relations of
adjacency, which may themselves be causally important. For example, when
problems occur owing to accidental connection of parts that are not supposed to be
connected (e.g., a solder ball o r suffusing gas) it is probably easier to think of these

111

with a process/structure diagram o r drawing than with a wt of descriptors in an
abstract space.

The approach described here is closer in spirit to ordinary failure modes and
effects analysis, but would probably lean more toward exploring the connectedness
of the entities and events involved more than is sometimes done. (Failure modes
analysis is sometimes represented formally; see for example Nielsen, 1975 or Taylor,
1975.1

We would like to be able to reduce some of the labor in identifying cause-effect
factors and paths, which is common to all these methods.. Lhe of the questions of
vulnerability-attention analysis is whether heuristic analysis, where
knowledgeable computer programs interact with subject-matter experts, might
reduce some uf this labor. It seems that a certain amount of system description, as
well as identification of problem-causing paths, depends on particular knowledge of
humans. As time goes on it may be possible to incorporate some of this knowledge
into computer-basfid analysis systems or "suggestion systems", in order to reduce
some of the tedium of description.

Vulnerability analysis is closer in basic form, though not necessarily in detail, to
lshikawa analysis.

Knowledge Operations

"Attention" is used here roughly as a synonym for "applied intelligence". It
serves to point aut that knowledge about a system is not ureful unless it enters into
some real pracess of noticing, judging, inferring, deciding. adjusting, revising, etc.

Intelligence-in-the-sitsituation requires someone o r some knowledgeable machine
arrangement.

A variety of persons might be involved with a structure o r process at different
times. One can distinguish between pre.aifmztion, rut%&- affmfiun, and p f -
affcnfiun relative to an operational phase. Re-attention consists of efforts to find
out passible symptoms of vulnerability, to understand them, and to provide
remedies or redesign. On-going attention involves efforts to find symptoms of
vulnerability during operations. These might be tipped off by anomalous events, or
more directly cued to reliable indicators of specific problems. Knowledge from
earlier testing may be useful in this regard. On-going attention may include
adjustive or currective moves. Post-attention evaluates performance, o r possibly
breakdown, after the fact. Attention at any of these stages could benefit from the
knowledge gained at another stage.

These knowledge operations may be d&fribuf& ur sfraf i f id mwr &7~?nf5. For
example, someone who works closely with a machine system will notice small cues
that could signal problems. Someone who evaluates statistics of the performance of

112

many such devi- may detect more subtle trends. Managers frequently have
massive filtering of information, sometimes constrained by regulation o r custom, as
well as made difficult by communications werload and slippage, that make the
evaluation of what is going on quite difficult.

The approach of vulnerability-attention analysis is knowledge-based rather than
algorithmic. However, it may use economical and orderly means of identifying
causes and tracing effects. Included in the logic of the analysis is to give each part
of the focal system a generic identification, so that more general heuristics can be
applied to suggest trouble-spots ("This assembly functions as a valve; valves
frequently have certain problems; therefore look for") In other cases, expert and
historical case knowledge would be incorporated, since vulnerability of a system
and its parts is actually dependent on conditions, and in some cases on particular
causal histories.

Risk analysis is often intuitive, certainly knowledge-based, and can be tedious
and difficult to represent. Analysis bearing on the best kinds of attention and
intelligence is generally less well understood, possibly because people do a good job of
it, by and large. Sometimes they do not, however, so more concern with knowledge
operations seems to be of utmost importance, especially with costly and high-risk
systems, such as may be found in various parts of the Space program.

Background: the Context-Sensitive Scheduling Problem

The analysis discussed in this paper grew out of work which recast a heuristic
scheduler for space activities designed by Floyd and Ford (1986) into an object-
oriented form (Hays and Davis, 1988). Davis (1988) reprogrammed the Floyd-Ford
scheduler, which in its original form used traditional symbolic programming
techniques. Though Davis's version maintained an overall flow of control similar to
the original, the treatment of discrete processes as "objects" which pass messages
to other objects (in this case, scheduling procedures) that evaluate their suitability
for location in a schedule, suggested a partially "decentralized" determination of
position which was sensitive to power drain, priority, and other factors.

Yet more radically object-oriented approaches to scheduling could be even more
suited to nonhierarchically organized environmental contexts. Some higher-level
evaluation o r conflict resolution is also needed, of course, to prevent local
shortsightedness and to insure that a suitable variety of factors are accounted fo r .
This general kind of decentralized "power" situation for computational entities was
discussed in Hays (1977).

Other Applications to Space-Belated Activities

Since its beginning, work related to space travel and operations has had to
consider risky situations. Precise results have had to be obtained in unusual and
often dangerous environments. In many c a s , the impossibility of operational
attention has meant very careful pre-operational attention leading both to rugged,

113

protective designs and to detailed attention during construction, testing, f l ight
preparation, and 50 on (s e ~ for example the discussions in Bolger, 1975).

There a re many occasions for representing vulnerability and for understanding
the optimal appliwtion of knowledgeable attention in space-related activities.
Scheduling that is more sensitive to context is just one. Testing of devices and
procedures, ordinary management for development, design of operational
environments with shared machine and human monitoring and decision-evaluation,
and various other computer-assisted operations, a re all candidates for
vulnerability-attention analysis. Deeper understandings of knowledge operations,
and the relation of knuwledge to external process, should produce efficiencies of
analysis and of performance.

Acknowledgements

T'he work upon which this paper is based has been supported in part by Grant
WAGLI+41 from Marshall Space Flight Center, Donnie Ford, Principal Investigator,
John Wolfsbmger, Project Monitor.
Morton Hall, University of. Alabama in Huntsville, Huntsville, AL 35899.

Please address correspondence to Dan Hays, 135

References

Barlow, Richard E., Fussell, Jerry B. b Singpurwalla, Nozer D. (Eds.).
ReliaMlity and Fault Trpp Analysis.
Mathematics, 1975.

Eblgur, Philip H. (Ed.). *ea Rescue and &fdy 1975.
Technology. American Astronautical Society, 1975.

Floyd, 3. L Ford, D. in Raxeziiqs of the Cimri?rmcp on Arfif ic iaZ ZntelZ&~~ct?
for .9;we Applicafiory Huntsville, 1986.

Hays, D. "Dominance relations in computing systems." APIPS Press:
Rtx-&zh,g5 of t h 1977 Matiom1 Computer L3nrFrence, 1977, pp. 595600,

Hays, D. Davis, S., and Wolfsberger, J. "Implementation of a scheduler in LISP
and in Ada." R o h f k s and AUfOmdtiOR Confer-mce, Huntsville, 1988.

Juran, Joseph M. & G r y n a , Frank M. J r . Qualify Plannziy and Analysis: ricrm
prrduct Lkwlopmenf through Us. Second Edition. New York: McGraw-Hill, 1980.

Nielsen, Dan. "Use of Cause-Consequence Charts in Practical Systems Analysis.
In Barlow, et al., 1975, pp. 849-880.

Shoham, Yoav. Remniiqg abuuf Change. Cambridge, MA: MIT Press, 1988
Taylor, J. R. "Sequential Effects in Failure Mode Analysis." In Barlow, et al.,

Philadelphia: Society For Industrial and Applied

Vol. 41, Science and

1975, pp. 881-894.

114

N89- 1 5 5 6 6
c

GRAPH-BASED REAL-TIME FAULT DIAGNOSTICS
S. Padakar, G.Karsai and J. Sztipanovits

Vanderbilt University, Nashville, T N 37235 USA

ABSTRACT

A real-time fault detection and diagnosis capa-
bility is absolutely crucial in the design of large
scale space systems. Some of the existing AI-
based fault diagnostic techniques like expert sys-
tem and qualitative modelling are frequently
ill-suited for this purpose. Expert system are
dten inadequately structured, difficult to vali-
date and suffer from knowledge acquisition bot-
tlenecks. Qualitative modelling techniques some-
times generate a large number of failure source
alternatives, thus hampering speedy diagnosis.

In this paper we present a graph-based tech-
nique which is well suited for real-time fault di-
agnosis, structured knowledge representation and
acquisition and testing & validation. A Hierar-
chical Fault Model of the system to be diagnoeed
ie developed. At each level of hierarchy, there
&t fault propagation digraphs denoting causal
relations between failure-mo des of subsystem.
The edges of such a digraph are weighted with
fault propagation probabilities and fault propa-
gation time intervals. Efficient and restartable
graph algorithms are used for on-line speedy
identification of failure source components.

IN TRO D UC TI0 N

A very high degree of automation and complexity
is evident in modern industrial plants and space
systems. This trend towards fully automatic and
largely unmanned complex systems necessitates
the development of a real-time fault detection

and diagnosis capability. Such a capability would
lead to shorter repair times and longer system
operational times, thus enhancing productivity.
Signal processing techniques coupled with mod-
ern sensors are capable of fault detection and
alarm generation. Advances in computer tech-
nology such as multi-proceasing allow improve
ments in real-time performance. New artificial
intelligence (AI) programming techniques, such
as declarative languages and symbolic processing
are very efficient for representing and processing
the failure models of systems.

PROBLEM STATEMENT

A real-time fault diagnostics system has to func-
tion in an environment where new alarm may
constantly be generated, due to the propagation
of failures. To cope with such a time-changing
scenario the diagnostics system must have the
following characteristics:

0 Signal Processing, Alarm Generation and
Failure Source Identification software must
be as fast as poesible. The first t w o are usu-
ally standard well-defined and analyzed al-
gorithms, and hence, virtually all speed i m
provements have to be achieved in the failure
source identification phase.

0 The diagnosed results must be updated as
time elapses and new alarm information is
received. These results must be accurate but
need not have a fine resolution. This implies
that in the early stages of diagnosis a large

115

component such as the Gas-Delivery Assem-
bly can be identified as the fault source. The
resolution of this fault source is hrther re-
fined with the passage of time and additional
alarm information to a unique valve inside
the Gas-Delivery Assembly.

e The User-Interface must present the current
status of diagnosis in a comprehendible man-
ner, reflecting the level and the granularity
of the system under diagnosis, at which the
diagnostics system is operating.

SURVEY OF OTHER TECHNIQUES

Rule-Based approaches or Expert System (1)
have been the primary AI technique used for
fault diagnostics. Expert Systems use IF - THEN
rules as their knowledge representation structure,
and an inference engine operating on these rules
for detecting the source of failure. For diagnos-
ing large-scale systems, Expert Systems are of-
ten unsuitable since they cannot be efficiently
modularized. Large Expert Systems also suffer
from maintanence, testing and validation prob-
lems. Often large Expert System remain incom-
plete because of knowledge acquisition problem.

Another approach has centered on using quali-
tative models (2) which are a simulation of faulty
system behavior. Fault sources are identified by
comparing incoming data with all possible qual-
itative simulation models until a match is found.
This process may generate too many modela and
be too timeintensive for use in real-time fault
diagnostics.

A variety of graph-based techniques such
as fault trees (3), event-trees (4) and cause-
consequence diagrams (5) have also been used for
fault diagnostics. An interesting approach pro-
posed by Narayanan and Vishwanadham com-
bines hierarchical fault propagation digraphs
with fault trees (6). It is judged that a graph-
based technique offers the best hope for real-time
fault diagnostics.

GRAPH-BASED APPROACH

The basic philosophy of our graph-based a p
proach is based upon Multiple-Aspect modelling.
The system under consideration is hierarchically
decomposed Gom many aspects in order to yield
many different models. A functional decom-
position leads to the Hierarchical Process Mo-
del (HPM) and a structural decomposition leads
to a Hierarchical Physical Component Model
(HPCM). A Hierarchical Fault Model (HFM) is
developed in the context of HPM with links to
the HPCM.

The technique of hierarchical decomposition is
widely used during model building for the follow-
ing reasons:

1. Design, knowledge acquisition and
knowledge-base maintanence of large com-
plex system becomes structured and easier.

2. Running the same graph algorithms on
smaller number of nodes many times takes
lesser time than running them on the entire
set of nodes in a system. For example it
takes longer time to run an O(n3) algorithm
on a graph with 200,OOO nodes than it takes
to run the same algorithm 200 times on a
graph with 100 nodes.

3. It is possible to conduct the search for the
failure source on the HFM in a parallel man-
ner, thus enabling speedy diagnosis.

4. In most cases a large granularity component
assembly can be identified as a failure source
at an early stage, and then the search need
only proceed in that component’s part of the
model.

Hierarchical Process Model

A p r o m in the HPM can be thought of as a
functional unit carrying out a specific function in
the system, by utilizing different physical compo-
nents. Different processes on the same level may

116

interact with each other through shared physical a model in its declarative language. A sample
components. Processes in the HPM can be as+ output of the fault model editor is shown in fig-
sociated with many different components in the ure 3. These generated specifications are used
HPCM as shown in figure 1. In the context of by special-purpoee interpreters for generating the
each process the following are acquired: run-time environment of the real-time fault diag-

nostic system.
1. Process Failure-Modes.

DIAGNOSTIC ALGORITHMS

By running suitable algorithms on a fault prop*
gation digraph, a failure source process and its
source failure-mode can be found. Since each
failure-mode in each process is also associated
with physical components, the source faulty corn-

migrated to lower levels of process hierarchy in

2. Process Alarms and alarmgenerators. The
alarmgenerators accept
needed, generate the appropriate alarm.

inpub and

3. Alarm Failure-Mode associations.

4. Failure-Mode Physical &mpOnent aSSOCi& ponenb can & be found. This process can be
tions.

JZierarchical Fault Model

E&h process in the the HPM also has its fault
model. This model is derived from that its
failure-modes, and if present, the failuremodes
of its subprocesses. All these failure-modes form
nodes of a fault propagation digraph, with di-
rected edges betwcen individual failure-mo des
signifying a fault propagation possibility. Each
edge in this graph is weighted with two param-
eters a fault propagation probability and a fault
propagation time interval in terms of a minimum
and a maximum. The fault propagation digraph
of a process on level i is shown in figure 2. The
collection of all such fault propagation digraphs
and failure-mode physical components associa-
tions results in the HFM. It is possible to extract
a rough fault propagation digraph irom process
physical interactions since most faults can only
propagate along physical connections.

Model Building

The process of model building and specification
was aided by graphical editing tools developed
at Vanderbilt University (7). Each model was
built using its its own specific editor and also
had its own declarative specification language.
The output of an editor is the specification of

order to get a better resolution. Hence the failure
source identification process consists of two algo-
rithms the Failure Source Process Identification
(FSPI) and the Fault Source Component Identi-
fication (FSCI). An Inter Level Migration (ILM)
proceas does the task of searching the process
hierarchy for the best resolution of the possible
faulty source component.

&&Ire s ource Pro cess Ident ification
The FSPI algorithm gets as input the fault-
propagation digraph of a pro- to be diagnoeed.
It also receives all alarms currently ringing within
that process and ite eubproceases. This algorithm
is accurately capable of detecting under most cir-
cumstances, whether a single or a multiple fault
occured in the process. On completion, this al-
gorithm returns the possible fault source subpro-
cesses and their fault source failure-modes. It
uses the following constraints to determine the
fault murce in case of a single fault condition :

1. Reachability Constraint : All ringing alarms
shall be reachable from the detected source
failure-mo des.

2. Monitor Constraint : No failure-mode with
a normal alarm shall lie on a path from any
of the detected source failure-modes to any
of the failure-modes with a ringing alarm.

117

FIGURE 1 Multiple-Aspect Modelling

118

Process Structure O n Level i :

Fault Model On Level i :

1
FIGURE 2 : Fault Propagation Digraph

119

$ AL-1 K-2

--, "-. .. ,
I

I I
*---------- \ I

I t*.t-kh:at. '\. i

FIGURE 3: Fault Model E d i t o r Session

1 120

3. Temporal Constraint : All ringing alarms
shall be individually reachable from the
detected individual source failure-modes source in any level of pro- hierarchy.

and restarts the diagnosis. At any point in time
the ILM can present its best guess of the failure

within the time interval computed from
the time intervals found on shortest path
between each individual alarm and source

DIAGNOSTIC SYSTEM
ARCHITECTURE

failure-mo de pair. The Real-Time Fault Diagnostic System re-
4. Consistency Constraint : There shall be quired:

no failure-mode with a ringing alarm whoee
reachability time from a source failure-mode
is greater than, the maximum reachability
time of a failure-mode with a normal alarm
from that detected source failure-mode.

1. The urn of a distributed computing architec-
ture,

2. Support for a concurrent programming m e
del and

The algorithm is c l o d and complete and thus 3. Integration of symbolic and numerical corn-
suitable for speedy location of failure source pro- putations.
Ce6se8 .

The Multigraph Architecture (MGK) (8) has
been used as a generic framework in the imple- Fault Source C0mPon-t kkt&f~cation

The FSCI algorithm takes as input a list of de-
tected source failure proceesea and their source
failure-modee. In case of a single fault condition
it returns a union of all physical components aam
ciated with the eource failuremodes. In case of a
multiple fault condition it tries to find a common
component amongst all the source failure-modes.
If successfull it returns that common component,
and if not it returns a union of all associated com-
ponents.

Inter Level Migration

The ILM process detects the highest level of the
process in which alarm are ringing. It then tries
to search for a failure source by running the FSPI
and later the FSCI algorithms on all pro-
in that level. The reeults are used to guide a
breadth-first search of all proceasee present in the
next lower level. Thij process continuee until the
lowest level of hierarchy is reached. At this point
the best possible resolution of the failure source
is achieved. If during this migration an alarm
rings in a higher level than the current one un-
der processing, the ILM goes to that higher level

mentation of the-diagnostic system. The MGK is
dataflow oriented computing system, capable of
allocating computing nodes on a distributed net-
work consisting of uniproccessor as well as multi-
processor configurations. The language of the
these computing nodea can be Lisp or C or Ada,
thus enabling integration of symbolic and numer-
ical computations. The MGK supports program-
ming models such as autonomous communicating
objects (9).

The diagnostic system architecture ia shown
in figure 4. A Monitor task handlea the job of
acquiring sensor outputs and alarm-generation.
The Diagnostic task consists of a diagnostic man-
ager object, a diagnostic methods object and a
display manager object. The diagnostic manager
accepts as input $1 generated alarm and is in
charge of conducting the inter-level search for the
failure source. During this search it may send a
process to the diagnostic methods object asking
it to perform either the FSPI algorithm or the
FSCI algorithm on it. The diagnostic methods
object perform the requisite algorithm and re-
ports the result back to the diagnostic manager.
These results are used by the diagnostic manager

121

MONITOR

TASK

ALARM

Alarm 1

Alarm 2

Alarm 3

n
GENE-

RATOR .,

Alarm 4

Alarm n

C + MGK

DIAGNOSTIC TASK

IDIsp-
MANA-
GER

Diagnostic
Methods

I-

Decl. Lang. Intrptrs +
System Builders

Lisp + MGK + C

FIGURE 4: Diagnostic System Architecture

1 2 2

as a guide in its search. As soon as results are
obtained for a level in the hierarchy they are sent
over to the display manager for displaying them
to the user.

TESTING AND VALIDATION

A real-time alarm pattern simulstor is used to
test and validate the real-time fault diagnostics.
This simulator is automatically derived from the
HFM. This simulator accepts as input any num-
ber of failed components and the times at which
they are supposed to have failed. It then gener-
ates in real-time the pattern of alarms that would
ring due to the failed components. These alarms
serve as the input for the diagnostics system.

CURRENT STATUS

A real-time fault diagnostics system for a Cogen-
erator plant currently exists on an HP 9000/300
computer. The process model has 5 levels of hier-
archy and 45 processes. The average number of
failure-modes per process is about 4 and hence
the average number of nodes in a fault prop&
gation digraph is about 10. An alarm pattern
simulator is currently being used to test and val-
idate the diagnostics system. A test in which 5
alarms were generated in a span of 20 seconds,
the diagnostics system located the failure source
with the finest possible resolution in 25 seconds.

CONCLUSIONS

A hierarchical graph-based model appears to be
the most suitable fault model for real-time fault
diagnostics. The knowledge acquisition process
can be automatized to a large extent. The graph
algorithms developed are fast enough to be used
for speedy diagnosis. The system is able to u p
date itself and restart the diagnostic procedure
if necessary. The breadth-first search strategy
enables the system to provide an accurate diag-
nosis of a coarse resolution that can be refined
with passage of time and more alarm informa-
tion. Testing and validation of such a system is

easier since the test program can be automati-
cally generated from the fault model itself.

REFERENCES

(l)LafTey, T., Perkins, W., Nguyen, T., "Reason-
ing about Fault Diagnosis with LES", First Con-
ference on A.I. Applications, Dec. 1984.

(2)Milne, R., "Strategies for Diagnosis", IEEE
'Ikansactions on Systems, Man, and Cybernetics,
May/June 1987.

(3)McCormick, N., "Reliability and Risk Anal-
ysis", Academic Press Inc. New York, New York,
1981.

(4)Kumagai, N., Ishida, Y. and Tokumaru, H.,
"A Knowledge Representation for Diagnosis of
Dynamical Systems", IFAC Real Time Program-
ming, Lake Balaton, Hungary 1986.

(5)Himmelblaq D., "Fault Detection and Di-
agnosis in Chemical and Petrochemical P r e
ce88e8" , Elsevier Scientific Publishing Company,
Amsterdam, Netherlands, 1978.

(6)Narayanan, N. and Vishwanadham, N.,
"A Methodology for Knowledge Acquisition and
Reasoning in Failure Analysis of Systems", IEEE
'Ikansactions on Systems, Man, and Cybernetics,
March/April 1987.

(7)Karsai, G., "Graphical Description Pack-
age", unpublished memorandum, Dept. of Elec-
trical Engineering, Vanderbilt University, 1986.

(8)Setipanovita, J., "Execution Environment
for Intelligent Real-Time Systems", Proc. of the
NASA Workshop on Telerobotics, Pasadena, CA,
1987.

(O)Sztipanovits, J., Biegl, C., Karsai, G.,
Padalkar, S., and Purves, R., "Programming
Model for Coupled Intelligent Systems in Dis-
tributed Execution Environments" , Proc. of
SPIE's symposium on "Advances in Intelligent
Robotic Systems", Cambridge, MA, 1886.

123

AUTOMATIC DETECTION OF ELECTRIC POWER TROUBLES

(ADEPT)

Caroline Wang, Hugh Zeanah, Audie Anderson, Clint Patrick
Information and Electronic Systems Laboratory

Marshall Space Flight Center, NASA
Huntsville, Alabama

Mike Brady and Donnie Ford
University of Alabama in Huntsville

ABSTRACT

ADEPT is an expert system that integrates knowledge from three different suppliers to
offer an advanced fault-detection system, and is designed for two modes of operation:
real-time fault isolation and simulated modeling

Real time fault isolation of components is accomplished on a power system
breadboard through the Fault Isolation Expert System (FIES 11) interface with a rule
system developed in-house. Faults are quickly detected and displayed and the rules and
chain of reasoning optionally provided on a Laser printer.

This system consists of a simulated Space Station power module using direct-
current power supplies for Solar arrays on three power busses. For tests of the system’s
ability to locate faults inserted via switches, loads are configured by an INTEL
microcomputer and the Symbolics artificial intelligence development system. As these
loads are resistive in nature, Ohm’s Law is used as the basis for rules by which faults
are located.

The three-bus system can correct faults automatically where there is a surplus of
power available on any of the three busses. Techniques developed and used can be
applied readily to other control systems requiring rapid intelligent decisions.

Simulated modeling, used for theoretical studies, is implemented using a modified
version of Kennedy Space Center’s KATE (Knowledge-Based Automatic Test
Equipment), FIES I1 windowing, and an ADEPT knowledge base. A load scheduler and a
fault recovery system are currently under development to support both modes of
operation.

125

INTRODUCTION

Marshall Space Flight Center(MSFC) is involved in design and development of
the Automation of Electrical Power Systems project. This demonstrates the feasibility of
using computer software to enhance fault-diagnosis techniques and develop fault-
recovery techniques for the Space Station. To accomplish this, prototype software was
developed to automate such tasks as detecting and isolating faults and monitoring and
reasoning status.

The ADEPT system includes:

(1). Real time fault isolation through a breadboard modeling the power components.

(2). A local simulator which uses the theoretical models and will eventually support the
fault recovery system.

HISTORY BACKGROUND

In 1985, Martin Marietta Denver Aerospace delivered to MSFC the Fault
Isolation Expert System including a two-rack, 350-watt, three-channel electrical power
system breadboard.

MSFC was experimenting with various software techniques to improve
performance and speed. ADEPT was built with the MSFC rule system utilizing the
existing FIES II breadboard and software interface and KATE as a tool for the local
simulator.

The real-time fault isolation version was implemented in LISP, because of its
ability to search for a fault, display fault data, and automatically print out the fault
reasons and current data along with the steady-state data for comparison.

The University of Alabama in Huntsville is also involved in this project. They
have already converted the software into Symbolics system genera 7.1, and also will be
conducting a future study of load management and scheduling.

THE ADEPT SYSTEM

ADEPT is composed of a Symbolics 3670 computer linked to the modified FIES
I1 system. The Symbolics 3670 includes a high-resolution graphics terminal, eight
megabytes of memory, a 474 megabyte hard disk, Laser graphics printer, and a LISP
environment. The FIES I1 breadboard is built into two side-by-side racks containing the
host computer, its memory storage devices and UO support equipment; the relay board
subrack, its power supplies and related controllers; communications boards, ports, and
cables; housekeeping power supplies; control switches and lighted displays.

126

Figure 4 outlines the components in the ADEPT system and the interactions of
these components with one another.

Data transfer scheduling and control are provided by the host computer, an Intel
System 86/380. Based on the iRMX86 operating system, the 86/380 contains the iSBC
86/30 Single Board Computer board, a thirty-five megabyte Wincester hard-disk, a one
megabyte eight-inch flexible disk drive, and a multibus expansion rack with slots
containing not only controllers for the computer itself, but also communication and data
conversion boards discussed below. Software run on the 86/380 is written in Intel's
ASM86 assembly language.

Three dual-sided power supplies provide charge to the batteries or electricity to
drive the system's load resistances, or both, depending upon the configuration into which
the busses' relays are set. Representing the Space Station's solar arrays, these supplies
are capable of up to fifty volts and nearly two amperes output on each of the six available
channels. Each supply has independent current-limiting adjustment, allowing simulation
of various solar array lighting conditions.

At the heart of the breadboard is the relay board subrack, comprised of six boards
containing forty-eight relays along with related support components. In addition to its
function as the system's switching center, the relay subrack provides attach points for
most of the sensor lines, by which A D converters sample system conditions, and all of
the fault insertion lines. The fault insertion logic, used to introduce various abnormalities
at nodes along the power busses, sends its outputs directly to the relay boards where the
"support components" mentioned effect conditions of open or closed relay faults and
resistive or direct shunt faults. Configurations may be inserted either manually, using
toggle switches on the front panel of the FIES I1 racks, or remotely, from the Symbolics
terminal or the debugging monitor. In the event that a switch is offset from the normal
mode, the corresponding relay cannot be controlled remotely, but a fault will exist and
should be detected and isolated.

The system integrates software from three different suppliers to offer an advanced
fault detecton system, designed for the two modes of operation outlined in Figure 1.

Real-time fault isolation of components on the power system breadboard through
the FIES I1 interface is made possible with the MSFC rule system. Faults are quickly
detected, displayed, and reasoning provided. The FIES 11 interface and MSFC rules
system were written in Common Lisp (Figure 2).

The simulation version uses a frame-based system, describing all system
components and the relationships among them. A constraint system analyses these
relationships and compares theoretical to actual measured values, thus identifying
constraint failures(Figure 3).

FAULT ISOLATION

When an initial configuration of loads is selected and downloaded from the Host
Computer, and steady-state condition is achieved, all the sensor points' voltages and
currents are read continuously and any significant change at any sensor point indicates a
fault has been inserted. This Fault condition is then flagged to the Host computer to
initiate the isolation program.

F&AciType: OPEN RELAY
127

Open circuit conditions are indicated by a sudden drop in the values of current
read at the sensors while the voltage values remain the same or perhaps higher. Isolation
is done by searching for a sensor point where the voltage is zero. The location of the
inserted fault lies between the sensor points where there was a voltage and was not a
voltage.

Fault Type: DIRECT SHUNT

A direct shunt, or short-circuit, fault causes a sudden increase in the sensor
readings of current values and a decrease in voltage values on sensors nearest the power
source. When this occurs, the fault type is identified and a search begins for a sensor
point where the current is higher than the steady state current and following points have
current readings of approximately zero.

Fault Type: RESISTIVE SHUNT

Resistive shunt causes a sudden increase in current readings on the sensors
nearest the power source. A decrease in the voltage may also occur where the load plus
the resistive shunt causes the current to exceed the capacity of the solar cells being
simulated. Isolation of the resistor shunt fault is done by identifying the first sensor
reading with a significant decrease in current. The fault is between this sensor and the last
one back toward the power source with a high current reading.

REFINEMENTS

Refinements in the rules are made using Ohm’s Law to further identify the type of
fault being experienced. This is done by considering the ratio of the values of currents
and voltages between steady-state and fault conditions.

128

A D E P T 0

FnUT

A D E P T

D1SFl.LW FWLT TYPE AND DATA
PRINT WT REASONS ON LASER PRINTER

REAL TIME
FAULT ISOLATION

FIES I 1

1 1
SYSTEM MICRO SYMBOL I CS

I BREADBOARD I I PROCESSOR I I I

Figure 1. ADEPT system flow diagram

Figure 2. ADEPT real-time fault isolation flow diagram

129

p T - 1
SIMULATION

EXAMINE
ADEPT RETRIEVE DOWNLOAD

CONFlGlRATION CONFIGU~TION S]HU$IT]ON
D m

1
RETRIEVE ARCHIVE
SCENARIO SCENARIO WIT

ARCHIVE
CONF IGlRAT ION

WINDOW
INTERFACE

INFERENCE
ENGINE

READ RELAY CONFIGURATION
RIM KATE 'GWL'

Figure 3. ADEPT simulation flow diagram

INTEL SYSTEM 86/3a RTI 711

14 BOCYIDSJ
n/o CONVERTERS

c I
t MUTIBUS t

I l5BC 517 I
COMHWlCATlON

EXPANSION BWRD

I ISBC 534 I

tlt

Figure 4. Hardware flow diagram

130

AN OVERVIEW OF VERY HIGH LEVEL SOFTWARE DESIGN METHODS

Maryam Asdjodi and James W. Hooper
Computer Science Department

The University of Alabama in Huntsville
Huntsville, Alabama, 35899

ABSTRACT

Very High Level design methods emphasize automatic transfer
of requirements to formal design specifications, and/or may
concentrate on automatic transformation of formal design
specifications that include some semantic information of the
system into machine executable form.

Very high level design methods range from general domain
independent methods to approaches implementable for specific
applications or domains. Applying AI techniques, abstract
programming methods, domain heuristics, software engineering
tools, library-based programming and other methods different
approaches for higher level software design are being developed.
Though one finds that a given approach does not always fall
exactly in any specific class, this paper provides a
classification for very high level design methods including
examples for each class. These methods are analyzed and compared
based on their basic approaches, strengths and feasibility for
future expansion toward automatic development of software
systems.

INTRODUCTION

Automatic programming is one of the long range goals of
computer science research. Understanding the natural language
interface, converting the specifications in natural language to
formal design specifications, and developing implementations are
constituent components of automatic programming (21 . Natural
language understanding has been an evolutionary process. In its
actual implementation, automatic programming always is viewed as
substitution of a higher level language for specifying a system
to a machine for the languages that are presently available
[141. In order to avoid ambiguity and make the problem
manageable, a limited set of vocabulary and interpretation rules
are used for the machine interface. Compilers are among the
primary tools that improved software specification and
introduced basic generic and reusable programming concepts
(e-g. , loop structures). They allowed higher level
specifications than what a machine by its nature was designed to
understand. Specification of a software system in a high level
language, should be based on specific syntactic rules (BNF) of
the language. Compilers are designed to verify software
specification (i.e. program) correctness by detecting mainly the

131

syntactic errors of the implementation and to develop executable
specifications (i.e. machine code) for correct programs.
Syntactic errors are not the only inaccuracy of programs.
Logical and semantic errors result in a larger class of faulty
programs. Semantic information includes the definition of
objects, relations, rules, and algorithmic concepts that are
used for describing the system. Errors related to these
interpretations usually are referred to as semantic errors 1131.
Semantic errors result from misrepresentation or
misunderstanding of the meaning of the requirements or design
parameters. Compilers for high level languages such as FORTRAN
detect few of these errors.

Very high level (VHL) design methods are being developed by
moving up toward greater abstraction of specifications and
automatic software generation by relaxing syntactic rules of high
level languages, and/or including more semantic information in
design specifications. The designer's knowledge about the real
system is represented by different methods. Object-oriented
programming incorporates a view of real-life entities in terms
of their functions and relations with other entities. Logic-based
programming models a system in terms of logical statements and
assertions. Application of artificial intelligence methods for
designing software systems is recommended for use by software
engineers [17, 201. Transformation techniques are used for
converting VHL design specifications into implementations.
Knowledge-based systems are used for defining an application
domain to a computer. What is common in all of these approaches
is the necessity of more generic and adaptable constructs for VHL
specification of a software system. These reusable aspects of
VHL design tools range from standard methodology and control
structures of design to generic objects and library components.
The next section provides a review of VHL design methods and
their approach to reusability.

CLASSIFICATION OF APPLICATION

The design of a software system refers to specification of
its algorithmic concepts, data structures, functional components,
and interfaces between these components [12]. It is the most
important and crucial phase of the software life cycle.
Adaptable and more abstract designs, when automatically
transformed to implementation in high level languages, release
the software system designer from dealing directly with the
syntax of programming languages, resulting in more reliable
implementations. Different VHL design approaches emphasize
reusability of specification, structure, and methodology of the
software design, in a different level. They range from efforts
to develop generalized structural design methods for transforming
informal requirements of problems to formal design specification,
to approaches for implementing predefined design elements.
Although VHL design approaches are very diverse, they are
grouped in the following categories with respect to their major
approaches.
132

- General approaches. - Software engineering approaches. - Program transformation approach. - Component composition approach. - Application-oriented Methods. - Knowledge-based approach. - Application language approach. - Object-oriented programming.
GENERAL APPROACHES

General VHL design methods provide means for designing a
system by applying design languages, environments and tools that
are independent of the application domain. General VHL design
methods allow more validation of specification of designs by
implementing general programming and software design knowledge
for developing VHL specifications and transforming them to
software. In most cases logical, functional, or relational
design approaches are enforced by general VHL design methods.
Generally these systems are interactive and no knowledge of any
application field is required. The following subsections
describe classes of approaches in this category.

Software Engineering Approaches

Software engineering emphasizes systematic development of
software systems. Complete development of life cycle phases,
including requirements, design, implementation, testing and
maintenance, as well as traceability between these phases, is
encouraged. Design tools are developed to enforce a uniform
structure for specifying the system design, that can be traced up
to requirements and down to implementations. Design tools are
usually supported by standard methodologies for designing a
system, by means of very high level design languages, menus,
tables, and graphic notations. Some software engineering tools
specify a system in terms of objects, and their relationships
and attributes. For each functional component, interface
conditions in terms of data and control flow and relationships
with other components are given. This information is used for
verification and consistency checking and tracing among
components of the design. Generally a specific design and
control structure is enforced by the tool. For example HOS
(Higher Order Software) applies a hierarchical structure [7 1 and
a state-based structure is suggested by Matsumoto [12]. HOS
transfers design specifications represented by the functional
language AXES to programs in high level languages. In HOS each
system is represented by mathematical functions, each function
having a specified domain of inputs and range of outputs. A
control map is used for interface checking among levels of the
functional specifications. Static simulation is used for
verification of specifications, and ,a dynamic simulator provides
means for simulating execution of HOS programs. HOS facilitates
two levels of transformation, from requirements to design and
from design to implementation.

133

Program Transformation Approach

The program transformation method provides for stepwise
refinement and transformation of functional or logical
specifications of a system to the implementation. The methods
used for the refinement of specifications include rule
deduction, theorem proving, and pattern matching. Refinement
methods may result in huge amounts of intermediate results.
Source-to-source transformation rules are used to simplify and
optimize the refinement process. Abstract specifications provide
very high level programs at the root of a refinement tree, and
applying refinement and source-to-source transformation rules,
customized application programs may be provided in a high level
language as the leaves of the tree. This method is also sometimes
called the stepwise refinement method. Program transformation
methods share refinement and transformation methods with
different areas of computer science such as artificial
intelligence, knowledge-based programming, rapid prototyping, and
optimization techniques for compiler construction.

Goldberg [6] has summarized techniques that are applied in
program transformation approaches as follows. Stepwise refinement
rules mainly include folding and unfolding VHL specifications
with the lower level specifications, possibly adding conditions
for clarifying VHL concepts in terms of implementations in a high
level language. Source-to-source transformations applied for
simplification of refinement process including loop optimization,
finite differencing, assertion maintenance, algebric or logical
simplification, and storage efficiency methods.

The stepwise refinement method is used in the CHI system,
[18]. In the CHI system, the language V is used for
specification of the design of the system using logical, very
high level structure. Logical expressions in the V language,
using a pool of generic and instantiated objects, are refined to
the lower level constructs of the V language, and finally to
LISP. Logic assertion compiler and Rule compiler are used for
source-to-source transitions and refinement of specification to
the lower level constructs. A data structure synthesizer is used
to provide a LISP implementation from generic data objects.

Component Composition Approach

Component composition techniques provide for combination
and customization of components from a library of generic
components. A system is designed by invoking and interfacing
library components and reusing predesigned components. Component
composition techniques represent reusable design in its precise
and true sense. Due to the fact that a library should be
searched for the right component, this method also is referred to
as programming by inspection [161. The adaptable components may
be objects representing primitiv2s of the language (e.g., data
structure operations, control facilities), and "modules",
"plans" or "packages" representing more complex components (i . e. ,
134

frequently-applied generic modules). For each component some
information is provided, such as name, description of
functionality, parameters, interface conditions, and rules or
axioms for application. A vocabulary set is required for
communication between the user and the system for recognition of
the library components. Selected components are customized and
instantiated by evaluation of their axioms, interface
conditions, and generic parameters. Usually a system is designed
by decomposition in a top-down fashion to the basic functional
components. In order to design a software system the component
composition method is used in a manner similar to the
bottom-up programming method. Low-level components are
customized and combined to provide more complex components
from which the last one is the software system. In general the
major requirements for implementing this approach include generic
design of components, a library, and customization and
combination methods.

Numerous studies about human factors in algorithm design and
computer programming have suggested that the component
composition methods are very close to the human approach [l, 191.
An example of the component composition approach is presented by
Goguen [5] in the Library Interface Language (LIL). The language
uses very high level generic packages, applying equational logic
expressions. Generic packages satisfy "Theories" for their
input parameters. Theories provide interface conditions and/or
properties of the parameters of the other entities. "Views" show
how a given entity (i.e. a package) satisfies a Theory.
Finally, the instantiation phase binds the formal parameters to
the actual programming language (Ada) data structure. A LIL
program is developed by combining, modifying, and importing,
using packages or some of their parameters.

APPLICATION-ORIENTED METHODS

Application oriented methods apply reusable designs for
producing software systems within a specific application or
domain. Applying the domain-specific analysis and software
design conventions provides for generation of more efficient
software for the domain. Design elements developed in some of
these approaches are adaptable in the sense that they represent
or apply some classes of objects of the domain.

Knowledge-Based Approach

Knowledge-based methods use domain rules and knowledge, in
conjunction with general methods for interpreting the input
specifications of a system, and provide some formal or executable
form of specifications. Domain analysis may be represented in
terms of the software components [ll], methods of generating
them, theories, rules and experimental facts, domain-dependent
refinement rules of specifications, technical names and

135

concepts, and the taxonomy of the domain. This analysis may be
used domain,
for transforming and refining specifications, or for providing
methods for deriving more efficient implementations. Though this
approach also requires some syntax for input description,
requirements are frequently achieved by interactive guidance by
the user, using a domain-dependent vocabulary. A n important
factor about knowledge-based design methods is the role of
heuristics in applying domain knowledge and in designing and
developing systems. This results in a wide variety of approaches
for introducing and applying adaptable designs. A n example is an
automatic software development system for oil drilling purposes,
developed by Schlumberger-Doll Research [3]. The system
originally was a problem solver to develop software for solving
oil well logging problems. Problem specification is given by a
computationally-naive user applying concepts and terms of the
domain. Applying stepwise refinement methods and user-defined
informal specifications, the system produces a formal design and
finally software. Domain knowledge is used for maintaining
classification of problems and solutions, recognizing the class
of input specification, and providing refinement rules to
obtain formal design specifications and implementations.

to provide a library of generic components for the

Application Language Approach

Programming languages use a set of vocabulary and parsing
rules to interpret the design of a software system. Tools like
lexical analyzers, parsers, and interpreters are based on
programming language rules (e.g., BNF), and are used for
transforming high level problem representations to machine level
code. Software systems developed for specific application
domains usually have a set of common concepts including
functions, objects, and even problem analysis. These common
concepts are used in the syntax of application-oriented
languages to allow specifications at a level higher than ordinary
programming languages. Similar techniques to the conventional
language techniques are used for translation of the programs in
application-oriented languages into lower level programs in a
programming language. An example of such languages is the
simulation language SLAM [15]. SLAM accepts simulation programs
and translates them to programs in FORTRAN, and like most other
simulation languages has predefined features such as time
management, arrival distributions, limited-resource management,
and performance data collection. Other examples are graphic
languages (packages) that allow higher level descriptions of
geometric objects.

Object-Oriented Programming

Different programmers approach software design problems
differently. The functional decomposition method emphasizes
actions, while data interaction is used as the primary focus for

136

designing a data-centered system. Considering both approaches
simultaneously, object-oriented programming views a system or a
domain as a collection of objects and their interactions along
with their primary functions (methods). This approach allows
programming in problem domain concepts rather than machine-
oriented programming in terms of variables, memory addresses,
operators and operands. Most software design methods somehow
deal with objects, their related functions and attributes [91 .
Simulation languages come very close to implementing objects and
their functions in the manner of object-oriented programming
(actually the simulation language SIMULA is considered to be one
of the predecessors of the object-oriented languages). The most
common definition of an object is an encapsulated data type which
can only be accessed through its defined functions or methods
[4]. The internal structure of an object is hidden from its users
and its functions provide a shell for it. Usually a "message" is
used to communicate with an object and to request execution of
any of its functions. Most Algol 60 descendant languages that
allow definition of data types have the capability to define
objects. Encapsulation, concurrent message execution, generic
objects, inheritance of objects and methods, libraries of
objects, and graphic user-friendly depiction of objects are among
the built-in features in the recent object-oriented languages.

Though we have classified object-oriented programming as an
application-oriented approach (due to its highly domain dependent
application), conceptually it is a general method for designing
software systems for any domain. The SMALLTALK language and
environment is an integrated system designed on the basis of the
object-oriented approach [lo]. Everything in SMALLTALK is an
object, from numerical types like integers up to entities of the
operating system like windows. It allows concurrent message
execution for objects of a class, and uses automatic garbage
collection for deallocation of resources that may be dynamically
bound by messages and are not referenced any longer.

ASSESSMENT OF VERY HIGH LEVEL DESIGN APPROACHES

Software design methods are evaluated from different
perspectives. Efficiency, reliability, complexity, degree of
automation, and reusability are among the factors that are used
here to assess VHL design technique. Emphasis placed by different
VHL design methods on each of the above factors varies greatly.
Program transformation, in general, requires the user to be
able to apply a logical-based or functional-based language.
The refinement and transformation process of logical or
functional specification is by nature very inefficient [81.
Rule-based refinements require substantial time and storage, and
develop huge intermediate results. Refinement deadlock (an
intermediate result for which there is no refinement) is another
drawback for the program transformation approach. In order to
provide a more user friendly environment for obtaining
specifications from the user, interface languages are used and

137

translated to the logical/functional design language. This
results in a less efficient procedure (compared with other
methods) for implementation of the system. In spite of
implementation inefficiency of logical or functional-based
specifications, the program transformation approach automatically
develops full verified implementations and is best suited for
verification of designs and for rapid prototyping.

The software engineering approach is based on independent
generation and verification of life cycle phases. Specifications
at the requirements level can be traced to the design and
implementation levels. Design tools are used to standardize
design and control structure, and provide reusability of design
methodology and structure. Most design tools emphasize interface
checking and verification of design specification but do not
provide implementation.

Systematic software generation through specification of
systems in life cycle phases has been considered in other
research than the software engineering approach, per se. Program
transformation techniques tend to apply life cycle concepts in
their methodologies. Interface languages in these systems play
the role of requirement languages and provide consistency
checking. On the other hand HOS, one of the very few software
engineering tools that claim automatic software generation,
implements a functional design language and includes some of the
characteristics of the program transformation method. Similar to
the component composition method, HOS applies a library of
modules for generation of software.

Component composition methods provide efficient means for
developing implementations. Considering the degree of reusability
and application of predesigned features, the component
composition method is preferred to the other general design
techniques, especially if combined with knowledge of an
application domain. Another advantage of the component
composition method is that the internal representation of
reusable components can be hidden from the user of these
fragments. For example a logic-based language may be used for
internal implementation of library components, while the user may
use some simple syntax similar to natural language for
implementation and instantiation of these components. As
mentioned above this is not the case for the program
transformation approach. Generic components can be compiled into
machine language and saved in the library. These stand-alone
standard library components are also referred to as "software
ICs" [4] . Like hardware ICs, software ICs can be independently
tested, documented, and used for different applications.
Hardware ICs, as reusable and encapsulated functional units,
have resulted in a revolution for hardware productivity. Though
reusable library components may not result in the same
revolutionary progress, their application is a milestone in the
evolution of the software industry.

138

Application-oriented approaches in general provide more
efficient software for the domain. The interface language
applied for specification of the system is closer to the natural
languages and applies concepts of the domain. Consequently it is
more convenient for users who are familiar with the application
domain. The degree of automation, efficiency, and degree of
reusability of knowledge-based methods depend on the method
used (component composition or program transformation) and the
heuristics applied for representing the knowledge of the domain.
Some of these systems concentrate on reusability of domain
components and improving the productivity of the software
generation process ill]. Others emphasize automation and provide
rule-based deduction for automatic software generation [3] .

Domain language-based design methods allow high level
specifications in terms of domain concepts and have resulted in
much more efficient implementations. The disadvantages of these
languages is their closed view of the application domain. The
sets of domain concepts and interpretations are fixed, and
language interpreters and parsers have a fix understanding of
the domain, which is not extendable. Object-oriented methods,
like domain specific languages, allow programming in terms of
domain concepts, though they are not as efficient as domain
languages. Pure object-oriented programming encapsulates objects,
consequently any higher level function needs to be a combination
of methods of objects. The resulting code usually is not very
efficient and needs optimization.

CONCLUSION

In view of the above comparative analysis, we have become
convinced that the greatest practical leverage for reuse can
come by a combination of the component composition and
application oriented approaches. Component composition methods in
general are capable of supporting development of new and complex
components from the existing library components more efficiently
than other general design methods and can grasp the essence of
object oriented programming (that is, designing software in
terms of domain concepts), and can enhance the approach and
improve its efficiency.

The idea of creation of a single very high level design tool
that develops efficient programs for every application domain
does not seem to be practical. Representation of programming
knowledge in general is not sufficient or efficient for all
application domains. Combination of knowledge of application
domain and component composition approach develops an open
environment for higher level and domain related design of
software systems and is thus a step closer to automatic
programming.

139

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

140

Adelson, B. and E. Soloway. 1985. "The Role of Domain
Experience in Software Design." IEEE Trans. on Software
Engineering, Vol. SE-11, no. 11 (Nov.): 1351-1360.
Barr, A. and E.A. Feigenbaum. 1982. The Handbook of
Artificial Intelligence, Vol. 2. William Kaufman Inc.
Barstow, D.R. 1985. "Domain-specific Automatic Programming."
IEEE Trans. on Software Engineering, Vol. SE-11, no. 11

Cox, B.J. 1986. Object Oriented Programming An Evolutionary
Approach. Addison Wesley.
Goguen, J. and M. Moriconi. 1987. "Formalization in
Programming Environment." Computer, Vol. 20, no. 11 (Nov.):

Goldberg, A.T. 1986. "Knowledge-Based Programming: A Survey
of Program Design and Construction Techniques." IEEE Trans.
on Software Engineering, Vol. SE-12, no. 7 (Jul.): 752-768.
Hamilton, M. and S. Zeldin. 1979. "The Relationship Between
Design and Verification." The Journal of Systems and
Software, Vol. 1, no. 1, 29-56.
Hoare, C.A.R. 1987. "An Overview of Some Formal Methods for
Program Design." Computer, Vol. 20, no. 9 (Sep.): 85-91.
Hooper, J.W. 1985. "BPL: A Set-Based Language for Distributed
System Prototyping." International Journal of Computer and
Information Sciences, Vol. 14, no. 2, 83-103.
Key, A. and A. Goldberg. 1977. "Personal Dynamics Media."
Computer, Vol. 10, no. 4, (Apr.): 31-41.
Lanergan, R.G. and C.A. Grasso. 1984. "Software Engineering
with Reusable Design and Code." IEEE Trans. on Software
Engineering, Vol. SE-10, no. 5 (Sep.): 498-501.
Matsumoto, Y. 1984. "Some Experience in Promoting Reusable
Software: Presenting in Higher Abstract Levels." IEEE Trans.
on Software Engineering, Vol. SE-10, no. 5 (Sep.): 502-512.
Pagan, G.F. 1981. Formal Specification of Programming
Languages: A Panoramic Primer. Prentice-Hall.
Parnas, D.L. 1985. "Software Aspects of Strategic defense
Systems." American Scientist, Vol. 73, no. 5 (Sep.): 432-440.
Pritsker, A.A.B., and C.D. Pegden. 1979. Introduction to
Simulation and SLAM. Halsted Press, a Division of John Wiley
& Sons, Inc..
Rich, C. 1984. "A Formal Representation for Plans in the
Programmer's Apprentice." M.L. Brodie, J. Mylopoulos, and
J.W. Schmidt (eds) On Conceptual Modeling, Chapter9.
Springer-Verlag.
Simon, H.L. 1986. "Whether Software Engineering Need to Be
Artificially Intelligent. It IEEE Trans. on Software
Engineering, Vol. SE-12, no. 7 (Jul.): 726-732.
Smith, D.R., G.B. Kotik, and S.J. Westfold. 1985. "Research
on Knowledge-Based Software Environments at Kestrel
Institute." IEEE Trans. on Software Engineering, Vol. SE-
11, no. 11 (Nov.): 1278-1295.
Soloway, E. and K. Ehrilich. 1984. "Empirical Studies of
Programming Knowledge." IEEE Trans. on Software Engineering,
Vol. SE-10, no. 5 (Sep.): 595-609.
Tichy, W.R. 1987."What Can Software Engineers Learn from Art-
ificial Intelligence?" Computer, Vol. 20, no. ll(Nov.):43-54.

(Nov.): 1321- 1336.

55-64.

N89- 1 5 5 6 9

Artificial Intelligence Approaches to
Software- Engineering

James D. Johannes, PhD.
James R. Mac Donald

The University of Alabama In Huntsville
Computer Science Department

Huntsville Alabama, 35899

ABSTRACT
This paper examines the artificial intelligence approaches to software engineer-

ing. The software development life cycle is a sequence of not so well-defined
phases. Improved techniques for developing systems have been formulated over
the past 15 years, but pressure continues to attempt to reduce current costs.
Software development technology seems to be standing still. The primary objective
of the knowledge-based approach to software development presented in this paper
is to avoid problem areas that lead to schedule slippages, cost overruns, or software
products that fall short of their desired goals.

Identifying and resolving software problems early, often in the phase in which
they first occur, has been shown to contribute significantly to reducing risks in
software development. Software development is not a mechanical process but a
basic human activity. It requires clear thinking, work, and rework to be successful.
The artificial intelligence approaches to software engineering presented support the
software development life cycle through the use of software development techniques
and methodologies in terms of changing current practices and methods. These
should be replaced by better techniques that improve the process of software
development and the quality of the resulting products. The software development
process can be structured into well-defined steps, of which the interfaces are stand-
ardized, supported and checked by automated procedures that provide error detec-
tion, production of the documentation and ultimately support the actual design of
complex programs.

INTRODUCTION
Artificial Intelligence (AI) approaches to software engineering development as-

sist in establishing a knowledge about techniques and methodologies that improve
the process of software development and the quality of the resulting products. Given
the task of developing a software system, what knowledge is required? To start build-
ing of a system of thousand or maybe a million of delivered lines of source code is a
daunting prospect. No one should begin without a clear understanding about how
the development is to be undertaken. Establishing a software development
methodology when undertaking software development, on no matter what scale, is
required. Every software organization already has some methodology for building

141

software systems. However, while some software is developed using modern
software engineering techniques, most of it is still built in an ad hoc way.

The questions that an AI software engineering system can answer are, what
software engineering techniques are there, which are appropriate to our problem at
this stage of development, and how can we monitor the quality of the products under
development? The knowledge based software engineering paradigm can be sum-
marized as "machine-in-the-loop", where all software project activities are machine
mediated and supported. The approach is to assist the programmers rather than
replace them. The system acts as an active participant in the software system
development process. The system must keep track of details and assist with the
routine aspects of the software development life cycle thus allowing the software en-
gineer to concentrate on the more difficult parts.

SOFTWARE ENGINEERING EXPERT SYSTEM
The knowledge based Software Engineering Expert System (SEES) environment

can be loosely defined as a computer-based collection of tools, programs, algo-
rithms, etc, which aids in the development of software and/or hardware systems
during some phase of the development process. It is a collection of tools, each sup-
porting some part of the software development process, along with tools coordinat-
ing and managing the software engineering process [6,9,12,14]. All system develop-
ment life cycle activities must be machine mediated and supported by the
knowledge-based environment as directed by the manager of the project. These ac-
tivities will be recorded to provide the "knowledge base of software design / program-
ming methods" of the system evolution. These will be used by the SEES to deter-
mine how the parts interact, what assumptions they make about each other, what the
rationale behind each evolutionary step was, how the project satisfies its require-
ments, and how to explain all these to the system developers and management of the
projects involved. Desirable characteristics for a SEES are:

supports software using multiple programming languages
support hardware development for a mixed target-machine complexes
preserve integration with existing programs and data
assist all project members (software engineers, managers, technical writers, secretaries, etc.)
integrated and extensible system knowledge base
supports component reusability
user friendly
supports entire project life cycle with special emphasis on prototyping
Accommodates multiple projects

This knowledge base SEES is dynamically acquired as a by-product of the
development and actual management of each project. It includes not only the in-
dividual manipulation steps which ultimately lead to an implementation, but also the
rationale behind those development steps. This will make it possible to shift more
and more tasks from the software engineer to the machine. To make the process
possible, it is necessary to formalize all life cycle activities. In order for the
knowledge base software engineering environment to begin to participate in the ac-
tivities described in the life cycle of the development process (and not just merely
record them) the activities must be at least partially formalized.

142

Formalization is the most fundamental basis for automated support. It creates
the opportunity for the environment to undertake responsibility for the performance
of the activity, analysis of its effects, and eventually deciding which activities are ap-
propriate. Not only will individual activities become increasingly formalized, but so,
too, will coordinated sets of them which accomplish larger development steps. In
fact, the development process itself will be increasingly formalized as coordinated ac-
tivities among multiple projects.

Software Engineering Knowledge Base
A formal software engineering model of definitions and rules that permit a

human being to reason about the objects in the this domain, and their interrelations
are most desirable, and perhaps necessary, precursor to any techniques for mechani-
cal reasoning and problem solving in the software engineering domain. The
knowledge base must contain the knowledge and understanding of the software
development process subject matter and incorporate the logical aspect of human in-
telligence. It must be able to generate problem solutions from situations never
before encountered and not anticipated by the software engineering system desig-
ners. It must be able to infer the true state of the system from incomplete and/or in-
accurate measurements. The knowledge concerning each domain must, at least con-
ceptually, be available in the knowledge base that is used by the various tool reason-
ing about the current state of the SEES environment.

The type of knowledge required can be divided into two parts: software engineer-
ing knowledge and application specific knowledge. The first part is conventional ob-
jects of computer science such as control constructs, arrays, sorts, structured
programming techniques and their associated algorithms and implementations
relationships. This knowledge is the type expressed in computer science text books
such as Data Structures and Algorithms [1,15,16,18,23]. The second type is
knowledge required about the world in which the target software application is to
operate. The system is driven by a database of inexact and judgmental knowledge.
Data (knowledge) about the problem domain may be of various forms. Some data
may be applicable to the knowledge base; these are generally called (inference)
rules since their function is to deduce (new) facts about the domain from the existing
data. Other data may take the form of heuristics for deciding when rules or project
data can be usefully applied.

The knowledge must be represented in a fashion appropriate for external use
and must also be represented internally in such a way that it can be accessed, up-
dated, and efficiently maintained. Several external representations are often
desired. For example, the form in which software engineering expert presents
knowledge to the knowledge base may differ drastically from the form in which the
system represent this information to someone who is not a software engineering ex-
pert, a manager, or novice. For the nonexpert, the knowledge would be explained in
lay terms, some aspect of the knowledge about certain objects or situations.

In conventional data processing the programmer determines all the relationships
among the system modules. AI SEES environment techniques allow the environ-

143

ment itself to determine relationships among the software system symbols that were
not made explicit by the programmer. This occurs because the environment has
rules for manipulating relationships among symbols whose meanings have be repre-
sented within the program by the programmer. This manipulation of relationships
among symbols is concerned with preserving not just the data provided but also the
knowledge embodied in the relationships among the software elements.

Knowledge Acquisition
Knowledge acquisition is a bottleneck in the construction of SEES environment

[13,141. The SEES knowledge engineer’s function is to be a go-between and assist
the expert software engineer in building a system that will demonstrate the a level of
expertise about the software development process. One of the most difficult aspects
of the knowledge acquisition task is helping the software development expert to
structure the domain knowledge and to identify and formalize the domain concepts.
Potential sources of knowledge include human experts, reports, data bases, and the
experience of the software engineers. The knowledge of the software engineering
process is subjective, ill-codified, and partly judgmental. The process of extracting
knowledge from an software engineer expert during the development process and
transferring it to a computer program (expert system) is an important and difficult
problem.

Software engineering knowledge acquisition involves problem definition, im-
plementation, and refinement, as well as representing facts and relations acquired
from the software development process. The software engineering expert must inter-
act with the SEES environment to build the expertise of the expert system. The
main advantages of building an expert system knowledge base are transparency and
flexibility. A software engineering expert system knowledge base is developed in
two main phases. The first phase is to identify and conceptualize the problem.
Identification includes selecting and acquiring a software engineer expert,
knowledge source, resources, and clearly defining the software development
problem. Conceptualization includes uncovering the key concepts and relations that
are needed to characterize the problem. What is the knowledge that software en-
gineers know, and how can it be effectively represented in an SEES? When is the
divide and conquer strategy appropriate? For the specific application is the mer-
gesort, the quicksort or selection sort the proper implementation ? The expertise to
be elucidated is a collection of specialized facts, procedures, and judgmental rules
about a narrow domain area rather than general knowledge about the domain or
common sense knowledge about the software development process. The following
questions must be answered before proceeding with the next phase:

What types of data are available?
What is important in the data interrelations?
What is given and what is inferred?
What does a solution look like and what concepts are used in it?
What aspects of human expertise are essential in solving software development problems?
What is the nature and extent of “relevant knowledge” that underlies the human solutions?
Are there identifiable partial hypotheses that are commonly used?
How do objects in the domain relate?

144

Can a diagram of the hierarchy, casual relation, set inclusion, part whole relations, etc., be built?
What processes are involved in the problem solution?
What are the constraints on these processes?
What is the information flow during the software development process?
Can the knowledge needed to solve a problem be identified and separated from the knowledge
used to justify a solution?
Are the data sparse and insufficient, or plentiful and redundant?
Is there uncertainty attached to the information?
Does the logical interpretation of data depend on their order of occurrence over time?
What is the cost of data acquisition?
How are data acquired or elicited? What classes of questions need to be asked to obtain data?
Are the data reliable, accurate, precise; or are they unreliable, inaccurate, or imprecise?

The purpose of knowledge acquisition is to identify and obtain the knowledge
needed from a particular software application to be embodied in the SEES environ-
ment which is to solve some problem in that application domain. As such,
knowledge acquisition is related to the requirements definition phase of a software
project. In a traditional software project it is possible to define the proposed
system’s requirements fully before beginning the design of the software architecture.
However in an SEES project this knowledge is not readily available in the same
sense as it is in a traditional software project. AI techniques are being employed lar-
gely because these techniques lend themselves well to extensive iterative acquisition
and refinement of the knowledge from the software engineering and the application
domain [3,4,13,14].

The problem that remains, then, is how to minimize the time needed for
software system development, and how to make the software development process
as effective as possible? Making the process effective involves ways to maximize the
amount of knowledge acquired, to maximize the accuracy (in terms of applicability
to the project) of the knowledge, and to minimize the effort needed to set up and
maintain the software development process. The minimization of software develop-
ment knowledge acquisition time can be encouraged by providing an environment in
which changes are easy, code re-use is easy, turn-around time for changes is quick,
and the system is guided down few (if any) dead-end paths during its development.
To help focus on the needed knowledge and to maximize accuracy of the knowledge
obtained, an early emphasis should be placed on both the overall system’s eventual
performance and on the knowledge needed to evaluate that performance.

Software Life Cycle Support
A SEES environment must support the software development life cycle. Which

system development life cycle should the expert system support? It is very popular
to view the software development procedure using the term life cycle [5,8,19,25,26].
The phase seems to be almost a fad or buzz word. There are many representations
of the life cycle. Each industry has its own (or several) representations, and each of
these tends to be modified somewhat for specific projects. In many cases, the con-
cept of ’life cycle’ was used in the sense of ’a suggested ordering of activities in
software development, assuming ideal conditions’. This could be the art of program-
ming by trial and error (’hacking’); a method that is unacceptable in professional

145

software engineering. It also covers MIL-STD-490, MIL-STD-l52lA, and IEEE
Standard for Software Quality Assurance Plans (Std. 730-1981) [17,18]. Life cycle
models are used to emphasize different aspects, e.g. process of development, roles
of people involved, etc.. In each case, a life cycle model describes a sequence of
steps which may be activities (for instance design, coding, testing, etc.), or is used to
clarify the roles for management in the software production process.

A problem exists in representing the coexistence of important aspects of
software development. For example, the technical production phase, the manage-
ment production control, and a step into the application area such as prototype ex-
periments can not be represented. Another problem which some models try to solve
is that of directed backtracking. With each phase a set of decisions is associated, of
which only one is taken at a given point in time. The decisions, taken in the several
phases, are not independent of each other. For both the ongoing development and
the maintenance phase it is important to know which decisions belong to a specific
stage and where they were taken. As yet, no one has developed a knowledge base
project environment that supports a multitude of software life cycles. Most of the
systems reviewed in the literature [11,14,24] have their own unique software develop-
ment life cycle that would have to be integrated into the developers, particular
development methodology.

Throughout the reports written on knowledge based software engineering
[11,12,14,20,22], there tends to be a severe trivialization of the problem associated
with the actual task of translating the specification into code. A significant and dis-
turbing issue brought out in the Kestrel report is that it will take 3 to 6 months of
practice before a competent software engineering professional can work with the
Knowledge Based Software Assistant (KBSA) system [12]. It appears, based on this
statement, that Kestrel Set Theoretic approach leaves much to be desired. Kestral’s
approach in the KBSA development over the next 3-5 years is minimal and show lit-
tle thought about the tasks involved in the creation of a reliable knowledge-based
system used to develop reliable software systems of the future. The Kestral KBSA
system should be able to take advantage of a ten year development cycle. The
progress of the hardware revolution will continue (cheaper memory, faster / smaller
/ interconnected machine’s) allowing the KBSA to take advantage of these advances.

Attacking the problem from its high-level esoteric aspects will generate a well
thought out specification. The automatic transformation of a high-level prototype
into something that can be used as a real system is difficult to imagine. Unfortunate-
ly, rapid prototyping rarely discovers those hidden data structures and relationships
that are necessary to make a real system operate. Even in sophisticated implementa-
tions designed to deal with each aspect of the system’s operation, the end result will
still rely on the software engineer to design an algorithm that does the job effectively.

People are the highest cost driver attributes in the software development life
cycle [7,18]. Shortage of software engineers personnel is between 50,000 and
100,000 people. The suppliers (primarily university computer science departments)
do not have sufficient resources to meet the future demand. The demand for a
knowledge based SEES environment to aid people in performing their task and coor-

146

dinating their activities with other members of the team through the knowledge in
the system is apparent.

The current life cycle paradigm arose in an era where computers were more ex-
pensive than people. There is a need to create a software life cycle paradigm based
on automation of the steps within the life cycle. In life cycle models described in the
literature, the production phases design, implementation, and test are considered.
Phases for requirements analysis and maintenance are often missing. The manage-
ment of software development is given little or no consideration is almost all life
cycle models, with the exception of the first phase of the project planning. The life
cycle models look like mappings of three aspects namely management, technical
production, and system application or preparation of application. These may be
visualize as three simultaneous line of activities, onto one sequence of activities
from project conception to system use and maintenance.

Modern programming methodology addresses the difficulties of implementing
the chosen application system, not of determining the right system to implement.
This has resulted in a batch-oriented development cycle concept predicated on
fixing the requirements prior to beginning implementation. This approach assumes
that the problem can be correctly determined in detail before a solution is ever seen
by the customer. While this approach has been very successful in working around
the problems associated with large system implementation efforts which confounded
programming teams in the sixties, it avoids the reality dealing with legitimate situa-
tions wherein the character of a good solution is itself ill-defined in advance.

The prevailing standard development practices in industry use redundant descrip-
tions to ensure that description mismatches are detected and to guarantee that the
implementation corresponds exactly to the original specifications. This serves to
freeze the implementation and make it hard to change by accident. It also serves to
make the implementation hard to change on purpose if the original specifications
are found to be in error.

Phased SEES Development
A possible direction to take is the incremental improvement in each portion of

the existing software life cycle for software development. This approach would be a
conservative, evolutionary approach described in the 'Software Technology in
1990's: Using a New Paradigm" [2]. Because this approach is based on existing
software life cycles, the evolutionary approach is limited by any weakness of that life
cycle. Existing life cycles are not considered to be good candidate for an SEES en-
vironment because of two fundamental flaws that aggravate the maintenance
problem. There appears to be no technology formalism associated with managing
the knowledge intensive activities that constitute the software development process.
The life cycle models reviewed in literature are informal, labor intensive, and largely
lack formal documentation. Information about what specific process occurred
during each phase of the development and the rational behind each decision is cru-
cial for the maintenance process. During the software development process
programming skill is applied to optimize the source code. This optimization over
time makes the maintenance problem harder by making the software harder to un-

147

derstand [21]. The increasing dependencies among the components and scattering
related design decision information about the development process over time re-
quires machine mediation.

In the SEES approach of supporting the current life cycle models, rather than
making a major revision to the activities and products of the life cycle, the existing
life cycle elements and their interaction are examined for possible use of knowledge
based tools. Carnegie Group and Boeing Computer Services are building a
knowledge based software development environment based on this approach [20].
The environment supports the software engineer and project management using ar-
tificial intelligence. The system will provide a framework in which conventional
software tools can be integrated with tools based on AI. The objectives of these ef-
forts is to increase software engineering productivity. Currently the knowledge base
software engineering environments are in their infant stages of development.

Software project management has the responsibility for planning, controlling and
coordinating software life cycle activities. Currently, project managers are hampered
by the informal and undocumented nature of the activities, and the fragmentary, ob-
solete, and inconsistent data available. More effective project management requires
not only improved management techniques, but also a better software development
environment that captures the total project life cycle activities and the rational be-
hind the development process for a project. The knowledge base SEES is an intel-
ligent environment (or collection of environments) which aids personnel in perform-
ing their tasks, and coordinates their activities with other members of the team.

TRW’s Distributed Computing Design System (DCDS) provides an integrated
set of environments for development of real-time distributed software systems [101.
The primary focus of DCDS is to improve system reliability, software productivity,
and to minimize schedule and cost risks. Unlike the work done at Kestrel, the DCDS
is strongly focused on those aspects of distributed processing involving component
interaction, function architecture pairing, data distribution, deadlock avoidance and
system recovery. The approach to DCDS is to define the different phases of the
software development life cycle in terms of different languages, with each language
specifically designed to support that aspect of each life cycle process. Information is
passed between these languages through a common database and interface specifica-
tion. The DCDS design is currently based on five languages and methodologies,
specifically designed to attack: System requirements, Software requirements, Dis-
tributed design, Module development, and Test support. DCDS has two key aspects
that it shares with Knowledge-based systems: the central database that collects all
documentation form requirements to code and test cases, and the use of specialized
languages designed for specific problems. Knowledge based systems support both a
central knowledge base and a very high level but wide spectrum language. If the
DCDS languages are taken together, they form the basis of a wide spectrum lan-
guage.

148

CONCLUSION
This paper has examined an artificial intelligence approach to software engineer-

ing. The software development life cycle has been presented as a sequence of not so
well-defined phases and as such presents a major hurdle in SEES development. Im-
proved techniques for developing systems have been formulated over the past 15
years, but shortcuts continue to be exercised in attempts to reduce current year
costs. In this sense, software development technology seems to be standing still. The
SEES approach will reduce the software development problem areas that lead to
schedule slippages, cost overruns, or software products that fall short of their desired
goals.

A knowledge based SEES approach to the software development process will
someday become a reality. However, many industry practitioners are crating new
problems in trying to solve old ones. The selection of a new specific life cycle model
for software development has the danger of making the problem just as unsolvable
after its introduction as it was before. Will new paradigms for software development
give the necessary productivity gain? Will the cost of their implementation cause the
total development cost to exceed that of the development via the traditional
models? These knowledge base software engineering systems will not be trivial to
learn. Training, on the order of weeks months will be required to achieve acceptable
efficiency in the production of software systems. The results will be a higher system
reliability and maintainability as well as present less risk to the system developer.

A primary difference between artificial intelligence and more traditional ADP
approaches is summarized by the slogan "In the Knowledge Lies the Power." The
operative word is knowledge, rather than data or processor speed. Knowledge inten-
sive systems attempt to model the imperfectly-understood decision processes of the
domain practitioner and, like the human practitioner, make decisions with less than
certainty.

BIB LlOG RAPHY
1. Aho, A. V., J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Addison-Wesley,
1983.

2. Balzer, R., et al., "Software Technology in the 1990's: Using a New Paradigm", IEEE Computer,
November 1983.

3. Barr, Avron and E.A. Feigenbaum, "The Handbook'of Artificial Intelligence, Volume 1, William
Kaufmann, Inc., Los Altos, Ca., 1981.

4. Barr, Avron and E.A. Feigenbaum, "The Handbook of Artificial Intelligence, Volume 2, William
Kaufmann, Inc., Los Altos, Ca., 1982.

5. Boehm, B. W. "Software Life Cycle Factors," TRW Software Series, Jan 1981.

6. Boehm, B. W., et al., "A Software Development Environment for Improving Productivity", IEEE
Computer, June 1984.

149

BIBLIOGRAPHY (Continued)
7. Bruce, P. and S. M. Pederson. " The Software Development Project: Planning and Manage-
ment", NY: John Wiley and Sons, 1982.

8. Daly, E., "Management of Software Development," IEEE Transactions on Software Engineer-
ing, May 1977.

9. Davis, C. G. and C. R. Vick, "The Software Development System," IEEE Transactions on
Software Engineers,

10. --,DCDS A Unified Environment for System Software Development", Summary Description,
Volume 1, TRW, Huntsville, AL., January 1987.

11. Goldberg, A. "Knowledge-based Programming: A Survey of Programming Design and Construc-
tion Techniques", Kestrel Institute, Palo Alto ,Ca., July 1986.

12. Green, C. et al., "Report on a Knowledge-based Software Assistant", Kestrel Institute, Palo Alto,
Ca., June 1983.

13. Hayes-Roth, F., et al., "Building Expert Systems", Addison-Wesley Publishing Company, Inc.,
1983.

14. Harandi, M. T., " Applying Knowledge-Based Techniques to Software Development," hxqxx-

15. Horowitz, E., Sahni S., "Fundamentals of Data Structures", Computer Software Press, Inc., 1982.

16. Horowitz, E., Sahni S., "Fundamentals of Computer Algorithms", Computer Software Press, Inc.,
1984.

17. IEEE Computer Society. IEEE Standard for Software Quality Assurance Plans, Ny: IEEE,
Inc, 1982.

18. Jensen, R. and C Tonies, "Software Engineering", Englewood Cliffs,NJ: Prentice-Hall, 1979.

19. Kerola, P. and P. Freeman, "A Comparison of Lifecycle Modles," IEEE Computer Society,
Fifth International pp 90-99. Siler
Spring, MD: IEEE, Inc,1981.

20. --,"Knowlege-based Software Development Envrionment, Carnegie Group Inc., Augest 1985.

21. McClure, C., " Managing Software Development and Maintenance", NY, Van Nostran Reinhold
Ltd, 1981.

22. Smith, D.R., et al.,"Research on Knowledge-Based Software Environments at Kestral Institute",
IEEE Transactions on Software Engineering, November 1985.

23. Sommerville, I. "Software Engineering", London: Addison- Wesley Publishers Limited, 1982.

24. Swanson, E. B. "The Dimensions of Maintenance," Tutorial; Automated Tools For Software
Engineering, NY: IEEE Inc, pp 240-245.

25. Teichroew, D., "Improvements in the System Life Cycle," Tutorial on Software Design Techni-
ques, San Framcisco: IEEE, Inc, 1976 pp 64-70.

26. Zvegintzov, N., "What life? What cycle?" AFIPS Conference Proceedings, 1982 National Com-
puter Con-ference,Houston, 1982, pp 561-568. Arlington, Va: AFIPS Press 1982.

Jan 1977, vol3, num 1.

e in CampUting, 6(1), 14-21,1986.

Conference on Software Enginerring , San Diego, 1981,

150

A u t o m a t i c Programming
f o r C r i t i c a l A p p l i c a t i o n s

Raj L . L o g a n a n t h a r a j
The C e n t e r f o r Advanced Computer S t u d i e s

USL, P . 0 . Box 44330
L a f a y e t t e , LA 70504

(E x t e n d e d A b s t r a c t)

The i m p o r t a n t p h a s e s of a sof tware l i f e c y c l e
i n c l u d e v e r i f i c a t i o n , a n d m a i n t e n a n c e . U s u a l l y , t h e e x e c u t i o n
p e r f o r m a n c e i s a n e x p e c t e d r e q u i r e m e n t i n a sof tware
d e v e l o p m e n t p r o c e s s . U n f o r t u n a t e l y , t h e v e r i f i c a t i o n a n d t h e
m a i n t e n a n c e of p r o g r a m s a r e t h e t ime c o n s u m i n g a n d t h e
f r u s t r a t i n g a s p e c t s o f sof tware e n g i n e e r i n g . T h e
v e r i f i c a t i o n c a n n o t b e w a v e r e d f o r t h e p r o g r a m s u s e d f o r
c r i t i c a l a p p l i c a t i o n s s u c h a s , m i l i t a r y , s p a c e , a n d n u c l e a r
p l a n t s . A s a c o n s e q u e n c e , s y n t h e s i s of p r o g r a m s from
s p e c i f i c a t i o n s , a n a l t e r n a t i v e way of d e v e l o p i n g c o r r e c t
p r o g r a m s , i s becoming p o p u l a r .

The d e f i n i t i o n , o r what i s u n d e r s t o o d by a u t o m a t i c
p r o g r a m m i n g , h a s b e e n c h a n g i n g w i t h o u r e x p e c t a t i o n s . A t
p r e s e n t , t h e g o a l of a u t o m a t i c p rogramming i s t h e a u t o m a t i o n
of p rogramming p r o c e s s . S p e c i f i c a l l y , i t means t h e
a p p l i c a t i o n o f a r t i f i c i a l i n t e l l i g e n c e t o so f tware
e n g i n e e r i n g i n o r d e r t o d e f i n e t e c h n i q u e s a n d c r e a t e
e n v i r o n m e n t s t h a t h e l p i n t h e c r e a t i o n of h i g h l e v e l
p r o g r a m s . The a u t o m a t i c p rogramming p r o c e s s may b e d i v i d e d
i n t o two p h a s e s : t h e p r o b l e m a c q u i s i t i o n p h a s e a n d t h e
p r o g r a m s y n t h e s i s p h a s e . I n t h e p r o b l e m a c q u i s i t i o n p h a s e ,
a n i n f o r m a l s p e c i f i c a t i o n of t h e p r o b l e m i s t r a n s f o r m e d i n t o
a n u n a m b i g u o u s s p e c i f i c a t i o n w h i l e i n t h e p r o g r a m s y n t h e s i s
p h a s e s u c h a s p e c i f i c a t i o n i s f u r t h e r t r a n s f o r m e d i n t o a
c o n c r e t e , e x e c u t a b l e p r o g r a m .

We p r o p o s e t h e a u t o m a t i o n of t h e d e s i g n a n d t h e
p rogramming of sof tware s y s t e m s f o r c r i t i c a l a p p l i c a t i o n s as
a l o n g term g o a l of c o m p u t e r a i d e d sof tware e n g i n e e r i n g . To
r e a l i z e t h e l o n g term g o a l , we h a v e t o h a v e a good
u n d e r s t a n d i n g of t h e a u t o m a t i o n of t h e p rogramming . We
b e l i e v e t h a t t h e a u t o m a t i o n of L o g i c P rogramming p r o v i d e s a

151

good u n d e r s t a n d i n g t o p u r s u e t h e l o n g term g o a l . We h a v e
s e l e c t e d L o g i c p r o g r a m a s t h e t a r g e t l a n g u a g e t o n a r r o w t h e
s e m a n t i c g a p b e t w e e n t h e s p e c i f i c a t i o n a n d t h e p r o g r a m .

I n o u r a p p r o a c h , t h e p rogram s p e c i f i e d i n t h e f i r s t
o r d e r l o g i c i s t r a n s f o r m e d i n t o a l o g i c p r o g r a m (a s e t o f
Horn c l a u s e s) by t h e r e p e a t e d a p p l i c a t i o n of n e s t e d
r e s o l u t i o n . Our a p p r o a c h i s s i m i l a r t o V a r g h e s e ' s a p p r o a c h .
T h e n e s t e d r e s o l u t i o n c o u l d b e v i e w e d a s t h e g e n e r a l i z a t i o n
o f a s e t of Varghese 's t r a n s f o r m a t i o n r u l e s .

The d e s i r e d p r o g r a m i s d e s c r i b e d i n f i r s t o r d e r l o g i c .
T h i s s p e c i f i c a t i o n forms t h e a x i o m s a n d i s sometimes c a l l e d
t h e s p e c i f i c a t i o n s e t . The ax iom s e t a l s o i n c l u d e s t h e
g e n e r i c a x i o m s .

I n f e r e n c e r u l e s a r e a p p l i e d t o a p a i r of s t a t e m e n t s : a
s t a t e m e n t t o b e t r a n s f o r m e d w h i c h we c a l l a t r a n s f o r m e e , a n d
a s t a t e m e n t u s e d f o r t r a n s f o r m a t i o n w h i c h w e c a l l a
t r a n s f o r m e r . The t r a n s f o r m e r may be a n a x i o m , a
t r a n s f o r m a t i o n r u l e o r a lemma. The t r a n s f o r m e e i s i n i t i a l l y
a n ax iom from t h e s p e c i f i c a t i o n s e t a n d s u b s e q u e n t l y i t may
be a lemma o r e v e n a t r a n s f o r m a t i o n r u l e . The s u b w f f s t h a t
a r e rep laced a r e a l w a y s i n t h e t r a n s f o r m e e . Program
d e r i v a t i o n s t a r t s w i t h a n ax iom from t h e s p e c i f i c a t i o n s e t .
T h i s s t a t e m e n t i s i n c r e m e n t a l l y t r a n s f o r m e d u s i n g o t h e r
a x i o m s from t h e s p e c i f i c a t i o n s e t , g e n e r i c a x i o m s ,
t r a n s f o r m a t i o n r u l e s a n d a n y lemmas t h a t m i g h t h a v e a l r e a d y
b e e n d e r i v e d . T h e a p p l i c a t i o n o f t h e i n f e r e n c e r u l e s
c o n t i n u e s u n t i l t h e d e s i r e d Horn c l a u s e s h a v e b e e n d e r i v e d o r
no more Horn c l a u s e c a n be d e r i v e d .

The r e a l i z a t i o n of a u t o m a t i c p rogramming i s
c h a l l e n g i n g . However , t h e r e c e n t d e v e l o p m e n t i n a u t o m a t i c
p r o g r a m m i n g , t h a t i s t h e a v a i l a b i l i t y o f n o n c l a u s a l theorem
p r o v i n g t e c h n o l o g y a n d t h e p r o g r e s s i n n e s t e d r e s o l u t i o n make
e a s y t o b r i d g e t h e s e m a n t i c g a p b e t w e e n t h e s p e c i f i c a t i o n a n d
t h e t a r g e t l a n g u a g e . To u n d e r s t a n d t h e b a s i c c o n t r o l i s s u e s
i n d e d u c t i v e p r o g r a m s y n t h e s i s we h a v e s e l e c t e d L o g i c
P rogramming as a t a r g e t l a n g u a g e (w i t h t h i s s e l e c t i o n t h e
s e m a n t i c g a p i s somewhat r e d u c e d) .

152

N89- 15571
U s i n g A u t o m a t i c P r o g r a m m i n g f o r S i m u l a t i n g

Re1 i a b i 1 i t y N e t w o r k M o d e l s

F a n T. T s e n g
B e r n a r d J. S c h r o e r

U n i v e r s i t y o f A l a b a m a i n H u n t s v i l l e
H u n t s v i l l e , A labama, U S A 35899

S. X . Zhang
N o r t h w e s t e r n P o l y t e c h n i c a l U n i v e r s i t y

X i a n , S h a a n x i , C h i n a

J o h n W . W o l f s b e r g e r
N A S A M a r s h a l l S p a c e F l i g h t C e n t e r

M a r s h a l l S p a c e F l i g h t C e n t e r , A labama, USA 3 5 8 1 2

ABSTRACT

T h i s p a p e r p r e s e n t s t h e d e v e l o p m e n t o f an a u t o m a t i c
p r o g r a m m i n g s y s t e m f o r a s s i s t i n g m o d e l e r s o f r e l i a b i l i t y n e t -
w o r k s d e f i n e p r o b l e m s and t h e n a u t o m a t i c a l l y g e n e r a t e t h e
c o r r e s p o n d i n g c o d e i n t h e t a r g e t s i m u l a t i o n l a n g u a g e G P S S / P C .

INTRODUCTION

T h e r e h a s a l w a y s b e e n a d e s i r e o f s o f t w a r e d e v e l o p e r s t o
a u t o m a t e m o r e and m o r e o f t h e c o m p u t e r p r o g r a m m i n g p r o c e s s . T h e
g o a l o f t h e s e d e v e l o p e r s h a s b e e n t o h a v e a s y s t e m t h a t c a n c a r r y
o n a n a t u r a l l a n g u a g e d i a l o g u e w i t h t h e u s e r i n d e f i n i n g h i s
p r o b l e m a n d t h e n t o a u t o m a t i c a l l y g e n e r a t e t h e a p p r o p r i a t e com-
p u t e r c o d e . T h e t e r m a u t o m a t i c p r o g r a m m i n g (A P) h a s b e e n d e f i n e d
a s an a p p l i c a t i o n o f a r t i f i c i a l i n t e l l i g e n c e (A I) i n a u t o m a t i n g
some a s p e c t s o f t h e c o m p u t e r p r o g r a m m i n g p r o c e s s (B a r r and
F e i g e n b a u m 1 9 8 2) . T h i s a u t o m a t i o n i s g e n e r a l l y a c c o m p l i s h e d b y
d e v e l o p i n g a n o t h e r p r o g r a m , an A P s y s t e m , t h a t r a i s e s t h e l e v e l
o f s p e c i f y i n g c o m p u t e r p r o g r a m i n s t r u c t i o n s . I n o t h e r w o r d s , an
A P s y s t e m i s a p r o g r a m t h a t h e l p s p r o g r a m m e r s w r i t e p r o g r a m s .

An AP s y s t e m s h o u l d i m p r o v e t h e o v e r a l l e n v i r o n m e n t f o r
d e f i n i n g a n d w r i t i n g t h e p r o g r a m (B r a z i e r and S h a n n o n 1 9 8 7) . As
a r e s u l t o f t h i s i m p r o v e d e n v i r o n m e n t , t h e r e s h o u l d b e a r e d u c -
t i o n i n t h e a m o u n t o f d e t a i l t h a t t h e p r o g r a m m e r n e e d s t o know.
Q u i t e p o s s i b l y , t h e u s e r c o u l d e v e n do h i s own p r o g r a m m i n g w i t h
t h e h e l p o f an A P s y s t e m . A l s o , t h i s i m p r o v e d e n v i r o n m e n t s h o u l d
r e s u l t i n a m o r e n a t u r a l way f o r t h e u s e r t o d e f i n e h i s p r o b l e m
t h a t c l o s e l y r e s e m b l e s t h e u s e r ' s way o f t h i n k i n g and l o o k i n g a t
p r o b l e m s .

R E S E A R C H GOAL

T h e g o a l o f t h e r e s e a r c h p r e s e n t e d i n t h i s p a p e r i s t o d e v e -

1 5 3

l o p an AP s y s t e m t o a s s i s t t h e m o d e l e r o f r e l i a b i l i t y n e t w o r k s

d e f i n e p r o b l e m s , and t o t h e n a u t o m a t i c a l l y g e n e r a t e t h e p r o g r a m
c o d e i n t h e t a r g e t s i m u l a t i o n l a n g u a g e G P S S / P C . The AP s y s t e m i s
c a l l e d A u t o m a t i c N e t w o r k P r o g r a m m i n g S y s t e m (A N P S) .

The d o m a i n o f p r o b l e m s t h a t can be s o l v e d b y A N P S i n c l u d e
p r e l a u n c h a c t i v i t i e s o f s p a c e v e h i c l e s , o p e r a t i o n o f g r o u n d s u p -
p o r t e q u i p m e n t , s p a c e v e h i c l e t u r n a r o u n d a c t i v i t i e s , s p a c e
t r a n s p o r t a t i o n s y s t e m s and o p e r a t i o n a l p l a n s , and h a r d w a r e
s y s t e m w i t h m u l t i p l e s u b s y s t e m s . The A N P S s y s t e m r e q u i r e s t h a t
t h e p r o b l e m b e d e f i n e d b y :

O A n e t w o r k o f a c t i v i t i e s w i t h s t a r t i n g and s t o p p i n g
e v e n t s .

O A c t i v i t i e s w i t h e i t h e r f i x e d o r c o n t i n u o u s t i m e s .

O A c t i v i t y f a i l u r e s and r e p a i r s (mean t i m e s t o f a i l u r e and
r e p a i r) .

O O p e r a t i o n a l d e p e n d e n c i e s b e t w e e n a c t i v i t i e s .

P R E V I O U S R E S E A R C H

S y n d e r e t a l . (1 9 6 7) d e v e l o p e d a s i m u l a t i o n mode l o f t h e
S a t u r n V p r e l a u n c h a c t i v i t i e s b e g i n n i n g a t T -24 h o u r s and c o n -
t i n u i n g t h r o u g h T - 0 h o u r s , o r l i f t - o f f . T h i s mode l was u s e d t o
p r e d i c t l a u n c h v e h i c l e a v a i l a b i l i t y (L V A) . LVA was d e f i n e d as
t h e p r o b a b i l i t y o f l a u n c h i n g t h e s p a c e c r a f t w i t h i n a g i v e n l a u n c h
w indow. A s e c o n d o b j e c t i v e o f t h e mode l was t o i d e n t i f y l o c a -
t i o n s i n t h e c o u n t d o w n f o r p l a c i n g h o l d s and t o d e t e r m i n e t h e
l e n g t h o f t h e s e h o l d s .

The S y n d e r mode l c o n s i s t e d o f o v e r 1 1 0 0 v e h i c l e s u b s y s t e m s
and 400 g r o u n d s u p p o r t s u b s y s t e m s . A d e t a i l e d t i m e l i n e was
d e v e l o p e d s h o w i n g t h e i n t e r r e l a t i o n s h i p s o f t h e s e s u b s y s t e m s . I n
a d d i t i o n t o t h e t i m e l i n e , t h e mode l i n p u t i n c l u d e d o p e r a t i o n a l
d a t a , r e l i a b i l i t y d a t a , and m a i n t e n a n c e d a t a . The mode l was
w r i t t e n i n G P S S - I 1 and r a n on an I B M 360 c o m p u t e r .

The o r i g i n a l S y n d e r mode l was e x p a n d e d t o i n c l u d e m u l t i p l e
l a u n c h w indows and t h e o p e r a t i o n a l s e q u e n c e when a l a u n c h w indow
was m i s s e d and t h e s p a c e c r a f t had t o b e r e c y c l e d t o t h e n e x t
l a u n c h w indow (S c h r o e r 1 9 6 9) . The mode l was used t o p r e d i c t t h e
p r o b a b i l i t y o f l a u n c h i n g a s p a c e c r a f t w i t h i n a g i v e n s e t o f b a c k -
t o - b a c k l a u n c h w indows . A s e c o n d o b j e c t i v e was t o p r e d i c t t h e
p r o b a b i l i t y o f l a u n c h i n g i n a s u b s e q u e n t w indow, g i v e n a w indow
h a d been m i s s e d and a r e c y c l e s e q u e n c e and a p o s s i b l e h o l d had t o
b e e x e c u t e d b e f o r e r e s u m i n g t h e c o u n t d o w n .

The e x p a n d e d mode l i n c l u d e d two c o u n t d o w n s e q u e n c e s . The
f i r s t s e q u e n c e was t h e m a i n c o u n t d o w n s e q u e n c e i d e n t i c a l t o t h e
S y n d e r m o d e l . The s e c o n d s e q u e n c e was t h e r e c y c l e s e q u e n c e t h a t
c o n s i s t e d o f a number o f b a c k o u t s e q u e n c e s c o n t a i n i n g t h o s e
e v e n t s t h a t w e r e r e q u i r e d t o r e t u r n t h e c o u n t d o w n t o some

154

p r e c e d i n g p o i n t . T h e r e c y c l e s e q u e n c e a l s o c o n s i s t e d o f a
r e c y c l e h o l d c o n t a i n i n g t h o s e a c t i v i t i e s t h a t w e r e r e q u i r e d t o
s u s t a i n t h e v e h i c l e s t a t u s a t a p a r t i c u l a r t i m e i n t h e c o u n t d o w n .
The m o d e l was w r i t t e n i n G P S S - 1 1 , c o n t a i n e d 2 3 0 0 b l o c k s , s e v e r a l
F o r t r a n h e l p r o u t i n e s and r a n on t h e I B M 360 c o m p u t e r .

user Interface

A g o a l o f t h e A N P S s y s t e m i s t o b e a b l e t o m o d e l t h e s e t y p e s
o f a p p l i c a t i o n s m o r e q u i c k l y and a c c u r a t e l y t h a n p r e v i o u s l y d o n e
u s i n g c o n v e n t i o n a l s i m u l a t i o n t e c h n i q u e s .

PrOblUfl
*If Icatlon

A N P S S Y S T E M

PrOblWn
modlflcatlons \-

F i g u r e 1 g i v e s an o v e r v i e w o f t h e A N P S s y s t e m . T h e A N P S
s y s t e m i s d e s i g n e d u s i n g t h e e l e m e n t s of a u t o m a t i c p r o g r a m m i n g as
i t s f o u n d a t i o n . T h e t h r e e A P e l e m e n t s i n A N P S a r e ; an i n t e r a c -
t i v e u s e r d i a l o g u e i n t e r f a c e , a l i b r a r y o f s o f t w a r e m o d u l e s , a n d
an a u t o m a t i c s i m u l a t i o n c o d e g e n e r a t o r . I n F i g u r e 1, t h e t r a d i -
t i o n a l p r o g r a m m i n g t a s k o f f l o w c h a r t i n g h a s b e e n r e p l a c e d b y t h e
i n t e r a c t i v e u s e r d i a l o g u e i n t e r f a c e and t h e p r o b l e m s p e c i f i c a -
t i o n . L i k e w i s e , t h e p r o g r a m w r i t i n g t a s k i n F i g u r e 1 h a s b e e n
r e p l a c e d b y t h e a u t o m a t i c c o d e g e n e r a t o r and t h e l i b r a r y of s o f t -
w a r e m a c r o s . T h e A N P S s y s t e m i s w r i t t e n i n T u r b o P r o l o g (B o r l a n d
1 9 8 6) on an I B M P C c l a s s o f p e r s o n a l c o m p u t e r . T h e s y s t e m c o n -
t a i n s 1 2 1 8 l i n e s o f c o d e and 8 6 s u b r o u t i n e s . T h e s i m u l a t i o n c o d e
g e n e r a t e d b y A N P S i s G P S S / P C (M i n u t e m a n 1 9 8 6) .

Slmulatlon
resuits

Figure I . ANPS system overview

155

I n t e r a c t i v e U s e r D i a l o g u e I n t e r f a c e

T h e r e a r e t h r e e c o m m o n l y u s e d A P u s e r i n t e r f a c e s . T h e s e a r e
a n a t u r a l l a n g u a g e i n t e r f a c e , a g r a p h i c a l u s e r i n t e r f a c e , and an
i n t e r a c t i v e d i a l o g u e i n t e r f a c e . S e v e r a l n a t u r a l l a n g u a g e i n t e r -
f a c e d e v e l o p m e n t s a r e H e i d o r n (1 9 7 4) and F o r d and S c h r o e r (1 9 8 7) .
An e x a m p l e o f a g r a p h i c a l i n t e r f a c e d e v e l o p m e n t i s K h o s h n e v i s a n d
Chen (1 9 8 6) . S e v e r a l i n t e r a c t i v e d i a l o g u e i n t e r f a c e s a r e H a d d o c k
a n d D a v i s (1 9 8 5 1 , B r a z i e r and S h a n n o n (1 9 8 7 1 , and M u r r a y and
S h e p p a r d (1 9 8 8) .

T h e A N P S s y s t e m u s e s an i n t e r a c t i v e d i a l o g u e i n t e r f a c e .
T h i s i n t e r f a c e i s p r o b a b l y t h e m o s t common and e a s i e s t t o d e v e l o p
i n t e r f a c e . U s i n g t h i s i n t e r f a c e , t h e u s e r , o r m o d e l e r , e n t e r s
i n t o a d i a l o g u e w i t h t h e A N P S s y s t e m t o d e f i n e t h e p r o b l e m s p e c i -
f i c a t i o n , o r m o d e l .

L i b r a r y o f S o f t w a r e M o d u l e s

T h e r o b u s t n e s s o f an A P s y s t e m i s d e p e n d e n t on t h e d i v e r s i t y
a n d c o m p l e t e n e s s o f i t s l i b r a r y o f s o f t w a r e m o d u l e s .
F u r t h e r m o r e , t h i s l i b r a r y i s g e n e r a l l y d o m a i n s p e c i f i c . When new
m o d u l e s o r s u b r o u t i n e s a r e n e e d e d , e x p e r t s i m u l a t i o n p r o g r a m m e r s
a r e n e e d e d t o w r i t e t h e s i m u l a t i o n c o d e and t o a s s u r e t h e p r o p e r
i n t e r f a c e .

S i n c e t h e A N P S s y s t e m i s d o m a i n s p e c i f i c t o s y s t e m r e l i a b i -
l i t y n e t w o r k s , t h e number o f n e e d e d s o f t w a r e m o d u l e s i s m i n i m a l .
A t t h i s p o i n t o f d e v e l o p m e n t , A N P S c o n s i s t s o f t h e f o l l o w i n g f o u r
m o d u l e s :

O F i x e d a c t i v i t y o p e r a t i o n f u n c t i o n

O V a r i a b l e a c t i v i t y o p e r a t i o n f u n c t i o n

O A c t i v i t y f a i l u r e f u n c t i o n

O A c t i v i t y i n t e r r u p t f u n c t i o n

T h e s e m o d u l e s w e r e s e l e c t e d b a s e d on a d e t a i l e d e v a l u a t i o n
o f t h e t w o p r e v i o u s l y d i s c u s s e d m o d e l s b y S y n d e r (1 9 6 7) and
S c h r o e r (1 9 6 9) . I n t e r e s t i n g l y , s e v e r a l o f t h e s e p r e v i o u s l y d e v e -
l o p e d m o d u l e s w e r e w r i t t e n as F o r t r a n HELP r o u t i n e s u s i n g t h e o l d
G P S S - 1 1 .

T h e f i x e d a c t i v i t y o p e r a t i o n f u n c t i o n (VENT A) s i m u l a t e s t h e
o p e r a t i o n o f e a c h f i x e d t i m e a c t i v i t y and i t s 3 i m e t o f a i l u r e .
If t h e a c t i v i t y f a i l s d u r i n g i t s o p e r a t i o n , t h e t r a n s a c t i o n i s
f o r w a r d e d t o t h e a c t i v i t y f a i l u r e f u n c t i o n (F A I L) .

T h e v a r i a b l e a c t i v i t y o p e r a t i o n f u n c t i o n (VENT 6) s i m u l a t e s
t h e o p e r a t i o n o f e a c h v a r i a b l e t i m e a c t i v i t y a n d - i t s t i m e t o
f a i l u r e . T h i s a c t i v i t v i s n o t c o m p l e t e d u n t i l a l l o t h e r r e l a t e d
a c t i v i t i e s a r e c o m p l e t e d . F o r exam'p le, s y s t e m p o w e r i s a

156

v a r i a b l e t i m e f u n c t i o n t h a t w i l l b e on u n t i l a l l a c t i v i t i e s
r e q u i r i n g p o w e r a r e c o m p l e t e d . I f t h e a c t i v i t y f a i l s , t h e t r a n -
s a c t i o n i s f o r w a r d e d t o t h e a c t i v i t y f a i l u r e f u n c t i o n (F A I L) .

T h e a c t i v i t y f a i l u r e f u n c t i o n (F A I L) s i m u l a t e s t h e f a i l u r e
o f an a c t i v i t y as i n d i c a t e d b y f u n c t i o n s VENT A and V E N T B. When
an a c t i v i t y f a i l s , a l l t h e d e p e n d e n t a c t i z t i e s e n t e r a h o l d
s t a t e . The f u n c t i o n t h e n s i m u - l a t e s t h e t i m e t o r e p a i r t h e a c t i -
v i t y . I f a n o t h e r a c t i v i t y f a i l s d u r i n g t h e d e l a y o f a d e p e n d e n t
a c t i v i t y and t h e d e p e n d e n t a c t i v i t y i s d e p e n d e n t on t h e f i r s t
f a i l e d a c t i v i t y , t h e a d d i t i o n a l t i m e t o r e p a i r , i f a n y , i s a d d e d
t o t h e d e l a y o f t h e d e p e n d e n t a c t i v i t y . T h e f u n c t i o n assumes
t h a t a d e p e n d e n t a c t i v i t y t h a t h a s b e e n d e l a y e d c a n n o t f a i l
d u r i n g t h e d e l a y . The a c t i v i t y i n t e r r u p t f u n c t i o n X A C T DELAY
c o n t a i n s t h e l o g i c t o add a n y a d d i t i o n a l t i m e t o an a c t i v T t y on
h o l d i f a n o t h e r a c t i v i t y f a i l s d u r i n g t h e h o l d and t h e h e l d a c t i -
v i t y i s d e p e n d e n t on t h e f a i l e d a c t i v i t y .

F i g u r e 2 i s a l i s t i n g o f t h e G P S S c o d e f o r t h e f i x e d a c t i -
v i t y f u n c t i o n V E N T A . N o t e t h a t t h e s u b r o u t i n e makes e x t e n s i v e
u s e o f i n d i r e c t a d d r e s s i n g . T h e s y s t e m a l s o c o n t a i n s a l a r g e
n u m b e r o f m a t r i x s a v e v a l u e s f o r t r a n s f e r r i n g d a t a b e t w e e n t h e
s u b r o u t i n e s a n d t h e m a i n p r o g r a m . I n i t i a l l y , a l l t h e i n p u t d a t a
f r o m t h e p r o b l e m s p e c i f i c a t i o n a r e e n t e r e d i n t o t h e s e m a t r i x
s a v e v a l u e s .

A u t o m a t i c S i m u l a t i o n Code G e n e r a t o r

T h e o u t p u t f r o m t h e i n t e r a c t i v e d i a l o g u e i n t e r f a c e , o r t h e
p r o b l e m s p e c i f i c a t i o n , i s t h e n u s e d as i n p u t t o t h e c o d e g e n e r a -
t o r p r o g r a m w h i c h a u t o m a t i c a l l y w r i t e s t h e p r o g r a m c o d e i n t h e
t a r g e t s i m u l a t i o n l a n g u a g e G P S S . T h e s y s t e m c r e a t e s t h e mai-n
p r o g r a m t h a t i n c l u d e s t h e a p p r o p r i a t e c a l l s t o t h e s e l e c t e d
1 i b r a r y m a c r o s .

1 5 7

SAMPLE P R O B L E M

1

F i g u r e 3 i s a t i m e l i n e f o r a t y p i c a l n e t w o r k c o n s i s t i n g o f
n i n e f i x e d a c t i v i t i e s a n d t w o v a r i a b l e a c t i v i t i e s . F i g u r e 4 i s
t h e t i m e l i n e r e d r a w n i n t h e f o r m o f a n e t w o r k d i a g r a m . A c t i v i t y
1 2 i s a dummy a c t i v i t y w i t h t h e t i m e e q u a l t o z e r o .

I

Time +
0 50 100 150 200

I

158
Figure 4. Sample problem reliability netwodc

T a b l e I g i v e s t h e t i m e p a r a m e t e r s f o r t h e a c t i v i t i e s . T h e s e
p a r a m e t e r s i n c l u d e a c t i v i t y d u r a t i o n , t i m e t o f a i l u r e a n d t i m e t o
r e p a i r . A c t i v i t i e s A C T l and ACT2 h a v e v a r i a b l e t i m e s ; t h e r e f o r e ,
t h e a c t i v i t i e s w i l l o p e r a t e d u r i n g t h e e n t i r e d u r a t i o n o f t h e
s y s t e m . T a b l e I 1 g i v e s t h e o p e r a t i o n a l d e p e n d e n c i e s b e t w e e n t h e
a c t i v i t i e s . F o r e x a m p l e , a f a i l u r e o f a c t i v i t y A C T l w i l l c a u s e a
s t o p p i n g o f a c t i v i t i e s ACT3, ACT4, a n d ACT5. L i k e w i s e , a f a i l u r e
o f a c t i v i t y ACT9 w i l l a l s o s t o p a c t i v i t y ACT5.

A c t i v i t y

Table I. A c t i v i t y Time Parameters

Dependent A c t i v i t i e s
ACTl ACT2 ACT3 ACT4 ACT5 ACT6 ACT7 ACT8 ACT9 ACTlO ACTll ACT12

A c t i v i t y Dura t ion Time t o F a i l u r e Time t o Repair

ACT 1 Var i ab le E(200) N(20,4)
ACT2 Var i ab 1 e E(200) N(20,4)
ACT3 100 E (120) N(10,2)
ACT4 40 E(60) N(5,l)
ACT5 60 E(80) N(5, l)
ACT6 50 E(60) N(5, l)
ACT 7 30 E (100) N(10,2)
ACT8 60 E(100) N(10,2)
ACT9 60 E(50) N(5, l)
ACT 10 40 E(60) N(5, l)
ACTl l 80 E(100) N(10,2)
ACT12 Dumny 0 0

Tab le 11. Opera t iona l Dependencies Between A c t i v i t i e s

ACT 1
ACT2
ACT3
ACT4
ACT5
ACT 6
ACT7
ACT8
ACT9
ACTlO
ACTll

X X X X

X
X

X
X

X

X X
X

X
X

X
X

X
X

ACT12

159

F i g u r e 5 i s a p a r t i a l l i s t i n g o f t h e i n t e r a c t i v e user d i a l o -
gue f o r d e f i n i n g a c t i v i t y ACT3. ACT3 s t a r t s a t node 1 and ends
a t n o d e 3 . The a c t i v i t y t y p e i s f i x e d , t h e d u r a t i o n i s 1 0 0 , t h e
t ime t o f a i l u r e f o l l o w s an e x p o n e n t i a l d i s t r i b u t i o n w i t h a mean
of 120, t h e t i m e t o r e p a i r t h e a c t i v i t y f o l l o w s t h e no rma l
d i s t r i b u t i o n w i t h a mean o f 10 and a s t a n d a r d d e v i a t i o n o f 2 .
A c t i v i t y ACT6 i s d e p e n d e n t on ACT3.

F i g u r e 6 i s a p a r t i a l l i s t i n g o f t h e G P S S main p r o g r a m .
Note t h a t t h e c o d e c o n s i s t s of a number o f SPLIT, T R A N S F E R and
ASSEMBLE b l o c k s t h a t d e f i n e t h e n e t w o r k . The TRANSFER b l o c k s
r o u t e t h e t r a n s a c t i o n s t o t h e a p p r o p r i a t e f i x e d or v a r i a b l e a c t i -
v i t y o p e r a t i o n s u b r o u t i n e s .

Name f o r GPSS P r o g r a m : EXAMP. 1

1. N u m b e r of a c t i v i t i e5 : 12
2. A c t i v i t y a t t r i b u t e s :

A c t i v i t y name' : *ACT:
A c t i v i t y t y p e (f i e e d / v a r i a b l e) : F I X E D
D u r a t i on d i s t r 1 bu t 1 on t y p e : CONSTaNT

m e a n t 1 me : 100

S t a r t i n g node n u m b e r : 1
E n d i n g node n u m b e r : 2
MTTF d i s t r i b u t 1 on t y p e : EXPONENTIAL

m e a n t i me : 120

MTTR d i s t r i b u t i o n t y p e : NORMAL
mean t i me : 1 (:I
standard d e v i a t i o n : 2

N u m b e r o f dependent a c t i v i t l e s : 1

Name of dependent a c t i v i t y l : % A C T 6

F i w 5. Partial listfry of interactive mer delogue

1945
1950 MORE
1955
1960
1965
1970 MM

2000 E V I
200 1
2002 E V 2
2003
2004 E V 3
2005
2006 E V 4
2007
2008 E E V 4
2009
2010 E V S
201 1
2012 EEVS
2013
2014 E V 6
2015
2016 E V 7
2017
2010 E V 8
2019
2020 A 1
202 1
2022
2024
2025
2026
2027 A 2
2030

2'182 A 1 0
2083
2cm5
2086
2088 A 1 1
2089
209 1
2092

2094 E N D l

GENERATE
SPL I T
GATE L S
L O G I C R
TRANSFER
MARC:

ADVANCE
TRANSFER
ASSEMBLE
TRANSFER
ASSEMBLE
TRANSFER
ASSEMBLE
L O G I C S
ASSEMBLE
TRANSFER
ASSEMBLE
L O G I C S
ASSEMBLE
TRANSFER
ADVANCE
T R A N S F E R
ADVANCE
TRANSFER
ADVANCE
TRANSFER
ASS I GN
S P L I T
ASS I GN
L O G I C R
TRANSFER
T R A N S F E R
b C E T r * l

TK'ANSFER
ASS I GN

ASS I GN
TRANSFER
TRANSFER

ASS I GN
ASS I GN
TRANSFER
TRANSFER

TABULATE
2095 SYSTIME TABLE
2096 L O G I C S
2097 TERM I NATE

, 9 9 1

1,MM
SWITCH-MORE
SWITCH-MORE
, MORE
SYSTIME

3 A 4
2
, A 3
2
SWITCH-END1
2
, A 1 2
1
SWITCH-END2
2
, E N D l

, A 7

7 69

,a i 1

1,&2
3,1

2 , S A C T l

SWITCH-END1
SBR, VENT-B, RTRN2
, EEV4
7. %ACT2

.-
2 , $ACT 10 -

2 . 10
SBR, VENT-A, RTRNZ
, E V 8
2, SACT1 1

3,11
SBR, VENT-A, RTRN2
, E V 4

SYSTIME
MPBSYST I ME ~ 0,50,50
SWITCH-MORE
1

Fi- 6. Partial GPSS listing of main prog#n

160

CONCLUSIONS

T h e A N P S s y s t e m i s c u r r e n t l y i n l i m i t e d o p e r a t i o n on an I B M
P C m i c r o c o m p u t e r . A number o f r e l a t i v e l y s m a l l n e t w o r k p r o b l e m s
h a v e b e e n s o l v e d u s i n g t h e s y s t e m . G i v e n t h e s u c c e s s i n m o d e l i n g
t h e s e s m a l l n e t w o r k s , i t a p p e a r s t h a t t h e A N P S s y s t e m c a n r e a d i l y
m o d e l t h e t w o l a r g e S a t u r n V p r e l a u n c h m o d e l s b y S y n d e r (1 9 6 7)
a n d S c h r o e r (1 9 6 9) . B a s e d on t h i s i n i t i a l t e s t i n g and e v a -
l u a t i o n , t h e f o l l o w i n g comments c a n b e made:

O T h e i n t e r a c t i v e u s e r d i a l o g u e p r o v i d e s f o r a f o r m a l and
s t r u c t u r e d p r o c e d u r e f o r a c q u i r i n g i n f o r m a t i o n on t h e
n e t w o r k b e i n g m o d e l e d .

O T h e i n t e r a c t i v e u s e r d i a l o g u e e x p e d i t e s t h e d e f i n i t i o n o f
t h e p r o b l e m s p e c i f i c a t i o n and a s s u r e s a c o m p l e t e a n d
d e t a i l e d d e f i n i t i o n o f t h e p r o b l e m s p e c i f i c a t i o n .

O T h e a u t o m a t i c c o d e g e n e r a t o r r e s u l t s i n s t r u c t u r e d s i m u -
l a t i o n c o d e t h a t i s e a s y t o r e a d , t r a c e and m o d i f y .

O T h e o v e r a l l c l a r i t y o f t h e s i m u l a t i o n c o d e i s g r e a t l y
i m p r o v e d .

O T h e A N P S s y s t e m i s i d e a l f o r r a p i d p r o t o t y p i n g and c a n
p r o d u c e s i m u l a t i o n c o d e t h a t i s s y n t a x e r r o r f r e e .

O T h e A N P S s y s t e m r e d u c e s t h e k n o w l e d g e l e v e l r e q u i r e d b y
t h e m o d e l e r o f t h e s i m u l a t i o n l a n g u a g e .

T h e A N P S s y s t e m a l s o h a s s e v e r a l d i s a d v a n t a g e s . T h e s e
d i s a d v a n t a g e s i n c l u d e :

O The s y s t e m i s d o m a i n s p e c i f i c a n d l i m i t e d b y t h e r o b u s t -
n e s s o f i t s l i b r a r y o f m a c r o s .

O The G P S S c o d e g e n e r a t e d b y A N P S p r o b a b l y i s l o n g e r , and
c o n s e q u e n t l y r e q u i r e s m o r e memory and t a k e s l o n g e r t o
e x e c u t e , t h a n a n o n s t r u c t u r e d e q u i v a l e n t p r o g r a m .

A s e c o n d v e r s i o n o f A N P S i s c u r r e n t l y u n d e r d e v e l o p m e n t on
an A p p l e Mac I 1 u s i n g H y p e r c a r d . T h i s v e r s i o n u s e s an i n t e r a c -
t i v e g r a p h i c a l i n t e r f a c e r a t h e r t h a n t h e i n t e r a c t i v e u s e r d i a l o -
g u e . W i t h t h i s v e r s i o n i t w i l l b e p o s s i b l e t o c o m p a r e t h e
d i f f e r e n t i n t e r f a c e a p p r o a c h e s t o d e f i n i n g t h e p r o b l e m s p e c i f i c a -
t i o n , t h e u s e o f T u r b o P r o l o g v e r s u s H y p e r c a r d , and t h e PC and
Mac I 1 p l a t f o r m s .

ACKNOWLEDGEMENTS

T h i s r e s e a r c h was f u n d e d i n p a r t b y g r a n t NAG8-641 f r o m t h e
N A S A M a r s h a l 1 S p a c e F l i g h t C e n t e r and c o n t r a c t ADECA-UAH-9001
f r o m t h e S c i e n c e , T e c h n o l o g y , and E n e r g y D i v i s i o n o f t h e A l a b a m a
D e p a r t m e n t o f E c o n o m i c and -Communi ty A f f a i r s .

161

REFERENCES

B a r r , A. and E . A. Fe igenbaum, 1982, The Handbook o f A r t i f i c i a l
I n t e l l i g e n c e , V o l . 2, W . Kaufman, I n c . , C A .

B r a z i e r , M. K . and R . E. Shannon. 1987 . " A u t o m a t i c P r o g r a m m i n g
o f A G V S S i m u l a t i o n M o d e l s , " 1987 W i n t e r S i m u l a t i o n
C o n f e r e n c e , A t l a n t a , GA, (D e c e m b e r) pp. 703 - 708.

F o r d , D . R . and B . J. S c h r o e r . 1987 . "An E x p e r t M a n u f a c t u r i n g
S i m u l a t i o n Sys tem. " S i m u l a t i o n , V o l . 48, No. 5, (M a y) pp.
1 9 3 - 2 0 0 . .

G P S S / P C R e f e r e n c e M a n u a l , 1986, M i n u t e m a n S o f t w a r e , Stow, MA.

Haddock , J. and R . P. D a v i s . 1985 . " B u i l d i n g a S i m u l a t i o n
G e n e r a t o r f o r M a n u f a c t u r i n g C e l l D e s i g n and C o n t r o l . ' I

A n n u a l I n t e r n a t i o n a l I n d u s t r i a l E n g i n e e r i n g S p r i n g
C o n f e r e n c e P r o c e e d i n g s , L o s A n g e l e s , CA, (May) pp. 2 3 7 - 2 4 4 .

H e i d o r n , G. E . 1 9 7 4 . " E n g l i s h as a V e r y H i g h L e v e l L a n g u a g e f o r
S i m u l a t i o n P r o g r a m m i n g . " SIGPLAN N o t i c e s , V o l . 9, No. 4,
pp. 91 -100 .

K h o s h n e v i s , B . and A. P. Chen. 1986. "An E x p e r t S i m u l a t i o n
M o d e l B u i l d e r . " I n t e l l i g e n t S i m u l a t i o n E n v i r o n m e n t , S o c i e t y
f o r Compute r S i m u l a t i o n , V o l . 17, No. 1, pp. 129 -132 .

M u r r a y , K . J . and S. V. S h e p p a r d . 1988 . I' K now 1 e d g e - b as e d
S i m u l a t i o n M o d e l S p e c i f i c a t i o n , " S i m u l a t i o n , V o l . 50, No. 3,
(M a r c h) pp. 1 1 2 - 1 1 9 .

S c h r o e r , B . J. 1969 . " S a t u r n V P r e l a u n c h S y s t e m s S i m u l a t i o n
M o d e l f o r a L a u n c h O p p o r t u n i t y C o n t a i n i n g M u l t i p l e L a u n c h
Windows," T h i r d C o n f e r e n c e on A p p l i c a t i o n s o f S i m u l a t i o n ,
Los A n g e l e s , (D e c e m b e r) pp. 503 -511 .

S y n d e r , J . E., E . R . B e n n i c h and Y . H. L i n d s e y . 1967.
" I m p l e m e n t a t i o n o f Advanced S i m u l a t i o n T e c h n i q u e s f o r
P r e d i c t i n g t h e S a t u r n V L a u n c h V e h i c l e S y s t e m B e h a v i o r , "
J o u r n a l o f S p a c e c r a f t and R o c k e t s , V o l . 4, No. 8, pp.
9 9 8 - 1 0 0 2 .

S y n d e r , J. E . R . B e n n i c h and Y . H. L i n d s e y . 1967 .
" I m p l e m e n t a t i o n o f Advanced S i m u l a t i o n T e c h n i q u e s f o r
P r e d i c t i n g t h e S a t u r n V L a u n c h V e h i c l e S y s t e m B e h a v i o r , "
A I A A 5 t h A e r o s p a c e S c i e n c e s M e e t i n g , P a p e r 67-205, New Y o r k ,
J a n u a r y 1967.

T u r b o P r o l o g 2.0 R e f e r e n c e G u i d e . 1986 . B o r l a n d I n t e r n a t i o n a l ,
S c o t t s V a l l e y , C A .

162

OBJECT ORIENTED STUDIES INTO ARTIFICIAL SPACE DEBRIS

J . M. Adamson,
Consultant, 1 Brockhurst Cottages, Over Wallop, Stockbridge,

Hampshire, England

G. Marshall,
Consultant, 31 Broomhill Way, Allbrook, Eastleigh,

Hampshi re , Eng 1 and

ABSTRACT

A prototype simulation i s being developed under contract to
the Royal Aerospace Establishment (RAE), Farnborough, England,
to assist in the discrimination of artificial space
objects/debris.

The methodology undertaken has been to link Object Oriented
programming,intelligent knowledge based system (IKBS) techniques
and advanced computer technology with numeric analysis to
provide a graphical, symbolic simulation. The objective is to
provide an additional layer of understanding on top of
conventional classification methods.

Use is being made of object and rule based knowledge
representation, multiple reasoning, truth maintenance and
uncertainty. Software tools being used include Knowledge
Engineering Environment (KEE) and SymTactics for knowledge
representation. Hooks are being developed within the SymTactics
framework to incorporate mathematical models describing orbital
motion and fragmentation. Penetration and structural analysis
can also be incorporated.

SymTactics [15] is an Object Oriented discrete event
simulation tool built as a domain specific extension to the KEE
environment. The tool provides facilities f o r building,
debugging and monitoring dynamic (military) simulations.

I NTRODUCTI ON

There are currently some 10.000 registered objects orbiting
the Earth. I t is estimated that another 40,000 golf-sized
objects are not tracked along with billions of sttll smaller
pieces. These objects consist of satellites, extinct rocket
casings and debris.

Space debris can be effectively categorised under the
headings of : particles, fragments and artifacts [lo].

Many tiny particles are produced by solid rocket motors
used in space. Larger particles can be attributed to the
intense thermal cycling of the space environment (for example
paint flaking o f f satellites). Particles are likewise produced
by explosions, both accidental and deliberate.

163

A principle source of fragments and particles is the
destruction of spent rocket stages and satellites. Explosions
of rocket stages can occur many months o r years after launch.
Residual propellants may be the cause here. Spacecraft on the
other hand tend to be destroyed deliberately. This may result
from testing anti-satellite weapons, o r spacecraft being
commanded to self-destruct for various reasons.

Numerous parts of spacecraft are jettisoned during launch
and operation; these come under the fragment category.
Fragments of this type include interstage structures, payload
shrouds and support structures. Fragments are likewise produced
during rocket stage separations.

The term artifacts is applied to derelict items of space
hardware such as intact payload support structures, spent
upperstages and spacecraft. Spacecraft can become derelict
(non-operational) following the malfunction of a launch
vehicle/upper stage, insertion into an incorrect orbit o r
following a system malfunction.

A major concern exists that space debris may cause
collisions, particularly in orbits ranging from 500km t o llOOkm
above the Earth. These collisions can produce many small
fragments which in turn increase the probability of further
co 11 is ions.

Space scientists and mission planners are becoming
increasingly concerned about the possibility of space objects
(namely spacecraft, rockets, spaceplanes and space stations)
being damaged by artificial space debris. Similar problems
exist, though not to the same extent, when placing
telecommunication satellites into geostationary orbit.

Should an operational space object become non-operational,
i t is in the interest of space scientists and mission planners
to determine the cause of this event as soon as possible. I f
space debris is suspected, the resultant signature data and
detailed simulations could identify the nature and cause of this
event.

SYSTEM CONFIGURATION

The proposed system configuration for this simulation (see
Fig. 1) makes use of a library of space objects, intelligent
sensors and a scenario generator. When a sensor detects an
object, i t interrogates the library of space objects to
determine i f that object has been identified/categorized. I f
not, the sensor reasons as to the possible cause and origin of
the unidentified object.

The first phase of this prototype simulation is currently
being modelled on a Lisp machine. The computer used was a
Symbolics 3640. The simulation is now in the process of being

164

Figure 1: Systcrn Configuration

_ . _ _ - - _ I _ _ _ _ _ _ _ - - -

, ,
t
8

library of space objects in
objects specified

volume of Scenario
generator space I

L L I Updates

T data bank

I I

I

1 -

I

Multiple Processor , , - - -__-._-_-_-_.-_-_-------- - - - - - - . - - - - - - - - -

transferred to a microVAX workstation in order to test the
concept of the "High Performance Server" [1,2]. The idea of
this concept is to enhance the host computer with add-on
extensions. These extensions would be modular, based on a
combination of any relevant architecture, and would produce a
fast, high availability processor system for symbolic, numeric,
graphic and conventional processing.

CURRENT WORK

The current phase of work includes orbital dynamics,
fragmentation, object representation and sensor reasoning.

ORBITAL DYNAMICS

Calculations are being undertaken to assess the outcome of
imparted impulses (A V ' s) to objects, fragments following
explosions, collisions and hypervelocity impacts.

Modelling discrepancies were minimised by transfering from
orbital elements (simple Keplerian motion) to Cartesian co-
ordinates [3 , 5 , 6] at the time a simulated event had been
scheduled t o take place. Resultant new velocities following
fragementation were used to calculate individual debris/particle
orbital elements.

An assumption was made that an operational space object
described an unperturbed circular orbit. Following
fragmentation, i t was observed that the majority of resultant
particles described elliptic motion: some achieved escape

velocity. Simulations showed that the small particles (< O.lgm)
can have drastically different orbits from the initial parent
body orbit. They had either very noticeable differences in
orbital inclination and longitude of ascending node o r large
variations in semi-major axis and eccentricity. Resultant
debris envelopes should correspond to those described by F u s s
L4.71.

FRAGMENTATION

The number of fragments generated and fragment velocities
following hypervelocity impacts and explosions were based on
work by McKnight [11 3 , Su 6 Kessler [14], and studies undertaken
in the 1960's. The following assumptions were made in
simulating fragmentation:

(i) Mass distribution of debris resulting from hypervelocity
impact is a function of impact velocity and mass of
projectile [9,11 ,141
The ejecta mass is represented by

where Me = ejecta mass in grams
Me = V' M,

v = impact velocity, km/sec
M, = mass of projectile in grams

(i i) The ejecta mass distribution takes the form [9,111
N = 0.447 (m/M,)**(-0.7496)

m = fragment mass
Me = total ejecta mass

where N = number of fragments with mass m o r greater

(i i i) The general equations for debris resulting from the

1.71E-4 M, exp (-0.02056 m * * 0 . 5) : m > 1936gm

8.69E-4 M, exp (-0.05756 m * * 0 . 5) ; m 41936gm

explosion of a satellite are [11,141

N = {

where N = cumulative number of fragments with mass
greater than m grams

M, = mass of target object in grams

Iiv) The smallest detectable ejecta mass is of order O.lgm

(VI The ejecta velocity for the smallest detectable fragment
is 1.3 times impact velocity [9]. Velocities of larger
ejecta particles were computed on the assumption that
the kinetic energy was the same for all ejecta
particles.

(vi 1 The maximum A V ' s imparted to fragments following an
explosion are of order 2km/sec. Larger fragment
velocities were calculated on the assumption that the
kinetic energy was the same for all particles.

166

Initial results suggest that particle distributions could
be detected showing the equivalent of a double shock wave
following a hypervelocity impact and resultant explosion.
Particle and velocity distributions may likewise indicate the
orbital plane and velocity of the impacting body.

OBJECT R EPRESENTAT I ON

An object oriented approach was used to describe space
object characteristics and relationships in terms of its
attributes: namely instance variables and methods. Instance
variables describe the simple variables or object relations that
an object may possess; methods are operations that the object
may perform.

A class of generic objects, termed operational component
parts, was used to represent all functional/operational space
objects such as satellites, rockets, spaceplanes and space
stations. A sub-class of operational component parts was used
to describe a typical space object. Terminology such as
I' f o r wa r d - o f 'I , I' above 'I ,
and "enclosed-by" was then introduced to represent spacially the
component parts of the space object. In addition, each
operational component part had assigned attribute fields
describing mass, shape, material and structural properties. This
is akin to the approach taken by such products as ICAD [13].

be h i nd 'I , bo t t om 'I , 1 e f t - o f 'I , I' r i g h t - o f

As an example consider the objects fuel tank, oxidiser
tank, helium tank and rocket engines. These are a generic sub-
group of operational component parts which can be used to
represent the Space Shuttle's orbital maneouvering system [12].
These component parts could likewise represent the orbital
control system for a space station o r satellite.

Geometric reasoning was introduced to generate more
accurate fragmentation models following impacts and explosions.
The model assumed that debris was equally reflected and
transmitted when the outer skin of a space object had been
penetrated by an impacting body. It was further assumed that
the transmitted debris damaged an operational component part
causing the part to move into the class of non-operational
objects. The model used rules to assess whether the damaged
part was critical o r non-critical: the outcome of this
assessment resulted in debris being generated according to
equations describing explosions or impacts respectively.
Additional fracture and penetration models could be incorporated
at this stage for more detailed simulations.

When a component part became non-operat-ional following an
impact or explosion, messages were passed to surrounding
components to evaluate the outcome of this event. The outcome
could be further explosions, shattering, fragmentation or
fracture, resulting in adjacent components likewise moving into
the class of non-operational objects.

167

SENSOR REASONING

This was modelled as an intelligent system having inputs
from various types of sensors and access to a library of
currently known space objects. Consider the following scenario:

A possible cause f o r the loss of communication with a space
object could be due to a collision, explosion o r hypervelocity
impact: this type of event being termed as a "non-scheduled
event". The affected object o r component parts of the affected
object would transfer.from the class of operational objects to
non-operational objects. The sensor, having detected non-
catalogued debris, would use fragmentation-cause-rules to
determine the nature and origin of the detected debris, using as
a key the time and known position of the suspected space object.

Fragmentation-cause-rules were classed under normal
satellite-and-launch-operations, satellite-deterioration and
satellite-fragmentation [8] . These were further categorized
(see Fig 2) under collisions, loose-hardware, manned-flight,
rocket-break-up, satellite-out-of-commission, scheduled-events,
atomic-oxygen, solar-radiation, collision-induced, deliberate-
action, malfunction and unknown.

Fig. 2

1

.

When non-catalogued debris was detected, the sensor
reasoned as to the possible cause and origin. In undertaking
this task, the sensor had access to an event library of non-
scheduled and scheduled events. A non-scheduled event, as
described earlier, could be a sudden loss in communication with
an operational satellite. A scheduled event could be a

168

hard-eject fragment following payload deployment into orbit. In
this case, the following fragmentation-cause-rule was used to
test this hypo t hes is :

HARD-E JECT -FR?iGMEN T

!(IF (THE EVENT-TALLY OF ?DEBRIS IS ?EVENT)
(?EV”LNT IS IN CLASS HARD-EJECT)
(THE ACQUIRED-OBJECTS OF ?OBSERVATORY IS ?SIGHTING)
(?DEBRIS = (LISP (FIRST ?SIGHTING)))
(THE CATALOGUE OF ?OBSERVATORY IS ?CATALOGUE)
(?FRAGMENT-CAUSE = (FOURTH ?CATALOGUE))
(LISP (= ?EVENT ?FRAGMENT-CAUSE))
(?RCS = (LISP (SECOND ?SIGHTING)))
(?RANGE = (LISP (THIRD ?SIGHTING)))
(L I S P

(< ?RCS
(OBJECT-MESSAGE ‘NORMAL-ATMOSPHERE

’ !ATTENUATE-SIGNATURE
’ ! RADAR-SIGNATURE
1.Oe-4
?RANGE
’KM) 1)

THEN
(THE DEBRIS-ORIGIN OF ?DEBRIS IS ?EVENT)
(THE IDENTITY OF ?DEBRIS IS SMALL-FRAGMENT)))

I f several fragmentation-cause-rules offered plausible
solutions, -each one could be tested concurrently. A possible
confirmation of a rival hypothesis could be obtained by
calculating orbital parameters at the time of the scheduled
event and comparing the data with available fragmentation
models .
CONCLUSIONS

The outcome of this study to date has shown that deep
knowledge based simulations requiring symbolic, numeric and
visualisation techniques could be linked together and applied to
the artificial-debris problem. The use of KEE and SymTactics
enabled rapid prototyping and provided an interactive and rapid
scenario generation facility.

I t is hoped that the outcome of this study will provide a
better understanding of:

i) Object representation, damage assessment
ii) Intelligent sensor representation
i i i) Object classification, discrimination and hazard/lethality.
iv) Generation of various space debris scenarios to provide a

better understanding of the cause and break-up of
operational space objects.

-3 169

ACKNOWLEDGEMENTS

This work has been carried out with the support of the
Procurement Executive, Ministry of Defence.

REFERENCES

1.

2.

3.

4.

5 .

6.

7.

8 .

9.

10.

11.

12.

13.

Adamson, J.M., High Performance Server, Technical Paper,
Thorn EM1 Electronics Ltd., Oct '86.

Adamson, J.M. 6 C'lay, P., High Performance Server
Architecture, Paper in preparation.

Adamson, J.M., Determination of Relevant Satellite Data
from Cartesian Co-ordinates o r Orbital Elements, Technical
Memo 2792, Space Division, Hawker Siddeley Dynamics, 1973.

Fuss, J.T., Dynamics of Explosion Remnants in Earth Orbit,
Master's Thesis, Old Dominian University, July '74.

Gooding, R.H., Universal Procedures f o r Conversion of
Orbital Elements t o and f r o m Position and Velocity
(Unperturbed Orbits), Technical Report 87043, RAE,
Farnborough, Jun ' 87.
Gooding, R.H., Solution of the Hyperbolic Kepler's
Equation, Technical Report 87042, RAE Farnborough, Jun '87.

Humes, D.H. et al, Man Made Debris Studies at NASA Langley,
Orbital Debris, NASA Conference Publication 2360, pp45-68,
1982.

Johnson, N.L. 6 McKnight, D.S., Artificial Space Debris,
Orbit Book Company, 1987.

Johnson, N.L., History and Consequences of On-Orbit Break-
ups, Adv. Space Res., Vo1.5, No.2,ppll-19, 1985.

Lorenz, R.D., Debris Threat Poses Future Hazard,
Spaceflight, Vol 30, No.l.pp4-9, Jan '88.

McKnight, D., Determining the Cause of Satellite
Fragementation: A Case Study of the Kosmos 1275 Breakup,
IAA-87-574, Brighton.

Rockwell International Space Shuttle Transportation System
- Press Information, Jan '84.

Rosenfeld, L . W . 6 Belzer, A.P., Breaking Through the
Complexity Barrier: A New Style of Parametric Design,
Technical Publication, ICAD Inc., Cambridge, MA, 1986.

170

14. Su, S.Y. 6 Kessler, D.J., Contribution of Explosion and
Future Collision Fragments to the Orbital Debris
Environment, Advances in Space Exploration, Vol 5, No.2,
pp 25-35, 1985.

15. Wheatley, M., Marshall, G., 6 Magaldi, R., Configuration of
Beta and Subsequent Releases of SymTactics : Pre-delivery
Description, Ref VFC/1/88, Vanilla Flavor Company, Feb '88.

171

Extending the Data Dictionary
for

DatdKnowledge Management

Cecile L. Hydrick
and

Dr. Sara J. Graves
Computer Science Department

University of Alabama in Huntsville

Abstract

Current relational database technology provides the means for effeciently storing and retrieving large
amounts ol' clata. By combining techniques learned from the field of artificial intelligence with this
technology. it is possihle to expand the capabilites of such systems. This paper suggests using the
expanded domain concept, an object-oriented organization. and the storing of knowledge rules within the
relational database a s ii solution to the unique problems associated with CAD/CAM and engineering data.

1. Introduction

Data management for NASA often involves large amounts of diverse data stored on many different
computer kptems and at many different geographical locations. Types of data which must be tracked
include project managenienf data. financial and budgetary data, CAD/CAM data, engineering data, and
documents. The possibility of using a single relational database management system (DBMS) for data
connectivity has heen explored. However, CAD/CAM and engineering data present problems which are
not being currently addressed by existing DBMS products.

Although CA D/CAbf and engineering data have the same basic requirements for storage and
retrieval. certain characteristics of the data show why existing DBMS's fail. Such data (1) tends to be
heterogeneous, consisting of graphical, textual, procedural, and mathematical data; (2) requires a
dynamic schema as entities are created and destroyed; (3) tends to be object-oriented with complex
relationships associated with the objects; and (4) exhibits object-specific relationships which change from
object t o object [5 j .

These characteristics require that a database designed for such applications (I) be able to represent a
wide range or data types. (2) be able to represent complex relationships between data items, (3) and be
akle to represent certain "knowledge" about that data [2]. Existing commercial DBMS's do not at the
present time have those capabilities.

The trilditional data dictionary/directory may provide the answer. The data dictionary contains the
"meta-data" which is the description of the data in the database. By extending the descriptions using
knowledge representation techniques from the field ol artificial intelligence (AI), the dictionary can in
effect hecome the "knoivledge base" for the DBbIS, providing both dynamic schema generation and
extended cl;1ta 1ypes.

This paper pre>ents mrihods for extending the data dictionary in a relational database management
system b y extending the domain concept to allow the representation of many different data types. Using
a n object-oriented niodel allow the expression of comples relationships between objects. "Knowledge"
can he stored in the I'orm ol' Ixoduction rules mapped into a relational table. Combining the extension of
the donlain. the object-oriented model, and the storage of production rules in relational tables produces a
clata dictionary that is dynamic and capable of evolving over time, thus meeting the needs of CAD/CAM
a nd en gi n ee ri ng da t ;i kilst. iippl ica ti ons .

PRECEDING PAGE BLANK NUT FILMED 173

11. Problenis w i t h Esisting Data Dictionaries

Tlie traditional process of database development resulted in a collection of static record structures
which remained I'ixed throughout the life of the database applications. Data base administrators typically
regarded data dictionaries/directories as static tools to aid them in the control of information resources
1 5 1 .

The ;Idvent of CAD/CAhI and engineering database systems has created the need for data dictionary
delinition t o occur throughout the life of 'the application as objects are created, modified, and destroyed.
The data dictionary. i f viewed as a "knowledge base" rather than a collection of static records, can play
an active role in this process. Expert knowledge about database design can be stored in the data dictionary
itself, thus allowing Tor the creation of schemas as data loading occurs.

The key concept in the ahove scenario is that meta-data inherently contains knowledge which can be
exploited Tor dynamic schema generation and knowledge management purposes. However, this will
require that future systems he more tightly integrated than at present. In order to take full advantage of
the knowledge inherent in the meta-data, data and meta-data can no longer be functionally separated,
hut must he made co-resident in the same "knowledge base". In this approach, database instances, data
types, operations, and transactions are viewed as "objects". Two issues must be addressed in designing a
knowledge-based data dictionary: a scheme for knowledge representation and the integration of the data
and meta-data [SI.

111. Moving from Data Management Towards Knowledge Management

Current DBMS's are effective in storing and retrievins large amounts of data. However, while a
typical data dictionary may describe the physical size of the attribute "employee number", it may have no
way to represent the fact that EMPLOYEE is a subtype of PERSON (111.

Artificial Intelligence research has produced Knowledge Representation Systems (KRS) which attempt
t o model the way in which human knowledge is represented and acquired. However, these systems have
not been able to efficiently exploit large amounts of data due to the fact that they tend to be
memory-based rather than disk-based [2) . Because they also tend to have high overhead and have
ignored the issues of backup and error recovery, they have not been considered practical for large
commercii1l applications [L 1 I .

Recent reseilrch has centered around finding ways to combine the best of both the DBMS and the
KRS. There have been four approaches to integrating the two systems:

(I 1 integrate an existing AI system with a DBMS;

(2) enhance an A l system with data functionality:

(3) tightly integrate AI and database by designing an entirely new system;

(4) extend ;I DBhlS by enhancing the data model with knowledge representation and other AI
capabilities I?. 1 .

The I'ourth allernative forms the basis for this paper. This approach actually involves mapping
knowledge inio [he existing DBMS. Several techniques have been used including the assorted semantic
data models and the mapping of production rules into relational tables. An integrated approach must
combine modelling ricline44 with knowledge rules for inferencing capability.

174

IV. Expanding Domains in the Relational Model

Weclekind I I O 1 discushes the importance of the domain in the design of conceptual schemata. He
;irgues that the design process should reflect a learning situation in which single elementary facts about
data are combined to form more complex knowledge about the data. His approach is a constructive
method in which glohnl domains are used as a basis for building relations in a stepwise fashion.

For esample. a domain description such as COLOR = (green, red.blue} might be replaced with the
f ol I o w i n 6 ele me n ta ry se n te n ces :

COLOR is ii DOhlAIN;
green is ;I COLOR.
red is a COLOR.
Idue is a COLOR;

The fact tliai COLOR is a domain must be established before the members of the domain can be
enumeriltecl. In the same manner, the members of the domain must be known before an entity can be
described ;is having that. attribute.

In order to implement this concept using the relational model, Wedekind suggests the addition of four
relations to the metadatabase: DOMAIN, ENUM (for enumerated types), and PRE and FUN which are
relations specific io INGRES which allow the use of INGRES predicates and the calling of functions for
validity testing.

Expanding the domain concept in engineering and CAD/CAM databases can provide two distinct
advantages: (I 1 abstract data typing, and (2) "built-in" integrity constraints. The ability to represent
absirilct data types is necessary because of the heterogeneous nature of the data, while the enumeration of
domain members provides the means of checking data entities for validity.

V. Object-Oriented Organization

One method for ascribing meaning to data is to describe the data in terms of objects rather than static
record structures [51. Objects can be entities or the relationships between the entities. Both declarative
and proceclural information can he included in the model [9].

Olijects can he organized into "semantic nets". Primitives can include:

1) The class of an obiect of a certain type;

2 ISA-links which relate subtypes and supertypes:

3) dSA-links stating that a token is a specific type;

4) Primitive maps and functions which provide access to meta-data [5].

Borh the ohject-oriented model and the relational database model share the goal of logical data
independence. hence a natural mapping exists between the two models [9].

An ohiect-oriented model that can be mapped into the relational model has been described by
Slieldon Borkin I 1 1 . His model is defined as the "semantic relation data model" and is based on the
premise that the ciirrent datilbnse state consists of sets of statements describing the current state of the
i1pplic;ition. T h e w statements are built from the meanings of natural language sentences which can be
trxprewxl as ;I terb phr;iw (predicate) plus several noun phrases.

175

.An es;imple of how :in object might be mapped to the relational model is shown below. The object in
Figure I tiah Ixen named "ARCH" and consists of three elementary items named "BEAM I " . "BEARI?,".
and .'BEAM3*'. The functional decomposition of this object is shown by the graph in Figure 2. The
relations resulting from the graph are shown in Table 1. I t is interesting to note that the relations in Table
I look similar t o the way in which PROLOG states facts - Le., supports(objectl,object2).

Figure I : Object Named "Arch" Figure 2: Functional decomposition

The object-oriented model has three advantages over the hierarchical, network, and relational
models. First. the database can be viewed as a collection of abstract objects, not simply a group of
two-dimensional tables. Second, both abstraction (attribute interconnection) and generalization
(,subtyping) can he more easily represented. Finally, object-oriented schema provide built-in integrity
constraints [8 I

Table I: Relations for Object "Arch"

I) CONTAINS(Object1, Object2)
Archl Beaml
Archl Beam2
Archl Beam3

2) SUPPORTS(Object1, Object2)
Beaml Beam2
Beam3 Beam2

3) DISTANCE>O(Object I , Object?,)
Beam1 Beam3

A s w i t h rno5t oilier existing models. trade-offs exist. Potential problems which may occur when using
an okiect-oriented data model are added complexity and the difficulty in restructuring relationships once
they hare I w r n defined ISl.

VI. Storing Knowledge Rules for lnferencing

h l dittalTiIse5 generally include two types of objects: facts about other objects and knowledge rules for
In lie clnta dictionary. facts can be represented using an object-oriented data model. inferencing 151.

176

However. in order to maintain the close integration between data and meta-data, a method must be round
for storing t l ie knowledge rules within the database itsell.

Recent work hy Han-lin Li in China has centered on mapping production rules [or inferenciny into
the relational model. This approach allows the relational DBMS to handle the matching and retrieval ol
production rules which have been mapped to the relational model.

Li's work centers around the basic form of the production rule which is "IF condition, THEN action
"AND" and "OR" operators are allowed to form complex conditions or with certainty [actor CF."

actions. Table 2 shows some example production rules.

Table 7,: Production Rules

Rule I: 11' A = a and B = I> and C = c
THEN: D = d l with CF(D) =
cd I :

Rule 2: I f A = n and B = b and C = c
THEN: D = d2 with CF(D) =
cd2:

Rule 3: I t A = n and (B = b or C = c)
THEN: D = d.3 with CF(D) =
cd3;

Rule -I: I f .4 = ;I' or B = b' or C = c'
THEN: D = d-l with CF(D) =
c d l :

Table 3: Relations from Production Rules

RI , a relation containing rules 1 and 2

Rule# IF: THEN:
A B C D CF(D) E CF(E)

1 a b c d l cd I

2 a b c d2 . cd2

R2, a relation containing rules 3 and 3

IF: THEN: Rule#
A B C D CF(D) E CF(E)

3 a b d3 cd3
a C d3 cd3

I a' d-i cdJ
b' d3 cdJ

C' d-I cdJ

T h e first two rules show that one condition may result in more than one action. Rule 3 shows that
dil'ferent condiiions may result in the same action. Production rules with similar IF conditions form a
relac ion.

The key for the rule relations is formed by combining the IF conditions [or each tuple. This assures
that tlie resulting relation will be in Fourth Normal Form. Table 3 shows how the production rules from
Table 7, mily be mapped into the relational model. Notice that in Table 2 the value of D must be included
in the primary key because of the identical values of A,B.and C [SI.

VII. A self-describing rnetaschema

Mark and Roiiw)poiiIos I I O l have proposed an active and integrated data dictionary system which
uses the service.< offered h y the DBMS and is flexible enough to control its own evolution. They describe
two orthogonal dimensions of data description: the point-of-view dimension and the intension-extension
dimension.

T h e poini-ol'-\.ie\\, dimension consists of three levels of data description: the external. conceptual,
and internal wtiemri. Tl~ese three levels provide data independence.

Tlie intension-extension dimension provides four levels of data description:

177

I ttie application data;

2) the application schema which provides information about specific applications;

3) ttie data dictionary schema which provides information about the management and use of
dara;

1) the metaschema which consists of information about the data model.

Each level of description is the intension 'of the succeeding description and the extension of the preceding
one. A description of the metaschema is explicitly scored as part of its own extension.

Using the object-role data model. the authors have mapped the core metaschema into
object-oriented tables. The objects in a relational schemata are relations, domains, and attributes. The
relation R E L N defines relationships between existing relations and their names. ATTN defines
relationships between attributes and their names. The relation DOMN describes the domains and the
relation RDAS defines the relationships between relations, domains, and attributes. These mappings
allow the metaschema to be stored in the database it defines.

The authors further describe a set of operations which control all operations on the data dictionary
schema. They state that the operations specified must be explicitly represented in the metaschema itself
in order for it to remain self-describing. Because object-oriented data models support storage of
procedural information. this task is possible.

VI 11. A Proposed Data Dictionary Architecture

In order to satisfy the need for dynamic structuring and closer integration between data and
meta-data, it appears that both rules and facts must be actually stored in the database. With this in mind,
facts ahout tlie data can be stored in relations modelled using the "semantic relation data model" and
rules can be stored according to Li's mapping. These two representations match the way in which
PROLOG defines predicates.

The core metaschema is designed using the base tables described by Mark and Roussopoulos. These
tables have been enhanced by expanding the domain concept as described in section 111. Figure 3 is the
graph generated b y coml7ining these two concepts.

The circles in Figure 3 represent domains. The single boxes represent the actual relations, while the
divided boxes represent the attributes associated with each relation.

The resulting relations are shown in Table 4. The relation DOMAIN has been extended to include
information necessarv for defining attributes in ORACLE, which was the relational product used in
developing tlie prototype. T w o additional relations further define the domain: (I) ENU allows
enumerated domains Cor ahwact data types such as objects, and (2) FUN stores the name of processes
for testing iind manipulation of the data. A final core relation RULES stores design rules for inferencing.

- -._.

Other relations :ire created or dropped as the associated objects are added to or deleted from the
datalxise. K'hen this occurs. the relations RELN. ATTN, and RDAS must be updated, thus ensuring a
dynamic mmscliema. The following esample shows how an object might be added to the database.

In order io add the arch described in Section IV, the user would be asked whether the object was
elementary or ;I composire o l other objects. If the object is a composite, its components must be first
added and described and discussed in Section 111. For example, "BEAM I" , "BEAklZ", and "BEAM3"
would be considered elementary items and must be stored in the database before the arch can be defined.

178

Figure 3: Prototype Core Metaschema

Table 4: Core Relations for Prototype

I)RELN(rname. rel)
RELN r l
DONN r?

3)RDAS(reln. dom, att
r l d4 a1
r l d l a2

d)FUN(dom. process)
d l I TSTAGE

2) DOMN(dom, dname, rep, base, dim)
d l relation STA CHAR(c) 2
d2 attribute STA CHAR(c) 2
d3 domain STA CHAR(c) 2

1)AlTN(at t , aname) 5)ENU(dom, member)
a t rname d8 arch
a2 re1 d8 beam 1

7)RULES(condl, cond2, cond3, result)

The three beams are particular instances of the type beam which is a member of the domain object.
A relation OBJECTS can he created to store these ASA links. The resulting relation is shown in Table 5 .

Once the ol7,iecta are added t o the database, the relationships between them can be added. The two
relationdiips SC'PPORTS and DISTANCE>O form two relations as shown in Table 5 .

A design rule completes ihe process or describing the arch:

I f SUPPORTS(s.z) and SL!PPORTS(y,z,I and DISTANCE>O(x,y)
then A R C H (s . y , z) ;

Each condition evaluates to true i f the specified tuple is found to exist. Thus application of this rule to the
relations in Tnhle 5 rvould confirm the fact that the object formed by the three beams is indeed an arch.
The arch can he named and added to the OBJECTS relation and the relation CONTAINS can be added
t o descrihe the componenis of the arch. The resulting relations are shown in Table 6.

179

T;ihle 5 : Relarions after Adding Beams

I) OBJECTS(oname. otype)
Beam I beam
Beam2 beam
Beam3 beam

2) SUPPORTS(oname I, oname2)
Beam1 Beam2
Beam3 Beam2

3) DISTANCE>O(oname 1 oname2)
Beaml Beam3

Table 6: Relations alter Design Rule

1) OBJECTS (oname, otype)
Beaml Beam
Beam2 Beam
Beam3 Beam
Archl Arch

2) CONTAINS (oname 1 oname2)
Archl Beaml
Arch2 Beam2
Arch3 Beam3

I X . Conclusion

CAD/CAM and engineering applications have special needs which are not presently being met by
These needs include the ability to represent abstract data types, relationships commercial DBbIS's.

between the data items, and certain knowledge about the data.

Extension of traditional data dictionaries may be able to meet some of these needs. Extending the
Storing knowledge rules within the concept of domains allows the expression of abstract data types.

DBMS and using an object-oriented data model allow the representation of complex relationships.

Application of artificial intelligence techniques will allow the data dictionary to become a knowledge
Only then will CAD/CAM and engineering databases be truly manager rather than a data manager.

e ffective.

X. References

I . S. Cammarata and h.1. Melkanoff, "An Interactive Data Dictionary Facility for CAD/CAM Data
Bases." ce Systems: Prore -5t 1 W-, ed. Larry
Kerschberg. Benjamin/Cummings. Reading, Mass.. pp.423-440.

2. D.J. Hartzband and F.J. Maryanski, "Enhancing Knowledge Representation in Engineering
Databases." Computer. Vol. IS. No. 9, Sept. 19S5. pp. 39-48.

3. C.J. Date. X n n n to D m h d b k m s , Addison-Wesley, Reading, Mass., 1956, p. 39

4. C. Znniolo et al.. "Ohject Oriented Database Systems and Knowledge Systems,'' w ? S e .
Pr0-L *< f rvm 111e First Intern;ttlonal, ed. Larry Kerschberg. Benjamin/Cummings,

Reading. hla5s.. 19Fh. pp. 50-65.

h. C. li;rllogg. "From Dala hlanagement to Knowledge Xlanagement," Computer, Vol. 19, No. I , Jan.

Discussions from the Working Group,"
\,<1rm<* rocee First lnternntlonal W o w , ed. Larry Kerschberg,

19Sh. 1711. 75-84.
7 . M. Brodie et ai.. "F;nowledge Base Management Systems:

Benjamin/Cumrning,<, Rending. Mass., 1956, pp. 19-33.

180

8.
Conl'erence on Data Engineering, Apr. 1984, pp. 134-438.

H . Wedekin. "Supporting the Design of Conceptual Schemata by Database Systems." International

9 . A . Shepherd and L. Kerschberg, "Constraint Management in Expert Database Systems," E.uoert
ZZUJhme . . s v m s : e First Inlernatlonal W-, ed.Larry Kerschberg.
Benjnmin/Cummin~s. Reading. Mass.. 1986, pp. 309-331.

I O . S. Borkin. Patn illorlrlc: .4 $, MIT Press, Cambridge, Mass.,
10811. pp. 63-03.

I I . R . King, " A Database Management System Based on an Object-Oriented Model,"

Reading. Mass.. IYPh. pp. 443-468.
the F W W o w , ed Larry Kerschberg, Benjamin/Curnmings,

12. H. Li, "To Develop a Data-knowledge Base Management System by Utilizing Relational Database
blanngemenc System", in Proceedings of Applications of Artificial Intelligence IV, (A Conference on
15- I6 April 1986 in Insbruch. Austria).

13. M. Morgenstern. "The Role of Constraints in Databases, Expert Systems, and Knowledge
Representation," -we S v m : Prore- the &st lnternatinnalWorkshoo, ed.
Larry Kerschberg, Benjamin/Cummings. Reading, Mass., 1986, pp. 35 1-368.

14. L. hlark and N. Roussopoulos, "Metadata Management," Computer, Vol. 19, No. 12, Dec. 1986,
pp. 26-36.

181

Case-Based Reasoning:
The Marriage of Knowledge Base and Data Base

Kirt Pulaski and Cyprian Casadaban

Martin Marietta Manned Space Systems
Post Office Box 29304 Mail Stop 3691

New Orleans, Louisiana 70 1 89

Abstract

The coupling of data and knowledge has a synergistic effect when building
an intelligent data base. The goal is to integrate the data and knowledge almost
to the point of indistinguishability, therefore permitting them to be used inter-
changeably. Examples given in this paper suggest that Case-Based Reasoning is a
more integrated way to link data and knowledge than pure rule-based reasoning.

1 Introduction

This paper describes some preliminary results of a NASA Mission Task being
performed by the Automation & Intelligent Systems group at Martin Marietta
Manned Space Systems in New Orleans, where the External Tank for the Space
Shuttle is assembled. The goal of the project is to increase productivity at weld
stations by decreasing downtime.

The plan to effect better productivity is to build an intelligent data base that
gives advice about possible downtime causes and streamlines the follow-up
paperwork. Efforts in the current fiscal year are producing a data base of reports of
weld station downtimes as they occur. An ancillary knowledge base is growing as
a result of the need to deepen the understanding of the weld station data.

A paradigm of reasoning needs to be selected that will best integrate the
knowledge base and data base. Case-Based Reasoning (CBR) is being considered
for several reasons:

183

CBR systems derive their power from knowledge base/data base
interaction.

Both the knowledge and data are currently being collected case by case
from the shop floor.

Advice-giving is memory-based and so is CBR.

Cases hold both data and knowledge in one structure, so the link between
them is highly integrated.

l CBR solves the problem of case disparity by being sensitive to and exploit-
ing similarities.

The organization of this paper is to present the major components of the
proposed Weld Intelligent Data Base (WIDB). First, a background of CBR is pre-
sented.

i
2 Case-Based Reasoning

The basic concept of CBR is simple: solve new problems by adapting solu-
tions from old problems. The representation of a problem solving episode is
called a case. Similarities between past and present cases establish a very high
focus for problem solving. This focus is very difficult to achieve when only using
rule-based reasoning (RBR).

I

CBR lends the power of examples to problem solving. Unlike the seg-
mented explanations attributable to RBR, CBR explains its solutions with whole,
relevant, concrete and familiar examples. CBR manifests learning as a by-prod-
uct of adding cases, as they occur, to a case base. Remindings also provide a
basis for knowledge acquisition (Riesbeck 881.

The generic system shown in Figure 1 depicts a cooperation between CBR
and RBR (Pulaski 88). Each method has merits which the other lacks. RBR eases
the implementation of a heuristic control strategy and is better for fast, non-
complex, localized inferencing and for recording metaknowledge. CBR weaves
the history of experience into problem solving.

3 Weld Data Base

When a downtime is reported a team of weld experts responds to the call.
They work together to determine the cause of the problem, how to get the weld
station operational as soon as possible and what to do to keep the problem
from occurring again.

I The result of a weld team call is a completed form which records, in several
levels of detail, the path that the problem solving took from initial diagnosis
throaw solution.

184

f 1
Rule- Based
Reasoner

problem features cues

Case-Based b Conceptual ' Problem
Solver Memory

case fragments cases

solution I b' Feedback ' problem solving episode '
User

current problem \Interface

tool
eff ec tivitv

Figure 1 : Generic Case-Based Reasoner

- . . - - - -

T50 18
LWT-48

Each weld team report form is further broken down, analyzed and entered
as a record into a data base. The year-to-date data base of weld station
downtimes consists of about 250 records. Figure 2 shows an abbreviated version
of a typical data base record that might result from a weld team call.

problem
cause

I date I JAN -25-88 I

- .. .- D
TORCH-DOVE
UNEVEN -TACK

downtime
prepared- by
code

H4
UNKNOWN
C88-2 1

Figure 2: Weld Team Report Data Base Record

4 Weld Knowledge Base

Figure 2 shows data from a weld team report. Certain types of knowledge
need to be associated with the various fields, and the values in them, to enable
an intelligent computational process to reason with that information.

One type of data base field knowledge is a systematic breakdown of
allowable values for a given field. This knowledge is implemented as a BNF
grammar which reduces the free English form to a parsed field value.

185

For example:

'No power to control system console.'

is transformed into

CONTROL-SYS/CONSOLE/POWER/NOT/EXIST

according to the syntactic categories

System/Component/Subcomponent/ModaI/Action

dictated by the problem description grammar.

The grammars do more than constrain field values. The grammar
transformation rules can be used to support other functions such as form-filling
and natural language (see Section 7). Also, the tokens of the grammars are
often the same as the indices which cases in the case base are stored by,
providing deep knowledge for storage and retrieval of cases.

Another type of knowledge relates field values to other field values. This
knowledge is implemented as relational links in a field value hierarchy. Figure 3
shows part of the Problem Tree. The relational links are ISA links. For example, a
PILOT-ARC-P ROBLE M ISA TORC H-PROBLE M IS A PRO BLE MI

C R T - P R O B L E M ' p \
COMPUTER-PROBLEM

PRI NTER-PRO BLEM d
LIMIT-SWITCH-PROBLEM-\

POW ER-SU PPLY-PRO BLEM
AVC-PROBLEM

GAS-LINE-PROBLEM
FIT-U P-PROBLE M

CONTROL-SYSPROBLEM 2

d 7 FAciLiTiEs-PRoBLm

7 PRocEDuRE-PRoBLEM PROBLEM
SET-UP-PROBLEM d

VOLTAGE-PROBLEM L

CHILL-BAR-PROBLEM /

TORCH-ASSEMBLY-PROBLEM J

AMPERAGE-PROBLEM 7 PROCESS-V~ABLE-PROBLEM

\ToOLI"PROBLEM

-ToRCH-PROBLEM

ACTUATOR-PROBLEM

PILOT-ARC-PROBLEM

Figure 3: Problem ISA Tree
186

Relational knowledge helps to hypothesize uncertain or unknown
knowledge in the data base!. For example in Figure 2, the name of the person
who prepared the weld team report is UNKNOWN. Using relational knowledge in
the Problem Tree and the Prepared-by Tree helps to determine that the person
who prepared the report was probably someone who usually handles TORCH-
PROBLEMS.

Other relational knowledge can be used to link field values. For example,
a CAUSED-BY link helps to consider causes for a problem. Any cause related to
the current problem by a CAUSED-BY link is considered as a probable cause for
that problem. Figure 4 shows that whenever there is a TORCH-CUTTING problem
then three causes are considered.

I ~i <GAS-llNE-CAUSE
TORCH -C UlTl NG- PRO B LE M - CAUSED-BY ORIFICE-CAUSE

TUNGSTON-CAUSE
Figure 4: The CAUSED-BY Relation

5 Weld Case Base

The weld case base is a union of the weld data base and the weld
knowledge base. The case base looks very similar to the data base but with an
implicit deeper understanding of the values found in the cases. One source of
the deeper understanding is the weld knowledge base. Another source is the
knowledge that accumulates over time as reminded cases are analyzed and
reasoned about during advice-giving .

Figure 5 shows an abbreviated version of a weld case from the case base.
The case representation shows some of what CBR adds to problem solving.
When CASE- 145 occurred, the CBR reasoner was reminded-of three previous
cases which helped to postulate a set of related-problems to check for. Causes
for the problem and related problems were hypothesized and investigated.
Causes which were not substantiated were stored as failed-causes along with
reasons why. The actual cause was substantiated and its justifications were
recorded. Later, CASE-145 served as a reminding-for two other cases.

6 Weld Intelligent Data Base

The advisory function in the WIDB is directly supported by CBR. The design
of the WlDB includes other functions that CBR does not directly support. The
following paragraphs mention these functions and what approaches will be
used to implement them.

The paper work currently associated with the data collection task will be
automated. Human interface and form-filling methods will be used to accept
user input, verify it, categorize it and build a case representation for the CBR
advice-g iver.

187

name I CASE-145

code
reminded-of

..- -

date JAN-25-88
tool T5018

C88- 145
CASE-007
CASE -063

related-problems
CASE- 129
AVC -PROBLEM

failed-causes

reasons

cause
justifications

WI RE -FEED - PROBLE M
CONTROL-SYS-CAUSE
WIRE-FEED-CAUSE
VOLTAGE -OK
WELD-BEAD-OK
UNEVEN-TACK
MISMATCH-PROBLEM
WELD-SEAM-PROBLEN

~

Figure 5: Example from the Weld Case Base

reminding-for

Report generation using the data base will include summaries, statistical
analysis, trending and relational analysis.

START-U P- PRO B LE M
CASE- 158

Relational analysis may be aided with the use of a knowledge discovery
tool, for example IXL by Intelligenceware, Inc.

The use of similarity networks (Bailey 88) is being considered to augment
case generalization to improve relational retrieval. Better relational retrieval will
improve advice-giving.

A natural language interface will ease querying, browsing and receiving
advice.

7 Discussion

In an advice-giving domain it is very helpful to reason from past examples.
CBR, by definition, is then a strong candidate for the WlDB domain, plus it has
even more to offer. The work described here shows that CBR is especially useful
when a solution involves an intelligent data base; that is, a data base
cooperating with a knowledge base.

188

The performance of an intelligent data base depends on the level of
integration between the data base and the knowledge base. CBR offers the
highest level of integration since both data and knowledge are stored in cases
and are not distinguishable.

The case base can grow in different ways. As more data and knowledge
are acquired, more cases are built and added to the case base. Each
occurrence of advice-giving is also a case, so the system grows each time it is
used. More cases means better remindings for future advice-giving. This
learning mechanism does not require the CBR reasoner to change; its
performance increases as a result of better remindings. This caliber of learning is
very difficult to achieve with pure rule-based systems.

There will be times when a CBR reasoner cannot solve a problem or
subproblem. As Figure 1 suggests, a rule-based reasoner is then used to
generate the unknown solution. This also leads to learning since the solution is
saved in the case base and the rule-based reasoner never has to solve that
problem (or other problems like it) again.

8 Conclusion

The wide-spread acceptance of a knowledge-based technique into a
mainstream computing environment depends on several important issues:
improvement, embedability and integration. These issues are important
because knowledge-based techniques rarely produce an entire solution to a
problem. Rather, the best solutions piece together a mix of subsolutions which
use both knowledge-based and conventional approaches.

The design of the WlDB addresses these issues. First of all, a knowledge-
based technique must offer an improvement. The WlDB augments a
conventional data base with knowledge. The improvement is a better and
deeper working understanding of the information in the data base; a result of
linking data base field values to eachother with knowledge.

The WIDB uses CBR for advice-giving type problem solving. This offers an
improvement since conventional methods have difficulty implementing advice-
giving which is sensitive to a history that is constantly being modified.

Another issue is embedability: knowledge-based techniques must embed
into the same environment as conventional methods. The knowledge that the
WlDB uses to augment its data base is fully embedable into a relational data
base environment. The knowledge links that connect data base field values to
eachother are implemented as relations (for example CAUSED-BY and ISA) in
the relational data base itself.

189

The cases for CBR are also embedable into a relational data base
environment. CBR provides a seamless link between a data base and a
knowledge base; in fact, the cases in the WIDB hold both data and knowledge.
Therefore, the cases can be implemented as data base records.

The last issue is integration. Different system components, whether
knowledge-based or conventional, must fully integrate into one delivery
environment. The WIDB integrates a CBR subsystem, a relational data base
subsystem and a natural language front/back end. Each subsystem will be
integrated with the others to operate in one delivery environment which is a 386-
based microcomputer.

Ref e re nces

1. Bailey, D., Thompson, D., and Feinstein, J. 'Similarity Networks.' PC AI, July/
August, 1988. pp. 29-32.

2. Pulaski, K. ELMO: An Episodic Long-term Memory Organizer for Case-
Based Reasoning. AAAl Case-Based Reasoning Workshop, St. Paul,
Minnesota, August 23,1988.

3. Riesbeck, C. K. An Interface for Case-Based Knowledge Acquisition. In
Proceedings of DARPA/ISTO Case-Based Reasoning Workshop, Clearwater
Beach, Florida, May 11-13, 1988. pp. 312-326.

190

N 8 9 - 1 5 5 1 5
c

EXPERT SYSTEM VALIDATION IN PROLOG

Todd Stock, Rolf Stachowitz, Chin-Liang Chang, and Jacqueline Combs

Lockheed AI Center
Austin, Texas

ABSTRACT

We present an overview of the Expert System Validation Ass is tant (EVA)
being implemented in Prolog at the Lockheed AI Center.
chosen to facilitate rapid prototyping of the structure and logic
checkers and since February 1987, we have implemented code to check for
irrelevance, subsumption, duplication, deadends, unreachability, and
cycles. The architecture we have chosen is extremely flexible and
expansible, yet concise and complementary with the normal interactive
style of Prolog.

Prolog was

The foundation of the system is in the connection graph representation.
Rules and facts are modeled as nodes in the graph and arcs indicate
common patterns between rules.
system is then a traversal of the connection graph, searching for
various patterns the system recognizes as erroneous. To aid in
specifying these patterns, a metalanguage has been developed, providing
the user with the basic facilities required to reason about the expert
system. Using the metalanguage, the user can, for example, give the
Prolog inference engine the goal of finding inconsistent conclusions
among the rules, and Prolog will search the graph intantiations which
can match the definition of inconsistency. Examples of code for some of
the checkers will be provided and the algorithms explained.

The basic activity of the validation

Technical highlights include automatic construction of a connection
graph, demonstration of the use of metalanguage, the A* algorithm
modified to detect all unique cycles, general-purpose stacks in Prolog,
and a general-purpose database browser with pattern completion.

191

N89-15516

EXPERT SYSTEM FOR ON-BOARD SATELLITE SCHEDULING & CONTROL

John M. Barry
Research & Technology Program Development Manager

Charisse Sary
Member of Technical Staff

SATELLITE & SPACE ELECTRONICS DIVISION
ROCKWELL INTERNATIONAL

ABSTRACT

This paper describes an Expert System which Rockwell Satellite & Space Electronics
Division (S&SED) is developing to dynamically schedule the allocation of on board satel-
lite resources and activities. This expert system is the Satellite Controller. The resources
it will schedule include power, propellant and recording tape. The activities controlled in-
clude scheduling satellite functions such as sensor checkout and operation. The schedul-
ing of these resources and activities is presently a labor intensive and time consuming
ground operations task. Developing a schedule requires extensive knowledge of the sys-
tem and subsystem operations, operational constraints, and satellite design and configura-
tion. This scheduling process requires highly trained experts anywhere from several hours
to several weeks to accomplish. The process is done through "brute force" -that is ex-
amining cryptic mnemonic data "off line" to interpret the "health and status" of the satellite.
Then schedules are formulated either as the result of practical operator experience or
heuristics - that is "rules of thumb. Orbital operations must become more productive in
the future to reduce life cycle costs and decrease dependance on ground control. This
reduction is required to increase autonomy and survivability of future systems. The design
of future satellites require that the scheduling function be transferred from ground to on
board systems.

INTRODUCTION

Most satellite operations are accomplished by sending software commands via com-
munications from ground control centers to the satellite. These commands monitor and
control satellite "health and status" and uplink new schedules to control the satellite utilities
and mission. The present method of managing these resources is through interpretation
of digital satellite data, manually creating new schedules, then uplinking them to the satel-
lite. This method, often referred to as the "software screwdriver," will dominate satellite
operations until launch availabilities/capacities increase and launch costs are drastically
reduced. Software techniques developed to manage these resources will supplement
eventual on-orbit repair and replenishment schemes.

193
PAGE B L M K F J ~ F L ~

T h e Satellite
Operat ions
Iceburg
The Hidden Elenents / Facilities
of Controller
Support .

/ Console Operator \

i Spacecraft Engineers lTes t Engineers ISatelli te Scheduling\
/ \

/ Test Tools IDiagnostic Software lConf ig Managnent IUser Manuals \
/ \

\
;Trade Off Inalysis I Deuelopnent Tools I Data Interpretation '\

/

i Personnel I General Training I Systen Peculiar Training '\

Operational costs will be lowered by reducing the facilities and personnel
needed to o erate a satellite, Currently an average of eight console operators
and tools, RllDC estinates that satellite autonony coul reduce the nunber
of covsole operators
especially significan to rogra~s such as SDI where the total
nunber of satellites

Press (any key) to continue, Flu .to skip to deno,

a
t K an any other progran to date,

are needed P o support each satellite each backed up b an arny of personnel
fron eight to one, This reduction is

Figure 1. The satellite operations iceburg

Even using the software screwdriver, operating and maintaining a satellite in orbit is a large,
expensive, and complex task which requires many people, diverse skills, and coordina-
tion of various contractor and government organizations. Air Force studies indicate that
an average of 8 controllers are required to operate and maintain 1 satellite. However, this
figure is just the "tip of the iceberg". Backing up these controllers are "back room support"
personnel such as orbital analysts, computer operators, programmers, systems engineers
and so forth. This support easily expands into 200-300 people per satellite system (see
Figure 1).

If we were to scale this present mode of support to the expected number of satellites for
future space operations, the costs would be prohibitively high. We can no longer afford
to control future spacecraft missions in the manner that we support such highly success-
ful programs such as Viking and Voyager. Studies indicate that the satellite operations
costs will rise dramatically if we continue these present methods. These increasing cost
trends clearly indicate a need to simplify and automate the maintenance of satellites
through an improved ground command and control environment. Ignoring these trends
will severely limit NASA's ability to afford the acquisition, deployment and control of future
space programs. Therefore, reducing ground command and control costs is a way to
make more money available to develop future space programs.

194

The present method of analyzing and fixing problems, changing mission tasks on the
ground, and sending commands back to the satellite must be changed. A loss of com-
munication from the control centers due to war, terrorism or natural disaster would leave
the satellite in a position where its mission might be degraded or unattainable. The design
of future satellites require that the scheduling function be transferred from ground to on-
board systems to increase autonomy, survivability, adaptability and reduce costs and
response time.

TRADITIONAL APPROACHES TO SATELLITE CONTROL

Approaches to improve control satellites traditionally concentrate on automating computa-
tional and data reduction tasks, and developing better displays. However, these efforts
alone will not solve the satellite Operational and Maintenance (O&M) problem. The solu-
tion is not trivial because significant engineering judgement and reasoning are required to
operate the satellite and resolve anomalies. Satellite operation is complex because of the
limited amount of on-board resources available such as electrical power. This situation is
further complicated by multimission satellites which must share these resources among a
variety of sensors. Sharing resources requires consideration of multiple constraints de-
pendent on the sequencing of operations and availability of resources.

The management and planning of missions is presently accomplished by manually or
automatically translating, sorting, and analyzing large amounts of digital data and display-
ing trends. A typical satellite console display contains only cryptic alphanumeric data that
the operator must decipher. Some satellite operations centers then transmit this data to
other computers for off-line analysis to display trend and graphical data. However, trend
analysis is insufficient to accurately predict and correct all satellite anomalies. Such
analysis cannot predict multidimensional, constraint-based anomalies or develop poten-
tial solutions to correct the anomalies.

INNOVATIVE ROCKWELL APPROACH

Rockwell Satellite & Space Electronics Division (S&SED) is developing an Expert System
to dynamically schedule the allocation of on-board satellite resources and activities. This
expert system is the Satellite Controller. The controller is a continuation of prior Rockwell
on-board satellite intelligence research concepts. These concepts included not only the
controller but also other "intelligent agents," such as the satellite planner, and subsystem
specialist. The primary function of the planner is to generate a plan for fulfilling the objec-
tives of a satellite or a group of mission related payloads. The subsystem specialist is
responsible for the operational availability of its associated subsystem. The controller
coordinates the generation of an agenda for executing selected missions of a satellite or

195

group of mission related payloads. The controller is being prototyped to substantiate the
concept of increasing on-board satellite autonomy. This concept also provides insights
to simplify the task of the present satellite operations ground controller and the personnel
who support ground control. This simplification reduces vast amounts of cryptic satellite
data to create more intelligible operator displays.

The expert system of the satellite controller develops feasible strategies to manage the
satellite resources and activities. These strategies are based on heuristics or "rules of
thumb" currently used by ground satellite operations specialists. These heuristics are
being incorporated into the reasoning algorithms of the Rockwell expert system. Rock-
well will transition the ground expert system into future satellite designs once they have
been proven and tested in the ground control environment.

The Rockwell approach is based on examining current design and operations of several
satellite systems which it is currently designing, producing or operating. These systems
include the various navigation and surveillance satellites. Our approach starts with a func-
tional examination of the objectives needed to operate and maintain a satellite in the most
cost effective manner. The Rockwell concept concentrates on presenting knowledge or
formulating advice instead of displaying only raw information to an on-board controller.
This knowledge is the result of known constraints, an operational model of the satellite
systems, and the judgement developed by experts. Today this knowledge is created by
the previously mentioned "back room support" personnel. The Rockwell approach is to
reduce and display digital data in a manner which simplifies operator understanding. This
approach will result in real time satellite control and analysis which can be implemented
within the spacecraft systems to increase autonomy.

The innovative Rockwell approach described in this paper and demonstrated on a per-
sonal computer in this conference covers several facets. These facets include the Satel-
lite Controller Concept, the Enhanced User Interface, the Knowledge Base, the Satellite
Controller Description and Operation, and Mission Planning. This later facet will be il-
lustrated to the user by leading him through a scenario handled by the Rockwell Satellite
Controller.

RAP ID P ROTOTYP I NG

Rockwell developed a low risk, high confidence approach to the controller design through
rapid prototyping. Rapid prototyping is a technique which one models the visual interface
and operation, but not complete functionality of the desired product. The controller's
perspective was obtained through dialogue and feedback from current Air Force satellite
operations personnel. This perspective emphasized simplification of the user interface
and reduction in the number of operational personnel. We used this information and rapid
prototyping to encapsulate the satellite controller actions. The result was deemed by rep-

196

resentatives of the Air Force to accurately reflect the visual cues a satellite controller would
like to see. Designing this perspective allows us to simplify ground control mechanisms
and functions and understand the processes required to design more autonomy into satel-
lites. The prototype is designed so that it can be readily changed to reflect enhancements
to the controller's perspective and true operation of the system without extensive re-
coding.

THE SATELLITE CONTROLLER CONCEPT

Controlling satellites is a labor intensive and time consuming ground operations task.
Developing a schedule requires extensive knowledge of the system and subsystem opera-
tions, operational constraints, and satellite design and configuration. This development
process requires highly trained experts anywhere from several hours to several weeks to
accomplish. The process is done through "brute force" - that is, examining cryptic
mnemonic data "off line" to interpret the "health and status" of the satellite. Then schedules
are formulated either as the result of practical operator experience or heuristics - that is
"rules of thumb." Rockwell is developing the Controller to improve orbital operations
productivity, reduce life cycle costs, and decrease dependence on ground control.

The Rockwell Satellite Controller is an expert system which controls, coordinates, and
manages the activities of various subsystem specialists. Subsystem specialists control
and manage their respective subsystems such as the propulsion, power, attitude con-
trol, or communication subsystem. The coordination is achieved through an agenda or
common area that either the controller or the subsystem specialists can access. Requests
or statuses of actions are posted on the agenda. This information is used by the control-
ler in creating an initial schedule and in coordinating its execution. This IR&D project has
concentrated on developing the satellite controller and simulating the activities performed
by the subsystem specialists. Also, this IR&D project has begun to determine the division
of knowledge between the controller and the subsystem specialists. The controller is
knowledgeable of the information necessary to make global decisions that may affect the
subsystem specialists, whereas the subsystem specialists are knowledgeable of the infor-
mation specific to their respective subsystem.

SCHEDULING LOGIC

The scheduling logic was developed in parallel with the prototype user interface using
CLIPS, a C-based expert system building tool developed by NASA. Controlling this
process involves an inference mechanism known as forward chaining. Forward chaining
is an inductive mechanism which uses facts and rules to "reason" toward a solution. This
mechanism examines the premises of rules to see whether or not they are true given the

197

information on hand. If so, then the conclusions are added to the list of facts known to be
true and the system examines the rules again. The satellite controller uses this process
through the information in the knowledge base, concerning interpretive rules and informa-
tion about the design and operation of the satellite systems.

ENHANCED USER INTERFACE

The prototype of a user interface concentrates on displaying relevant knowledge - i.e.
"digested information," meaningful to the operator. This interface can replace digital data
from several operator terminals with a single screen displaying English language phrases
which do not require deciphering. Therefore, the operator is presented with the phrase
"sensor 1 slewed 5 degrees" instead of the normal digital data that must be interpreted.
This process is more than a simple transformation. It actually involves parsing or inter-
preting inferred information from the inputs of several systems aboard the satellite.

The controller interface generates four key groups of data during its execution: agenda
information, satellite controller actions, subsystem health and activity status, and task
schedule timelines. The user interface was developed to demonstrate understanding of
an on-board design approach, portray a potential ground station controller's workstation,
and provide user control of the expert system simulation.

The English phrases are displayed in one of two windows of the Satellite Controller. The
main screen is divided up into a SATellite CONtroller (SATCON) window, an Agenda win-
dow, Subsystem Icons and a MENU. The SATCON window displays the actions of the
controller as it creates a schedule. The Agenda window shows REQUESTS for action from
either a subsystem or the controller. The Agenda window also shows the current STATUS
of the various subsystems of the satellite. These windows can be activated by a macro
key on the terminal which toggles between the two activities. Both windows can be scrolled
to display an audit trail of activities that have occurred on the satellite. The display has
icons on the right side of the screen which activate other macros to allow the operator to
"EXAMINE" the schedule, a "HELP" key, and others. In addition, the satellite subsystems
are displayed in icons across the bottom of the screen. The individual subsystem icons
are activated whenever activity is occurring which affects that subsystem. This activation
assists the operator in visualizing subsystem status (see Figure 2).

The enhanced user interface of the satellite controller replaces the digital display
mnemonics of current systems. More importantly it consolidates information of several
satellite operators and support personnel into one display. The experience gained from
this design will be used to define the data flows for the eventual on-board controller.

198

SATCON
BEGIN INITIAL SCHEDULING,
TIME 00:50 (RTS-2)
Upload reference data fron
Renote Tracking Station 2 (RTS2)
Be in battery reconditioning,
ca4 culate new orbit adjustnent,
TIME 01:12:08
Be in thruster burn, I T I h 01:12:38

IEnd thruster burn sequence,
Ad -us t antennas, I T I k 02:05 (90 nins before
I reaching target)

REQUESTS BGENDA STlTUS
00: 00: 00
Satellite approaching RTS-I,
COM: Upload infornation,
Mission Goals are as follows: - Proceed to position H2 by
- Utilize sensor one for data
- Proceed to M2 at any tine, - Utilize sensor one and two
for data gathering, - Priority of M2 is 2,

08:38 hoursB

- %athering riority i f H2 is I ,

I

I
I

I I I I I 1 I I
pq+q pi-l+q Fl
Fl - Activate SBTCON window F3 - Activate Menu F5 - Pop up coMMents
F2 - Activate Agenda window F4 - Show roadnap

0 tions
tenu
Help
Setup
Exani ne
Execute
Continue

~

Stop
Exit

The
fictive
Window
is
fiGENDR

~~~~ 

Figure 2. The Satellite Controller User Interface 

A real user interface to visualize the controller's perspective was coded in Turbo C to be 
used by the scheduler. This scheduler, plus the user interface and the knowledge base, 
provides the platform for the Satellite Controller expert system development. 

KNOWLEDGE BASE 

Construction of a knowledge base is a complex process which involves an intimate 
knowledge of the subsystems, their relationships, constraints/rules and operating 
parameters. Initially, the Rockwell knowledge base is purely rule based. Eventually we 
will organize this knowledge base into frames which is a knowledge representation scheme 
that associates an object with a collection of features (e.g. facts, rules, defaults, and ac- 
tive values). This knowledge representation facilitates the development of model based 
reasoning schemes. Model based reasoning can create dynamic schedules based on a 
system representation rather than pure rule based system. The advantages of a model 
based system is that it can infer an "unknown" situation not specifically stored in the 
knowledge base. 

199 



The contrast between a rule based and model based automobile diagnostic system il- 
lustrates this point. A rule based system can accurately diagnose a condition directly at- 
tributable to a procedure or checklist which is already in the knowledge base. For example, 
such a system can isolate a failed voltage regulator if the car will not start. However, if an 
unpredicted event such as a meteor fell on the engine the night before, the rule based ex- 
pert system would not accurately diagnose the problem. However, a model based sys- 
tem contains not only rules but the description on "how" the system should operate. This 
description includes hierarchical or complex relationships among the systems and mes- 
sage passing. This description actually forms a "model" on how the system works. This 
model based reasoning would then determine that there is major damage to the engine 
compartment or some subsystem(s) instead of developing a false diagnosis. This infor- 
mation is more useful and accurate than that developed by a rule based system because 
it can make inferences on dynamically changing situations. 

MISSION PLANNING 

As a premise to scheduling activities and resources, the expert system performs mission 
planning. A mission scenario was created to validate these concepts. Initially the plan- 
ning would be developed and tested a ground control workstation. Rockwell plans is in- 
vestigating the use their Mission Operations Support Center to construct and test a satellite 
controller on its Global Positioning System. The ultimate goal is to develop the technol- 
ogy to design this expert system to operate on-board future satellites. 

A mission consists of a goal or objective, a start time, a duration, and a priority. The 
present Rockwell expert system is modeled after a surveillance satellite. A typical mission 
might be to view a ground location at a prespecified time. A mission is made up of mul- 
tiple tasks that must be completed in order to satisfy a mission. For a viewing mission, 
typical tasks that must be scheduled would include operating a sensor, preparing a sen- 
sor for operation, shutting down a sensor, and downloading data to a remote tracking sta- 
tion when recorders are full following a mission. General station keeping tasks must also 
be scheduled such as orbit adjustments, uploading current reference updates when over 
a remote tracking station, or momentum dumps. 

Given multiple, conflicting missions, the expert system will try to schedule as many mis- 
sions as possible. Currently, priority is the only constraint used to determine which mis- 
sions will be scheduled first and which missions cannot be scheduled at all. The satellite 
moves on a path over the earth called a ground track and can move or slew itself several 
degrees in the plus or minus direction in order to view a location. Therefore, it would be 
possible to view two locations when on the same ground track by slewing the sensor. It 
could also move to another ground track to view a location, but this will require resour- 
ces such as propulsion in order to make the move. In the future, the expert system will 
incorporate the reasoning to determine how to satisfy as many missions as possible by 

200 



traveling on a ground track where multiple locations could be viewed at once while mini- 
mizing the amount of resources used. 

Get Reference Orbit Wait Sensor Sensor Sensor Uait Dowrload 
Updates Rdjus t Prep Ops Shutdown Data . 

CONSTRAINT BASED TASK SCHEDULING 

Constraint based reasoning is used to assist in the mission planning function. Given 
several mission goals, the expert system will determine what tasks must be accomplished 
in order to satisfy a mission goal. It will determine when to schedule these tasks based 
on constraints. Typical constraints include temporal constraints such as prepare for sen- 
sor operation must be done before sensor operation or shutdown sensor must be done 
after sensor operation (see Figure 3). Other constraints include scheduling a download 
data task after all recorders are full. This can be calculated by summing the durations of 
sensor operation tasks. Or if it has been over 90 minutes since gyro heaters have been 
turned on then schedule a 90 minute prepare for sensor operation task in order to allo- 
cate enough time to run the gyro heaters before a sensor operation task begins. Tasks 
are made up of subtasks. For example, a sensor preparation task is made up of tasks to 
power up the payload and initialize it, turn a recorder to standby, turn the payload 
electronics to standby, and perform enhanced attitude adjustment. Enhanced attitude 
adjustment includes turning on the gyro heaters, enabling the GN2 thrusters, enabling the 
rate gyros, and maintaining attitude. Scheduling is performed at the task level if possible, 
otherwise scheduling can be done a any subsequent task level below. 

1:12 
TI MELI NE 

2:05 3:35 4:06 9:16 

Elect- 

Sensorl 
Elect- 
ronics 

Stow 
Sensorl 
I 

PRY 
TCS 
PRO 
B c s  
EPS 
CON 

t and S Change SubsysteR Displayed t h y  key).Jeturns to Controller 

Figure 3. The Satellite Controller display for a sample sensor payload schedule 

201 



RESOURCE MANAGEMENT 

Included in scheduling of tasks and subtasks is scheduling of the on-board resources 
which enable the task to be completed. Currently, the system will determine if a task can 
or cannot be scheduled based on available resources. In the future, it will be able to 
reason about when would be the best time to perform a task based on the resources the 
task will use. For example, it is better to perform a task on the current ground track, rather 
than move to another ground track because less propulsion will be used. Currently, 
three resources are managed: power, propellant, and recording tape. Power is a 
resource that stays at a fixed level and is reduced or increased when a task is performed 
or completed. All tasks use power and a minimum amount of power is always used for 
station keeping. Propellant starts at a given level and is used as tasks are performed but 
it is never replenished. Recording tape is used during a sensor operation and is com- 
pletely used when all recorders are completely full of data. Recorders are replenished 
when all data has been dumped to the ground when over a remote tracking station. 

These are just a few resources that must be considered when designing the Satellite Con- 
troller. Future research will concentrate on expanding the controller functionality to hand- 
le other missions. This research will be integrated with other Rockwell projects with 
reliability, fault detection and diagnosis. 

SUMMARY 

The Rockwell Satellite Controller project is using Artificial Intelligence technology to 
develop a concept to reduce future space operational costs and increase effectiveness in 
controlling satellites. The initial objectives of the Rockwell project are to schedule on- 
board satellite resources and activities. In the process, Rockwell is developing techniques 
which can simplify operations and improve the productivity of ground controllers. The 
Rockwell approach of investigation is based on examining system operations and gaining 
feedback from satellite operators. This feedback was used to construct the prototype 
demonstrated in this conference on a personal computer. 

ACKNOWLEDGEMENTS 

The author wishes to acknowledge the Rockwell team responsible for developing the 
Satellite Controller concept and building the prototype. This team is in the Software and 
Simulations Department of the Satellite and Space Electronics Division of Rockwell. Linas 
Raslavicius, the Project Coordinator, and Tom Gathmann, knowledge engineer are the 

2 0 2  



original architects of the Controller Concept. Other members involved in the design and 
evolution of the concept and prototype include Jonathan Kass, Dave Mattox, Tom Gath- 
mann, Sumalee Johnson, JoAnne Pitts and Billie Shannon. Members of the team also 
provided valuable editorial comments which are reflected in this paper. The author also 
thanks the many people from the Rome Air Development Center, AF Space Command, 
AF Space Division and the Aerospace Corporation for their encouragement and comments 
throughout this project. 

BIBLIOGRAPHY 

Harmon, P. and D. King. Artificial lntelliaence in Business. New York: John Wiley, 1985. 

Harmon, P. and D. King. Expert Svstems: Tools and Applications. New York: John 
Wiley, 1987. 

Hayes-Roth, F., D.B. Lenat, an D.A. Waterman (Eds.) Buildina Expert Svstems. Reading, 
Ma: Addison-Wesley, 1983. 

BIOGRAPHY 

John Barry is currently the Program Development Manager for Research & Technology 
at Rockwell’s Satellite & Space Electronics Division in Seal Beach, California. Prior to join- 
ing Rockwell he was an Air Force Officer for 20 years serving the USAF Space Division 
and Rome Air Development Center. He has a B.S. Degree in Math and Physics, from Le- 
Moyne College, an M.S. Systems Management from the University of Southern California, 
and M.S. in Logistics Management from the Air Force Institute of Technology and an M.S. 
in Computer Science from Northrop University. Mr. Barry is an adjunct professor in the 
graduate program at Northrop University in the Computer Science Department. He is also 
a Senior Member of the Society of Logistics Engineers. 

Charisse Sary is a Member of the Technical Staff and Technical Lead for the Satellite Con- 
troller in the Software and Simulations Department at the Space & Electronics Division. 
She has an M.S.E. in Computer Science and Computer and Information Science with a 
specialization in Artificial Intelligence from the University of Pennsylvania. She has over 9 
years experience in computer science with 3 years experience in Artificial Intelligence and 
expert systems at Rockwell. 

203 



N89- 15577 

Dypas  : 
A Dynamic P a y l o a d  S c h e d u l e r  f o r  S h u t t l e  M i s s i o n s  

P r e s e n t e d  by  S t e p h e n  D a v i s  
J o h n s o n  Research C e n t e r  

The U n i v e r s i t y  o f  Alabama i n  H u n t s v i l l e  
Research I n s t i t u t e  A - 1 1  

H u n t s v i l l e ,  Alabama 35899 
( 2 0 5 )  895-6257 

D e c i s i o n  a n d  a n a l y s i s  s y s t e m s  h a v e  h a d  b r o a d  a n d  v e r y  p r a c t i c a l  
a p p l i c a t i o n  a reas  i n  t h e  human d e c i s i o n  m a k i n g  p r o c e s s .  These  
sof tware s y s t e m s  r a n g e  from t h e  ' h e l p '  s e c t i o n s  i n  s i m p l e  
a c c o u n t i n g  p a c k a g e s ,  t o  t h e  more complex  c o m p u t e r  c o n f i g u r a t i o n  
p r o g r a m s .  Dypas  i s  a d e c i s i o n  a n  a n a l y s i s  s y s t e m  t h a t  a i d s  t h e  
s c h e d u l i n g  p r o c e s s  d o n e  b e f o r e  a s h u t t l e  m i s s i o n ,  a n d  has a d d e d  
f u n c t i o n a l i t y  t o  a i d  t h e  r e s c h e d u l i n g  p r o c e s s  d o n e  i n  f l i g h t .  
Dypas  i s  w r i t t e n  i n  Common L i s p  o n  a S y m b o l i c s  L i s p  m a c h i n e .  
Dypas  d i f f e r s  from o t h e r  s c h e d u l i n g  p r o g r a m s  i n  t h a t  i t  c a n  
draw i t s  k n o w l e d g e  from d i f f e r e n t  r u l e  bases and  a p p l y  them t o  
d i f f e r e n t  r u l e  i n t e r p r e t a t i o n  schemes. The s y s t e m  h a s  b e e n  
coded w i t h  F l a v o r s ,  a n  o b j e c t  o r i e n t e d  e x t e n s i o n  t o  Common L i s p  
on  t h e  S y m b o l i c s  ha rdware .  T h i s  a l lowed t h e  i m p l e m e n t a t i o n  of 
o b j e c t s  ( e x p e r i m e n t s )  t o  b e t t e r  match t h e  p r o b l e m  d e f i n i t i o n ,  
a n d  a l l o w  a more c o h e r e n t  s o l u t i o n  s p a c e  t o  be d e v e l o p e d .  

Dypas  was o r i g i n a l l y  d e v e l o p e d  t o  t e s t  a p r o g r a m m e r ' s  a p t i t u d e  
t o w a r d  Common L i s p  a n d  t h e  S y m b o l i c s  sof tware e n v i r o n m e n t .  
S i n c e  t h e n  t h e  s y s t e m s  h a s  grown i n t o  a l a r g e  sof tware  e f f o r t  
w i t h  s e v e r a l  p r o g r a m m e r s  a n d  r e s e a r c h i s t s  t h r o w n  i n t o  t h e  
e f f o r t .  Dypas  i s  c u r r e n t l y  u s i n g  two e x p e r t  s y s t e m s  a n d  t h r e e  
i n f e r e n c i n g  p r o c e d u r e s  t o  g e n e r a t e  a many o b j e c t  s c h e d u l e .  t h e  
p a p e r  w i l l  r e v i e w  t h e  a b i l i t i e s  of Dypas  a n d  comment on  i t s  
f u n c t i o n a l i t y .  

205 



A Knowledge-based Decision Support System 
for Payload Scheduling 

Rajesh Tyagi 
Fan T. Tseng 

Department of MIS/MSC 
University of Alabama in Huntsville 

Huntsville, AL 35899 
(205) 895-65 10 

ABSTRACT 

This paper presents the development of a prototype Knowledge based Decision Support 
System, currently under development, for scheduling payloads/experiments on space station 
missions. The DSS is being built on Symbolics, a lisp machine, using KEE, a commercial 
knowledge engineering tool. 

INTRODUCTION 

The task of payload scheduling is rather complicated. It not only involves using 
algorithms to generate a schedule, it is also very dynamic in nature since the schedule 
frequently needs to be revised, often at short notices, due to unpredictable and uncontrollable 
features like equipment failure, power failure, and other emergencies involving a mission. 

The traditional approach taken in solving such problems is to develop a decision support 
system using conventional programming tools. The purpose of this research is to use artificial 
intelligence/expert system techniques, both hardware and software, to develop a knowledge- 
based decision support system for this space station scheduling problem. 

The DSS should be able to generate a payload/experiments schedule based on the needs 
and the objectives of the user. It should also be able to update/modify the schedule as those 
needs and objectives change over the course of the mission. 

THE DSS 

The knowledge-based DSS is comprised of three components as shown in Figure 1. 
These components are: a knowledge base, a models base, and a user interface. The knowledge 
base possesses information on various attributes of the experiments (like power and experiment 
run time), and the available resources (like power supply). The models base contains analytical 
and heuristic models that may be used to develop the experiment schedule. And the user 
interface provides the dialog between the user and the knowledge and models base. 

The Knowledge Base 

The knowledge base is organized in the form of frames. Each experiment is represented 
by a frame, the slots of the frame representing different attributes of the experiment. Figure 2 
shows the frame corresponding to experiment 'Crystal Growth". The experiment, which is 
sponsored by NASA, is to be run only once, the run requiring a power supply of 500 
kilowatts over 50 hours, the duration of the experiment. This data is inputted by the user 
before the schedule is generated. The starting and ending times for the experiment are 
determined by the analytical model used to generate the schedules, and are automatically placed 
in their respective slots. The resources are also similarly represented by frames in the 

PRECEDING PAGE BLANK FJW F I L m  
207 



knowledge base, one frame for each resource. Figure 3 illustrates the overall structure of the 
knowledge base. 

MODELS ). + 
BASE 

FIGURE 1. 

KNOWLEDGE 
BASE 

THE DSS ARCHITECTURE 

INTERFACE 

FIGURE 2 

Frame for Crystal Growth 

SLOT VALUE 

Agency NASA 

Duration 20 hrs 

Power 1200 kw 

Runs 1 

Starting Time 41 

Ending Time 60 

208 



FIGURE 3. 

THE KNOWLEDGE BASE 

Experiment 

Silicon Wafer Prod. 

Resources 
ime-window 

The Models Base 

The models base contains a set of analytical models that may be used to determine a 
schedule, based on the objectives and/or requirements of the user. The user may specify the 
criteria that is to be used for scheduling. These criteria include: (1) minimizing the total time 
needed to schedule a given set of experiments, and (2) leveling the power consumed given that 
a set of experiments are to be scheduled within a specified amount of time. 

As mentioned earlier, the space station scheduling problem is very complicated, given the 
set of constraints imposed by the experiments. Most of the current literature deals with 
developing heuristics to generate the schedule, since the schedules need to be generated in 
relatively short amount of time, often at short notices, which makes it impractical to use 
optimizing algorithms which often require a lot of execution time to generate a solution. 
However, this may not always be a good approach to take since time needed to generate a 
schedule is not always of the highest concern. In fact, the scheduling task may be broken 
down into two different phases: (1) constructing an initial schedule, and (2) dynamically 
modifying the schedule during the mission as needed due to equipment failures etc. The initial 
schedule, whose planning horizon is spread over a period of weeks/months, could be 
generated using optimizing algorithms since execution time is not a major concern during this 
phase. The disadvantage of longer processing times of optimizing algorithms is outweighed by 
the payoff from a far better schedule that may be generated. It is only during the second 
phase, when schedules must be modified expediently, that heuristics may be preferable to 
optimizing algorithms. Thus it is desirable to have a full spectrum of scheduling models 
ranging from highly optimizing algorithms to 'quick and dirty' heuristics. 

209 



The User Interface 

The user interface provides the dialog between the user and the DSS in the form of 
windows, menus, and graphical displays. The user controls the execution of the system by 
specifying the criteria to be used in determining the schedule, and using menus to update the 
knowledge base, and updatinglmodifying the schedule. The output of the DSS is in the form 
of updated knowledge base and/or graphical displays of the schedule generated. Figure 4 
shows an example schedule. 

FIGURE 4 

CONCLUSION 

This paper has presented an overview of a knowledge-based DSS, currently under 
development, for experiment scheduling on space station missions. The DSS utilizes artificial 
intelligence/expert system techniques to build the knowledge base and the user interface. 

1. 

2. 

3. 

4. 

5 .  

6. 

2 10 

REFERENCES 

Baker, K. R., Introduction to Seauencing and Scheduling, New York: John Wiley and 
Sons, Inc. 1974. 

KEE User's Manual, Intellicorp Inc. 

Lawler, E. L., Lenstra J. K., and Kan, A. H. G. Rinooy, "Recent Developments in 
Deterministic Sequencing ans Scheduling: A Survey," in M. A. H. Dempster et. al. 
(Eds.), Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, 35-72. 

Symbolics software. Report, Symbolics, Inc., 21 150 Califa Street, Woodland Hills, 
California, 1981. 

Waterman, Donald A., A guide to ExDert Svstems, Reading, Massachussets: Addison 
Wesley Publishing Company. 

Winston, Patrick H., Artificial Intelligence, (2nd ed.), Reading, Massachussets: Addison 
Wesley Publishing Company, 1984. 



N89- 15519 

A CLIPS Prototype for 
Autonomous Power System Control 

James M. Vezina Leon Sterling 
Center for Automation d Intelligent Systems Research 

Computer Engineering €4 Science Dept 

Case Western Reserve University 

Cleveland, Ohio 441 06 

August 1988 

The model of the system assumes a constant power source and loads (exper- 
iments) whose power demands exceed the supply. Experiments are described by 
their: name, power consumption, time for a complete run, present status and 
the state of the load. The power consumption of each load is set at  a constant 
level but can be dynamically modified by the operator. The status specifies if 
the experiment is running, paused, completed or failed. The state compensates 
for the lack of actual feedback sensor data, by signifying the stability of the load. 
Experiments are scheduled to keep as many running as possible with the cur- 
rent system limitations. A graphics oriented user interface is embedded into the 
rule-based system to enable an operator to easily experiment with the system. 

1 INTRODUCTION 
With limited resources and the high cost of electrical power on the space sta- 
tion, it is essential to have a highly reliable and robust system to manage the 
scheduling and restoration of the power system. An expert system, embedded 
with the tried and true terrestrial algorithmic decision aids, will be able to main- 
tain the power system with little assistance from airborne or ground support. 
CLIPS (C Language Integrated Production System), developed by NASA, is 
used to demonstrate how a rule-based system could be used to achieve this lofty 
goal. The prototype simulates a simple model of the power system and adap- 
tively schedules the various loads. Once a configuration is planned, the system 
monitors the loads for variation in power consumption, potential failure and 

211 



completion. Upon entering one of these states, the system is reconfigured to 
compensate for the change. 

A team maintains a city’s electrical power with various feedback sensors 
and mathematical algorithms. Conventional methods summarize power flow 
data for the entire network. Conventional techniques also provide avenues to 
investigate the affect of possible enhancements to the system. A power system 
could be maintained (at least in part) by capturing the team’s expertise and 
integrating it with the appropriate traditional techniques. This will not replace 
the team, but will greatly aid them in recognizing and responding to problems 
that arise. People can be removed from the day-to-day problems of maintenance, 
thus enabling them to concentrate on improving the efficiency of the system. 

This project demonstrates how a rule-based expert system, embedded with 
user defined functions (written in C),  could autonomously control the space sta- 
tion power system. The actual model has been greatly simplified, but still can 
be used to explore various control strategies. C Language Integrated Produc- 
tion System (CLIPS)[2](3], developed by NASA, provides a low cost, yet highly 
portable, expert system shell to carry out our initial endeavors. The ease of 
integrating algorithmic routines in CLIPS, enables the system to access tradi- 
tional tools and techniques. This simple, yet robust system provides a platform 
to explore new concepts in autonomous space station power system control. 

The current model consists of a single power source, primary buss and various 
loads (although only four are displayed on the screen). The power consumption 
of each experiment is divided into four classes: normal, warning, critical, 
failure. Warning indicates the experiment is using more power than antici- 
pated. If the experiment’s state is unstable, then this level notifies the operator 
that a potential problem may exist. Once an unstable experiment enters a crit- 
ical level, it is assumed that it will fail and is therefore aborted. To prevent 
harmful side-effects to the rest of the system, an aborted experiment will never 
be rescheduled. If a stable experiment reaches the critical level, the operator 
is notified that a good experiment is consuming an abnormally high amount of 
power. The actual model of the system will be discussed in more detail, along 
with an explanation of the expert system. 

2 PROBLEM DESCRIPTION 
The model uses a constant source of power to supply the demands of the ex- 
periments. The system enables the operator to vary the available power, but it 
does not automatically simulate the various fluctuations that would occur in an 
orbiting space station. The more detailed aspects of a power distribution sys- 
tem, such as a spike on a line or insufficient line load[l], were beyond the scope 

212 



t 

ACTIVE 
r plan k monitor ( 

Figure 1: Power System Modes of Operation 

Y 

of this work. The demonstration considers a primary power buss with auxiliary 
paths going to the loads. Later we will show how a user can modify the map 
that specifies the system configuration. Figure 1 shows the three basic modes 
of operation: normal, emergency and restoration. Normal mode consists 
of scheduling the operation of loads and monitoring the system. If a failure oc- 
curs (or is predicted to occur) the system enters emergency operation. Drastic 
measures must be taken to insure the integrity of the power system as a whole. 
An unexpected variation in the available power, or an unexpected event in the 
system could trigger an emergency situation. Restoration operations get the 
system back on track and operating normally. The system must decide which 
loads should be started, aborted, temporarily stopped or just left alone. 

The primary goal of the expert system is to supply power to as many exper- 
iments (loads) as possible. This is not the best optimal goal for scheduling[4][5]. 
but was sufficient to demonstrate a type of scheduler embedded into the rule- 
based system. The system monitors each active load and notifies the operator if 
an experiment moves toward potential failure. A load can operate at  one of five 
levels: dormant, normal, warning, critical, and failure. If the experiment 
is not running, due to a problem or scheduling constraint, it is considered dor- 
mant. The anticipated amount of power consumption is, of course, the normal 
level. The warning level is set to indicate an experiment is approaching failure. 
If the experiment consumes enough power to be close to failing, it becomes 
critical. Depending on how the system views the correctness of the experiment, 
this level would push the system into emergency mode. Failure is beyond the 
set limits of the breaker for the particular experiment. 

In this model, the various levels are the same for all of the experiments (al- 
though this does not have to be the case). The switches (breakers) are considered 

EMERGENCY ) 

corrective measures 

213 

RESTORATION 
replan 



to be intelligent and able to measure a potentially failing experiment. If the ex- 
periment is operating correctly, but happens to exceed the breaker capacity, it 
is assumed that this condition was an accident and will not cause any prob- 
lems. The experiment will continue running (the switch is closed). However, if 
an intelligent sensor determines that the power consumption is unstable, it will 
terminate the experiment before the failure level is reached, avoiding possible 
damage to other experiments. This method now moves the system into restora- 
tion operations. During restoration, the experiments are scheduled to take ad- 
vantage of any available power. The experiments themselves are considered to 
be too varied and specialized to be maintained by the on-board crew, therefore 
diagnosing and repairing a failed experiment is considered infeasible. With this 
assumption, the pertinent information for each experiment is its power require- 
ments and time-to-run. The system is also robust enough to take advantage of 
interruptable experiments. During restoration, the experiments are scheduled 
to take advantage of any available power. 

The scheduler dynamically runs as many experiments as possible. If power 
is available, the scheduler will iteratively look for a waiting experiment that can 
be supported under the current constraints and start it running. This continues 
until there is not enough power to support any of the remaining loads. If, for 
some reason, the running experiments exceed the power limits of the system, 
unsupportable experiments are put back into the wait state or if necessary, 
aborted. The waiting experiments would later continue from the point they 
were paused. When an experiment completes successfully or is aborted, it is 
stopped and will not be scheduled again. At each step, the power consumption 
values are simulated for the entire system. 

The expert system monitors the space station power system simulation. If 
an operating experiment nears a potentially fatal level, the operator is warned 
of the approaching problem. The state of the experiment can be considered 
good or bad. An operator will be warned if a good experiment enters a critical 
state (nearing the maximum level of the breaker). If this experiment blows the 
breaker, it is assumed that the load will not affect any part of the system, and the 
breaker is closed. When a bad experiment enters the warning level, the operator 
is notified. Upon entering a critical state, the experiment is aborted to prevent 
possible degradation to the system. When an experiment successfully terminates 
or fails, the operator is notified and appropriate action is taken. The diagnostics 
in this system are straight-forward, if it fails (or is predicted to  fail) then it is 
aborted. This approach is disastrous in most applications, but here it is quite 
reasonable. Groups from all over the world will have their experiments running 
on the space station. The crew in the space station will not have the time or 
expertise to be capable of repairing failed equipment in an experiment. The 
availability of parts will also limit an operator’s ability to repair the transient I 

214 



experiments . 
The user-interface (as shown in figure 2) displays the current state of the 

system. It was intented to display as much information as possible in an easy 
to understand format. In an actual application, it would not be practical to 
continuously display all of the data, but this project was designed as an learning 
tool or experimental platform. At the start of each time interval, the operator 
can elect to modify any of the parameters of the experiments. In this way, the 
user can induce potential problems into the power system and experiment with 
the corrective actions taken by the expert system. 

As can be seen in figure 2, there is a dynamic help bar containing the com- 
mands or responses that are possible at a given time (the commands themselves 
prompt the user for all input). When modifying (editing) an experiment, the 
dynamic help bar displays all of the possible commands and alters the prompt 
accordingly. If the operator elects to increase the power consumption of an ex- 
periment, the system prompts for the new value, while the help bar indicates 
the appropriate response (an integer value) and range. The operator can also 
access a brief on-line tutorial describing the entire system. 

The user-interface is primarily written in C, using the curses library. These 
commands were embedded into the CLIPS shell and are called via rules. The 
changes made by the user are asserted directly into the knowledge base of the 
shell. Rules exist to take these changes and appropriately edit the simulation 
data base. 

3 DETAILS ON THE EXPERT SYSTEM 
3.1 Facts - Data Structures 

The data structures are broken down into four groups: switches, experiments, 
power supply and general facts. The facts are in the form of 
(type-of-node node-name slot-name value). 
The type-of-node indicates what type of node the fact is concerned with (e.g. 
experiment), and the node-name specifies the particular node (e.g. name of the 
experiment). The slot-name determines what the fact is about and its value. 
An example of a slot-name would be status with the value of wait or 
(experiment exper-lb status wait). 

The switches have a fact for their electrical current and another for their 
state (i.e. open, closed or blown). Each experiment has 5 slots of information 
(facts): current load, time, time-to-end, status and state. Figure 3 contains an 
example of experiment 2 and its corresponding switch. The time slot contains 

- 

215 



ORIGINAL PAGE IS 
OF POOR QUALITY 

Figure 2: An example session 

216 



(switch sl s t a t e  open) 
(switch sl current  0) 

(experiment exper-2 draws 10) 
(experiment exper-2 t i m e  5) 
(experiment exper-2 time-to-end unknown) 
(experiment exper-2 s t a t e  ok) 
(experiment exper-2 s t a t u s  wait) 

(connect sl exper-2) 

Figure 3: An example of the facts describing an experiment and its switch 

the total amount of time till the experiment is finished. In the figure, the time- 
to-end has a value of unknown to indicate that is has no scheduled end time 
(because it is not running). Status of the experiment can be: wait, run, done 
or failed. The state of the experiment is used to simplify the simulation of the 
power system. As mentioned earlier, a switch can measure the reliability of the 
experiment. Instead of simulating this operation, each experiment is listed as: 
OK or NG (No Good for not operating as expected). This is all the information 
necessary schedule and maintain the experiments. 

The configuration of the system is also given by the facts. There is a single 
fact for each connection in the power system. Figure 3 shows the connection 
between the switch and the experiment. By altering these simple facts, the 
power system network can easily be redesigned. 

3.2 Rules 
The rules of the system control the simulation, the user interface and any al- 
gorithmic functions embedded in the system. The knowledge base simulates 
the power system model to enable the user to easily reconfigure the network by 
altering a few facts. A traditional algorithmic technique could prove to be more 
accurate and much faster, but would lose the flexibility and ease of the current 
method. The system traverses the network calculating the power level at  each 
node. The user interface was embedded directly into CLIPS and can be viewed 
as a group of new shell functions. CLIPS greatly simplifies the integration of 
the traditional methods with the expert system. Data can easily be passed to 
and from the user defined function by simple get and assert type commands. 

The rule format is shown in the following figure (figure 4) .  If the current 

217 



passing through a switch is above the indicated failure level, then the switch 
must not be operating correctly, otherwise it would have blown. The semi-colon 
( “ ; ” I  delineates comments on the rule. The rule name is Switch-bad and is 
used if the breaker appears to be fused closed. The first six lines after the rule 
name are the antecedents of the rule. These must all be satisfied in order for 
the rule to be fired. The question mark ( “?”)  indicates that the following is a 
va.riable and should be set to the appropriate value of a matched fact (CLIPS 
uses the data driven Rete matching algorithm). The ampersand-colon indicates 
that the match must also satisfy the additional constraints that appear in the 
parentheses. The three lines after the arrow ( “an-ow’’)  are the consequences, 
executed when the rule is fired. In this example, the consequences assert three 
new facts into the knowledge base. The first and second will be sent to the 
operator (via the error handler and then the user-interface). The last line will 
fire another rule to halt (abort) the experiment. Although this example does not 
have a specified priority, any rule can be given a priority by adding: (declare 
(salience 100)). This line declares that the priority of the rule is 100 and will 
internally adjust the order for inferencing the rules. 

The rules for monitoring and restoration can be broken down into the seven 
basic rules listed in table 1. The table has the rules indexed in each row of the ta- 
ble. The first three columns show the more pertinent information for deciding if 
an experiment “looks” as if it will present any danger to the system. SWITCH 
CURRENT gives the symbolic value for the level of power the experiment is 
consuming. SWITCH STATE represents the expected state of the network and 
the experiment (should the experiment be connected to the network, i.e. switch 
closed). The EXPERIMENT STATE, as mentioned earlier, indicates the feed- 
back information on the power flow to the experiment. This is either good or 
bad (OK or NG). The last two columns are the consequences to the scenarios. 
The REACTION represents the expert system response to the operator or the 
power system. The user could be notified or appropriate action might immedi- 
ately be taken on the network itself (e.g. disconnect the experiment from the 
rest of the system). The NEW EXP. STATE indicates the new status of the 
experiment, fail (if the experiment is aborted) or same (if it is not altered). 
Emergency handling rules and a variety of system maintenance rules complete 
the rule-based controller, and the discussion on this project. 

4 ACKNOWLEDGEMENTS 
This work was supported in part by a grant from the NASA Lewis Research 
Center (grant number: NAG 3-787). I appreciate all of the help I received from 
NASA Lewis, especially Les Burke and Jim Kish, and the continued help and 

218 



9 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; RULE: 6 
; Switch: FA I LURE 
, closed 
; Experiment: NG 
: DO: NOTIFY / OPEN-SWITCH 

(def rule Switch-bad 
, 

(switch ?switch-name current ?i-value) 
(switch current failure 

?failure-value&:(>= ?i-value 

(switch ?switch-name ?experiment-name) 
(experiment ?experiment-name status run) 
(experiment ?experiment-name state ng) 

(assert (info experiment ?experiment-name 

(assert (info switch ?switch-name fused) 
(assert (stop-experiment ?experiment-name 

?failure-value)) 

=> 

halted) 

fail) 1)  

Rule 
number 

1 
2 
3 

Figure 4: An example of a rule in CLIPS 

Switch Switch Experiment Reaction New Exp. 
current state state state 

same 
warn closed ng notify same 

critical closed ok notify same 

-- ok closed ok 

- 

__ 
failure 
failure 

~ _ _  

-- 

4 
open-s w i tc h 

~- ___ - - __ __ - 
same 

- i fail 

i - -  
notify 1 fail 

~ - - 
ok notify 
ng notify 

._ _ _ - - ~  

I 1 : i 

open-sw i t ch 
-__  ___ __ ~ - ~ -~~ 

closed 
closed 

blown (running) 

~ _ _ _  

or open 

5 
6 

- -  

critical I closed 1 ng )I notify 1 fail 

219 



support from Eric Bobinsky. I would like to thank the Cleveland Advanced Man- 
ufacturing Program for their aid in supporting this project. Finally, I would like 
to acknowledge the computer resources provided by the Center for Automation 
and Intelligent Systems Research at Case Western Reserve University. 

5 REFERENCES 

[ 11 DyLiacco, TE The Adaptive Reliability Control System IEEE PAS-104( 12) 

[2] Giarratano, Joseph C. Clips User’s Guide Sept 13, 1987 
[3] Giarratano, Joseph C. Clips Reference Manual Sept 13, 1987 
(41 Touchton, Robert A Common Module Dynamic Payload Scheduler Expert 

System Proceedings of the Twenty-first Intersociety Energy Conversion 
Engineering Conference, August 1986, vol I11 pp 1785-1790 

[5] Washington, Sylvia Optimal Load Management for the Space Sta- 
tion Power System Masters Thesis, Case Western Reserve University, 1987 

pp 3423-2427, Dec. 1985 

220 



’A H A R D W A R E  I M P L E M E N T A T I O N  O F  A R E L A X A T I O N  
A L G O R I T H M  T O  S E G M E N T  I M A G E S ’  

A N T O N I O  G .  L O D A ’  , H E G G E R E  S .  R A N G A N A T H  
2003 F u l t o n  D r . ,  H u n t s v i l l e  , C o m p u t e r  S c i e n c e  D e p a r t m e n t  

U n i v e r s i t y  o f  A l a b a m a  i n  
H u n t s v i l l e  

A B S T R A C T  
R e l a x a t i o n  l a b e l l i n g  i s  a m a t h e m a t i c a l  t e c h n i q u e  f r e q u e n t l y  

a p p l i e d  i n  i m a g e  p r o c e s s i n g  a l g o r i t h m s .  I n  p a r t i c u l a r ,  i t  i s  
e x t e n s i v e l y  u s e d  f o r  t h e  p u r p o s e  of s e g m e n t i n g  i m a g e s .  T h e  p a p e r  
p r e s e n t s  a h a r d w a r e  i m p l e m e n t a t i o n  o f  a s e g m e n t a t i o n  a l g o r i t h m ,  f o r  
i m a g e s  t h a t  c o n s i s t  of t w o  r e g i o n s ,  b a s e d  o n  r e l a x a t i o n  l a b e l l i n g .  
T h e  a l g o r i t h m  d e t e r m i n e s ,  f o r  e a c h  p i x e l ,  t h e  p r o b a b i l i t y  t h a t  i t  
s h o u l d  b e  l a b e l l e d  a s  b e l o n g i n g  to a p a r t i c u l a r  r e g i o n ,  f o r  a l l  r e g i o n s  
i n  t h e  i m a g e .  T h e  l a b e l  p r o b a b i l i t i e s  ( ’ l a b e l l i n g s ’ )  o f  e v e r y  p i x e l  a r e  
i t e r a t i v e l y  u p d a t e d ,  b a s e d  o n  t h o s e  o f  t h e  p i x e l ’ s  n e i g h b o r s ,  u n t i l  
t h e y  c o n v e r g e .  T h e  p i x e l  i s  t h e n  a s s i g n e d  to t h e  r e g i o n  
c o r r e s p o n d e n t  to t h e  m a x i m u m  l a b e l  p r o b a b i l i t y .  T h e  s y s t e m  
c o n s i s t s  o f  a c o n t r o l  u n i t  a n d  of a p i p e l i n e  o f  s e g m e n t a t i o n  s t a g e s .  
E a c h  s e g m e n t a t i o n  s t a g e  e m u l a t e s  i n  t h e  h a r d w a r e  a n  i t e r a t i o n  of t h e  
r e l a x a t i o n  a l g o r i t h m .  T h e  d e s i g n  o f  t h e  s e g m e n t a t i o n  s t a g e  i s  b a s e d  
o n  c o m m e r c i a l l y  a v a i l a b l e  d i g i t a l  s i g n a l  p r o c e s s i n g  i n t e g r a t e d  
c i r c u i t s .  M u l t i p l e  i t e r a t i o n s  a r e  a c c o m p l i s h e d  b y  s t r i n g i n g  stages  
t o g e t h e r  o r  b y  l o o p i n g  t h e  o u t p u t  o f  a s t a g e ,  or  s t r i n g  of s t a g e s ,  t o  i t s  
i n p u t .  T h e  s y s t e m  i n t e r f a c e s  w i t h  a g e n e r i c  h o s t  c o m p u t e r .  G i v e n  
t h e  m o d u l a r i t y  o f  t h e  a r c h i t e c t u r e ,  p e r f o r m a n c e  c a n  b e  e n h a n c e d  b y  
m e r e l y  a d d i n g  s e g m e n t a t i o n  s t a g e s .  T h e  p r o c e s s i n g  s p e e d  i s  n e a r  r e a l  
t i m e .  

I .  I n t r o d u c t i o n .  
I m a g e  a n a l y s i s  i s  c o n c e r n e d  w i t h  t h e  d e s c r i p t i o n  o f  i m a g e s  a n d  

t h e  r e c o g n i t i o n  o f  o b j e c t s .  T r a d i t i o n a l l y ,  i m a g e  a n a l y s i s  h a s  b e e n  
a p p l i e d  e x t e n s i v e l y  i n  t h e  s p a c e  e x p l o r a t i o n  f i e l d ,  f o r  e x a m p l e  i n  

221 



t h e  a n a l y s i s  o f  p i c t u r e s  t a k e n  f r o m  s p a c e c r a f t s  o r  s a t e l l i t e s .  T h e  f i r s t  
a n d  f o r e m o s t  s t e p  i n  a n  i m a g e  a n a l y s i s  a l g o r i t h  i s  s e g m e n t a t i o n .  
S e g m e n t a t i o n  c o n s i s t s  o f  p r o c e s s i n g  a n  i m a g e  in  to  m e a n i n g f u l  
r e g i o n s .  T h e r e f o r e  t h e  s u c c e s s  of i m a g e  a n a l y s i s  d e p e n d s  l a r g e l y  o n  
t h e  a c c u r a c y  o f  t h e  s e g m e n t a t i o n  a l g o r i t h m .  A w i d e l y  a c c e p t e d  
s e g m e n t a t i o n  t e c h n i q u e  i s  c a l l e d  ' r e l a x a t i o n  l a b e l l i n g ' .  A f u l l  
d e s c r i p t i o n  of t h i s  a l g o r i t h m  i s  d e f e r r e d  t o  s e c t i o n  11 .  A m o n g  i t s  
v i r t u e s ,  r e l a x a t i o n  l e n d s  i t s e l f  v e r y  w e l l  to h a r d w a r e  i m p l e m e n t a t i o n .  

T h i s  p a p e r  d e s c r i b e s  t h e  a r c h i t e c t u r e  o f  a b l o b  d e t e c t o r ,  a 
s y s t e m  t h a t  s e g m e n t s  i m a g e s  c h a r a c t e r i z e d  by t w o  r e g i o n s .  T h e  
s y s t e m  i s  a h a r d w a r e  i m p l e m e n t a t i o n  of  t h e  r e l a x a t i o n  l a b e l l i n g  
a l g o r i t h m  , i n  i t s  c l a s s i c a l  p r o b a b i l i s t i c  f o r m .  I n  s e c t i o n  11 ,  t h e  
r e l a x a t i o n  a l g o r i t h m  i s  d e s c r i b e d  i n  d e t a i l .  I n  s e c t i o n  111,  t h e  
a r c h i t e c t u r e  o f  t h e  s y s t e m  i s  d e f i n e d .  T h e  c o n c l u s i o n s  a r e  d r a w n  i n  
s e c t i o n  I V .  

I I  . C l a s s i c a l  p r o b a b i l i s t i c  r e l a x a t i o n  l a b e l l i n g .  
T h e  f o l l o w i n g  d i s c u s s i o n  i s  to f a m i l i a r i z e  t h e  r e a d e r  w i t h  a 

s e g m e n t a t i o n  a l g o r i t h m  c a l l e d  ' c l a s s i c  p r o b a b i l i s t i c  r e l a x a t i o n  
l a b e l l i n g '  [ 11. T h i s  s e g m e n t a t i o n  t e c h n i q u e  i s  he re  d e s c r i b e d  i n  a 
s t e p  b y  s t e p  f a s h i o n .  T h e  d i s c u s s i o n  s e t s  t h e  b a c k g r o u n d  f o r  t h e  
d e f i n i t i o n  of t h e  h a r d w a r e  i m p l e m e n t a t i o n  o f  t h e  a l g o r i t h m ,  i n  
s e c t i o n  111.  

I I . 1 .  T h e  a l g o r i t h m .  

o f  m r e g i o n s  c i , . . , c m .  
W h a t  f o l l o w s  i s  a s t e p  b y  s t e p  p r o c e d u r e  to s e g m e n t  t h e  i m a g e :  

L e t  D=(px(i,j),i=l,..,nl,j=l,..,n2) b e  a d i g i t a l  i m a g e  c o n s i s t i n g  
L e t  g k  b e  the  a v e r a g e  g r a y  l e v e l  f o r  r e g i o n  k .  

S T E P  1: For e v e r y  p i x e l  p x ( i , j )  a s e t  o f  p r o b a b i l i t i e s  
P(o)(i,j,l),..,P(o)(i,j,m), or  ' p r o b a b i l i t y  f u n c t i o n '  P (o ) ,  i s  c o m p u t e d  
as f o l l o w s :  

m 
P ( O ) ( i , j , k ) = (  l / a b s ( p x ( i , j ) - g k ) + E ) /  ( l / a b s ( p x ( i , j ) - g k ) + E )  

k= 1 
k = l , . . m  [2.1.1) 

w h e r e  P ( o ) ( i , j , k )  r e p r e s e n t s  t h e  p r o b a b i l i t y  t h a t  p i x e l  p x ( i , j )  b e l o n g s  
t o  r e g i o n  c k ,  E i s  n o n  z e r o  c o n s t a n t  a n d  

222 



m 

k = l  
P ( O ) ( i , j , k ) = l  ( 2 . 1 . 2 )  

T h e  f o l l o w i n g  s t e p s  a r e  i t e r a t e d .  T h e  f o r m u l a s  a r e  g e n e r a l i z e d  
f o r  i t e r a t i o n  r .  

S T E P  2 : F o r  e v e r y  p i x e l  p x ( i , j ) ,  a s e t  o f  ' c o m p a t i b i l i t y  
c o e f f i c i e n t s '  c ( r ) ( i , j , k , i l  , j  l , k l ) ,  o r  ' c o m p a t i b i l i t y  f u n c t i o n '  c ( r ) ,  i s  
d e f i n e d ,  w h e r e  i l = l , . . ,  n l ,  j l = l , . . ,  n 2 ,  k , k l = l , . . ,  m ,  a n d  ( i l , j l ) = ( i , j ) .  
c ( r ) ( i , j , k , i l , j l , k l )  r e p r e s e n t s  t h e  c o m p a t i b i l i t y  b e t w e e n  t h e  
a s s i g n m e n t  o f  p x ( i , j )  to r e g i o n  c k  a n d  t h a t  of p ( i 1 , j l )  to c k l .  T h e  
c o m p a t i b i l i t y  f u n c t i o n  i s  b a s i c a l l y  a h e u r i s t i c  e v a l u a t i o n  of t h e  
v a l i d i t y  o f  a p i x e l ' s  r e g i o n  a s s i g n m e n t  ( l a b e l l i n g ) ,  on t h e  b a s i s  o f  t h e  
l a b e l l i n g s  o f  t h e  r e s t  of t h e  i m a g e  p i x e l s .  

T w o  c o m m o n l y  u s e d  a s s u m p t i o n s  i n  t h e  f o r m u l a t i o n  o f  t h e  
c o m p a t i b i l i t y  f u n c t i o n  a r e  a s  f o l l o w s :  

1 .  O n l y  t h e  n e i g h b o r h o o d  p i x e l s  a r e  r e l e v a n t  t o  t h e  
c l a s s i f i c a t i o n  o f  t h e  p i x e l  u n d e r  s c r u t i n y .  T h e r e f o r e  

= o  i f  i - 1  < i l  < i + l  
a n d  j - 1  < j l  < j + l  

c ( r )  ( i , j  ,1 ,  i 1 , j  1 ,k  1 ) 
= o  o t h e r w i s e  ( 2 . 1 . 3  ) 

2 .  T h e  c o m p a t i b i l i t y  f u n c t i o n  i s  ' s p a c e  i n v a r i a n t '  t h a t  i s ,  f o r  
e v e r y  i n t e g e r  i i ,  j j  s u c h  t h a t  p x ( i + i i , j + j j )  a n d  p x ( i l + i i , j  l + j j )  b e l o n g  
t o  D ,  

c ( r )  ( i ,  j , k , i  1 , j  1 ,  k 1 ) = c ( r )  ( i + i i  , j  + j  j , k , i  1 + i i  ,j 1 + j  j , k 1 ) 
i =  1 ,.., n 1 ;  j = l , . .  , n 2 ;  
i - 1  < i l  < i + l ,  a n d  j - 1  < j l  < j + l  ( 2 . 1 . 4 )  

S e v e r a l  d e f i n i t i o n s  h a v e  b e e n  i n t r o d u c e d  f o r  t h e  c o m p a t i b i l i t y  
f u n c t i o n ,  o n e  i s  g i v e n  b e l o w .  L e t  

223 



C ( r )  ( k  , i i  , j  j , k 1 ) = c ( r )  ( i  , j  , k , i  + i i  , j  + j  j , k 1 ) 
i = l , . . ,  n l ,  j = l , . . ,  n 2 ,  - 1  < i i  < 1 ,  - 1  < j j  < 1 ( 2 . 1 . 5 )  

L e t  p l ( r ) ( k )  r e p r e s e n t s  t h e  a p r i o r i  p r o b a b i l i t y  o f  an  i m a g e  p i x e l  
b e l o n g i n g  to r e g i o n  c k .  L e t ,  a l s o ,  j p ( r ) ( k , i i , j j , k l )  b e  t h e  j o i n t  
p r o b a b i l i t y  t h a t  a n  i m a g e  p i x e l  b e l o n g s  to r e g i o n  c k  a n d  i t s  n e i g h b o r ,  
a t  t h e  o r i e n t a t i o n  s p e c i f i e d  by  ( i i , j j ) ,  b e l o n g s  t o  r e g i o n  c k l .  

W e  d e f i n e  

C ( r ) (  k , i i  , j  j , k 1 )= [ l o g R ( r )  ( k  , i i  , j j  ,k  1 ) ]  , ( 2 . 1 . 6 )  

w h e r e  

F o r  p r a c t i c a l  p u r p o s e s ,  t h e  v a l u e s  of t h e  c o m p a t i b i l i t y  f u n c t i o n  
a r e  t r u n c a t e d  to  t h e  i n t e r v a l  [ - 1 , 1 ] .  

S T E P  3 :  A s e t  o f  s u p p o r t i n g  c o e f f i c i e n t s  
Q ( r ) ( i , j , l ) , . . , Q ( r ) ( i , j , m ) ,  o r  ' s u p p o r t  f u n c t i o n '  Q('),  i s  c o m p u t e d  a s  
f o l l o w s :  

Q ( r )  ( i , j  , k ) =  
i + l  j + l  m 

( 1 / 8 )  I: I: I: C(r)(k,il-i,jl-j,kl)P(r)(il,jl,kl) ( 2 . 1 . 8 )  
i l =  j l =  k l =  
i - 1  j - 1  1 

Q ( r )  r e p r e s e n t s  t h e  c o n t r i b u t i o n  o f  t h e  t o t a l  r e l e v a n t  
e n v i r o n m e n t  o f  p i x e l  p x ( i , j )  t o  P ( r ) ( i , j , k ) .  

S T E P  4 :  P ( r ) ( i , j , k )  i s  u p d a t e d  a s  f o l l o w s :  

224  



P ( r + l )  ( i  , j  ,k) = [ P ( r )  ( i  , j  ,k) [ 1 +Q( r )  ( i  , j ,  k) + E ]  I /  

P ( r ) (  i ,j , k )  [ 1 +Q( r )  ( i , j  , k ) + ~ ]  
m 
C. 
k=l 

{ 2 . 1 . 9 )  

Each  p i x e l  p x ( i , j )  i s  t hen  a s s i g n e d  t o  the  r e g i o n  c K ( r ) ,  where  
K ( r )  i s  s u c h  t h a t  t h e  p r o b a b i l i t y  P ( r ) ( i , j , k )  i s  max imum f o r  k = K ( r ) .  

T h e  i t e r a t i o n  i s  r e p e a t e d  u n t i l  t he  l a b e l l i n g s  c o n v e r g e .  
A l t e r n a t i v e l y ,  o n e  c a n  s t o p  t h e  a l g o r i t h m  a f t e r  a f i x e d  number  of 
i t e r a t i o n s  h a s  been  e x e c u t e d ,  o r  acco rd ing  t o  some  o t h e r  t e r m i n a t i o n  
s c h e m e .  

111. T h e  b l o b  d e t e c t o r .  
T h e  a l g o r i t h m  p r e s e n t e d  in  the  p r e v i o u s  s e c t i o n  i s  t h e  

c e n t e r p i e c e  i n  t h e  d e s i g n  o f  t h e  b lob  d e t e c t o r .  The  sys t em i s  
i n t e n d e d  f o r  s c i e n t i f i c  and  i n d u s t r i a l  a p p l i c a t i o n s .  T h e  speed  
r e q u i r e d  in  t h e s e  a p p l i c a t i o n s  canno t  be no rma l ly  accompl i shed  by 
g e n e r a l  p u r p o s e  c o m p u t e r s .  Compute r s  based  on  s p e c i a l  pu rpose  
a r c h i t e c t u r e s ,  s u c h  a s  a r r a y  p r o c e s s o r s  o r  s y s t o l i c  a r r a y s ,  a r e  b e t t e r  
s u i t e d  bu t  a l s o  r e s u l t  in  c o s t s  o f t e n  no t  j u s t i f i a b l e  in  t h e  c o n t e x t  of 
s i m p l e  a p p l i c a t i o n  s .  

T h e  s y s t e m  d e f i n e d  in  t h i s  pape r  d e r i v e s  i t s  speed  f r o m  i t s  
d e d i c a t e d  a r c h i t e c t u r e .  By op t imiz ing  the  d e s i g n  f o r  a s p e c i f i c  
a l g o r i t h m  t h e  s y s t e m  complex i ty  i s  r educed  a s  we l l .  A l s o ,  t he  
a r c h i t e c t u r e  i s  p i p e l i n e d ,  s i n c e  t h e  p romptness  of t h e  r e s u l t  i s  n o t  a s  
i m p o r t a n t  a s  t h e  s y s t e m ’ s  t h r o u g h p u t .  F i n a l l y ,  t h e  d e s i g n  a c h i e v e s  
e x p a n d a b i l i t y  th rough  modu la r i ty  a n d  i s  i n t e n d e d  as a p e r i p h e r a l  t o  a 
c o m m e r c i a l  g e n e r a l  pu rpose  p e r s o n a l  c o m p u t e r ,  t o  f a c i l i t a t e  i t s  u se .  

As  a r e s u l t  o f  t h e s e  d e s i g n  c h o i c e s  t h e  b l o b  d e t e c t o r  i s  a h igh  
s p e e d ,  l o w - c o s t ,  l ow-complex i ty  s y s t e m ,  c o n f i g u r e d  a s  a p e r i p h e r a l  t o  
a p e r s o n a l  c o m p u t e r .  

III.1. G e n e r a l  s y s t e m  a r c h i t e c t u r e  
T h e  s y s t e m  c o n s i s t s  of  a m i c r o c o n t r o l l e r  ( M C )  a n d  of t h e  

r e l a x a t i o n  e n g i n e  ( R E )  ( F i g u r e  1 ) .  T h e  m i c r o c o n t r o l l e r  c o n t r o l s  t h e  
s y n c h r o n i z a t i o n  of a l l  sys t em o p e r a t i o n s ,  t h rough  t h e  s y s t e m  c o n t r o l  
( S C B )  a n d  i / o  ( S I O B )  buses .  I t  communica te s  wi th  t h e  h o s t  c o m p u t e r  

225 



t h r o u g h  the  hos t  i n t e r f a c e ( H 1 ) .  
T h e  l a t t e r  a l l o w s  t h e  h o s t  t o  
u p l o a d  t h e  i m a g e  d a t a ,  r e q u e s t  
t h e  e x e c u t i o n  of t h e  
s e g m e n t a t i o n  p r o c e d u r e  and  
d o w n l o a d  the  p r o c e s s e d  i m a g e .  
T h e  s e g m e n t a t i o n  e n g i n e  i s  
r e s p o n s i b l e  f o r  t h e  e x e c u t i o n  
of  t h e  s e g m e n t a t i o n  a l g o r i t h m .  
T h e  i n p u t  and  t h e  s e g m e n t e d  
i m a g e s  a r e  r e c e i v e d  and  
t r a n s m i t t e d  o v e r  t h e  s y s t e m  i / o  
b u s .  

PDB 

T h e  f u n c t i o n  of t h e  
m i c r o c o n  t r o l l e r  i s  t o  
c o o r d i n a t e  t h e  o v e r a l l  s y s t e m  

I 
- 

I \I, 

STC 

- SCB 
HB 

MMU --m IO1 ' 

L 

MCP 

Figure 1. The system architecture. 

SCB 
M P  115 71 

MS DMA - 

o p e r a t i o n  a n d  t h e  c o m m u n i c a t i o n  w i t h  t h e  h o s t  c o m p u t e r .  
F u r t h e r m o r e ,  i t  i s  d e s i g n e d  to  h a v e  e n o u g h  p r o c e s s i n g  p o w e r  t o  
p e r f o r m  s o m e  p o s t - s e g m e n t a t i o n  s i m p l e  i m a g e  p r o c e s s i n g  t a s k s ,  
s h o u l d  t h i s  be  r e q u i r e d .  

T h e  a r c h i t e c t u r e  of  t h e  m i c r o c o n t r o l l e r  i s  b a s e d  o n  a c o m m e r c i a l  
3 2 - b i t  m i c r o p r o c e s s o r  ( M P ) ,  c o u p l e d  wi th  a ma th  c o p r o c e s s o r  ( M C P )  

PAB 
( F i g u r e  2 ) .  A memory  
m a n a g e m e n t  u n i t  ( M M U )  
o v e r s e e s  t h e  
m i c r o c o n t r o l l e r ' s  a c c e s s e s  
t o  t h e  m e m o r y  s y s t e m  
( M S ) .  T h e  m e m o r y  s y s t e m  
c o n s i s t s  of both  R A M  and  
R O M  t y p e  m e m o r i e s .  T h e  
R O M  m e m o r y  i s  n e c e s s a r y  
f o r  s y s t e m  i n i t i a l i z a t i o n  
a n d  f o r  s t o r i n g  t h e  s y s t e m  
a l g o r i t h m s .  T h e  R A M  
m e m o r y  i s  u sed  f o r  s t o r i n g  
t h e  s e g m e n t e d  i m a g e  and  
u s e r  s p e c i f i c  a l g o r i t h m s  
d o w l o a d e d  f r o m  t h e  hos t  

226 



 HA s y s t e m  and  t o  hand le  
t h e  handshake  

p rocessed  by the  h i s tog ram 
a n a l i z e r  ( H A ) ,  which 

- N E 1  
A 0  

d e t e r m i n e s  the  ave rage  
SCB SDB gray  l e v e l  v a l u e s  f o r  the  SDB SCB 
I 

ss + ss t w o  reg ions  tha t  a r e  t o  be 
segmen ted  in the  p i c tu re .  

Figure 5. Segmentation stage networks: The  i m a g e  d a t a ,  
a) chain configuration b) loop configuration. de l ayed  by the  h i s tog ram 

227 



a n a l y z e r  p r o c e s s i n g  SCB 
t i m e  i s  t hen  p a s s e d  
t h r o u g h  t h e  
n e i g h b o r h o o d  e x t r a c t o r  
( N E ) ,  a c i r c u i t  t h a t  
l a t c h e s ,  f o r  e a c h  p i x e l ,  
i t s  e i g h t  n e i g h b o r s .  
T h e s e  p i x e l  v a l u e s ,  
t o g e t h e r  w i t h  t h e  r e g i o n  
a v e r a g e  g ray  l e v e l  
v a l u e s ,  a r e  then  f e d  
t h r o u g h  a s e r i e s  of 
a r i t h m e t i c  o p e r a t o r s  
( A 0 1  a r r a n g e d  to Figure 6. The segmentation stage. 

S i n c e  t h e  i m a g e  o n l y  c o n s i s t s  of t w o  r e g i o n s  and  t h e r e f o r e  P( r ) ( i , j ,O)  
= 1 - P ( r ) ( i , j , l ) ,  o n l y  P ( r ) ( i , j , l )  i s  c o m p u t e d ,  f o r  e v e r y  p i x e l .  I t  i s  
p o s s i b l e  to e x e c u t e  t o  e x e c u t e  t h e s e  o p e r a t i o n s  in r e a l  t i m e  b e c a u s e  
c o m p o n e n t s  a r e  n o w  a v a i l a b l e  t h a t  e x e c u t e  m u l t i p l i c a t i o n s  a n d  
d i v i s i o n s  a t  t h e  r a t e  of o n e  e v e r y  4 0 n s .  T h e  n e i g h b o r h o o d  e x t r a c t o r  
( F i g u r e  3 )  i s  based  on  a s e r i e s  of d e l a y  l i n e s  ( D L ) ,  w h i c h  a r e  c i r c u i t s  
t h a t  o u t p u t  a t  e v e r y  i n s t a n t  t he  d a t a  r e c e i v e d  i n  i n p u t  n c l o c k s  
e a r l i e r ,  w h e r e  n i s  t h e  l e n g t h  of t h e  l i n e .  E a c h  d e l a y  l i n e  i s  
i m p l e m e n t e d  u s i n g  s h i f t  r e g i s t e r s .  D e l a y  l i n e s  a r e  a l s o  used  i n  t h e  
d e s i g n  t o  s y n c h r o n i z e  t h e  p i p e l i n e .  

i m p l e m e n t  ( 2 . 1 . 1 ) .  

T h e  s e c o n d  f u n c t i o n a l  b lock  of t h e  r e l a x a t i o n  e n g i n e  i s  t h e  
s e g m e n t a t i o n  s t a g e  n e t w o r k  ( S S N ) .  T h i s  
s u b s y s t e m  i t e r a t e s  t he  p r o b a b i l i t y  u p d a t i n g  

o f  a ne twork  of s e g m e n t a t i o n  s t a g e s  , e a c h  
c a p a b l e  o f  e x e c u t i n g  o n e  i t e r a t i o n  o f  t h e  
r e l a x a t i o n  a l g o r i t h m .  T h e s e  s t a g e s  c a n  be  
m o d u l a r l y  c o n n e c t e d  i n  a v a r i e t y  of ways .  
T w o  c o n f i g u r a t i o n s  a r e  d i s p l a y e d  i n  
F i g u r e  5 .  T h e  f i r s t  ( F i g u r e  5 .a . )  c o n s i s t s  
o f  f o u r  u n i t s  c a s c a d e d ,  so t h a t  t h e  o u t p u t  

Figure 7. The compatibility of a s t a g e  i s  t h e  i n p u t  of  t h e  n e x t  one .  
function generator. T h e  s e c o n d  c o n f i g u r a t i o n  ( F i g u r e  5.b. )  

s a c r i f i c e s  s o m e  of t h e  s y s t e m  t h r o u g h p u t  

SCB 
I s c h e m e  d e s c r i b e d  in  s e c t i o n  I .  It c o n s i s t s  

228  



o f  t h e  by  i t e r a t i n g  t h e  a l g o r i t h m  by  l o o p i n g  t h e  o u t p u t  o f  a s t r i n g  of  
t w o  s t a g e s  t o  i t s  i n p u t ,  a s  many  t i m e s  a s  i s  d e s i r e d .  

E a c h  s e g m e n t a t i o n  s t a g e  ( F i g u r e  6 )  i s  r e s p o n s i b l e  f o r  e x e c u t i n g  
o n e  i t e r a t i o n  o f  t h e  r e l a x a t i o n  a l g o r i t h m ,  t h a t  i s ,  f o r  o b t a i n i n g  
P ( r ) ( i , j , k )  f r o m  P ( r - l ) ( i , j , k ) .  T h e  f i r s t  t a s k  of  t h e  u p d a t i n g  u n i t  i s  t o  
d e t e r m i n e  t h e  a p r i o r i  p r o b a b i l i t i e s  p l ( 0 )  a n d  p l ( 1 )  o f  t h e  t w o  i m a g e  
r e g i o n s .  T h e  p r o b a b i l i t y  f u n c t i o n  a n d  t h e  a p r i o r i  p r o b a b i l i t i e s  a r e  
t h e n  o u t p u t  t o  t h e  c o m p a t i b i l i t y  c o e f f i c i e n t  g e n e r a t o r  (CFG). T h i s  
c i r c u i t r y  d e t e r m i n e s  t h e  i m a g e  c o m p a t i b i l i t y  f u n c t i o n  by r u n n i n g  e a c h  
p i x e l  n e i g h b o r h o o d  t h r o u g h  a n e t w o r k  o f  a r i t h m e t i c  o p e r a t o r s ,  
a r r a n g e d  i n  a s e q u e n c e ,  s u c h  t o  r e p r o d u c e  t h e  c a l c u l a t i o n s  d e f i n e d  i n  
( 2 . 1 . 6 )  a n d  ( 2 . 1 . 7 )  ( F i g u r e  7 ) .  O n c e  t h e  c o m p a t i b i l i t y  f u n c t i o n  i s  
c o m p u t e d ,  i t  i s  o u t p u t ,  t o g e t h e r  w i t h  t h e  p r o b a b i l i t y  f u n c t i o n ,  to t h e  
s u p p o r t  f u n c t i o n  g e n e r a t o r  ( Q F G ) .  T h e  s u p p o r t  f u n c t i o n  a n d  t h e  
p r o b a b i l i t y  f u n c t i o n ,  f i n a l l y  a r e  p r o c e s s e d  by  t h e  u p d a t e d  p r o b a b i l i t y  
f u n c t i o n  g e n e r a t o r  (UPFG) t o  p r o d u c e  t h e  u p d a t e d  p r o b a b i l i t y  
f u n c t i o n .  B o t h  t h e  s u p p o r t  a n d  t h e  u p d a t e d  f u n c t i o n  g e n e r a t o r s  a r e  
n e t w o r k s  o f  a r i t h m e t i c  o p e r a t o r s  a r r a n g e d  so  t o  p e r f o r m  ( 2 . 1 . 8 )  a n d  
{ 2 . 1 . 9 ) .  

I V .  C o n c l u s i o n s .  
In t h e  p r e v i o u s  p a g e s  we p r e s e n t e d  t h e  a r c h i t e c t u r e  o f  a 
b l o b - d e t e c t i n g  s y s t e m .  T h e  s y s t e m ,  b a s e d  on  a p i p e l i n e d  p r o c e s s i n g  
s c h e m e ,  a l l o w s  f o r  r e a l  t i m e  s e g m e n t a t i o n  o f  ' b l o b b y '  i m a g e s  f o r  
s c i e n t i f i c  a n d  i n d u s t r i a l  a p p l i c a t i o n s .  T h e  s y s t e m  i s  d e s i g n e d  t o  be  
a n  i n e x p e n s i v e  i m a g e  a n a l y s i s  p e r i p h e r a l  to a c o m m e r c i a l  p e r s o n a l  
c o m p u t e r .  T h e  d e s i g n  c a n  be  e x p a n d e d ,  w i t h  l i t t l e  e f f o r t ,  t o  a d d  t h e  
c a p a c i t y  to e x e c u t e  o t h e r  i m a g e  p r o c e s s i n g  a l g o r i t h m s ,  c h a r a c t e r i z e d  
b y  t h e  a p p l i c a t i o n  of t h e  s a m e  p r o c e d u r e  o n  a l l  p i x e l s ,  a n d  t h a t  
o p e r a t e  on a n e i g h b o r h o o d  b a s i s .  A l g o r i t h m s  s u c h  a s  t e m p l a t e  
m a t c h i n g ,  f o r  t h e  r e c o g n i t i o n  of  o b j e c t s ,  f a l l  i n  t h i s  c a t h e g o r y .  T h i s  
e x p a n s i o n  c a n  b e  a c h i e v e d  by r e p l a c i n g  t h e  c o m p a t i b i l i t y  f u n c t i o n  
c i r c u i t r y  w i t h  m e m o r y ,  w h i c h  c a n  be  l o a d e d  w i t h  t h e  d e s i r e d  
o p e r a t o r ,  a n d  r e p l a c i n g  t h e  d e d i c a t e d  a r i t h m e t i c  o p e r a t o r s  n e t w o r k  
w i t h  a p r o g r a m m a b l e  d i g i t a l  s i g n a l  p r o c e s s o r .  

V .  L i t e r a t u r e .  
[ 11 K i t t l e r  J .  a n d  I l l i n g w o r t h  J . ,  " R e l a x a t i o n  l a b e l l i n g  

a l g o r i t h m s  - a r e v i e w , "  I m a g e  a n d  v i s i o n  c o m p u t i n g ,  Vo1.3 No .4  
(1985), pp. 206-216.  

229 



U s i n g  AGNESS ( A  G e n e r a l i z e d  Network-based E x p e r t  S y s t e m  S h e l l )  
f o r  m a t c h i n g  i m a g e s  

Ting-Chuen P o n g ,  Chung-Mong Lee a n d  James S l a g l e  

D e p a r t m e n t  o f  Computer  S c i e n c e  
U n i v e r s i t y  o f  M i n n e s o t a ,  M i n n e a p o l i s ,  MN 55455 

T h e  i m a g e  c o r r e s p o n d e n c e  p r o b l e m  h a s  g e n e r a l l y  b e e n  
c o n s i d e r e d  t h e  most d i f f i c u l t  s t e p  i n  b o t h  s t e r e o  a n d  m o t i o n  
a n a l y s i s .  S t e r e o  v i s i o n  i s  u s e f u l  i n  d e t e r m i n i n g  t h e  
t h r e e - d i m e n s i o n a l  p o s i t i o n s  o f  p o i n t s  on  v i s i b l e  s u r f a c e  i n  a 
s c e n e .  M o t i o n  a n a l y s i s  i s  u s e f u l  i n  d e t e r m i n i n g  t h e  s p a t i a l  
a n d  t e m p o r a l  r e l a t i o n s h i p s  of  o b j e c t s  i n  a n  e n v i r o n m e n t .  
Besides  s t e r e o  a n d  m o t i o n  a n a l y s i s ,  image  c o r r e s p o n d e n c e  
p r o b l e m .  Most o f  t h i s  work i s  b a s e d  o n  p o i n t  o r  l o c a l  a r e a  
p r o p e r t i e s  o f  t h e  o b s e r v e d  g r a y  l e v e l  v a l u e s  i n  t w o - d i m e n s i o n a l  
i m a g e s .  

I n  t h i s  p a p e r  we descr ibe  a g l o b a l  a n d  g e n e r a l  a p p r o a c h  t o  
t h i s  p r o b l e m  by  u s i n g  a k n o w l e d g e - b a s e d  s y s t e m .  T h e  k n o w l e d g e  
i t  u s e s  c o n s i s t s  o f  b o t h  p h y s i c a l  p r o p e r t i e s  a n d  s p a t i a l  
r e l a t i o n s h i p s  o f  t h e  e d g e s  a n d  r e g i o n s  e x t r a c t e d  from t h e  g i v e n  
i m a g e s .  The  p h y s i c a l  componen t  d e p e n d s  o n  f e a t u r e s  o f  t h e  e d g e  
o r  r e g i o n )  i n  i s o l a t i o n .  The  s p a t i a l  componen t  i n v o l v e s  t h e  
s e t  o f  edges  a n d  r e g i o n s  a d j a c e n t  t o  a g i v e n  e d g e  ( o r  r e g i o n )  
o f  t h e  f i r s t  i m a g e  a n d  t h e  s e t  of  e d g e s  a n d  r e g i o n s  a d j a c e n t  t o  
each p o t e n t i a l l y  m a t c h i n g  e d g e  ( o r  r e g i o n )  of t h e  s e c o n d  image; 
t h u s  t h e  s p a t i a l  c o n t e x t  o f  each e d g e  o r  r e g i o n  i s  c o n s i d e r e d .  
A c o m p u t a t i o n  n e t w o r k  i s  u s e d  t o  r e p r e s e n t  t h i s  k n o w l e d g e ,  i t  
a l l o w s  t h e  c o m p u t a t i o n  o f  t h e  l i k e l i h o o d  of  m a t c h i n g  two e d g e s  
o r  r e g i o n s  w i t h  l o g i c a l  a n d  h e u r i s t i c  o p e r a t o r s .  

An e x p e r t  s y s t e m  s h e l l  c a l l e d  AGNESS ( A  G e n e r a l i z e d  
Ne twork -based  E x p e r t  S y s t e m  S h e l l )  i s  u s e d  t o  b u i l d  a p r o t o t y p e  
s y s t e m .  A l l  t h e  e x t r a c t e d  f e a t u r e  v a l u e s  ( f o r  e x a m p l e  l e n g t h ,  
o r i e n t a t i o n ,  c o n t r a s t ,  e t c . )  a r e  a u t o m a t i c a l l y  i n p u t  t o  a 
c o m p u t a t i o n  n e t w o r k  a t  t h e  b e g i n n i n g  of  t h e  p r o c e s s .  T h e  
c o m p a r i s o n  b e t w e e n  t h e  f e a t u r e  v a l u e s  w i l l  t h e n  t a k e  p l a c e  i n  
t h e  i n t e r m e d i a t e  n o d e s  a n d  t h e  f i n a l  r e s u l t  o f  how w e l l  each 
e d g e  o r  r e g i o n  matches i t s  p o t e n t i a l  e d g e s  i s  c a l c u l a t e d  a t  t h e  
t o p  n o d e .  T h e  e n t i r e  c o n t r o l  p r o c e s s  o f  t h e  s y s t e m  c o n s i s t s  of 
two p h a s e s .  T h e  f i r s t  p h a s e  d e t e r m i n e s  how similar each e d g e  
o r  r e g i o n )  i s  t o  each o f  i t s  p o t e n t i a l  e d g e s  ( o r  r e g i o n s ) .  t h e  
s e c o n d  p h a s e  w i l l  t h e n  c o m p l e t e  t h e  g l o b a l  e v a l u a t i o n  
p r o c e d u r e ,  t h a t  i n v o l v e s  c o n f l i c t  r e s o l u t i o n .  

PRM=EDINO PAGE fPT,A?JK NOT FILMED 
231 



AUTOMATIC INSPECTION OF ANALOG AND DIGITAL METERS IN A 
ROBOT VISION SYSTEM* 

Mohan M. Trivedi 
Suresh Marapane 

ChuXin Chen 

Electrical and Computer Engineering Department 
The University of Tennessee 
Knoxville, T N  37996-2100 

ABSTRACT 

A critical limitation of most of the robots utilized in industrial environments arises due 
to their inability of utilize sensory feedback. This forces robot operation in a totally pre- 
programmed or teleoperation modes. In order to endow the new generation of robots with 
higher levels of autonomy techniques for sensing of their work environments and for accu- 
rate and efficient analysis of the sensory data must be developed. In this paper detailed 
development of vision system modules for inspecting various types of meters, both ana- 
log and digital, encountered in a robotic inspection and manipulation tasks are described. 
These modules are tested using industrial robot having multisensory input capability. 

1. Iiitroduction 

Advanced robotic systems capable of performing a variety of tasks in complex un- 
structured environments will have to possess sophisticated sensory capability for acquiring 
information about their work environments. Also required is the associated capability 
for analyzing such information in an accurate and efficient manner. Robotic system with 
sophisticated sensory capability will be of particular utility in tasks such as automated as- 
sembly [5] ,  inspection and manipulation in hazardous environments such as nuclear plants, 
[7] or space based platforms. Types of sensors which can be utilized in such systems in- 
clude vision, range, proximity, tactile, force and torque, etc. [3]. Of these, vision sensory 
modality is recognized as the one providing rich characterization of work environment with 
various types of relatively inexpensive and well engineered camera systems. 

The specific area of research reported in this paper deals with a vision system that 
has been designed and developed to perform various inspection and manipulation tasks 
associated with a control panel. The panel contains a number of displays, both analog 
and digital, and controls like switches and valves. In addition to the above panel the test 
bed for our research includes an industrial robot capable of sensing the environment with 
vision, range, proximity, force and torque and touch sensors. The main tasks performed 
by the vision system include: automatic location of the test panel, positioning of the robot 
arm to acquire appropriate input images of the panel, automatic recognition of all objects 

~ ~ ~~ 

*This research is supported by the Advanced Technology Development Division of the U.  S. Department 
of Energy under grant No. DOE DEFG02-86-NE31968. 

233 



appearing on the panel and determination of their 3-dimensional location. Once the ob- 
jects are located the system has to acquire finer resolution images of individual objects to 
determine their status. In this paper we shall present the detailed procedure developed to 
“read” various types of analog and digital meters. The paper includes results of several 
experiments carried out to verify the robustness of the system in performing automatic 
inspection and manipulation tasks. It is believed that the robot vision system can be 
utilized to perform tasks in a number of application domains including space. 

2. Vision Guided Robotic Inspectioil and Manipulation 

The main goal of a robot vision system is to provide an accurate interpretation of a 
scene utilizing images of the scene as the primary source of input. The interpretation can 
be provided in a variety of forms and at different levels of abstraction. A useful form 
of interpretation may include an object location map where different types of physical 
objects appearing in the scene are independently recognized and accurate locations of 
these objects in the scene are determined. Also, of utility is the information regarding the 
status or condition of an object. Design of a computer vision system that can perform 
such object recognition and scene interpretation is a complex and challenging task. The 
main difficulty underlying the task comes from the fact that images are 2-dimensional 
projections of the 3-dimensional real scene and innumerable combinations affecting the 
illumination source, scene and sensor parameters can result in the same observable value 
of recorded image intensity. 

In order to make the above problem computationally tractable model-based approach 
to computer vision is proposed [6]. The approach requires knowledge of a series of models 
associated with objects which are believed to appear in the scene. These models can be 
recorded in the knowledge-base of the system. Various features from the input images 
are extracted by using low- level, general purpose operators. These operators should be 
robust in extracting image features containing meaningful information about the objects. 
Finally, a correspondence is sought between the image derived features and scene domain 
models to recognize the objects. This is accomplished by utilizing various decision making 
schemes in the matching module. 

Development of autonomous systems for a variety of applications in an industrial en- 
vironment will require major research efforts to resolve many complex issues. We have 
undertaken an approach, which we believe allows making incremental progress towards 
the eventual development of such a system. Our initial research effort is directed towards 
researching issues associated with acquisition and analysis of multiple sensory data using 
a robotic system. This is accomplished by focusing on the development of an autonomous 
system that is capable of performing various inspection and manipulation tasks associated 
with a typical panel. For example these tasks can range from reading of various meters 
and displays, operating different types of switches and controls. Also, included are tasks 
associated with valve operation. Teleoperation or automatic operation of valves in nuclear 
power plants is recognized as one of the important desired capabilities of a robotic sys- 
tems. Design of the panel was done in consultation with a team from a nuclear power plant 
developer, using all “off-the-shelf” components. Our experimental set-up includes a test 
panel, a robot having multiple sensory capability, computers, and various manipulation 
tools. The test panel and the robot with various sensors mounted on the arm are shown 
in Figure 1. 

Typical autonomous robot operation will involve the following. The robot first identifies 
the exact geometrical position of the panel using a camera calibration program. Next it 
uses a computer vision system to develop an object location layout map for various devices 
appearing in the panel. The task command for the robot is provided through the binary 

2 3 4  



coded lights of an LCD display. After decoding the command the robot performs requested 
inspection or manipulation task. 

Robustness and ease in expandability to accomodate changes in the task environment 
are two key features guiding the development of the vision system. The system is compart- 
mentalized in two basic groups of procedures. The first group consists of general purpose 
procedures for camera calibration, image acquisition, knowledge acquisition, ima.ge seg- 
mentation, matching, and robot arm movements. The second group consists of special 
purpose procedures mainly designed for determining status of individual objects. 

3. Recognition of Object Status 

Depending upon the type and nature of the object the camera mounted on the arm is 
moved to take images using orthogonal viewing geometry. These images are analyzed to 
determine the status of the object. The objects appearing on the test panel and the type 
of status information associated with each one of them are listed in Table 1. 

Table 1. List of objects appearing on the test panel and their status infor- 
mation. 

OBJECT TYPE S TA4T US 

1. Light On/Off 
2. Analog Meter Needle Reading 
3. Digital Meter 7-Segment Code 
4. Valve 
5.  Slider Control 
6 .  Push Button Switch On/Off 
7. Toggle Switch On/Off 

Position of the Holes 
Position of the Sliding Arm 

In order to account for changes in the task environment one will require an additional 
knowledge acquisition session to update the knowledge base and incorporation of the appro- 
priate routines to determine the status information of the objects added to the knowledge 
base. 

Status recognition of three object types are considered in this parper. They are two 
types of analog meters and digital (LCD) meter. Once the objects are identified by the 
object recognition module further processing is required to recognize their status. The 
primary requirements of the object status recognizers are their robustness, accuracy, and 
speed. Incorporation of limited apriori knowledge about the objects greatly facilitate in 
meeting these requirements. 

3.1 Reading an analog meter of type I 

235 



The main task in reading an analog meter is the determination of its needle orientation 
with respect to the horizontal direction. Once this angle is determined, the knowledge of 
the total swing angle of the needle for Full Scale Deflection(FSD) and the range of the 
meter enables one to compute the meter reading. It is assumed that the meter scale is 
symmetrical about the the vertical and that it is linear with respect to the angle. This 
assumption holds for many types of commercially available analog meters. 

In this section it is assumed that the analog meter has been isolated from the rest 
of the image by the segmentor, and all further processing is performed within a window 
containing only the analog meter. The approach consists of two major steps. 

The first step is the extraction of edges. For this, Marr edge detector [l] is chosen 
since it generates one pixel wide, closed contours. Since one can assume without loss of 
generality that the needle of a meter is a linear feature, the next step involves the analysis 
of all linear features within the processing window. For this, we choose Hough transforms 
[2]. The advantage of using Hough transforms includes it's relative insensitivity to noise 
and to gaps in the image of a line. This makes the procedure less sensitive to the results 
of the edge detector. In the slope-intercept representation of a line, however, the Hough 
parameter space becomes unbounded due to the slope and intercept becoming infinite 
for vertical lines. Since a bounded parameter space is desired for the analysis, a normal 
representation of a line is often used. In this representation the parameters are p and 6' 
and 

xcosB+ySin6'=p (1) 
The parameter 8 can be considered to be bounded between -61 and 02. These angles are 

not required to be known exactly but the range needs to accomodate the total swing (i.e. 
all possible orientations) of the needle. Thus,it is reasonable to assume that this range of 
the parameter 6 is known for a particular analog meter. Also, parameter p is bounded by 
the length of the meter. This implies that the parameter p is bounded in the range 0 to 
length of the processing window,w, known from the object recognition module. Therefore 
the analysis of linear features only requires to be performed within the bounded parameter 
space -e1 to O2 and 0 to w. 

In the step 2, following edge detection, the linear feature analysis is performed within 
the bounded space -81 to 8 2  and 0 to w. An implication of this quantization range of 6' is 
that the horizontal linearities ( 6  = 90') are not contained within the parameter space and 
therefore the horizontal edges are eliminated from further consideration. The elimination 
of false vertical linearities, linearities that does not correspond to the needle, is more 
involved since the needle itself may be vertically oriented. The key to the elimination of 
these false linearities is the observation that the vertical features that do not correspond 
to the needle have a p value which is either closer to 0 or w. Thus, seeking a local maxima, 
(6',,p,), in the parameter space away from p = 0, say p = 0 + Ap, and away from p = w, 
say p = w - Ap,. where Ap is a small number, will guarantee that the maxima is indeed 
due to the linearity of the needle. 

Figure 2 shows a sequence of processing steps for an image where the analog meter 
occupies less than 2% of the total area of the ima.ge. The robustness of the procedure is 
clearly demonstrated in this experiment. 

The accuracy of the final result is directly dependent on the a.ccuracy of the angle of 
orientation of the needle. Hence, the accuracy of the result is dependent on the resolution 
of the parameter 6' in the parameter space. In the experiments shown in this section the 
parameter 6 was quantized to an 1 degree resolution. Since the analog meter had a reso- 
lution of 0.2 volts/degree this quantization results in a resolution of 0.2 Volts in the meter 
reading. This accuracy of the reading can be increased by finer division of the parameter 
6' at the cost of increasing execution time. . 

3.2 Reading an analog meter of type I1 

236 



In this type of meters the needle is not pivoted at one end, but the needle moves 
across a horizontal scale. Thus, reading the meter requires determination of the needle 
position with respect to the left edge of the scale. Iinowing the total length of the scale,l,, 
the range of the meter, xo to xj, and the needle position.l,. the meter reading.x, can be 
computed as: 

"j - 20 
s, = l.9 f x o  

L3 

In practise however, the lengths L, and I, can not be derived from the images since 
the segmentor can not isolate the inner scale from the rest of the meter. This requires 
reformulation of equation (2) using the derivable distances w, length of the meter(window), 
and l,, the needle position with respect to the left edge of the meter(window). Using these 
distances x, can be found as, 

"j - xo 
2, = 1, i- 20 - error 

W (3) 

This error term can be computed using an image reading a known value, say zo. In this 
case ,equation( 2) will yield 

(4) 
"j - 20 

10 error = 
W 

Since the needle is a linear vertical feature, the analysis of linear features applies to this 
task as well. The detection of the needle requires only a minor change in the linear feature 
analysis step of the section 3.1. Now the Hough parameter 6 is bounded between 0 - A, 
and 0 + Ae, where A, is a small angle. Notice that the 8 = 0" corresponds to a vertical 
line. The bounds of the parameter p remains the same as in section 3.1, i.e., between 0 
and w. This range of 8 eliminates the horizontal features and the false vertical features are 
eliminated using the same rule of section 3.1, Le.. the local maxima in parameter space is 
required to be away from p = 0 or p = w. 

Under these constraints, the local masima ,(e,, p,), will indeed correspond to the needle 
and 1, = pn. Now we can compute the meter reading x, using equation(3), if the error 
term has been previously computed as explained by equation(4). 

The sequence of steps involved in processing an 128x128 image is illustrated in Figure 3. 
The original image is shown in Figure 3(a) and Figure 3(c) shows the line corresponding 
to the maxima in Hough space superimposed on the edge map (Figure 3(b)). These re- 
sults suggests that the presented procedure is an effective method for reading this type of 
analog meters, provided that the algorithm can be trained for computing the.error term 
in equation (3) using an image of known meter reading. The accuracy of the result is now 
dependent on the quantization of the parameter p. 

3.3 Reading a digital (LCD) meter 

This task actually consists of two recognition tasks. First, the digits needs to be 
identified, and secondly the decimal number represented by the individual digits needs to 
be identified. For recognition of digits we choose to use Fourier descriptors [4] for its size 
and rotational invariance properties. Once the individual digits are identified the decimal 
number is formed using an ad-hoc procedure esplained in the nest section. 

As in the previous sections we assume that the processing is performed within a window 
containing the digital meter. Since the digits are best discriminated using their edge 
properties, the first step in processing is the estraction of edges. In order to represent 
the structural shape of the objects in a suitable form for the Fourier descriptors, this 
step is followed by a thinning process. In this step we use a modification of an algorithm 
developed by Zhang and Suen [8], for skeletonizing the edges. This algorithm is known to 

237 



have some inherent drawbacks. One of the problems was due to the total elimination of 
small regions during the skeletonizing process. This limitation can however be overcome 
by simple modification. 

In order to use the Fourier descriptors to identify the digits we require the digit to 
appear as a single object, i.e. consisting of connected segments. However. it was observed 
that in the 7-segment display the vertical segments do not appear to be connected unless 
the middle horizontal segment is lit. Figure 4(a) shows the edge map of digits 0 , l  and 7 in 
which the the digits do not appear as a single region due to the above. Therefore. the edge 
map was pre-processed before skeletonizing to fill the gaps between the vertical segments. 
Since we are primarily concerned with the breaks between vertical segments, the pixels 
labelled X and Y are required to be non-edge pixels. The mask is centered on non-edge 
pixels and if the number of edge pixels in the top part of the mask (Po -P5) and the bottom 
part of the mask (PG - PI,) both exceeds a particular threshold (in our application we use 
a threshold of 1) then the center pixel was flagged to be an edge pixel. This procedure 
is performed asynchronously, i.e. the breaks are not filled until all the pixels have been 
considered.Figure 4(c) shows the results of performing the filling on Figure 4. The skeleton 
of Figure 4(c) is shown in (d). 

In step 4, we use Fourier descriptors to recognize the objects within the processing win- 
dow. This step uses prototypes of all 10 digits, pre-stored in a data base, for classification. 
Objects not matching any of the 10 prototypes to a higher degree is classified as unknown. 
In addition to recognizing the objects we also determine the minimum enclosing rectangle 
of each of the object. This information is used in identifying the position of the object 
within the window. Also computed is the area of the object. This is required to discrim- 
inate between the digit 0 and 8 since the Fourier descriptors are unable to discriminate 
between them. At  the end of this step all objects within the processing window have been 
identified as a digit or an unknown. This completes the first task of identifying the digits. 

The next step is the formation of the decimal number from the individual digits iden- 
tified within the window. In step 5 ,  the objects within the window is processed from 
the rightmost object to the leftmost object using the above rules where necessary. The 
rightmost object is determined using the coordinates of the minimum enclosing rectangle. 

Illustrated in Figure 4 are the sequence of processing steps for an 128x128 image. Since 
the recognition task is performed on edge maps of the image, for this procedure to perform 
error free, the edges needs to be generated correctly. This heavy dependence on the edge 
detector results limits the minimum size of the image. It was experimentally found that 
the LCD meter should occupy at least 15% of the total area to guarantee correct results. 

4. Concluding Remarks 

In this paper we describe development of modules associated with a robotic vision 
system for automatic inspection and manipulation tasks. The vision system consists of 
two groups of processing modules. The first comprises general purpose object recognition 
modules whereas the second comprises of specialized object status recogntion modules. 
Detailed development of modules for inspecting va.rious types of meters, both analog and 
digital, is described. 

REFERENCES 

1. Ballard, D. H. and C. bi. Brown, Computer Vzsion, Prentice-Hall. New Jersey, 1982, 
pp. 123-131. 
238 



ORIGINAL PAGE IS 
OF POOR QUALITY 

2. Hough, P. V. C., “Methods and Means for Recognizing Complex Patterns,” U. S. 
Patent 3,069,654, Dec. 1962. 

3. Kak, A. C. and J. S. Albus, “Sensors for Intelligent Robots,” Handbook of Industrial 
Robotics, (S. Y. Nof, Editor), John Wiley & Sons, New York, 1985, pp. 214-230. 

4. Persoon, Eric and King-Sun Fu, “Shape Discrimination Using Fourier Descriptors,” 
IEEE Transc.  o n  Sys t ems ,  M a n ,  and Cybernetics, Vol. SMC-7, No. 3, March 1977, 
pp. 170-179. 

5. Sanderson, A. C. and G. Perry, “Sensor-Based Robotic Assembly Systems: Research 
and Applications in Electronic Manufacturing,” Proceedings of t he  IEEE, Vol. 71 , 

6. Trivedi, M. M., C. Chen, and S. Marapane, “A Vision System for Robotic Inspection 
and Manipulation,” Proc. of the Applications of Artificial Intelligence VI Conference, 
SPIE Vol. 937, April 1988. 

7. White, J. R., R. E. Eversole, K. A. Farnstron, H. W. Harvey, and H. L. Martin, 
“Evaluation of Robotic Inspection Systems at Nuclear Power Plants,” NUREG/CR- 
3717, U. S. Nuclear Regulatory Commission, Washington, D.C., March 1984. 

8. Zhang, T. Y. and C. Y. Suen, “A Fast Parallel Algorithm for Thinning Digital 
Patterns,” Communica t ions  of A C M ,  Vol. 27, No. 3, March 1984, pp. 236-239. 

NO. 7, July 1983, pp. 856-871. 

Figure 1: The test-panel and an industrial robot with vision, range, touch, force, and 
proximity sensory capabilities. The test-panel includes variety of displays, meters, valves, 
controls, and switches. 

239 



a 

b 

C 

Figure 2: Sequence of processing steps. (a) original ima.ge, (b )  edge map (9x9 mask) of 
(a), (c) detected needle superimposed on (b). 

240 

ORIGINAL PAGE IS 
OF POOR QUALITY 



ORfGfNAL PAGE IS 
OF POOR QUALm 

C 

Figure 3: Sequence of processing steps. (a) original image, ( b )  edge map ( 5 x 5  mask) of 
(a), (c) detected needle superimposed on (b). 

24 1 



ORIGINAL PAGE IS 
OF POOR QUALITY 

I I 

a 

I I 

b 

I I 

C 

Figure 4: Sequence of processing steps. (a) Typical edge maps of digits 0,1, and 7, ( b )  
Results of filling, (c) Skeleton of (b) 

24 2 



N89 - 15 5 8 3 

W .  B 

KNOWLEDGE-BASED A P P R O A C H  TO 
SYSTEM I N T E G R A T I O N  

o k l a n d ,  C .  K r i s h n a m u r t h y ,  C .  B i e g l  and  J .  S z t i p a n o v i t s  
D e p a r t m e n t  o f  E l e c t r i c a l  E n g i n e e r i n g  

V a n d e r b i l t  U n i v e r s i t y ,  N a s h v i l l e ,  TN 37235 

To s o l v e  c o m p l e x  p r o b l e m s  o n e  c a n  o f t e n  u s e  t h e  
d e c o m p o s i t i o n  p r i n c i p l e ,  A p r o b l e m  i s  h o w e v e r ,  se ldom 
d e c o m p o s a b l e  i n t o  c o m p l e t e l y  i n d e p e n d e n t  s u b p r o b l e m s .  S y s t e m  
i n t e g r a t i o n  d e a l s  w i t h  p r o b l e m  o f  r e s o l v i n g  t h e  
i n t e r d e p e n d e n c i e s  a n d  t h e  i n t e g r a t i o n  o f  t h e  s u b s o l u t i o n s .  A 
n a t u r a l  method of d e c o m p o s i t i o n  i s  t h e  h i e r a r c h i c a l  o n e .  
H i g h - l e v e l  s p e c i f i c a t i o n s  a r e  b r o k e n  down i n t o  lower  l e v e l  
s p e c i f i c a t i o n s  u n t i l  t h e y  c a n  b e  t r a n s f o r m e d  i n t o  s o l u t i o n s  
r e l a t i v e l y  e a s i l y .  By a u t o m a t i n g  t h e  h i e r a r c h i c a l  
d e c o m p o s i t i o n  a n d  s o l u t i o n  g e n e r a t i o n  a n  i n t e g r a t e d  s y s t e m  i s  
o b t a i n e d  i n  w h i c h  t h e  d e c l a r a t i o n  o f  h i g h  l e v e l  s p e c i f i c a t i o n s  
i s  e n o u g h  t o  s o l v e  t h e  p r o b l e m .  

We o f f e r  a k n o w l e d g e - b a s e d  a p p r o a c h  t o  i n t e g r a t e  t h e  
d e v e l o p m e n t  a n d  b u i l d i n g  o f  c o n t r o l  s y s t e m s .  T h e  p r o c e s s  
m o d e l i n g  i s  s u p p o r t e d  b y  u s i n g  g r a p h i c  e d i t o r s .  T h e  u s e r  
s e l e c t s  and  c o n n e c t s  i c o n s  t h a t  r e p r e s e n t  s u b p r o c e s s e s  a n d  
m i g h t  r e f e r  t o  p r e w r i t t e n  p r o g r a m s .  The g r a p h i c a l  e d i t o r  
assists t h e  u s e r  i n  s e l e c t i n g  p a r a m e t e r s  f o r  each s u b p r o c e s s  
a n d  a l l o w s  t h e  t e s t i n g  o f  a s p e c i f i c  c o n f i g u r a t i o n .  N e x t ,  from 
t h e  d e f i n i t i o n s  c r ea t ed  by  t h e  g r a p h i c a l  e d i t o r ,  t h e  a c t u a l  
c o n t r o l  p r o g r a m  i s  b u i l t .  F a u l t - d i a g n o s i s  r o u t i n e s  a r e  
g e n e r a t e d  a u t o m a t i c a l l y  a s  w e l l .  S i n c e  t h e  u s e r  i s  n o t  
r e q u i r e d  t o  w r i t e  p r o g r a m  code and knowledge about the process 
i s  p r e s e n t  i n  t h e  d e v e l o p m e n t  s y s t e m ,  t h e  u s e r  i s  n o t  r e q u i r e d  
t o  h a v e  e x p e r t i s e  i n  many f i e l d s .  

243 



SUCCESSFUL EXPERT SYSTEMS FOR 
SPACE SHUTTLE PAYLOAD INTEGRATION 

Keith Morris 
Rockwell International 

Space Transportation Systems Division 
D282/900 FC43 

12214 Lakewood Boulevard 
Downey, California 90241 

(213) 922-3700 

ABSTRACT 

Expert systems have been successfully applied to solve recurring NASA Space Shuttle orbiter pay- 
load integration problems. Recurrence of these payload integration problems is the result of each Space 
Shuttle mission being unique. The NASA Space Shuttle orbiter was designed to be extremely flexible in 
its ability to handle many types and combinations of satellites and experiments. This flexibility results in 
different and unique engineering resource requirements for each of the payload satellites and experi- 
ments. The first successful expert system to be applied to these problems was the Orbiter Payload Bay 
Cabling Expert System (EXCABL). It was developed at Rockwell International Space Transportation 
Systems Division. The operational version of EXCABL was delivered in 1986 and successfully solved 
the payload electrical support services cabling layout problem. As a result of this success, a second 
expert system, Expert Drawing Matching System (EXMATCH), was developed to generate a list of the 
reusable installation drawings available for each EXCABL solution. EXMATCH was delivered for 
operational usage in 1987. As a result of these initial successes, the need for a third expert system was 
defined and awaiting development. This new expert system, called Technical Order Listing Expert 
System (EXTOL), will generate a list of all the applicable reusable installation drawings available to 
support the total payload bay mission provisioning and installation effort. This paper describes these 
expert systems, the individual problems that they were designed to solve, their individual solutions, and 
the degree of success they have achieved. These expert systems' successes instantiate the applicability of 
this technology to the solution of real-world Space Shuttle payload integration problems. 

INTRODUCTION 

Rapid advancement of expert systems technology is contingent on wide-spread acceptance. To be 
widely accepted, expert systems must successfully provide needed solutions to existing real-world engi- 
neering problems. Providing examples of solutions to trivial generic problems does little to instantiate 
the applicability of expert systems technology to solve these nontrivial real-world problems. Providing 
examples of successful expert system application solutions to NASA Space Shuttle payload bay integra- 
tion design problems does. The purpose of this paper is to disseminate knowledge of these successful 
applications, the problems that they solve, and the degree of success that they have achieved. Hopefully, 
this knowledge will be of some benefit to the expert system technology community as a whole and will 
play some small part in the advancement of this technology. 



THE TOTAL PAYLOAD AND CARGO INTEGRATION AUTOMATION PROBLEM 

The delivery of satellites and experiments into low-earth orbit by the Space Shuttle involves many 
preflight engineering planning, design, and integration tasks. These tasks include the following: select- 
ing appropriate satellites and experiments to make up a mission payload set, locating each payload ele- 
ment within the payload bay, determining standard and unique services required by each payload, devel- 
oping and documenting the payload to Space Shuttle orbiter interface requirements, selecting the 
individual cables necessary for providing the electrical services, preparing the electrical services cabling 
layout schematic, and preparing the technical instructions for mission payload installation and 
integration. 

These tasks are carried out by teams of engineers, using both common and specialized engineering 
tools. Any changes in planning and design methods have to take the use of these existing tools into con- 
sideration. Because of their interdependence, the products of these teams are integrated into a master 
mission plan and schedule. Team technical support is supplied by highly trained experts who are rapidly 
reaching retirement age. Loss of an expert, is an undesirable event, not only with respect to the affected 
team’s productivity, but also to the total payload integration task productivity as a whole. 

Real-world space flight mission provisioning experience has shown that the ability to make mission 
manifest changes is mandatory. Other changes are to be anticipated because of further engineering anal- 
ysis or design refinement. Changes caused by corrections of erroneous data, design omissions, and 
errors are also to be expected. Thus, change is a normal mode of operation and must be provided for, 
even close to launch time. 

A major goal for all payload planning, design and integration tasks is to minimize this mission to 
mission change. This in turn will reduce paperwork, labor hours, and turnaround time. Standardization 
and automation are two powerful methods used in the payload integration process to minimize these 
changes. 

In summation, Space Shuttle payload and cargo integration tasks are a collection of iterative inter- 
related activities, using specialized tools, responding to change, and led by vanishing experts. Automa- 
tion, in order to be successful, must be tempered with these considerations. The following major objec- 
tives were established for each planning and design automation effort: 

1. Reduce engineering labor hours 

2. Retain technical expertise 

3. Reduce end-to-end process time 

4. Adapt to existing operating techniques and environment. 

PAYLOAD BAY CABLING LAYOUT PLANNING AND DESIGN AUTOMATION 

The Problem 

The Space Shuttle payload cabling layout planning and design problem involves provision of the 
details required for the installation of cables to connect orbiter electrical services to the individual pay- 

2 4 6  



load elements. Each Shuttle mission entails a different payload manifest, constituting a recurring plan- 
ning and design problem. Mission payload manifest changes compound the problem further. 

Standardized orbiter electrical services are provided through cables that connect the experiments 
and satellites to either the forward or aft orbiter payload bay bulkhead using standard electrical service 
panels. Cables are then routed from specific payloads to port and starboard standard interface panels. 
From these panels, cables travel to covered cabling trays for further routing to either the forward or aft 
bulkhead service panels. For efficiency, these cables are prefabricated and provided from a standardized 
inventory. 

Because these standardized cables must service all payloads, regardless of their location within the 
payload bay, they are usually too long. The excess length of each cable must be dispositioned by form- ' 
ing a foldback or a loop (double foldback) within the routing tray. The trays are closed by covers that 
are located at designated locations along the tray. Cables with a diameter greater than 0.62 inches can- 
not be folded within the normal dimensions of the trays, because of radius bend constraints. Therefore, 
a special height appending foldback cover is required to replace the normal tray cover at the location of 
such a fold. Also, at the point where the cable leaves the tray to be routed to the interface panel or else- 
where, a special egress cover is required to replace the normal cover. Cables must also be separated by 
electromagnetic compatibility class through special channels provided in the routing trays. 

Cabling installation practices are also governed by numerous other constraints and standard oper- 
ating procedures. Based on heuristic knowledge, the above considerations, and the specific payload 
manifest, the cabling expert generates a hand drawn schematic that describes the cable routing solution. 
This schematic is subsequently used by a CAD/CAM specialist to produce a technical order (TO) sche- 
matic drawing of the cabling layout. 

The Solution 

The NASA Space Shuttle's payload bay cabling design task was the first automation problem to 
which expert systems technology was applied. An expert system, the EXCABL, was completed in 
September of 1986 .and has been in operation since delivery. An overview of the EXCABL system is 
shown in-Figure 1. The EXCABL system has completely automated payload bay cabling layout plan- 
ning and d&ign tasks. The cabling expert needs only to define the mission unique payload requirements 

- -- -- -__ _ _  

REllUlREMENTS 

CADICAM 
OUTPUTS 

U I  I -  

Figure 1. EXCABL System Overview 

247  



and constraints to generate the cabling solution CAD/CAM TO drawings and the printed reports. This 
was facilitated by the initial construction of a mission independent data base, containing all of the nec- 
essary payload bay hardware information required to perform Space Shuttle’s cabling. The cabling 
experts’ schematic solution is now automatically generated by the system as is the transfer of that infor- 
mation into CAD/CAM inputs. 

All major automation objectives were met in the initial delivered system. The system has captured 
the required technical expertise and also provided a significant improvement in productivity. The 
cabling capabilities of EXCABL are such that a small percentage of actual cabling design tasks cannot 
be handled. Since the end product is a cabling installation drawing, any EXCABL solution can be man- 
ually modified or augmented to produce a more acceptable solution. The productivity improvement 
realized by this new capability is such that a typical mission cabling manifest, that formerly took a few 
labor intensive days for several cabling engineers, now takes only a few minutes. 

The expert system portion of the operational version of EXCABL was implemented using 
Production Systems Technology’s C-based version of OPS83 and the remaining portion was imple- 
mented using C. It is currently hosted on a CAD/CAM interfacing DEC MicroVax I1 system and inte- 
grated into the operational environment. The literature contains documentation of an early prototype 
version of EXCABL [Reference 21, problems associated with converting from a development system to 
a delivery system [Reference 31, and a case study of the development effort and lessons learned 
[Reference I]. 

PAYLOAD BAY CABLE INSTALLATION TECHNICAL ORDERS 

The Problem 

The cabling layout solution schematic produced by EXCABL is only one of many Space Shuttle 
integration products necessary to accomplish the actual electrical services provisioning of its payload 
bay. Among the other products required are the installation configuration TO’S for the cables and 
related hardware devices. These TO’S contain the detailed instructions that are used by the payload inte- 
gration crew to perform the actual cable and hardware device installation. The cabling installation TO’S 
required for each flight are mission unique and dependent on the cabling solution generated by 
EXCABL. 

To increase productivity, the concept of modularization was developed by the cabling design engi- 
neering group. This concept is to reuse previously generated TO’S whenever possible, thereby eliminat- 
ing the need to repeatedly redo labor-intensive documentation for the same installation. Implementation 
is accomplished by assigning basic TO numbers for each device, connector, or cable installation, and 
assigning dash numbers for the different configurations. If a needed TO does not exist, a new TO is gen- 
erated, and a new dash number is assigned. This modularization, or reuse concept, is only made feasible 
by the standardization of cables, connectors, devices, and mounting positions, etc. 

Identifying the set of all reusable cabling installation TO’S for each given mission is a recurring 
integration problem. Since the set of cabling TO’S for each mission is dependent on the EXCABL solu- 
tion, any automation of this process must interface easily with existing EXCABL‘s outputs. Further- 
more, maximum usage must be made of any intermediate information generated by EXCABL to sup- 
port its final products. The desirability of integrating this process into the existing work environment, 

248  



while cooperating with the EXCABL process, further constrains the design and development of any 
automated system solution. 

Simply stated, the problem was to develop an automated system having the capability to identify 
and generate a list of all TO’S required to perform the payload cabling installation for any Space Shuttle 
mission. The nonexistence of a required TO should be identified by the system to the user in order for 
the deficiency to be corrected and the process completed. 

The Solution 

There were two basic motivators for this project. First, was the demonstrated success of the 
EXCABL project. Second, was the practicality of automation based on the new concept of modulariza- 
tion and reuse. Furthermore, it was assumed that applying the experience and techniques gained from 
the EXCABL project would make this a low risk development effort [Reference I]. Those assumptions 
proved to be correct in practice, and the entire development effort was straightforward and completed 
quickly. 

An expert system called EXMATCH was placed in operational usage in January of 1988. The 
EXMATCH system has successfully automated the payload bay cabling installation TO generation 
task. Closely integrated with the EXCABL system, the cabling solution provided by EXCABL is auto- 
matically input to EXMATCH and a master listing of all required payload cabling installation TO’S is 
generated. If a required TO does not currently exist, the system not only identifies this deficiency, but 
also identifies an existing similar drawing best match that may be modified to satisfy the deficiency. 

To facilitate this system, an initial data base containing all current payload cabling installation TO 
numbers and data was constructed. For user convenience, the interface to maintain this data base was 
made an integral part of the EXCABL system. The development of the initial TO documentation and 
maintenance of the TO data base are the only functions not fully automated. Modifications to 
EXCABL were minimal. An overview of the integration of EXMATCH and EXCABL is shown in 
Figure 2. 

EXMATCH 

b INFERENCE 

REPORT * OUTPUTS 
REQUIREMEYTS 

Figure 2. EXMA TCH and EXCABL System Integration 

2 4 9  



The expert system portion of EXMATCH was implemented using Production Systems 
Technology’s C-based version of OPS83. The remaining portion was implemented in DOD’s registered 
trademarked language Ada. EXMATCH is currently cohosted with EXCABL on CAD/CAM interfac- 
ing DEC MicroVax I1 systems in the cabling design work place. 

TECHNICAL ORDERS FOR TOTAL PAYLOAD INTEGRATION 

The Problem 

The Space Shuttle payload integration planning and design process culminates in the provision of 
a complete set of TO’s containing the installation instructions needed to accomplish the total payload 
bay accommodation and installation task. To assist in the planning and installation process, a complete 
list of all applicable TO’s for a mission is specified in a single document, the Mission Equipment Cargo 
Support Launch Site Installation (MECSLSI) drawing. Since each Space Shuttle mission is basically 
unique and design changes occur subsequent to initial payload manifesting, the identification of all 
required TO’S for production of this drawing constitutes a continuing and complex integration problem. 

Mission requirements are categorized as either mission common or mission unique. Mission com- 
mon requirements are those requirements that once established, are standardized for all future missions. 
Mission unique requirements are dependent on each mission’s objectives. Since each payload manifest is 
basically unique, the payload cabling layout schematic TO, produced by EXCABL is mission unique. 
However, it has been estimated that 90 percent of all mission requirements fall in the mission common 
category. 

Based on flight requirements documentation, Interface Control Documents (ICD’s), mission 
unique TO’s, common TO’s, and similarities to previous missions, etc., the MECSLSI development 
expert uses heuristic knowledge to generate the required drawing. If a design automation system could 
be developed to produce an initial MECSLSI containing only the mission common TO’s labor require- 
ments would be reduced considerably. 

The Solution 

A feasibility study was initiated in fiscal year 1987 to determine the practicality of developing an 
expert system to automate the production of the initial MECSLSI drawing. As a consequence of posi- 
tive study results, it is expected that development of an expert system based design automation tool, 
EXTOL will be started in the near future. Not only will EXTOL produce the initial MECSLSI drawing 
but using heuristics and data from previous missions it will assist the user by producing a list of the best 
matches for nonexistent TO’s in the mission unique category. If a close match cannot be found, it will 
identify that fact and provide further assistance to the user by presenting essential configuration infor- 
mation. It is expected that a working prototype could be quickly produced, and an operational system 
delivered shortly thereafter. 

rOTAL PAYLOAD AND CARGO INTEGRATION AUTOMATION 

EXCABL produces the mission unique cabling layout schematic TO product. EXMATCH uses 
information generated by EXCABL in its solution process to augment its knowledge and produce a list 
of all existing TO’s that will be required to accomplish the cabling installation. If a required TO does not 
already exist, a best match or quite similar existing TO is identified as a baseline from which a new one 

250 



can be constructed. When all of the required TO’s are generated and this information is input to 
EXMATCH, it generates a complete list of cabling TO’s. Together, these data will be furnished as elec- 
tronic input’s to the EXTOL system currently under consideration. These improvements should allow 
EXTOL to produce initial MECSLSI drawings that are over 90 percent complete. For TO’s that are 
identified as needed, but not in existence, best match and configuration information, to greatly facili- 
tate their generation, will also be produced. 

EXCABL, EXMATCH and EXTOL constitute successful real-world demonstrations of the feasi- 
bility and benefits of applying expert systems technologies to the payload bay integration automation 
problem. Two of these successful systems have been integrated into the engineering work environment 
and cooperate to automate the overall payload integration management task. The third when completed 
will be integrated with the other two to further the goal of total payload bay integration automation. 
Since each expert system feeds its outputs directly to its successor, the productivity improvements of the 
group as a whole is greater than individual standalone systems could achieve. An overview of the inte- 
gration management of these expert systems is shown in Figure 3. Using these systems as the core, other 
expert systems aimed at supporting the automation goal are in the concept development stage. 

MISSION 
REOUIREMENTS 

I 
1 1 

OTHER 

I I I I I I 

(TOTAL PAYLOAO-)+_I INSTALLATION 
INSTALLATION INSTRUCTIONS I 

AN0 CHECKOUT AN0 DRAWINGS 

Figure 3. Payload and Cargo Integration Management 

CONCLUSIONS 

The high leve, of flexibility to handle I iverse payloads provided by NASA’s Space Shuttle orb ter 

being successfully applied to these real-world problems to provide automation where other approaches 
have failed. 

I presents present-day recurring payload and cargo integration problems. Expert systems technologies are 

EXCABL and EXMATCH are two highly successful examples of the applicability of using artifi- 
cia1 intelligence techniques to solve these real-world integration automation problems. Both systems met 
the automation design objectives by reducing engineering-labor hours and end-to-end process time, cap- 

I 

I 

I turing corporate technical planning and design expertise, and demonstrating that expert systems meth- 
ods can successfully be integrated into existing operational systems and workplaces. I 

I 

251 



Successful development of a third expert system based integration automation tool is expected 
since much of the implementation methodology has already been successfully used by the EXMATCH 
system. These separate expert systems will work together to support overall payload integration man- 
agement automation. 

It is important to the advancement of expert systems technology that the knowledge of such suc- 
cesses as these be made public. Many successes are needed to instantiate the applicability of expert sys- 
tems to solve real-world Space Shuttle payload integration problems. 

ACKNOWLEDGMENTS 

The author would like to thank Gil Nixon, Beshad Rejai, and Chuck Giffin for their contributions 
and support. 

REFERENCES 

1. Morns, K.E., Nixon, G.A. and Rejai, B. “EXCABL-Orbiter Payload Bay Cabling Expert 
System, A Case Study.” Proceedings of IEEE Westex-87 Expert Systems Conference, Anaheim, 
California: IEEE, 1987, pp. 106-1 11 

2. Saxon, C.R., and Schultz, R. “EXCABL: An Expert System for Space Shuttle Cabling.” AI- 
85, Proceedings of the First Artificial Intelligence and Advanced Computer Technology Con- 
ference, Long Beach, California, 1985, pp. 127-140 

3. Saxon, C.R. “Converting a Demonstration to a Delivery Expert System: Lessons From 
EXCABL.” Proceedings of IEEE Westex-86 Expert Systems Conference, Anaheim, Califor- 
nia: IEEE, 1986 

252 



AUTOMATEDKNOWLEDGEBASEDEVELOPMENTFROMCAD/CAEDATABASES 

R Glenn Wright and Mary Blanchard 

PROSPECTIVE COMPUTER ANALYSTS, Inc. 
1215 Jefferson Davis Highway, Suite 309 

Arlington, VA 22202 

ABSTRACT 

Knowledge base development requires a substantial investment 
in time, money, and resources in order to capture the knowledge 
and information necessary for anything other than trivial applic- 
ations. This paper addresses a means to integrate the design and 
knowledge base development processes through automated knowledge 
base development from CAD/CAE databases and files. Benefits of 
this approach include the development of a more efficient means 
of knowledge engineering, resulting in the timely creation of 
large knowledge based systems that are inherently free of error. 

INTRODUCTION 

Numerous problems traditionally associated with the develop- 
ment of knowledge based systems have been documented, including 
the availability of experts, the time required to build a system, 
unfamiliarity of the knowledge engineer with the domain, finding 
an expert who is enthusiastic about the project, etc.[1][3][10]. 
Prospective Computer Analysts, Inc, is investigating for NASA's 
Kennedy Space Center, methods to help resolve these and other 
problems through automated knowledge base development. Two of the 
methods and techniques for overcoming these problem areas, auto- 
mated model building from CAD data and automated knowledge 
acquisition, are discussed. Each technique is used for generating 
different types of knowledge. 

The automated model-builder generates the part of the know- 
ledge base required for monitoring, control, and diagnosis of a 
system. The primary advantage associated with this method is a 
significant reduction in the amount of time and effort required 
to build 'a model representative of system connectivity and opera- 
tional values, both normal and abnormal. Whenever the system 
design is changed, a new model can be generated quite easily. The 
knowledge used to generate a model can easily be extended to 
handle new parts and therefore new designs. Only the routines 
which directly interface with the CAD files need to be modified 
for other CAD packages and hardware. 

Design knowledge capture techniques, beyond the standard doc- 
umentation practices traditionally followed, are significantly 
more difficult to implement. For this particular application, we 
are referring to capturing design knowledge from the experts. 
Knowledge will be captured using techniques appropriate for the 
type of knowledge desired. The design knowledge is captured at 
the time when it is easiest for the designer to recall: durin a 

553 



design session. In order to diminish the problem of extracting 
implicit knowledge, indirect knowledge acquisition techniques can 
also be used. 

Using either method, the knowledge is automatically docurnent- 
ed and incorporated into the knowledge base in one step. The 
problem of knowledge verification and validation, however, still 
remains. This problem is reduced to some degree in the design 
knowledge capture process, which allow the designer to modify the 
knowledge base directly to correct any errors produced during 
it's creation. This capability provides the expert with a control 
capability over the knowledge base. 

AUTOMATED MODEL BUILDING 

By using knowledge about classes of components and design 
data contained in the CAD database, the generation of a model of 
a system being designed may be automated. This model can be used 
as part of the knowledge base for monitoring, control, and/or 
diagnostic software, as well as a communication tool between 
various people working on the project. For example, designers, 
test engineers, manufacturing and production personnel could all 
examine the same design (represented by the model) to check for 
inconsistencies and other factors throughout the life-cycle of 
the product. Examples of research in automated model building 
include that of Thomas [ 1 2 ] ,  and University of Central Florida 
[ 6 1 [ 7 1 .  

In order to deal with the vast amounts of infomation involv- 
ed, the product being designed may be divided into hierarchial 
subsystems or modules. Each of these subsystems may be represent- 
ed as a separate model with connections to the other models, 
thereby representing the subsystems to which it is connected. 
Each model would be contained in a separate knowledge base. As 
each subsystem is needed by the monitoring, control or diagnostic 
software, this knowledge base can be transferred into memory and 
the other written back out to disk. 

By dealing with files produced from the CAD/CAE database 
instead of the entire database, the tine required to produce a 
model and the amount of data handling can be reduced substantial- 
ly. The CAD/CAE files would contain only the design data needed 
to generate the model for each Subsystem, including: 2 unique 
name for each component, unique names for all connections between 
all components, standard nomenclature for each component, units 
used to measure output flow of a Component, range of acceptable 
values associated with a component, part number (standard or 
manufacturers) for each component, and the tolerance asso'ciated 
with each measurement. All available measurements, commands, and 
components within the subsystem, are contained with the files. 
Information about the direction of flow included in the CAD/CAE 
database, and in turn the files, would increase the speed at 
which the model is built. Generally, the CADICAS database only 
indicates how components are physically connecced, with no infor- 
mation given about the direction of the signal flow. As VHDL and 

2 5 4  



EDIF use becomes more widespread, this problem should lessen. 

If different versions of a design are allowed, then different 
models representing these versions of the design must exist. When 
the designer feels significant changes have been made to a design, 
a new model must be generated. By requiring the designer to pro- 
vide meaningful names for the models, including the version num- 
ber of the design and for any connected subsystems, the model- 
builder will be able to handle multiple models for the same sub- 
system. The designer, or design configuration manager, should 
have the option of erasing models corresponding to old designs. 
However, the knowledge of the changes which occurred, and why 
they occurred, will be maintained in the design knowledge base. 
Neither the designers nor the support group will be allowed to 
erase the design knowledge base. 

The model builder will use knowledge about the type and num- 
ber of inputs and outputs associated with a component type to 
derive flow information. A connection list containing Components 
and connection points, will initially be generated from one of 
the CAD files. The model builder algorithm will look for all the 
connections between the components listed in the connection list, 
then determine the input and output connections between the com- 
ponents. Additional information, such as typical or standard 
names for input and output connections, can be used. If the 
algorithm is unable to determine the direction of the signal flow 
for these components, based upon this information, the system 
will hold off making this decision until more information is 
known about the other components in the model. It is reasonable 
to assume that at some point the system will be able to make this 
decision for one pair of components in the model. Once the dec- 
ision is made for one set, it narrows down the possibilities for 
the other components in the model, thus making it possible to 
determine the directional flow between pairs of components, which 
were previously eliminated. 

Although the benefits of automated model building through 
this approach are many, certain problems which limit it's utility 
must be addressed. These problems include when the development of 
CAD designs is spread out over various, non-comTatible, CADICAE 
hardware and software; handling the voluminous amount of informa- 
tion involved; constantly changing designs; the ability for many 
versions of the same design to exist; and for different designers 
to be using different versions of the same subsystem within their 
own design. These problems dictate the standardization of CADICAE 
design environments within common development and/or product 
lines. This will significantly reduce translation and configura- 
tion management requirements, and the resultant errors. 

DES I GN KNOIJLEDGE CAPTURE 

CAD databases maintain the design representation and changes 
made to the design, however, no method currently exists to cap- 
ture the reasons behind design decisions and changes. In order to 
capture this knowledge, it is necessary to supplement CAD/CAE 

255 



software with a design knowledge capture tool. 

By interacting with the designer using voice recognition and 
voice synthesis, the designer may be interviewed during the evol- 
ution of the design. Access to the design is provided through the 
model created from the CAD/CAE data. A t  the beginning of each 
design session, the design knowledge capture tool ensures that it 
has a model of the subsystem design to be worked on by the 
designer. If the model does not exist, one can be generated. It 
would not be practical to continually generate new models during 
the design session. Using this method, the design knowledge cap- 
ture tool has an accurate model of the Subsystem design at the 
beginning of the design session, 2nd the designer is.asked ques- 
tions to determine what changes are being made. 

Once a change is detected, questions can be asked to capture 
the designer's knowledge which went into making that change. This 
method leads the designer into explaining the design planning 
strategies, related analogies, general design knowledge, and the 
designers own experiences which went into making the design dec- 
isions. The knowledge used by an expert in designing inust be 
represented using different data structures. For example, a plan 
can be best represented as a cyclic directed graph. The informa- 
tion required for each t y p e  of knowledge needs to b e  explicitly 
defined in order for questions t o  be generated. Associated with 
each question would be a set of expectations which can be conpar- 
ed with the answers received. Information received from the de- 
signer may or may not pertain to this question. Extraneous infor- 
mation received from the designer can still be processed by the 
system and incorporated into the knowledge base, however, the 
list of expectations will ensure that when an answer is given to 
the question, it will be recognized. 

Typical questions asked could include: 

1. (FJhy are you)( raising : changing : lowering : ... > (the) 
(pressure : temperature : dimensions : . ..) (of the) ( compressor 
: pump : power supply : ... > ( ? )  

2. Why is this change necessary? 

3. What other parts will be affected by this change? 

4 .  How will these other parts be affected by this change? 

5. Have you seen a similar configuration of parts previously? 

Research was performed in learning casual models of physical mech- 
anisms by understarding real-world natural language explanations 
of these mechanisms by the University of Connecticut [4][11]. 

Forward chaining rules can be used to select questions based 
upon the user's responses and related pieces of knowledge in 
memory. It is therefor very important to establish a relationship 
betweer what is being said by the designer and mernory. When a 

256  



human being is reading a sentence, the individual words are re- 
cognized, concepts are formed based upon those recognized words, 
and the user is reminded of related knowledge in memory. This 
should be the same process which takes place during natural lan- 
guage processing. 

Intuitively it would appear a connectionist approach, such as 
that suggested by Jordan Pollack would be the best implementation 
for natural language processing [ 5 ] [ 9 ] .  This approach provides 
mechanisms for combining various types of knowledge for the pro- 
cessing of natural language. Each knowledge segment is represent- 
ed as a node with excited or inhibited links to other nodes with- 
in the network. Each of che nodes represents a concept or micro- 
feature within the domain. It allows domain and general world 
world knowledge and syntactic and semantic constraints to be 
integrated together for processing of the input. 

Analogies, plans, experiences, general design frames, specific 
design frames, and design rules would be integrated into the 
network via nodal connections. This permits episodic memory to be 
used in the processing of the user's input. Nodal connections 
can be established between concepts or microfeatures within the 
network and slots of the general design frame for compressors, 
for example. Once the user mentioned the word "compressor", all 
of the related plans, experiences, etc. would be activated, in 
addition to the corresponding concepts and microfeatures within 
the network. 

Some problems associated with this approach exist, however. Of 
primary concern is that the number of nodes and connections re- 
quired is enormous. Either the nodes and connections for the 
entire network need to be represented in memory as they are, or a 
sub-network will .need to be generated as words are processed. The 
first method will require a. significant amount of memory. The 
second method involves additional overhead and therefore addi- 
tional time. PA parallel processor will be required to generate 
the new activation values for each of the nodes and update the 
weighted connections. The connections can be hardwired. Another 
question is how will the system handle the introduction of new 
nodes and the establishment of new connections. As each new part 
is mentioned by the user, it should become a part of the network. 
It will also be difficult to relate the activated conceytslmic- 
rofeatures within the network to the changes required in the 
plans to reflect this new information. It will be difficult to 
incorporate information received from the designer into the 
plans, analogies, etc. used to represent the design knowledge. 

Another obvious problem is the cost of a parallel processor. 
It would not be feasible to provide every design engineer with a 
massively parallel processor to perform natural language process- 
ing. An alternative solution is to combine a conceptual analyzer 
[ 2 ]  where syntactic and semantic inforaation can be stored, with 
episodic memory, represented as general design frames, specific 
design frames, design rules, plans, analogies, and experiences. 
Episodic memory will be stored in terms of a type of component, a 

257 



specific component, and/or a characteristic of the component. 
Activation of a related concept in the dictionary (used in con- 
ceptual analysis) would cause the activation of related pieces of 
episodic memory. This approach will allow syntactic and semantic 
constraints, domain and general world knowledge with episodic 
memory to be integrated, although not to the same degree as a 
connectionist network. Also, the speed of processing will be 
slower. However, at the present time this method is feasible, 
while the connectionist approach should be considered appropriate 
for future applications. 

Design Knowledge Capture Considerations 

A key element in design knowledge capture is the need to be 
able to recognize changes in the focus of attention. When the 
designer changes the course of the conversation, new questions 
and expectations need to be generated. The currently active know- 
ledge in memory needs to be changed to reflect the new focus of 
attention. Consideration must be given as to whether to incorpor- 
ate all of the previous information given prior to the change in 
focus into the knowledge base, erasing the related questions and 
expectations, or to keep this information on the chance that the 
designer will refer to an earlier topic. This will require con- 
siderable overhead and the need for questions to be generated to 
determine which one of the previous subjects the designer is 
discussing. One possible solution is to consider one subject at a 
time and look upon any diversion as a change in focus. 

Restricting the designers' ability to modify design informa- 
tion given within certain time periods, e.g. daily, weekly, etc., 
but allowing visibility to previous data is desirable. One possi- 
bility is to allow the designer to change knowledge given during 
the current (i.e., present day) design session, but provide read- 
only access to knowledge given in prior design sessions. This 
protects the knowledge of other designers contained within the 
knowledge base, and prevents the loss of previous knowledge which 
would be very difficult to replace in the event of accidental 
loss. Further restrictions with respect to the amount of know- 
ledge which can be modified in the same subject area would also 
be warranted for the same reason. A designer may also add know- 
ledge to the knowledge base using techniques discussed in the 
following paragraphs. 

Knowledge acquisition techniques fall into one of two cate- 
gories, direct or indirect [ 8 ] .  Direct techniques include: inter- 
views, questionnaires, observation of task performance, protocol 
analysis, interruption analysis, closed curves and inferential 
flow analysis. Questionnaires can be generated for holes in the 
knowledge base and the user asked to fill out these questionn- 
aires. Drawing closed curves can be used to help discover analo- 
gies. The designer would be asked to draw a closed circle around 
related objects. Next, questions can be generated to determine 
the sirnilarities between the objects and derive design rules 
which can be extended from one domain to another. 

258 



The indirect methods include multidimensional scaling, hier- 
archical clustering, general weighted networks, ordered trees, 
and repertory grid analysis. General weighted networks can be 
used to discover planning strategies. The network is made up of 
concepts represented as nodes. The links are used to show order 
and direction of the steps in the plan. In this case, the con- 
cepts are steps of a plan. The user would be given major steps 
within a plan and through questions, the substeps of the plan 
would be discovered. The designer would establish the order of 
the substeps using links to connect the nodes. 

The total memory of the system includes a model of the system 
designed and the design knowledge which went into the design. 
However, additional knowledge can be added such as, repair and 
maintenance data on the parts contained within the system, manu- 
facturing knowledge on how to produce the parts, the list of 
manufacturing equipment available and their capabilities and 
limitations, and knowledge about the environment in which the 
system will be operating. An additional layer can be added which 
would act as a communication module, permitting people from var- 
ious departments access to information about the system. By 
allowing this open exchange of information during the design of 
the system, the probability of producing a system which can be 
manufactured and meet operational requirements, the first time, 
is increased significantly. This knowledge should be available 
and easily accessible throughout the life cycle of the system. It 
can be used when a design revision, a new environment for the 
system, or when a change in manufacturing equipment is being 
consid.ered. 

Other knowledge acquisition modules would need to be devel- 
oped to deal with these other domains. Also a suitable network of 
hardware and software would need to be selected. Other factors to 
consider would be, an increase in security, how often will the 
knowledge bases be accessed, physical locations of people access- 
ing the information. 

CONCLUSIONS 

Two methods for model building and design knowledge capture 
for automated knowledge base development have been presented. 
Current technology provides the means to address this topic and 
initiate development with meaningful results which may be applied 
towards solving inany design knowledge capture and knowledge base 
development problems which exist today. 

The means to overcome limitations in today's technology is 
available, however long term solutions would greatly benefit from 
connectionist methodologies utilizing massively parallel process- 
ing in a standardized CAD/CAE development environment. 

259 



REFERENCES 

[l] Berry, Diane C., "The Problem of Implicit Knowledge", Expert 
Systems, August 1987, Vol. 4 ,  No. 3 

[2] Gershman, Anatole V., "A Framework for Conceptual Analyzers", 
Chapter 6, pp 177-197, in Strategies For Natural Language 
Processing edited by Wendy G. Lehnert and Martin H. Ringle, 
Lawrence Erlbaum Associates, 1982 

[3] Hoffman, Robert R., "The Problem of Extracting the Knowledge 
of Experts from the Perspective of Experimental Psychology", AI 
Magazine, Summer 1987 

[ 4 ]  Klimczak, Benjamin "Learning Casual Models of Physical 
Devices by Understanding Real-World Explanations using a Global 
Dictionary", Technical Report #86-23, December 1986, University 
of Connecticut, Storrs, CT 06268 

[ 51 Lehnert, Wendy G., "Knowledge-Based Natural Language 
Understanding: A AAAI-87 Survey Talk", COINS Technical Report 88- 
02, University of Massachusetts, Arnhert, Massachusetts 

161 Dr. Myler, H.R. and Dr. Gonzalez, A.J., "NASA Research 
Grant, Automated Knowledge Generation First Quarterly Review 
Meeting", Computer Engineering Department, University of Central 
Florida, Orlando, Florida 

[7] Dr. Myler, H.R. and Dr. Gonzales, A.J., "NASA Research 
Grant, Automated Knowledge Generation, Second Quarterly Review 
Meeting", Computer Engineering Department, University of Central 
Florida, Orlando, Florida 

[ a ]  Olson, Judith Reitman and Rueter, Henry H. "Extracting 
Expertise from Experts: Methods for Knowledge Acquisition, 
Expert Systems, August 1987, Vol. 4 ,  No. 3 

[9] Pollack, Jordan B., "On Connectionist Models of Natural 
Language Processing", MCCS-87-100, New Mexico State University, 
Las Cruces, New Mexico 

[lo] Prerau, David S., "Knowledge Acquisition in the Development 
of a Large Expert System", AI Magazine, Sumer 1987 

[ll] Selfridge, Mallory and Cuthill, Barbara, "Automatic 
Invention: Inferring the Casual Model of a Physical Mechanism 
From a Description of Desired Behavior", Technical Report #86-17, 
December 1986, University of Connecticut, Storrs, CT 06268 

[ 1 2 ]  Thomas, Stan J. "MASA/ASEE Summer Faculty Research 
Fellowship Program, Automated Construction of a Knowledge Base 
From Computer Aided Design Data", Wake Forest University 

260 



N 8 9 -  1 5 5 8 6  
Dynamic Reasoning in a Knowledge-based System 

Anand S .  Rao and Norman Y.  Foo 
Department of Computer Science 
University of Sydney, NSW-2006 

Australia 

anand@basser.oz and norman@basser.oz 

Abstract 
Any space based system, whether it is a robot arm assembling parts in the space or an onboard system mon- 
itoring the space station, has to react to changes which cannot be foreseen while on earth. As a result, apart 
from having domain-specific knowledge as in current expert systems, a space based AI system should also 
have general principles of change, This paper presents a modal logic which can not only represent change' 
but also reason with it. Three primitive operations, expansion, contraction and revision are introduced and 
axioms which specify how the knowledge base should change when the external world changes are also 
specified. Accordingly the notion of dynamic reasoning is introduced, which unlike the existing forms of 
reasoning, provide general principles of change. Dynamic reasoning is based on two main principles, 
namely minimize change and muxim'ze coherence. A possible-world semantics which incorporates the 
above two principles is also discussed. The paper concludes by discussing how the dynamic reasoning sys- 
tem can be used to specify actions and hence form an integral part of an autonomous reasoning and plan- 
ning system. 

1. Introduction 
Due to the prohibitive costs of manned missions to outer space, unmanned explorations of distant objects is 
the only credible alternative. As man starts exploring deeper into space, the need for advanced autonornus 
systems becomes inevitable. Space based systems need to be autonomous with respect to two important 
aspects, namely, a) control and b) reasoning. As the communication delay between autonomous vehicles in 
outer space and earth is beyond acceptable limits, such vehicles should have independent control of their 
movement. For much the same reasons, they should also have independent decision making skills. Unless 
they are equipped with such capabilities they are unlikely to survive in an hostile environment. Also it is 
very difficult, if not impossible to preprogram such capabilities. This paper discusses onl!, the reasoning 
capabilities of an autonomous system and not its control aspects. 

Two main requirements for an autonomous reasoning system are 

a. that the system be dynamic, i.e. any changes in the external environrneLt should be immediately 
reflected in the systems view of the environment. In other words the system should be capable of 
changing its knowledge-base automatically based on the changes in the external environment. 

b. that the system be reactive [8] i.e. it should be capable of changing its focus and pursuing an alterna- 
tive goal if and when it is required, In other words the system should be capable of changing its goals 
automatically based on the changes in the external environment. 

An example would help to illustrate the dynamic and reactive aspects of an autonomous, space based AI 
system. Consider a robot whose main goal is to explore the terrain of an hostile environment. During the 
exploration phase the sensors of the robot will constantly keep feeding information about the external 
environment. Some of this information might be in conflict with the robot's existing knowledge. The 
responsibility of the dynamic reasoning component of the robot is to accommodate this information from 
the external world with as little damage as possible to the current knowledge base. During the exploration 
phase if there is a sudden unexpected event, say a volcanic eruption, then the robot must be capable of 
reaczing to this situation by abandoning its goal of exploration and instead acquire the goal of survival and 
try to achieve it. This process of changing the focus of attention or changing the goals is an integral part of 
the reactive component of the reasoning system. In [8] and [7] Georgeff et. al. describe the Procedural Rea- 
soning System (PRS) and discuss its use in an autonomous mobile robot and in a diagnostic system for the 
space shuttle. 

c- 261 



It is quite clear that any space based system, whether it is a robot arm assembling parts in the space or 
an onboard system monitoring the space station, it has to react to changes which cannot be foreseen while 
on earth. As a result, apart from having domain-specific knowledge as in current expert systems, a space 
based AI system should also have general principles of change. Unfortunately, standard first-order logic 
and deductive reasoning have very little to say about dynamic reasoning. This is because most of the rea- 
soning which is done using first-order logic has been restricted to computing the logical consequences of 
sentences, which can be categorized as static reasoning. This paper describes a modal logic and illustrates 
how dynamic reasoning can be canied out in this logic. The dynamic reasoning described in this paper 
incorporates two general, intuitive principles of change, namely, minimize change and m i m i z e  coherence. 
The axiomatization of this dynamic reasoning system is inspired by the postulates of theory change, first 
proposed by Gardenfors et. al. [6,1]. Although, most of this paper will concentrate on the dynamic reason- 
ing system. it also discusses how to integrate the dynamic reasoning system with a reactive planning sys- 
tem, to obtain a full-fledged embedded system capable of reasoning and planning autonomously in any hos- 
tile environment. 

2. Statics of Belief Systems 
Traditional knowledge-based systems, typically have two main modules: 

a. Knowledge Base (KB) - which contains domain specific information in some formal language, which 
is normally first-order logic or a syntactic variant of first-order logic with procedural attachments. 

b. Inference Engine (E) - which performs static reasoning on the knowledge base. 
The KB is taken to be a set of beliefs about a particular problem domain and the IE is capable of answering 
queries regarding the belief system. Such knowledge bases are essentially static, as they cannot represent 
or reason about how the KB changes. 

This section will present a IU3 or belief system, which can model the evolving nature of knowledge 
bases. The static aspects of the belief system will be dealt in this section and the dynamic aspects of the 
belief system will be postponed to the next section. 

The formal language & under consideration is a modal logic of beliefs. The objects of beliefs will be 
taken to be first-order formulas with equality [14]. The beliefs will be taken to be time-dependent. Thus the 
formula BELIEF (t, 0) represents the belief of the agent (or robot or the AI system) at time point t ,  
that the formula 9, is the case. For example, the formula BELIEF (13 : 0 0, power-lef t ( 2  1 1 , might 
be the belief of the robot th,t at 13:OO hrs, the number of hours of power left for it is 2 hours. In the 
language &, quantifying temporal terms into the scope of the modal operator BELIEF is allowed, but 
quantifying individual terms is not allowed. 

Usually the se3antics of the BELIEF operator is given in ttXmS of a possible-world SCCCS::~ lity rela- 
tion, 'B, which .naps a possible world to a set of possible worlds. In the language L1 the relation J, maps a 
possible world at a given insrant of time to a set of possible worlds at that given instant of time. Also the 
satisfaction is with respect to a world at u particular instant of time. Thus if KI, is a Kripke interpretation of 
modal logic, and TA the term assignment, then the satisfaction of belief formulas with a particular variable 
assignment VA, is given as follows, 

KI, w, TA(t) I= BELIEF ( t ,  0) [VA] iff for all w' such that qw, TA(t), w'), KI, we, t I= 

The axiomatization for the above time-dependent belief system, called the B-modal system, are the axioms 
of first-order temporal logic and the standard KD45 axiomatization for beliefs [IO, 171. In a KD45-modal 
system the B relation has to be serial, transitive and euclidean. The class of models of the time-dependent 
belief system, whose 3 relation satisfies the above conditions are called %models. The soundness and 
completeness of the time-dependent belief system can be stated as follows, 
Theorem 2.1: The B-modal system is sound and complete with respect to the class of %models. 
Proof: The proof of the above theorem is straightforward and is proved in [171. 

The B E L I E F  modal operator can also be ueated as a self-belief operator as in autoepistemic (AE) 
logic [lS]. In AE logic the agent reasons about his own beliefs and lack of beliefs. An agent believes a sen- 
tence if it is contained in his set of beliefs at that current instant of time. He does not believe it, if it is not 
contained in his set of beliefs. Thus AE logic is complete with respect to the beliefs and non-beliefs of the 

0WAI. 

262 



agent. A Kripke interpretation where the beliefs are treated as self-belief operators will be called an autoep- 
istemic Kripke interpretation or AKI. 

3. Semantics of Dynamic Belief Systems 
In most of the commercially available knowledge-based systems or expert system shells, any changes to the 
KB have to be done manually. For a space-based AI system this solution is unacceptable for two main rea- 
sons, 

1. the time delay for updates will be too costly and might endanger the mission and 

2. maintaining the integrity of the KB will be difficult, especially if the input data is inconsistent with the 
existing KB. 

Thus for any space-based AI system, automatic updates of the KB is a must. Two of the most popular sys- 
tems for updating knowledge bases are the Truth Maintenance System (TMS) [4] and Assumption-based 
TMS (ATMS) [ll]. TMS keeps track of how each and every formula was inferred, which are called 
justifrcan'ons and incrementally modifies these justifications whenever there is an update. ATMS keeps 
track of the premises which are used in deriving a formula, called assumptions , and incrementally modifies 
them. However, in both these mechanisms the book-keeping required may not only be space consuming, 
but might also turn out to be time-consuming. Thus for a space-based AI system such mechanisms may be 
unsuitable. 

In this section three basic dynamic operations, namely, expansion, contraction and revision are intro- 
duced. These operators are then used for reasoning about changing knowledge bases. The semantics of 
these operations are discussed in this section and the dynamic reasoning system is discussed in the next sec- 
tion. 

Consider the situation where the agent (or robot) receives a fmt-order sentence 4 from the external 
world. The relationships between this formula and the set of beliefs of the system at time t, can be 
enumerated as follows, 

1. the agent believes in 4 at t. 

2. the agent believes in 7 4  at t . 
3. the agent does not believe in 6 nor 7@ at t and hence the agent is agnostic about 9. 
4. the agent does believes in + and 7+ at t anti hence the agent has inconsistent beliefs about 4. 

Inconsistent belief states are disallowed and hence, relation 4) above does not hold. The process by which 
an agent moves from one of the three regions(1, 2, or 3) to any of the other two is called the dynamics of 
the system. As there are three states and each transition involves two states there are totally 3* different 
transitions. Ignoring the trivial transitions of remaining in the same state six different transitions are left. 

Expansion: Agnostic state + Belief in Cp. 
Contraction: Belief in q 3 Agnostic state. 
Revision: Belief in -,@ + Belief in 9. 

The terminology and approach is an extension of the work done by Gardenfors and others [6,11. While 
their approach is non-modal and at the meta-level, we introduce modal operators and carry out the analysis 
at the object level. 

The language of the time-dependent belief system is extended to the language & , by introducing three 
dynamic modal operators- EXPAND, CONTRACT and REVISE to denote expansion, contraction and 
revision respectively. Thus EXPAND (t , 9, u )  is read as 'the expansion by the agent at t with respect 
to Cp is u', where Cp is a first-order sentence and t and u are temporal terms (constants or variables). There 
is no need for any modal operators for N-expansion and N-contraction as they can be expressed by the 
modal operators EXPAND and CONTRACT respectively. Strictly speaking there is no need for the modal 
operator REVISE also as it can be defined using EXPAND and CONTRACT. Nesting of these Operators 
are not allowed. As AE belief systems are uniquely determined by the first-order formulas, it is sufficient to 
consider the expansion, contraction and revision of first-order sentences alone. For example, expanding 
with respect to a belief sentence in an AE belief system is equivalent to expanding with respect to the object 
of the belief, and expanding with respect to a non-belief sentence is equivalent to contracting with respect 
to the object of the non-belief. 

N-Expansion: Agnostic state + Belief in 7 4  
N-Contraction: Belief in + + Agnostic state 
N-Revision: Belief in 9 + belief in -9. 

263 



Given a set of beliefs at some particular instant of time t, and the nature of change, namely, expansion. 
contraction or revision the set of beliefs at the next time instant can be constructed and the semantics of the 
modal operators EXPAND, CONTRACT and REVISE are definable using this construction [17]. Alterna- 
tively, the semantics of the dynamic modal operators, can be given based on the autoepistemic Kripke 
interpretation, AKI. The latter approach is followed in this paper. The semantics of dynamic operators are 
based on selection functions, which select some possible worlds as being closer to the current world than 
the others [2,12]. When the agent performs expansion or contraction, he is said to move into one of these 
closer worlds and designate these worlds as the worlds of the next time instant(s). 

Consider an agent with a proposition p in some world w at time t 1. Now the agent wants to expand 
with respect to the formula r. He can do so in many ways. He can move into a time point t2, where p, 
r are true or a time point t 3 where only r is true or a time point t4 where p, q, r are true and so 
on. Amongst the different alternatives the agent should choose only some of them, based on certain criteria. 
The principles of minimal change and maximal coherence will be used in selecting the alternatives. Accord- 
ing to these criteria, the selection function for expansion, or expansion function, denoted by E, should 
choose the time point t 2 ,  where p, r are true. The other time points are also accessible from t 1 but' 
all of them have to pass through the time point t2. Thus the time point t 3  can be obtained from t2 
after a contraction with respect to p. Similarly, the time point t 4 can be obtained from t 2  after an 
expansion with respect to q. Also it should be noted that the expansion function E and the contraction 
function C, depend on the current time point, the current world and the proposition with respect to which 
the expansiordcontraction is performed. The result of the selection function is a set of time points. 

W 

t4 

Figure 1. Expansion and Contraction Functions 

Figure 1 shows the possible relationships between the different time points. 

just propositional formulas. The semantics of the dynamic belief system is given below. 
Definition: The dynamic interpretation is a tuple, D = <'E, C AKb,  where 

The selection functions discussed above can bc generalized to handle first-order scntcnces, instead of 

E and Care functions which map, W (set of worlds), TU (set of time points), and 2*" (set of set of 
worlds) to a set of time points or zTU. 
AKI is an autoepistemic Kripke interpretation. 

The satisfaction of belief formulas are as described before. Satisfiability of the dynamic modal operators is 
as follows, 
Definition: A dynamic interpretation DI = <Z, C, A K b ,  satisfies a well formed formula I$, at world w and 
time t (written as DI, w, t I= +) given the following conditions, 

264  



1. DI, w, t I= EXPAND (t ,  Q, u) iff u E aw, t, II$IID1), where I$ is a first-order sentence. 

2. DI, w, t I= CONTRACT ( t ,  Q, u) iff u E Aw, t, II$IID1), where @ is a fust-order sentence. 

3. DI,w, t b R E V I S E ( t ,  Q, U) iffDI,w, t I= CONTRACT(t, TQ, V) mdD1.w. v I= 
EXPAND (v, Q, u) , where Q is a first-order sentence. 

The notation II$IID1 stands for all the worlds of the interpretation DI, which satisfies 0. More formally, 11Q1IDf 
= (w I DI, w, t I= (I for any t E TU). Condition 3 is an analog of the Levi identity, which is a theorem 
in Alchourron, Gardenfors and Makinson [l]. 

This completes the semantics of the dynamic operations. In the next section the axiomatization of the 
dynamic belief system is discussed. This axiomatization forms the basis of the dynamic reasoning system. 

4. Dynamic Reasoning System 
A reasoning system is specified by a set of axioms and inference rules. Given a set of formulas, the axioms 
and inference rules are used to infer more formulas which are called the logical consequences of the axiom 
system. In the case of static reasoning the formulas are first-order formulas which represent the world at 
the current time instant. Using the axioms and inference rules of fmt-order logic more formulas can be 
derived which also represent the world at the current instant of time. In the case of dynamic reasoning the 
formulas represent the world of the current time instant and the formulas which are added to the existing 
world or removed from the existing world. Based on the axioms and inference rules of the dynamic reason- 
ing system more formulas are derived, which represent the state of the world at the next time instant. Thus 
the dynamic reasoning system will determine what will be true in the next time point, given the current 
time point and the nature of change. The next three subsections describe the axioms and inference rules of 
the dynamic reasoning system. 

4.1 Expansion 
By the very definition of expansion, the expansion of a FOE sentence $, should result in a belief of $ at the 
next time instant. This is called the Axiom of Inclusion [6.11. 
Axiom of Inclusion 

(ml) E X P A N D ( t ,  I$, u) -+ B E L I E F ( u ,  $) 
Semantically the above axiom states that, 

(CEl) If u E ~ ( w ,  t, III$llD’) then w E I ~ B E L I E F  (u, $1 llD1. 

Expansion is an operation which preserves the beliefs of an agent. If u is the world obtained after 
expanding t with respect to Q then all the belief formulas at t continue to hold at u although some of the 
non-belief formulas at t may be believed at u. In other words, expansion converts some of the agent’s 
non-beliefs into beliefs, while at the same time preserving his existing beliefs. This property is called the 
Axiom of Preservation of Beliefs. 
Axiom of Preservation of Beliefs 

( a 2 )  EXPAND(t, 4, u) + 
( B E L I E F ( t ,  a) + B E L I E F ( u ,  a)) 

(CE2) If u E z(w, t, III$II”I) and w E HBELIEF (t, a) llD1, then w E I ~ B E L I E F  (u, a) llD1. 
Semantically, the above axiom states that, 

If the agent already believes in Q at t then expansion with respect to Q will yield no new beliefs. This 
is a case of trivial expansion where the agent’s beliefs as well as non-beliefs are preserved. This is called 
the Axiom of Trivial Expansion. 
Axiom of Trivial Expansion 

The semantic condition for the above axiom states is as follows, 
(m3) B E L I E F ( t ,  9) A EXPAND(t ,  $, u) 4 ( B E L I E F ( t ,  a) = B E L I E F ( u ,  a)). 

(CE3) If w E I ~ B E L I E F  (t, $) llD1 and u E ~ ( w ,  t, II$IID1) then (w E I ~ B E L I E F  ( t ,  a) IID1, iff 
w E I ~ B E L I E F ( U ,  U)II~I). 

The operation of expansion is monotonic. Thus when belief in world t implies belief in world v then 
belief in the expanded world of t will imply belief in the expanded world of v. The following Axiom of 
Monotoniciry mirrors this fact. 
Axiom of Monotonicity 

265 



(m4) ( B E L I E F ( t ,  a)  + BELIEF(v, a ) )  A E X P A N D ( t ,  $, U) EXPAND(v, @, 
y) + (BELIEF(u, p )  + B E L I E F ( y ,  P I ) .  

(CE4) (If w E I ~ B E L I E F  ( t ,  a)  ID', then w E I ~ B E L I E F  (v, a) IID1) and u E a w .  t, II$IID1) 
and y E E(w, v, ll$IID') then (If w E I ~ B E L I E F  (u, p) HD1, then w E HBELIEF (y, p)  IID1). 

The axioms AEl-AE3 state that if u is the expanded world of t with respect to $ then the beliefs at t 
are preserved at u and the agent acquires belief in $ at u. It does not rule out the possibility of the agent 
acquiring beliefs which are in no way related to $ nor the original world at time t . In other words the only 
beliefs at u are the beliefs at t and the belief in $ and all its consequences, where $ is a fust-order sen- 
tence with respect to which the expansion is being carried out. This is equivalent to minimizing the acquisi- 
tion of beliefs during expansion. Thus any belief formula at u which is not already in t has been obtained 
by an explicit expansion or is a consequence of an explicit expansion. 
Axiom of Minimization of Beliefs 

Semantically the above axiom translates into the following condition. 

(AE5) B E L I E F ( u ,  $) -$ B E L I E F ( t ,  $) v ( E X P A N D ( t ,  a, u) A B E L I E F ( U ,  
BELIEF(u, a) 3 $ 1 ) .  

Semantically the above axiom translates to the following condition, 
(CE5) If w E I ~ B E L I E F  (u, +) l l D x  then (w E I ~ B E L I E F  (t, $1 l l D x  or (u E 'E(w, t, IlallD') and w 
E IIBELIEF (u, BELIEF (u, a)  =I $1 IID1)). 

While axioms (AE2), (AE3) and (AE4) enforce the principle of w ' m a l  coherence, axioms (AE1) and 
(AE5) enforce the principle of minimal change. 

The following inference rule which states that if and $z are equivalent then expanding with respect 
to either one of them will give the same result is also needed. Modal systems which are closed under this 
type of inference rule are called classical systems [3]. 

(RE1)From l - 4 ~  =q2infer I- E X P A N D ( t ,  u) = E X P A N D ( t ,  $2, u). 

The axioms and inference rule (AEl)-(AES) and (REl) capture the proof-theoretic notion of minimal 
change and maximal coherence for expansion. The conditions (CEl)-(CES), on the expansion function and 
the belief relation capture the semantic notion of the closest possible worlds which obey the principles of 
minimal change and maximal cohereice. The semantic conditions (CEl)-(CES) describe a closest expanded 
world. The class of models whose !E selection function satisfies the conditions (CEl)-(CES) are called the 
E-models. 

4.2 Contraction 

The axioms of contraction are very .;imilar to the axioms of expansion. The axiom corresponding to the 
axiom of inclusion for expansion, is the Axiom of Exclusion for contraction. Thus if the world t is con- 
tracted with respect to $ to give u then the agent must not believe @ at u. 
Axiom of Exclusion 

Semantically the above axiom states Lhat, 
(AC1) C O N T F G C T ( t ,  @, U: + - IBELIEF(u ,  9) 

(CC1) If u E ~ ( w ,  t, IIQP) then w E w - IIBELIEF (u, Q) !ID1. 

Just as expansion preserves the beliefs of an agent one would expect contraction to preserve the non- 
beliefs of an agent. In fact, this is the case if one assumes that the world does not contain any AE belief for- 
mulas, i.e. formulas of the form 7BELIEF (t , $) =I y ~ .  For such cases, the following Axiom of Preser- 
vation of Non-beliefs which is analogous to the Axiom of Preservation of Beliefs holds. 
Axiom of Preservation of Non-Beliefs 

CONTRACT(t, 4, u) + 
( i B E L I E F ( t ,  a)  4 iBELIEF(u, (Y) ) 

However, in the more general case, where the world contains both AE and universal AE beliefs the 
above axiom does not hold. Consider the case whcre the agcnt contracts the formula + to go into a time 
point u. where the AE belief T B E L I E F  (u, $) 3 y.f is true. Now as the agent contracts @, the formula 
T E E L I E F  ( u ,  4) will be true and this will cause y~ to be true and hence y to be bclieved. Thus in the 
presence of AE beliefs the agent can acquire new beliefs during contraction. The acquisition of these beliefs 
should be minimized. Hence the new beliefs acquired by the agent should be the logical consequences of 
T B E L I E F  (u, $ 1 .  where $ is the formula with respect to which the agent has performed contraction. The 

266 



following axiom called the Axiom of Minimization of Beliefs is analogous to the corresponding axiom of 
expansion. 
Axiom of Minimization of Beliefs 

(AC2) B E L I E F ( u ,  0) j B E L I E F ( t ,  I$) v (CONTRACT(t, a, u) A B E L I E F ( u ,  
i B E L I E F ( u ,  01) 3 $ 1 ) .  

Semantically the above axiom translates to the following condition, 
(CC2) If w E ~IBELIEF  ( u ,  $) llD1 then (w E ~ I B E L I E F  ( t ,  $) llD1 or (u E c(w, t, IlallD1) and w 

If the agent does not believe Q at t then contraction with respect to Q will not increase the non-beliefs 
of the agent. In other words under the above conditions the contraction operation preserves the agent’s 
beliefs as well as non-beliefs. This results in the following Axiom of Trivial Contraction, 
Axiom o f  Trivial Contraction 

E l l B E L I E F ( u ,  i B E L I E F ( u ,  a) 3 $ ) I I D 1 ) ) .  

(AC3) 7 B E L I E F ( t ,  $) h CONTRACT(t, $, U) -+ ( i B E L I E F ( t ,  a) 
i B E L I E F  (u, a) ) .  

The semantic condition for the above axiom is as follows, 
(CC3) If w E W - I ~ B E L I E F  (t, I$) ItD1 and u E a w ,  t, II(OIID1) then (w E W - I~BELIEF (t, 
a) tiD1, iff w E w - ~IBELIEF (u, a) IID1). 

The axiom of monotonicity is not satisfied by contraction. This is because contraction reduces the 
beliefs of the agent and is therefore non-monotonic in nature. 

While axiom (Am) stated what are the formulas which should be acquired in the contracted world, 
axiom (AC5) states what are the beliefs which should be given up during contraction. It states this 
indirectly by requiring whatever is lost during contraction should be recovered during expansion. As the 
agent gains as little as possible during expansion (due to the Axiom of Minimization of Beliefs), the agent 
has to loose as little as possible for the following axiom to hold. This implies that the following axiom per- 
forms the function of minimizing non-beliefs and is called the Axiom of Minimization ofNon-beliefs. 
Axiom of Minimization of Non-beliefs 

(AC4) CONTRACT(t, $, u) A EXPAND(u, e ,  v) -+ ( B E L I E F ( t ,  01) -+ 
B E L I E F  (v, a) 1. 

(CC4) If u E a w ,  t, IIQIID1) and v E aw, u, IIQIID1) then (w E I~BELIEF (t, a) IID1, then w E 

I ~ B E L I E F  (v, a) tID1). 
A strict equivalence of the consequent of (AC4) does not hold. Consider the case where Q is not present in 
t. Then according to axiom (AC3) the time points t and u will have identical beliefs. Now if u is 
expanded with respect to $, then at v the agent. will believe in Q but did not have this belief at t, which 
proves that the strict equivalence does not hold. 

and Q2 are equivalent then contracting with respect 
to either one of them will give the same result is also needed. 

Semantically, the above axiom is equivalent to the following condition, 

The following inference rule which states that if 

(RC1)Frorn I- infer I- CONTRACT (t, $I, u) = CONTRACT (t ,  Q2 ,u ) .  

Axioms (ACl)-(AC4) together capture the proof-theoretic notion of maximal coherence and minimal 
change for contraction. The conditions (CCI)-(CC4), on the contraction €unction and the belief relation 
capture the semantic notion of the closest possible worlds which obey the principles of minimal change and 
maximal coherence. The semantic conditions (CC1)-(CC4) describe a closest contracted world. The class 
of models whose C selection function satisfies the conditions (CC1)-(CC4) are called the C-models. 

4.3 Revision 

As revision can be expressed in terms of expansion and contraction only one axiom is needed for revision. 
This axiom states that revising with respect to $ is equivalent to contracting with respect to TQ followed 
by expansion with respect to (0. This axiom is a reformulation of Levi identity [6]. 
Axiom of Revision 

(m1) REVISE(t, 9, U )  + CONTRACT(t, +$, V) A EXPAND(v, $, U) 

The axiom system for the language &, called the basic dynamic (ED)-model, is the B-modal system 
together with the axioms and inference rules for expansion, contraction and revision. The basic Zrmodel is 
defined as a model of the dynamic interpretation DI, whose B relation is a %model, whose E function is a 

267 



E-model and whose Cfunction is a C-model. 

The soundness and completeness of the dynamic reasoning system is stated below. Once again the 
details of the proof can be found in [17]. 
Theorem 4.2: The BD-modal system is sound and complete with respect to the class of all basic D-models. 

4.4 Actions and Planning 
Expansion, contraction and revision are the most primitive or fundamental dynamic operations. However, 
they are not the only dynamic operations. The dynamic operation which has received a great deal of atten- 
tion in AI is the notion of actions. In the situation calculus [ 131 approach actions are treated as transforma- 
tions from one situation to another. Situations are like possible worlds, introduced in the previous section. 
Actions can be defined in terms of the dynamic operations expansion, contraction and revision. The 
dynamic operations can also be used to define parallel actions. This helps in providing a unifying architec- 
ture for dynamic reasoning as well as planning. This section gives a brief description of how to define 
actions in terms of the dynamic operations and provides insights into a completely integrated autonomous. 
reasoning and planning system. 

Actions are normally defined in terms of preconditions and postconditions. If a certain precondition 
holds at the current instant of time and an action is carried out then the post-condition holds in the next time 
instant. This can be expressed as the modal formula ACTION (t , p, a, y, u) , which states that at 
t if the agent believes p and the action a is carried out then the agent will believe in y at the next time 
instant u. The axiom for action is defined as follows. 
Axiom of Action 

A C T I O N ( t ,  p,  a, y, u) ZE B E L I E F ( t ,  p )  A R E V I S E ( t ,  y, u). 

The same methodology 3s above can be used to define both sequential and parallel actions. Let ctl ; 
a2 denote two sequential actions and a1 II a, denote two parallel actions. The axioms for these actions can 
be defined as follows, 
Axiom of Sequential Action 

A C T I O N ( t ,  h P2, a1 ; az, yl h yz, u) SE B E L I E F ( t ,  p i )  h R E V I S E t t ,  
71, V) A B E L I E F ( J ,  8 2 )  h R E V I S E ( v ,  "12, u). 

A C T I O N ( t ,  pi A p 2 ,  a1 11 C ( 2 ,  y1 A Y2,  u) E B E L I E F ( t ,  A p 2 )  h 

R E V I S E ( t ,  y1, U) A R E V I S E ( t ,  yz, u). 

Axiom of Parallel Action 

The following example provides a simple situation, where the theory developed in this paper can be 
used. 
Example: 
Consider the blocks-world, at time t 1, where there are two blocks A and B, such that the E :d colored 
block, A, is a, Ic\.ation L1 and the Blue colored block, B, is at location L2. Also both block and B are 
clear. The la YS in this domain can be stated as follows, a) No two blocks are on the same locaLion, b) No 
block occupies more than one location, c) A clear location has nothing on top of it, and d) No block has 
more than one color. This information is stated as follows in the dynamic belief system. 

1.2 V t  (BELIEF (t, o n ( x ,  1) A 1 # m + Ton(x,m) ) ) 

1.3 v t  ( B E L I E F  (t ,  c l e a r  (1) = Ton (x, 1) ) ) 

The contingent information about the blocks world at time t 1 is stated as follows, 
1.5 B E L I E F  ( t l ,  c lear  (A) ) 1 . 6  T B E L I E F  (tl, l c l e a r  (A)  ) 
1.7 B E L I E F  (tl, clear  ( B )  1 1 . 8  T B E L I E F  (tl, Tclear ( B )  
1.9 B E L I E F  (tl ,  on ( A ,  L 1 )  ) 1 . 1 0  Y B E L I E F  (tl, Ton ( A ,  L1) ) 
l . l l B E L I E F ( t 1 ,  o n ( B , L 2 ) )  1 . 1 2  7 B E L I E F  (tl, Ton ( B ,  L 2 )  ) 
1.13 B E L I E F  (tl ,  c o l o r  ( A , R e d )  ) 1 . 1 4  7 B E L I E F  (tl, l c o l o r  ( A , R e d )  ) 
1.15 B E L I E F  ( t l ,  c o l o r  (B ,  B l u e )  ) 1 . 1 6  TBELIEF (tl, - c o l o r  (B, B l u e )  ) 

1.1 v t ( B E L I E F ( t ,  o n ( x , l )  A x # y -+ 7on(y,l))) 

1.4 v t ( B E L I E F ( t ,   color(^,^) A c f d -+ ~ c o l o r ( ~ , d ) ) )  

Using the laws 1.1 to 1.4 and the beliefs 1.5 to 1.16 the following additional beliefs can be derived, 
1.17 B E L I E F  (tl, (A, B )  ) 1 . 1 8  T E E L I E F  (tl, on (A,  B )  ) 
1.19 B E L I E F  (tl ,  Ton ( B , A )  1 1 . 2 0  l B E L I E F ( t 1 ,  o n ( B , A ) )  

268 



1.21 BELIEF (tl, (A,  L 2 )  ) 1 . 2 2  TBELIEF (tl,  on (A,  L2) ) 
1.23 B E L I E F  (tl, Ton (B ,  L 1 )  ) 1 . 2 4  T B E L I E F ( t 1 ,  o n ( B , L l )  
1.25 B E L I E F  (tl, l c o l o r  ( A , B l u e )  ) 1 . 2 6  I B E L I W  (ti ,  c o l o r  ( A , B l u e )  
1.27 B E L I E F  ( t l ,  l c o l o r  ( B , R e d )  ) 1 . 2 8  T B E L I E F  (tl, c o l o r  ( B , R e d )  ) 

Assume that there are two robots: the painting robot and the block moving robot. Let the painting robot 
paint the block B using R e d  paint and at the same time let the block-moving robot move the block B to 
location A. The action p a i n t  (B,  R e d )  has no preconditions but it causes the color of B to be R e d .  
The action m o v e  ( B, A) requires that both the blocks B and A be clear. The post-condition of perform- 
ing the action move (B, A )  is that the block B is on A. As the preconditions of both the actions are 
believed at t 1, both the actions can be carried out in parallel. From the axiom of parallel actions this is 
equivalent to revising t l  with respect to on (R, A) and with respect to c o l o r  (B ,  R e d ) ,  to give the 
time point t2. Using the axioms of expansion, contraction and revision the time point t 2  can be derived 
from the time point t 1. The state of the world at t 2  is given below. 
2.5 B E L I E F  ( t 2 ,  Tclear  ( A )  ) 2 . 6  TBELIEF  ( t 2 ,  c lear  ( A )  
2.7 B E L I E F  ( t 2 ,  c l ea r  ( B )  ) 2 . 8  7 B E L I E F  ( t 2 ,  l c l e a r  ( B )  ) 
2.9 B E L I E F  ( t 2 ,  on (A,  L1) ) 2 . 1 0  l B E L I E F ( t 2 ,  l o n ( A , L l )  1 
2.11 B E L I E F  ( t 2 ,  (B ,  L 2 )  ) 2.12 TBELIEF  ( t 2 ,  on ( B ,  L 2 )  ) 
2.13 B E L I E F  ( t 2 ,  co lo r  ( A , R e d )  ) 2 . 1 4  ?BELIEF  ( t 2 ,  l c o l o r  ( A , R e d )  ) 
2.15 B E L I E F  ( t 2 ,  l c o l o r  ( B ,  B l u e )  ) 2 . 1 6  TBELIEF  ( t 2 ,  c o l o r  (B,  B l u e )  1 
2.17 B E L I E F  (t2, Ton (A, B )  ) 2 . 1 8  ?BELIEF  (t2, on ( A , B )  ) 
2 . 1 9 B E L I E F  ( t 2 ,  o n ( B , A )  ) 2 . 2 0  l B E L I E F ( t 2 ,  l o n ( B , A ) )  
2.21 B E L I E F  ( t 2 ,  Ton (A,  L 2 )  ) 2 . 2 2  7 B E L I E F  ( t 2 ,  on (A ,  L 2 )  
2.23 B E L I E F  ( t 2 ,  Ton (B ,  L 1 )  ) 2 . 2 4  -BELIEF ( t 2 ,  on (B ,  L1) ) 
2.25 B E L I E F  ( t 2 ,  l c o l o r  ( A , B l u e )  ) 2 . 2 6  l B E L I E F ( t 2 ,  co lo r  ( A , B l u e )  ) 
2 . 2 7 B E L I E F ( t 2 ,  c o l o r ( B , R e d ) )  2 . 2 8  l B E L I E F ( t 2 ,  l c o l o r ( B , R e d )  1 

Note that not only the formula on (B ,A)  i s  believed, but all its consequences, namely l c l e a r  (A) 
and Ton (B ,  L 2 )  are also believed. Similarly the formula color (B, Red) and its consequence 
- c o l o r  ( B ,  B l u e )  are also believed. Thus the principles of minimal change and maximal coherence 
solves two of the important problems in planning; the frame problem 1131 and ramification problem 191. An 
alternative approach to planning using the principles of minimal change and maximal coherence at the 
meta-level is discussed in [5 ] .  

In order to obtain a completely autonomous masoning system, capable of dynamic rcasoning and reac- 
tive planning, the architecture mentioncd in this paper should be extended to a beliefdesire-intention archi- 
tecture 1161. The principles of minimal change and maximal coherence can then be used not only for 
change in beliefs. but also for change in desires and intentions. Such a system would act like a dynamic 
reasoning system as described in this paper and as a reactive planning system as described in 181. Such a 
system would be able to react rationally, within 3 reasonable amount of time, without any human interven- 
Lion, to any unforeseen situation and will be ideal for space-based applications. 

5. Conclusion 
This paper presents a dynamic belief system capable of representing and reasoning about change. The 
dynamic rcasoning system based on the dynamic belief system embodies two general principles of change, 
namely minimal change and maximal coherence. The dynamic reasoning system can be used as a module 
for a more general purpose autonomous reasoning system capable of reacting to any unforeseen cir- 
cumstances. Such systems will prove to be crucial for future space based AI systems. 

Acknowledgements 
The rescxch was partially supported by the Sydney University Postgraduate Research Award. The research 
was carried out when the authors were visiting IBM. The authors wish to express their thanks to IBM for 
its generous funding during this period. 

269 



References 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Alchourron, 
Contraction 
pp. 510-530 

C., Gardenfors, P., and Makinson, D., “On the Logic of Theory Change: Partial Meet 
Functions and their associated Revision Functions,’’ Journul of Symbolic Logic 50, 
(1985). 

Chellas, B. F., “Basic Conditional Logic,” Journal of Philosophical Logic 4, pp. 133-153 (1975). 

Chellas, B. F., Modal Logic: An Introduction, Cambridge University Press (1980). 

Doyle, J., “A Truth Maintenance System,” Artificial Intelligence 12, pp. 231-272 (1979). 

Foo, N.Y. and ASRao, “Belief Revision in a Microworld,” Technical Reort No. 325 , Department 
of Computer Science, University of Sydney, Sydney (1988). 

Gardenfors, P., Knowledge in F l u :  Modeling the Dynamics of Epistemic States, Bradford Book, 
MIT Press, Cambridge, Mass. (1988). 

Georgeff, M. P. and Lansky, A. L., “Procedural Knowledge,” Proceedings of rhe IEE Special Issue’ 
on Knowledge Representation 74, pp. 1383-1398 (1986). 

Georgeff, M. P., Lansky, A. L., and Schoppers, M. J., “Reasoning and Planning in Dynamic 
Domains: An Experiment with a Mobile Robot,” Technical Note 380. SRI International, Menlo 
Park, California (1987). 

Ginsberg, M. L. and Smith, D. E., “Reasoning About Action I: A Possible Worlds Approach,” in 
The Frame Problem in ArtiBcial Intelligence, ed. F. M. Brown, Morgan Kaufmann, LOS Altos 
(1987). 

Halpern, J. Y. and Moses. Y. 0.. “A Guide to the Modal Logics of Knowledge and Belief,” 
Proceedings of the Ninth International Joint Conference on Artijicial Intelligence(IJCAI-85), Los 
Angeles (1985). 

Kleer, J. de, “An Assun ption-based TMS,” Artificial Intelligence 28, pp. 127-162 (1986). 

Lewis, D., Counterfactuals, Harvard University Press, Cambridge, Mass. (1973). 

McCarthy, J. and Hayes, P. J., “Some Philosophical Problems from the Standpoint of Artificial 
Intelligence,” pp. 463-1‘02 in Machine Intelligence, ed. D. Michie, American elsevier, New York 
(1969). 

Mendelson, E., Introduction to Mathematical Logic, D. Van Nostrand Company, New York (1979). 

Moore, R. C., “Semmtical Considerations on Nonmonotonic Logic,” Artificial Intelii;. nce 25 
(1985). 

Pollack, id. E., Israel, D. J., and Bratman, M. E., “Towards an Architccture for Resource-bounded 
Agents,” Technical No:e 425 , SRI International, Menlo Park (1987). 

Rao, A. S., “Dynamics of Belief Systems: A Philosophical, Logical and AI Perspective,” PhD 
Thesis@ preparation), , Department of Computer Science, University of Sydney, Sydney (1988). 

2 7 0  



Strategies for Adding Adaptive Learning Mechanisms to 
Rule-Based Diagnostic Expert Systems* 

D.C. St. Clair**, W.E. Bond, 
C. L. Sabharwal Keith Hacke 
University of MO--Rolla 
Graduate Engineering Center 
St. Louis, MO 63121 

McDonnell Douglas Research Laboratories 
St. Louis, MO 63166 

ABSTRACT 

Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores 
necessary in today's complex space systems. These expert systems typically take a set of 
symptoms as input and produce diagnostic advice as output. The primary objective of such expert 
systems is to provide accurate and comprehensive advice which can be used to help return the space 
system in question to nominal operation. 

The development and maintenance of diagnostic expert systems is time and labor intensive 
since the services of both knowledge engineer(s) and domain expert(s) are required. The use of 
adaptive learning mechanisms to incrementally evaluate and refine rules promises to reduce both 
time and labor costs associated with such systems. This paper describes the basic adaptive learning 
mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next, 
basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert 
systems. These strategies support the incremental evaluation and refinement of rules in the 
knowledge base by comparing the set of advice given by the expert system (A) with the correct 
diagnosis (C). Techniques are described for selecting those rules in the knowledge base which 
should participate in adaptive learning. 

The strategies presented may be used with a wide variety of learning algorithms. Further, 
these strategies are applicable to a large number of rule-based diagnostic expert systems. They may 
be used to provide either immediate or deferred updating of the knowledge base. 

INTRODUCTION 

The basic architecture of rule-based diagnostic expert systems is shown in Figure 1. 
Symptoms describing the failure to be diagnosed are entered into the expert system via the user 
interface. The system then "reasons" over the set of symptoms, asking for additional information 
if necessary. At the conclusion of the "reasoning" process, the expert system provides 
suggestions for correcting the anomalies of the system under diagnosis. As can be seen in 

* This work was supported by the McDonnell Douglas Independent Research and 
Development program and by Statement of Work WS-MDRL-2703 with the 
University of MO-Rolla Graduate Engineering Center. ** D. St. Clair's Bitnet address is C0567@UMRVMB. 

271 



Symptoms 3 
User Interface 
> 

I I Inference Engine 

I V 
Knowledge Base 

Facts & Rules I 
Adjust 
Repair 
Replace 
Reconfigure 
Explanation 
No Advice 

Knowledge Engineer(s) 
Domain Expert(s) 

Figure 1. Rule-Based Diagnostic Expert System Architecture. 

Figure 1, this advice can take one or more forms. It is also possible that the system will be 
unable to provide any advice. Of course, the objective of a well-designed expert system is to 
provide both accurate and comprehensive advice. 

The basic components of a rule-based expert system are a knowledge base and an inference 
engine. The knowledge base consists of a set of facts and a set of rules. Although actual 
knowledge representations vary from application to application, the rules are logically equivalent 
to the form: 

H + K  

where set H contains one or more elements from the description space. The description space, 
determined by knowledge engineers and domain experts, contains all the propositions and 
negated propositions used to describe the environment. Set K contains a set of actions to be 
performed. These actions may modify the knowledge base and/or cause external actions to be 
performed. Without loss of generality, the remaining discussion assumes that each rule 
conclusion contains a single action such as "replace part C6." 

Clearly, expert system performance is directly related to the accuracy and 
comprehensiveness of rules in the knowledge base. One basic approach to evaluating rule 
accuracy and comprehensiveness has been to compare the system's advice with the correct 
diagnosis. Correct diagnoses come from domain experts themselves and/or from observing the 
actions required to remove anomalies from the system being repaired. Once this comparison is 
made, a form of learning is initiated in an effort to upgrade the knowledge base and thus improve 
the expert system's diagnostic accuracy. The most common approach to learning in this situation 
utilizes domain experts and knowledge engineers to manually revise the contents of the 
knowledge base. Although St. Clair et al. [ 101 have suggested a technique to assist in this 
endeavor, manual updating of rules is still time and labor intensive. 

272 



Attempts are currently under way to develop machine learning techniques which can be 
used to automate revision of the knowledge base. Both nonincremental and incremental 
techniques have been developed. Nonincremental learning techniques perform all learning at a 
given point in time. While the learning process may be repeated periodically, these techniques 
require that all accumulated test cases be processed at once [4,7]. Other techniques use 
incremental learning mechanisms which continuously update portions of the knowledge base 
[9,11]. They attempt to improve the accuracy of advice by refining the components of existing 
rules. Incremental learning techniques seek to improve the comprehensiveness of advice by 
creating new rules as necessary. 

The following section outlines some of the basic adaptive learning mechanisms. It is 
followed by a discussion of how expert system advice is classified. Then, strategies for adding 
adaptive learning mechanisms to rule-based diagnostic expert systems are discussed. 

BASIC ADAPTIVE LEARNING MECHANISMS 

In diagnostic expert systems, adaptive learning mechanisms utilize the input symptoms, the 
current knowledge base, and the correct diagnosis to produce an updated knowledge base. 
Approaches range from simple to highly specialized. Figure 2 illustrates the basic relationship of 
these components. The adaptive learner continuously applies various learning mechanisms to 
selected rules in the knowledge base. 

Adaptive learning strategies fall into one of six basic categories [1,3,9]: strengthening, 
weakening, unlearning, generalization, discrimination, and discovery. Strengthening and 
weakening mechanisms are used to reward correct rules and to penalize incorrect rules. They 

Symptoms 3 
User Interface 

[>J Inference Engine 
.a:: 
:.:.>: .:e.:. 

I V 
Knowledge Base I Facts & Rules 

1 A J 

Adaptive Learner U 

Adjust 
Repair 
Replace 
Reconfigure 

Advice 

Explanation 
No Advice 

Correct Diagnosis c 
Figure 2. Adaptive Rule-Rased Diagnostic Expert System 

Architecture. 

273 



may be implemented by keeping individual rule statistics about the number of times the rule has 
fired and the number of times it participated in a rule chain leading to an element of the correct 
diagnosis. These experience indicators can be used to effect future rule firings and to indicate the 
strength of the advice given in the expert system output. 

Unlearning has received little attention in the literature [5 ] .  Unlearning involves the 
removal of undesirable rules from the knowledge base. Experience indicators may be useful in 
deciding which rules to remove. 

Generalization is the process of reducing the number of propositions andor negated 
propositions in a rule's hypotheses. The overall result is to make the hypotheses less restrictive. 
The rule then becomes applicable in a larger number of situations. The need for generalization is 
easily identifiable in situations where a rule which should have fired did not fire. This condition, 
called an error of omission, usually indicates that the rule hypotheses were overly restrictive. 
Generalizing a set of rules may make it possible to combine several rules into one. Good 
generalization mechanisms are hard to define due to the difficulty of deciding which propositions 
can be removed from the rule hypotheses. Bundy et al. [3] provide some suggestions along this 
line. 

Discrimination produces results which are essentially the opposite of generalization. In 
discrimination, propositions or negated propositions are added to a rule's hypotheses to restrict 
its firing. Discrimination mechanisms are usually easier to define than generalization 
mechanisms. Some algorithms [7,9] treat discrimination and generalization as complementary 
processes. Bundy et al. [3] gives an example to show that they are not fully complementary. 

Discovery mechanisms utilize input symptoms and the current knowledge base to create 
new rules. These mechanisms are necessary whenever the expert system gives incomplete 
diagnostic advice or no advice at all. They must decide which propositions and negated 
propositions from the description space should constitute the hypotheses of each new rule. The 
list of symptoms is generally quite helpful in this regard. Discovery mechanisms may become 
quite complex in situations where extensive new rule chains must be constructed. As is indicated 
in a later section, the most difficult part of discovery learning is deciding when to apply it. 

general set of adaptive learning mechanisms. The analytical approaches include the incremental 
and nonincremental classes of techniques mentioned earlier. Many approaches attempt to 
perform logical equivalents of the basic mechanisms described. In cases where knowledge 
relationships are not complex, a set of simple heuristics may suffice for implementing the 
learning mechanisms [9]. 

Both heuristic and analytical approaches are being applied in an effort to develop a good 

CLASSIFICATION OF EXPERT SYSTEM ADVICE 

The foundation for deciding how to add adaptive learning mechanisms to rule-based 
diagnostic expert systems is based on comparing expert system advice with correct diagnoses. 
Accordingly, let A denote the advice set produced by a diagnostic expert system in response to a 
given set of input symptoms. The elements of A are the consequents produced as a result of one 
or more rule chains fired by the inference engine. As indicated earlier, assume that each rule 
chain terminates with a consequent containing a single piece of diagnostic advice such as "adjust 

2 7 4  



Figure 3. Comparison of Expert System Advice 
with Correct Diagnosis. 

part D5." Further, let C represent the correct diagnosis. As suggested by St. Clair et al. [lo], 
the comparison of these two sets forms the foundation for evaluating expert system output. 
Figure 3 illustrates the three cases which may arise. 

The elements of set A represent components of diagnostic expert system advice while the 
elements of set C represent components of the correct diagnosis. Hence, 4 E A n C, shown in 
Figure 3, represents a correct piece of advice which was given by the expert system. The 
associated rules have produced a correct system response. The element d, E A - C represents an 
advice component which is incorrect. The associated rules have produced an incorrect system 
response and need revision. The element d, E C - A represents a case in which a component of 
the correct diagnosis was not included as part of the expert system's advice. This occurrence 
indicates a condition where the expert system has failed to provide needed advice, Since two 
different rule chains may produce the same advice, the components of these sets may not be 
distinct. 

Note that the conditions illustrated by Figure 3 are a comparison of expert system output 
with known correct diagnosis. Such a comparison will not identify cases in which incorrect rule 
chains produce correct conclusions. In addition, some erroneous conditions, such as conflicting 
conclusions, cannot be completely uncovered by comparing the contents of sets A and C. 

STRATEGIES FOR ADDING ADAPTIVE LEARNING MECHANISMS 

Given a rule-based diagnostic expert system, a set of input symptoms, and the correct 
diagnosis for this set of symptoms, the adaptive learner must decide how and when to apply the 
various types of adaptive learning mechanisms described earlier (see Figure 2). These 
mechanisms may modify rule statistics, modify rule hypotheses, and/or create new rules. The 
choice of which strategies to apply is based on comparing expert system advice with the correct 
diagnosis as discussed above and illustrated in Figure 3. 

Rule chains terminating in di E A - C represent cases in which the expert system gave 
incorrect advice. At least one rule in each chain has committed an error of commission by firing 
when it should not have fired. The strategy for adding adaptive learning mechanisms calls for 
discrimination to be performed to restrict the firing of the rule. In one prototype system [9], the 
discrimination algorithm was implemented by simply replacing the existing rule by a rule whose 
hypotheses were chosen from the set of input symptoms and whose conclusion was 4. Such a 

275 



simple strategy may not work well in situations in which the rule being modified participates in 
several other rule chains. Rules participating in more than one rule chain will have experience 
indicators which vary from the experience indicators of other rules in the chain. 

Advice components di E A n C represent cases in which the expert system gave correct 
advice. Two situations need to be noted in this case. The first situation involves updating both 
experience indicators for all rules participating in the rule chain. This action does not indicate that 
each rule in the chain is correct but only that it has participated in a rule chain leading to a correct 
conclusion. The second situation calls for deciding whether or not generalization should be 
performed. For instance, if two or more di E A n C have the same conclusion, generalization 
may be desirable. The decision of whether or not to generalize is difficult, as the following three 
simple rules demonstrate. 

Rule 1: 
If part number = B10 

measured value = 101 1, 
temperature range = (70 79) 
intermittent = no 

Then 
replace part B6. 

Rule 2: 
If part number = B 10 

measured value = 10 1 1, 
Then 

replace part B6. 

Rule 3: 
If part number = B10 

temperature range = (70 79) 
Then 

replace part B6. 

All three rules will fire whenever Rule 1 fires. The question arises as to whether generalization 
should be used to replace these rules by a more general rule, and if so, what should be contained 
in the hypotheses of the new rule. This is a difficult question at best. The experience indicators 
utilized in conjunction with some of the techniques mentioned in the previous section may help 
resolve such issues. Even though Rule 1 is the least general, if its accuracy rate is high and its 
times fired statistic is close to that of the other rules, it may be the case that it should be retained 
and the remaining rules should be removed from the knowledge base. 

revision. If one or more rules committed an error of omission by failing to fire when they 
should, the knowledge base is inaccurate. On the other hand, if the knowledge base does not 
contain information pertinent to the diagnostic action di, it is incomplete. The difficulty in 
deciding which case applies is related directly to the complexity of the knowledge base and to the 
rule chains it produces. 

Those di E C - A indicate cases in which the expert system's knowledge base needs 

An error of omission occurs if the knowledge base contains one or more unexecuted rule 
chains which terminate in the appropriate diagnostic action di E C - A. These rule chains may 
not have been executed because one or more hypotheses in the rule chain were not satisfied. In 
the example rules stated above, assume that of the three rules given, Rule 1 is currently the only 
one in the knowledge base and that it did not fire because the expert system had no knowledge of 

276 



the current temperature range attribute. In addition, assume that the correct diagnostic advice was 
to "replace part B6." If the missing attribute is not important to the performance of the rule, the 
error of omission can be corrected by generalizing the rule and removing the temperature range 
attribute. Depending on the complexity of the knowledge base and the rule chains generated, 
finding the rules to generalize and performing the generalization may be a complex process. 

The knowledge base is incomplete when a rule cannot be found which is a candidate for 
generalization. In this case, the knowledge base does not contain information pertinent to the 
diagnostic action di E C - A. In this situation, a discovery learning mechanism should be 
invoked to capture the missing knowledge. Depending on the structure of the knowledge base, 
the discovery learning mechanism may be either simple or complex. One simple discovery 
algorithm uses the value of the input symptoms as the hypotheses of the new rule and the correct 
diagnostic action as the rule consequent [9]. 

The first step in improving existing rules is to identify which rules should be revised. This 
necessitates recording the trace of each rule chain producing system output along with 
corresponding rule unifications. Whenever the adaptive learner is invoked, one or both of the 
rule statistics must be updated. If the rule has participated in a rule chain leading to a component 
of set C, both of the rule's experience indicators should be incremented. If the rule has 
participated in a rule chain leading to a component of set A - C, only the times fired statistic 
should be incremented. The trace provides quick access to these statistics. 

identified. Bundy et al.[3] describe two basic techniques utilized by rule learning programs to 
identify faulty rules. Both approaches are similar in that they only identify the first faulty rule 
within a chain. 

In cases where a rule chain terminates with an element di E A - C, the faulty rules must be 

In the first approach, the actual rule chain is compared with the chain which should have 
fired. Some programs require this ideal chain as input [2] while others [6] attempt to derive it by 
analysis using problem-solving and inference techniques. The first difference between the chains 
indicates the faulty rule. The necessity of identifying the ideal rule chain makes this technique 
difficult to apply. 

The second technique for finding a faulty rule is called Contradiction Backtracking. This 
technique, developed by Shapiro [8] does not require identification of an ideal chain. Assuming 
the actual rule chain concludes with di, Shapiro's algorithm begins by examining the last 
resolution step leading to di. If the propositions which were resolved to produce di are true, 
select the branch of the tree containing these propositions as part of the rule hypothesis, else 
select the other branch. Backtracking up the resolution tree continues in this manner until a rule 
from the rule base is reached. This is the faulty rule. Both Shapiro and Bundy et al. give 
examples of Contradiction Backtracking. 

Unlearning strategies generally require an approach different from those described since 
deciding which rules to "unlearn" can not generally be determined by comparing the results of 
sets A and C. Unlearning strategies require that the experience indicators of each rule in the rule 
set be evaluated periodically. However, care must be taken not to remove a rule simply because 
of poor performance. While a rule that is correct six out of a thousand times is not contributing 
to the overall quality of the knowledge base, it may need to be modified and not merely 
discarded. In addition, rules having a small number of firings but a relatively high percentage of 
correct firings probably should be left in the knowledge base. An individual rule's high 
percentage of correct firings indicates it is participating in correct rule chains. An individual 
rule's low number of firings may indicate that the conditions it identifies are exceptional cases 

277 



Symptoms 3 

Revised 
Knowledge 
Base 

User Interface 

I Inference Engine I 
Validated 

Knowledge Base 
I 

Adaptive Learner 

I Revised 
Knowledge Base I 

Validated 
Knowledge 

Adjust 
Repair 

Reconfigure 
Explanation 
No Advice 

Replace 

/- 

Figure 4. Dual Expert System Architecture. 

and not merely noise in the input symptoms. If the times fired and times correct statistics are 
extremely small, the rule may have been created as the result of noisy input data. 

each time a new piece of information is available. In diagnostic applications where human expert 
intervention is desired before changes are made to the knowledge base, it may be desirable to use 
a dual expert system as illustrated in Figure 4. The inference engine first reasons against the 
symptoms by using the validated knowledge base. It then outputs diagnostic advice. Next, the 
inference engine repeats the diagnosis using the revised knowledge base to produce a second set 
of advice. This advice need not be reported to the user. Upon receipt of the correct diagnosis, 
the adaptive learner updates the revised knowledge base. Knowledge base changes are logged so 
that they may be reviewed by domain experts. This scenario guarantees that the system always 
utilizes the validated knowledge base. However, at any point in time, human experts may review 
the revised knowledge base and, if desirable, use it to replace the validated knowledge base. 

The strategies described provide a means of incrementally updating the knowledge base 

CONCLUSIONS 

Techniques presented in this paper outline basic adaptive learning mechanisms and 
strategies for incorporating them into diagnostic expert systems. Although implementations of 
these strategies and learning mechanisms vary from system to system, the basic concepts are 
applicable to a large number of diagnostic expert systems. Continued research in these areas 
promises to reduce the maintenance costs of diagnostic expert systems. 

278 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Blaxton T. A. and Kushner, B. G., An Organizational Framework for Comparing Adaptive 
Artificial Intelligence Systems, 1986 Proceedings of the Fall Joint Computer 
Conference, IEEE Computer Society, November 1986, pp. 190- 199. 

Brazdil, P., A Model for Error Detection and Correction, Ph.D. Dissertation, University.of 
Edinburgh, 198 1. 

Bundy, A., Silver, B., and Plummer, D., An Analytical Comparison of Some 
Rule-Learning Programs, Artificial Intelligence, Vol. 27, 1985, pp. 137-181. 

Cheeseman, P., Kelly, J., Self, M., Stutz,, J., Taylor, W., and Freeman, D., AutoClass: A 
Bayesian Classification System, Proceedings of the Fifth International 
Conference on Machine Learning, Morgan Kaufmann Publishers, Inc., June 1988, 
pp. 54-64. 

Markovitch, S. and Scott, P. D., The Role of Forgetting in Learning, Proceedings of 
the Fifth International Conference on Machine Learning, Morgan Kaufmann 
Publishers, Inc., June 1988, pp. 459-465. 

Mitchell, T.M., Utgoff, P.E., and Banerji, R., Learning by Experimentation: Acquiring 
and Modifying Problem-Solving Heuristics, Machine Learning, R.S. Michalski, J.G. 
Carbonell, and T.M. Mitchell (Ed.s), Palo Alto, CA: Tioga, 1983, pp. 163-190. 

Quinlan, J.R., Induction of Decision Trees, Machine Learning, Vol. 1, 1986, 

Shapiro, E., An Algorithm That Infers Theories From Facts, Proceedings of the 
Seventh International Joint Conference on Artificial Intelligence, Los Altos, 
CA: William Kaufmann, Inc., 198 1, pp,, 446-451. 

pp. 8 1 - 106. 

St. Clair, D. C., Bond, W. E., Flachsbart, B. B., and Vigland, A. R., An Architecturefor 
Adaptive Learning in Rule-Based Diagnostic Expert Systems, 1987 Proceedings of the 
Fall Joint Computer Conference, IEEE Computer Society, October 1987, 

St. Clair, D. C., Bond, W. E., and Flachsbart, B. B., Using Output to Evaluate and Refine 
Rules in Rule-Based Expert Systems, Proceedings of the Third Conference on 
Artificial Intelligence for Space Applications, Part I," NASA Conference 
Publication 2492, November 1987, pp. 9-14. 

Utgoff, P. E., IDS: An Incremental 103, Proceedings of the Fifth International 
Conference on Machine Learning, Morgan Kaufmann Publishers, Inc., June 1988, 

pp. 678-685. 

pp. 107-120. 

2 7 9  



N89- 1 5 5 8 8  

An Architecture for an Autonomous Learning Robot 

Brian Tillotson 
Boeing Electronics 

Seattle WA 98 124-6269 
P.O. BOX 24969 M / S  75-24 

ABSTRACT 

An autonomous learning device must solve the example bounding problem, i.e., it must 
divide the continuous universe into discrete examples from which to learn. We describe an 
architecture which incorporates an example bounder for learning. The architecture is 
implemented in the GPAL program. An example run with a real mobile robot shows that the 
program learns and uses new causal, qualitative, and quantitative relationships. 

INTRODUCTION 

A long term goal of AI research is to produce an autonomous machine that acts as a 
surrogate for human beings. The machine must perceive the physical environment and be able 
to change it in useful ways. The machine should accept new goals from a human at any time. 
When the machine does not know how to achieve its goals or has none pending, it should do 
experiments to fill gaps in its knowledge. This need for self-guided learning is a major 
obstacle in building a human surrogate machine. 

Machine learning research has rarely addressed the requirement we call example 
bounding. In most machine learning work, the events or examples from which the system 
learns are somehow bounded or defined before they are input to the learning system. This 
approach is inadequate for an autonomous machine, which cannot generalize unless it 
somehow divides the continuous universe into discrete examples. Dieterrich and Michalski[3] 
briefly address the problem in their program SPARC/E, which plays a card game in which a 
pattern must be learned. The program is initially unsure whether the pattern is based on the last 
one, two, or three cards played, so it adjusts the temporal boundaries of events until a 
meaningful pattern can be recognized. 

For humans, example bounding often seems to be guided by temporal or spatial 
proximity.[l] We have designed and tested an example bounder which uses temporal 
information to group simple events into examples for inductive learning.[5] If a temporal rule 
is known to link events of two concepts, then that rule is used to guide the quick, accurate 
formation of examples. If no such rule is known, then examples are formed by temporal 
clustering. 

Here we propose an autonomous learning device architecture which incorporates an 
example bounder. We describe the overall architecture and examine each of its major 
components. We briefly describe an implementation of the architecture, and present an 
example run. Finally, we discuss the significance of this work and some areas for future 
work. A glossary is appended at the end of the paper. 

OVERVIEW OF PROPOSED ARCHITECTURE 

The architecture we propose is illustrated in Figure 1. It has four major components: a 
planner, a temporal database of events, a body of conceptual knowledge, and a learner. The 

PREZBDING PAGE BLANK NOT FlLMED 281 



planner controls the creation of new events. Primitive events correspond to actuator commands 
and sensor inputs; derived events are recognized or computed from simple events or other 
derived events. The event database maintains information about temporal relationships 
between events. Conceptual knowledge is divided two ways: a concept is either a descriptor or 
a rule, and either an hypothesis or a theory. The learner incrementally forms new hypotheses 
by constructive induction, and uses the planner to carry out experiments which verify or refute 
hypotheses. 

The top-level control of the architecture recognizes three situations. First, if there is a 
pending goal from the user and the system knows how to achieve the goal, then the planner 
acts to achieve the goal. Second, for a pending goal which the system does not know how to 
achieve, the learner concentrates its research on concepts related to the goal. Third, with no 
pending goals, the learner studies concepts which it heuristically determines to be interesting. 

Sensors Actuators 

I t 

User - 

The Planner 

I I 

I I  Event DB 

Pr im i t i ve  Events Derived Events 
I I 
I I 

Concept DB 

Ver i f i e r  

Figure 1. Proposed architecture for autonomous devices. 

A goal is input to the planner as a description of a desired event. The concept 
associated with such an event can have execution knowledge attached to it; the planner uses that 
knowledge. If no execution knowledge exists, and background knowledge fails to solve the 
problem, then the planner signals a failure. 

The Temporal Database of Events 

The temporal database has some of the features of a time map management system.[2] 
It maintains a temporal partial order of all events, and can determine the temporal relationship 
between any two events, including the temporal distance between them. 

282  



Conceptual Knowledge 

Conceptual knowledge embodies the system's understanding of the universe. It is 
divided two ways: a concept is either a descriptor or a rule, and either an hypothesis or a 
theory. 

Descriptor concepts represent attributes, such as temperature or acceleration. Primitive 
descriptor events are sensor inputs or actuator commands. Values of derived descriptor events 
are computed from the values of other events; the knowledge of how to do these computations 
is part of the descriptor concept. Knowledge attached to each descriptor includes the range of 
observed values. 

Rule concepts make predictions in the form, "the presence of a certain type of event 
implies the presence of another type of event with a specified temporal relationship to the first 
event". A rule event is a pair of descriptor events which satisfies the rule. Each rule has 
knowledge of its counter-examples, i.e. events which satisfy the rule's premise but not its 
conclusion. 

A rule hypothesis is a rule which has not been confmed often enough to be considered 
reliable, but which is not obviously false. For example, it might have only one observed 
example and no counter-examples. The verifier knowledge source decides when a rule 
hypothesis is reliable enough to be a theory, using criteria in the verifier's background 
knowledge. An example criterion is that the concept must have at least three examples, and the 
number of counter-examples must be less than 10% of the number of examples. The refuter 
knowledge source decides when a rule hypothesis is so unreliable that it should be forgotten, 
e.g. when there are at least three counter-examples, and the number of counter-examples is at 
least 30% of the number of examples, 

A descriptor hypothesis is a descriptor which is not yet known to be useful. A 
descriptor can be useful in three ways: it can be an observed constant, it can be a term in a rule 
theory, or it can be a sub-concept of one of these. Our use of observed constants for learning 
is akin to BACON.[4] The verifier uses background knowledge to decide when a descriptor is 
a reliable and useful constant. Sub-concepts of constants or rules automatically become 
theories when the concepts they support become theories. 

The Learner 

The conceptual structure of the learner shown in Figure 2 comprises a topic selector, a 
hypothesis tester, a surprise monitor, and an induction system. 

The topic selector decides what theory to investigate. Evaluation criteria include the 
number of applicable hypotheses and the relationship to unmet goals. The most promising 
theory becomes the topic. The planner tries to produce an example event, called the topic 
event. 

The hypothesis tester determines whether the topic event acts to support or refute any 
hypotheses. If supportive, the event and the hypothesis are passed to the verifier, which may 
promote the hypothesis to a theory; otherwise, they are passed to the refuter. 

The surprise monitor notices and tries to explain events that defy expectations. For 
example, a new event may dramatically extend the observed range of a descriptor. The 
surprise monitor would search for events which might have caused this change, e.g. the first 
event of an actuator descriptor. If a plausible cause is found, the surprise monitor forms a rule 

283 



hypothesis (and necessary supporting descriptors) to predict such cause-effect pairs in the 
future. 

4 

The major elements of the induction system are the partner selector, the example 
bounder, and the induction element. The partner selector heuristically chooses a descriptor to 
be paired with the topic concept. The example bounder pairs individual events of the topic with 
events of the partner. These event pairs serve as examples for the induction element, which 
uses constructive generalization rules to find hypotheses relating the topic concept to the partner 
concept. 

Par tner  Example Induc t ion  
Se lec t i on  Bounder Element 

Theor ies 

I c 
Topic Se lec to r  

Tes te r  

Re fu te r  V e r i f i e r  

I Induc t ion  Sys tem I 
+ 
,Hypotheses 

- -~ ~ 

Figure 2. Learner Components 

IMPLEMENTATION AND TEST 

We have implemented a simple version of the proposed architecture in the general 
purpose autonomous learner (GPAL) program. GPAL has been applied to learning about the 
world of a mobile robot. 

GPAL is implemented in Common LISP and remotely controls a Heatwenith HERO 
2000 mobile robot. Primitive descriptors known to GPAL at start-up are: 

1) Send out a SONAR pulse. 
2) MOVE the robot forward or backward some distance. 
3) Sense the DISTANCE to a wall in front of the robot. 

Unknown to GPAL, SONAR events cause DISTANCE events; DISTANCE events 
cannot be instantiated alone. The robot faces a wall, so the value returned by DISTANCE 
changes in proportion to the value of MOVE events. 

284 



An annotated trace of a GPAL run is listed below. Comments are in italics. Events are 
shown by name, e.g. EVENT-2071, and by content, e.g. (DISTANCE 90). For clarity and 
brevity, no individual events are shown after cycle 3. 

> (gpal) 

"Topic-event : (SONAR) 
"Making rule SONAR-DISTANCE-UNEXPECTED" 
"Making rule DISTANCE- SONAR-UNEXPECTED " 
End cycle 0 

EVENT-2064 (SONAR) 
EVENT-2071 (DISTANCE 90) 

In cycle 0, GPAL studies SONAR. A SONAR event is created, and a DISTANCE 
event occurs as an unexpected side-effect. GPAL makes two rule hypotheses from this: 1 )  
That a DISTANCE event will always immediately follow a SONAR event, and 2 )  that a 
SONAR event will always immediately precede a DISTANCE event. 

EVENT-2121 (SONAR) 
EVENT-2124 (DISTANCE 91) 
"Topic-event : (SONAR) (SONAR) 
"Unexplained events since topic-event: (EVENT-2124)" 
End cycle 1 

EVENT-2129 (SONAR) 
EVENT-2130 (DISTANCE 90.5) 
"Topic-event : (SONAR) '' 
"Veri f y ing SONAR-D I S TANCE-UNEXPECTED 
"Verifying DI STANCE-SONAR-UNEXPECTED" 
"Inductive partner: DISTANCE" 
End cycle 2 

In cycles 1 and 2,  GPAL. tests the hypotheses about SONAR and DISTANCE. In 
cycle I ,  the DISTANCE event is unexplained because its value of 91 is outside the previously 
known range of [90]. There is no obvious cause for the extension, and the new value is 
incorporated into the known range of DISTANCE. In cycle 2 ,  enough examples have been 
gathered to verify the rules relating SONAR and DISTANCE. The hypotheses become 
theories. GPAL naively tries to induce a relationship between DISTANCE values and 
SONAR; the example bounder forms examples from event pairs which are examples of the 
learned rules. 

EVENT-2148 (MOVE -20) 
EVENT-2149 (SONAR) 
EVENT-2150 (DISTANCE 109.5) 
"Topic-event: (MOVE -20) 
"Inductive partner: DISTANCE" 
"Unexplained events since topic-event: 
"Making descriptor DELTA-DI STANCE" 
"Making descriptor ABS-DELTA-DISTANCE" 

EVENT-215 

"Making sub-range SR1/2-ABS-DELTA-DISTANCEii 
"Making sub-range SR2/2-ABS-DELTA-DISTANCEii 
"Making rule MOVE-SR2/2-ABS-DELTA-DISTANCE-EXCEPTIONii 
End cycle 3 

285 



In cycle 3, GPAL picks MOVE as the topic. It tries to relate the value of MOVE to the 
value of DISTANCE, so a new DISTANCE event is created (using learned knowledge of how 
to do this). No temporal rule links MOVE and DISTANCE, so the example bounder pairs 
events by temporal proximity. 

The new DISTANCE event has a value far outside the previously observed range. A 
new operator, MOVE, has been used, so the surprise monitor attributes the range extension to 
MOVE. New descriptors are created: change in DISTANCE, size of change in DISTANCE, 
small (SR112: x <= 2.0) and large (SR212: x >= 2.0) size of change in DISTANCE. These are 
used in the rule hypothesis that "each large-change-in-DISTANCE event temporally contains a 
MOVE event". 

"Topic-event : (MOVE 4) " 
"Inductive partner: DISTANCE" 
End cycle 4 

"Topic-event: (DISTANCE 105) '' 
End cycle 5 

"Topic-event: (DISTANCE 99.5) '' 
End cycle 6 

"Topic-event : (MOVE -13) '' 
"Verifying MOVE-SR2/2-ABS-DELTA-DISTANCE-EXCE-EXCEPT1ONg1 
"Verifying SR2/2-ABS-DELTA-DISTANCEv' 
"Verifying ABS-DELTA-DI STANCE" 
"Verifying DELTA-D I STANCE" 
"Inductive partner: ABS-DELTA-DISTANCE" 
End cycle 7 

MOVE and DISTANCE events are generated in cycles 4-7.  In cycle 7,  the verifer is 
convinced that the rule linking MOVE to large changes in DISTANCE is true. The rule 
becomes a theory, which promotes its supporting descriptors to theories. 

example at cycle 24.  
Cycles 8 through 2 3  are fruitless attempts to find other hypotheses. We resume the 

"Topic-event: (MOVE -19) 
"Inductive partner: DELTA-DISTANCE" 
"Making descriptor DELTA-DISTANCE-/--1.028" 
"Making descriptor DELTA-DISTANCE-/--1.028-MINWS-MOVE11 
End cycle 24 

Here MOVE is inductively matched with DELTA-DISTANCE. The example bounder 
pairs events of the two descriptors, using the known temporal link between MOVE and SR212- 
ABS-DELTA-DISTAhK'E. An inductive knowledge source finds a noisy linear relationship 
between the two. This is represented by new descriptor hypotheses. The first is DELTA- 
DISTANCE divided by the slope of a DELTA-DISTANCE vs. MOVE graph; the second is this 
value minus MOVE, which is equivalent to the y-intercept divided by the slope. The second 
descriptor will be nearly constant if the linearity holds. There are previous examples, but the 
verifier requires at least one more example afer an hypothesis has been proposed. 

286 



"Topic-event : (DELTA-DISTANCE -1) 'I 
"Inductive partner: DISTANCE" 
End cycle 25 

"Topic-event : (SONAR) 
"Inductive partner: SR2/2-ABS-DELTA-DISTANCE1' 
End cycle 26 

"Topic-event : (ABS-DELTA-DISTANCE 0)  
End cycle 27 

"Topic-event: (SR2/2-ABS-DELTA-DISTANCE 19.5)" 
"Inductive partner: DISTANCE" 
End cycle 28 

"Topic-event : (MOVE -6) It 

"Verifying DELTA-DISTANCE-/--1.028-MINUS-MOVE11 
"Verifying DELTA-DISTANCE-/--1.02811 
"Inductive partner: DISTANCE" 
End cycle 29 

In cycle 25, GPAL tries to create a DELTA-DISTANCE-I--I ,028-MINUS-MOVE 
event, but fails; the new descriptor is neither verified nor refuted. In cycle 26, a new example 
is created, but GPAL is only looking at super-concepts of the topic, SONAR. A similar 
missed opportunity comes in cycle 28. In cycle 29, GPAL returns its attention to MOVE, 
makes a new DELTA-DISTANCE-I--I .028-MINUS-MOVE event, and verifies that the 
descriptor is relatively constant. Both descriptor hypotheses are promoted to theories. Aside 
from slight numerical adjustments, GPAL now understands everything in its environment. 

DISCUSSION 

We have described the example bounding problem, and claimed that solving this 
problem is a key to building autonomous machines that learn and are useful. We have 
proposed a machine architecture which incorporates an example bounder. The architecture has 
been implemented in the GPAL program. 

Tests of the GPAL program with a mobile robot show that it is able to learn the rules 
governing a simple real environment. The example bounder plays a vital role, forming the 
examples from which GPAL learns the linear relationship between MOVE and DELTA- 
DISTANCE. GPAL's gradual learning of the relationship between MOVE and DISTANCE 
shows a conceptual progression from qualitative physics to quantitative understanding. Early 
on, GPAL learns that MOVE causes large changes in DISTANCE. Later, it quantifies that 
relationship. Both sets of knowledge are retained and are available to the planner. 

It remains to be shown that the proposed architecture is adequate for general robot 
learning in complex environments. We will incorporate real-time visual information and two- 
dimensional motion in the future. Such tests require more heuristics for learning so that GPAL 
can recognize more subtle regularities in its environment. Greater noise adaptation is 
particularly important; the heuristics used now sometimes cannot handle the noise of the current 
environment. 

We have barely addressed forgetting, an issue which will gain importance as learning 
machines with finite memories begin to learn over long times and many domains. Our 

287 



architecture addresses only the forgetting of refuted hypotheses. Forgetting of events and of 
easily re-learned concepts will need to be addressed eventually. 

GLOSSARY 

We use the following definitions: 

Attribute: a measurable or observable feature, e.g. weight or color. 
Complex event: an event comprising two or more simple events, used as input to an inductive 

Concept: a rule or a descriptor. 
Derived concept: a concept which is defined in terms of one or more other concepts. 
Instantiation: creation of the data object which represents a simple event of a specified concept. 
Primitive: a descriptor defined by the machine in which the system runs. The instantiation side 

effects of primitives are the means by which the device interacts with the world. 
Simple event: a single observation of one attribute, or an example illustrating a law. 
Subconcept: one of the concepts from which a derived concept was derived. A primitive has 

no sub-concepts. 
Super-concept: a derived concept is a super-concept of concepts from which it is derived. 

learner. 

REFERENCES 

1. Anderson, J.R., "Causal Analysis and Inductive Learning", Proc. of 4th 
International Workshop on Machine Learning, 1987,288-299. 

2. Dean, T.L., and D.V. McDermott, "Temporal Database Management", Artificial 
Intelligence 32, 1987, 1-56. 

3. Dieterrich, T.G., and R.S. Michalski, "Discovering Patterns in Sequences of 
Events", Artificial Intelligence 25,1985,288-299. 

4. Langley, P, G.L. Bradshaw, and H.A. Simon, "Rediscovering Chemistry with the 
BACON System", in Machine Learninq, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, 
eds., Tioga, Palo Alto, 1982. 

5. Tillotson, B., C. Lin, and J. Bezdek, "Creating Input Sets for Inductive Learning 
from Simple Events", Roc. of SPIE Applications of Artificial Intelligence VI, 1988,273-277. 

288 



TOWARD A COMPUTATIONAL THEORY FOR MOTION 
UNDERSTANDING: THE EXPERT ANIMATORS MODEL 

Ahmed S. MOHAMED 
William W. ARMSTRONG 

Department of Computing Science 
The University of Alberta 

Edmonton, Alberta, Canada T6G 2H1 

ABSTRACT 

Artificial intelligence researchers claim to "understand" some aspect of human intelli- 
gence when their model is able to "emulate" it. In the context of computer graphics, the abil- 
ity to go from motion representation to "convincing" animation should accordingly be treated 
not simply as a mck for computer graphics programmers but as important epistemological 
and methodological goal. In this paper we investigate a unifying model for animating a 
group of articulated bodies such as humans and robots in a three-dimensional environment. 
The proposed model is considered in the framework of knowledge representation and pro- 
cessing , with special reference to "motion" knowledge. The model is meant to help setting 
the basis for a computational theory for motion understanding applied to articulated bodies. 

[l] INTRODUCTION 
Articulated body movements cannot be understood by using the current techniques of computer animation 

even if they incorporate dynamics to model every detail. There is a significant difference between "understand- 
ing" the motion and "synthesizing" it. This is the difference between the point of view of "cybernetics" and the 
point of view of "computer graphics". The latter starts from a set of trajectories or forces and torques acting on 
a body, and tries to account for the resulting movement: "how is the arm going to move if the hand has to follow 
such a trajectory?", "how is the body going to react if the legs are exerting such a force on the ground?". 

The point of view of cybernetics is just the opposite: it starts from the definition of the goal (a desired 
behaviour) and then tries to force the system to follow it, possibly using a large range of current motion control 
techniques, either of the feedback or feedforward type. The emphasis, in this case, is on the knowledge that is 
required to produce fluent natural motion performance: sensory knowledge, motor knowledge, knowledge pro- 
cessing, abstract representation of knowledge structures. These are all incorporated in our term "motion" 
knowledge. 

In AI terminology, knowledge representation means defining concepts and rules able to capture the essen- 
tial complexity of a given problem domain that escapes a direct approach [20]. Thus, a knowledge representa- 
tion approach emphasizes the "goals" and the "functions" of a system rather than its specific mechanisms, and in 
so doing it generalizes and abstracts our understanding of the system, since it is likely that different mechanisms 
can be found that can implement the same function and goal. 

Although knowledge representation and processing are "hot" topics in artificial intelligence research, very 
few attempts have been made to help understand motion, which means to build up a model of "motion" 
knowledge. In this paper, we concentrate on the knowledge aspects of motion and propose a unifying model for 
animating a group of articulated bodies that we hope will be useful for investigators who are dealing with articu- 
lated body animation in the large. This includes neuroscientists, biomechanists, dance designers, motor rehabiti- 
tators, computer animators, and robotics researchers. It is believed that all these researchers basically require 

289 



the same type of motion knowledge whether they are writing a computer script for dance ballet, a program for 
figure animation, a control program for simulated robotic manipulator arm, or describing with a symbolic motor 
script the movements of a child or of a motor program for rehabilitation [161. 

To make our point about the need for motion knowledge clear, let us look at "music" which is a complex 
phenomenon similar to motion from many viewpoints. The situation is quite different for music. Indeed, 
Camurri [5] showed how music notation, as an example of a symbolic representation of a complex 
phenomenon, was successfully able to discriminate which aspects of complexity to represent explicitly and 
which to represent implicitly. This successful notation was able to capture the essential structure of music (what 
in AI terms could be called "music" knowledge). It is easy to notice the abstractness and functionality of the 
notation, for example the instruments, are not shown in the notation, nor the way in which a performer plays a 
specific instrument, and the individual style of performance. This adequacy of the music notation symbolism to 
express the essential structure of music is clearIy demonstrated by its ability to survive the advent of computer 
era. 

Music notation can be easily expressed in computer terms and can be used directly to drive computer 
music synthesizers [3] [lq. For dance and movements, on the contrary, the picture is quite different. Dance and 
movement notation methods have proliferated, without finding the same success as music notation, and com- 
puter techniques directly applied to them do not seem so far to pass the basic test the ability to generate from 
the notation a fluent, natural ("convincing") synthetic motion performance [41[221[241. 

In this paper our principle intention is not to look for yet another movement notation or language for 
motion, but to tackle motion from a broader prospective. We basicalIy are trying to produce "convincing" ani- 
mations for a group of articulated bodies such as humans and robots without pressing the animator to become 
overly involved in the mechanisms of producing the motion. We intend to shift this burden from the animator to 
the individual articulated bodies through developing an expert animator agent for each member of the collection 
articulated bodies. These agents have a computational understanding of motion and its semantics in a way that 
each individual articulated body would handle its motion autonomously. They also have the capabilities to 
communicate with each other and with the animator. The model allows each agent to have its own behaviour 
depending on its specific role in the group, duties, areas of responsibilities, etc. 

In previous work [14] [15], we have developed a simulation for a multi-legged articulated robot that could 
be useful in constructing and maintaining structures in space stations such as solar arrays, large multibeam 
antennas, and space factories. The robot used its legs both for locomotion and for object manipulation. From 
our review of space literature, we sometimes noted a requirement for more than one robot, since many tasks can 
only be performed through cooperation of multiple robots. In a sense, we felt that the multi-robot simulation 
would be a mural extension to our single robot simulation. But, the multiple robot extension brought up two 
research issues that do not appeat in the single robot problem: 
(1) The method we used for planning the motion for the single robot was based on the assumption of a static 

environment, and so it can not be used in the multiple robots case because each of the robots is in a 
dynamic environment consisting of other moving robots; 
The technique we used to animate a single robot's motion was based on calculations of the dynamic equa- 
tions of motion that were executed on a distributed processor in order to produce the motion in real time. 
Producing the motion dynamically for the multiple robot case would need much greater processing capa- 
bility that is currently unavailable. 
In order to overcome these two problems and to produce "convincing" animations (as opposed to simula- 

tions) for the group of robots without pressing the user to become overly involved in the mechanisms of produc- 
ing the motion , we have developed an expert animator agent for each robot. Each agent integrates knowledge 
engineering approaches, namely, object-oriented programming and rule-oriented programming [19] [25] with 
computer animation approaches. The object-oriented approach plays a key role in the modeling of the robots' 
inter-relationships, whereas the intelligent functions of each expert animator agent are msparently pro- 
grammed in rule-oriented programming style. In producing animations for the various robots, each robot is con- 
sidered to be an object in the environment. It handles its motion and interactions with other robots as well as 

(2) 

2 9 0  



with the animator autonomously. To program each expert animator agent intelligently in order to make it adapt 
to its environment, we adapted the method of production systems. 

In order to integrate a rule-oriented approach with an object-oriented approach, the concept of ruleset of 
"LOOPS," a programming system developed at Xerox PARC, was very instructive [25]. A ruleset is a sort of 
object which consists of ordered rules with specified control structures for selecting and executing the rules. 
Each agent keeps several rulesets for performing locomotion, avoiding obstacles, deciding task priorities, etc. 

Convincing animations here means that each expert animator agent should be able to maintain the follow- 
ing motion requirements: (1) produce sustained stable locomotion, i.e, maintain its robot orientation, have con- 
trol over its velocity, and avoid obstacles, (2) choose the most appropriate locomotive skill at any point during 
the robot's navigation (e.g. walk, trot, climb, etc.), (3) deal intelligently with the environment (Winkless [29] 
has defined intelligent locomotion as 'I.. the ability to do appropriate movements under unpredictable condi- 
tions"), (4) maintain the robot's static and dynamic stability, (5) ability to combine different locomotion skills 
(e.g, turning while running), (6) achieve smooth transitions between different locomotive skills, (7) prefer the 
paths the robot has traveled on before, (8) reduce total energy consumption in executing the robot's missions, 
(9) perform the robot's task-specific operations elegantly, (10) cooperate with other robots in the environment- 
either avoid colliding with any of them or cooperating with them in any multi-robot task. 

In order for each expert animator agent to satisfy all these requirements, each treats motion in a cognitive 
framework analogous to co-operation among several motion processes. During motion production, these 
processes appear or disappear, modify or repeat themselves. Moreover, each expert animator agent has a 
"motion" knowledge base that provides several levels of sophistication (multiplicity of expressive systems). 
These levels along with the motion processes are embedded in a formal framework that permits animating the 
motion at different levels of detail. Each expert animator agent controls its robot's motion at a descriptive level 
appropriate to the context of its motion. Thus as long as an expert agent determines that its context needs a sim- 
ple style of movement to produce "convincing" animations, simple techniques will be selected by the agent. As 
soon as any agent concludes that its context needs more natural, coordinated, task-oriented, and expressive 
motions, the agent becomes more sophisticated and increases its descriptive level of motion control. 

The power of the expert animator agents lies in their generality and "cognitive penetrability" [18] to varia- 
tions of the basic motion patterns such as uniform trotting, walking over obstacles, overcoming obstacles, etc. 
In other words the expert agents are able to manage the environmental disturbances without any ad hoc 
modification to their methodology in motion production. Their formalization power is generic enough to adapt 
to these disturbances. Moreover, the agents also take care of the robots' interactions with each other. Each 
expert animator agent optimistically executes each robot's plan without taking into account the existence of 
other moving robots. Then when two or more robots detect the danger of collision, they negotiate to refine their 
global path plans in order to avoid collision. 

Relying on their "motion" knowledge bases the expert animator agents employ several levels of reasoning 
in both their negotiations and their answers to the animator's explanation enquiries: (1) Geometric reasoning : 
both static (e.g, "Am I now on top of obstacle oi?") and dynamic (e.g. "Can I use the robot's left front leg to 
reach for the tool t I  and grasp it?"), (2)Common-sense reasoning (e.g, "Should I switch now to running?", 
"Should I allow one of the conflicting robots to go first or ask to allow me to do so?"). 

Actually the multi-robot problem has been investigated in AI under "Distributed Artificial Intelligence 
(DAI)" where multiple intelligent agents are presented with a complex problem solving situation. Various 
aspects of DAI research could be found in 161 171 181 [261. 

The problem has also been investigated in theontical studies of motion planning for multiple moving 
objects under "the Piano Movers problem": the problem of planning the motions of several objects among 
polygonal obstacles. Various aspects and special cases of the research problem could be found in [27]. In this 
paper we tackle the problem from the graphics animation angle, setting our goal to produce "convincing" ani- 
mations that satisfy the aforementioned requirements. 

In Section 2 the expert animators model is described in 
environment. Section 3 presents a simple experimental system 

the context of our multi-robot space station 
to demonstrate our model. Our conclusions 

291 



appear in Section 4. 

[2] THE EXPERT ANIMATORS MODEL 
Figure 1 shows our multi-robot environment. Each robot has its own behaviour that depends on its 

specific tasks in the space station. For example we have satellite expert robots, mechanical expert robots, electri- 
cal expert robots, etc. Each has its own predefined set of control routines for its specific tasks. All the robots are 
"physically" alike (see figure Z), they are articulated with four legs each and 18 degrees of freedom. We 
obtained a crude estimate of the number of degrees of freedom @OFs) which are needed for free locomotion of 
each robot by observing that during locomotion it must ideally be possible to control the six DOFs of the body 
(three translational and three rotational) when it is supported by each of the two alternating rets of legs( at least 
two legs should be in contact with the station ground all the time to achieve static stability). So one might 
expect about twelve DOFs to be a minimum for the four-legged robot. If twelve DOFs are taken as a rough esti- 
mate, they can be distributed among the robot's four legs as three DOFs each. The robots of figure 1 have three 
DOFs for each of their four legs: two at the hip (one for elevation and another for lateral movements) and one 
DOF at the knee. 

Figure 1: The Multi-Robot Expert Animator System 

The robots "live" in a space station that contains obstacles such as blocks, holes, inclines, declines, and 
rough terrain. Some of the obstacles in the environment are small so the robots do not "see" them until they are 
navigating close to them. In such cases, the robots have to modify their motions on the fly to avoid or overcome 
such obstacles upon "perceiving" them. It is important to realize that the robots have no control over what they 
will encounter in the environment before actual motion execution. Winkless [29] defined intelligent motion as 
".. the ability to do appropriate motion under unpredictable conditions". Thus, a preprogrammed motion, highly 
accurate, productive, precisely measured and well cnderstd in each robot cannot be considered an intelligent 
one, since a robot has no ability to cope with unpredictable situations and to choose between alternatives. The 
robots have onboard cameras fixed on top of them. These cameras regularly feed to navigation systems the local 
obstacles that each robot faces. The traversals of the robots are based on a local navigation strategy that use the 
on-board camera information [13] [14]. Each robot is capable of four types of tasks: (1) vision-related tasks: 
scan the surrounding environment- turn the camera 18d- tilte the camera 8' left- align the nearest object to the 
camera, etc. (2) locomotion tasks: walk, trot, run, turn-left, turn-in-place, stop, etc. (3) task specific operations: 
grasp, nock, screw, etc, (4) negotiation-related tasks: either to avoid colliding with other robots during naviga- 
tion, or to co-operate with others in performing multi-robot tasks. The situation we are dealing with here is 
characterized by the following features: the desired motion trajectories are frequently unknown; the environ- 
ment is described vaguely (because of the existence of unknown small obstacles); the robots are highly non- 
linear, coupled, and redundant. Under these conditions, the robots' expert animator agents are required to 

292 



produce purposeful motions ("convincing animations") in real time for all robots. 

% s -1 o l a n l w m h  

Figure 2 The Four-legged Articulated Robot 

Figure 3 shows the internal structure of an expert animator agent. The expert animator agent consists of the fol- 
lowing modules: (1)The task planning and execution monitoring module, (2) The agent model, and (3) the agent 
reasoning module. In the following we describe each in some details. 

Figure 3: An Expert Animator Agent Internal Structure 

[2.1] TASK PLANNING AND EXECUTION MONITORING MODULE 
This module generates and executes plans for carrying out tasks that a robot could be performing at any 

specific time either individually or simultaneously along with other robots. The module consists of a planner 
and an executor. The planner has knowledge of the large obstacles and objects in the environment; their relative 
locations and object capabilities. The planner takes an input a task submitted by the animator, or a request from 
the executor to replan the current task. The planner produces as output a sequence of plan steps to be executed 
by the different executor routines. For example the task: "Get tool ti and convey it to robot Rj" could produce the 
following plan: (1) to the Navigator: "Go to tool box q" (2) to the Relative Referencing: "Line-up on the right 
side along tool box 4'' (3) to the Local Obstacle Avoidance: "Follow the side of the tool box" (4) to the Pattern 
Matcher: "Identify tool ti in the tool box- convey its position and orientation ( x ~ ,  y , ,  el)'' (5 )  to the Trajectory 
Generator: "Compute a path from a suitable leg/arm to (x1, ylr  e,)" (6) to the Gripper: "Grasp tool ti at (x , ,  y , ,  e,)  
using arm MI'' (7) to the Leg/Arm: "Place tool ti on top of the robot's body" (8) to the Navigator: "Go to robot 
Rj" (9) to the Local Obstacle Avoidance: "Follow the side of Robot Rj" (10) to the Trajectory Generator: "Com- 
pute a path from a suitable Leg/Arm to R ~ ' S  body top" (1 1) to the Gripper: "Grasp tool ti from top of the robot's 
body" (12) to the Leg/Arm: "Place tool ti on top of robot Rj 's-body" 

Each step in the previous plan is called a plan step. The planning technique that is used by the planers 
does not concern us here [13]. Upon receiving message of a plan step completion from one of its routines, the 
executor checks out the success of the step. If the step executes normally the executor proceeds to the next plan 
step. Otherwise the executor reacts to any abnormal conditions by sending orders to carry out corrective actions 

293 



and wait for the next solicitation. 

[2.2] AGENTMODEL 
The agent model provides several levels of sophistication (a multiplicity of expressive systems) to 

describe the associated robot's state and its surrounding environment. These levels permit animating the robot's 
motion at different levels of detail. The agent model contains three levels of descriptions: (1) Conceptual level; 
(2) Topological level and (3) Dynamics level. Different motion control mechanisms work on these levels. 
They are, respectively, (1) key-frame motion control mechanism; (2) Kinematics motion control mechanism; (3) 
Dynamics motion control mechanism. Each expert animator agent views the different levels of descriptions and 
their manipulation mechanisms as Frame structured data [19] called objects. In object-oriented programming, 
information and its manipulation mechanisms are put together and represented in the form of objects. Figure 3 
shows the different objects that the expert animator deals with. The objects' mechanisms are contained in the 
agent's reasoning module whereas the robot's descriptive levels are contained in the agent model. 

The conceptual level describes the associated robot's capabilities and responsibilities. This includes 
behaviour characteristics, duties, areas of responsibility, role in a group, etc. Also, general properties of the 
robot may be expressed here, such as the hands (legs) being used for most grips, the relationship between the 
size of the object gripped and the capacity of the gripper, etc. The task-specific functions of each robot are 
represented in a data structure similar to what Turvey [28] called action concepts or what Schank called primi- 
tive actions in his Conceptual Dependencies [23] (semantic structure of actions or action verbs in the fields of 
psychology and linguistics). Any plan step (the output of the Task Planning and Execution Monitoring module) 
is defined in terms of interrelated component actions, e.g, "reach" for tool ri, "lift" and "transport" tool ti above 
the tool box bk such that it can be "lowered" into the top opening of the box. 

For example Figure 4 represents the plan step for robot R "Use the Screwdriver si to screw a screw in the 
wall". The diagram represents the action of the plan step at its highest node by Agent (X=R~) screw Object 
(y=screw) with Implement (z-Screwdriver). The node "screw" includes three semantic subpredicate nodes, each 
of which stands for a distinct relational concept. An mow originating from a given node terminates on an entity 
that is linked through the relation expressed at the mow's node of origin. Thus, the two predicates "Move" and 
"Motion" are the arguments for the predicate "Cause". and the labels "event" and "result" indicate the role that 
"Move" and "Motion" play, respectively, in relation to "Cause". What the Figure represents is that Agent R,'S 
hand (hz)  movement is an event that causes Implement z (Screwdriver) to move with respect to object y (screw) 
in a certain spatiotemporal manner. Additionally, the hand and screwdriver are related as implement and object, 
respectively, through the "Grasp" node; and the screw is located Q with respect to the tool box 4 through the 
"Contained In" node. 

Tool B a  
@I) 

Figure 4: Semantic Representation of the plan step "Use 
the Screwdriver Si to screw a screw in the wall". 

294 



This representation is an abstract specification of the plan step in terms of desired relationships between 
the robot and objects in the environment. Such relationships are expressed functionally, spatially, and tem- 
porally with respect to the action situation. For example, the rotary motion of the screwdriver is specified rela- 
tive to the wall; however, the precise trajectory of the screwdriver, the shapes of the screwdriver and tool box, 
and the exact environmental location and orientation of them remain indefinite. What is important is that the 
representation at this level involves only those spatial characteristics that allow identification of objects and 
actions as well as action-relevant properties of objects. In a similar way, the temporal parameters of a movement 
are not defined precisely at this level, but are stated in rather qualitative terms, e.g., the "medium-slow'' motion 
of the screwdriver. 

The agent reasoning module (see below) makes use of such conceptual level descriptions of plan steps in 
two ways: (1)to build key-frames for the associated robot and its surrounding objects to be used as the input for 
the key-frame motion control mechanism; (2)to provide semantic reasoning through token propagation in the 
semantic diagram. The purpose of the reasoning here is either to answer the animator's questions about the asso- 
ciated robot's behaviour, or to provide means of high-level negotiations with other robots. 

The topological level associates a coordinate frame with each robot's limb and objects in the robot's sur- 
rounding environment. Furthermore frames are gmuped together to refer to some structures (a robot, an object, 
etc.). The coordinate frames make us view the robot's actions as streams of variations of some of the mutual 
relations between the coordinate systems which are due to the stream of motion commands. At this level the 
expert animator agents view everything as a "forest" of coordinate frames that change over time. By visiting the 
forest it is possible to express the geometric relations between any two coordinates in the system. This is what 
in the expert animator agent's reasoning module is called topological reasoning (see later). Figure 5 shows how 
a coordinate frame is associated with each robot limb and each object in the robot's surrounding environment. 
In order to perform the plan step explained above ("Use the screwdriver to screw a screw in the wall") the Agent 
R ~ ' S  hand (h,) frame should overlap with the Coordinate frame of the screwdriver and then rotate it with respect 
to the wall, the screw's frame should overlap with the wall's frame, etc. 

C0mUU.d 
-2- AIU 

Figure 5:The Geometric level of the agents. 

Again the agent reasoning module will make use of such a topological-level description of plan steps in two 
ways: (1) to provide a framework for the kinematic motion control mechanism (see next section), and (2) to pro- 
vide topological reasoning either to answer the animator's questions or to interact with other robots. 
The dynamics level describes the dynamic properties that are required by the dynamics motion control mechan- 
ism in order to perform any plan step dynamically. This includes the masses, locations of centers of masses, 
moments of inertias, joint spring and damper values, etc. 

295 



[2.3] AGENT REASONING MODULE 
The agent reasoning module has the responsibility of deciding what are the best mechanisms for produc- 

ing "convincing" animations for the associated robot in the current motion context. The agent reasoning module 
takes the planning steps from the Task Planning and Execution Monitoring module and animates the actions at 
the appropriate sophistication level. The reasoning module evaluates the current context that the associated 
robot is in (e.g, where the animation camera is, whether the robot is involved in a multi-robot task, whether the 
robot is out of sight in the current scene, etc.). As long as the agent's reasoning module evaluates that the asso- 
ciated robot's context requires a simple style of movement, simple techniques (e.g, key-frame motion control 
mechanism) will be selected to drive the associated robot. As soon as the reasoning module determines that the 
context needs more natural, coordinated, task-oriented, and expressive motions, the reasoning module request 
the robot to be more sophisticated and increase its level of motion control. 

We adapted rule-based programming for describing the various control and decision mechanisms of the 
agent reasoning module. In order to integrate this rule-oriented approach with the object-oriented organization 
of the expert animators, rules are organized in rulesets [25]. A ruleset consists of ordered rules with specified 
control structures for selecting and executing the rules. One such ruleset is the sophistication-level ruleset. 
Some of its rules are: 

IF THE ROBOT IS OFF-SIGHT IN THE NEXT FRAME THEN SET THE CONTROL SWITCHES TO 
NULL. 
IF THE ROBOT IS CLOSE TO THE CAMERA THEN SET THE CONTROL SWITCHES TO 
DYNAMICS MOTION CONTROL MECHANISM. 
IF THE ROBOT IS ENGAGED IN A GROUP TASK THEN SET THE CONTROL SWITCHES TO 

IF THERE ARE ANY INTERESTING ACTIONS THEN MOVE THE CAMERA CLOSER TO THE 
ACTIONS. 

MIXTURE OF DYNAMICS-KEYFRAME CONTROL MECHANISMS. 

The control switches mentioned in the rules are data structure in the reasoning module (see later). 
The agent reasoning module has also to provide an explanation-based interface to the animator. Each expert 
agent should be able to answer the animator's questions about any of the decisions it has taken. For this pur- 
pose, the agent reasoning module uses two reasoning mechanisms: (a) Semantic reasoning through token propa- 
gation at the conceptual level of the agent model, (b) Geometric reasoning at the geometric level of the agent 
model. 

The Semantic reasoning mechanism answers relationship questions among objects by spreading activa- 
tion out from each of the objects nodes and seeing where the activations meet [203. Using this mechanism, it is 
possible for the agent reasoning module to use a diagram such as the one in Figure 4 to answer questions such 
as "what is the relationship between the robot R1 and the screwdriver si?". By spreading activation from both the 
robot R and the screwdriver, the activation meets at the two nodes "Grasp" and "Screw". 

The Geometric reasoning mechanism answers geometric types of questions. For example "Are you hold- 
ing the screwdriver now?", or "Can you reach for place (XI, yl) on the wall?". The answer for the first question is 
"yes"if one of the robot's gripper frame is on top of the screwdriver frame. For the second question the 
geometric reasoning mechanism will calculate the distance between the frames and access the robot's arm reach 
capabilities from the agent model. 

Finally, the agent reasoning module has the responsibility for navigating its associated robot safetly in the 
environment The navigation problem is decomposed into two subproblems: a global path planning problem and 
a local path planning problem. Each robot's agent reasoning module plans independently its own path for each 
plan step from its initial location to the final location. No positional constraints introduced by any other robot 
nor any small obstacles are considered. This is called the global path planning level. At this level the agent rea- 
soning modules use the conventional motion planning solution for the single articulated robot case [15]. How- 
ever each agent reasoning module will revise its global plan in two situations: 

296 



(a) Whenever there is conflict between path plans,i.e, a collision between two or more robots may occur. 
Robots Ri and R j  are said to be on a collision come between the period t and t+6t if 

dirt (Ri ,Rj)S(vi+Vj)Gt+d 

where: vi is the velocity of the robot Ri and vj  is the velocity of robot R j .  d is the safety allowance distance 
between any two robots. In such cases, domain-specific knowledge describing the robots' current situations is 
usually used to resolve this conflict. This may include such information as the urgency of one to reach a goal 
location, the degrees of freedom available for modifying the planned path, the interdependency between the sub- 
tasks to be performed by the involved robots, etc. All these data are deduced by the agent reasoning modules 
from their corresponding agent models. The robots bargain with each other through a process of exchanging 
knowledge about their situations and suggesting plan revisions. Each agent reasoning module stores some rules 
for evaluating the descriptions of their relative priorities (this is called the priority ruleset). Example of one 
such rule is: 

IF MY MISSION IS OF PRIORITY=HIGH AND MY TASK STA?ZTS=NEAR-COMI'LETON AND 
NONE OF THE INVOLVED ROBOTS HAS PRIORITY=RUSH THEN ASK FOR THE RIGHT OF 
THE ROAD. 
A robot can start to replan its path and resume its motion if no other robots of higher priority are at a dis- 

tance shorter than the safe interrobot distance (d). This sequential order of replanning guarantees that the 
conflict can be resolved. Provided that conflict resolution is not needed very often (Le. there is enough free 
space available), the concurrent actions of the robots are only slightly degraded by the sequentiality of the 
replanning process. Most of the time the robots will be executing their path plans in parallel. 

(b) Whenever a robot "perceives" any small obstacle during its locomotion it has to modify its motion on 
the fly. The reasoning module uses an obstacle avoidance ruleset that identifies the kinds of local obstacles that 
the robot might face and then uses key-frame motion control mechanism either to avoid the obstacle or to step 
on top of it. An example of a rule in such ruleset is: 

IF LOCAL OBSTACLE= PUMP AHEAD OF LEG, AND PUMP CHARACTERISTICS ARE (STEEP- 
NESS, FRICTION, SIZE, ETC.) 
THEN USE KEY-FRAME MOTION CONTROL MECHANISM TO MODIFY THE MOTION USING 
MODIFIER, 

The reasoning module associates two basic data structures with each robot: Motion Bit Vectors and Con- 
trol Switches. Following [2] [121 the reasoning module associates a bit vector with every topological frame that 
exists in the system. A bit vector contains the state of the degrees of freedom that are currently affecting the 
associated robot's limb or object. Depending on the values of the control switches one or mixture of the motion 
control mechanisms is responsible for interpreting the goals, constraints, paths, directions (the details of the plan 
steps) as a series of binary vectors on the various topological frames. 

For example if the control switches indicate that the key-frame motion control mechanism should be in 
control of a robot motion generation, then the bit vectors are interpreted this way: a bit is set in a motion bit vec- 
tor of a particular limb when a continuous rotationaVtranslationa1 motion about/along the appropriate coordinate 
axis, is to be used to update the position of this limb in the next frame of motion. The key-kame motion control 
mechanism will access the semantic representation of the current action plan (see Figure 4) and identify the 
characteristics of the motion (its path, relative to, rate, until, etc.). 

If the control switches indicate that the kinematics motion control mechanism should be in control of 
robot motion generation, then the bit vectors are interpreted this way: if a bit is set in a motion bit vector of a 
particular limb then a particular kinematic motion process can effect this limb. There is one bit for each 
kinematic motion process. Some of the kinematic and dynamic motion processes are rise, fall, jump, swing, 
hop, lean, pivot, flex a link, bend a link, turn, push, pull, release, grasp, etc. 

In general there are two types of kinematic motion process: local kinematic motion processes that effect 
only the associated limb (i.e. sets bits in only the associated limb's bit vector- e.g. "flex a link"), and global 
kinematic motion processes that effect several limbs (i.e. sets bits in their bit vectors- e.g. "push"). In the 

297 



dynamics motion control mechanism case the interpretation of the bit vectors is identical to the kinematics case 
except for having dynamics motion processes instead of kinematic ones. 

The motion processes are executed on each iteration of the animation. Each degree of freedom in each 
limb is considered separately. At start of processing for a degree of freedom, its internal rotation (in case of 
kinematic motion control) or torqudfme (in case of dynamic motion control) is set to zero. Then the state bit 
vector is examined to determine the motion processes that are to be executed. Each motion process uses the 
current state of the limb, plus its own parameten (stored with the state vector bit) to compute a contribution to 
the internal rotation (in case of kinematic motion control) or torqudforce (in case of dynamic motion control). 
At the end of this process, new internal rotations or torquedforces will be generated for each limb of the associ- 
ated robot. These internal rotations or torquedforces will represent the new inputs for the kinematic and 
dynamic motion control mechanisms. 
More details about the motion processes and bit vectors in the particular case of dynamics motion control are 
treated elsewhere [2]. 

Similarly, the control switches can be set to indicate that any mixture of the previous motion control 
mechanisms are participating in the motion production. It is important to mention here that the motion control 
mechanisms for the articulated bodies (key-frame- kinematics- dynamics) are not mutually exclusive, in the 
sense that a mixture of kinematics and dynamics has been demonstrated successfully in [9] [lo] [30], key-frame 
and kinematics in [21]. key-frame and dynamics in [l 11. One of the important features of the proposed model is 
that it is an open-ended model, in the sense that any new articulated body motion control mechanism could be 
incorporated into the model. One of the problems with our previous animation system [l] [2] is that the struc- 
tures of the animated figures and their parameters were hard-coded into the animation routines. In this model, 
this is replaced by separate agent models that contain complete descriptions of the animated robots and their 
environment and separate motion control mechanisms that can work on them. 

[3] EXPERIMENTAL SYSTEM 
An experimental system is under development using an IRIS' 2400 and several SUN' workstations [13]. 

The system is divided into two main components, which are shown in figure 6. The first component, called the 
front end, is responsible for displaying the robot models and interacting with the animator (see figure 1). This 
component of the animation system resides on the IRIS and is responsible for displaying and controlling the 
different expert animator agent's motions. The second component associates a SUN workstation with each 
expert animator agent. Each agent controls the motion of a particular robot in the system. 

Figure 6:The Experimental System 

The two components of the animation system (the IRIS and the various SUNS) communicate by sending 
packets over an interpmess communications facility (emir. sockets: since the workstations are connected by an 
ethernet). The front end invokes one of the backends when the animator wants to assign a task to the 

IRIS is a mdanark of Silicon Graphics, Inc.. SUN is a trademadi of SUN Micmsystems, Inc., and Unix is a trademark of 
AT&T Bell Laboratories. 

298 



corresponding robot. Upon invocation, the expert animator agent of the robot reads the task description and calls 
the Task Planning and Execution Monitoring module to produce a plan for the locomotion task (In our experi- 
mental system we only restricted ourselves to locomotion issues, the manipulation capabilities of the robots 
were ignored for the purpose of simplifying the experimental system). The reasoning agent module will evalu- 
ate the context of the locomotion for the first plan step and will decides on the animation level of the locomotion 
production ( k e y - h e ,  kinematic, dynamic, or any mixture) according to its sophistication-level ruleset. 

The appropriate motion control mechanism will take over plan step execution and will send a set of pack- 
ets to the front end. These packets represent the next animation Erame to be displayed for the appropriate robot. 
There is one packet in this set for each limb of the robot, giving its current joint angles. There is also a packet 
specifying the current position of the body limb of the robot within the environment. At this point the front end 
responds with one or more packets. These packets are used to inform the expert animator agent of possible colli- 
sions with other robots, any small obstacles that are in the robot’s way, and the current context of the robot’s 
motion (e.g, the location of the camera with respect to the robot, whether the robot is out of sight in the next 
scene, etc.). The last packet in this exchange is a Next-frame packet sent from the front end to the expert anima- 
tor agent. At this point the expert animator agent starts the next frame calculation cycle. 

Similar packet exchange take place at the same time between the expert animator agents and the front 
end. These packet exchanges are synchronized by the front end to ensure that the front end and all the agents 
are always in step. 

m m  

Figure 7:A Robot trotting 

The object-oriented approach was quite suitable for the multi-robot animation environment Viewing 
each expert animator agent as a distinct object facilitated their separate implementations on the various SUN 
workstations. In the Same manner, the graphics module on the IRIS is also managed according to the object- 
oriented approach. The interprocess communication packets could be viewed as the messages that are 
exchanged among the various objects in the system. 
The expert animator agents use three locomotion control mechanisms: 

(1) key-frame locomotion control mechanism: This is the simplest mechanism to produce a robot’s 
motion. The coordination and synchronization of the joint rotations of the legs are programmed via vari- 
ous locomotion scripts. For example a trotting script is shown in Figure 7. 
(2) kinematic locomotion control mechanism: This was based on the work of Girard at Ohio State [9]. 
(3) dynamic locomotion control mechanism: This was based on our previous work on dynamic locomo- 
tion of the single articulated robot 1131. 

A simple planning algorithm based on A* was implemented in each expert animator agent with a simple 
locomotion ruleset that describe the context for using each locomotion skill. An example of one such rule is: 

IF LEG I [ k i @ ) ]  & fEGdl~i(Y)]& LEG,[lci(Z)] & LEG,[ki(w)]& NAVIGATION GOAL, =A+B 

& ROAD (A ,B ) = FLAT& DISTANCE (A ,B ) 5 5& lNlTIAL,-uK: (A ) = NS 

299 



dr FINAL-LOC (B ) = NS THEN 

ACTIVATE NC [Icl~‘),Ic1(Y’).Icl(z’).lc1(wI)]uNTILX~=X-coordinate of tk fvlal loc(B) 

&YE =Y-coordinate of the fural loc (E ) WITH linear speed = [a ,b] 

DELETE FROM WM1:old LEGi IOCS ,ADD TO WM1: 

I1vITIAL-LOC(B)=NS &LEG1 [ I ~ l ( f u u r l  p o ~ ) l U G ,  [ l ~ l ( j h d  PS)] 

a 3  [IClVEMl POSll&LEG, [ I C l W  P S ) l  

This represents a rule for the usage of the locomotive skill, walking. It provides the conditions under 
which this skill should be selected to implement the locomotion from A to B. In the action part, it describes how 
to derive the dynamics routines to implement the skill. Intuitively, this rule says: If the robot’s four legs are in 
some orientation (X,YZ,W) within a particular leg cycle (i) (see Figure 1) ,and the goal broadcast by the navi- 
gator system is ( A +E ) such that the road from A to B is flat and the distance between these two points is less 
than or equal to 5 units of distance, and both points are located on NS (North-South) direction: then start to 
drive the NC with the IC, leg cycles for all legs such that the legs start from the closest positions to the initial leg 
settings (X’,Y’,Z’,W’) in kl. This is in order to facilitate the smooth transitions between different types of gaits. 
The linear body speed is within the range [a,b], and the stopping conditions are of the destination point B 
(within some tolerance). 

The Screen layout for the front end is shown in Figure 1. The display screen is divided into six main sec- 
tions, called the Terrain Display area, the Robot Selection area, the Locomotion Ruleset area, the Small obsta- 
cles Ruleset area, the User Interface area, and the command area. The Terrain Display area display the environ- 
ment and the various robots at motion. The animator can change the viewing camera position and orientation 
using the mouse (e.g, zoom-in or zoom-out). As long as the cursor is in the Terrain Display area, the animations 
of the various robots are displayed. The animator can interrupt the animations by moving the cursor (using the 
mouse) to any area other than the Terrain Display area. 

At the start of the system, the animator moves the cursor to any of the robots and select the robot using 
the mouse. The robot’s name will show on the Robot Selection area of the screen, and the robot color will get 
changed to indicate that this robot is the current designated robot. At this point the animator can either define a 
mission for the designated robot, or investigate any enquires about its current status (see below). If the animator 
wants to assign a mission to the designated robot, she should move the cursor to the User Interface area and 
type in the task for the designated robot (e.g, Goto Place (xi, si)). At this point, when the animator moves the 
cursor to the Terrain Display area the robot’s expert animator agent (on the appropriate SUN) will take over the 
execution and animation of the task. 

At any point the animator can use the Command area to ask a specific robot to move faster: slower: to 
change the projection view (e.& orthogonal, prospective); redefine a mission for a particular robot, etc. The 
Locomotion Ruleset area, the Small Obstacle area, and the User interface area will reflect the current status of 
any selected robot. The animator can move the cursor and selects any of the robots during the animation. In this 
case all the internal information of this robot’s expert animator agent is available to the animator to manipulate. 
The status of the designated expert animator agent will be reflected in the various screen areas: (1) The Locomo- 
tion Ruleset area will display the current rules that are producing the locomotions of the designated robot. (2) 
The Small Obstacles Ruleset area will continuously display the current rules that the designated robot’s expert 
agent is using to avoid or overcome the various small obstacles that it is facing as the animation progresses. (3) 
The User Interhce area will display the following information based on the animator requests: (a) the locations 
of the support legs, (b) the polygon of stability, (c) the predicted polygon of stability when the swinging legs are 
lowered; (d) the location of the center of gravity, (e) the reachable areas of the legs, (0 the answers to any Rea- 
soning enquiries submitted by the animator. 
In the experimental system the sequential ordering of path replanning of section 2.3 was implemented, but no 
animator explanation (reasoning) capabilities were implemented. 

300 



[4] CONCLUSION 
The paper describes an advanced expert animator model for animating a group of articulated robots in a 

three-dimensional environment. The model shifts the burden of human animator involvement with the mechan- 
isms of the robots' motion to various programmed expert animator agents. These agents have computational 
understanding of motion and its semantics in a way that each handles its robot's behaviour autonomously and 
communicates with other agents as well as the animator. The design principle of the agents is based on 
knowledge engineering methods (object-oriented and rule-oriented programming) integrated with computer 
graphics. The potential of our model is shown by a simple experimental system that was limited to locomotion 
activities. 

REFERENCES 

W. Armstmng ,M. Green ,The Dynamics of Articulated Rigid Bodies for Purpose of Animation ,Proceedings of Graphics Inter- 
face% ,1985 

W. Armstmng ,M. Green 8. Lake Near-Real Time Control of Human Figures Models ,Graphics Interface-86.1986 

A. Bertoni, G. Haus. G. Mauri. and M. Torclli. "A Mathematical Model for Analyzing and Structuring Musical Texts, Interfaa 7, 
1978. 

T. Calvert. J. Chapan. and J. Lindis. "Notation of Dance with Computer Assistance", in New D d o n s  in Dance, D. Taplin. ed., 
Pergamon Press. Toronto. 1979. 
A. Camuni, P. Morasso, V. Taglhsco, and R Z!acc.M, "Dance and Movement Notations". in Human Movement Understanding, 

R. Davis. "Report on the Workshop on Distributed AI", SIGART Newsletter, no. 73. Oct. 1980. 

R. Davis, "Report on the Second Wokshop on Distributed AI", SIGART Newsletter, no. 80, April 1982. 

M. Fehling and L b a n ,  "Report m the Third Annual Wokshop on Distributed Artificial Intelligence". SIGART Newsletter, no. 
84. April 1983. 

N ~ a h - H ~ h d ,  1986. 

M. Gmrd and A. Maciejewski. " Computational Modeling for the Computer Animation of Legged Figures", Computer Graphics 
19,3,1985. 
P. Isaacs. M. Cohen. "Controlling Dynamic Simulation with Kinematic Constraints. Behaviour Functions and Inverse Dynamics". 
Computer Graphics, v. 21, no. 4. July 1987. 
D. Lundin. "Simulation". Advanad Computer Animation Tutorial, Siggraph 1986. 
T. McMahon. "Mechanics of Locomotion". the International Joumal of Robotics Research, 1984. also T. McMahon: Muscles, 
Reflexes, and Locomotion. Princeton University Press, Princeton NJ.. 1984. 
A. Mohamed ,A Laming Apprentice System F a  Lomnotion Control of Attidated Bodies .A Ph.D. thesis in pparation. ,1988 
A. Mohamed. W. Armstrong, An Experimental Autonomous Articulated Robot That Can h m ,  to appear in the p d i g  of the 
3rd International Cmfemce on CADICAM Robotics & Factories of the Futunz. Southfield Michigan, August 14-17,1988. 

A. Mohamed, W. Amstrong, A Hybrid Numerical/Knowledge-Based Locomotion Control System for a Multi-legged Manipulator 
Robot, to appear in the proaeding of the 8th Intemational Wotlrshop on Expert Systems and their Applications, to be held in Avig- 
non. France, June 1-5.1988. 

P. Morasto. V. Tagliaaco, "Advances in Psychology: HWM Movement Understanding", Narth-Holland. 1986. 
F. M m ,  "Inttuductian to Music Synthesis Using CMUSIC". Technical Report University of San Diego. California. 1982. 
Z Pylyshin, Computation and Cognition. MIT Press, Cambridge, 1984. 

D. Robson, "Object-Oriented Software Systems". BYTE, V.6. no.8. 74M.1981. 

E. Rich. Artificial Intelligence, McGraw-Hill, Reading, 1983. 

G.Ridrdde. S. Hewia, and T. Calvett, "?he Interactive Specification of Human Animation", Proc. Graphics Interface '86. Van- 
couver. 1986 

R. R ~ M  and B.Singh. "the Benesh Notation Computerid Editor". Pmc. Dance in Canada Conf., June 1982 

R. Schank, "Identification of Conceptuhtionr underlying Natud language", In R.C. Schank & K.M. Colby (Eds), Computer 
Models of thought and language, San Francisco: Freeman, 1973. 

G. Savage and J. officer. "Choreo: An Interactive Computer Model for Choreography". Proc. of the 5th Man-Machine Gnnm. 
Conf.. Calgary, Alta. 1977. 

301 



[25] 

[m 
[27 

[28] 

M. Stefik, et al, "Rule-orimted Programming in LOOPS", Symposium on knowledge Engineering and Artificial Intelligence, Infor- 
mation Procersing sodety of Japan, 65r11.1985. 

R Smith. "Repat on the 1984 Disvibuted AltificialIntclligma Wokshop". AI Magazine, v.6. no.3. Fall 1985. 

in Planning. Geometry, and Complexity of Robot Motion. J. Schwatn. M. Shark, J. Hopcraft (Eds). Ablex Publishing Corporation, 
1987. 
M. Turvey. C. Fowler, "Skiill Acquirition" An Event Approach with Special Reference to Searching for the Optimum of a function 
of b y  Variables". in G.E. Stelmrch (Ed.), Information Proceasing in Motor Control and Learning, New Yo&. Academic Press, 
1978. 

N. WinLlerr and L Browning, Robots on Your Doontepr, Robotic h i s ,  Portland, OR, 1978. 

J. Wilheknr 8. Bmky .Using Dynamic Analyris f a  the Animation of Articulated Bodies such as Human and Robots ,hoceedings 
of Graphics Interfaa'85,1985 

[29] 

[30] 

302 



N89- 1 5 5 9 0  

Graphic Simulation Test Bed for 
Robotics Applications 

in a Workstation Environment 

J. Springfield, A. Mutammara, G. Karsai 
G.E. Cook and J. Sztipanovits 

Department of Electrical Engineering 
Vanderbilt University, Nashville, TN 37235 

K. Fernandez, Ph.D. 
Automation and Robotics Research, 

Marshall Space Flight Center, Huntsville, AL 35812 

Abstract -- Graphical simulation is a cost-effective 
solution for developing and testing robots and their control 
systems. The availability of various high-performance 
workstations makes these systems feasible in everyday 
practice. Simulation offers preliminary testing of systems 
before their actual realizations, and it provides a 
framework for developing new control and planning 
algorithms. On the other hand, these simulation systems 
have to have the capability of incorporating various 
knowledge-based system components, e.9. task planners, 
representation formalisms, etc. They also should have an 
appropriate user interface, which makes possible the 
creation and control of simulation models. 

ROBOSIM was developed jointly by MSFC and Vanderbilt 
University, first in a VAX environment. Recently, the 
system has been ported to an HP-9000 workstation equipped 
with an SRX graphics accelerator. The user interface of the 
system now contains a menu- and icon-based facility, as well 
as the original ROBOSIM language. The system is also 
coupled to a symbolic computing system based on Common Lisp, 
where knowledge-based functionalities are implemented. The 
knowledge-based layer uses various representation and 
reasoning facilities for programming and testing the control 
systems of robots. 

3 0 3  



Introduction 

Robots are becoming increasingly important in every 
area of industry. Along with an increase in robot 
sophistication and payload capability there is an increase 
in the possibility of damage to the robot and to the 
workcell, especially during the development of the system 
and the algorithms or programs that will drive the robot. 
Simulation is even more important for robotic systems 
designed to operate in space. These robots, which are 
desgned to operate in zero-g, can not be tested in full on 
the ground. While robot simulation programs have existed 
for a while, the advent of high-speed graphics workstations 
allows real-time graphical simulation at a fraction of the 
cost as in the past. 

ROBOSIM [1,2] was developed jointly between NASA and 
Vanderbilt University. ROBOSIM has been running on a DEC 
VAX 11/780 with the capability to use terminals with TEK4014 
graphics compatibility. Interfaces for Evans & Sutherland 
PS~XX, GTI Poly 2000, and Silicon Grahphics IRIS are 
supported also. 

ROBOSIM operates via an interpreted program that the 
user writes. The program consists of commands that create 
various solid and planar primitives that can be rotated and 
translated by other commands. In this way, the links of the 
robot are built up, with the relationships between the links 
following the Denavit-Hartenberg convention. ROBOSIM 
generates structures describing the physical structure, its 
kinematics, and its mass properties: With this information 
everything is known except for joint position, velocity, and 
torque limits, which are specified in the actual simulation. 
Using this information, all aspects of the simulation can be 
implemented, while reducing the possibility of data skewing, 
as the physical model, the kinematics, and the mass 
properties are calculated at the same time from the same 
program. All data is provided for collision detection, 
graphics display, and dynamics. 

This full implementation of ROBOSIM has been ported to 
a Hewlett-Packard 350SRx graphics workstation. Several 
additional features have been added to exploit the 
capabilities of this workstation, such as the 3D graphics 
editor. 

3 0 4  



Graphics Editor 

The capabilities of the workstation allow a much 
friendlier user-interface. X-Windows and the 3D graphics 
library (along with the special-purpose graphics hardware) 
provide the basis for a sophisticated means of designing 
robots. The editor utilizes menus and a mouse to provide 
simple methods to use the system. Also, a "box" of analog 
knobs allow the viewpoint to be changed, colors altered, and 
various other parameters concerning the graphic display to 
be set as desired. Although similar to some CAD systems, 
the editor is designed with ROBOSIM in mind. 

The editor uses object oriented methods in its 
operation. Different types of objects can be created, such 
as boxes, cylinders, and custom designed objects. The 
reference frames of the links are also defined as objects. 
After creation, objects can be rotated, translated, deleted, 
and resized. Also, the objects can be attached together. 
This attachment is hierarchical in that there is a parent 
object and a child object. Any'rotation or translation on a 
parent object propogates to any child object and its 
children as well. Once objects have been attached then a 
resizing operation on either will result in the relationship 
between them remaining constant. In this way complex, 
custom-designed, yet generic objects can be created. A l l  
that is necessary is to specify the dimensions of the 
components. This attachment allows more complex objects to 
be constructed without losing the ability to operate on the 
primitives, 

Once the robot link has been built up, the structures 
can be saved for later editing. However, this editor will 
also generate a ROBOSIM program. The editor goes through 
the hierarchy, propogating every operation down. This 
yields a primitive object and a set of translations and 
rotations. Once this is achieved it is a fairly 
straigtforward procedure to automatically generate the 
ROBOSIM code. In this way the editor does not need to 
concern itself with mass properties or kinematics, as this 
is automatically produced by the ROBOSIM object compiler. 

Object Compiler 

The object compiler takes the output of the graphical 
editor and generates all of the data about a link: the 
polygonal model, the kinematic model, and the inertial data. 
Figure 1 shows a session during the editor in which a link 
is built. Figure 2 is a listing of the ROBOSIM code 
generated by the editor. And Figure 3 is an outline of the 

305 



x 
a 
0 
d 
(13 
k 
Q) 
> 

I 

E 
d 
(13 
0 a 
0 z 

ORIGINAL PAGE IS 
OF POOR QUALITY 

306 



LOOK-FROM X=-150., Y=50., Z=lOO. 
LOOK-AT X=O., Y=O., Z=O. 
CLEAR 
STORE B 
F- JOINT-I 

TRANSLATE X=O.OOO, Y=O.OOO, Z=-43.333 
ADD B 
STORE B 

CLEAR 
R-JOINT-I+1 

TRANSLATE X=O.OOO, Y=O.OOO, 2-23.811 
ADD B 
STORE B 

CLEAR 
SPHERE R=15.000 

TRANSLATE X=O.OOO, Y=O.OOO, Z=10.239 
ADD B 
STORE B 

CLEAR 
CYLINDER R=10.000, H=30.000 

TRANSLATE x=o.ooo, Y=O.OOO, z=-ia.333 
ADD B 
STORE B 

CLEAR 
TRUNCATED-CONE RL=20.000, RU=15.000, H=10.000 

TRANSLATE X=O.OOO, Y=O.OOO, Z=-40.000 
ADD B 
STORE B 

CLEAR 
LOAD B 
STORE-LINK ROBOT.LOC 
VIEW 
END 

Figure 2. ROBOSIM code generated by editor 

307 



Row 

1 

2 

3 

7 

11 

15 

19 

20 

21 

NVEC+ 19 

THETA 
DZ 
DA 
ALPHA 
JA1 , JA2 

I AJNT-I+1 (4x4) I 
I AMAT (4x4) I 
I NVEC I UNUSED I UNUSED I UNUSED I 

Variable Definitions: 
= Denavit-Hartenberg parameter 
= Denavit-Hartenberg parameter 
= Denavit-Hartenberg parameter 
= Denavit-Hartenberg parameter 
= joint defined flag 

JTYPE-I,I+l = joint type - >  Revolute,Prismatic,Fixed 
AINERT = generalized link inertia 
AJNT-I,I+1 = transforms of input and output frames 
AMAT _ 
NVEC - 
Xi , Yi , Zi 
Di - move or draw vector 

link's A-matrix 
number of vectors in list 
x,y, and z component of vector 

- 
- 
- - 
- 

Figure 3 .  Data Structure of Link 

308 



data structure generated by ROBOSIM. 

S imu 1 at or 

The basis of the simulator is a library of C routines. 
These routines operate directly on the ROBOSIM structures. 
This allows the specifics to be hidden from the user, unless 
direct manipulation is required by the simulation. With 
these routines, one can implement fast, very specific 
simulations that are written in C and linked with the 
simulation library. However, one can also implement an 
interactive, general-purpose simulation in those cases where 
real-time simulation is not required. 

These routines allow various robots, environments, and 
objects to be loaded separately and combined in any 
configuration. They allow commands similar to many robot 
programming languages to drive the robots. Collision 
detection can be turned on or off, and forces and torques 
can be returned to the simulation or used for control of the 
robot. Straight-line motion is included as well as a 
facility to move along any parametrically defined function. 
The joint angles can also be returned to the simulation for 
its use. 

Although not included at this time, translators for 
many robot programming languages will be available in order 
to download developed programs directly to the physical 
robot. 

Knowledge Representation Facilities 

It is important to look at the ideas presented above, 
along with areas of future expansion, from the point of view 
of knowledge representation. Different choices in 
representation can result in changes in efficiency, 
flexibility, system requirements, and user-friendliness. 

The techniques of Knowledge Representation (KR, for 
short) have been developed in the framework of Artificial 
Intelligence research. For engineering purposes KR 
techniques offer enhanced capabilities for modeling, where 
in addition to traditional numerical models, various 
symbolic models can also be used. The latter might include 
various declarative languages which represent technical 
concepts and entities [ 3 1 .  

309 



This idea is applied in the robot simulation system as 
follows. Robot modelling and programming are supported by 
various declarative languages, which supply a 
knowledge-based description of (1) the robot, (2) its 
control system, ( 3 )  its environment, and (4) its task to be 
performed. Currently, these declarative languages are 
realized in a Lisp framework. 

The geometric objects in robot modelling together 
constitute a graphic model of a robot or objects from its 
environment, and they can be used for various other 
considerations dependent on the objects, e.9. collision 
detection, dynamics, and task planning. For this 
application a declarative language has been defined, which 
supports the hierarchical representation of geometrical 
objects by using object--oriented programming techniques, as 
discussed previously. 

The computations for the forward and inverse dynamics 
can be synthesized from the geometrical and physical model. 
This happens as follows: from the declarations describing 
the geometry and the physical properties a dataflow graph is 
synthesized, which represents the flow of computations 
needed to solve the dynamics problem. This graph is 
executed on the Multigraph Architecture ( M A )  [ 4 , 5 ] ,  which 
makes possible the integration of symbolic and numeric 
computing in such a way, that the structure of a complex 
computation is represented in a declarative framework, while 
the computational primitives can be represented in terms of 
fast and efficient numerical algorithms. 

Joint constraints and geometrical properties together 
are used for collision detection, where the detection 
algorithm also utilizes the representation schemes mentioned 
above. 

The simulation of a robot system generates numerical 
and graphical output: numerical output contains information 
about joint angles, forces and torques, etc., while 
graphical output provides visual feedback for the designer. 
To control a robot which has been modelled using the 
facilities described above, one can create robot controller 
structures using a similar knowledge representation scheme. 
Here, again, a declarative language is used, which lets the 
designer describe a control system in terms of signal 
processing blocks, which implement various functionalities 
of the control system. This declarative language is also 
supported by a graphical editing technique, which uses icons 
to specify the blocks, and they can be connected to form a 
signal processing graph. The resulting declarations are 
interpreted to generate the running signal processing system 

310 



using the Multigraph Architecture. 

The tasks to be performed are represented in 
declarative terms also. Using hierarchical decomposition, 
robot control sequences are represented in symbolic form, 
from which a task planner synthesizes the actual sequence of 
control actions needed to accomplish a certain goal. The 
hierarchical planner generates a chain of objects, which 
represent the steps to be performed. Each such step is 
linked to a low-level control scheme which implements that 
step. Now if the step has successfully been executed (i.e. 
the low-level control scheme has not signalled an error) the 
execution proceeds, while if there were a problem, the 
execution (1) might go along either a new path, or (2) a 
completely new sequence is synthesized together with its 
low-level control blocks. This dynamic replanning might 
influence the computational model of control, dynamically 
changing the structure of the control system. One example 
might be as follows: if the collision detection scheme 
signals an error to the controller system, that event might 
initiate the restarting of the task planner to re-generate 
or structurally modify the step sequence and/or its 
associated controller. This flexible way of representing 
tasks, task steps and low-level controllers was made 
possible by using the integrated computational model of the 
MA. 

Conclusions 

The need for competent, comprehensive robot simulators 
h a s  been well established. In order to provide adequate 
simulation capability, the system must allow graphical, as 
well as dynamic, simulation. The new generation of graphics 
workstations provide for extremely fast graphics output, 
while freeing the main processor for kinematic and dynamic 
calculations. However, mere number crunching is not enough 
to create a better simulator. Symbolic planners and other 
such AI programs are necessary in order to fully meet the 
demanding requirements that are being asked for. 

311 



References 

1. Fernandez, K.R. and Cook, G.E., "Use of Computer 
Graphic Simulation Techniques for Robot Control System 
Development", IEEE Computer Society, Proc. 18th 
Southestern Symposium on System Theory, Knoxville, TN, 
April 7-8, 1986, pp.433-441. 

2. Fernandez, K.R., "The Use of Computer Graphic Simulation 
in the Development of Robotic Systems" , &cc 
Astronautica,Vol. 17, No.1, pp.115-122, 1988. 

3. Karsai, G., "Declarative Programming Techniques for 
Engineering Problems" , Ph. D. Thesis, Vanderbilt 
University, August 1988. 

4. Sztipanovits, J., "Execution Environment for Intelligent 
Real-time Control Systems," Proc. of the NASA/JPL 
Symposium on Telerobotics, 24 pqs,, Pasadena, C A I  1987. 

5. Biegl, C.A., "Design and Implementation of an Execution 
Environment for Knowledge-Based Systems" , Ph. D. 
Thesis, Vanderbilt University, December 1988. 

312 



DESIGN OF A SIMULATION ENVIRONMENT 
FOR LABORATORY MANAGEMENT BY ROBOT ORGANIZATIONS * 

Bernard P. Zeigler, Franc;ois E. Cellier, Jerzy W. Rozenblit 
Dept. of Electrical and Computer Engineering 

University of Arizona, Tucson, AZ 85721 

ABSTRACT 
This paper describes the basic concepts needed for a simulation environment capable of 

supporting the design of robot organizations for managing chemical, or similar, laboratories 
on the planned U.S. Space Station. The environment should facilitate a thorough study 
of the problems to be encountered in assigning the responsibility of managing a non-life- 
critical, but mission valuable, process to an organized group of robots. In the first phase of 
the work, we seek to  employ the simulation environment to develop robot cognitive systems 
and strategies for effective multi-robot management of chemical experiments. Later phases 
will explore human-robot interaction and development of robot autonomy. 

INTRODUCTION 
This paper describes the design of a simulation environment capable of supporting the 

study of robot organizations for managing chemical, or similar, laboratories aboard Space 
Station. Laboratory management includes the servicing and calibration of equipment, the 
set-up of experiments to external specifications, the monitoring and control of experiments 
in progress, the measurement of results, and finally the recording and analyzing of data. 
The environment should facilitate a thorough study of the problems to be encountered in 
assigning the responsibility of managing a non-life-critical, but mission valuable, process 
to an organized group of robots. 

Our ultimate research goals are to employ the simulation environment to develop 
robot cognitive systems and strategies for effective multi-robot management of laboratory 
experiments. We seek an understanding of how to partition automation tasks between 
hard and soft forms, i.e., between “intelligent” instruments and flexible robots. We shall 
assess the nature of human supervision initially required, and seek to develop workable 
man-robot co-operation protocols. Also, we seek to develop robot learning paradigms such 
that the autonomy of a robotic organization increases with experience, and consequently, 
the need for human supervision and intervention is diminished. 

It is timely to begin exploration of advanced robot-controlled instrumentation. For ex- 
ample, handling fluids in orbit will be essential to many of the experiments being planned 
in manufacturing and biotechnology. However, the microgravity conditions of space neces- 
sitate radically different approaches to fluid handling than common on earth. As experi- 
ence in space accumulates, approaches and instrumentation will likely undergo continual 
modification, enhancement, and replacement. Thus, robots for managing such equipment 
must be sufficiently intelligent and flexible so that constantly changing environments can 
be accommodated. Given its importance and novelty, we have chosen fluid handling in 
microgravity as the focus for our laboratory environment. 

Discrete event simulation and AI knowledge representation schemes form a power- 
ful combination, called knowledge-based simulation, for studying intelligent systems in a 
realistic manner 1,3,5,6,7,8). DEVS-Scheme [ 14,151 is a knowledge-based simulation envi- 
ronment for mo d elling and design that facilitates construction of families of hierarchical 
models in a form easily reusable by retrieval from a model base. The laboratory environ- 
ment, implemented in DEVS-Scheme, is being constructed on the basis of object-oriented 
and hierarchical models of laboratory components at multiple levels of abstraction. 

* Supported by NASA-Ames Cooperative Agreement No. NCC 2-525, “A Simulation Environment 
for Laboratory Management by Robot Organizations” 

313 



The robot cognition model is based on an “action-by-exception” principle control of 
a knowledge base of Model-Plan Units (MPUs). Davis [2] described a similar knowledge 
based simulation environment in which agents are governed by a script (plan of actions) 
and a set of production rules for deciding when to proceed from one phase of the plan to 
the next, which detailed actions to execute within a phase, and what to do if one plan has 
to be replaced by another one. Holland’s [4] classifier (parallel production rule) system 
provides concepts for sequencing robot actions. 

In designing the robot models, we assume that necessary mobility, manipulative and 
sensory capabilities exist so that we can focus on task-related cognitive requirements. 
Such capacities, the focus of much current robot research, are treated at  a high level of 
abstraction obviating the need to solve current technological problems. Organizational 
issues are introduced from the beginning since individual robot capabilities may be much 
influenced by co-operative requirements. 

A primary goal in the robot model design is to minimize the number of sensory inputs 
that the system must attend to at any one time. Except at critical selection points, 
attention is focused on only those aspects of the environment dictated by the currently 
activated MPU. While an MPU behavior lies within its envelope, no other MPU can 
supplant it, even if its initialization conditions better fit the current situation. One of the 
primary goals of the project will be to judge whether these principles provide a workable 
basis for intelligent robot design. For example, such robots may be so single-minded as to 
be incapable of flexibly responding to an unknown or changing environment. 

DEVS-Scheme Simulation Environment 
DEVS-Scheme [ 14,151 is a knowledge-based simulation environment for modelling and 

design that facilitates the construction of families of models in a form easily reusable by 
retrieval from a model base. The environment supports the construction of hierarchical 
discrete event models, and is written in the PC-Scheme language which runs on IBM 
compatible microcomputers and on the Texas Instruments Explorer System. 

System Entity Structure Knowledge Representation 
Model specification and retrieval in the DEVS-Scheme simulation environment is medi- 

ated by a knowledge representation component designed using the system entity structuring 
concepts 16,191. The system entity structure incorporates decomposition, taxonomic, and 
coupling I, nowledge concerning a domain of real systems [10,12]. A user prunes the entity 
structure according to the objectives of the modelling study obtaining a reduced structure 
that specifies a hierarchical discrete event model [ll]. Upon invoking the transform pro- 
cedure, the system searches the model base for components specified in the pruned entity 
structure, and synthesizes the desired model by coupling them together in a hierarchical 
manner. The result is a simulation model expressed in DEVS-Scheme which is ready to 
be executed to perform simulation studies. 

Process Laboratory Model 
The laboratory environment is being constructed on the basis of object-oriented and 

hierarchical models of laboratory components within DEVS-Scheme. Laboratory configu- 
rations will be determined by pruning the entity structure knowledge representation. The 
laboratory model is being designed to be as generic as possible. However, as stated, the 
focus will be upon fluid handling in microgravity which presents a variety of problems that 
are unique to space. 

314 



Figure 1. System Entity Structure for Space Station Laboratory 

Figure 1 illustrates the approach taken. The entity structure for SPACE STA- 
TION LABORATORY decomposes this entity into MATERIALS, ACTION PLANS, a 
WORKSPACE, INSTRUMENTS, and the ROBOT SYSTEM. Each of the latter entities 
will have one or more classes of objects (models) expressed in DEVS-Scheme to realize 
it. MATERIALS will be specialized by physical state into the classes GAS, LIQUID, 
and SOLID, and will be further subclassified as needed. ACTION PLANS are composed 
of UNIT OPERATIONS which decompose into four types: TRANSPORTATION (which 
changes the physical co-ordinates of a material, e.g. pumping), TRANSFORMATION 
(which transforms the state of a single material), COMBINATION (which produces a new 
material from several input materials, e.g. chemical reactions), and SEPARATION (which 
partitions a material into several components). 

UNIT OPERATIONS are carried out with one or more INSTRUMENTS, which may 
be TRANSPORTERS, TRANSFORMERS (e.g. centrifuges), COMBINERS (e.g. mix- 
ers), or SEPARATORS. To illustrate the special nature of space, consider transporters. 
Since air/liquid interfaces are not permitted under microgravity conditions, standard earth- 
bound containers, such as beakers, cannot be used. A design of a space adapted “beaker” 
would have an aluminium bottle containing an inflatable bag, which is the actual liquid 
container; liquid is injected/extracted by means of syringes; air pressure between the out- 
side of the bag and the inside of the bottle wall ensures that the bag remains “full” at  all 
times . 

ACTION PLANS are sequences of UNIT OPERATIONS with associated MATERI- 
ALS and INSTRUMENTS. For example, injecting several liquids into a bottle, placing the 
bottle in a shaker, and then placing it in a heating spiral is a sequence related to experimen- 
tation with chemical reactions. Action plans have associated models whose construction 
will be discussed in the context of the robot Model-Plan Unit (MPU). 

INSTRUMENTS have attributes which include operational conditions so that normal 
and abnormal operating behavior can be studied. 

To set up a particular laboratory environment, the LABORATORY entity structure is 
pruned to create a pruned entity structure which will transform into a laboratory model. 
Constraints on the possible configurations of components, especially those imposed by 
micro ravity and space environments, are captured by appropriate synthesis and selection 
rules $91. 

315 



ROBOT MODELS 
Designing Model-Plan Units 

The first stage in designing Model-Plan Units, involves modelling of continuous pro- 
cesses by discrete event models [13]. We start with a particular real process, such as heating 
liquid in a doubly-contained bottle. We identify regions of operation such as: “there is a 
sufficient amount of liquid in the bottle”, “the liquid has reached the desired operational 
temperature”, “the air pressure is too high”, “the bottle has exploded”. A continuous dy- 
namical model is then developed for each region based on physic-chemical considerations. 
Boundaries between regions are then identified, and a discrete event model is specified 
whose internal events represent such transitions from one boundary to another. Schedul- 
ing of such transitions is based on time-to-next-event values obtained from trajectories of 
the dynamical model. For example, if the initial quantity of liquid and the rate at which it 
heats up are known as well as the increase in air pressure with temperature, then the time 
to reach the “air pressure too high” region can be pre-determined, and hence scheduled. 

For each action on the real process, a normal state trajectory is identified in the 
continuous model and projected into the space of sensor measurements. An envelope is 
determined to enclose this projected state trajectory. This envelope specifies the variation 
to be tolerated in sensor measurements while still accepting an observed trajectory as 
normal. For computational feasibility, sensors with binary states (or a small set of discrete 
states) will be preferred, circumstances permitting. For example for sterilizing a liquid, 
that liquid should be heated up to at  least 70 degrees centigrade, and should be kept at that 
temperature for a prescribed period of time. For other reasons, it may not be advisable to 
heat the liquid beyond 80 degrees centigrade. So, we may employ a sensor whose binary 
output indicates the temperature lying within, or outside of, the range 70-80. In addition 
to sensory boundaries, we employ timing information to determine normal operation. From 
estimated uncertainties in the initial state and parameters, the continuous model yields 
the window in which the time-to-next-event must lie for each state transition [18]. 

The plan of an MPU specifies a sequence of UNIT-OPERATIONS to be carried out 
to bring the real process from an initial state to a desired state. For example, an MPU 
for sterilizing water might specify filling a bottle with water, placing it in a heating spiral, 
and removing it when the required temperature of 70 degrees centigrade has been reached. 
Associated with each UNIT OPERATION is a set of sensors for detecting its initialization 
and goal states together with the time window in which each transition time must lie. If, 
for example, the time for the temperature sensor to change to its high state is not within 
that allowed, the MPU is disabled; if the time is within bounds, the next action, removing 
the bottle, is carried out. 

Plan Abortion and Restart 
Following disablement of an MPU, other MPUs may be activatable in the prevailing 

state. MPUs may, for example, exist if the process state is still a normal one; as a 
special case, the last activated MPU may be still have its initialization conditions satisfied. 
Consider for example, a situation where the envelope timing bounds associated with the 
action “heat water” were exceeded because the power to the heating spiral was turned 
off. The Selector must prevent the aborted MPU from gaining activation and attempting 
indefinitely to use an inoperative heater. This might be done with a recency, or frequency- 
of-use component in the selector’s conflict resolution method. 

Diagnostics are associated with MPU plan abortion. These diagnostics will attempt to 
discover faults which can be corrected to return the state to one in which normal operation 
can be resumed. Such diagnostics are guided by the sensor envelope and time window 
violations which caused the MPU to abort. For example in the above situation, given that 
the expected heating time was exceeded, a diagnostic may deduce that the heating spiral 

316 



is not producing heat, and that one cause might be that power to it is turned off. The 
model underlying an MPU provides the basis for designing such diagnostic units. 

Naturally, we expect that many unforeseen situations will emerge in simulation runs. 
In such cases, the robot system will fail. Since the current state of the process, as viewed in 
the last activated MPU and its sensor readings (or a record of the most recently activated 
MPUs) is available, we will be in a position to analyze what went wrong. It is expected 
that, in a real space laboratory, such events will also occur. Protocols will be investigated 
to alert human supervisors to such events, and facilitate restoring robot system operation. 

IMPLEMENTATION 
A simplified entity structure for the implemented robot organization is shown in Figure 

2. This structure is transformed into a hierarchical model containing “controlled-models” 
at two levels. “Controlled-models” is a class in DEVS-Scheme which facilitates the con- 
struction of models containing arbitrary numbers of components which communicate with 
each other and with the outside world via a controller (171. Thus at the top level, the 
ROBOT-SY STEM is a controlled-model containing a SPACE-MANAGER as controller, 
and ROBOTS as components. Each ROBOT contains a motion, a sensory, and a cogni- 
tion sub-system. The COGNITION-SYSTEM is itself a controlled model containing the 
SELECTOR as controller, and MPUS as components. 

(R-m) 
I 

e o b o t  System Decomposition) 

Figure 2. Entity structure for the Robot Organization 

ROBOTS use their sensory subsystems to communicate with each other via the 
SPACE-MANAGER. When a ROBOT changes its position, its motion sub-system sends 
its new location to  the SPACEMANAGER which keeps track of the ROBOTS positions. 
When a ROBOT wishes to communicate with other ROBOTS, it sends its message to the 
SPACE-MANAGER which relays the message only to those ROBOTS that are located 
within the range of the sender. This range may vary depending on the channel on which 
the message is sent. In this way, different transmission media and sensory modalities may 
be modelled: light and vision, sound and hearing, pressure and touch, etc. Latency in 
message transmission, implemented by a delay in the SPACE-MANAGER, may also de- 
pend on the medium. Messages on certain channels, such as touch, are reflected back to 
the SPACE-MANAGER by sensory-subsystems upon arrival to a sensory subsystem, as 
well as being transmitted to  the cognition system. Such echo messages are used by the 
original sender to ascertain relationships to the receiving robot. 

317 



Since the SPACE-MANAGER has complete knowledge of locations, it can detect col- 
lisions between ROBOTS. Space may be treated as a resource shared by its occupants 
so that collisions represent attempts to occupy the same space twice at the same time. 
The “management” of the resource is “dumb” if collisions are only detected. However, the 
SPACE-MANAGER may be given additional intelligence to co-ordinate the ROBOTS, e.g. 
to prevent  collisions, thus modelling an artificial layer of supervision above the naturalistic 
one. 

Within each ROBOT’S cognition system, action-by-exception control ensures that an 
MPU, once initiated, retains activation until its plan is successfully executed, or until a 
significant discrepancy arises between the actual results of carrying out the plan and the 
results expected by the model. The SELECTOR is essentially a bi-state device whose state 
is determined by the MPU responses. In the closed state, it passes on the incoming sensory 
inputs to  the activated MPU. Upon completion of the activated plan or upon receiving 
a discrepancy alert, it switches to the open state in which MPUs may vie for activation. 
Incoming sensory input is broadcast to all MPUs. The first MPU to respond to the input 
is established as the activated MPU. Once an MPU activation has occurred, the closed 
state is resumed. 

As stated, a primary goal in this design was to minimize the number of sensory inputs 
that the system must attend to at any one time. This is achieved here by the fact that, in 
the closed state, the SELECTOR acts like a closed wire which uncritically transmits all 
inputs to the activated MPU. The latter only pays attention to those inputs which matter 
to achieve its goals. 

In the future, we intend to implement more general conflict resolution schemes to 
determine which of the activatable MPUs will be granted permission to activate. MPUs 
will be arranged in a generalization hierarchy, an inverted tree with relatively few highly 
general MPUs at the lowest level. Such generalists cover most of the environment, but 
with less than fully efficient capabilities. Successive levels contain specialist MPUs with 
increasingly refined models and plans. Of those MPUs responding to an input in the open 
state, the SELECTOR may choose the one with the highest specificity level. Such an 
architecture supports learning of new MPUs in the manner described by Holland [4]. 

Robot 
Motion Sensory 
System ( System 

1‘ 
Cognition System 

t 

Assistance I I  
I I Navigator I 

Figure 3. Prototype Robot Configuration 

318 



The MPUs comprising the robot brain are of two kinds: those specialized for carrying 
out specific laboratory tasks and those specialized for more general tasks involving com- 
munication, motion, co-operation, etc. A prototype minimal configuration illustrated in 
Figure 3 contains two robots each with the following MPUs: 
Task Specialist MPU: specialized for executing a particular experiment related task, re- 
quests help when needed in performing this task by relinquishing control to  the Assistance- 
Requestor. 
Assistance-Requestor: MPU specialized for the task of requesting help from other 
robots. When it is activated, it initiates a protocol which tries to make contact with 
robots within its range and to engage one which can provide the needed assistance. 
Assistance-Offerer: MPU specialized for the task of dealing with incoming requests for 
help emitted from Assistance-Requestors of other robots. When activated, it decides if 
help can be offered, and if so, engages in a dialogue with the Assistance-Requestor of the 
help-seeking robot and sets up a rendezvous. It relinquishes control to the navigator to 
bring the ROBOT to the requestor’s work site. The assistance offer is most easily activated 
when the ROBOT is idle, and the SELECTOR is in its open state. To replace an already 
activated MPU (in its closed state), the latter MPU must be able to  accept incoming 
requests for help and relinquish control. 
Navigator: MPU specialized for directing the motion sub-system to bring the robot to  a 
given destination. It requests the current motion state from the motion component, and 
sends it new parameters (direction, speed, and time-step) for travelling to the vicinity of 
the destination. Once there, it directs the motion component in physically contacting the 
object or robot at the destination. The touch channel is used for judging when contact 
has been made. 

Elementary scenarios in which the model has been tested are: a) one robot requests 
assistance, one robot available to offer help; b) one Assistance-Requestor, two Assistance- 
Offerers available; and c) two Assistance-Requestors, one Assistance-Offerer available. In 
case b), the first offerer to respond engages with the requestor. The second one receives 
no confirmation and returns to  its previous state. In case c), the first requestor to engage 
with the offerer is helped. The second one continues to send out assistance requests. 

The MPUs are developed as objects in the class “forward-models” of DEVS-Scheme. 
Models in this class are specified in a rule-based programming paradigm. As shown in 
Figure 4, a rule, called an activity, is a structure which contains condition and action slots, 
as usual, and in addition, slots for specifying outputs to be produced before and/or after 
the action is performed. An action specifies a change in the state of the model. Rules for 
specifing both internal and external transitions have the same format. Internal transition 
rule conditions test the phase and state of the model. External transition rules include 
tests of the input and elapsed time in their conditions. 

(-) 

Figure 4. Structure of an activity, i.e., a rule for prescribing MPU state transitions 

As an example, an informal presentation of some of the rules for the Assistance- 
Requestor is given below: 

319 



external activity : 
R1. if phase is wait-for-info 

and receive x on port motion-info 

and hold-in phase active for 1 unit 
then record value of x as current position 

internal activities: 
R2. if phase is active 

and need help in executing task 
then send out request for help 

and passivate in wait-for-help 

then send to port starting 
R3. if phase is active 

and hold-in phase working for 100 units 
and send to port finished 

R4. if phase is working 
then passivate 

Rule R1 is an external activity which activates th  model when an external event 
arrives on the port “motion-info” while the model is in the phase “wait-for-info”. Rules 
R2, R3, and R4 are internal activities associated with rule R1. Rules R2 and R3 provide 
alternative courses of action that follow once R1 has placed the model in the “active” phase. 
R2 starts a sequence of activities dictating what to do if help is needed. R3 bypasses this 
request for help, and immediately lets the model proceed to the “working” phase. R4 
dictates what happens while the model, with or without help, has completed its “working” 
phase (namely nothing, since the activity itself has not been modelled so far except for the 
time it takes to execute it). 

Rule R3 provides an example where both before- and after-outputs are specified. The 
before-output is generated just before the action is evaluated while the after-output is 
generated at the end of the interval specified by the hold-in primitive. 

The inference engine underlying forward-models evaluates the rules in the order in 
which they are added to the model. One advantage of employing rules is apparent in the 
above example: rules, be they internal or external activities, that are closely associated can 
be placed contiguously. This avoids breaking sequences of external and internal transitions 
apart, and thus, aids model comprehension. A second benefit: since outputs may be 
specified within the rules, the output specification is not separated from the transition 
specification as necessitated otherwise. 

CONCLUSIONS 
As a theory of cognition, the above model has the following properties: 
a) except at MPU selection points, attention is focused on only those aspects of the 

environment dictated by the currently activated MPU. If a recording mechanism were 
to be added which is sensitive only to the current activity, the system, for the most 
part, would only be able to  recall highly restricted portions of its sensory input history 
(selective attention and recall). 

b) while an MPU behavior lies within its envelope, no other MPU can supplant it, even 
if its initialization conditions better fit the current situation (cognitive hysteresis). 

One of the primary goals of the project will be to judge whether these principles provide 
a workable basis for intelligent robot design. For example, such robots may be so single- 
minded as to  be incapable of flexibly responding to an unknown or changing environment. 

320 



Likewise, handling of interruptions, such as requests for help (see below), must be encoded 
in each MPU since the selector does not inspect inputs in the closed state. 

REFERENCES 
[l] Bobrow, D.G. (1985). Qualitatiue Reasoning About Physical System, MIT Press, Cambridge, MA. 
(21 Davis, P.K. (1986). “Applying Artificial Intelligence Techniques to Strategic-Level Gaming and 

Simulation”, In: Modelling and Sirnulation Methodology in the Artificial Intelligence Em, M.S. Elzas, T.I. 
&en, B.P. Zeigler (Eds.). North Holland, Amsterdam. 

[3] Hardt, S.H. (1988). “Aspects of Qualitative Reasoning and Simulation for Knowledge Intensive 
Problem Solving”, In: Modelling and Simulation Methodology: Knowledge System P a d g m ,  M.S. Elzas, 
T.I. &en, B.P. Zeigler (Eds.). North Holland, Amsterdam. 

(41 Holland, J.H. (1986). “Escaping Brittleness: The Possibilities of General-Purpose Learning Algo- 
rithms Applied to Parallel Rule-Based Systems”, In: Machine Learning: An Artificial Intelligence A p  
prcuch, Vol. 11, R.S. Michalski, J.G. Carbonell, and T.M. Mitchel (Eds.), Morgan-Kaufmann Pub. 
Co., Los Altos, CA. 

[5] Klahr, P. (1986). “Expressibility in ROSS, an Object-Oriented Simulation System”, In: Artificial 
Intelligence in Simulation, G.C. Vansteenkiste, E .  J.H. Kerckhoffs, B.P. Zeigler (Eds.), SCS Publications, 
San Diego, CA. 

[6] Rajogopalan, R. (1986). “The Role of Qualitative Reasoning in Simulation”, In: ArtifiialIntelligence in 
Simulation, G.C. Vansteenkiste, E.J.H. Kerckhoffs, B.P. Zeigler (Eds.), SCS Publications, San Diego, 
CA. 

[7] Reddy, Y.V., M.S. Fox, and N. Husain (1985). “Automating the Analysis of Simulations in KBS”, 
Proc. SCS Multi-Conference, San Diego, CA. 

[8] Reddy, Y.V., M.S. Fox, N. Husain, and M. McRoberts (1986). “The Knowledge-Based Simulation 
System”, IEEE Software, March, pp 26-37. 

191 Rozenblit, J.W. and Y.M. Huang (1987). “Constraint-Driven Generation of Model Structures”, Proc. 
Winter Simulation Conf., Atlanta, GA. 

[lo] Rozenblit, J.W., S. Sevinc and B.P. Zeigler (1986). “Knowledge-Based Design of LANs Using System 
Entity Structure Concepts”, Proc. Winter Simulation Conf., Washington, D.C. 

[ll] Rozenblit, J.W. and B.P. Zeigler (1988). “Design and Modelling Concepts”, In: Encyclopedia of 
Robotics, R. Dorf, S. Nef (Eds.), J. Wiley & Sons, New York. 

112) Sevinc, S. and B.P. Zeigler (1987). Entity Structure Based Design Methodology: A LAN Protocol 
Example, Tech. Rep. AIS-4, CERL Lab., Dept. of ECE, Univ. of Arizona, Tucson, AZ 85721. 

[13] Zeigler, B.P. (1984). Multifacetted Modelling wad Discrete Event Simulation, Academic Press, London. 
[14] Zeigler, B.P. (1986). DEVS-Scheme: A LispBased Environment for Hierarchical, Modular Discrete 

Event Models, Tech. Rep. AIS-2, CERL Lab., Dept. of ECE, Univ. of Arizona, Tucson, AZ 85721. 
[15] Zeigler, B.P. (1987). “Hierarchical, Modular Discrete Event Modelling in an Object Oriented Envi- 

ronment”, Simukrtion J., November. 
[16] Zeigler, B.P. (1987). “Knowledge Representation from Newton to Minsky and Beyond”, Applied 

Artifiial Intelligence, 1, January, pp 87-107. 
[17] Zeigler, B.P. (1988). “Implementation of Methodology Based Tools in the DEVS-Scheme Environ- 

ment”, In: Modelling and Simulation Methodology: Knowledge System Pamdipm, M.S. Elzas, T.I. Oren, 
B.P. Zeigler (Eds.), North-Holland, Amsterdamm. 

[18] Zeigler, B.P. (in press). “The DEVS Formalism: Event-Based Control for Intelligent Systems”, to 
appear in special issue of Proceedings of IEEE. 

I191 Zeigler, B.P. and G. Zhang (1987). “Formalization of the System Entity Structure Knowledge R e p  
resentation Scheme: Proofs of Correctness of Transformations”, In: AI, Simulation, and Modelling, L. 
Widman, D. Reidel (Eds.), (in preparation). 

321 



Explanation Production by Expert Planners 

Susan Bridges 
James D. Johannes 

University of Alabama in Huntsville 
Computer Science Department 

Huntsville, AL 35899 

Abstrac t  

Although the explanation capability of expert systems is usually 
listed as one of the distinguishing characteristics of these systems, the 
explanation facilities of most existing systems are quite primitive. 
Computer generated explanations are typically produced from canned text 
or by diwct translation of the knowledge structures. Explanations 
produced in this manner bear little resemblance to those produced by 
humans for similar tasks. 

The focus of our research in explanation is the production of 
justifications for decisions by expert planning systems. An analysis of 
justifications written by people for planning tasks has been taken as the 
starting point for our research. The purpose of this analysis is two-fold. 
First, analysis of the information content of the justifications will provide a 
basis for deciding what knowledge must be represented if human-like 
justifications are to be produced. Second, an analysis of the textual 
organization of the justifications will be used in the development of a 
mechanism for selecting and organizing the knowledge to be included in a 
compu ter-produced explanation. 

This paper describes a preliminary analysis that has been done of 
justifications written by people for a planning task. It is clear from this 
analysis that these justifications differ significantly from those that would 
be produced by an expert system by tracing the firing of production rules. 
The results from the text analysis have been used to develop an 
augmented phrase structured grammar (APSG) that describes the 
organization of the justifications. grammar was designed to provide a 
computationally feasible method for determining textual organization that 
will allow the necessary information to be communicated in a cohesive 
manner .  

The 

PRECEDING PAGE BLANK NOT FILMED 323 



. I  

In  traduction 

Expert system technology has made impressive strides in recent 
years. Simple rule-based architectures have given way to sophisticated 
hybrid systems that support a variety of knowledge representation and 
reasoning mechanisms. One aspect of "expert performance" that has lagged 
in development is that of explanation. Although most expert system 
development tools include facilities for building elaborate graphic 
interfaces, there are many explanation tasks that are not amenable to 
graphic presentation. The need for textual explanation seems evident 
when one considers the vast amount of written documentation that human 
experts are expected to provide to justify the decisions they make. 

The expert system literature generally cites three main purposes for 
explanation facilities [ l ,  4, 6, 131. First, explanation can be used by the 
knowledge engineer to test and debug the system. Second, explanation 
assures sophisticated users that the system's knowledge and reasoning 
process are sound and allows the detection of situations in which the 
system is being asked to perform a task outside the boundaries of its 
capability. Finally, explanation facilities can be employed to instruct naive 
users about the knowledge of the system. These functions relate to the 
interaction of the user and expert system in the course of a consultation. 
Another aspect of explanation that will become more important as expert 
systems are used in complex and critical domains is that of recording 
justifications of decisions. Human experts are usually called on to provide a 
written justification for the validity of their decisions. It would appear 
reasonable, therefore, that a computer program that aids in making these 
decisions should also provide assistance in providing justifications for the 
decisions. 

Expert system explanations have typically been produced by the use 
of canned text (for tasks such as defining terms) or by tracing the rules 
that have fired during the  inference process. Systems that generate rule 
traces usually have some provision for translating the syntax of the rules 
into a natural language form for presentation to the user. Although this 
approach offers more explanation capability than is found in traditional 
computer programs, the traces produced are very different from the 
explanations one would expect from a human expert. In particular, rule 
traces are not adequate for answering questions of the form "Why is this a 
valid decision?'' The research described in this paper is based on the 
observation that when human experts are asked to justify decisions they 

3 2 4  



have made, they do not merely recite the steps taken in reaching the 
decision. 

The limitations of the "trace the  rules" approach have been widely 
discussed in the literature [3, 12, 141. are of three types. 
In the first kind, the traces tend to be very long and contain much 
information that is of no interest to the user. This problem becomes more 
acute as the size of the system grows. The second problem with rule traces 
is the absence of much information that would be expected in a human- 
produced explanation. For example, information about the problem solving 
strategy of the system is not present in the rule trace because it is not 
explicitly represented in the rules and knowledge structures of the system. 
Other information, such as that needed to define terms, is often absent 
from the knowledge base altogether. The third type of problem concerns 
the structure of the explanations produced. Research in natural language 
processing has shown that multisentential text produced by humans 
exhibits a characteristic structure and organization that facilitates the 
communication process [7, 81. 

These limitations 

This structure is not found in rule traces. 

Much of the research in explanation production done to date has 
been in systems that perform medical diagnosis or fault diagnosis in 
electronic or mechanical devices. This research has addressed the first two 
problems listed above by developing methods for incorporating the 
knowledge - needed for explanation in the knowledge structures of the 
system and for tailoring the system's responses to the user [3, 131. The 
problem of structuring explanatory text has been largely unaddressed. 

The goal of our current research is the development of a 
methodology for selecting and organizing the knowledge that is to be used 
to construct multisentential explanatory text that is a justification of the 
recommendations made by an expert planning system. The task of natural 
language generation has traditionally been divided into two components. 
A strategic component determines the content and structure of the text 
while a tactical component determines the natural language surface 
structure (which words and syntactic structures to use). The emphasis of 
our research is the strategic component. 

Expert planning programs offer an attractive test bed for the 
production of justifications of decisions. There has been a great deal of 
research into the  development of general frameworks for planning 
systems [2, 91, but this work has largely ignored questions of explanation. 

325 



Analysis of Text 

Students are taught from early elementary years that there are ways 
to organize writing that will increase its effectiveness. It stands to reason, 
then,  that text written for a specific purpose in a limited domain will 
exhibit more regularity of organization than text in  general. Language 
understanding systems have long made use of this property [15]. For this 
reason, it was thought that the analysis of text written for a specific type 
of task could be used as the basis for the development of a grammar 
formalism that could be used in the generation of similar text by an expert 
system. 

Written, rather than spoken text, was used in the analysis phase of 
this research for several reasons. First, written text is generally better 
planned and organized than spoken text. Spoken text often contains partial 
sentences and ungrammatical constructions that would be unacceptable in 
written form. In addition, speakers use facial expressions and tone of 
voice to convey much of their meaning. Spoken text is often directed 
toward a more specific audience and so requires a more elaborate user 
model than written text. 

The type of task chosen is that of justifying the validity of a plan 
constructed by an expert planning system. An initial text analysis was 
done using justifications of Master's degree plans of study written by 
University of Alabama in Huntsville graduate students. Additional 
analysis has since been done of justifications of travel itineraries. The 
justifications of plans seem to follow the general form of identifying the 
each component of the plan, and the planning constraints that each 
component satisfies. 

A Grammar Describing the Structure of Justifying Text 

The augmented phrase structured grammar (ASPG) formalism was 
chosen as a representation for the  text structure. Other approaches to 
representing text structure that have been used in previous research 
include fixed semantic patterns [3, 10, 111 and context-free grammars [8, 
141. The use of semantic patterns limits the flexibility of the 
representation by restricting the number of text structures that can be 
generated to a small finite set. Although the  use of a context-free 
grammar aIloivs an infinite number of structures to be generated, a 

326 



mechanism outside the grammar itself must be used to control the 
application of rewriting rules when more than one applies. The APSG 
facilities for attaching attributes to non-terminals and conditions to 
rewriting rules allows generation of an infinite number of structures and 
provides a method for embedding the control of the application of 
rewriting rules in the grammar. 

After study of the justifications submitted, an attempt was made to 
develop an APSG that could be used to guide the generation of similar 
justifications by an expert system. The starting point for text generation is 
necessarily some representation of the relevant knowledge. It is 
understood that an explanation system cannot communicate information 
that the knowledge base does not contain or cannot derive. Thus, one 
important factor in the development of these systems is the representation 
of appropriate knowledge. It is assumed in this paper, that the 
appropriate knowledge is represented, but the method of representation is 
left undefined. 

The APSG formalism uses auxiliary evaluation functions in the 
assignment of values to attributes and testing of conditions on rewriting 
rules[l5]. In order to use the knowledge of the system to direct the 
generation of explanations, it was necessary to provide an interface 
between the grammar and the knowledge base. This is done by use of 
special auxiliary evaluation functions that access the knowledge base and 
return values that can be used to direct the application of grammar rules ' 

and as building blocks in the message constructed by the generation 
process. In addition to inherited and synthesized attributes, attributes 
that derive their values solely from functions that access the knowledge 
base are called assigned attributes. The Start symbol of the grammar will 
have one or more attributes that are given values before the generation 
process begins. 

It is assumed that the  generation process will proceed in a left to 
right, depth-first manner and so the restriction is imposed that 
synthesized attributes can only be inherited from left to right. In addition, 
the generation process will initially proceed in a top down manner and so 
attributes cannot be synthesized in  a sub-tree and then used in a condition 
at the root of the sub-tree to test its validity. This means that attributes 
ussd in conditions will, in general, be inherited or assigned. When more 
than two rules can be applied, it is assumed that the conditions on the 
rules are sufficient to decide which is applicable so that backtracking can 

327 



be avoided. Evaluation rules for attributes that will be tested in conditions 
are given before the rewriting rules in which the conditions are tested. 

The grammar given is unique in that it does not have any terminal 
symbols. It is assumed that "non-terminal" symbols, once generated, are 
never retracted. Thus, when a non-terminal is encountered for which 
there is no applicable rule, that symbol, in effect, becomes a terminal 
symbol. The tree built as the rules are applied acts as a framework for the 
message to be built. Pieces of the message are built at each of the leaves 
and are brought together as as synthesized attributes from the leaves to 
the root. The message this built has a structure imposed by embedded 
lists and can contain additional information such as focus of attention, 
tense, etc. 

No attempt has been made to construct a grammar that can generate 
all of the organizations found in the justifications that were studied. 
Rather, the grammar is an attempt to provide a method for providing an 
organization that is cornputationally feasible and yet flexible enough to 
allow the necessary information to be communicated in a planned cohesive 
manner .  

S u m m a r y  

Human experts are often expected to provide written justification of 
the decisions they make. As the use of expert systems becomes more 
widespread, it will be become increasingly important for these systems to 
have the capability to compose text that justifies their decisions. 
Traditional "trace of the rules" explanations are not sufficient for this task 
because they include much information that not pertinent, they omit other 
information that is typically found in human-provided explanations, and 
they lack any organizing structure. This paper explores the possibility of 
using an augmented phrase structured grammar to describe the structure 
of justifications of expert planning decisions. The grammar provides a 
mechanism selecting and organizing the information to be provided in the 
justification. 

328 



R e f e r e n c e s  

1. Buchanan, Bruce G., and Shortliffe, Edward H. Rule-Based Expert 
Systems. Addison-Wesley, Reading, MA, 1984. 

2. Chapman, David. Planning for Conjunctive Goals, Artificial Intelligence, 
32, 1987, 333-377. 

3. 
Framework for Explanation. Artvicial Intelligence, 20, 1983, 215-25 1.  

Clancey, William J. The Epistemology of a Rule-Based Expert System--a 

4. Finin, Timothy W., Joshi, Aravind K., and Webber, Bonnie Lynn. 
Language Interactions with Artificial Experts. 

Natural 
Proceedings of the IEEE,  74, 

1986, 921-938. 

5. Hasling, D. W., Clancey, W. J., and Rennels, G. Strategic Explanations for 
a Diagnostic Consultation System. International Journal of Man-Machine 
Studies ,  20, 1984, 3-19. 

6. Hayes-Roth, Frederick, Donald A. Waterman, and Douglas B. Lenat, (Eds), 
Building Expert Systems. Addison-Wesley Publishing Company, Reading, 
MA, 1983. 

7. Mann, William C., and Thompson, Sandra A. Rhetorical Structure 
Theory: Description and Construction of Text Structures. In: Gerard 
Kempen (Ed.), Natural Language Generation, Martinus Nijhoff Publishers, 
Dordrecht, 1987, 85-96. 

8. McKeown, Kathleen R. Text Generation, Cambridge University Press, 
Cambridge, UK, 1985. 

9. Sacerdoti, Earl D. A Structure fo r  Plans and Behavior, SRI Technical 
Report TN-109 SRI International, Menlo Park, CA, 1975. 

10. Schank, Robert C., Explanation patterns: Understanding Mechanically 
and Creatively. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986. 

1 1. Schulman, Robert, and Hayes-Roth, Barbara, Plan-Based Construction 
of Strategic Explanations. Knowledge Systems Laboratory, Report No. KSL 
88-23, Stanford University, Stanford, CA, 1988. 

329 



12. Swartout, William R., XPLAIN: a System for Creating and Explaining 
Expert Consulting Systems, Artificial Intelligence, 21, 1983, 285-325. 

13. Swartout, William R. Knowledge Needed for Expert System 
Explanation, Future Computing Systems, 1, 1986, 99-1 14. 

14. 
Intelligence, 15, 1980, 19-48. 

Weiner, J. L. BLAH, A System Which Explains its Reasoning. Artificial 

15. Winograd, Terry, (1983) Language as a Cognitive Process: Syntax, 
Addison-Wesley, Reading, MA. 

3 3 0  



N89 - 1 5 5 9  3 

KNOWLEDGE REPRESENTATION ISSUES FOR EXPLAINING PLANS 
Mary Ellen Prince 
James D. Johannes 

University of Alabama in Huntsville 
Computer Science Department 

Huntsville, AL 35899 

ABSTRACT 

Explanations are recognized as an important facet of intelli- 
gent behavior. Unfortunately, expert systems are currently limited 
in their ability to provide useful, intelligent justifications of 
their results. We are currently investigating the issues involved 
in providing explanation facilities for expert planning systems. 
This investigation addresses three issues: knowledge content, 
knowledge representation, and explanation structure. 

Introduction 

An important characteristic of an intelligent system, whether 
human or computer, is the ability to explain or justify its-actions. 
Recognizing this fact, expert system developers were the first to 
regularly incorporate explanation facilities into their programs. 
t31. Unfortunately, early attempts at automated explanation pro- 
duced results that were significantly different from human explana- 
tions, both in organization and in information content. 

In large measure this was due to the methods which were used 
to model expert problem solving knowledge. Production rules, the 
m o s t  popular f o r m  o f  knowledge representation, proved to be an 
effective representation for generating solutions, but were less 
than satisfactory for generating explanations of those solutions. 
The domain principles and expertise which determined the organi- 
zation and content of the rule base were represented implicitly, 
i f  at all, and therefore could not be used to justify the system's 
behavior. 

Recent research has focussed on methods of improving the ex- 
planation capability of intelligent systems. ( ( 4 1 ,  161 ,  ( 9 1 ,  1101, 
[ill). A t  least three issues must be considered: first, identi- 
fication of the kinds of knowledge which constitute a useful expla- 
nation; second, determination of a representation formalism to make 
the knowledge readily accessible to the explanation generator; and 
third, methods for selecting and organizing the knowledge in order 
to present it in a meaningful format. 

This paper will address the first i s sue  in depth and will sug- 
gest an approach to the second. For a discussion of explanation 
organization, see [ 2 1 .  The explanation domain will be planning 
systems. 

331 



The Importance of Explanations 

There is a significant gap between what users would like to 
see in an explanation system and what is feasible in light of 
current theory and technology. Although researchers are working 
to close the gap, much remains to be done. 

A system that is able to explain its own behavior has several 
advantages over systems that lack this ability. For example, 
adequate explanation facilities can reassure skeptics that the 
system's reasoning processes are sound and its results are reliable. 
They can also serve a tutorial purpose. A properly constructed 
description of the strategy and domain principles used to derive a 
solution can provide insight which the user can then apply to 
other, similar, problems. The novice is thus encouraged to expand 
his knowledge of the domain, much as i f  he were working directly 
with a human expert. Explanations can be useful to knowledge 
engineers during the test and debug phase of system development, 
just as program traces are useful to a programmer under similar 
conditions ([ll, [ 6 1 ) .  In addition, good explanations can provide 
an automatic documenting capability. Finally, it can be argued 
that a system which contains the knowledge needed to produce good 
explanations can also be designed to use this information to 
improve its own performance in areas such as error recovery. 

Current State of Explanation Technology 

Explanation technology is severely limited in its ability to 
provide the benefits cited above. Explanations typically assume 
one of two forms: natural language traces of the rules currently 
under consideration or, less frequently, "canned text" inserted by 
the designer. 

Rule traces have some advantages. They provide an accurate 
record of the program's activity and are thus helpful for 
debugging the knowledge base and for showing when the program is 
being pushed beyond the limits of its ability. In addition, 
modifications to the rules are automatically reflected in the 
associated explanations, thereby insuring consistency. 
Explanations produced by paraphrasing rules suffer, however, from 
several defects. They are poorly structured, and often filled 
with low level operational details that are of little interest 
to the average user. More seriously, they are in general incapable 
of explaining causal relations, the rationale behind a solution, 
strategic issues, or anything about fundamental domain principles. 
The reason for this is that the knowledge required for deep 
explanations is not explicitly represented in the rules. Problem 
solving strategy and domain relations are implicit in the clause 
ordering of rule concepts, and the principles which justify the 
rules and strategy are missing altogether. 

Canned text explanations can be used to annotate individual 
rules or groups of rules, but this approach lacks the flexibility 

332 



which is needed for a full scale explanation system. It is diffi- 
cult to anticipate every explanation which may be required. In 
addition, there is no guarantee that changes to the program code 
will be reflected in changes to the associated explanations, since 
there is no automatic connection between the two. 

In summary, it is apparent that the current state of explana- 
tion technology falls far short of that which may be desired. The 
following sections will examine the kinds of questions that a good 
explanation system might reasonably be expected to address, and 
identify the knowledge needed to respond to these questions. For 
background, a discussion of the planning domain will be presented. 

The Planning Domain 

This paper addresses explanation generation in the context 
of expert planning systems. Previous explanation research has 
concentrated on diagnostic expert systems, primarily in the 
areas of medicine and electronic trouble shooting. An important 
consideration is whether these findings can be extended to other 
domains, such as planning. A comparison between planning systems 
and diagnostic systems will help to answer this question. 

Simply stated, an expert planner is a system that generates 
a sequence of steps which, when applied from a given starting 
state, will produce the desired goal state. Some systems are 
interactive, so that feedback during plan execution can influence 
future planning decisions. In traditional planners, often called 
strategic planners, it is more commonly the case that plan 
generation and plan execution are two distinct processes. Robot 
problem solvers and automatic programming are two common 
application domains for planning systems. 

The individual steps in a plan are produced by plan operators, 
which describe the legal actions or events that can occur in the 
application domain. Operators are typically described by a set of 
preconditions, which determine when an operator can legally be 
applied, and a set of postconditions, which describe the operator's 
effect on the world state. Operator descriptions may also include 
additional information such as procedures for accomplishing de- 
sired effects, ordering constraints, and resource requirements. 

The planning process consists of choosing appropriate opera- 
tors and ordering them to achieve the goals which constitute the 
final state. Early planners were linear; that is, they developed 
a sequence of steps to achieve each individual goal in order. At 
every point in the planning process the plan was fully detailed, 
but complete only to that point. STRIPS ( 7 1  is the most familiar 
example of a linear planner. 

Hierarchical planners, on the other hand, start with a high 
level representation of the entire plan and refine it through 

3 3 3  



several levels of abstraction to arrive at the final sequence of 
primitive operators. A feature frequently associated with 
hierarchical planners is partial ordering of actions. Non- 
hierarchical planners are often forced to make arbitrary ordering 
decisions in order to maintain the linear nature of the incomplete 
plan. Hierarchical planners postpone committment until it is 
clear that the committment will not have to be undone at some 
later stage. NOAHl81, NONLIN[lZI, and SIPEl131 are hierarchical 
planners. 

A third paradigm is case-based or script-based planning. 
This approach relies on a library of existing skeletal plans 
which are adapted to new situations by various refinement and 
"debugging" techniques. HACKER and MOLGENlSI are two examples of 
planners that fit this paradigm. 

Comparison of Planning Systems and Diagnostic Systems 

Comparison of planning systems and diagnostic systems 
suggests several parallels that can be exploited to transfer 
explanation theory from the diagnostic domain to the planning 
domain. Two that will be investigated here are the knowledge 
bases and the inferencing processes. 

The knowledge of a typical diagnostic system is encoded in 
production rules, a simple, flexible formalism for representing 
expert reasoning. Rules consist of two parts: the premise, 
typically a conjunction of clauses, and the conclusion, or goal. 
The conclusion can be established by proving that the clauses 
in the premise are true. This may be done by gathering evidence 
directly or by proving other rules which have the same clauses 
as goals. Thus the knowledge base can be viewed as a hierarchi- 
cal network with implicit links between goals and premises. 

The operators in a planning system serve a function analagous 
to that of production rules in the sense that they contain the 
necessary problem solving knowledge. The analogy can be extended 
to structural aspects of the knowledge as well. An operator's 
preconditions (premises) must be satisfied in order to achieve 
the desired postconditions (goal). Satisfying preconditions can 
be accomplished by applying other operators with the appropriate 
postconditions, thus giving the set of defined operators a net- 
work structure. 

Inference in expert systems is accomplished by rule chaining. 
Depending on its design, a system may chain backward from a sus- 
pected diagnosis to known evidence, or it may chain forward from 
the evidence to a diagnosis. 

Planners, particularly those based on the hierarchical para- 
digm, may use problem reduction as an inference technique. The 
method is to first express a plan as a sequence of high level goals 
and then to refine each abstract goal into a set of more concrete 
subgoals. The refinement process can be repeated as often as is 

3 3 4  



necessary to produce the final sequence of primitive actions. As 
an alternate, a planner might employ means-ends analysis. This 
approach involves a comparison between the current state and the 
goal state. Wherever differences are detected, operators are 
selected to reduce the differences. This is also an iterative 
process. 

Plan derivation and diagnosis differ in the details of how 
the appropriate operators or rules are selected but the effect 
of the selection process is similar in both cases. At any point 
during the inferencing process there exists a stack of goals, 
implicit or explicit, which must be realized. An achieved solution 
represents a path through the network of rules or operators. For 
planning systems the path is equivalent to the plan; for diagnostic 
systems it represents the chain of reasoning that led to a specific 
diagnosis. 

The solution produced by a planning system is more complex 
than the solution produced by a diagnostic system. A plan is a 
structured entity consisting of an ordered sequence of steps, while 
a diagnosis consists of a single entity. In addition, many planners 
operate in dynamic, multi-agent domains. They must plan simulta- 
eous actions, prevent harmful interactions between competing agents, 
and consider the effects of actions over which they have no direct 
control. It is reasonable to expect that this added complexity will 
cause a corresponding increase in the complexity of the associated 
explanation. The next section will expand on this premise through 
a discussion of the epistemological issues of explanation theory as 
applied to expert planners. It will first outline some of the 
issues that must be addressed by an explanation system and will 
then present a taxonomy of explanation related knowledge. 

The Epistemology of Explanations 

A good explanation facility should be flexible enough to meet 
the needs of domain experts, novice users, and system designers. 
The following items illustrate the kinds of questions that it might 
be expected to address. 

Domain Facts, Principles, and Terminology 
Terminology is important as a foundation for understanding 
higher level explanations. Principles describe the problem 
solving procedures which can be used to achieve a goal. In 
well defined domains most facts can be expressed as causal 
relations, while in less formalized domains, empirical 
associations and heuristics play an important role. 
Comparisons and Choices 
Explaining why one action is preferable to another is a 
difficult task. Such decisions may be predicated on an 
accumulation of prior evidence, or on anticipation of future 
effects. In general, this kind of explanation requires a 
knowledge of constraints, interactions between events, and 
ultimate goals. 

335 



- Justification 
Justifying a single step in a plan can be as simple at stating 
a causal relationship or as complicated as explaining a choice. 
Justifying an entire plan may require the system to identify 
strategies, constraints, priorities, resource restrictions, and 
temporal issues. 

Questions about methodology refer to the mechanics by which a 
particular solution was obtained. 

- General Strategy 
In addition to specific methods, most problem solvers also rely 
on abstract principles and weak methods to guide the problem 
solving process. 

- Methodology 

No system has yet been able to respond to all of these issues. 
Expert systems have traditionally answered questions about 
methodology by paraphrasing a chain of executed rules. In 
planning systems, a similar effect can be achieved by showing how 
operators in a general procedure have been instantiated with case- 
specific data. MYCINI31 had a limited ability to compare 
alternative drug therapies. In NEOMYCIN Clanceyi'll and Haslinq 
et a1 I61 extended the explanatory capabilities of MYCIN by 
incorporating meta-rules to provide information about strategy. 
Shulman and Hayes-Roth(91 designed an explanation module to provide 
justifications and feasibility evaluations for certain knowledge 
systems where the reasoning was controlled by a strategic plan. In 
general, however, most systems lack the deep knowledge required to 
provide a broad range of explanations. 

The remainder of this section identifies the kinds of know- 
ledge needed for plan explanation. This identification is based on 
previous explanation research from the diagnostic domain, as well 
as on the specific needs of the planning domain. For purposes of 
discussion, the knowledge will be classified as either meta- 
knowledge (knowledge about knowledge), domain knowledge, or case- 
specific knowledge. 

- Meta-Knowledge 

Meta-knowledge embodies knowledge about control strategy and 
problem solving techniques. 
might be classified as domain knowledge, the guidelines used to 
choose between competing strategies fall into the category of 
meta-knowledge. Many of the so-called "weak methods" can also be 
categorized this way. Examples of meta-knowledge are "Look for 
common causes for a device malfunction before looking for unusual 
causesf1 or "Avoid ordering plan operators until there is a reason 
to do so.tg 

While a specific method or strategy 

It is not clear that there are principles which are applicable 
to every planning domain. For example, a linear planner might 
employ the principle "Order plan operators arbitrarily if no 

336 



information exists; modify later if  necessary" instead of the 
"avoid ordering" principle cited earlier. It is clear, however, 
that every planning system operates on a set of general strategic 
principles which may, in fact, have wide application. 

Some illustrations of these general strategies may be found 
in the literature. Swartout[lOl, for example, recommends the use 
of tttradeof fs" and I@preferences@', where tradeoffs indicate the pros 
and cons of selecting a particular goal-achieving strategy and 
preferences are used to prioritize goals. Planners in multi-agent 
domains that permit parallel actions have devised methods for re- 
solving the conflicts that arise when actions in one branch of a 
plan interfere with actions in another branch[l31. System designers 
must identify the abstract principles that guide their own problem 
solving and incorporate them into the meta-level knowledge structure. 
In order to provide good explanations of general strategy and to 
justify final plans it is important that the information be 
represented explicitly. 

- Domain Knowledge 

Without domain knowledge, it is impossible to explain termi- 
nology, principles, and domain facts. It is also difficult to fur- 
nish justifications and explanations of general principles unless 
domain specific information is available. Both declarative and 
procedural knowledge are required here. Declarative knowledge 
encompasses terminology and factual information, while procedural 
knowledge expresses how goals can be accomplished. Swartout and 
Smoliar 1111 discuss the need for terminological, domain descrip- 
tive, and problem solving knowledge in the context of EES, an 
expert system which diagnoses cardiac difficulties and prescribes 
digitalis therapy. Their structure is sufficiently general to 
apply to planning as well as diagnostic domains. 

The terminology of a planning system includes all domain 
concepts. Physical objects, their properties, and relations among 
objects such as t*on-top-oftl or *Igreater-thant1 must be defined in 
terms of system primitives. Factual knowledge can be represented 
as assertions of causal relations or probabilistic associations. 
Certain types of constraints which control the temporal ordering 
of operators and specify harmful or helpful interactions may also 
be represented this way. 

Procedural or strategic knowledge in intelligent planners 
involves the selection and ordering of plan operators. The appli- 
cation of domain strategies is subject to control by meta-level 
knowledge and is, at the same time, dependent on case-specific 
information that can activate constraints and ordering rules. To 
be fully explainable, strategies must also be supported by a 
rationale based on domain facts. 

- Case-Specific Knowledge 

Every instance of a planner's operation begins with a speci- 

3 3 7  



fication of the initial world state, the desired goal state, and 
a list of constraints, availabe resources, and other pertinent 
information. Using meta-level and domain strategies, the planner 
then generates a sequence of steps which describe how to achieve 
the goal. The final plan consists of these steps, instantiated to 
satisfy the initial specifications. 

While the plan itself may be used to explain methodology, 
much as a traditional diagnostic system uses its rule chain to 
explain its diagnosis, it is necessary to keep a case history of 
the problem-solving process in order to provide deep explanations. 
At a minimum, the case history must include the procedures used, 
choices made, and the reasons for those choices. 

As has been previously noted, some choices occur when the 
planner is forced to decide among two or more operators. Other 
decisions determine the ordering of plan steps. Diagnostic systems 
use certainty factors or other numerical weights as an aid when 
making similar decisions. Quantitative values do not contain 
enough information to generate satisfactory explanations, however, 
nor are they always appropriate in the planning domain. Planninq 
decisions result from a combination of constraints, goal priorities, 
resource availability, or the knowledge that one or more of the 
options would interfere with the achievement of some future goal. 
This is the type of knowledge that must be kept in the case history. 

It should be clear from the preceding discussion that there 
is no absolute boundary separating meta-knowledge, domain know- 
ledge, and case-specific knowledge. Furthermore, there are 
situations where it is necessary to integrate information from 
more than one knowledge level to produce an adequate explanation. 
The next section will investigate methods of structuring planning 
knowledge to make it accessible to the explanation generator. 

Representation Issues 

The knowledge required to explain plans is, on the whole, the 
same knowledge that is required to generate the plans. Previous 
intelligent systems have made much of this knowledge unavailable 
for explanation generation. The problem now is to develop repre- 
sentation formalisms that will make the information explicit with- 
out unduly affecting the efficiency of the plan generator. A 
completely developed representation scheme is beyond the scope of 
this paper. Instead, it will concentrate on outlining a general 
knowledge structure to guide future research. 

Domain terminology is best represented as a type hierarchy of 
nodes. The highest levels of the hierarchy serve as an index to 
domain concepts, while the lowest level can be instantiated with 
case-specific data. Individual nodes have attributes which can be 
either pointers to other nodes, definitions, or other properties. 
The pointers define the hierarchy and permit property inheritance. 
Attributes describe concept features and may be used to record 
constraints on the values of plan variables. 

338  



Operators also have a natural hierarchical structure. Abstract 
operators encode meta-level strategies which in turn invoke domain 
procedures. A t  the bottom of the hierarchy are the primitive opera- 
tors which define individual plan steps. In addition to parameters, 
pre-conditions, and post-conditions, operators should include 
information about constraints, resources, and rationales. Con- 
straints may apply to variable values or to temporal ordering. 
Resource requirements describe the domain resources needed to per- 
form the step and the duration for which the resources must be 
available. The rationale may state that the operator is necessary 
in order to establish some condition needed for a future action or 
it may provide a causal justification for the process invoked. 

The case history records the refinement process by which the 
plan was generated, giving it, too, a hierarchical structure. The 
highest levels contain information about meta-level decisions, such 
as options between alternative strategies. Intermediate levels are 
concerned with domain dependent choices. The lowest level corre- 
sponds to the actual steps of the plan. Nodes in the history are 
instantiated with case-specific data, where appropriate. Choice 
nodes can be annotated with reasons that justify the choices- For 
explanation purposes it is vital that the domain facts and defi- 
nitions that motivated the choices be represented. The structure 
will then contain all knowledge needed to justify the plan. 

6. Conclusion 

Explanation theory is just beginning to move beyond the narrow 
scope of early efforts. Providing intelligent responses to a 
variety of questions requires a full and explicit representation 
of the knowledge involved. The hierarchical nature of knowledge 
in an expert planning system enables the planning process to be 
explained on many levels of abstraction. Systems which rely pri- 
marily on the knowledge embedded in low-level rules forfeit this 
opportunity. Building the knowledge bases required for adequate 
explanations is no small task, It is an activity that requires 
careful attention from domain experts and knowledge engineers 
alike. The result of this effort, however, is a system that will 
be more responsive to the needs of its users. 

339 



REFERENCES 

1. Berry, D. C. and Broadbent, D. E. "Expert Systems and the 
Man-Machine Interface", Expert Systems, vol. 4, no. 1, 
Feb. 1987, 18-28. 

2. Bridges, S. and Johannes, J. D. t*Explanation Production by 
Expert Planners", Proceedings of Fourth Conference on 
Artificial Intelligence for Space Applications, to be 
published. 1988. 

3. Buchanan, B. G. and Shortliffe, E. H. Rule Based Expert 
Systems. Addison-Wesley, Reading, MA, 1984. 

4. Clancey, W. J. "The Epistemology of a Rule-Based Expert 
System - A Framework for Explanationt', Artificial Intelligence, 
20, 1983, 215-251. 

5. Cohen, P. and Feigenbaum, E. A. The Handbook of Artificlal 
Intelligence, vol. 3. William Kaufman, Inc. Los Altos, CA, 
1984. 

6. Hasling, D. W., Clancey, V. J. and Rennels, G. "Strategic 
Explanations for a Diagnostic Consultation System". 
International Journal of Man-Machine Studies, 20, 1984, 3-19. 

7. Nilsson, N. J. Principles of Artificial Intelligence. 
Tioga Publishing Co., Palo Alto, CA, 1980. 

8. Sacerdoti, E. D. A Structure for Plans and Behavior. 
Elsevier North-Holland, Inc. New York, NY, 1977. 

9. Schulman, R. and Hayes-Roth, B. ExAct: A Model for Explaining 
Actions. Knowledge Systems Laboratory, Report No. KSL 87-8, 
Stanford University, Stanford, CA, 1987. 

10. Swartout, W. R. ttKnowledge Needed for Expert System 
Explanation", Future Computing Systems, vol. 1, no. 2, 1986, 
99-113. 

11. Swartout, W. R. and Smoliar, S. W. "On Making Expert Systems 
More L i k e  Experts", Expert Systems, vol. 4, no. 3, Aug. 1987, 
196-207. 

12. Tate, A. "Generating Project Networks", Proceedings IJCAI 77, 
1987, 888-893. 

13. Wilkins, D. E. t'Domain-Independent Planning: Representation 
and Plan Generationn, Artificial Intelligence, 22, 1984, 
269-301. 

3 4 0  



I 

Simple Explanations and Reasoning: 
From Philosophy of Science to Expert Systems* 

Daniel Rochowiak 

Johnson Research Center - Philosophy 
University of Alabama in Huntsville 

Huntsville, Alabama 35899 

205-895-6217 

Explanation facilities a r e  an important  
extension of the rule based paradigm. By using 
contrast why questions and a more textured 
notion of reasoning, a robust schema for 
simple explanations can be developed. 

INTRODUCTION 

At first glance it seems rather easy to characterize explanation. An 
explanation is a deductive argument that satisfies the conditions of 
empirical adequacy. [7] However, behind this apparently simple 
account can be found a great many issues. One of these concerns the 
pragmatics of explanation: deductive explanations often fail to explain 
anything to the person seeking the explanation. I will examine the 
pragmatic dimension of explanation and indicate how a more 
‘textured’ notion of reasoning can enhance the explanation facilities of 
the expert system paradigm. The domain of interest will be a general 
one in which there are objects, states of objects and causal paths 
between the objects. 

Among the facilities commonly found in expert system building 
tools are the why? and how? explanation facilities. Typically the why? 
facility is engaged at a prompt and reports the rule that is currently 
being examined, while the how? facility requests the user to identify a 
particular parameter for which the system has set a value and reports 
the rule by which it was set. Such facilities operate in the style of 
deductive explanation. In both there are conditional claims (laws or 
rules) together with specified conditions (initial conditions or user 

341 



. 
e 

Simple Explanations and Reasoning 

entered values) that deductively lead to particular conclusions (the 
explanandum, or the values of parameters). Deductive explanations 
have been criticized for attending more to the grounds of an 
explanation than the particular explanation of a given event. [8] 
Similarly the how? and why? facilities attend more to the rules of the 
system than to the events to be explained. The sorts of explanation 
offered within the expert system should not be confused with the 
sorts of explanations that might be considered ordinary in other 
contexts. The explanation facilities might explain, for example, why 
one would come to think that a particular part failed, but would not 
explain why the part failed. Such criticism points to the importance of 
pragmatic considerations in explanation. 

VARIETIES OF EXPLANATION 

Explanations come in many forms. Scientific explanations are one 
well studied group of explanations. One form of scientific explanation 
proceeds from a scientific law, theory or model to  a deductive 
account of a phenomenon. Although Hempel’s original formulation of 
such  deductive nomological (DN) explanations has been much 
criticized, it provides both a good starting point and a base that, with 
suitable extensions and amendments, can capture a large range of 
scientific explanations. 

The D N  model of scientific explanation invites comparison to the 
notion of backward chaining in expert systems. The explanandun is 
known and the collection of scientific principles is searched in an 
effort to find the conditions which, if satisfied, would constitute the 
explanans. The collection of principles retrieved along with the 
specified conditions constitute the explanation of the phenomenon as 
described in the  explanandum. Thus, the pattern of such  an 
explanation would be: 

<explanandurn asserted as true> because <explanans retrieved by 
backward chaining>. 

Within the range of DN explanations, a distinction must be drawn 
between the epistemic and ontic modes of explanation. The epistemic 
mode employs the sort of reasoning, captured in rules, that an expert 
or scientist would use  in solving a problem or producing an 
explanation. The ontic mode concentrates on the scientific principles 
and laws which, if true, would produce a sound deductive argument 
with the explanandum as the conclusion. Taking a liberal approach to 
both scientific explanation and expert systems, it will be assumed that 
the epistemic mode can be considered to be the locus of explanatory 
activities. Thus, the explanation produced by the operation of an 
epistemic system will provide the reasons for asserting that the 
explanandum is true. 

342 



Simple Explanations and Reasoning 

Accepting the epistemic mode as primary suggests that the 
operation of an expert system itself can be taken as an instance of 
explanation. However, more is required since what is often at issue is 
either why certain rules are used or why there are such rules at all. A 
simple approach to this can be taken by adding the idea that rules 
themselves are often linked to some backing that explains the rule. 
Though this is only a small deviation from the epistemic mode of DN 
explanation, it would provide for richer, more informative, 
explanations. 

Other explanatory patterns require a greater divergence from the 
DN model. 

In some cases the focal point of explanation is why one member of 
a particular kind behaved in a way that the other members of that kind 
did not. For example, one might want to explain why two parts of the 
same kind came to be in different states. Here it seems reasonable to 
think that  an explanation is provided by a list of the property 
differences between the two instances. The pattern of such an  
explanation is unlike the DN pattern since the focus is difference and 
not deduction. The pattern of such an explanation would be: 

<differences in instances> because <differences in kinds>. 

In other cases the focal point of the explanation is a temporal or 
causal account of a how an object came to be in a particular state. Such 
explanations are akin to historical explanations in which one is 
searching for a significant event that leads to a particular outcome. 
Such explanations are unlike DN explanations since the focus is 
temporal and not logical. The pattern of such an explanation would be: 

<state of object> because <chain of events>. 

The variety of explanations in the context of scientific reasoning 
strongly suggests that there will be more than one explanation pattern. 
In turn this suggests that in the pragmatics of explanation attention 
must be paid to determining what sort of explanation is desired. 

WHY QUESTIONS AND THE VARIETIES OF EXPLANATION 

One can request an explanation in many different ways. One might 
ask ‘Why does parameter P have value V?’ or one might ask ‘How is it 
that the system is now asking this question?’ The former although 
asked as a why question is the province of the how? facility and the 
latter, though asked as a how question is the province of the why? 

3 4 3  



Simple Explanations and Reasoning 

facility. For the sake of clarity and convenience I will assume that all 
requests for explanation can be represented as why questions, and 
suggest that all appropriate requests for explanation embody contrast 
why questions, ‘Why is it this rather than that?’ 

In the simple question ‘Why P?’ P represents the surface topic (ST) 
of the question and its assumed that P is true. However, if a context is 
not invoked, such questions are ambiguous. [lo, 11 The question ‘Why 
did part-234 fail?’ is ambiguous. At the level of the expert system (ES), 
it might be a request for an explanation of why the system inferred 
that part-234 failed rather than asking for a test to be performed on 
part-234. At the level of the causal process (CP), it might be a request 
for an explanation of why part-234 rather than part-123 failed, or a 
request for an explanation of why part-234 failed rather than 
continued to operate. Thus, why questions should be understood as 
making reference to some contrast class. ‘Why P?’ is a specialization of 
‘Why P rather than Q?’ when the contrast class is already understood. 
In the more general form ‘P rather than Q’ is the intended topic (IT) 
of the explanation, and it is assumed that P is true and Q is false. 

The contrast class for the IT must contain at least P and Q, but may 
contain other propositions. The propositions contained in the contrast 
class may be exclusive, inclusive or unspecified. If they are exclusive, 
then showing why P is true, will amount to explaining why Q is false. If 
they are inclusive, a separate account will be needed to show why Q is 
false. If they are unspecified, then the question should be treated as if 
it were an ST question. 

The particular items that appear in the contrast space can be 
generated by examining the instances or causal paths. If the IT refers 
to things that have instances, then the space would include all the 
instances of that type. For example, if the IT referred to the contrast 
of par t -234 and  par t -123 and  both par t s  were of the type 
philosophator, then the contrast space would be composed of all 
instances of philosophators. Alternatively, if the IT referred to the 
state of an object, then the space would be composed of all of the 
paths through the part. For example, if the IT referred to the failure of 
part-234 rather than its continued operation, then the contrast space 
would be composed of all the paths through part-234. I t  should be 
noted, however, that the state of a device could be determined by 
inference or by direct measure. If the state is determined by direct 
measure and cannot be inferred by the rules of the the ES, then the 
cause of the part’s state will be labeled as internal. If the state is either 
inferred by the rules or is measured but can be inferred from the 
rules, then it will be labeled as external. 

The integration of contrasting why questions with the varieties of 
explanatory patterns provides an environment in which the user can 
receive more meaningful explanations. Although the explanations are a 

3 4 4  



Simple Explanations and Reasoning 

bit simple they do respond to the context and provide for multiple 
explanatory views. 

Diagram 1 summarizes the discussion to this point. Simply put the 
system is designed to have the user refine the ST to an IT. The system 
then checks for the truth of the assumptions, and if they are false 
issues a corrective explanation. The user then determines the level of 
the explanation, ES or CP. If the level is ES, then an ES explanation is 
assembled. If the level is CP, then the contrast spaces are constructed 
either by finding the instances of a particular kind of object or by 
finding all the paths through the object. Appropriate CP explanations 
are assembled unless the type of contrast is unspecified. If the type of 
contrast is unspecified, then the system returns for a further 
clarification of the IT. 

EXPLANATION 
Check False 

assumptions assumption 

True 
assumptions 

Diagram 

Instance Assemble 
contrast -- INSTANCE 

space EXPLANATION 

1. 

REASONINGS OF GREATER TEXTURE 

The final part of the system assembles the explanation. As should be 
clear from the inclusion of causal paths some modification of the basic 
representation of knowledge in the system is needed. The pattern of 
reasoning proposed by Toulmin, Reike and Janik can be understood as 
providing a pattern that extends the rule based paradigm to provide 
reasoning of greater ‘texture.’ [9, 31 In order to use the TRJ model for 
explanation within the expert system paradigm the basic parts of the 
model will be interpreted as follows: the grounds are the claims held 
in working memory, the warrants are the rules, the backings are the 
support for rules, the rebuttals are a set of rules for alternative 

345 



Simple Explanations and Reasoning 

outcomes, and the claim is the parameter to be modified. Diagram 2 
illustrates this interpretation. 

c 3 

ES Backing 

I 
Warrants [Rules] 

Y 
Claims Grounds 

Diagram [Working memory] 

I I Two 

The additional resources of the TRJ model provide an effective way 
to assemble an explanation. If it is allowed that the rules of the expert 
system are an operationalized correlate of claims in a model of the 
system, then one set of backings will provide the details of the model 
in terms of causal paths. Further, if the expert system allows the 
creation of instances of types of objects, it should be relatively easy to 
isolate the type of the object in the consequent of the rule. Moreover, 
if multiple backings are  allowed, another set  of backings could 
establish why a particular rule has been formulated in terms of 
particular illustrative cases. 

The various explanations are assembled using the backings and 
rebuttals. An ES explanation indicates the rule being used along with 
its ES backing. Its form is, ‘Rule XXX was used to infer P because 
<backing>’. This basic form is expanded in the case of instance 
explanation by determining the differences between the conditions of 
the two objects. I ts  form is, ‘Part-XXX is in state S and p a r t - m  is not 
in that s ta te  because <differences in properties>’. The s t a t e  
explanations use CP backings to trace through the causal path to a 
point where an object deviates from its normal state and an internal 
cause is found. Its  form would be ‘Part-XXX is in state S because part- 
xxx entered state s and the path P links Part-XXX to part-xxx’. If the 
other item of the  IT provides an exclusive contrast, then the 
explanation is finished. If, however, the contrast is inclusive and the 
other item in IT is in the consequent of the rebuttal, then the form 
‘and not Q because <rebuttal>’ is added. 

LINKS T O  OTHER MECHANISMS 

The proposed simple model of explanation allows for a variety of 
explanation types, and these types provide links to the efforts of other 
researchers. 

346  



Simple Explanations and Reasoning 

Although Schank examined common sense accounts of explanation, 
rather than the narrower field of scientific explanation focused upon 
here, his comments on cognitive understanding are helpful. (51 He 
suggests that for cognitive understanding, “the program must  be able 
to explain why it came to the conclusions it did, what hypotheses it 
rejected and why, how previous experiences influenced it to come u p  
with its hypotheses and so on.” [p. 15) This notion of cognitive 
understanding, however, is capable of two related, but distinct, 
readings. The first reading focuses upon how the program, as a 
program, came to a conclusion. In this sense the program must be able 
to explain the steps that it took. This notion seems to be captured in 
the idea of strategic explanation advanced by Schulman and Hayes- 
Roth. [6] They consider strategic explanations to be descriptions of 
the strategic plans and decisions that determine the system’s actions. 
The second reading focuses upon why the program came to the 
conclusion it did, given the hypotheses (theories) and  evidence 
represented in it. Suthers’ examination of the view appropriate to the 
expert seems to capture this reading. [7] He suggests that experts 
would expect programs to give summaries of case evaluations in the 
fields terminology supplemented with accounts of its reasoning and 
use of evidence. 

The two readings of Schank’s account of cognitive understanding 
are complementary and not competitive. The proposed simple model 
of explanation indicates a way in which the strengths of each can be 
combined to produce a robust framework. [4] Strategic explanations 
provide the detail needed to construct corrective and ES explanations, 
and  the views appropriate to the expert indicate the mechanisms 
required to construct instance and state explanations. 

CONCLUSION 

A preliminary prototype of a simple explanation system was 
constructed by Blake Ragsdell (University of Louisville) and  Lisa 
Wurzelbacher (Thomas More College). Although the system, based on 
the idea of storytelling, did not incorporate all of the principles of 
simple explanation, it did demonstrate the potential of the approach. 
The system incorporated a hypertext system, an inference engine, and 
facilities for constructing contrast type explanations. 

The continued development of such a system should prove to be 
valuable. By extending the resources of the expert system paradigm, 
the knowledge engineer is not forced to learn a new set of skills, and 
the domain knowledge already acquired by him is not lost. Further, 
both the  beginning user and the more advanced user  can be 
accommodated. For the beginning user, corrective explanations and 
ES explanations provide facilities for more clearly understanding the 

347 



Simple Explanations and Reasoning 

way in which the system is functioning. For the more advanced user, 
the instance and state explanations allow him to focus on the issues at 
hand. 

The simple model of explanation attempts to exploit and show how 
the why? and how? facilities of the expert system paradigm can be 
extended by attending to the pragmatics of explanation and adding 
‘texture’ to the ordinary pattern of reasoning in a rule based system. 

* A n  earlier version of this paper was presented at the AAAI 
Workshop on Explanation (August 1988). I would like to thank the 
members of the workshop for helpful comments and criticisms. 

References 

A. Garfinkle, Forms of Explanation. New Haven: Yale University 
Press. 

C. Hempel, Aspects of Scient@ Explanation. New York: The 
FreePress. 

D. Rochowiak, “Expertise and reasoning with possibility” in 
Proceedings of the Second NASA Conference on Artificial 
Intelligence for Space Applications (Huntsville, AL) . 

D. Rochowiak, “Extensibility and completeness: an essay on 
scientific reasoning.’ The Journal of Speculatiue Philosophy, 
Vol. 2 No.4. 

R. Schank, Explanation Patterns. Hillsdale, N. J.: Lawrence 
Erlbaum. 

R. Schulman and B. Hayes-Roth, “Plan-based construction of 
strategic explanations.” Knowledge Systems Laboratory 
Report No. KSL 88- 23; Stanford University. 

D. Suthers. “Providing multiple views of reasoning for 
explanation.” Forthcoming in the proceedings of the 
International Conference on Intelligent Tutoring Systems. 

M. Scriven, “Explanations, predictions, and laws” in Scient$ic 
Explanation, Space and Time (H. Fiegel and G. Maxwell, eds.). 
Minneapolis: The University of Minnesota Press. 

S. Toulmin, R. Rieke and A. Janik, An Introduction to Reasoning. 
New York: Macmillan. 

[ 101 B. van Fraassen, The ScientiJic Image. Oxford: The Clarendon 
Press. 

348  



N89- 1 5 5 9 5  
CONTROLLING BASINS OF ATTRACTION IN A NEURAL 

NETWORK-BASED TELEMETRY MONITOR 

Benjamin Bell - Electromagnetics Institute, Technical University of Denmark 
James L. Eilbert - Grumman Corp., A02-026, Bethpage, NY 11714 

Abstract 

The size of the basins of attraction around fixed points in recurrent NNs can be modified by 
a training process. Controlling these attractive regions by presenting training data with 
various amount of noise added to the prototype signal vectors is discussed. Application of 
this technique to signal processing results in a classification system whose sensitivity can 
be controlled. This new technique is applied to the classication of temporal sequences in 
telemetry data. 

1- Jntromtior\ 

The ability to do associative retrieval and classify in the presence of of noise, plus 
their parallel nature makes NNs attractive pattern classification tools [3,5]. For the 
recurrent NNs used in this paper, pattern categories are defined by their fixed point 
attractors, and all patterns lying in the basin of attraction are classified as members of that 
category [l]. A region of attraction may be interpreted geometrically as a subspace of the 
input space containing one prototype vector, i.e. the fixed point. Researchers have been 
able to design fixed points into NNs [4,6], and to predict the minimum size of these basins 
for binary networks [7]. However, researchers have not been able to control the size of the 
basins through training. 

For a NN pattern classifier, the size of its basins of attraction determine its 
sensitivity. In some problems, it may be necessary to classify every input as member of 
some category. In other cases, it may be more appropriate to classify a fraction of the 
inputs. Thus, a good pattern classifier must learn not only the patterns, but the desired 
sensitivity associated with each category. (In fact, the ability to place decision surfaces 
through learning has lead to the preeminence of feedforward networks as pattern classifiers 
among NNs [SI.) This paper investigates the qualitative relationships between the learning 
parameters selected and the resulting sizes of the basins of attraction. 

2- - 
The pattern pattern classification technique is applied to monitoring the temporal 

behavior of a satellite telemetry point. A short sequence of consecutive telemetry points are 
measured, and the difference between adjacent points is the data given to the NN. The role 
of the NN is to decide if the telemetry sequence should be identified as a member of one of 
six predefined categories shown in Fig. 1 or not. The sensitivity of the system determines 
whether an input resembling a prototype pattern will be identified as as instance of that 
category. 

349 I 

I 



b' 

Increase / \ / \ v M  Decrease Peak Trough P-Oscillation N-Oscillation W 

Figure 1. Predefined Prototype Patterns 

3- The R-ion of Patterns in NNa 

3.a- The Network Model 

The network model considered here is a recurrent network of discrete value 
elements. The network is fully connected, with its connection strengths maintained in an n 
x n matrix A, where A9 identifies the strength of the synaptic connection from neuron j to 
i. The network is updated synchronously, i.e. every neuron is updated on each cycle. 
Initially, the activity of the nodes is a real number obtained from the telemetry data or 
synthetic training data. 

The subsequent activities of each node are computed in two steps. First, a 
weighted sum of nodes inputs is computed to give a 'post-synaptic potential' (PSP), Si = 
cj Aij yi. The PSP can be either a positive or a negative number, whose magnitude is 
compared to the neuron's threshold, Q. The activity, Xi, is given by 

xi = { 1 * sgn(si) if lsil2 Q 
(0 otherwise 

These three-valued neurons allow a much broader set of outputs than binary neurons. 

3.b- Placement of Category Prototypes 

each prototype vector with itself is computed, and the resulting matrices are summed over 
all prototypes. This process guaranties that the prototype vectors correspond to stable 
states, if they are mutually orthogonal [6]. For the telemetry problem six prototype vectors 
are placed in an eight dimensional space. The prototype vectors are made up of f l  values 
to place them on the outer boundary of activity space. In general, the outer product 
procedure leads to large basins of attraction around each of the prototypes. There also tend 
to be a few spurious fixed points with this approach. 

To create a connectivity matrix with particular fixed points, the outer product of 

3.c- The Learning Mechanism 

The behavior of the NN may be modified by altering its connection strength matrix. 
The performance of the system can be improved by modifying connections so that the 
difference between the observed and the desired output are reduced. A variety of learning 
algorithm which achieves this type of improvement is the Widrow-Hoff or Delta rule 
algorithm [9]. 

Delta-rule learning calculates a delta from the difference between the final state 
reached and the final state desired. Each connection coming into a neuron then has its 
strength modified by an amount equal to the product of delta and the presynaptic activity. 
Note that the final result of learning depends on both the learning rate and the order in 
which the inpuddesired-output pairs are presented. 

350 



. .  4- Tralnlng Des iu  

Our purpose in applying a training sequence to the telemetry network is to change 
the shape of its basins of attraction so that the correct classification is achieved. 

4.a- Approach 

Two subsets patterns makeup a full training set associated with each prototype 
vector or category: a set of 'good' patterns that lies on the desired boundary of attraction, 
and a set of 'bad' patterns that lies a little beyond the the boundary. For simplicity, both 
the good and bad patterns were placed on a hypersphere. The range of radii used for the 
bad pattern hypersphere was 1-2 times the radius of the desired basin. To obtain a point on 
a hypersphere around a prototype, a random number is added to each component of the 
prototype vector, such that the Euclidean distance between the prototype and the 
constructed point is equal to the desired radius. The random numbers for each component 
are chosen to lie between 0 and the portion of the radius not yet accounted for. An example 
of applying this procedure is given below for a desired basin radius of 0.7: 

Prototype Vector ---> Training Vector with total noise applied = 0.7 

(1  1 -1 -1 1 1 -1 -1) ---> (1.475 1.006 -.897 -.858 1.018 0.792 -.569 -.935) 

In order to apply the Delta rule, there must be a desired final state associated with 
every training vector. For the good training vectors, the desired final state is the prototype. 
However, for the bad training vectors, a reasonable desired state must be chosen. The 
method we chose for selecting the desired final state for the bad vectors was to use the 
comer closest to the input state. This approach worked better than the other two approaches 
tested: all unclassified vectors were sent to the origin, or to the compliment of the 
prototype nearest to the input (If the nearest prototype is (-l,l,l,-1), the desired output 
would be (1,-1,-1,l)). Training on bad vectors tended to destabilize the network when 
either the origin or the compliment were used as the desired state. This seemed to to occur, 
because to reach these desired states the trajectory often had to cross the basin of attraction 
of other category. 

The desired final state of a bad pattern is calculated in the following way: 
Find k such that (IkI - IXOkl) = max(ItiI - IqiI). 
Reverse the sign of bit k of the closest prototype to obtain a desired vector 

Fig. 2 shows a bad input vector in R3 and its respective prototype and desired final states. 
that is Hamming distance one from the prototype. 

<--' - 3 e--- 

351 



A 

The input vector C to be 
rejected is derived from 
the vector to comer A, 
and has desired final state 
of the next closest 
comer B. 

Figure 2. Selecting the Desired Final State for Rejected Vectors 

5- Test inP Network Perfor man ce 

were studied using several different learning rates. For each set of parameters, the final 
matrix of connection strengths was stored for performance testing. 

The connection matrices from the various learning sessions were tested by applying 
a set of test input vectors. The test data were chosen at random, and were constrained to lie 
at particular distances from the prototype vectors. Each trained network is scored on the 
number of correct classifications it achieves on the test data. The inputs are created to 
provide two different methods of estimating the attractive regions of a network. The first 
method uses test vectors whose distance from the prototype is normally distributed. One 
can then count the number of correct classification of a large number input points. The data 
shown in Fig. 3 agrees with the intuitive notion that training data lying on a larger 
hypercube around a prototype vector leads to a larger basin of attraction. It illustrates that 
the fraction of points converging to the prototype does increase as the size of the trained 
radius increases. 

To study the effects of training, training data for three different basins of attraction 

The second method measures the number of classifications made at randomly 
selected point lying on a sphere at a particular distance (eg. from 0.3 to 0.9 at intervals of 
.2), and demonstrates the fall off of attractive strength with distance. If a spherical basin of 
attraction is created by the training procedure then any points outside of the desired radius 
would not be classified and all of those within the radius would be classified. Fig.4 clearly 
shows that this does not happen. Instead one finds a significant drop in the percentage of 
test patterns classified as the radius of the test patterns falls below the desired radius. This 
implies that the resulting basin of attraction is not spherical, but that on the average it is 
approximately the right size. 

The rates for both connections and thresholds have a significant effect on the 
performance of these networks. The threshold learning rate seemed to have a destabilizing 
effect as shown in Fig. 5. The majority of the patterns end up converging on the origin. 
Learning rates for connections have an optimal range in which learning can take place. 

6- Discussion 

There are several directions in which this work should be expanded. First, one 
needs to try more sophisticated learning algorithms than the Delta rule. The Delta rule 
involves the difference of two terms. The first is essentially an outer product of the input 

352 



and the desired output. The second is an outer product of the input and the actual output. 
However, the distance to where a trajectory actually ends up has more to do with where the 
nearby prototypes are rather than how large a change in the connection matrix must be 
made. One alternative is to scale the product of input and desired output by the following 
two factors: the initial rate of change away from the correct prototype, and divide by the 
difference between the input and the desired output. 

Another direction of improvement involves making use of context information. The 
desired sensitivity of the telemetry classifier varies with time of day, season, and spacecraft 
activity. Thus, a more sophisticated NN pattern classifier would be able to select the 
desired sensitivity from input data. One approach is to construct a pair of NNs where the 
first NN identifies the sensitivity category based on context information, and use this 
information to set the parameters of the second NN which would actually classify the 
telemetry data, 

A satellite diagnostic system, for example, could identify a telemetry point as showing a 
steady increase if the network identifies this behavior several times in a row. Thus, 
repetition could partially overcome the fuzziness of the basin of attraction boundaries. 

In its current form, the network can provide useful information to an expert system. 

Although some ability to control basins of attraction has been demonstrated, the 
refinement in constructing decision surfaces through learning found in some feedforward 
networks [8] is a long way off. However, the pursuit of classification in recurrent 
networks remains an important goal. The brain makes use of processes running on several 
different time scales. For example, edge detection, allocation of attention, and learning are 
examples of processes whose temporal scale are at least an order of magnitude apart [2]. If 
NNs are to be used in producing cognitive capabilities, then the ability to use processes at 
different temporal scales is critical. At present, fixed points provide the only way of this 
type of communication. 

This work was done in part at the Mathematics and Computer Science Department, Drexel 
University as an independent study project. 

References 
1- Anderson, J.A., Silverstein, J.W., Ritz, S.A., Jones, R.S.: Distinctive features, 

categorical perception, and probability learning: Some applications of a neural model. 
Psycho. Rev. 84:413-51 (1977). 

2- Eilbert, J.L., Guez, A.: Attentional states and behavior modes in a hierarchical neural 
network. Proceedings First IEEE Conference on Neural Networks June 20, 1987. 

3- Feldman, J.A., Ballard, D..H.: Connectionist models and their properties, Cognitive 
Science, 6:205-254. 

4- Guez, A., Protopopescu, V., Barhen, J.: On the stability, storage capacity and design of 
nonlinear continuous neural networks, (to appear in IEEE Man, Systems, & 
Cybernetics). 

5- Hinton, G.E., Anderson, J.A.: Parallel Models of Associative Memory. 
Hillsdale,N.J.: Lawerence Erlbaum Ass. 198 1. 

6- Hopfield, J.J.: Neural networks and physical systems with emergent collective 
computational abilities. Roc. Natl.Acad. Sci. (USA) 79:2554-2558 (1982) 

7- Peronnaz, L., Guyon, I., Dreyfus, G.: Collective computatinal properties of neural 
networks: New learning mechanisms. Phy. Rev. A. 34(5):4217-4229 (1986). 

3 5 3  



8- Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by 
error propagation. In: Parallel Distributed Processing v. 1. Rumelhart, D.E., 
McCelland, J.L. (eds.). Cambrdige, MA: MIT Press. 1986. 

9- Stone, G.O.: An analysis of of the Delta rule and the learning of statistical associations. 
In: Parallel Distributed Processing v.1. Rumelhart, D.E., McCelland, J.L. (eds.). 
Cambrdige, MA: MIT Press. 1986. 

joO/ 

200! - I - I - ' - I - I ' 
40 50 60 70  80 90 100 

Tralnlng 

Figure 2. Effects of Training on Basin Size 

100 : I I I I 

0.6 0.7 0.8 0.9 1 .o 1.1 
Threshold Learnlng Rate 

Figure 5. Effect of Threshold Learning Rate 

354 



I I 
0 100 200 

no180 level 

Figure 4a. 
Rasin Size 

10 I 
0 100 

mima kvrl 

Figure 4b. 

200 

0 :  1 

0 100 
nol.. kwl 

Figure 4c. 

200 

Figure 4. Basin Behavior of 3 Networks with 
Input on Increasing Spherical Boundaries 

355 



An Expert System for Satellite and Instrument 
Data Anomaly and Fault Isolation 

Carl Busse, Jet Propulsion Laboratory 
California Institute of Technology 

A prototype Generic Payload Operations Control System (GPOCC) 
is being developed at the NASA Jet Propulsion Laboratory to provide 
a low-cost command and control processing center for science 
instruments and small payloads. The GPOCC supports the difficult 
transition from integration and test to flight operations. The 
prototype will incorporate four expert systems to perform 
telemetry, command, and mission planning functions as well as 
telecommunications scheduling. The first of these expert systems 
to be developed will perform telemetry data analysis and fault 
isolation, as well as propose corrective action. 

This Data Analysis Module (DAM) will monitor telemetry data and 
perform continual data monitoring and trend analysis based on a 
knowledge base and historic data archived on an optical disk 
storage device. The system maintains a continuous I1knowledgevv 
database of past system performance characteristics. 

The Data Analysis Module will be partitioned into four stages: 

MONITORING - monitoring and interpreting instrument 
and satellite behavior. 

DIAGNOSIS - determine origin of system malfunctions 
inferred from knowledge base. 

PREDICTION - inference of predicted performance based 
on historic performance and current trends. 

RECOMMENDATION - developing and prescribing corrective 
action for diagnosed problems. 

The goal of the Data Analysis Module is to achieve consistent, 
dependable and validatable performance, to demonstrate thorough, 
reliable and fast reasoning, and to reduce the concentration 
demanded of flight analysis personnel. 

The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute 
of Technology, under a contract with the National Aeronautics and Space Administration. 

356 



Introduction 

The Data Analysis Module (DAM) is a project of the Institutional 
Computing and Mission Operations division of the California 
Institute of Technology, Jet Propulsion Laboratory. The Data 
Analysis Module is an expert system element intended for future 
incorporation in a purposed Generic Payload Operations Control 
Center (GPOCC). The purpose of the DAM project is the design and 
development of an expert system to monitor spacecraft and science 
instrument telemetry data, isolate and diagnose faults, pinpoint 
the probable fault location and recommend corrective action. 

Backsround 

The Jet Propulsion Laboratory is a lead center for NASA's 
program of planetary exploration and earth science. In support of 
this role JPL has pursued areas of technology associated with the 
advancement of the spacecraft and science instrument operations 
environment. To concentrate emphasis efforts in new areas of 
technology the Laboratory established the Office of Space Science 
and Instruments (OSSI) and the Office of Technology and 
Applications Programs (TAP) . [ J P L  Annual Report 19881 

The concentration of the Laboratory on technology in the mission 
operations domain has centered on automation of instrument and 
spacecraft command and control functions. Automation in the 
mission environment is significant for three reasons. First, 
carefully selected automation reduces the workload of the 
operations personnel. Second, automated and verifiable computer- 
based tools [Harmod1987] improve the accuracy of data processing and 
assist space flight and instrument control engineers in monitoring 
of spacecraft and mission sensors where operating data rates may 
greatly exceed the ability of individuals to monitor successfully. 
And third, as the number of missions increases, the number of 
trained and experienced flight support personnel cannot keep up 
with the extreme demands caused by information overload. Automated 
aids and operator assistance allow for productivity enhancement and 
maintaining the required level of flight support. [Hunsen 19881 

To automate the flight and instrument integration and control 
process, the Laboratory has directed a major effort toward the 
incorporation of artificial intelligence into spacecraft sensor 
and space vehicle integration and test, and flight operations 
areas. 

This effort has led to the development of several knowledge- 
based systems to improve the JPL spacecraft and instrument command 
and control process. Specifically these expert 
SHARP, the Spacecraft Health Automated Reasoning 

systems are: 
Prototype, is one 

351 



of a number of Mission Operations Productivity Enhancement Program 
(MOPEP) activities. SME, Spacecraft Monitoring Environment, is 
being incorporated into the satellite integration and test domain. 
EPDM, the Electrical Power Data Monitor, is being designed to 
monitor the Voyager spacecraft power systems, and DAM, Data 
Analysis Module. 

The Spacecraft Health Automated Reasoning Prototype (SHARP) 

The Spacecraft Health Automated Reasoning Prototype has been 
designed to incorporate the experience of the lead Voyager 
spacecraft telecommunications engineer into a useable 
knowledge base. Data from this knowledge source is 
assimilated in a knowledge base that will be used as an 
around-the-clock mission operations assistant in support of 
the Voyager spacecraft’s upcoming Neptune Encounter. The LISP 
expert system shell was used in the development. Data Views 
provides the graphical interface. SHARP is implemented on a 
Symbolics 3670. 

Spacecraft Monitoring Environment (SME) 

The Spacecraft Monitoring Environment is being developed to 
aid in the Galileo spacecraft integration process. The SME 
will provide a real time autonomous spacecraft test sequencing 
and data monitoring of integration and test activity. SME 
resides on a Sun 386/i. Data Views is being used to provide 
high-level contextual graphic displays and windowing 
capability. 

Electrical Power Data Monitor (EPDM) 

The Electrical Power Data Monitor is currently under 
conceptual design. The EPDM will be designed to oversee the 
Voyager spacecraft power systems during the Neptune Encounter. 
The C Language Integrated Production Systems (CLIPS) developed 
by Johnson Space Center Mission Planning and Analysis 
Division‘s Artificial Intelligence Section, will be used as 
the expert system shell. The EPDM development will be on a Sun 
3/260. 

Generic Payload Operations Control Center (GPOCC) 

The Generic Payload Operations Control Center is a concept 
being developed to apply automation to instrument and 
satellite testing, as well as a mission operations 
environment. The GPOCC will couple expert systems with high 
level contextual graphical data displays for ease of user 
interpretation. A modest prototype was developed on a Apple 
MacIntosh I1 to demonstrate user interfaces and functionality 
358 



of the GPOCC concept. 

The Generic POCC will apply expert system technology to four 
areas: 1) mission flight planning for science instrument and flight 
sequence planning, and command constraint checking; 2) control of 
on-board data storage devices, memory management, and memory 
comparison; 3) DSN 26-meter subnet and TDRSS telecommunications 
link scheduling; 4) satellite telemetry data monitoring, trend 
Analysis, prediction forecast, anomaly detection, fault isolation, 
diagnosis, and corrective action strategy. [ J P L  0-5435 19881 

The Generic Payload Operations Control Center effort is intended 
to support the arduous transitions between development, instrument 
and satellite integration and test, and flight operations. 

However, lack of a funding source and development manpower 
restrictions has permitted only piecemeal development. For this 
reason, an implementation strategy was generated which provided for 
a phased progression of development. The Data Analysis Module was 
selected for initial implementation. DAM builds on the experience 
gained in development of telecommunications and power systems, and 
spacecraft integration and test systems. However, these systems 
were designed to be operated within a restricted domain of their 
own unique environment (i.e. telecommunications, powers systems). 
DAM is intended to develop an expert system that encompassed 
operation of all the subsystems of a complete spacecraft. 

Other NASA Center Expert System Implementations 

Several other NASA space centers have developed expert systems 
for use in a mission operations environment. All of the systems 
have been well thought-out and impressively implemented. The 
Goddard Space Flight Center has developed two such systems. The 
Communications Link Expert System (CLEAR) for Cosmic Background 
Explorer (COBE) developed by the GSFC Data Systems Applications 
Branch of the Data Systems Technology Division, [Hughes 19871 and 
MOORE (named after Mr. Bob Moore at TRW who was the knowledge 
source) a prototype expert system for diagnosing TDRSS spacecraft 
attitude control problems, developed by Westinghouse Electric for 
the GSFC. [Howlin 19881 

The Johnson Space Center Mission Planning and Analysis Division 
has developed an expert system called INCO, for the Instrumentation 
and Communications Officer prototype designed to monitor and 
analyze Space Shuttle telecommunications links. [Madison 19881 

359 



Data Analysis Module 

The Data Analysis Module will monitor telemetry data and perform 
continual data monitoring and trend analysis based on its knowledge 
base and historic data archived on an optical disk storage device. 
Because of cost constraints, an off-the-shelf hardware PCM 
decommutator will be used to frame synchronize and channelized the 
data stream instead of building a software frame synchronizer. 
The DAM prototype will include a worm-drive optical disk to 
maintain a continuous ttknowledge" database of past 
performance characteristics. 

The Data Analysis Module contains four rule domains. 
domains are: 

MONITORING - monitoring and interpreting instrument 
and satellite behavior. 

DIAGNOSIS - determine origin of system malfunctions 
inferred from knowledge base. 

system 

These 

PREDICTION - inference of predicted performance based 
on historic performance and current trends. 

RECOMMENDATION - developing and prescribing corrective 
action for diagnosed problems. 

The goal of the Data Analysis Module is to achieve consistent, 
dependable and validatable performance, [Stugner 19881 to demonstrate 
thorough, reliable and fast reasoning, and to reduce sometimes- 
overwhelming loads placed on flight analysis personnel. 

The DAM processing flow is show in figure 1. 

Figure 1 Data Analysis Module Process Flow 

Telemetry ,IMoii:;, 1 > 
Input Decom Isolate, 

&Predict 

Archive 
Knowledge 

Data 
Trend 
Forecast 

l- 
360 



Data Analysis Module Mission Domain 

In implementing the Data Analysis Module, the science and 
mission user domain framed the overall structure and requirements 
of the DAM. DAM will function in an instrument test environment, 
a spacecraft integration and test environment, and lastly, in an 
actual mission operations environment. 

In the instrument test environment the DAM will allow the 
instrument principal investigator or scientist to observe operating 
conditions during development in the same environment and equipment 
configuration as will be used in flight. 

In the spacecraft integration and test environment the DAM must 
provide data-handling flexibility and integrated displays to lend 
itself to the task of releasing satellite integration and test 
personnel from constantly modifying a complex data handling system 
as system requirements change. 

The DAM must support a mission operations environment which will 
be a natural progression from the instrument and satellite 
integration and test environment. The DAM support of the Mission 
Operations System (MOS) will differ little from the prelaunch 
Ground Data Systems testing and MOS training activities. The major 
difference is the addition of "live" flight telemetry data input 
to the input process. This similarity significantly aids in the 
transition from single-instrument integration to full-up on-orbit 
operations. 

The DAM telemetry task will be coupled to a display systems 
design to provide more user-efficient data interpretation by use 
of symbolic representation including pop-up windows, scroll bars, 
graphics, colors representative of data states, and interactive 
icons. 

Data Analvsis Module Desisn Concept 

Knowledge representation is a central issue in the development 
of intelligent systems. While a number of knowledge representation 
formalities and techniques have been developed, most are based on 
semantic networks and frames. [Barr 1981;Cho 19851 These may have 
limited application domains which depend on complex deductive 
st rat egy . 

Expert systems have been developed to provide telemetry data 
analysis. These systems have examined data related to a unique 
spacecraft subsystem (i.e. telecommunications, and power in SHARP 

361 



and EPDM, respectively). The DAM examines the input telemetry 
stream on a criticality prioritized basis. 

I class 
S/A Drive E 

Value: Low sub 
I 

I 

Early in system design each telemetry channel was assigned a 
criticality level. Once this was done, a relationship for each 
parameter was established. The level two relationship is flowed 
down through to sub-tier prioritized classes. The result was an 
interwoven tree of rule classes based on individual channel 
priority and importance. This entity-relation approach allows 
critical spacecraft and sensor faults to be monitored constantly 
and faults to be quickly detected. 

I sub-class 
ALT Voltage rules 

Value: Low I 

Each prioritized telemetry channel is assigned a frame slot. 
These slots explicitly point downward to assigned subclasses, and 
up to super classes. This enables DAM frames (a knowledge 
representation scheme that associates features with an object in 
terms of various slots and slot values) to capture hierarchical 
taxonomies. An example of the DAM rule hierarchy is shown in 
figure 2. 

Figure 2 DAM Rule Classes 

RWA PWR On 

RWA Voltage 

Value: High 

Hardware Configuration 

To reduce the cost of the initial implementation the conceptual 
testbed was established on an IBM PC/AT clone using CLIPS as the 
expert system shell. Simulated spacecraft telemetry was used for 
the data source. Formal prototyping will be done in the JPL 
Mission Operations Division's Operations Engineering Laboratory 
(OEL) on a SUN 4/260 using an Advanced Digital Data Systems ADDS- 
100. PCM decommutator to provide conditioning of the serial 
telemetry data stream. 

362 



The initial testbed configuration is: 

- 
Input Blackboard - 

System 1800 AT 80286 running at 8 MHZ 
80287 co-processor 
640 Kbyte RAM 
2.5 Mbyte Extended RAM 
with 80  Mbyte hard disk and 30 Mbyte a 
1.2 Mbyte floppy disk drive 

Derived 
Knowledge 
Base 

iliarl 

Facts 

Rules 

stor 

Knowledge Base Update 

Rule Base 

_ _ -  
60 Mbyte streaming tape storage 
VGA display with NEC Multisync I1 color monitor 

Knowledge Rules 
Control Rules 

The formal OEL prototype configuration will be: 
Sun 4/260 68020 running at 16 MHZ 
8 Mbyte RAM 
two 71 Mbyte hard disks 
60 Mbyte streaming tape storage 
1152 x 900 bit-mapped color display 

User Data 
Interface 
Displays 

DeveloDment Amroach 

The DAM will be implemented in two stages, a conceptual testbed, 
and a formal prototype. To validate the conceptual design of the 
Data Analysis Module a testbed consisting of approximately twenty 
five rules for the five spacecraft subsystems. Following the 
testbed demonstration a formal prototype will be implemented. The 
prototype will consist of roughly one hundred twenty five rules and 
will be configured as a flight support workstation. 

The DAM testbed will be use to develop the initial telemetry 
channel hierarchial relations. The testbed will demonstrate our 
understanding of the telemetry problem domain. This initial 
testbed model will be a proof of concept. Once the testbed has 
shown our comprehension ofthe domain, prototype design will begin. 
Testbed development is expected to be completed by the end of the 
year. The conceptual design of the testbed is shown in figure 3 .  

Figu 

363 



Both the testbed and the formal prototype will use CLIPS as the 
expert system shell. CLIPS was chosen for several key features: 
these include forward rule chaining, rule syntax, multi-field 
functions, embeddable in C programs, window and mouse interfaces, 
portability (testbed to prototype), tool set (rule break pointing, 
fact address comparisons, style checking and cross-referencing), 
and complete documentation. 

The prototype will allow evaluation of the DAM hardware and 
software performance, as well as ferret out problems employing 
actual telemetry data sets. The formal prototype development will 
be completed by the end of 1989. 

The monitoring, diagnosis, and recommendation rules are combined 
into a single task. The predictive model is generated from past 
and current data activity. The DAM will also log all expert system 
activity for later analysis. 

System Architecture 

The basic testbed architecture incorporates three components: 
the CLIPS expert system shell, the input data source, and the 
output user displays. 

The ADDS-100 telemetry decom provides the DAM with simulated 
communications links from the Tracking and Data Relay Satellite 
System (TDRSS) , White Sands Ground Terminal (WSGT) and the JPL Deep 
Space Network (DSN) 26-meter subnet. This telemetry source data 
is frame synchronized, and decommutated by the PCM hardware 
decommutator. The channelized data is archived. 

The DAM expert system provides telemetry data monitoring and 
interpreting, and fault isolation. The DAM will then determine 
origin of system malfunctions inferred from the knowledge base and 
develop and prescribe corrective actions for the diagnosed 
problems. 

The output user displays inform the user of current status and 
alert the user to any data irregularities. 

Data Monitor 

The Data Analysis Module monitors data values to detect faults. 
These faults are identified, a diagnosis is performed, and 
corrective action strategy proposed. As the DAM examines the input 
serial telemetry stream each data channel is placed in a predefined 
frame slot and compared against initial user defined expected data 
boundary value conditions. If a value exceeds the established 

3 6 4  



boundary value the rules associated with that data channel fire. 
If a nominal value is present the current value is compared against 
previous data values. 

Fault Diasnosis and Corrective Action Recommendation 

When channel values exceed boundary conditions faults are 
isolated and corrective action recommendations are predicted by the 
compound rules classes governed by assertive clauses. For example: 

(assert (RWA run-away 
ACS Voltage High 
SCI Voltage Low 
S/A Voltage Low 
RWA PWR On) 1 

Predictive Modelinq 

While the DAM is performing continual data monitoring trend 
analysis based on historic data is preformed. Trend variations are 
examined for fault conditions, inference of predicted performance 
is made based on historic values and recommendations are made for 
corrective action. The system maintains a continuous llknowledgell 
base of past telemetry system performance characteristics. 

Knowledqe Representation 

The DAM man-machine interface will be via easily interpreted 
contextual graphic displays. These interactive video displays will 
provide a direct representation of the intrinsic images associated 
with the instrument and satellite telemetry and telecommunications 
systems. Multiple display screens with pop-up windows and high 
resolution graphics will be linked through context and mouse- 
sensitive icons and text. 

Implementation 

The DAM design will insure that implementation meets the 
requirements specified in JPL software standards as well as 
software system integration and test standards. [ J P L  0-4000; 0-5000 JPL 
19881 

Summary 

Based on the knowledge gained in the design and development of 
the Data Analysis Module, the Generic Payload Operations Control 
Center will provide for consistent, dependable and validatable 
performance. It will demonstrate reliable reasoning, and reduce 
the requirement for a large integration and test, as well as a 
mission flight support staff. 

365 



lO.Jet Propulsion Laboratory 1987 Annual Report, California 
Institute of Technology, Jet Propulsion Laboratory, Pasadena, 
(1988) . 

ll.Madison, R. M., et al, "INCO: Real Time Expert System Prototype 
for Shuttle Mission Controlt1, 1988 Space Operations Automation 
and Robotics Conference, Dayton, 1988. 

366 

Acknowledaments 

The author gratefully acknowledges the guidance and suggestions 
from Mr. Harry Avant, Ms. Irene Wong, Dr. James Willett, Mr. Warren 
Moore, Mr. Ray Stagner and Mr. David Hermsen of the JPL; Dr. 
Rogers Saxon and Mr. Neal Kaufman, of CypherMaster; This paper 
could not be prepared without the editorial assistance of Mr. 
Robert Embry and Ms. Fleta Gallagher of JPL. 

References 

1. 

2. 

3 .  

4. 

5. 

6. 

7. 

8. 

9. 

Barr, A., et al, The Handbook of Artificial Intelligence, 
Vol.1, Los Altos: William Kaufmen, 1981. 

Cho, J.W., et al, "KPSP: A Knowledge Programing System 
Based on Prologll, 4th International Conference of Entity- 
Relationship, Chicago, 1985. 

D-4000, JPL Software Management Standards, California 
Institute of Technology, Jet Propulsion Laboratory, Pasadena, 
(1988). 

D-5000, JPL Software Integration and Test Standards, California 
Institute of Technology, Jet Propulsion Laboratory, Pasadena, 
(1988) . 
D-5435, Generic Payload Operations Control Center Function 
Requirements Document, California Institute of Technology, 
Jet Propulsion Laboratory, Pasadena, (1988). 

Hansen, E., llLowering the Cost of Satellite Operations", 
American Institute of Aeronautics and Astronautics, 
AIAA-88-0549, (1988) . 
Harmon, P. ed., "Expert System Toolsfv, Expert Systems 
Strategies, (1987). 

Howlin,K., llMOORE: A Prototype Expert System for Diagnosing 
Spacecraft Problems", 1988 Goddard Conference on Space 
Applications on Artificial Intelligence and Robotics, 
GSFC, 1987. 

Hughes, P.M., et a1,"CLEAR: Communications Link Expert 
Assistance Resourcell, 1987 Goddard Conference on Space 
Applications on Artificial Intelligence and Robotics, 
GSFC, 1987. 



12. Stagner, J. R. ItToward A Certification Methodology For Expert 
Systemstt, California Institute of Technology, Jet 
Propulsion Laboratory, Pasadena, (1988). 

367 



A M u l t i p r o c e s s i n g  A r c h i t e c t u r e  f o r  Real-Time 
M o n i t o r i n g  

James L .  S c h m i d t  
Simon M .  Kao 

J a c k s o n  Y .  Read 
S c o t t  M. Wei tzenkamp 

Thomas J .  L a f f e y  

Lockheed A r t i f i c i a l  I n t e l l i g e n c e  C e n t e r  
2710 Sand  H i l l  Road 

Menlo P a r k ,  CA 9 4 0 2 5  
( 4 1 5 )  354-5209 

Abs t rac t  

T h i s  t a l k  d e s c r i b e s  a m u l t i t a s k i n g  a r c h i t e c t u r e  f o r  
p e r f o r m i n g  real-t ime m o n i t o r i n g  a n d  a n a l y s i s  u s i n g  
k n o w l e d g e - b a s e d  p r o b l e m  s o l v i n g  t e c h n i q u e s .  To h a n d l e  
a s y n c h r o n o u s  i n p u t s  a n d  p e r f o r m  i n  r ea l  t ime,  t h e  s y s t e m  
c o n s i s t s  o f  t h r e e  o r  more d i s t r i b u t e d  p r o c e s s e s  w h i c h  r u n  
c o n c u r r e n t l y  a n d  c o m m u n i c a t e  v i a  a message p a s s i n g  scheme. T h e  
Data k a n a g e m e n t  P r o c e s s  a c q u i r e s ,  c o m p r e s s e s ,  a n d  r o u t e s  t h e  
i n c o m i n g  s e n s o r  da t a  t o  o t h e r  p r o c e s s e s .  The I n f e r e n c e  Process  
c o n s i s t s  o f  a h i g h  p e r f o r m a n c e  i n f e r e n c e  e n g i n e  t h a t  p e r f o r m s  a 
real-t ime a n a l y s i s  on t h e  s t a t e  and  h e a l t h  of  t h e  p h y s i c a l  
s y s t e m .  The 1 / 0  P r o c e s s  r e c e i v e s  s e n s o r  da t a  from t h e  Data 
Management Process  a n d  s t a t u s  m e s s a g e s  and  r e c o m m e n d a t i o n s  from 
t h e  I n f e r e n c e  P r o c e s s ,  u p d a t e s  i t s  g r a p h i c a l  d i s p l a y s  i n  r e a l  
t ime ,  a n d  a c t s  as  t h e  i n t e r f a c e  t o  t h e  c o n s o l e  o p e r a t o r .  

The d i s t r i b u t e d  a r c h i t e c t u r e  h a s  b e e n  i n t e r f a c e d  t o  a n  
a c t u a l  s p a c e c r a f t  ( N A S A ' s  H u b b l e  S p a c e  Te lescope)  a n d  i s  a b l e  
t o  p r o c e s s  t h e  i n c o m i n g  t e l e m e t r y  i n  llreal-time'l ( i . e . ,  s e v e r a l  
h u n d r e d  d a t a  c h a n g e s  p e r  s e c o n d ) .  The s y s t e m  i s  b e i n g  u s e d  i n  
two l o c a t i o n s  f o r  d i f f e r e n t  p u r p o s e s :  ( 1 )  i n  S u n n y v a l e ,  
C a l i f o r n i a  a t  t h e  S p a c e  T e l e s c o p e  Tes t  C o n t r o l  C e n t e r  i t  i s  
u s e d  i n  t h e  p r e f l i g h t  t e s t i n g  of t h e  v e h i c l e ;  a n d  ( 2 )  i n  
G r e e n b e l t ,  Mary land  a t  NASA/Goddard i t  i s  b e i n g  u s e d  o n  a n  
e x p e r i m e n t a l  b a s i s  i n  f l i g h t  o p e r a t i o n s  f o r  h e a l t h  a n d  s a f e t y  
m o n i t o r i n g .  T h i s  t a l k  w i l l  d i s c u s s  b o t h  t hese  a p p l i c a t i o n s  i n  
d e t a i l .  

PRECEDING PAGE BLANK NOT FILMED 
369 



N89- 1 5 5 9 8  

PI-in-a-box : Intelligent Onboard Assistance for Spaceborne 
Experiments in Vestibular Physiology. 

Silvano Colombano 
RECOM Software Inc. 

NASA-Ames, Artificial Intelligence Research Branch, 

Laurence Young 
Massachusetts Inst. of Technology and Stanford University 

Nancy Wogrin 
Stanford University and Digital Equipment Corp. 

Don Rosenthal 
NASA-Ames, Artificial Intelligence Research Branch 

NASA-Ames, Mail Stop 244-17, Moffett Field CA 94035 

Abstract  

We are constructing a knowledge-based system that will aid astronauts in 
the performance of vestibular experiments in two ways: it will provide real- 
time monitoring and control of signals and it will optimize the quality of the 
data obtained, by helping the mission specialists and payload specialists 
make decisions that are normally the province solely of a principal 
investigator, hence the name PI-in-a-box. An important and desirable side- 
effect of this tool will be to make the astronauts more productive and better 
integrated members of the scientific team. 

The vestibular experiments are being planned by Prof. Larry Young of MIT, 
whose team has already performed similar experiments in Spacelab 
missions SL-1 and D-1, and has experiments planned for SLS-1 and SLS-2. 
The knowledge-based system development work, performed in 
collaboration with MIT, Stanford University and the NASA- Ames Research 
Center, addresses six major related functions: a) signal quality monitoring; b) 
fault diagnosis; c) signal analysis; d) interesting-case detection; e) experiment 
replanning; and f) integration of all of these functions within a real-time 
data acquisition environment. Initial prototyping work has been done in 
functions a) through d). 

In t roduct ion  

The conduct of experimental science in existing spaceborne laboratories such 
as Spacelab or future ones such as the Space Station is severely constrained 
in several respects. The principal investigator (PI) is normally not on the 

c 

371 



spacecraft and communication with the ground is either limited in 
bandwidth o r  availability. In any event, because of the open nature of the 
air-to-ground voice links, free discussion of experimental alternatives is 
inhibited. Furthermore, the experiment-specific decision-making ability of 
the astronauts is limited by the training they have been able to receive 
before the flight and by the time they have available in flight. Longer 
mission durations make it more likely that contingencies will arise for which 
the astronaut will have had inadequate preparation. 

Considering the limited opportunities that exist for flight experiments, 
and the scarcity of both space and crew time, an intelligent system to assist 
in the conduct of spaceborne science seems like a potentially useful tool, 
especially if i t  contains much of the experiment specific knowledge known 
to the PI. At a minimum it would save crew time, but what we are 
especially targeting is the kind of improvement in the quality of the 
experiment that comes from a deeper understanding of the processes 
involved, and from the ability to make timely decisions that can change 
the course of the experiment on the basis of "interesting" data. In some 
sense, the present necessity of having the entire experiment pre-planned 
is likely to lessen the possibility of surprising discoveries, and the PI on the 
ground is often left with the frustration of not having had a chance to look 
again at some unusual event, or  of mistakenly recording meaningless data, 
and of having to wait for years for a second chance. 

The work we have initiated addresses the following major functions: 
signal quality monitoring, fault diagnosis, signal analysis, interesting-case 
detection, experiment replanning and. finally, coordination of these 
functions by a protocol management subsystem. Our initial prototyping 
effort has concentrated mainly on the areas of signal quality monitoring, 
fault detection and interesting-case detection. 

In this paper we discuss the operational environment, how artificial 
intelligence technology can contribute to the attainment of better scientific 
data, and the experience we have gained during our initial prototyping 
e f f o r t .  

The Operational Environment - How a Typical Experiment is Performed - 

PI-in-a-box (symbolically [PI]) is initially designed to be used in the context 
of a series of experiments planned to test theories on adaptation to 
weightlessness and space motion sickness. The hypothesis tested and 
confirmed so far by Young et al. [3j is that, during adaptation to 
weightlessness and readaptation to one-g, signals from the inner ear are 
reinterpreted by the brain. In brief, on earth the presence of gravity is 
constantly sensed in the inner ear, and signals from the inner ear sensors 
(utricular otolith afferent signals) are combined in the brain with motor, 
visual and tactile clues to provide us with a sense of orientation within our 
environment. In the absence of gravity the inner ear signals are still sent, 
but, after some adaptation, they are reinterpreted and combined with other 
environmental clues in ways that are. different from those observed in a 
normal one-g environment. An analogous process of readaptation occurs 
after returning to one-g. 
372 



In order to test the sensory reinterpretation hypothesis it is necessary to 
perform the same experiments under three different sets of environmental 
conditions: on the ground before flight, in flight with microgravity and, again, 
on the ground after the end of the mission. The first ground experiments 
provide a baseline, the flight experiments show the adaptation that occurs 
in the microgravity environment and, finally, post-flight ground 
experiments show the re-adaptation that must take place after gravity 
returns to play its usual role in the vestibular system. 

The experiments are typically performed by teams of two people, who take 
turns being subject and experimenter. Examples of typical experimental 
setups are a rotating dome, a rotating chair and a sled on rails. The subjects 
might be asked to look into the dome, or sit in the rotating chair or on the 
sled while it is being moved. During the experiments, which typically lasts a 
few minutes, the subjects are asked to perform tasks that indicate their 
spatial orientation, for example, they may be directed to look at specific 
areas, describe sensations, or point to a perceived "up" or "down". Eye 
movements are a very important source of information in many of these 
experiments and can be recorded via electro-oculography (EOG). This 
technique is based on the fact that each eye acts as a dipole within the head, 
and its movements cause electrical field changes that can be detected by 
electrodes appropriately placed on the skin. Other types of movements, such 
as iris dilation, can be observed with video cameras and suitable image 
processing, but this type of observation has not yet been accomplished in 
f l igh t .  

Potential Role of Artificial Intelligence Technology 

At present, in hisher mode as an experimenter, the on-board astronaut 
follows a protocol document in the form of a checklist. This checklist guides 
the specialist in preparing the instrumentation for the experiment and in 
instructing the subject on the actions required of him or her. The protocol 
document also provides a guide for evaluating the quality of the data 
produced by the experiment, and for what should be done when the quality 
achieved is not sufficient for meaningful results, or when there is some 
unexpected occurrence. 

In spite of long and rigorous training imparted to mission specialists, the 
checklist system is inadequate in helping them keep track of events 
unanticipated in the protocol, and in helping them diagnose complex 
experimental problems. A consequence of the limitation of the checklist 
system is that problems can go unnoticed, or the PI on the ground must be 
summoned to help the specialist diagnose and correct the problem. The 
likelihood of timely and effective repair is higher when the expertise is 
available at the problem site - in the spacecraft. 

An knowledge-based system can monitor several variables at once, and 
direct the mission specialist's focus of attention to problem areas. It can 
also aid the specialist in diagnosing problems of different levels of 
complexity, within the limits of the knowledge built into the system and the 
time available. 

3 7 3  



An additional, potentially extremely valuable contribution of this technology 
is in detecting opportunities, rather than just detecting problems. By this we 
mean the ability to detect that a particular data set reveals some unexpected 
behavior of the system under study and that this discovery may warrant a 
repetition of the experiment or a change in the set of experiments that is to 
follow. 
PI. Can we build a system with enough knowledge and, perhaps, modeling 
ability, to achieve insights of this type? We are not yet ready to answer this 
question in the affirmative, but we report below on the experience we are 
beginning to accumulate. 

This is the type of insight that is normally the province soIely of the 

The System Design 

Our initial top level system design is illustrated in Figure 1. 
system is the "protocol manager". This subsystem interacts with the 
astronaut and with the experiment, and serves as a controller for the 
remaining four major subsystem functions: a) data quality monitoring and 
fault diagnosis, b) interesting-data detection, c) suggesting new experiments 
and d) scheduling or rescheduling experiments and resources. Here we 
report on work done in a) and b). 

The hub of the 

Protocol Y.rug.r 

Signal quality monitoring and fault diagnosis 

As a first prototype we built a small diagnostic knowledge based system for 
the EOG eye movement signal. 
signal is representative of a type of monitoring and diagnostic activity useful 
for most experiments. 

374 

Quality monitoring and diagnosis of this 



QRIGINAL PAGE IS 
OF POOR Q U A W  

The system uses 
made to establish that the signal received is "good". In order to establish this 
hypothesis. the system looks at a number of propexties related to signal gain, 
noise and stability. If any of the values of these properties is not what would 
be expected for a good signal the system attempts to diagnose the problem 
and to suggest a solution. When the system detects an unexpected value. but 
cannot find an explanation and suggest a course of action, it recommends 
that the PI be contacted. However, the purpose of the system is neither to 
keep the PI out of the loop, nor to require less of the specialist in terms of 
understanding and skill. On the contrary we hope that this tool will help 
make both the PI and the mission specialist more productive and better 
decision makers by acting as an "intelligent partner". 

a simple backward chaining of rules where an attempt is 

The current knowledge base used to monitor and diagnose the EOG signal 
is embodied in about 60 rules at this time. This size has been sufficient to 
produce a meaningful demonstration, although the user is still required to 
input data that will be input automatically in the operational system, . Two 
typical interaction screens and a tree of the types of problems detected so 
far are shown in Figures 2. 3 and 4 respectively. 

insdequat~roundingaiegno~ed IS  et to  
False 
Condi tlon th 

mule Network Ouerulew 

NotKnown 1 

I I  

Figure 2: A prototype screen requesting input from the astronaut 

375 



x 

i f  pushlng on en rlrctrode stops the nolsr, you h a w  e bed contact 

T q  to rstebllsh e brttrr contect or  rr~lecr tho r l rctrodr 

i n h  

Figure 3: A prototype s c m n  suggesting a course of action 

Figure 4: An overview of problems considered by the EOG signal quality 
monitor prototype. 

376 

ORIGINAL PAGE IS 
OF POOR QUALITY 



Prof. Laurence Young, an internationally recognized expert in vestibular 
physiology, has served as domain expert in our initial work. We chose the 
commercial tool main 
reason for selecting Nexpert was that it appeared to be the most powerful 
knowledge based shell that could run on a range of mini-computers and 
microcomputers, including the IBM PC and the MacIntosh. Its price was 
within our initial budget, and it provided a powerful user interface that 
made it sui table for demonstration purposes. 

Nexpert Object [2] as the system building tool. Our 

Interesting-case Detection 

We think of Interesting-case Detection as the ability to distinguish 
among normal expected good data , experiment artifacts, and unexpected 
data that is interesting enough to lead to a recommendation for changes in 
the original experiment plan, either for a second look or for the 
exploration of previously unexpected possibilities. This capability, which 
we hope to achieve, is what would set this system apart from normal 
diagnostic and planning systems, and truly earn it the name PI-in-a-Box. 

This portion of our research focused on a vestibular sled experiment. In this 
experiment the subject sits on a sled which rides back and forth on a track. 
The subject's eye movement is measured by EOG. Comparison of pre- 
in- and postflight values of these parameters provides a test of the 
orientation model. For this phase of the work, the signals were 
assumed to be of good quality. 
reproduce was that of a scientist who looks at the data for a pre- and an 
inflight experiment, compares the two sets, and decides in a manner of 
minutes, during the experiment, whether the results are interesting enough 
to warrant further exploration. A consequence of this assessment might be to 
repeat the experiment, modify the same or subsequent experiments, or 
simply note the finding and proceed as planned. 

The decision-making behavior we tried to 

Usually a scientist uses a graphical representation of data suited to the 
necessary interpretation, some examples being graphs of distributions or  of 
derivatives. The scientist identifies attributes of interest by describing 
qualities of the graphical representation, such as "beats", "phases", or the 
shape of a curve. Translating raw data into the kinds of attributes a scientist 
actually thinks about is, in general, a difficult task. For this prototype, we 
identified the relevant attributes that would have to be extracted from the 
data, and asked the user for these values. In the future, the values of these 
attributes will be obtained by traditional signal analysis techniques (e.g. [ 11). 
For this experiment we identified the following parameters: degree of 
linear nystagmus, and gain, phase and correlation of eye movement in 
relation to sled motion (Table 1). The values of these parameters can be 
obtained by algorithmic means, such as Fast Fourier Transforms, peak to 
peak ratios, or cross correlation techniques. The screen shown in Figure 5 .  
compares these parameters for a pre- and an inflight experiment, and 
suggests whether the discrepancies detected should be viewed as 
interesting or not. 

377  



Parameter Obtaining the Value Value We Use 

inystagmus I I 
correiat ion 

Fortran program and 
rule base 

Number representing 
degree of correlation 

Cross correlation technique 

gain 

Number representing 
certainty of presence of 

nystagmus 
1. 

Peak to peak ratlo of sled 
motion to eye movement 

Number 

Numbor representing 
ph8u  FFT degree of phase shift 

i 

Table 1 : Parameter values considered in the Interesting-case Detection prototype 
for the sled experiment. 

~ ~~~ ~~~ ~ 

grln phrsr carrrlailon 
Mema 1 ruDJrcl potn Intrrrsttnp? mora Intrrrsttng? cwrrlrtlon Intrrrrtlng? nysirpmur ........................................................................................ 

prafliphl SI  0 so 30 00 0 os 0 I O  
Inlllght, I 0 55 24 00 0 60 0 IO 
t n l r o s t t n ~  polonllally no crr lr inly ........................................................................................ 

e 

1 
1 

Figure 5 :  Parameter values for a pre- and an inflight experiment are compared. 
The system suggests which discrepancies should be viewed as interesting. 

378 
ORIGINAL PAGE IS 
OE POOR QUALITY 



Currently, the system detects cases in which the values for attributes 
obtained inflight deviates significantly from those obtained through preflight 
trials. In the future, the system will combine this information with an 
underlying model of the scientific hypothesis being tested, and of the 
experimental process, in order to explain the deviations that are identified as 
being interesting. 

Protocol Manager 

The protocol manager will be the hub of the system. Under normal 
circumstances it will simply inform the astronaut on which experiment 
should be performed next and provide any necessary instructions. The real 
power of this subsystem will come into play in the very likely event that the 
experiments will not proceed quite as planned. These circumstances include 
cases when the experiments are taking more o r  less time than expected, 
problems are found that take a long time to diagnose, o r  interesting events 
are detected. In all of these cases some decision must be made as to the 
course of action. For example, do we continue to troubleshoot a problem or  
proceed with degraded data? Given that we have extra time or something 
interesting has been found what experiment do we perform next? Given that 
we are running late whai experiment do we eliminate, or  how do we modify 
subsequent experiments? The protocol manager will exchange information 
with the other subsystems, such as the diagnostician o r  the planner, and 
provide the mission specialist with alternative courses of action. 

Future Development 

Short range plans for development include further testing and refining of 
EOG signal interpretation rules, and extending signal quality monitoring, 
diagnostics and interesting-case detection to a new set of experiments 
involving the sled. A prototype of the protocol manager subsystem is also 
being developed. We do not yet have firm ideas on the planninglre- 
planning, and experiment suggestion subsystems, but we hope to 
demonstrate the utility of our work as early as 1990, in the pre- 
Baseline Data Collection Facility measurements, as part of Dr. Young's 
experiments on Spacelab SLS-1. At the earliest opportunity, mission 
specialists will also become actively involved in helping us design or modify 
the system. 

post- flight 

Conclus ions  

A set of vestibular experiments planned for future Spacelab missions are 
providing a test of the applicability of A I  technology for increasing the 
productivity of mission specialists and improving the quality of the data 
obtained. The functions of a knowledge-based system planned to assist with 
these experiments will include protocol management, signal quality 
monitoring, problem diagnosis, detection of interesting cases and planning. 
The intelligent aspects of these functions are normally considered the 
province of a principal investigator, hence the system name PI-in-a-Box. 
The initial prototyping effort has concentrated on signal quality monitoring, 
problem diagnosis and interesting case detection for a small subset of 

379 



experiments. A level of system ability sufficient for meaningful 
demonstrations in these areas has been achieved to date. It appears that the 
most difficult problem is to extract from the raw instrument data the high 
level attributes a scientist is accustomed to thinking about. A careful 
analysis is required in order to distinguish between those attributes that are 
more easily obtained algorithmically, those that require heuristic knowledge 
and those that require a deeper underlying model of the scientific 
hypothesis and of the experimentation process. 

Acknowledgements  

This project began with seed money from a MIT/NASA University 
Consortium Agreement in 1987-88. while Dr. Young was on sabbatical leave 
at Stanford University. The Artificial Intelligence Research Branch at 
NASA-Ames has provided initial personnel support. The comments that 
Drs Peter Friedland, William Gevarter and Hamid Berenji of NASA-Ames 
have kindly given on this paper are greatly appreciated. 

R e f e r e n c e s  

1. Massoumnia M.A., "Detection of Fast Phase of Nystagmus Using Digital 
Filtering", M.S. Thesis, Dept of Aeronautics and Astronautics, MIT, May 

1983 

2. Nexpert Object Version 1.0, Neuron Data Inc., 444 High St., Palo 
Alto CA. 94301. U.S.A. 

3. Young L.R., Oman C.M., Watt, D.G.D., Money, K.E., Lichtenberg, B.K., 
Kenyon, R.V., Arrott, A.P. "M.I.T./Canadian Vestibular Experiments on the 
Spacelab-1 Mission: 1. Sensory Adaptation to Weightlessness and 
Readaptation to One-g: an Overview", Experimental Brain Research 64: 
291-298, 1986. 

380 



By Harvey E. Fiala 
SBI Software Engineering 

Rockwell International 

ABSTRACT 

The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) 
applications to show that AI applications are sufficiently advanced for 32% of all space 
applications and SDI (Space Defense Initiative) software to be AI-based software [3]. 

To best define the needs that AI can fill in space and SDI programs, this paper 
enumerates primary areas of research and lists generic application areas. Current and 
planned NASA and military space projects in AI will be reviewed. This review will be 
largely in the selected area of expert systems. Finally, direct applications of AI to SDI 
will be treated. The conclusion covers the importance of AI to space and SDI 
applications, and conversely, their importance to AI. 

INTRODUCTION 

AI covers a broad spectrum of areas of research and accordingly can find many 
different applications in space and SDI programs. AI includes problem solving, 
intelligent search strategies, natural language processing, speech recognition, robotics, 
knowledge and expert systems, computer vision, symbolic processing, logical 
reasoning, knowledge representation and understanding, and neural network systems. 
AI applications generally use what might better be termed knowledge rather than data, 
and frequently use heuristics (which guide trial-and-error searches) rather than 
algorithms. Some of the above areas of research may not be unique to AI, but they all 
come under its broad scope. 

Using the principles and techniques of AI, generic application areas that have been 
successfully exploited or are currently under development include analysis, control, 
debugging, design, diagnosis, repair, instruction, training, interpretation, monitoring, 
planning, predicting, search techniques and synthesis. 

NASA AI PROGRAMS 

NASA has stepped up its emphasis on AI research. Its Ames Research Center, 
Mountain View, California [lo] has been given the assignment of taking the lead in AI 
research. Ames has been directed to assure that its research supports what NASA is 
currently doing, and also its long-term requirements. NASA has placed a high priority on 
building "smart" systems for the future US/lnternational space station. 

381 



Machine reasoning in uncertain situations, computer learning, and advanced AI 
architectures are major thrusts in the National Aeronautics and Space Administration's 
Information Sciences Division at Ames. 

The Information Sciences Division at Ames has three sections and concentrates on 
basic research. The three sections in ?he division at Ames Research Center are the AI 
Research Branch, Intelligent Systems Technology Branch, and Systems Autonomy 
Demonstration Project Off ice. 

At the Johnson Space Center, Houston, NASA concentrates on applying today's AI 
technology to existing systems. 

This paper contains abstracts on expert systems from the publication 'Advanced 
Military Computing', reference [4], as well as other sources. The different expert 
systems range in maturity from proof of concept to operational. The author generally 
does not have information on the current status of the different systems. 

SPACE TRANSPORTATION EXPERT SYSTEMS [4] 

AIM. The Air Force Space Division in Los Angeles is proceeding with the procurement 
of an expert system called AIM that will plan the military space transportation systems 
for the period 1995 through 2010. AIM will be required to design a total "space force" 
including vehicle use, payload planning, and required support. 

STALEX. The Shuttle Trajectory and Launch Window Expert System automates 
planning of space shuttle missions which carry geosynchronous communications 
satellites. Developed by the Houston Astronautics Division of McDonnel Douglas 
Technical Services Co., it performs launch window analysis and payload deployment 
scheduling. It is supposed to consistently choose the same solution as that of an 
experienced mission planner and was used for four space shuttle missions before flights 
were stopped due the Challenger accident in 1987. The expert system reduced 
planning time by 70% over previous computer tools. 

ONEX. An Onboard Expert System (ONEX) under development for the Johnson Space 
Center, Houston, will automate many of the navigational monitoring tasks aboard the 
space shuttle, particularly during routine rendezvous operations. 

ESFAS. The Expert System for the Flight Analysis System (ESFAS), created for JSC, 
Houston, acts as a front end to their conventional software planning program, the Flight 
Analysis System (FAS). The FAS requires a high level of user expertise, but ESFAS 
makes its operation simple. 

MARS. The Management Analysis Resource Scheduler (MARS), is designed to 
schedule the resources needed for each space shuttle mission. Resources include 

382 



manpower, computers, control rooms, simulators, and communications. equipment. !t 
can spot potential problems in planning future missions and was built by Ford 
Aerospace and Communications Corp., Houston. 

PEGASUS. The Prototype Expert Ground Analysis and Scheduler with User Support 
(PEGASUS), built by the Harris Coproration, is used at the Kennedy Space Center 
(KSC) to allocate limited amounts of equipment and other items among space shuttle 
flights. 

EMPRESS. The Expert Mission Planning and Replanning Scheduling System 
(EMPRESS), built by the MITRE Corporation, is used at KSC to determine the time, 
resources, and tasks required to process payloads for the space shuttle. 

VALEX. The VALidate Expert System (VALEX) is used at JSC to validate software 
used for shuttle crew training. It discovers if a programmer has entered the wrong wind 
profile for winds common to the launch area, inaccurate launch weight, the wrong 
launch pad number or even launch site. Errors include recording the launch site as 
Florida when it is California. 

RENEX. The RENdezvous Expert System (RENEX) to automate rendezvous of space 
vehicles is being developed by JSC’s Mission Planing and Analysis Division. It will 
graphically display what a system or program does and what data it uses and creates, 
and will be used for ground pre-mission planning, ground real-time planning and 
monitoring, and onboard planning and monitoring. 

NAVEX. The NAVigation Expert system is used to assist in the high-speed ground 
navigation of a shuttle flight during the ascent and entry portions of a flight. It involves 
monitoring and processing data from radar stations which are tracking the shuttle. It was 
developed by Inference Corp. 

EXEPS. The Expert Electrical Power System (EXEPS) is under development by NASA 
to aid in scheduling spacecraft electrical power loads. The Mission Planning and 
Analysis Division is responsible for characterizing the expected performance of the 
electrical power system before each flight, based on that flight’s schedule of trajectory 
events and crew activities. This job currently takes up to two weeks to do manually. The 
expert system will function as an intelligent advisor and focuses on the man-machine 
interface and planning technology. 

MISSION CONTROL SOFTWARE MONITOR. NASA uses this expert system to 
monitor the Mission Control Center software status. This job is currently done by the 
printer controller. The expert system will recognize which of the print status and error 
messages are important, what they mean, to whom they are important, and will report 
the appropriate status information. 

HEAT. The Heuristic Error Analyzer for Telemetry (HEAT) looks at a compressed image 

3 8 3  



of the ?elemetry status, as output by f k  netwDrk data driver at mission control. It 
automatically distinguishes routine errors from those requiring human attention. 

SATELLITE CONTROL AND TRACKING EXPERT SYSTEMS [4] 

RlACS is taking part in joint projects to apply expert systems to aerospace problems. 
Four of these projects are: automatic grid generation being done for the Applied 
Computational Aerodynamics Branch, mission planning for the Infrared Telescope, 
automatic programming of space station systems for the Space Technology Branch, 
and evaluation of aircraft configurations for the Aeronautical Systems Branch. 

AUTONOMOUS SATELLITE CONTROL. An expert system called Autonomous Satellite 
Control is being developed by the Space Technology Center, at Kirtland Air Force Base. 
The expert system is intended to allow a satellite to operate on its own for up to 30 
days. The expert system, carried onboard a communications, navigation or 
reconnaissance satellite, will allow fine tuning of orbital parameters to maintain orbit, 
recharge batteries and perform other routine tasks that now require ground controllers. 

TDRS CONTROL SYSTEM. This expert system is being developed by 
Contel-Spacecom and General Research and will aid in maintaining the orbital position 
of the Tracking and Data Relay Satellite used by the space shuttle, and should also be 
applicable to other satellites. It will be able to guide a satellite controller through a 
maneuver required to maintain the proper East-West orientation of the satellite. It 
monitors errors, manages thruster temperatures, monitors gyro performance, informs 
the controller of what is happening, and recommends steps to follow. 

ESCAP. The Element Set Correction Assistant Prototype (ESCAP) expert system 
automatically updates database information after reading tracking sensors. It shows 
where orbiting objects actually are, compared to computer predictions of those orbits. 
This expert system was demonstrated to the Air Force Space Command by Ford 
Aerospace and Communications. 

SCARES. The Spacecraft Control Anomaly Resolution Expert System (SCARES) 
expert system uses real-time monitoring to detect anomalies at an early stage. Then, 
using diagnostics, it localizes a fault to a specific unit or assembly, and a hypothesis 
generation and testing function analyzes faults not easily resolved by the diagnostic 
process and suggests recovery actions. It handles only anomalies in a satellite’s attitude 
control. Planned extensions would monitor and diagnose the thermal, power, and 
payload systems. 

MOPA. The Mission Operations Planning Assistant (MOPA) expert system will aid the 
Mission Planning Group at Goddard Space Flight Center to do mission planning for the 
Upper Atmospheric Research Satellite, to be launched by NASA in the early 1990s. It 
will help coordinate the daily activities for 10 instruments over an 18 month mission life. 

3 8 4  



ESSOC. The Expert System for Satellite Orbit Control (ESSOC) gives real-time aid to 
ground control operations. It provides continuous analysis of telemetry data throughout 
the stationkeeping operation by means of two-way real-time communication. It provides 
autonomous processing for satellite maneuvering operations. The system handles 
phase independent and phase-specific functions. When ESSOC makes a 
recommendation the user can choose to override it or ask for additional information 
before taking action. 

SPACE STATION EXPERT SYSTEMS [4] 

AMPASES. The Automatic Mission Planning and Scheduling Expert System 
(AMPASES) was developed to provide scheduling activities for NASA's space station. It 
can set up a 24-hour schedule in less than 30 minutes and a one-week schedule in an 
hour or two. Finding the "best" schedule may not be possible with the limited computing 
resources available, due to the large number of variables involved in managing space 
station missions. The expert system develops a high quality, reasonably efficient 
schedule based on the constraints and data provided. It can deal with seven crew 
members, 14 resources of various types, and three types of interactions among 
missions. 

ECESIS, AESOP. The Environmental Control Expert System in Space (ECESIS) 
provides control of life-support systems on a space station. The Autonomous Electrical 
Subsystems Operational (AESOP) expert system monitors, diagnoses, and controls the 
space station electrical system. Both were developed by Boeing Aerospace Co. 

SSES. The Space Station Expert System (SSES) was developed to provide on-board 
advice to space station operators when reconfiguring for unexpected, hazardous or 
resource-threatening events. It works in conjunction with a simulation of the space 
station operator's command module, and was developed by Lockheed Engineering and 
Management Services Co. 

SPACE STATION HOUSEKEEPING. NASA has developed a space station expert 
system for housekeeping and maintenance on a 90-day mission. It creates a recurrent 
priority-ranked housekeeping schedule for long term space missions. 

FREE-FLYER CONTROL. Engineers at Mitsubishi have built an experimental expert 
system for tracking and controlling any type of satellite, for checking out equipment and 
other systems, and for operating and controlling free-flyers. 

ADEPT. The Automatic Detection of Electric Power Troubles (ADEPT) expert system 
integrates knowledge from three different suppliers to offer an advanced fault detection 
system, and is designed for two modes of operation: real time fault isolation and 
simulated modeling [ll]. The system has been tested with a simulated space station 

385 



power module. 

ROCKWELL INTERNATIONAL AI SPACE PROJECTS 

EXCABL. Rockwell International has developed an expert system for automatically 
generating the payload bay cabling design for each mission of the space shuttle [8] [9]. 
This expert system, in production since 1986, requires less than one person-hour to 
complete a cable design, compared to 6 person-days previously. 

EXMATCH. The Expert Drawing MATCHing System (EXMATCH) is c e d  on the shuttle 
program to automate the payload bay cabling installation Technical Order (TO) 
generation task [8]. Closely integraied with the EXCABL system, the cabling solution 
provided by EXCABL is automatically input to EXMATCH, and a master listing of all 
required payload cabling installation TO'S is generated. 

EXTOL. The Technical Order Listing Expert System (EXTOL) is planned for 
development at Rockwell in the near future [8]. EXTOL will produce the initial Mission 
Equipment Cargo Support Launch Site Installation drawing. It will also use heuristics 
and data from previous missions to assist the user by producing a list of the best 
matches for mission TOs in the mission-unique category. 

SAFE. Under development at Rockwell International for use on the space shuttie air 
revitalization system is the Safing and Failure Detection Expert (SAFE) [5], [15], [16]. It 
is designed to be crew-operated and uses a touch screen interface. 

RB-ARD. The Rule-Based Abort Region Determinator (RB-ARD) for real-time 
monitoring and control, as a support system for ground personnel [lq. 

EXTRAJ. The Ascent Throttle Bucket Designer (EXTRAJ) is an expert system designed 
to optimize the shuttle throttle profile during ascent [14]. The throttle is set at full at liftoff 
(to minimize gravity losses), is reduced to limit dynamic loading, then returned to full as 
the atmospheric density falls off with altitude. The resulting thrust profile is called a 
"thrust bucket", and its shape influences fuel consumption. 

DDES. The DDES is an expert system under development for the management of data 
displays in ground-based shuttle mission support [7]. 

ICA. The Intelligent Communicating Agents (ICA) expert system, currently under 
development, will help communication between distributed subsystems, and is intended 
for use by NASA to help provide autonomy for a manned mars mission experiment. 

ETAR (ROBOTICS). The preliminary conceptual design of a new teleoperator robot 
manipulator system for Space Station maintenance missions has been completed at the 
Automation and Robotics Laboratory at Rockwell International, Downey, California [l]. 

386 



The system consists of a unique pair of arms that is part of a master-slave, 
force-reflecting servomanipulator. This design allows greater dexterity and greater 
volume coverage than that available in current designs and concepts. 

SDI AI APPLICATIONS 

Rockwell International (RI), Downey, California, has SBI (Space Based Interceptor) 
contracts with the Air Force to produce a light weight prototype Kinetic Kill Vehicle 
(KKV), as the major defensive weapon in this nation's SDI program, and define the 
System Concepts and Integrated Test (SCIT) program, which includes defining the 
software for an operational SBI program. Previously, RI had conducted its own 
Independent Research and Development program to determine the extent to which AI is 
applicable to a space or ground-based interceptor program [2]. 

On the SBI program, RI is presently using an internally developed expert system 
called ADAES (Advanced Data Assessment Expert System) to help with the 
tremendous amount of data that is generated on the program. ADAES automates 
on-line data reduction, data assessment, and trend analysis functions for complex 
simulations. It allows intelligent data base management of initial conditions, initialization 
and control of simulation, real-time data monitoring, post-run performance analysis, 
multiple run comparison analysis, and provides operations and test teams with clear 
visibility of simulation performance. 

SDI related software can be divided into two distinct classes: OPERATIONAL and 
NON-OPERATIONAL (SUPPORT) software 121. 

Operational software is defined to be critical software which will be used before, 
during, and after an SDI battle or in support of space applications. It is comprised of 
actual flight software, some ground-based, some airborne, and some space-based. 
Support software is defined to include all other software (probably all ground-based) 
that is associated with supporting the life cycle of the operational software. 

Candidate areas for applying AI to operational SDI software include battle station 
performance, weapon platform performance, flight control, constellation architecture 
design, end game, battle management, guidance, navigation & control, data processing, 
communications, and electrical power management. Other applications include off -line 
system development and management, Surveillance, Acquisition, Tracking, and Kill 
Assessment (SATKA), weapons fault analysis, and parameter tuning, and in battle 
management, command and control to make assumptions about "who's doing what to 
whom and why." 

Support software that can be AI-based include automated code generators for the 
development phase, verification software for the verification phase, maintenance 
software for the maintenance phase, and testing and monitoring software for the 

387 



39erational phase. A detailed discussion of SDI software prodxibility including a 
definition of the term 'software producibility' is contained in reference [3]. Personnel 
training software under the title of CBT (Computer Based Training) is also an example 
of support software. 

Other generic SDI support software applications include expert and knowledge 
systems for boosters, SDI resources, laser weapons, phenomenology, sensors, threats, 
weapons, defense strategy, G2 (military intelligence) , and suppliers. Expert systems 
normally capture their knowledge from experts, while knowledge systems generally get 
their knowledge from documented sources [6]. Applications include expert systems that 
perform the functions of communications, control, instruction, training, monitoring, 
planning, predicting, and threat-alert. Knowledge based workstations for threat analysis, 
threat alert, and defense strategy are also important SDI applications. Other 
applications include robots that perform remote maintenance, remote monitoring, and 
remote threat-alert. The importance of Artificial Intelligence to space defense was 
understood before SDI was established [13]. 

It is estimated that an early SDI system might have about 3.0 million lines of code 
(MLOC) of operational software and about 5.0 MLOC of support software 131. Based 
upon the general capabilities of Knowledge-Based AI systems, it is estimated that about 
45% of the lines of code for the support software and only about 10% of the lines of 
code for the operational software can be AI based software. This results in about 2.25 
MLOC for the support AI software and about 0.3 MLOC for the operational AI sofhvare. 
The total SDI AI software is then 2.55 MLOC or about 32% of the total of 8 MLOC [3]. 

The beginning of the development of an operational SDI system, if funded, is 
approximately three years away and it will be about ten years (at the earliest) before a 
fully operational system, whether space or ground based, can be completed. This time 
interval clearly allows for advances in the speed of AI processors, such as LISP 
machines, supercomputers, parallel processors, optical computing etc., and in the 
maturity of expert systems and knowledge based tools for automated code generation 
and support of the full software development life cycle. 

CONCLUSIONS 

AI can and will be very important to space and SDI, and space and SDI can be very 
important to AI. There have been premature conclusions regarding the feasibility of 
software including AI software for the SDI program -- for example, David L. Parnas' 
essays of June 1985 [12]. It is the author's belief that several of the reasons given in 
Parnas' essays are not correct [3]. Furthermore, almost three years of progress have 
occurred since then, and a much more realistic and mature perspective is now 
available. For an "early-deploy" SDI system, the complexity of the operational software 
will be significantly less, thus allowing a normal maturation process by going in phases 
from an early-deploy system to a full-scale SDI system. 

388 



It is possible that the SDI program could be significantly watered down or even 
cancelled for entirely invalid political reasons. If this should occur, it would also be a 
serious blow to AI technology. The SDI program offers so many natural opportunities for 
the legitimate application of many different expert and knowledge systems, and 
accordingly, it can give AI the boost that it needs to become a mature and accepted 
technology. AI maturity is a significant 'spinoff' of a space station or an SDI program. 

Considering both the operational and support software, a study by the author 
indicates that as much as 32% can be AI based. This same percentage is 
conservatively applied to space software. This is an opportunity for AI to mature that this 
nation should not let slip by. The short space allowed for this paper allows only touching 
upon the highlights of applying AI to space and SDI. It would require much more than 
this paper to do justice to this cause. 

Mr. Fiala has a Master's Degree in Electrical Engineering from the California 
Institute of Technology, a Certificate in AI from UCLA, is a Registered Professional 
Engineer in the State of California, and has been a software engineer for eighteen years 
at Rockwell International, Downey, California. 

Gratitude is expressed to Greg Ekstrom, Keith Morris, Burton Smith, and Jonathan 
Post for their helpful comments after having read the various drafts of this paper. 

REFERENCES 

[l] Clarke, M. M., C. J. Divona, and W. M. Thompson, "Manipulator Arm Design For The 
Extravehicular Teleoperator Assist Robot (ETAR): Applications on the Space Station", 
presented at the Space Operations-Automation and Robotics (SOAR) Workshop, 
Houston, Texas, 5-7 August 1987, Rockwell International paper number SSS 87-0095. 

[2] Ekstrom, G. J., "Preliminary KEW Software Analysis Report", Rockwell Internal 
Letter from G. J. Ekstrom to I. Himmelberg, March 10, 1985. 

[3] Fiala, H. E., "SDI Software Producibility", Rockwell International Second Annual 
Software Engineering Symposium (SES II), April 19, 1988. 

[4] Keller, J., A. K. Marsh, and J. Vedda, Applied Aerospace & Defense Expert Systems 
(abstracted from Advanced Military Computing), 1987, section 3, pages 109-1 49. 

[5] Koch, D., Morris, K., Giffin, C., and Reid, G. T., "Avionic Sensor-Based Safing 
System Technology", Presented to Tri-Service Software Systems Safety Working Group 
(July 7,1986) and IEEE Computer Assurance (COMPASS) Conference (July 10, 1986), 
Washington D. C. 

389 



[6] Mishkoff, H. C., Understanding Artificial Intelligence, second printing, 1985 

[7] Morris, K. E., and Giffin C., "Expert Systems Applications for Today's Space 
Problems", presented at the 1 988 International Computers in Engineering Conference, 
Real-World Applications of Expert Systems and Artificial Intelligence, August 1-4, 1988, 
San Francisco, California. 

[8] Morris, K. E., "Expert Systems Applications for Space Shuttle Payload Integration 
Automation", presented at the Second Annual Space Operations Automation and 
Robotics Workshop (SOAR), Wright State University, Dayton, Ohio, July 20-23, 1988. 

[9] Morris, K. E., Nixon, G.A., and Rejai, B., "EXCABL--Orbiter Payload Bay Cabling 
Expert System, A Case Study". Proceedings of IEEE Westex-87 Expert Systems 
Conference, Anaheim, California, IEEE, (1 987). 

[ lo] NASA Ames consolidates AI research, Advanced Military Computing, June 22, 
1987, pages 5,6. 

[ l  13 NASA, Second Annual Space Operations Automation and Robotics Workshop 
(SOAR 88), Abstracts for Technical Sessions, Wright State University, Dayton, Ohio, 
July 20-23, 1988. 

[ 121 Parnas, D. L., "Software Aspects of Strategic Defense Systems", American 
Scientist, September-October 1985, Pages 432-440. 

[13] Post, J. V. "Cybernetic War,", OMNl Magazine, May 1979. 

[14] Quan, A., and Smith, R., "An Expert System for the Design of Space Shuttle Ascent 
Trajectory Throttle Buckets". Proceedings of IEEE Westex--87 Expert Systems 
Conference, Anaheim, California, IEEE, (1 987). 

[15] Reid, G. T., and Nixon, G. A., Final Report FY 1985, Automated Malfunction 
Procedures System, Rockwell International, STS 85-0478 (1 985). 

[16] Reid, G. T. et al, FY 1986 Final Report, SAFE-Human Interface Enhancement, 
Rockwell International, STS 86-0325 (1 986). 

[17] Smith, R., and Marinuzzi, J. Final Reports for IR&D Projects 87267. Rockwell 
International, IL-282-90O-GLN-87-001(1987). 

390 



CONCEPTS for AUTONOMOUS FLIGHT CONTROL for a BALLOON on M A R S  

Thomas F. Heinsheimer, TITAN Systems 
Robyn C. Friend, TITAN Systems 

Gardena, California 

Neil G. Siege1 
Redondo Beach, California 

ABSTRACT 

Balloons operating as airborne rovers have been suggested as ideal 
candidates for early ex loration of the Martian surface. An international 
study team composed o P scientists from the U.S.S.R., France, and the U S A .  
is planning the launching in 1994 of a balloon system to fly on Mars. The 
current likely design is a dual thermal/gas balloon that consists of a gas 
balloon suspended above a solar-heated thermal balloon. At night, the 
thermal balloon provides no lift, and the balloon system drifts just above 
the Martian surface; the lift of the gas balloon is just sufficient to 

revent the science payload from hitting the ground. During the day, the 
galloon system flies at an altitude of 4 to 5 kilometers, rising due to the 
added lift provided by the thermal balloon. 

Data from the NASA/Ames Global Circulation Model (GCM) indicate that 
over the course of a single Martian day, there may be winds in several 
directions, and in fact it can be expected that there will be winds 
simultaneously in different directions at  different altitudes. Therefore, a 
balloon system capable of controlling its own altitude, via an autonomous 
flight control system, can take advantage of these different winds to 
control its direction, thereby greatly increasing both its mission utility 
and its longevity. 

Once autonomous balloon control has been demonstrated in the 1994 
mission, ever more complex balloon missions could follow, at each Mars 
launch opportunity, paving the way for a Mars Sam le return mission near the 

This paper describes the trade-offs and issues involved in the balloon- 
autonomy concept, investigates the benefits to the mission of various levels 
of autonomy, and describes concepts under consideration and the current 
program plan. The authors conclude that a goal-driven autonomous control 
system for the Mars balloon can be constructed, and that the use of such a 
control system would increase the effectiveness of the scientific return, 
the safety of the balloon system, and the duration of its mission on Mars. 

end of the century, and later, for manned exploration o B Mars. 

1. INTRODUCTION 

A balloon provides an effective platform for Mars surface exploration 
in that it is potentially long-lasting, and can travel many miles over its 
lifetime. The balloon mission complements the rover, in that that latter 
carries a much larger science payload over a shorter trajectory, whereas the 
balloon can explore a much larger area with a smaller payload. Together 
they will collect science data that cannot be observed by Mars orbiters. 

391 



The international study team (the U.S.S.R., France, and the U.S.A.) is 
presently analyzing four balloon designs, including a dual thermal/gas 
balloon, a single superpressurized balloon, a classic (Le., ambient 
pressure) gas balloon, and a kite balloon (Figure 1). The concepts of 
autonomy discussed here are applicable to all balloon designs; the most 
likely candidate from amon these four designs is the dual thermal/gas 

While the balloon system is flying, using combined gas and thermal 
lift, the horizontal component of its movement is dependent on wind 
direction and velocity. Data from the NASA/Ames Global Circulation Model 
(GCM) indicate that over the course of a single Martian day, there may be 
winds in several directions, and in fact it can be expected that there will 
be winds simultaneously in different directions at different altitudes 
[PolJ87]. Therefore, a balloon system capable of controlling its own 
altitude, via an autonomous flight control system, can take advantage of 
these different winds to control its direction, thereby greatly increasing 
both its mission utility and its longevity. Whereas the simple daily ascent 
to ceiling altitude of the proposed balloon design will provide an 
interesting science return, a navigable balloon system could be programmed 
to achieve a broad range of additional missions, such as documentation of 
candidate landing sites, collection of documented samples and their return 
to a common area, and visits to areas of special interest as a result of 
other observations (such as those from the Mars Observer, etc.). Devising 
an autonomous flight control system for the dual thermal/gas Mars Balloon 
would greatly enhance the balloon system’s scientific return. 

concept, which will be assumed B or the purposes of this paper. 

2. AUTONOMOUS CONTROL of the DUAL THERMAL/= BALLOON 

The dual thermal/gas balloon design consists of two balloons, one gas- 
filled, the other a solar-heated thermal balloon. The closed gas balloon is 
suspended above the solar-heated thermal balloon (Figure 2). At night, the 
thermal balloon provides no lift, and the balloon system drifts over the 
Martian surface; the lift of the gas balloon is intended to be just 
sufficient to  prevent the science payload from hitting the ground. The 
ground-sampling ortions of the science payload instruments can be 
operational during t K is time (Figure 3) [FriRC87]. 

At sunrise, the thermal balloon is heated by sunlight, complementing 
the lift of the hydrogen-filled balloon, and causing the entire vehicle to 
rise to its float altitude, where it cruises all day. In the afternoon, as 
the sun begins to set, the thermal balloon cools, thereby losing its lift; 
the balloon vehicle drifts down to the surface, where it again moves along 
the surface on its ground payload. The gas balloon still prevents the 
science payload from being damaged by hitting the ground. (Figure 4). 

Some degree of flight control is needed just to assure a safe flight. 
Some situations where control would be beneficial include the following: 

0 

392 

Morning liftoff prior to excessive soloar heating, to avoid 
buffeting by thermals, etc., which results from taking off when the 
atmosphere is hot. Such buffeting could pose a danger to the 
integrity of the thin balloon envelope. Note that there is a high 
level of uncertainty concerning actual Martian wind and weather 
conditions. 



o Stable ascent and float at ceiling altitude. 
o Controlled daytime altitude. 
o Initiation of descent after thermals have cooled, but before the air 

is so cool that the balloon system crashes. 
o Controlled landing. 
o Nighttime traverse. 
o Compensation for deterioration in thermal balloon envelope (Le., 

resulting from buffeting over time). 
o Compensation for gas leakage from gas balloon. 

The descent and ballast issues are of particular interest. As the sun 
sets, the balloon starts to descend from its cruising altitude of 4 to 5 
kilometers. With time the descent rate tends to increase due to two 
effects: reduced solar elevation provides less solar heat; and forced 
convection cooling of the descending solar-heated balloon reduces its lift. 
If unchecked, the result is an approximately 5 meter/second descent rate 
culminating in the crash of the balloon onto the surface. 

To avoid this disaster a design is needed that starts the descent early 
enough in the afternoon to assure sufficient solar input all the way down, 
and which prevents a "runaway descent" by keeping descent velocity at less 
than 1 meter/second. This could be accomplished either by a clever design 
of a "dumb" system that has no active control, or by various levels of 
active control. The tradeoffs of these alternatives are under discussion. 

Another control issue involves the use of ballast to compensate for gas 
losses in the gas balloon, and for losses in the efficiency of the thermal 
balloon due to degradation of the envelope film. The decision of when to 
deploy ballast, and how much is to be deployed, must be made efficiently -- 
either in a balloon-borne controller or from Earth. If on the balloon, it 
requires appropriate devices; if on Earth, it requires extensive two-way 
communications. 

Aside from flight safety and longevity issues, the performance of the 
science payload may be enhanced by the actions of the autonomous controller, 
for example: 

o Modifymg the flight trajectory. 
o Modifying dwell-time at a landing site. 
o Managing the limited budget of power, data storage/processing, 

communications times, system lifetime. 

Such actions may increase in sighting opportunities, increase the 
accuracy or interest of the measurements, and prolong the life of the 
science payload. 

The use of the autonomous controller to manage the flight trajectory is 
particularly interesting. At morning liftoff the balloon will perform an 
ascent to cruise altitude that would allow the measurement of the wind 
profile. This profile will have a validity interval of several hours, 
during which time the trajectory can be influenced by the proper choice of 
altitude profile. An interesting issue is the degree of autonomous control 
that should be resident in the balloon, and how much in a large earth-based 
computer having a wind model of Mars, how much reliance on in situ 
measurements and how much on model-based predictions. The valuq 'of 

393 



controlling the trajectory is clearly to improve the science return by going 
towards interesting areas, and to protect the balloon by avoiding 
treacherous terrain that could either be hit in the daytime, or cause system 
damage during guide-rope traverse at night. 

3. AUTONOMOUS CONTROL: CONCEPTS and ISSUES 

The issue of autonomous control must be viewed in the context of a 
series of ever-more complex balloon flights, occurring roughly every two 
years, for the long-term exploration of Mars. At each step, increasing 
levels of autonomous control may be appropriate in order to achieve mission 
goals. 

Due t 3  the low density of the atmosphere of Mars (approximately 10 
grams/meter at the surface), the mass of the balloon system must be kept as 
small as possible. One must carefully assess the impact on the over-all 
scientific mission of the balloon system of any additional sub-system, such 
as the autonomous controller. The current desi n achieves a science payload 

this level of science-to-mass efficiency, the balloon "skin" must be only 
3.5 microns thick [HeiTF88]. 

In the previous sections, we have briefly described some of the mission 
benefits that could be realized through the use of an autonomous control 
system. The principle "cost" or "down-side" is the additional mass that 
must be added to the system; much of that will have to take the form of a 
displacement of science payload. A clever design will, however, use sensors 
that have a science return, and a processing system that can be shared by 
the science payload. 

The components of the autonomous control system include the following: 

of 20 kilograms out of a total system mass of ? 0 kilograms; to achieve even 

o Computer processor and storage devices 
o Additional power ration 
o Sensors 
o Controllers and actuators 
o Inter-connections and interfaces 

Typical of the information that an autonomous controller may need are 
the following: 

o Solar elevation angle 
o Pressure and radar altitude 
o Atmospheric turbulence 
o Surface roughness 
o Vertical profile of horizontal wind 
o Balloon system status 
o Balloon geographic location 

This data can be obtained by a combination of on-board sensing and 
external input. The impact of on-board sensing on system weight may be 
severe unless highly-sophisticated sensing/processing is done to minimize 
weight and power. 

The implementation of control is typically done by two types of 
3 9 4  



actions: (1) irreversible 'ettisoning of ballast (perha s in the form of 

meteorological stations); and (2) reversible modifications of the thermal 
efficiency of the thermal balloon by either venting internal hot air, or 
changing the thermal characteristics of the side facing the sun. 

The management of the ballast drop is relatively easy, but the thermal 
control of the hot-air balloon may require careful design. The 3.5 micron 
film cannot stand much manipulation. One conce t under discussion uses a 
thermal balloon having different films (clear, a P uminized, or gold-plated) 
at various locations around the balloon, and a control system that rotates 
the balloon with respect to the sun to achieve the desired thermal input. 
Such a system of controlling ascent/descent velocities is being designed. 

200-gram science modu 1 es that fall to the sur r ace as long-term 

4.0 LEVELS of AUTONOMY 

The dual thermal/gas balloon can be used for a variety of missions 
having an increasingly complex level of engineering sophistication and 
scientific return. 

o The simplest mission (i.e., no autonomous controller) makes diurnal 
ascent/descent, carrying sensors such as a vibration sensor and 
vibration spectrum analyzer in its ground payload to monitor ground 
mechanical properties during nocturnal ground traverse, an array of 
atmospheric sensors measuring temperature, turbulence, dust size and 
concentration, and additional sensing [BlaJ86]. 

o A more complex balloon might have a valve in the thermal envelope to 
allow controllable altitude profiles during the day. After an 
initial ascent in the morning (as indicated in Figure 5 )  to 
determine current local wind patterns, the controller then uses the 
valve in the thermal bag to select an altitude for the day's flight. 
This could be extended to incorporate numerous diurnal 
ascent/descent rofiles as well as low altitude (terrain-followin ) 

quality ground imaging using a CCD camera. 
missions with t K e aid of a small radar altimeter to permit hig E - 

o A still more elaborate concept uses an intelligent balloon with an 
on-board array of sensors and com uters that allow it to optimize 
the science return, by intelligent lp y controlling its vertical and 
horizontal profile. This could include the dropping of portions of 
the ground payload mass in the form of small ground monitoring 
stations, or the collection of ground samples from desirable 
locations for balloon transport to an area havlng easy access by a 
subsequent rover; The ''elephant graveyard" mission, in which 
several balloons are sent on widely separated sample collection 
missions bringing samples to a central site for later retrieval, is 
an example of the potential use of such sophisticated balloon 
systems. 

A minimal Mars balloon autonomous control system would consist of a 
processor and storage devices (ROM for programs, RAM for sensor 
and computational products), wind direction and velocity sensors, a 

and actuator to open and close a valve of the thermal balloon 
envelope, and inter-connections and interfaces between the compaker 

395 



processor, the sensors, the power source, and the controller/actuator. 

Without any significant increase in weight, inter-connections could be 
added between some portions of the science payload and the autonomous 
controller's computer processor. With the corresponding additions to the 
controller's software, payload effectiveness could be increased through the 
mechanisms described in Section 3.1. 

Investigations are underway to determine the cost-benefit trade-offs of 
additional sensors. 

5.0 SUMMARY and PROGRAM PLAN 

This paper described the benefit, trade-offs, and issues involved in 
the balloon-autonomy concept, investigated the mission pay-offs of various 
levels of autonomy, and described concepts under consideration. The authors 
conclude that a goal-driven autonomous control system for the Mars balloon 
can be constructed, and that the use of such a control system would increase 
the effectiveness of the balloon system, both by providing an improved 
science return and by increasing the level of safety. 

In-progress and near-term activities include: 

Construction of trial balloons out of thin film. The French Space 
Agency (CNES) has successfully flown a 1/ 10-volume scale-model of 
the Mars thermal balloon, proving that it can be built, deployed, 
and inflated (at 30 kilometers above the Earth), and that thermal 
performance is as expected. Smaller scale models have been provided 
by CNES to JPL for tests in a ground environment. 

Guide-rope experiments. JPL and Cal Tech are currently working on a 
second-generation "snake"-type guide-rope, to be tested in the 
California desert. Sensors and data recorders will be attached to 
record speed and surface roughness. There has been some discussion 
of the possibility of using the flexibility of the snake as a means 
for determining the size of boulders on Mars, and thus determining 
suitability of prospective sites for use as prospective landing 
platforms for other vehicles and missions. 

Balloon-flight dynamics experiments. TITAN Systems and the Soviet 
Space Research Institute (IKI) have been conducting balloon-flight 
dynamics experiments in the Soviet Union, under the sponsorship of 
The Planetary Society, a California-based organization that promotes 
space exploration. 

Planning of autonomous design concepts. TITAN and others are 
roposing and analyzing various AI and knowledge-based techniques 

!or providing the autonomous control function. 

396 



- -  . -' , . '?  I .  , ,  :k g 
Dual Thermal/Gas Balloon [LmJM87] 

A 
Superpressurized Balloon [HeiTF88] 

Sclentiiic Payload 

Kite Balloon [BurJD88] Classic Single Gas Balloon [HeiTF88] 

Figure 1. The Four Candidate Balloon Designs. 

397 



Ry drogen-filled 
Gas Balloon I 

I 

Salar-Heated 
Thermal W o n  

Scientjfic Payload I 

Figure 2. Detail of the Dual Thermal/Gas Mars Balloon. 

398 



SURFAC€ 

SOURCE 
TETHER TO GONDOLA INSrRUMEHT 

r3ml /(’ I I I I )  I 
I- 4 

SEQUENCER BATIERtEs SURHCL 
TRANSMITER AND RAMOACITVE INSTRUMENT 

RECEIVER HEAT€- SENSOR 

L-4 
AWTENNA 

60 Mbk MEMORY 
MICROPROCESSOR 

POWER SUPPLY 

Figure 3. Detail of Ground Payload [AHTR87]. 

Figure 4. Dual Thermal/Gas Balloon Flight Operations. 

399 



Figure 5. Candidate Single-Day Operating Profile. 

The authors wish to aknowled e gratefully the support and encouragement of 

Planetary Society. 
Jim Burke of the Jet Propu 'i sion Laboratory, and Lou Friedman of The 

REFERENCES 

AHTR87 Ad Hoc Team Report, Moscow, October 1987. 

BlaJ86 Blamont, Jacques. "Balloons for Mars Missions." Paper IAF-86-324 
resented at the 37th Congress of the International Astronautical 

Federation, Innsbruck, Austria, October 1986. 

BurJD88 Burke, James D. "Mars Balloon Status". JPL, 24 February 1988. 

FriRC87 Friend, R. C. and Heinsheimer, T. F. "Ballooning on Mars, Report 
Number 1". TITAN Systems, June 1987. 

HeiTF88 Heinsheher, T. F., Friend, R. C., et al. 

LedM87 Lenorovitz, Jeffrey M. 

"Exploration of Mars by 
Balloon: Four Concepts". COSPAR 1988, Espoo, Fmland. 

"French Offer Balloon Platform for Use on 
Soviet Mars Mission". Aviation Week & Spa% -, 3 August 
1987. Drawing by Olivier de Goursac. 

PolJ87 Pollack, Jim and Haberle, Bob. "Mars GCM Simulations: Implications 
for Balloons". Presented in Paris, France, 8 October 1987. 

4 0 0  



A Very Large Area Network (VLAN) Knowledge-base 
applied to Space Communication Problems 

Carol S. Zander 

Department of Computer Science 
Colorado State University 
Ft. Collins, CO 80523 

ABSTRACT 

This paper first describes a hierarchical model 
for very large area networks (VLAN). Space communica- 
tion problems whose solutions could profit by the model 
are discussed and then an enhanced version of this 
model incorporating the knowledge needed for the mis- 
sile detection-destruction problem is presented. 

A satellite network or VLAN is a network which 
includes at least one satellite. Due to the complex- 
ity, a compromise between fully centralized and fully 
distributed network management has been adopted. Net- 
work nodes are assigned to a physically localized 
group, called a I1partition.lt Partitions consist of 
groups of "cellt* nodes with one cell node acting as the 
organizer or master, called the "Group Mastertt (GM). 
Coordinating the group masters is a "Partition Master" 
(PM). Knowledge is also distributed hierarchically 
existing in at least two nodes. Each satellite node 
has a back-up earth node. Knowledge must be distri- 
buted in such a way so as to minimize information loss 
when a node fails. Thus the model is hierarchical both 
physically and informationally. 

- 1. Introduction 

interesting 
and powerful base for solving those problems for which a single 
problem solver or single machine seems inappropriate. Problems 
requiring world-wide support, involving network nodes in space 
fall into that category. While local area and wide area networks 
currently solve many distributed problems, satellites provide 
expanded capabilities unavailable with local and wide area net- 
works. In the past, satellites have mostly been simply a reflec- 
tor of signals, computationally passive in computing networks. 
However, with the rapid advancement of technology, it is 

Distributed problem solving networks provide an 

401 



conceivable that in the near future satellites will have on-board 
computing power. Satellites may contain a single computer or a 
local area network. 

A network containing one or more satellites is classified as 
a Very Large Area Network (VLAN). Problems that will be solved 
using the VLAN model are extremely complex in part due to the 
large spatial distribution of nodes. To manage the network and 
control the information distributed throughout the system, artif- 
icial intelligence techniques are needed. A knowledge-based sys- 
tem manager handles the duties of resource management and network 
communication. This paper introduces the VLAN model and applica- 
tions, but details of the manager will be presented in later 
work 

In the next section, the VLAN model is presented with its 
organization: the hierarchy of communications within the network, 
the management of the hierarchy, and fault tolerance considera- 
tions. Space communication problems are then discussed. Suit- 
able applications are briefly introduced with the paper focusing 
on the missile detection-destruction problem in a VLAN environ- 
ment. 

2. - The VLAN Model -- 
- -  2.1 Model Design Issues 

When designing the VLAN model, many issues must be con- 
sidered. There are desi n questions about information flow, con- 

While the flow of information is not dependent on a particular 
problem, it is dependent on the communication plan of the net- 
work. Control knowledge can be handled in a general way in the 
knowledge base, but content and distribution of domain knowledge 
is problem specific. Should communication and knowledge be fully 
centralized or fully distributed? Should knowledge be redundant 
at nodes? This paper contains some preliminary results, but the 
full-blown knowledge base will be done in future work. 

trol knowledge distribut 9 on, and domain knowledge distribution. 

- 2 . 2  Organization of the -- VLAN - Model 
The complexity of a network of this size is so great that a 

fully centralized design must be ruled out. Similarly, a fully 
distributed design is also unreasonable as it would take too long 
to find and pass information. Thus, a trade-off between a fully 
centralized and fully distributed design is adopted. 

The model design is described here, but has been altered 
from the original model found in 151 so that it is adaptable to 
the applications considered here. For a discussion on communica- 
tion protocols for VLANs, see 131. A general VLAN has no res- 
trictions on the number of nodes or their positions, physically 
or within the network. There are four general kinds of nodes: 

4 0 2  



1. Fixed nodes stationed on earth. 
2. Mobile earth nodes -- land, water, air vehicles. 
3. Geosynchronous satellites. 
4. Non-geosynchronous satellites. 

Given the different kinds of nodes in the network and the 
possibly very different tasks that these nodes will accomplish, 
nodes are grouped together functionally based on tasks. In the 
general model, it is assumed that each node is responsible for a 
set of very specific tasks as well as some general support. 
Thus, each node is assigned membership in one or more functional 
group based on its responsibilities. The task may be some 
specific computational need or some managerial function. These 
groups are totally functional, and not physical. 

- 2 . 2 . 1  Communication Hierarchy 

Because the physical distribution of nodes could differ 
greatly from the functional distribution of nodes, direct comun- 
ication with each other may be impossible. So in addition to the 
functional groupings, the network nodes are also assigned to a 
physically localized group, called a "partitiont8. That is, phy- 
sical is divided into partitions made up of nodes located 
physically in the same proximity. Within each partition are 
nodes from some functional group, physically splitting the func- 
tional groups into parts. Therefore a partition is comprised of 
possibly many functional subgroups which will be referred to as 
local functional groups. Each node is a member of exactly one 
physical partition, but may be a member of more than one func- 
tional group. A sample VLAN, illustrating three physical parti- 
tions and two functional grou 6 im shown in figure 1. The nam- 
ing, subscripting, and supormcr P pting scheme explanation follows. 

space 

Figurn 1: VLAN 4 t h  3 PaAtblrr and 2 Functiod Gmupa 

403 



Each node in a partition is called a "cellH node. In fig- 
ures, cell nodes are labeled with an N. For communication pur- 
poses, each cell node is part of one local functional group. One 
of the cell nodes is chosen as the master node per local func- 
tional group in each partition, and is called a "group master 
node" or just Group Master (GM) and is labeled in figures by a 
GM. Thus, each partition contains one group master for each 
local functional group represented in that partition. Again 
within the partition, one of the cell nodes is given the duty of 
master over the group nasters and is called the "Partition Mas- 
ter" (PM) and is labeled in figures by a PM. 

Thus, each partition has exactly one partition master which 
communicates with group masters. Each local functional group has 
exactly one group master which communicates with cell nodes in 
that group. This forms a hierarchy of communication from PMs to 
GMs to cell nodes. To correspond from one partition to another, 
partition masters communicate. The subscripting and superscript- 
ing scheme in figures is as follows. For all nodes -- PMs, GMs, 
and cell nodes -- all digits in the superscript say which func- 
tional groups the node belon s to. sim- 

representing their respective partition number. GMs have two 
subscripts, the first adopts the subscript of their PM indicating 
their partition number, and a second subscript represents the 
local functional group the GM is a part of. Similarly, cell 
nodes have three subscripts, saying which partition and which 
local functional group the cell node is in and then an identify- 
ing number within the local group. Since the superscript lists 
all functional groups the node is a member of, the second sub- 
script of group masters and cell nodes must be contained in that 
list. A representation of the communication hierarchy with two 
partitions is found in figure 2. 

PMs have one subscript, 
ply taken from a sequent 4 a1 numbering of all partitions and 

Partitioar 

Cells 

4 0 4  



- - -  2.2.2 Management Hierarchy 

The last section introduced the communication hierarchy of 
the network, and now the management issues are addressed. At a high level, a group master manages all operations of its grouP'S 
cell nodes, and is the communication link between the cell nodes 
and its partition master. 

A partition master coordinates communications between local 
functional groups in its partition and communicates with all 
other partition masters. It is assumed that partition masters 
will be on board geosynchronous satellites. There is less 
interference for satellite to satellite communication than with 
that An 
earth node is designated as a back-up or stand-by partition mas- 
ter to assure continuation of the system in case of failure. 
Because mobile earth nodes are not fixed and their location can 
be readily changed so that they are not predictably located, this 
node type will take on the important role of back-up node. 

of earth to earth or satellite to earth communications. 

In the general model, management of direct communication 
takes place as follows: 

A cell node may initiate direct communication with its group 
master, or directly with another cell node in its local 
functional group only if initiated by its group master. 

A group master may initiate direct communications with any 
cell node in its localized functional group, or with its 
partition master. 

A partition master may initiate direct communications with a 
group master in its partition, or another partition master. 

Under special circumstances (eg., failure of a supervisory 
group master), a cell node may initiate direct communica- 
tions with its partition master to notify of the failure. 
The partition master may then initiate direct communications 
with a cell node to promote it to group master status. 

Similarly, a group master may initiate direct communications 
with another partition master to notify it of failure. 

- 2.2.2 Fault Tolerance 

In the general model, when a cell node @@determines" that its informs that group master's 
part group tion master of the suspected fa lure. After %erifying" the 
failure, the partition master appoints one of the remaining cell 
nodes in the functional group as the new group master. The 
knowledge base is updated. 

master has failed, it direct1 x 
A similar dynamic fault tolerance scheme exists for parti- 

tion master failures. A group master determines its partition 

405 



master has failed. If the partition master is the original 
satellite node which has failed, then its earth duplicate is 
notified and after checkinq to make sure of definite failure, 
either it assumes partition master duties or assigns the duties 
to another geosynchronous satellite. 

- 3. Space Communication Problems 

- -  3.1 Suitable Problems 

The VLAN model design lends itself well for use with physi- 
cally large distributed problems. Since most space communication 
problems fall into this category, the VLAN model is ideal to use 
as a framework to handle these problems. It is organized in such 
a way that a complex management system can be neatly imbedded in 
the network. 

Many distributed artificial intelligence systems have been 
developed over the years in such areas as medical diagnosis, 
natural language processing, and manufacturing. (See [l] for a 
concise survey.) The VLAN is inappropriate for these smaller 
problems, but is a way to handle the physically larger problems. 

One suitable application is space traffic control, the prob- 
lem consisting of an airspace of space stations with spacecrafts 
arriving and leaving at fixed entry and exit points. Another 
problem Here, a map is to be 
created from sensors picking up signals from or sounds of moving 
vehicles in space. The VLAN could be used for the business 
application of foreign exchange trading, communicating informa- 
tion around the world in real-time. Many military problems 
involve space with one foremost problem being the missile 
detection-destruction problem. The rest of the paper focuses on 
this problem. 

is the vehicle monitorinq problem. 

- -  3.2 The Missile Detection-Destruction Problem 
One of the most interesting, complex problems suitable for 

the VLAN model is the missile problem. Simply put, it is the 
problem of detecting an incoming missile, computing it's trajec- 
tory, and ultimately destro ing the missile. The network must 

determination, discrimination and assessment; aiming and tracking 
of nodes; interception and destruction; and management. The sys- 
tem must perform tasks in a fast and efficient manner and be 
fault tolerant, continuing functioning for as long as possible 
after any node failure. 

The system is designed to intercept a missile in all four 
phases of its flight: the boost, post-boost, midcourse and ter- 
minal phases [ 4 ] .  The boost phase is brief, lasting approxi- 
mately 50-300 seconds and occurring 200 km above the earth's sur- 
face. The boost phase is followed by the post-boost or bussing 
phase. In this phase the bus (last stage of the missile) is 

carry out the essential funct x ons of surveillance, trajectory 

406  



already in a trajectory, and releases many reentry vehicles and 
decoys, lasting 5 minutes. In the midcourse phase, now 1000 km 
above the earth, the warheads and decoys are traveling in an 
unpowered trajectory. The midcourse phase lasts 20 minutes. In 
the terminal phase, a time of one to several minutes, the atmo- 
sphere is reentered and the decoys are stripped away by air 
resistance. The four phases are illustrated in Figure 3. 

MIDCOURSE PHASE 

A*--- -0ST-BOOST (BUSSING) PHASE 
/a 0 4  1 v: 

0 0 . 6  
Reenter 
atmosphere, / Booster burnout \ \ BOOST PHASE 

Figure 3 .  Four Phae1.8 of a Miraile Flight. 

- 3.2._1 -- The VLAN Functional Groups and Partition Structure 

The first consideration of incorporating the missile problem 
into the VLAN model is to determine the functional groups. The 
needs of the missile problem dictate most of the functions. 

At the crux of the problem are the functions of missile 
detection and destruction. The function of detection includes 
sending a warning to appropriate nodes or group managers, deter- 
mining the source of the missile, and anticipating the projected 
target. The warning is to alert group managers that computation 
and destruction nodes under their supervision are about to be 
invoked. This gives them a head-start in figuring out which node 
should The source of the mis- 
sile and the target are useful pieces of information for antici- 
pating future missile onsets. Since this information must be 
kept in the knowledge-base associated with the VLAN, messages of 
information must be sent to the record keeping nodes. 

be chosen to destroy the missile. 

for 
nece 
This 

When a missile is detected, its trajectory must be computed 
use b destruction nodes. Thus trajecto computation is a 

computers. 
function will be divided into subfunctions depending on the 

phases of a missile's flight time, the boost, post-boost, mid- 
course, and terminal phases. There are also four functions asso- 
ciated with destruction corresponding with the four phases. Dif- 
ferent kinds of nodes are necessary for the different phases. 

!ssary, 1 mportant function needing fast, ded r cated 
' 

Other functions include the detection of failing nodes and 
destroyed nodes and the updating of the knowledge-base. 

407 



Successful destruction of missiles is useful information for gui- 
dance of destruction of future missiles. If technologically pos- 
sible, a decoy-warhead discriminating function could be incor- 
porated in the V W .  Some nodes will be dedicated strictly as 
protection nodes, protecting other, critical nodes. Acting as a 
back-up node constitutes a functional group, as well as the func- 
tion of decoy satellites. In addition, there will be many kinds 
of management nodes. These handle the duties of keeping and con- 
trolling the knowledge-base and managing the VLAN network. 

hierar- 
chy is necessary for handling the complicated duties of manage- 
ment. For example, if a missile is detected, the detection node 
communicates with its group master who either finds nodes under 
its command to finish the destruction, contacts other group mas- 
ter nodes, or contacts its partition master. There are fewer 
communication links to accomplish the task and they can done 
in parallel to assure completion. The hierarchy is based on an 
information need rather than standard network traffic. 

All the functional groups will be represented in each parti- 
tion. The number of nodes representing some functional groups 
will be based on the number of nodes from some key groups. The 
key groups include missile detection, missile destruction, and 
management nodes. The exact numbers for these key nodes are not 
yet determined, but there have been estimates made for similar 
problems, see [2] and [ 4 ] .  One difficulty of the VLAN model, 
common to all space network systems, is the changing configura- 
tion of the partition structure. Unless a satellite is in 
geosynchronous orbit, it will not be stationary above a point on 
the earth, but will trace a track which rotates around the earth. 
There must be enough satellites in each partition so there are 
always necessary nodes within intercept range of any missile. 

Numbers of trajectory computation, node failing detection, 
and decoy discrimination nodes will depend on the number of mis- 
sile detection nodes. The amount of missile destruction nodes 
will determine quantities of node failing detection nodes as well 
and destruction detection. Protection and back-up nodes will 
mostly depend on how many management nodes there are. Decoy 
satellites are not dependent on any particular key nodes, and are 
not key nodes themselves, but are dependent on the total number 
of nodes in a partition. Their numbers will be in a proportion 
SO as to make it difficult to determine the real nodes. 

To be able to approach real time response, the VLAN 

be 

- 3.2.2 Problem Knowledge 

The domain knowledge of the missile problem includes many 
pieces, most im ortant being the topology of the VLAN, that 

nodes. This information is distributed amongst the management 
nodes and their back-up nodes. When nodes dynamically fail, the 
news of the failure is broadcast to all group managers. 

the 
is, the partition div P sion and the numbers and positions of 

408 



- 4. Conclusions 

This paper introduces a very large area network as a frame- 
work for solving spatially large distributed problems. A VLAN is 
composed of cell nodes, group masters, and partition masters with 
the partition masters managing the group masters in their parti- 
tions, and the group masters managing the cell nodes in their 
localized groups. All nodes belong to some functional group 
based on the tasks they perform. The key elements of the model 
design are the communication and management hierarchical organi- 
zation, with the motivation for the hierarchies to simplify the 
complexity of the network. The VLAN model is designed to be 
fault tolerant for as long as possible. 

This distributed approach to solving problems is powerful 
with much potential for solving futuristic distributed problems. 
The VLAN model with its organization is well suited as an 
environment for handling these problems. Several possible prob- 
lems were introduced with a focus on one foremost problem, the 
missile detection-destruction problem. This problem was outlined 
and incorporated into the VLAN model. 

There is still much work to complete the incorporation of 
the missile problem into the VLAN model. Domain knowledge needs 
more detail and precise placement in the model and control 
knowledge must be totally defined and distributed in the network. 
The preliminary employment of the VLAN model for use with distri- 
buted problems is promising. 

References 

Decker K. S., Distributed Problem-Solving Techniques: A Sur- 
vey, IEEE Transactions on Systems, Man, and Cybernetics, 
Vol. SMC-17, No. 5, Sept/Oct 1987, pp. 729-740. 

Guertner G. L. and Snow D. H., The Last Frontier, D. C. 
Heath and Company, Lexington, Massachusetts, 1986. 

Oliver S. R. and Wolf J. J., Characterizing Very Large Net- 
works (VLAN), Proceedings of Computer Networking Symposium, 
Addendum, Oct 1986. 

Schroeer D., Directed-Energy Weapons and Strategic Defence: 
A Primer, Halstan & Company Ltd., Amersham, Bucks, Great 
Britain, Adelphi Paper 221, 1987. 

Wolf J. J. and Ghosh B., Modeling Very Large Area Networks 
(VLAN) using an Information Flow Approach, IEEE Proceedings 
of the Symposium on the Simulation of Computer Networks, 
Colorado Springs, Colorado, 1987. 

409 



N89- 1 5 6 0 2  

Ada in AI or AI in Ada? On Developing A Rationale For Integration 

Philippe E. Collard 
California Space Institute 

A-016, UCSD, La Jolla, Ca 92093 

Andre Goforth 
NASA/Ames Research Center 

Information Sciences Division, MS244-4 
Moffett Field, Ca 94035 

Abstract 

The use of Ada as an Artificial Intelligence (AI) language has been gaining interest within the 
NASA community. This interest is held by parties in NASA who have a need to deploy Knowledge 
Based-Systems (KBS) compatible with the use of Ada as the software standard for the Space Station. 

A fair number of KBS and pseudo-KBS implementations in Ada exist today. Currently, no 
widely used guidelines exist to compare and evaluate these with one another. The lack of such 
guidelines illustrates a fundamental problem inherent in trying to compare and evaluate 
implementations of any sort in languages that are procedural or imperative in style, such as Ada, with 
those in languages that are functional in style, such as Lisp. 

This paper discusses the strengths and weakness of using Ada as an AI language and provides a 
preliminary analysis of factors needed for the development of criteria for the integration of these two 
families of languages and the environments in which they are implemented. 

The intent for developing such criteria is to have a logical rationale that may be used to guide 
the development of Ada tools and methodology to support KBS requirements, and to identify those AI 
technology components that may most readily and effectively be deployed in Ada versus those best left 
in a functional language. 

INTRODUCTION 

The AI community and the Ada software engineering community have historically evolved and 
developed methodologies and formalisms with only a modest amount of collaboration to date. This is 
partly due to their respective goals. On one hand, the AI community has been concerned with the 
"what" and "why" of a problem, i.e., the representation of information indigenous to the development 
of requirements. On the other hand, the Ada software engineering community has concerned itself more 
with the "how to" or methodology of correctly arriving at a system implementation that may have 
little in common with the knowledge used in generating the original requirements. 

By mandate, NASA has made Ada the de facto language for the Space Station. The authors 
believe this decision was rightfully made on the grounds that Ada and the software engineering 
principles it embodies will be an invaluable assets in keeping development and maintenance costs 
manageable at all levels. In the past ten years, Ada has made significant progress in realizing the 
expectations of its designers. There is merit, however, in the intuitive, and often demonstrated, notion 
that there is no "silver bullet" [ll in computer sciences. There are and probably will continue to be, 



difficulties in using a single tool for the implementation of all the components of Space Station 
software, be they AI systems or not. 

A major issue confronting those parties who have a need to deploy both ground and in-flight 
KBS systems is: how is this mandate to be interpreted or executed? For example, policy makers may 
view the mandate as allowing for three alternatives in hosting AI technology in the Space Station 
software environment: 

0 Ada as the only host language. In this alternative, regardless of any other considerations, 
Ada is the only allowable host environment. Any AI technology to be used in the Space Station must, 
therefore, be made to operate in Ada. 

Ada as a co-host language. Common Lisp (and other desirable AI languages) is accommodated 
in the Space Station environment with Ada through the use of standard interfaces and the 
implementation of common development tools and maintenance procedures. 

Ada as a temporary co-host language. Common Lisp is accommodated as described above, but 
with the condition that, over a certain period of time, all non-Ada code must gradually be phased into 
an Ada implementation. There may be other variations of this case that may be of interest to policy 
makers and user advocates. 

The mandate interpretation issue applies to implementors and users of other specialized 
computer technology areas that are perceived as being outside the current capability envelope of Ada 
implementation. For example, real-time requirements of some subsystems and the database search and 
retrieval requirements of some applications may have non-Ada "off the shelf" solutions which come 
with lower risk factors for meeting a required capability, resource, and schedule envelope. However, in 
this case, the risk factor re-surfaces in the-effort required to integrate , verify and maintain the "non- 
native" solution with the host Ada environment. 

The dilemma of local or project-specific optimization, in terms of use of a special technology, 
versus the strategic or global system optimization, in terms of a mandated technology choice, is 
inevitable. The matter of making exceptions, i.e. waivers, to a policy might be viewed as detrimental 
to the intent and execution of the policy. However, it may be argued that some compromise is necessary 
in these circumstances. The general nature of the problem is brought out here because a solution to it will 
have an impact on the solution to the specific problem at hand; i.e.. how to accommodate AI technology 
and "culture" in the Space Station software environment. 

A recommendation for resolving this dilemma is beyond the scope of this paper. The scope is 
limited to discussing the technical issues of accommodating AI technology and "culture" in Ada from a 
managerial view. The purpose of this discussion is to enhance the level of understanding of the issues 
and factors that need to be explored more thoroughly for developing effective integration criteria for 
Ada as an AI language in the Space Station. 

The advantages of Ada for the implementation of Space Station AI systems are reviewed in the 
following discussion. 

AI IN ADA: STRENGTHS 

a) Ada is a standard 

Ada is now an ANSI and IS0 standard. Its definition is clearly stated by the Language 
Reference Manual (LRM). Unfortunately, the validation suite does not address performance issues, but 
it does ensure that an Ada compiler delivers objects that conform to the syntax and semantics defined by 
the LRM. If some latitude is given to the implementors by Chapter 13 of the LRM, the variations from 
compiler to compiler are limited to specific features, and must be clearly documented. All in all, the 
availability of such a standard definition allows for a smoother development cycle by increasing the 
portability and re-usability of software components, facilitating maintenance, and reducing the 

412 



training cost. All of these things will benefit the development of the Space Station AI applications and 
their interfacing with other components of the Space Station software. 

Standard definitions for AI languages, even the most commonly used such as Lisp and Prolog, 
are not as well developed as for Ada, though efforts are underway to unify the various dialects of Lisp 
into Common Lisp. For Prolog, the definition given by Clocksin and Mellish 121 is the closest to what 
may be called a widely accepted standard. 

This lack of standardization can only be detrimental to the development of large, "real life" 
projects such as the Space Station. This conclusion, reached by the DoD community after studying the 
consequences of the proliferation of programming languages and dialects providing a rationale for the 
development of Ada 131. Having a standard that is certifiable by an independent means is very 
important for gaining Agency acceptance. 

b) Ada favors the use of modern software eneineering techniaues 

Ada is not only a programming language but also a methodology of development for large 
software projects. Ada was designed for "programming in the large". By contrast, software engineering 
has never been a predominant concern in the AI community. One reason for that is the fact that the 
implementation of AI systems has traditionally been based on rapid prototyping and incremental 
development - initially an appropriate approach because it was well suited to the size of the 
applications being developed. As stated in the introduction, software engineers focus on the "how to", 
whereas knowledge engineers focus on "what" and "why". The two groups use different tools and 
methodology. 

Some may argue that the concept of "engineering" is contrary to the dynamic nature of AI 
systems. After all, these systems exhibit features, such as self-modifying code, that are considered 
harmful in light of the current software engineering principles. On the contrary, it has been 
demonstrated that AI work and software engineering are, indeed, complementary and not orthogonal 
MI. 

To reach today's expectations, Space Station AI systems will have to be of a size and scope that 
have no current equal. Furthermore, they will have to be highly reliable and maintainable. It may be 
questioned whether existing iterative processes used to develop today's AI systems can be directly 
scaled to accommodate the increased size and scope. The rationale for questioning and caution is based 
on the past experience in the AI field that AI techniques, in some cases, have not scaled-up effectively. 
Incorporating the experience and methodology of the Ada community may greatly aid in the scaling-up 
of AI systems in the Space Station. 

c )  Ada is available on suace aualified hardware/software ulatforms 

Because of its special sponsorship by the U.S. Government, Ada is becoming available on an 
increasing number of hardware and software platforms suitable for space flight. Because of its standard 
definition, applications developed on one of these space-qualified platforms can easily be ported to 
another platform, provided they avoid making references to system-dependant features (as defined by 
Chapter 13 of the LRM). This allows for greater flexibility in the development process. 

d) Ada's tasking - construct is well suited to AI auulications 

Although Ada was not initially designed for AI, it contains some constructs that are well suited 
or readily adapted to AI work. The most notable example is tasking, giving Ada the ability to support 
parallel processing at the language level. Whether it is for fine-grained parallelism 151 or for large- 
grained parallelism [61, the availability of the tasking construct allows for the development of AI 

413 



systems in terms of concurrent execution of computing or inferring units without requiring any radical 
extension or modification of the language. 

e) The use of Ada can improve the development of real-time expert svstems 

In the context of the Space Station, on-board AI applications will have to respond in real-time 
or near real-time. The status of real-time expert systems is far from being adequate. A survey of this 
field recently published in AI Magazine171 , a publication of the AAAI, concluded that: "current expert 
system shells are two or three orders of magnitude too slow", "current shells cannot guarantee response 
times", "current shells have little or no capabilities for temporal reasoning", "current shells lack the 
facilities to handle hardware and software interrupts". All these features, currently lacking in 
available AI tools, are critical to the implementation of Space Station systems. 

Real-time expert systems is another area where the use of Ada may be extremely positive. Ada 
was designed specifically for embedded real-time systems. Although the suitability of Ada real-time 
constructs is open to debate, it is undeniable that the use of Ada for real-time systems is responsible for 
major advances in this field. First, real-time systems can be designed and coded more cleanly using 
software engineering techniques. Second, the language supports real-time features such as tasking and 
exceptions and hardware interrupt handling without extension or references to any particular operating 
system. Lastly, significant progress is being made in the area of run-time systems to support Ada on 
embedded targets. Thus, one of the consequences of using Ada for building real-time expert systems is 
benefit from these advances and, therefore, a remedy some of the problems encountered with current AI 
tools. 

f)  Ada may be used as a standard PDL for AI applications 

Even if Ada was not used for the implementation of some Space Station AI systems or 
subsystems, it could be used as Program Design Language for these same systems. This will ensure a 
commonality in the communication media between the various development teams and therefore would 
facilitate interfacing and integration. 

The following discussion reviews the limitations of Ada with regard to the implementation of Space 
Station AI systems. 

AI IN ADA: WEAKNESSES 

a) Rapid prototwing: - is difficult in Ada 

Rapid prototyping is a trademark of AI development and requires tools with great flexibility. 
There are two major drawbacks to the use of Ada for building prototypes of AI applications. First, Ada 
is a compiled language. The LRM defines rather strict rules regarding what is to be re-compiled when a 
unit of the compilation library is modified. These rules may imply that large portions of a system may 
have to be re-compiled after just one modification. This puts a heavy burden on the prototyping work. 
Unlike interpreters, compilers are not well adapted to interactive development. They are designed to 
produce efficient object modules, whereas interpreters are designed to allow quick and easy 
modification and testing of programs. However, the development of incremental compilers may help 
reduce the overhead imposed by compilations and re-compilations. 

The strong typing rules of Ada constitute the second obstacle to using Ada for AI prototyping. 
With Ada, every variable must be declared of a certain type. The iterative and dynamic nature of the 
prototyping work would be likely to cause frequent changes in the typing scheme, requiring type 
declarations to be traced and modified throughout the program. This could add significantly to the 
overhead as well as multiply the causes for error. 

414 



b) Technical difficulties 

There are a number of linguistic technical problems that limit the use of Ada for AI 
applications. Depending on the specificity of each application, the impact of each is felt differently. 
For example, it is much easier to use Ada for developing an expert system shell than for doing symbolic 
computation. Some of the major technical problems include: 

1) Storage management and lack of garbage collection. AI applications are prone to high 
consumption of dynamic storage. The definition of Ada does not require an implementor to provide 
garbage collection facilities. In addition, Ada does not allow for static pointers (pointers to objects that 
are already declared). 

2) Early binding. Binding decisions are made early in Ada. This is not the case for most AI 
languages. Early binding reduces, and sometimes prevents, the possibility of dynamically defining new 
types as required by the evolving context of the execution (for instance, by creating new data types at 
run-time). 

3) Functions and procedures cannot be arguments of other functions or procedures. This prevents 
self-modifying code from being implemented in Ada. Therefore, it is more difficult for an AI 
application written in Ada to adapt to a changing context than for the same application written in 
Lisp. More generally, Ada lacks the dynamic constructs that are commonly found in most AI languages. 

c) Cultural and training issues 

G. Booch, a noted Ada expert, noted that "a programming language shapes the way we think 
about a solution. We need a language that leads to systems that map directly to their problem space" 
181. This is where "cultural" differences appear between the AI community and the software engineering 
community. One concerns understanding the theory of computation, the other concerns building efficient 
and reliable computational engines. This has lead to a divergence in design and evolution of the tools 
used by each group. Using Ada for developing AI systems implies that each community will have to 
understand to a certain extent and, adopt the cultural background of the other to merge it with its own. 

A NEED FOR ADDITIONAL FACTORS 

Developing a list of Ada's strengths and weaknesses as a development and implementation 
environment for AI is a step toward formulating a rationale for integration. A more extensive and 
exhaustive study may uncover additional strengths and weaknesses. Weights could then be assigned to 
each of these, according to some priority scheme, and the choice made, based on the relative total 
weights. This, however, provides an incomplete picture. First, given such a short list where every 
point is pivotal, arriving at a rational weighting scheme may prove to be intractable or unacceptably 
arbitrary. Second, the possibility of Ada as a co-host is, for the most part, overlooked since this could 
only be covered by adopting an arbitrary scoring range to represent it as a choice. Therefore, additional 
factors may have to be considered in developing an integration rationale. 

An additional factor to consider is the development of evaluation criteria composed of 
significant software engineering factors. A list of such factors, not to be construed as exhaustive, is given 
below: 

Project Size For large scale projects, one must evaluate which solution provides the best way 
to handle all the problems related to size. 

415 



Training Is there a readily available pool of trained engineers who can make the solution 
work for all aspects of the projects? 

Performance What is the solution that is most likely to provide better performance in the 
short- , mid-, and long-term? 

Interfacing to other environments Which solution will be the easiest to interface to other 
systems, subsystems, or environments ? 

Evolution Which solution will provide a smoother evolutionary path? 

Maintenance Which solution will facilitate maintenance best? 

Verification and Validation Is there a solution that makes Verification and Validation 
easier to perform ? 

Productivitv tools Which solution provides the better software productivity tools and life 
cycle environment? 

Real-time accommodation For applications that require real-time or near real-time 
performance, which solution is likely to perform better? 

Other factors to consider are the various approaches to using Ada as an AI language. Emulation 
of Lisp features in Ada with special packages and techniques is one possibility. To better understand 
these and other approaches, it is useful to attempt to categorize them in some uniform and constructive 
manner. Any attempt to replicate the behavior of an application written in Lisp in Ada depends on the 
scale at which a translation is performed. The scale is illustrated in the figure below as a hierarchy of 
levels in the Space Station software environment. 

Space Station Software Environment Levels 

Sub-Systems 

Computation/Inference Engines 

Packages I Procedures/Functionsnasks 

Statements I 

t 
What is the smallest 
Unit of Translation? v) a 

c 
The figure above shows the different levels at which the insertion of AI technology may be 

made in the Space Station software environment. Any approach to implementing AI technology must 
enter at some level of the hierarchy, though it may cover more than one level. Since there is no 
accepted or standardized way to categorize all of the approaches for using Ada as an AI language, the 
following categorization is put forward based on information currently available in the literature: 

Automatic Translation to Host Environment 
Emulation of features in Host Environment 
Interface/Front-end Processing to Host Environment 
Host Implementation From Requirements Specification 

416 



The boundaries between these are not sharp, and some AI in Ada approaches may be viewed as 
hybrids of these. The issues of the suitability of using Ada for AI was raised early in the life of Ada191; 
however, the topic has not been explored as nearly as much as other Ada issues, such as, real-time 
support. Still, the literature available on the topic allows for a preliminary assessment of the 
approaches. In all likelihood, the research and development of this Ada topic will burgeon enormously 
in the very near future. A number of the publications available to date are listed in the references for 
this paper [101,[111,[121,[131,[141. In addition, under the auspices of George Mason University, Fairfax 
Va., in cooperation with the Software Productivity Consortium, the AIDA conference is held annually 
and serves as a forum for parties interested in studying Ada and Artificial Intelligence. 

The most straightforward way to use Ada as an AI language is to use an automatic translator. 
Lisp code is input to a translator that produces Ada code which is then compiled and executed. Ideally, 
the results of the Ada version are identical to those found in the Lisp version. 

At present, the automatic translation approach is being applied primarily to the Statements 
layer. Due to the large semantic gaps between Lisp, a functional language, and Ada, a procedural 
language, this approach has, so far, been limited to restricted subsets of Lisp. The linguistic issues have 
been discussed in the literature[l21,[151. 

Emulation of Lisp features in Ada is closely allied with translation at the Statements Level. 
Although this approach enters at a higher level of the hierarchy than the automatic translation 
approach, the boundary between the two is not sharp. This approach may cover the next two higher 
levels in the hierarchy, the Procedures/Functions/Tasks and Packages. With this approach, libraries 
of packages are provided to the Ada programmer with which to fashion the emulation of many list 
processing types of constructions. One such approach was reported by Reeker and Wauchope in 1986 1161. 

Interface, or  front-end processing is directed mainly at the Sub-systems and 
Computation/Inference Engines level. Here too, the boundaries are not sharp. In this type of approach 
the AI user is presented with a familiar expert systems shell format that is implemented all or partly 
in a non-Ada language and environment. The results are then processed into the Ada environment. In 
this approach, the critical link is the specification of the interface that performs the 
conversion/translation of knowledge-based representation into Ada data types. 

Host implementation from requirements specification is the highest level of all the 
approaches in that it is directed at the Systems and Sub-systems level. A requirements specification of 
an AI application, such as an expert system shell, is generated and then used to implement, from 
scratch, a working version in Ada. 

In any analysis of the relative strengths and weaknesses of these approaches, one overriding 
element that may be difficult for either side to fully appreciate is "culture." In the context of Ada and 
AI, culture may be defined as the priorities, the ruison d'etre or collective principals, that serve to 
guide the constituents in how they accomplish their goal(s). Many capabilities that cannot be merely 
identified as a piece of code are potentially lost in performing any one of these approaches of using Ada 
as an AI language. As mentioned earlier, rapid prototyping is a hallmark of the AI community. Yet, it 
is difficult to convey to someone who is familiar only with Ada and its software engineering principals 
just what it all means, other than it is possible to accomplish a prototype and, possibly, a full scale 
development in a certain (record breaking) time. 

Due to the necessary limitations on the length of this paper, discussion of the application of 
the system engineering factors, mentioned previously, to each of these approaches is limited to 
discussing only those criteria salient for the case of automatic translation. This discussion illustrates 
another step in developing an integration criteria. 

417 



Currently, commercial products exist wherein Common Lisp is compiled into C and then this 
code is compiled into machine code to be run on the desired host. However, there are software 
engineering issues that are not fully addressed with this approach even if a translator could be built 
that would be capable of merely translating correctly all of the features and language constructs 
occurring in Common Lisp into Ada code. They are as follows: 

Performance. Whether the application code translated into Ada should perform as fast or as 
slow as its implementation in Lisp ? 

Real-time Accommodation. For translation of real-time codes it appears highly unlikely 
that such a translator could insure the same real-time characteristics found in the Lisp version in the 
Ada version. 

T Evolution. If new features are incorporated in the Common Lisp standard, then the translator 
must be updated and reverified. This task may be equal in cost to the one of building the original 
translator. 

Maintenance. The Ada code compiled by the translator is most likely indecipherable by 
software engineers unless it is built to provide comments on the translation process. Indeed, this may be 
equal in difficulty to building a translator that merely translates. Thereby the cost is doubled. As a 
consequence, all Ada code generated by the translator without built-in commentary will be dependent 
on the translation step. That is, any changes due to updates or due to fixing errors in the Ada version 
will require going back to the Lisp version of the code and making the change there, then verifying the 
correctness there, and then performing the translation. Therefore, the maintenance cycle for codes 
translated mechanically will always be hostage to the translator and the Lisp implementation of the 
code. 

These engineering issues are less of a problem if Ada is the "native" or systems programming 
language of the host machine. An example of this occurs with the programming language C in which 95 
percent or more of the operating system UNIX is written. The case of Ada being the systems 
programming language for a operating system on the scale of UNIX is a question of availability. 
Implementing a general purpose operating system in Ada and translating Common Lisp into efficient 
Ada code are technology areas that appear to need more development. 

SUMMARY 

Some of the factors needed in developing an integration criteria have been discussed in this 
paper. No conclusions are to be drawn from the discussion because the relative importance of many of 
the factors is open to yet another degree of scrutiny. Even if a concerted effort was mounted to once and 
for all answer what is the best choice - there are possibly several equally good alternatives - it is 
highly unlikely that it would adequately reflect the needs of all the interested parties and the 
evolutionary processes rapidly at work in both the Artificial Intelligence community and the Ada 
community. The one common denominator necessary in whatever choice is made is training. 

There are currently relatively few people trained in both Ada software engineering and AI. 
This is a significant problem for the design and implementation of the Knowledge-Based Systems that 
are envisioned for the Space Station. For "AI in Ada" or "Ada in AI" to flourish, Ada software 
engineers will have to understand knowledge engineering techniques and their rapidly evolving 
definitions. AI specialists will have to take into account the requirements imposed by large, long-lived 
projects where definitions and techniques must be stabilized early in the development process. With 
this crosscultural understanding, the question "Ada in AI or AI in Ada? " will become a moot point. 

418 



REFERENCES 

[ll F. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, IEEE Computer, April 
1987 

121 W.F. Clocksin and C.S. Mellish, PromamminP in Prolog, Springer-Verlag, 1981 

[31 Requirements for High Order Programming Languages, IRONMAN, Department of Defense, January 
1977 

[41 G. Karam, An Icon-Based Design Method for Prolog, IEEE Software, July 1988 

[51 A. Brintzehoff, S. Christensen, J. Mangan, J. Greco, The Use of Ada Concurrent Processing Features in 
an Implementation of Parallel Tree Searching Algorithms, Proceedings of AIDA-87, Third Annual 
Conference on Artificial Intelligence and Ada, Washington D.C., 1987 

[6] R. Volz, P. Krishnan, R. Theriault, An Approach to Distributed Execution of Ada Programs, NASA 
Workshop on Telerobotics, January 1987 

171 T. Laffey, P. Cox & al., Real-Time Knowledge Based Systems, AI Magazine, Spring 1988 

[81 G. Booch, Software Eng;ineerinp: with Ada, 2nd ed., Benjamin Cummings, 1987 

191 R. Schwartz, P. Melliar-Smith, On the suitability of Ada for Artificial Intelligence Applications, 
Project 1019, SRI, 1980 

[lo] P.J. Wallis, Automatic Language Conversion and its Place in the Transition to Ada, Proceedings of 
the Ada International Conference, Paris, 1985 

1111 A. Rude, Translating A Research Lisp Prototype to A Formal Ada Design Prototype, Proceedings of 
the Washington Ada Symposium, 1985 

[121 P. Bhugra, T.N. Mudge, Comparisons between Ada and LISP, U. Michigan, Research Report, 1985 

1131 S .  Reddy, F. Van Scoy, Knowledge Representation in Ada, Proceedings of the Eastern Simulation 
Conference, Orlando, 1987 

1141 K. Warn, Lisp vs. Ada Implications in Diagnostics Oriented Expert Systems, Proceedings of 
AUTOTESTCON, 1986 

1151 Terry B. Bollinger, Ada and PROLOG - A Few Observations, Proceedings of AIDA-87, Third Annual 
Conference on Artificial Intelligence and Ada, Washington D.C., 1987 

1161 L. H. Reeker, K. Wauchope, Pattern-Directed Processing In Ada, IEEE Computer Society 2nd 
International Conference on Ada Applications and Environments. April 8-10,1986, pp 49-56. 

419 



N89- 1 5 6 0 3  

Automatic Scheduling and Planning (ASAP) 
in Future Ground Control Systems 

Sam Matlin 
GE Aerospace 

Valley Forge, PA, 19406 

ABSTRACT 

This report describes two complementary approaches to the 
problem of space mission planning and scheduling. The first is an 
Expert System or Knowledge Based System for automatically resolving 
most of the activity conflicts in a candidate plan. The second is 
an Interactive Graphics Decision Aid to assist the operator in 
manually resolving the residual conflicts which are beyond the 
scope of the Expert System. The two system designs are consistent 
with future ground control station activity requirements, support 
activity timing constraints, resource limits and activity priority 
guidelines. 

INTRODUCTION 

Space mission planning and scheduling is typically performed 
in a labor-intensive manner, requiring significant numbers of 
highly skilled personnel, and limited in effectiveness by timeline 
constraints. By automating these repetitive labor-intensive tasks 
it will be possible to reduce manpower requirements and provide 
earlier, more reliable schedules. 

Planning and scheduling has been successfully performed at GE 
by the procedures illustrated in Figure 1. The activities to be 
scheduled, referred to as Activity Planning Items or APIs, consist 
of such items as Key Activities (eg, Space Experiments), Special 
Activities (Calibration, Alignment, Test), Communication Activities 
(Acquisition), Supporting Activities (Housekeeping, Orbit Adjust), 
and others. The Key Activities are first scheduled based on a 
suite of mathematical optimization techniques consisting of Linear 
Programming, Dynamic Programming, and Branch and Bound. These Key 
APIs are then merged with other activity requests, and all 
activities Since conflicts may have been 
introduced by this merging of optimally scheduled activities and ad 
hoc or late arriving activity requests, conflict criteria (timing 
requirements, resource limits and system status constraints) are 
checked and conflicts are flagged. Typically an operator would 
then manually resolve these conflicts by moving or deleting 
activities. Instead, it is proposed that the expertise used by the 
operator be captured in an Expert System (ES), and that most of the 
conflicts be automatically resoved by the ES. Since not all 
conflicts are resolvable automatically (too many complex situations 
would have to be modeled, greatly increasing the cost, size and run 
time of the ES), it is further proposed to provide a decision aid 
for the operator in the form of an Interactive Graphics (IG) 
workstation to assist in resolving the residual hard conflicts. 

are sorted by start time. 

PRECEDING PAGE BLANK NOT FILMED 
421 



I 
0 

0 R 

I 
I 

I 
I 
I 

I 
I - 
I 

I 

I 
I 

I 

4 2 2  



APPROACH 

The following tasks were undertaken in order to achieve the 
study objectives of reducing operational costs and timelines: 

a) Research Existing Planners. The literature contains 
dozens of articles on automatic planning and scheduling, including 
JPLIs Devisor, an Artificial Intelligence planner for Voyager 
missions, and GE/TRW's IIAutomatic Mission Planning and Scheduling 
Expert Stystem (AMPASES)Il. While the literature was not directly 
applicable to our particular problem, useful elements and 
techniques were harvested. 

b) Determine Application Requirements. Internal documents 
were reviewed and experts interviewed to ensure that the right 
problem was being addressed. The task was to generically characterize Key Activities, Supporting Activities, Pre-requisites, 
Co-requisites, Post-requisites, Prohibited Concurrent Activities, 
Sequence Constraints, Resource Constraints, and Priority Guidelines. 

c) Develop Algorithms. Automatic Activity Planning 
approaches described in the literature include Expert Systems, Tree 
Searches, 0/1 Programming, Bin Packing, Dynamic Programming, PERT, 
Network Flow, and others. The effort in this task was to identify 
the best technique or suite of techniques to use. The conclusion 
was to develop an Expert System to capture the expertise of current 
Activity Planners. This ES was then used to remove conflicts 
generated by the process of accepting all requests, merging them, 
time-arranging them, and identifying resulting conflicts based on 
scheduling and conflict criteria. 

d) Interactive Graphics. Since it was not feasible to 
automatically resolve all the conflicts, the approach was to assist 
the operator with the hard remaining conflicts by providing a 
computer-based decision aid to facilitate this. 

Two prototypes were designed to be configured as shown in 
Figure 2 ,  based on the above task outputs. Note that after the ES 
completes its task and the operator completes his, the results of 
both are reconflicted to ensure that neither the ES nor the 
operator introduced new conflicts, and the outcome is truly 
conflict-free. 

4 2 3  



W or 

Y 
5 

E a r 

U 
0: 
y. 

\ -  

\ I  

4 2 4  



RESULTS 

The ES prototype was implemented with about 3000 lines of 
Fortran on an IBM mainframe. The knowledge base consisted of 4 0  
'packed' rules; these are rules containing variables which can be 
given different values, used in conjunction with the 'Packed Rules 
Database' which assigns values to these variables. These 4 0  rules 
are the equivalent of several hundred ordinary rules but are more 
compact and more easily maintained. The rules were 
knowledge-engineered by consulting with several Activity Planners 
and Operators, based on an initial plan having 117 conflicts. The 
4 0  rules were sufficient to resolve all 117 conflicts; they 
accomplished this in 1.5 seconds of CPU time, in contrast with an 
estimated operator time of about 30 minutes. It was anticipated 
that the ES,, when faced with a new plan it had not seen before, 
would resolve 50-75% of the conflicts with the same 4 0  rules. In 
fact it resolved 93% of the conflicts in a second plan, without 
introducing any new conflicts. 

Figure 3 illustrates a simplified Activity Plan fragment. The 
conflicts are flagged in the first field, and the corresponding 
conflict message which the system produces is shown at the bottom. 
In this case activity SSSS which starts at 07:30:00 is scheduled 
incorrectly with respect to activity NNNN. The conflict message 
indicates that the type of conflict is that the required start time 
of SSSS was scheduled wrong - it was scheduled at 07:30:00, but the 
schedule criterion was that it had to be scheduled within the 
window from 07:OO:OO to 0 7 , : l O : O O .  Figure 4 illustrates a sample 
rule from the ES knowledge base. The rule states that if a certain 
pair of Activity Planning Items are in conflict, then move the 
second relative to the first by a prescribed amount of time. The 
move is accomplished by deleting and then adding back the offending 
activity. The rule is generic and applies to many pairs of 
conflicts. Various instantiations of the rule appear in the packed 
rules dataset (two are shown in the figure: in the first instance 
API NNNN and API SSSS play the roles of APIl and API2 in Rule 36; 
in the second instance these roles are played by APIs Vlll and Wlll 
) .  The prescribed amount of time that the second API must be moved 
to resolve the conflict is also provided in the dataset, 
corresponding to the particular instantiation involved. In the 
example the start of AP12 (SSSS) must be moved to the start of APIl 
(NNNN) plus 7 minutes, and the stop 1 second after its start. Note 
that there are several additional fields available in the Packed 
Rules Dataset for the inclusion of additional APIs and scheduling 
constants, to allow for more complicated rules that may involve 
several APIs in their formulation. 

425 



0 

0 

I- 
0 

0 

c .. 

8' 0 

0 
e! 
0 

& e 
I- 
O h 
0 

0 
e! 
T? 
0 

L 
L 
L 
L 

c 0 c 
N 0 0 

c3 
(v SI ccj 0 0 m 

v) 
v) 
v) 
v) 

g c  pc 

c 8 v) 

0 

0 
0 
?? I- 

0 

c 
0 
0 
'I! I- 0 

dw a 0 0 b 
N 
.. 

w .. c 
0 
0 

I- 
0 

2 
Y 

= 
a 

m 
Y 
Y 

QD 
0 

v) 
v) 
v) 
u, a QD 

0 0 
0 

0 
0 - 
0 

e! 
.. 

X K 
Lc K M 

W 

m 
0 LL 

426  



Additional features of the Packed Rule Dataset include a 
priority field (PRI) and a branch code (BR) The priority field allows the user to direct the order in which conflicts are 
resolved; if a Key Activity is involved in a conflict and several 
Supporting Activities are in conflict as a result of that, the 
prioritization allows for the Key Activity conflict to be resolved 
first, relieving the need to resolve the concommitant supporting 
activities. The branch code is associated with the type of 
conflict; this allows modularization of the database so that not 
all rules need to be searched - only those with the branch code 
associated with the conflict type. Thus these two fields (PRI and BR) provide a way of efficiently chaining through only subset 
of the rules that are of interest for that conflict. 

that 

Figure 5 illustrates the output of the ES. The new activity 
plan shows that API SSSS has been moved to start at 07:07:00, which 
is within the required window (07:OO:OO to 07:lO:OO) relative to 
the start of API NNNN. There are no conflicts flagged, and a 
conflict resolution audit trail message restates the original 
conflict message and indicates the disposition. Incidentally, no new conflicts were introduced by Rule 36 because it was constructed 
by experts who knew how to resolve the conflict. However, to be doubly sure, the new activity plan is resubmitted to the conflict 
identification process used to flag conflicts in the first place. 
The combination of reconflicting and audit trail gives confidence 
to the user that the ES has done its job properly. 

To summarize the key features of the ES: 
design flexibility is achieved by use of packed rules 

the packed rules dataset which makes for an easily together with 
maintained and easily extended system; 

speed is achieved through the use of branch code and 
priorities; 

confidence is provided by the audit trail and by a final 
reconflicting. 

The Interactive Graphics (IG) decision aid was designed to 
assist the operator to manually resolve those residual conflicts 
that were beyond the scope of the ES. It was rapidly prototyped in 
C on a Sun 3/110 workstation using the Sherrill-Lubinski graphics 
package. Recommended Human-Machine-Interface procedures were 
followed throughout. For example, all lines were doubly encoded: first with color, and second with line type (solid, dashed, dotted) 
to Also, a l l  
colors are constructed by firing at least 15% of each color gun 
(Red, Blue, Green) for those operators who may be color-deficient. 
Early versions of the IG prototype were demonstrated to Activity 
Planning Operators, and their comments and suggestions were 
incorporated by fine-tuning the prototype. The IG fulfills the operator needs by providing static data base access (see Figure 2 )  
and ease of use in editing. 

cater to the 10% of American men who are color-blind. 

427 



+D z z  
m ” 

I I  

0 0 0 0  

0 0 0 0  

o m 0 0  
(P 
c 

0 0 0 0  
Q) 

0 0 - 0  
0 0  0 
.Dm - 
c 

428 



c 
Q: 

v3 
3 

m c c c 
0 0 0 
0 6 D 

- z M M 
c z v) M 

m 

k e 
R 

U = M  2 * M  
c 

c, 
P 

0 0 0 
0 0 0 

c 
0 
I- 

I- o 

.. 
F? 

m 
Y 
Y 

00 c 

c 
U < c 
v) 

0 
N 
0 

(3 
(3 
(3 
U 

00 
0 

0 

0 
0 

c .. 
h 

YI 

E P  
L 

4 2 9  



CONCLUSIONS 

- GE's Activity Planning procedure in which all requests for 
activities are accepted, merged, sorted by start times and then 
checked for conflicts using schedule criteria, conflict criteria 
and resource limits was found to be the most appropriate for the 
unique problems faced: no other scheme in the literature appeared 
better. 

- It is feasible to expect to resolve most of the conflicts 
automatically by a simple Expert System 

Expert System rules require one to four hours each to 
knowledge engineer, but hundreds rather than thousands of rules are 
probably adequate. 

- The use of 'packed rules' together with a 'packed rule 
dataset' makes for a highly efficient, easily maintainable 
implementation. 

- Some conflicts require manual intervention; Interactive 
Graphics can be a valuable aid to the operator. 

- Techniques to speed up the Expert System execution time 
include use of a branch code to segment the rule base and use of 
rule priorities to eliminate unnecessary resolution of Support 
Activity conflicts. 

- The 

ACKNOWLEDGMENTS 

A great debt of gratitude is acknowledged for the superlative 
contributions of Sam Davis, who helped design, knowledge-engineered 
and programmed the Expert System, and helped design and programmed 
the Interactive Graphics prototype. Thanks also to Peggy Frederick 
and Mike Baluta, our planning experts. 

430 



N89-15604 

A Dynamic Case-Based Planning System 
for Space Station Application* 

F. Oppacher 
D. Deugo 

School of Computer Science, 
Carleton University, Ottawa, Ontario, 

Canada K1S 5B6. 

Abstract 

We are currently investigating the use of a case-based reasoning approach to develop a 
dynamic planning system. The dynamic planning system - DPS for short - is designed to perform 
resource management, i.e. to efficiently schedule tasks both with and without failed components. 
Our approach deviates from related work on scheduling and on planning in AI in several respects. 
In particular, we attempt to equip the planner with an ability to cope with a changing environment 
by dynamic replanning, to handle resource constraints and feedback, and to achieve some robust- 
ness and autonomy through plan learning by dynamic memory techniques. We briefly describe the 
proposed architecture of DPS and its four major components: the PLANNER, the plan 
EXECUTOR, the dynamic REPLANNER, and the plan EVALUATOR. The planner, which is 
implemented in Smalltalk, is being evaluated for use in connection with the Space Station Mobile 
Service System (MSS). 

1. Introduction 

In real-world planning tasks it is often necessary to manage plans that contribute to more than 
one goal, to flexibly adjust plans that conflict with concurrent goals, and to anticipate and avoid 
bad planning. Moreover, to achieve some degree of autonomy, a planning system that may have to 
operate in changing environments must rely on feedback. The presence of feedback presupposes 
an ability for dynamic replanning, Le. for reacting to changing conditions as execution proceeds. 
Feedback tasks also often involve tight time and other resource constraints. 

We have argued in [Deugo et al. 881 that the feedback-imposed needs for dynamic replanning 
and for dealing with continuous resources like power or time are beyond the capabilities of 
traditional schedulers such as, e.g., PERT and CPM [Moder and Phillips 701, and AI planners 
such as, e.g., STRIPS [Nilsson 801 and NOAH [Rich 831. For example, a STRIPS-like approach 
seems to presuppose that the system's world model is and remains correct, that the operator always 
does exactly what is required, that nothing happens between making the plan and executing it, and 
that the plan is executed precisely as planned. In short, such an approach works only in static 
situations and not in more realistic settings. Postponed commitment planners [Stefik 811 attempt to 
solve this problem by postponing the commitment of the exact order in which their task are to be 

* This research is undertaken on behalf of the Department of Communication, Communications Research Centre, 
with funding provided by the Canadian Space Station Program Office of the National Research Council. 

431 



executed until execution time. However, the size of the partially ordered set of tasks constructed 
can be exponential in size to the set of tasks, and may not account for every type of situation. 

Realistic planners should also be able to adapt old plans to the current situation and to extend 
their plan library by learning. A robust and efficient planner should neither be forced to give up if 
there is no appropriate, ready-made plan in its library nor have to replan always from scratch. 

We believe that a combination of dynamic memory techniques [Kolodner 841 [Schank 821 and 
case-based reasoning techniques [Hammond 861 [Kolodner et al. 851 is necessary to successfully 
tackle all of these problems. Section 2 outlines how the architecture of the DPS integrates several 
dynamic memory and case-based techniques and identifies the relationships among its major 
components. Section 3 describes these components in more detail, and section 4 proposes 
extensions to our approach and summarizes. 

2. DPS Architecture 

The tasks to be planned for by the DPS depend on the availability of different resources such 
as time and power. A human operator enters information about resource availability in the form of 
initial plan constraints. The DPS relies on a feedback loop to provide information about the success 
or failure of the plan's execution. Subsequent planning sessions involving this or a similar plan can 
use this information and thereby gain from past experience. Thus, starting with an initial library of 
plans, the DPS acquires new plans through a form of plan learning from past plans. 

Our dynamic memory and case-based approach to the planning problem postulates four major 
components: the PLANNER, the plan EXECUTOR, the dynamic REPLANNER, and the plan 
EVALUATOR. Figure 1 shows how these components fit together. 

The PLANNER controls the planning process, from information input, past plan locating, to 
plan construction. Initially the operator configures the planner with its resource information. This 
provides the resources the planner can use over the plan execution period. Next, the operator enters 
the planning parameters, i.e. the tasks and constraints, to help set up the plan construction phase. 
The Locator uses a case-based approach to locate a past similar plan-goal-resources configuration. 
Using the supplied input information, the Locator indexes into a library of old plans, indexed by 
their goals (tasks), in an attempt to find a plan that matches the current planning parameters. If a 
matching plan can be found, it is passed to the plan EXECUTOR component. If no plan can be 
found, the Locator attempts to find a plan whose goals are a subset or superset or generalizations 
or specializations of the current goals. This past plan is then modified by the Constructor's domain 
planning information or planning heuristics found in the knowledge base, or by the operator, to 
create a new plan to be executed by the plan EXECUTOR component. The index to the knowledge 
about planning and plan modification is formed using the task and constraint information about the 
task the planner is currently considering. The modified plan is then verified using expected 
resource information to insure the plan's integrity. A failure in a task's verification will cause the 
Constructor to alter the plan. 

This approach enables the planner to continue planning even though it has no exact ready- 
made plan to deal with the current tasks. 

The Explainer collects all the planning activity information and can then explain to the operator 
what the plan is and how it was constructed. In addition to this, it can also use past plan exception 
information to describe failure conditions that could arise in the execution of the plan. This 
information is also used by the Constructor to help build better plans, or by the operator to help 

4 3 2  



alter the Constructor's proposed plan. Figure 2 provides an example of the planning activity 
information stored by the Constructor when an existing plan is modified to meet the current gods. 

KNOWLEDGE BASE 

0 
P 
E 
R 
A 
T 
0 
R 

Tasks t b PLANNER 

- Locator 

- Constructor 

Resources 
b k 

Constraints 
b - Explainer 

I L 

PLAN 

LIBRARY 

MECUTOR 

- Failure 
Detector 

FIEPLANNER 

- Notetaker 

?- 
EVALUATOR 

- Updater i -Adapter 

Figure 1. Architecture of the DPS 

The plan EXECUTOR component takes the plan and starts the execution of it. If the Failure 
Detector experiences a failure condition (lack of resource) that was unforeseeable at the time of plan 
construction and arose during the plan's execution, the exception is noted by the Notetaker, and the 
dynamic REPLANNER component is activated. This component will attempt to reorder the plan, 
remove failing goals, or ask the operator for assistance in order to keep the EXECUTORS plan 
execution continuing. These actions are found in the knowledge base and are indexed like any 
other planning information. After all, when a plan fails one does not want to stop the execution 
since resources have been allocated and are ready to use. The information about what replanning 
was done is noted by the Notetaker for later use by the EVALUATOR component. 

The dynamic REPLANNER component is an important improvement that distinguishes our 
planner from other planners described in the literature. It prevents minor faults from stopping plan 
execution, and causes only moderate modifications of the plan. The REPLANNER uses the 
planning technique known as goal planning or reactive planning [Schoppers 871 to keep a plan 
executing. It also indexes into old plans to see if any replanning information is available for use in 
the current situation. 

4 3 3  



[ 11 Plan B selected with a rating of one extra task, one missing task, and no failures. 
[2] Adding missing tasks, to Plan B. 
[3] Removing extra tasks, from Plan B. 
[4] Verifying Plan B. 
[5] Inspection task failed, replanning. 
[6] Rule 'Move task to end of Plan' fired, executing action rule. 
[7] Verifying Plan B. 
[8] Plan verified, ready for execution. 

Figure 2. Explainex's Planning Activity Information 

After the plan has executed, the plan and the information provided by the Notetaker, i.e. 
exceptions and replanning descriptions, are given to the EVALUATOR component. If the plan was 
an old plan that executed successfully, this information is added to the plan in the plan library to 
provide added support information for it. If the plan was newly created and it executed 
successfully, it is added to the plan library along with the goals it satisfied. If the plan failed, the 
exceptions and replanning information are recorded in the plan along with the reasons why the 
goal, or goals, failed. All of these transactions are handled by the Updater. If the plan has had a 
bad track record, it may also be altered by the Updater using the Notetaker information to make it a 
'better plan' in the future. An updated plan is 'better' than the original plan because either tasks 
with a proven history of failure have been removed from it or it includes Notetaker information 
which can be used in future planning sessions. Failure and success information are valuable in 
determining the best plan for the current situation. The operator is also part of this activity: he/she 
helps to verify the reasoning of the Updater, and ensures the sanity of updates for the plan library. 

The EVALUATOR component helps the planner acquire new plans and knowledge by 
learning from itself. This is achieved by adding new, successfully executed plans constructed by 
the Constructor, and by altering old plans due to planning failures. By recording the failures, the 
EVALUATOR also learns to fix and adapt plans to new environments over time. 

The PLANNER, REPLANNER, and EVALUATOR components rely on dynamic memory 
and case-based techniques to generate a plan, to alter a plan due to a failure, to store new plans, 
and to update old ones. These techniques enable the DPS to work in a dynamic environment and be 
ready to meet a wide range of unforeseen changes. 

3. Component Definitions 

The inputs to PLANNER consist of the plan resources, the tasks to be planned, and the 
constraints on the tasks. In our prototype implementation this information is provided by a human 
operator. The output of the PLANNER is a plan which is later executed by the EXECUTOR and 
updated or added to the plan library. We now briefly discuss each part. 

Resources can take the form of any type of (usually time-varying) physical supply, such as 
electrical power. In some cases, the consumption of a resource can increase or decrease the supply 
of another. This is know as a Supplied resource. The planner must keep track of all available 
resources. Resources are defined by resource functions that enable the planner to predict the 
supplies at time t. 

Tasks are treated by the current implementation as unit activities that cannot be further 
decomposed. The DPS schedules tasks but does not plan for the execution of individual tasks. 
They are assumed to be directly executable by the EXECUTOR; future extensions will allow the 

4 3 4  



PLANNER to be applied to tasks as well, thereby facilitating the construction of hierarchical plans. 
A task's information aids the planner to efficiently position it among the other tasks in the plan. 
This information is entered by the operator using a form-based approach. A task form with data 
slots identifying the task, its constraints, its requirements, and the supply of different resources it 
increases, is provided for the operator to fill in. Thus, a task has the following structure: 

(task-name-slot 

constraint- 1 -slot 
activity-slot 

0 

0 

constrain t-n- slot 
resource-required- 1-slot 

0 

0 

resource-required-n-slot 
resource-supplied- 1 -slot 

resource-supplied-n-slot). 
0 

; the name of the task; e.g., operation X. 
; what the task is to do; e.g., running operation X. 
; e.g., must be done by 0800 hours. 

; e.g., operation X uses 50 watt hours of electricity. 

; e.g., operation X raises the temperature by 1°C. 

Constraints are identical to task constraints, except that they constrain a plan. For example, 
a plan constraint could be that the plan must start execution before 0800 hours and finish execution 
by 0900 hours. The operator supplies this information to the planner by entering the data on a plan 
constraint form. 

A Plan is an ordered sequence of tasks, produced by the PLANNER using the initial planning 
information, for execution by the EXECUTOR. Each task in a plan has two new slots added to it, 
a start-time-slot and finish-time-slot, which are used by the EXECUTOR to determine when each 
task is to start and finish execution. A plan has the following structure: 

(plan-name-slot 
success-slot 

failure- 1 -slot 

failure-2-slot 
11 

II 

failure-n-slot 
task- 1-slot 
task-Zslot 

II 

task-n-slot). 

; the name of the plan. 
; a count of the number of times, initially zero, the plan 
has executed successfully without having to be 
replanned by the Replanner. 
; failure slots include information about how the plan 
failed and what was done to correct it. 

; points to component task; e.g., operation X. 

The Plan Library, as the name suggests, is a library of past plans that have either been 
created initially by the operator and entered into the library, or have been created by the system and 
added to the library. They are stored sequentially and are indexed by the search mechanisms of the 
Constructor component of the PLANNER. The library is memory-resident in the current 

435 



implementation but will be converted to a database management system when issues such as size, 
access, and information updating become important. 

The PLANNER develops a plan to execute the operator-entered tasks. It uses past plans, 
stored in the plan library, in its attempt to locate or build a new plan. The PLANNER consists of 
three components: the Locator, the Constructor, and the Explainer. 

The Locator takes all of the tasks' activity-slot identifiers and tries to locate a past plan that 
contains only those tasks. If such a plan is found in the plan library, it is passed to the Constructor. 
If no plan can be found, the Locator looks for a past plan whose tasks properly include the current 
requirements. If such a plan can be found, it is passed to the Constructor with the tasks in excess 
of the current requirements marked. If still no plan can be found, the Locator looks for a past plan 
that contains the maximum subset of tasks currently required. This p ! ~  is passed to the 
Constructor with the tasks missing from the plan identified. When multiple plans are located, the 
one with the best success rate, calculated by subtracting its successes from its failures, is returned. 

The Constructor first checks to see if the plan contains only the required tasks. Any excess 
tasks are simply removed. If it has less, the Constructor rules stored in the knowledge base are 
accessed to decide what action to take. Specific Constructor rules have both a task and a constraint 
as rule identifiers, and are considered first. If there are no such rules, more general rules are 
accessed that rely only on the task or the constraints, but not both. The actions taken by such rules 
include: to append a task to the end of the plan, to put it at the front of the plan, to put it after a 
specific task in the plan, or to find the first available position that satisfies its constraints. 

Using the resource function information, the plan is verified to ensure that all task and plan 
constraints are met. If a constraint fails, the combination of constraint failure and task is used as an 
index to a rule which provides the appropriate action to be taken with the plan. Such actions could 
take the form of removing the task, delaying it until its resource requirements are met, or asking 
the operator for help. These constraint rules depend on the type of constraints and tasks handled. 
Once the plan is constructed, it can be verified or altered by the operator if desired, and then passed 
to the Executor. 

The Explainer component describes what actions were taken to create the plan. It identifies 
what and why past plans were chosen, the problems and successes the past plan had, what actions 
were done in creating the current plan from the past plan, and what constraint problems were found 
and solved for the plan. The Explainer can be turned on during plan generation to allow the 
operator to view the creation process of the plan. Alternatively, the operator can ask individual 
questions at the end of the planning phase. 

The EXECUTOR, using the planning information, executes the plan. It sequentially takes 
each task in the plan and performs that task's activity. A task finishes when its task activity ends or 
when its finish-time is reached. Information about the execution of the plan is stored by the 
Notetaker. At plan completion, the plan and its execution information are passed to the 
EVALUATOR. 

. 

For implementation purposes, a plan executes in discrete time slices. At each time slice, the 
operator can view the current state of the plan, the task executing, and the resource information. He 
can also vary the resource information in this period to cause a resource failure of the task, thereby 
forcing the replanning mechanism. 

The Failure Detector monitors the resource sensors to ensure that none of a tasks 
Constraints are being violated. If at any time a task constraint is violated, the violation is noted by 
the Notetaker, the plan execution is stopped, and control is passed to the REPLANNER. The 

4 3 6  



REPLANNER will produce an adapted plan and return it to the EXECUTOR to restart execution 
from the point of interruption. 

The REPLANNER first checks to see whether a given failure has been detected before. This 
is done by looking in the past plan on which the current plan is based. If it had failed in a similar 
manner before, the replanning information stored in the past plan is used to adapt the current plan, 
and the newly adapted plan is passed back to the EXECUTOR to commence execution. If there is 
no replanning information, the REPLANNER consults its replanning knowledge base. It uses the 
task and failing constraint to index a replanning rule to adapt the current plan. These rules are a 
subset of the Constructor rules and have the same form. Their actions may consist of deleting the 
task, delaying it, repositioning it, stopping the plan's execution altogether, or asking the operator 
for help. The actions taken by the REPLANNER are recorded by the Notetaker before the adapted 
plan is passed back to the EXECUTOR. 

The Notetaker is responsible for recording all information about the execution of a plan, in 
particular its successes and failures. In the case of failures, the Notetaker records the failure causes 
and any replanning information. This includes information about successful replanning episodes 
and the replanning rules used by them. Thus, the Notetaker fills in the following information slots: 

Success-slot - Initially true. If a plan fails, it is set to false. 
Number of failures - Initially zero, incremented by one for each failure. 
Failure-slot - Initially empty. One slot is created and filled in per failure type. A task's failure- 
slot identifies the task executing, the failure-type, the failure-cause, the replan-type, and the 
failure-count. 

The EVALUATOR receives the plan and the Notetaker information about it, and must decide 
what actions should be taken with the plan. It has several options depending on the plan type and 
the success or failure information. These options include: 

Success of Old Plan - If the plan was previously used, its success-slot is incremented to boost 
its strength. 
Success of New Plan - If the plan is a new one and it executed successfully, it will be added 
to the plan library with its success-slot set to one. 
Failure of New Plan - If the plan had a minor failure (for example, one task out of fifty was 
delayed), the plan may be added to the library with a failure-slot filled in. If the failure has 
occurred often, the plan is discarded as being invalid. 
Failure of Old Plan - If a task in a plan failed for the first time, the failure information is added 
to a new failure-slot for that task in the plan library. If a failure of this type already exists in a 
task's failure-slot, the failure-slot-count is incremented. 

Just as the Constructor 'massages' the retrieved plan's constraints and tasks to make them fit 
the current situation, so too does the EVALUATOR. Using knowledge base rules, it massages the 
failure conditions so that they are adapted and appropriate for the current plan and its situation. 

The Updater has the job of updating or adding a new plan or plan information to the plan 
library. Its algorithm is based on the four possible types of updates identified by the 
EVALUATOR. Updates can be monitored and, if it is desired to maintain close control over the 
reasonableness of the evolving plan library, modified by the operator. 

The Adapter reorganizes plans that have failed often to improve them for future use. It uses 
replanning information in the failure-slots to determine whether to remove a task from the plan, 
delay the task in the plan, reorder the task, or remove the plan from the library. The Adapter will be 
activated when plan failures have reached a preset threshold. 

437 



Another part of its task is to look for several plans that can be generalized into a single abstract 
plan that preserves all of the information of the other plans. The latter can then be removed from 
the library. This reduction of the number of plans improves the search efficiency without 
compromising the planning knowledge in the library. It also helps prevent the library from filling 
up with many similar plans and provides plans that can be used in many different situations. We 
intend eventually to apply this process of generalization in the context of problem solving to the 
rules used by the Constructor and Replanner, thus keeping redundant rules from cluttering the 
knowledge base. 

4. Summary 

As can be seen from this brief description, our planner is concerned with many of the different 
areas of case-based reasoning. We retrieve past cases based on the number and type of tasks in the 
current situation they match, and use the number of times a plan succeeds in similar situations. We 
use a knowledge base of rules to aid in the plan transformation of a past plan to the current 
situation. We use past planning information and current planning operations to explain the planning 
task. We do dynamic replanning using the same knowledge base to keep the plan executing. We 
note all of this information and encode it into a past plan or new plan, enabling plan cases to be 
better utilized on the next planning iteration. The feedback loop enables plans and new plan learn- 
ing to evoIve with the environment over time. 

By using dynamic memory and case-based reasoning techniques, combined with knowledge 
based techniques for replanning, we have presented a design that handles resource constraints, 
feedback, and achieves both robustness and some degree of autonomy through plan learning. 
Although not essential to any part, the operator can guide the overall planning process and control 
the acquisition of new plans and rules for replanning. With the current design and the future 
enhancements, we feel we are approaching a realistic, efficient planner. 

Planned enhancements to the DPS not already mentioned include improving the process of 
unifying the supplied operator planning information to that of a stored plan, unifying all of the 
planning information, not just the goals, and when the supplied information is incomplete. Also, 
the DPS will be enhanced to recognize dangers and opportunities during the plan's execution. This 
will allow the plan to benefit from or avoid problems during execution in its current environment. 
A final enhancement will be to take the plan's failure information and generalize it into an action 
recommendation. This recommendation is used in replanning before the specific task/constraint 
failure information is accessed. By doing this, additional planning failures should be avoided after 
replanning because the recommendation has already taken them into account. 

5. Acknowledgments 

We wish to thank Prof. D. Thomas of the School of Computer Science, Carleton University, 
P.J. Adamovits and R.A. Millar of the Department of Communication, Communications Research 
Centre, and the the Canadian Space Station Project Office for supporting this work. 

6. References 

Deugo, D. L., Oppacher, F., Thomas, D., Planning Techniques Survey: Their Applicability to the 
Mobile Service System, TR/SCS, Carleton University, Ottawa, 1988. 

4 3 8  



Hammond, K. J., CHEF: A Model of Case-based Planning, AAAI 1986, pp. 267-271. 

Kolodner, J. L., Retrieval and Organizational Strategies in Conceptual Memory: A Computer 
Model, Lawrence Erlbaum Associates, Publishers, 1984. 

Kolodner, J. L., Simpson, R. L., Sycara-Cyranski K. L., A Process Model of Case-Based 

Moder, J. J., Phillips, C. R., Project Management with CPM and PERT, Van Nostrand Reinhold 

Reasoning in Problem Solving, UCAI 1985, pp. 284-290. 

Company, 1970. 

Nilsson, Nils J., Principles of Artificial Intelligence, Palo Alto, California Tioga Press, 1980, pp. 
275-360. 

Rich, E., Artificial Intelligence, McGraw-Hill Book Company, 1983, pp. 247-294. 

Schank, R. C., Dynamic Memory: A Theory of Reminding and Learning in Computers and 
People, Cambridge University Press, 1982. 

Schoppers, M. J., Universal Plans for Reactive Robots, IJCA 1987, 1039-1046. 

Stefik, M., Planning with Constraints (MOLGEN: Part l), Artificial Intelligence, 16, 2, May 
1981, pp. 111-140. 

439 



N89- 1 5 6 0 5  
TOWARDS A KNOWLEDGE-BASED SYSTEM TO ASSIST THE BRAZILIAN 

DATA-COLLECTING SYSTEM OPERATION 

RODRIGUES, V.; SIMONI, P.O.; OLIVEIRA, P.P.B.; 
OLIVEIRA, C.A.; NOGUEIRA, C.A.M. 

Institute for Space Research 
Computing and Applied Mathematics Laboratory 

Artificial Intelligence Group 

Caixa Postal 515 
12201 - Sgo Jos6 dos Campos - SP 

Brazil 

ABSTRACT 

In this paper it is reported a study carried out to show 
how a knowledge-based approach would lead to a flexible tool to 
assist the operation task in a satellite-based environmental 
data collection. Some characteristics of a hypothesized system 
comprised of a satellite and a network of Interrogable Data 
Collecting Platforms (IDCPs) are pointed out. It is briefly 
described the Knowledge-Based Planning Assistant System (KBPAS) 
and some aspects about how knowledge is organized in the IDCP's 
domain. 

1 - INTRODUCTION 
The first phase of the Brazilian Complete Space Mission 

(MECB) is to be accomplished with the launching of the first 
Brazilian Data Collecting Satellite (SCD1). The system will 
offer capabilities for satellite-based environmental data 
collection. 

This system will comprise: a) a network of fixed "Data 
Collecting Platforms (DCPs)" deployed at the Brazilian 
territory both on land and in the air, all of them 
independently transmitting the environmental data. The DCPs 
will be equipped with only one transmitter for uplinking 
messages to the satellite; b) the Satellite, which will have 
the following main characteristics: low circular orbit around 
Earth with average altitude about 750  km and nominal 
inclination about 25 degrees with relation to the Earth 
equatorial plane. It will retransmit to a ground-station the 
environmental data received from the DCPs, and it will receive 
the DCP messages on a random access basis; c) the Ground 
Station and the Processing Center, where data will be received, 
processed and distributed to users. 

PRECEDlEJG PAGE BLANK NW FILbdEb 

4 4 1  



The SCDl will be able to receive message transmitted only 
by platforms within its visibility area and to retransmit these 
messages when the satellite will be over the ground station 
visibility area. In addition, the access to the satellite by 
some DCPs will also be dependent on the number of platforms 
under its sight, the satellite-platform relative position, the 
platform repetition period, the message length, the 
transmission power and other secondary factors [ll. 

Considering that due to a design option all DCPs will 
transmit in the same frequency, the received frequencies by the 
satellite will be randomly distributed because of the 
difference in Doppler shifts associated with a random 
geographic distribution of DCPs on the Brazilian territory. 
Therefore the main predicted drawback will the risk of non- 
acquisition of messages from some DCP, due either to 
interferences from simultaneous transmission (which may produce 
the same received frequency), or to the unavailability of a 
transponder unit, since the Satellite will have only two 
transponder units [l]. In fact, during the interval when the 
satellite is retransmitting a specific DCP data all other DCP 
message transmissions would not be received and consequently 
their data would be lost; in order to avoid this problem the 
DCPs will repeat their messages several times during a 
satellite overpass. 

The system ought to operate all the time, attempting to 
obtain maximum availability and minimum data loss. However,it 
has been difficult to know "a priori" what will be the "system 
use factor'' defined as the message mean arrival rate at the 
receiver. Taking into account simulation studies about a 
similar system, the ARGOS system [2], it can be estimated that 
the satellite will be able to handle up to 1000 DCPs 
simultaneously with message duration randomly distributed 
between 0.36 and 0.925 seconds. 

From the preceding observations, it is clear that the 
system would not be flexible enough to select the most 
important DCPs at each pass, even though their high message 
repetition rate may enhance their likelihood of accessing the 
Satellite. 

Considering this problem, it has been carried out a study 
about a hypothesized system composed of: a) a network of 
"Interrogable Data Collecting Platforms (IDCPs)". It means that 
the satellite will have the ability to select, in a particular 
time, a particular IDCP. The DCPs in this system will be more 
complex, because they should be equipped with a receiver and a 
transmitter; b) a satellite with the capability of 
interrogating an IDCP and a l s o  of receiving and retransmitting 
its data immediately afterwards; c) the processing center with 
the capability of planning which platforms will be 
interrogated before each satellite pass.In this case the 

4 4 2  



network operation will need an expert operator that should 
integrate every necessary information to attain efficient and 
flexible network utilization. 

In this paper some issues concerned with a knowledge-based 
approach to assist the IDCPs network operation are presented 
and discussed. Some problems concerning the use of knowledge- 
based technology are presented and it is also proposed a model 
for the Knowledge-Based Planning Assistant System ( K B P A S ) .  

2 - USING KNOWLEDGE-BASED TECHNOLOGY 
The knowledge-based approach may play an important role in 

the development of advanced IDCPs network operation systems, 
where the integration of multiple and disparate sources of 
information is needed. Some interesting comments about 
knowledge-based systems may be found in [ 3 ] .  

2.1 - KNOWLEDGE USE IN THE IDCPS NETWORK OPERATION TASK 
In an initial analysis it is suggested that if the IDCPs 

network is to operate efficiently, it is plausible to assume 
that expertise will be developed in order to attain near 
optimal net management. It means that the net and its operation 
should have an evolutionary design, in which the initial 
configuration would require a manual interaction (it is 
expected that an expertise will be created). As the number of 
IDCPs increase it will be required a computational system to 
assist the operation, generating an adequate plan (a list of 
most important IDCPs for the next passage). 

For these reasons, all required knowledge will be taken as 
a "plausible" one, whdse initial representation and utilization 
would be guidelines for the expertise to be acquired 
subsequently. 

2.2 - RESPONSE TIME 
An observed drawback of many existing knowledge-based 

systems is their slow response time. An assistant system for 
IDCPs operation task has not the requirement of quick response, 
although this kind of system admits a real-time conception. 

The communication between the Ground-Station and the 
Satellite (to transmit the plan for the next interrogations) 
will occur when the satellite enters the Ground-Station 
visibility area. The maximum system response time is the time 
interval between two passes, which represents a safety margin 
for the worst case, i.e., the situation in which some 
information concerned with the last pass will also be taken 
into account for the next passage plan. 

4 4 3  



2.3 - EXPLANATION CAPABILITY 
This explanation capability should support both the system 

development and operational phases. In the former it will 
assist the knowledge base debugging, while in the operational 
phase it would provide facilities to explain: 

* why a given IDCP was not included in the last generated 
plan; 

* which were the most important factors that influenced a 
certain IDCP selection for a particular passage: 

* which were the conflicting factors that influenced a 
certain IDCP selection for a particular passage. 

In addition, the system will present the ability to 
exhibit a detailed trace of the reasoning chains, which is a 
desirable feature for an assistant system [ 4 ] .  All these 
explanation capabilities will result in reports. 

It is intended that the system will operate autonomously 
when the network will be in its full operational status, 
although the explanation capability will always be available. 

3 - THE KNOWLEDGE-BASED PLANNING ASSISTANT SYSTEM (KBPAS) 
To guide the KBPAS design efforts, it may be guessed a 

scenario that exemplifies a typical and non-trivial IDCPs 
interrogation planning problem. This scenario assumes a non- 
uniform IDCPs density distribution across the Brazilian 
territory. In a first phase only the Brazilian territory is 
considered; however if it is assumed some satellite buffering 
and storing capability other countries could also use these 
facilities. This scenario is intended to allow the 
representation and management of typical seasonal 
meteorological occurrences, abnormal environmental phenomena, 
failures (partial or total), cloud coverage, transmission power 
attenuation problems and other circumstancial factors. 

A simplified model of the KBPAS which is the basis for 
this study is shown in Figure 1. Its overall structure 
comprises five major components: the user interface, the IDCPs 
past plans base, the high and low level planners, the knowledge 
base and the database. 

The user interface should be designed to easily display 
IDCP network operation information, such as the IDCPs and 
satellite geographic positions, the status and graphs of 
relevant parameters, and warning indicators. 

The user may have access to reports showing either IDCPs 
proposed plans in past passages or the plan inferred for the 

4 4 4  



next pass, permitting in this way "a posteriori" plan analysis; 
in addition, the user would be allowed to alter directly the 
plans at any of the two planning levels. 

The knowledge base and reasoninq: considering the 
complexity of the information upon which operation techniques 
are based, an organizational framework for this information is 
recommended, in which it will be integrated taking into account 
the uncertainty and the need of an indexing structure. 

Basically, the IDCPs will be distributed across regions in 
the states (or even sub-regions) as needed. The scattering of 
the IDCPs at the Brazilian territory will entail a non-uniform 
density, and at each pass the satellite visibility area will 
cover partially this IDCPs network. Besides this available 
information in the database, there will also be the message 
length, the repetition period, etc. 

The IDCPs in the network may be requested by its features, 
such as the particular area where they are placed, their label 
as they are related to their applications (hydrological, 
meteorological or snow data stations), etc. 

The types of requisition available are related to: 

* abnormal environmental phenomena monitoring 
(forest fire, drought, flood, hoar-frost or snow, pollution, 
intense hot weather, etc) ; 

* normal experimental needs (e.g., meteorological 
studies) ; 

* particular needs (e.g., strategic); 
* the impossibility of data collecting in past 

passages (partial or total IDCP failures, satellite temporary 
problems) ; 

* global and local atmospheric research programs. 
It is envisaged a priority scheme that may rule out 

conflicts between competing requisitions. 

Each plan to be generated is concerned with the next 
satellite pass. The high level planner should reason in a data- 
driven way generating a list of IDCPs that should be 
interrogated along the next passage, one station at a time. An 
embedded feature of the program that generates the plans is to 
take into account the information about which IDCPs were 
accessed and did not answer as expected. 

That list of IDCPs is then passed to the low level planner 
that must order it on adequate time intervals by incorporating 

445 



the information of satellite position along its orbit, and 
transform it in an effective sequence of telecommands that 
should be transmitted to the satellite. 

The already executed plans may be stored in the past plans 
base by specifying the date, the orbit data and the high and 
low level plan representations. This information may permit 
some plan statistics or the analysis of a particular plan. 

The initial IDCPs information to be integrated is shown in 
Table 1. 

4 - CONCLUDING REMARKS 

As it was pointed out earlier, this study was aimed at 
investigating the feasibility of a knowledge-based system to 
assist the IDCPs network operation. It is believed that the use 
of knowledge-based techniques may greatly expand the 
capabilities of the satellite-based environmental data 
collecting system, and can give flexibility in the evolutionary 
aspect of the IDCPs network operation system development. 

REFERENCES 

ROSENFELD, P. MECB Ground segment: systems aspects. 
A-REV-0030, 1987 

LOCATION AND DATA COLLECTION SATELLITE SYSTEM USER'S GUIDE 
SERVICE ARGOS 

WATERMAN, D. A. A guide to expert system. Reading, K.A., 
Addison-Wesley, 1986 

BUCHANAN, B. G. ; SHORTLIFE, E. H. Rule-based expert 
systems. Addison-Wesley, Reading, Mass. 1985 

4 4 6  



PAST 
PLnHs 

1 
I I 
I I 

Figure 1 - The KBPAS architecture and ground-station 
facilities. 

BASE I generator, 1 I 
I / I  
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 

- 

\ I d  

4 4 7  

OPRMtOR 



TABLE 1 - THE IDCP PARAMETER INFORMATION 

Parameters 

1. Cloud coverage expected at 
the IDCP position for the next 
satellite passage. 

2 .  The IDCP position in the 
satellite visibility area for 
the next passage. ’ 

3 .  The IDCP position in the 
satellite visibility area for 
the second next passage 

4 .  Indicator if IDCP data was 
received during the last 
satellite pass. 

5. The environmental 
phenomenon type at the DCP 
location . 
6. The kind of normal 
environmental phenomenon at 
the DCP location. 

7. The priority assigned to 
each IDCP (three priority 
degrees). 

8. The IDCPs spatial density 
in its surrounding (for 
example: number of IDCPs 
present in a limited area). 

9. The IDCP operational 
status. 

10. The IDCP operation life 
time after its installation 
(it suggests failure 
possibility and power 
transmission level 
attenuattion) . 

Value 

cover/clear 

within/out 

within/out 

yes/no 

normal/abnormal 

one of the possible 
meteorological/ 
climatological 
phenomena (rain, 
snow, etc) 

low/medium/high 

numer ica 1 

normal/partial 
failure/total 
failure 

short/long 

4 4 8  



Parameters 

11. The expected IDCP 
repetition period. It is the 
time interval between two 
consecutive messages. It must 
be chosen in order to allow a 
sufficient data sampling. 

12. The IDCP message duration. 
It is the sensor data string 
duration time. It depends on 
the number of sensors 
connected to the IDCP. 

13. The IDCP last reception 
date (the time interval 
between this date and the next 
pass is a plausible indicator 
of the environmental data 
sampling rate). 

14. The sucessful IDCPs 
reception rate (it is compared 
with the expected sampling 
rate). 

15. The specific demand for 
receiving data from the IDCP. 

Value 

numerical 

numerical 

numerical 

numerical 

yes/no 



N 8 9 - 1 5 6 0 6  

Use of an Expert System Data Analysis Manager 
for Space Shuttle Main Engine Test Evaluation 

Ken Abernethy 
Furman University 

Greenville, SC 29613 

A b s t r a c t  

The ability to articulate, collect, and automate the application of the expertise 
needed for the analysis of space shuttle main engine (SSME) test data would be of 
great benefit to NASA liquid rocket engine experts. This paper describes a project 
whose goal is to build a rule-based expert system which incorporates such expertise. 
Experiential expertise, collected directly from the experts currently involved in SSME 
data analysis, is used to build a rule base to identify engine anomalies similar to those 
analyzed previously. Additionally, an alternate method of expertise capture is being 
explored. This method would generate rules inductively based on calculations made 
using a theoretical model of the SSME's operation. The latter rules would be capable 
of diagnosing anomalies which may not have appeared before, but whose effects can 
be predicted by the theoretical model. 

I n t r o d u c t i o n  

The analysis and interpretation of SSME test data presents some significant 
challenges. A single SSME test can produce in excess of 50 megabytes of data, with 
current test schedules calling for more than 10 tests per month. In addition, the 
complexity of the SSME reduces the possibility of such data analysis becoming 
routine and creates a requirement for high levels of data analysis expertise. As a 
consequence of these factors, there are rarely enough experts or time for a 
completely optimal SSME test data analysis. 

A large portion of the expertise being used in such analysis is in the form of 
experiential knowledge gathered and possessed by engineers with years of 
experience in the task of analyzing SSME test data. Much o€ this expertise is 
unavailable to novice engineers, because it has not been articulated and recorded in 
accessible forms. Thus the possibility of losing significant expertise and analysis 
capability through the loss of personnel is even higher than in many other expert 
dependent problem domains. Further, it would be advantageous for NASA to increase 
the use of its most experienced liquid rocket engine experts in high-level planning 
and design activities. For this to become possible, some of the burden of SSME data 
analysis and interpretation must be passed to junior engineers and/or automated. 

For the reasons outlined above, engineers in the Propulsion Systems Division 
at Marshall Space Flight Center recognize that it is highly desirable to articulate and 
capture SSME data analysis expertise and to automate, or at least reduce the level of 
expertise required for, some components of the analysis of SSME test data. The 

451 
PRECEDING PAGE BLANK NOT FILMEa 



project described in this paper is an attempt to move toward 
construction of an SSME expert system data analysis manager. 

An effort has been underway for the past several years 

these goals through the 

at Rocketdyne (NASA's 
primary contractor for the SSME) -to incorpoiate expert system technology into SSME 
test data analysis, c.f. [2], [3], [4], and [6]. The approach taken in that effort has been 
to use a selected database of SSME test results as source information for the inductive 
generation of expert system rules. The inductive-based expert system building tool 
ExTran7 has been the primary tool used. 

The current effort at Marshall Space Flight Center adopts an approach 
different from that taken at Rocketdyne. The expert system envisioned has as its 
primary source of rules the direct articulation of the current methods and expertise 
being used by NASA engineers. This articulation is being accomplished using an 
expert interview technique, with interviews being focused on the investigation of 
past SSME test data reviews. In addition, a potential second source of expertise is 
being explored. This expertise would be in the form of rules generated by an 
inductive approach based on calculations produced by a theoretical model of the 
SSME. Rules induced from such a model would be used to supplement the human- 
derived expertise component of the system. 

The expert system shell package Insight2+ was selected for the initial effort in 
this project. It was felt that Insight2+ provided enough capability to build a usuable 
system. Furthermore, the simplicity and ease of use of Insight2+ has allowed an 
increased focus on the process of collecting and organizing the needed expertise, as 
compared to the use of a more complex tool, which would have required that more 
time be spent in the process of modelling and encoding the expertise. Evaluations 
will be performed later to see if there are needs which can not be satisfied by 
Insight2+, and if this is the case, the expert system will be translated to a more 
flexible and powerful expert system shell tool. 

Articulating Experiential Expertise 

An important consideration in attempting to capture the experiential expertise 
being applied to SSME data analysis is that the persons possessing the highest level of 
such expertise are also the persons who are busiest in current SSME data analysis. 
Thus methods for such expertise capture had to be designed to be efficient and 
streamlined, because the needed experts' time is in short supply. 

The expertise collection method used in this project is a modification of the 
traditional expert/knowledge engineer interview, with each interview being limited 
in scope to discussions and explanations of some significant past SSME anomaly 
analysis. It was decided that these interviews would be conducted in two segments, 
each segment typically lasting an hour or so. This two phase interview structure has 
some important advantages. After the initial interview segment, the knowledge 
engineer can formulate some tentative rules and in this process collect further 
questions and inquiries which must be answered before full-fledged rule 
construction can be completed. During the second interview segment (separated 
ideally by no more than one or two days from the first segment), a more complete 
articulation of the expertise to be modelled can be accomplished and the 
communication that occurred during the first interview segment can be checked 
and, if necessary, corrected. 

452 



To illustrate the pace and scope of such interviews, it is instructive to consider 
an example from the project. An expert interview focusing on two SSME tests 
involving fuel leak anomalies was conducted in two segments. The fault tree derived 
from this interview has a maximum depth of nine, with a three level goal/subgoal 
structure. One of the three main branches of the fault tree is shown in Figure 1. 

Break Break 

~~ 

High Pressure Oxidizer Turbopump 
Discharqe TemDer a tu re  

High P r e s s b e  Fuel Turbopump 
Discharge Temperature 

A. 
d hiPh 

High Pressure Fuel Turbopump . .  
Discharge Pressure 

\ 
Main Combustion Chamber Coolant 
Temperature and Pressure 

high 
/ 

nominal 
/ 

Unknown Assume High HPFT Temperatures 
To Be Unrelated to  Anomaly ? 

e g  es 

Unknown HPFT Pump Speed 

/ 

/no \ 

no drop Goal 2 
\ 

drop A 
Unknown 

Fuel Leak o r  Break Goal 1 iT__J 
Main Combustion Cdamber Pressure Change n 

Facil ity LOX Flow Rate Facil ity L O i  Flow Rate 
/ 

increase nominal 
/ \ 

nominal 
/-increase 

Delta Pressure Delta Pressure Delta Pressure 
MCC Injector MCC Injector MCC Injector 

\ 
Delta Pressure 
MCC Injector 

4 
large nominal 
/ \ 

Leak Leak 

Figure 1: A Portion of the Example Fault Tree.  

453 



From the above interview, 19 rules were formulated and incorporated into the 
expert system rule base. Sixteen of these rules concluded some category of fuel leak, 
but three rules were derived for other anomalies. These other anomalies had been 
considered during the initial SSME data analysis for the tests under consideration and 
then dismissed. However, the hypothetical cases that were constructed for them 
before their dismissal provided the basis for the rules constructed. 

In the tree in Figure 1 ,  note the inclusion of the Unknown branches. These 
represent stubbed reasoning paths in the tree, and suggest possible directions for 
future expert interviews. Note also how the goal/subgoal structure is incorporated. 
When a goal at any level is reached, an appropriate report is given to the session 
user, and the user is  invited to use the expert system's "explain" facility to further 
examine the reasoning applied to reach this goal or  subgoal. This hierarchical 
structure has been designed explicitly to enhance the use of the resultant expert 
system as a training tool for novice engineers and to aid senior engineers in 
debugging and refining the expert system. 

Expertise Inductively Generated from a Model 

One of the limitations of the rule articulation methodology described above is 
that it focuses primarily on building rules to recognize anomalies similar to those 
that have already been observed and analyzed. Of course, it is desirable to have rules 
that can also recognize and categorize anomalous engine behavior of a type that is 
being observed for the first time. One possible way of capturing such expertise, 
which would complement the human-derived expertise decribed above, involves 
generating rules indirectly from a theoretical model of the SSME. A model called the 
power balance model, developed jointly by NASA and Rocketdyne, would appear to 
provide this capability. This model is already being used for direct validation of 
suspected anomalies. The proposed indirect use of the model for inductive expert rule 
generation is described below. 

The power balance model takes values for some chosen parameters as input 
and computes changes in predicted values for other related engine performance 
parameters. By modelling how a hypothetical anomaly will directly affect the values 
of some input parameters, the power balance model can be used to calculate the 
predicted effect the anomaly will have on other parameters. Using the model in this 
way, changes (or deltas) in critical performance parameters can be calculated for a 
range of anomaly conditions. 

For example, nozzle fuel leaks of various magnitudes could be translated into 
the appropriate input parameter values to produce a calculated matrix of predicted 
deltas for the chosen performance parameters. The calculated deltas could then be 
categorized, and from the matrix of categorized deltas, diagnostic rules could be 
formulated.  

A set of rules generated using the methods described above forms a flat (or 
nonstructured) rule base. Existing methods and programs, [l] and [ 5 ] ,  can then be 
applied to convert this rule base to structured form and to produce a goal/subgoal 
hierarchy. A simplified hypothetical example situation is illustrated in Figure 2. The 
most difficult part of this complete methodology is representing the anomalies as 
model input. This activity often requires some adjustments to the model itself and 
requires an expert. 

4 5 4  



It should be possible to write programs to automate the entire process of 
categorizing the deltas, generating a rule set from the categorized delta matrix, and 
then converting this rule set to structured form for inclusion in the expert system 
rule base. Once this automation is accomplished, the calculation of the delta matrices 
and the definitions of the various delta categories could be changed when desired and 
the structured rule set automatically regenerated. It is anticipated that the current 
expert system will be expanded using this methodology in the future. 

Anomaly2 I +20 I +30 I - 1  0 I 
Categorize Deltas 

l o w  high 

I high low 

U /  
Parameter 1 Parameter2 Parameter3 

Anomaly 1 nominal 
Anomaly2 moderately high - 

Model Range o f  Anomalies as Input Parameter Values 

It Use Power Balance Model 
t o  Calculate Related Delta 
M a t r i x  

Parameter l  Parameter2 Parameter3 
Anomaly1 I +10 I -1 0 I +40 I 

IF Parameter 1 is  nominal 
AND Parameter2 is l o w  
AND Parameter3 is high 
THEN Anomaly 1 

IF Parameter l  is moderately high 
AND Parameter2 is  high 
AND Parameter3 is  low 
THEN Anomaly2 

Figure 2:  Using the Power Balance Model to Generate Rules. 

C o n c l u s i o n  

An SSME expert system data analysis manager containing directly collected 
human experiential expertise is being constructed. A methodology has been 
established for the collection of the expertise, and a significant amount of such 
expertise has been organized into the current version of the expert system. 
Particular attention is being paid to incorporating a goal/subgoal hierarchical 

455 



structure within the rule base, with appropriate reports given to the system user 
when goals or subgoals are reached. This structure will optimize the system's 
usefulness for the novice engineer and allow senior engineers more easily to refine 
and debug the system. 

Expansion of the current expert system is planned through the inclusion of 
rules derived inductively from calculations made using a theoretical model of the 
SSME's operation. The goal is to automate the generation of such an inductively 
derived rule set, so that the model assumptions and the definitions of the p a r a m e t e r  
categories used in the rules can be easily changed. Such rules will complement the 
existing expert system's human-derived rules, and the combination of rules from 
both these sources will provide a rule base with expanded capabilities for identifying 
a wide variety of engine anomalies. 

A c k n o w l e d g m e n t s  

This work was supported by NASA grant NAG8-646 (Marshall Space Flight 
Center). The author wishes to thank Chris Singer and Dave Seymour, both of t h e  
Propulsion Systems Division at Marshall Space Flight Center, for valuable 
consultations concerning this project. 

R e f e r e n c e s  

1. Abernethy, K., "An Approach to Articulating Expert System Rule Bases," Proceedinas of 
1 st International Co nference on lndust rial and E naineerina Amtications Qf 
Artificial lntelliaence and E xDert . Svste ms. Vol. 11, Tullahoma, TN, 1988, pp 
814-822 .  

2. Asgari, D. and Modesitt, K., "Space Shuttle Main Engine Test Analysis: A Case Study 
for Inductive Knowledge Based Systems Involving Very Large Data 
Bases," IEEE International Co nference o n Co mputer Software and 
ADDlications (COMPSAC), 1986, pp. 66-71. 

3. Daumann, A. and Modesitt, K., "Space Shuttle Main Engine Performance Analysis 
Using Knowledge Based Systems," ASME International Conference on 
Computers in Encheerins,  1985, pp. 55-62. 

4. Garcia, R., Jr., "An Expert System to Analyze High Frequency Dependent Data for 
the SSME Turbopumps," Third Conference on Artificial Intelligence for 
Space Applications, Huntsville, AL, 1987, pp. 213-220. 

5. Kerstetter, T. and Abernethy, K., "A Program to Generate an Expert System Rule 
Base from a Failure Mode Model," f l f  
the Southeast Region ACM, Mobile, AL, 1988, pp 130-34. 

6. Modesitt, K., "Space Shuttle Main Engine Anomaly Data and Inductive Knowledge 
Based Systems: Automated Corporate Expertise," Third Conference on 
Artificial Intelliyence for Spa ce Applications, Huntsville, AL, 1987, pp. 
203-2 12. 

456  



SPACECRAFT ENVIRONMENTAL ANOMALIES EXPERT SYSTEM 

H. C. Koons and D. J. Gorney 

Space Sciences Laboratory 
The Aerospace Corporation 

Mail Station M2-260 
P.0 Box 92957 

Los Angeles, Ca. 9ooo9 

ABSTRACT 

A micro-computer-based expert system is being developed at the Aerospace Corporation 
Space Sciences Laboratory to assist in the diagnosis of satellite anomalies caused by the space en- 
vironment. The expert system is designed to address anomalies caused by surface charging, bulk 
charging, single event effects and total radiation dose. These effects depend on the orbit of the 
satellite, the local environment (which is highly variable), the satellite exposure time and the 
"hardness" of the circuits and components of the satellite. The expert system is a rule-based sys- 
tem that uses the Texas Instruments Personal Consultant Plus expert system shell. The completed 
expert system knowledge base will include 150-200 rules, as well as a spacecraft attributes 
database, an historical spacecraft anomalies database, and a space environment database which is 
updated in near-real-time. Currently, the expert system is undergoing development and testing 
within the Aerospace Corporation Space Sciences Laboratory. 

INTRODUCTION 

The Aerospace Corporation Space Sciences Laboratory (SSL) is currently involved in the 
development and testing of a micro-computer-based expert system to aid in the objective analysis 
of environmentally-induced satellite anomalies. On orbit anomalies in satellite systems or subsys- 
tems occur quite often (several hundred are reported each year), and the number, frequency and 
seventy of the anomalies are likely to grow with the inevitable increases in spacecraft complexity in 
the future. Spacecraft anomalies have a wide variety of causes and wide ranges of effects and 
severity. Design errors and inadequate quality control in parts selection and workmanship are ex- 
amples of pre-flight engineering and construction errors which can lead to later anomalous behav- 
ior of components on orbit. Naturally, all mechanical and electrical components are susceptible to 
failure from wearout. Wearout failures and their effects can be difficult or impossible to anticipate. 
Many satellite anomalies result directly from improper commanding or operation (human error or 
ground system error). For Defense Department space systems, the possibility of hostile action 
must be a consideration as well. Also, recent studies have shown that adverse interactions between 
spacecraft components and the natural space environment can have deleterious consequences com- 
parable in severity and frequency to those caused by any other factor. Indeed, spacecraft anomalies 
attributable to electrostatic discharges (just one form of environmental interaction) have been 
known to cause command errors, spurious signals, phantom commands, degraded sensor perfor- 
mance, part failure and even complete mission loss. Regardless of the severity of the anomaly, it is 
important to assess the cause of the problem in a timely and accurate manner so that appropriate 
corrective action can be taken. 

Various aspects of the space environment can cause on-orbit satellite anomalies. The 
plasma environment (especially in geosynchronous orbit) can cause differential charging of satellite 
components on the surface of the vehicle. Surface charging can exceed breakdown voltages, and 
electrostatic discharges (ESDs) can occur with the potential to disrupt electronic components. More 
energetic components of the space radiation environment can penetrate and become embedded in 

457 



~ 

Spacecraft 
Anomaly 
Database 
v 

- 
Spacecraft 
Attributes 
Database 

I 

Program Off ices 
i 

/NGOCI AODAP 

7- 

Real Time I D 7 a  

I 
Space 

Environment 
Data base 

Figure l a  

Aerospace 
AFGL, NOAA 

I 

Spacecraft 
Attributes 
Database 

Spacecraft 
Anomaly 
Data base 

~ 

Environment 
Database I 

Expert 
System 

Forecasters (AFGWC. NOAA) 

Experts (Aerospace, AFGL. N O M )  

Operators (Space Cmd.. Commercial) 

Program Olllces 

Contractors 

Figure l b  

4 5 8  



dielectric components such as cable insulation and circuit boards. This "bulk charging" phe- 
nomenon can, under extreme circumstances, result in ESD within the dielectric components, dis- 
rupting signals or devices within the affected subsystem. Trapped radiation belt particles, solar 
flare protons and galactic cosmic rays can cause single event upsets (SEU) within microelectronic 
devices. This same high energy radiation leads to degradation of microelectronic devices and sen- 
sors through total dose effects. Other aspects of the environment, such as micrometeors and de- 
bris, can cause mechanical disruption of the vehicle. Anomalies which result from any of these en- 
vironmental causes can lead to transient malfunction or even to non-recoverable loss of the compo- 
nent or subsystem. 

Typically, various agencies and individuals become involved in the identification and reso- 
lution of spacecraft anomalies. These include (1) the commercial or military satellite operators who 
must evaluate the anomaly in near real time in order to take proper corrective action or to "safe" the 
vehicle; (2) space-environment forecasters, such as the Air Force Global Weather Central 
(AFGWC) or the NOAA Space Environment Services Center (SESC), who must assess the envi- 
ronmental situation in real time and issue warnings and alerts regarding hazardous conditions; (3) 
satellite contractors, who must assess the susceptibility of their vehicle and incorporate design 
modifications if the vehicle's on-orbit reliability proves to be inadequate; and (4) scientists and en- 
gineers who develop an understanding of the processes by which the environment interacts with 
the satellite, with the goal of recommending mitigating procedures for future missions. A major 
difficulty with the spacecraft anomaly diagnosis problem is that many of the operational groups 
who must quickly and accurately diagnose the anomaly do not have immediate access to the re- 
quired data or to the scientific or engineering expertise required to properly assess the role of the 
space environment in the anomaly. Thus, real-time spacecraft anomaly diagnosis appears to be an 
ideal application for an expert system which can gather, format, display and utilize appropriate data 
consistent with logical rules based on state-of-the-art engineering and scientific expertise. The 
Aerospace Corporation Space Sciences Laboratory, based on its long-term involvement in space 
environment research and its continuous interactions with the satellite operational community, has 
undertaken the task of developing such an expert system. 

SYSTEM DESCRIPTION 

The Spacecraft Environmental Anomalies Expert System has been developed within the 
framework of the Texas Instrument's Personal Consultant Plus expert system shell, and has been 
implemented for development and test on a Compac Deskpro 386 computer. The basic architecture 
of the system is designed to conform as much as possible to the working environment in which the 
system will ultimately be implemented while taking advantage of the data-processing, data display 
and decision-making functions of the computer system. The design also makes use of existing data 
sets. Figure la  shows the typical user environment without the benefit of an expert system. A user 
(anyone who is responsible for the diagnosis of a satellite anomaly) generally has access to a num- 
ber of data bases and to some amount of expertise. The data bases might be computer-based or in 
the form of technical literature; the data bases might be on-site or at other agencies. The most perti- 
nent data bases are the Space Environment Data Base, which contains historical and real-time data 
on the space environment; the Spacecraft Attributes Data Base, which contains information on the 
vehicles (this might include component information, ephemerides, etc.); and a Spacecraft Anomaly 
Data Base containing records of previous anomalies on the vehicle in question. Expert opinions are 
usually available over the phone or in consultations after the fact. Even under the best of circum- 
stances the user has a formidable task to acquire and digest the information pertinent to his diagno- 
sis. Often the user may not know what information is available or what information is pertinent. 

Figure lb  shows the implementation of the Spacecraft Environmental Anomaly Expert 
System. The expert system not only provides access to a consolidated interactive knowledge base, 
but also provides procedures to access and display information from the data bases. The knowl- 
edge base, currently consisting of over 100 logical rules, has been constructed based on personal 
interviews with space scientists and engineers. In practice, the expert system could be operated 
(albeit will diminished effectiveness) even if one or more of the prescribed data bases were un- 

459 



available. At present, the expert system is configured to diagnose anomalies caused by surface 
charging, bulk charging, single event effects and total radiation dose. The system could be ex- 
panded to include a broader range of environmental causes of anomalies without any difficulty. 
The performance of the system has been tested on historical case studies, and the following section 
gives a typical example of a single consultation with the expert system. 

SAMPLE CONSULTATION 

We will follow a typical consultation with the Spacecraft Environmental Anomalies Expert System 
by showing a selection of representative screens through which the user interacts with the system. 
First the user selects the Expert or Novice mode. The Novice mode contains more descriptive 
material and antecedent rules that explain the conclusions reached by the system. It is intended as a 
learning tool. 

The user next selects from Fig. 2 the data bases that he wishes to use during the consulta- 
tion. This also permits a flexible configuration at different sites where one or more of the 
databases may not be available. The four databases shown in Fig. 2 represent different techniques 
for storing and accessing data. The Anomaly database is a Dbase III Plus file provided by the Na- 

~ ~ ~~~ 

Select all of the databases that are available for this system. 

Yes 
f) ANOMALY 
t) ATTRIBUTES 
4-h ENVIRONMENT-HISTORICAL 
++ ENVIRONMENT-RECENT 

1. Use arrow keys or first letter of item to position cursor. 
2. Select all applicable responses. 
3. After making selections, press RETURN/ENTER to continue. 

Figure 2 

The maximum value for Kp during the four day period ending with the date of 
the anomaly was 8.3 

The convention used is the following: Kp of 3- = 2.7, Kp of 3 is 3.0, and 
Kp of 3+ is 3.3. 

** End - RETURN/ENTER to continue 
Figure 3 

460  



The name of t h e  s a t e l l i t e  i n  t h e  anomaly database mey be d i f f e r e n t  from t h e  
name i n  t h e  o t h e r  da tabases .  Please select t h e  name of t h e  s a t e l l i t e  f o r  thc 
anomaly r epor t  from t h i s  l i s t .  If t h e  name does not  appear i n  t h i s  l i s t  the ]  
t h e  s a t e l l i t e  i s  not  i n  t h e  anomaly da tabase .  In t h a t  case choose UNKNOWN. 

I 

I @GG0402 
@GGO 4 0 3 
@GG0404 
@GGO 4 0 7 
DSCS-94 34 
DSCS-9433 
@PNO 102 
@GWO101 
@GGO 4 0 8 
@GGO 4 1 1 
@GGO 4 12 

@GG0401 
METEOSAT-1 
@GG0414 
@PN0103 
@GG0416 
GMS 
@PNO101 
@PN0201 
@GG0413 
@ GGO 5 0 2 
@GG050 1 

GOES-5 
ME TEOSAT- 2 
GMS - 2 
@GGO 503 
MARECS-A 
@GG0504 
@GG0505 
TDRS S - 1 
@GGO 50 6 
@PNO 3 03 
@PNO 4 01 

@GG0508 AUSSAT-A3 
INSAT-1B 
NAVS TAR UNKNOWN 
GOES-6 
GMS - 3 
@PNO 302 
@PNO 402 
AUSSAT-A1 
AUS SAT -A2 
KU2 
GOES-7 

SCATHA 

1. Use t h e  arrow k e y s  o r  f i r s t  le t ter  of i t e m  t o  p o s i t i o n  cu r so r .  
2. Press RETURN/ENTER t o  cont inue.  

Figure 4 

tional Geophysical Data Center in Boulder, CO. It presently contains a record of approximately 
2000 historical anomalies. The Attributes database consists of a text (ASCII) file for each of a 
small selection of satellites. It contains orbital information. The EnvironmentHistorical database 
is a binary file that contains an historical record of the geophysical parameter known as Kp, the 
planetary magnetic index. Kp is a measure of the severity of magnetic storms within the Earth’s 
magnetosphere. This file is accessed by a C-language interface between the expert system and the 
binary file. An example of the output from the file is shown in Fig. 3. Kp is measured on a scale 
from 0 to 9. The large value, 8.3, shown in Fig. 3 means that a severe storm occurred during the 
time period. 

The Environment-Recent database has not yet been implemented. It is planned to be a bi- 
nary file similar to the Environment-Historical file. The recent data will be collected by a remote 
computer from the satellite broadcasts by the Space Environment Services Center, Boulder, CO. 
When needed the most recent data in the file will be automatically transferred via telephone modem 
to the consultation computer. 

If the user chooses to use the Anomaly database the expert system automatically queries the 
database via a Dbase I11 interface and obtains a list of the satellites that are contained in the 
database. It then presents the satellite selection screen shown in Fig. 4 to the user. Many of the 
names are coded to conceal the identity of the actual vehicle. Two types of reports are generated. 
A satellite report lists all of the anomalies in the database for a single vehicle. This can be used to 
search for recurrences of similar anomalies. The recurrence in specific local time sectors or in lim- 
ited regions of the orbit for example is an indication of a possible environmental cause. A data re- 
port such as the one shown in Fig. 5 lists of all of the anomalies in the database for a three day time 
period around the date entered by the user. Frequently more than one vehicle is affected by a se- 
vere storm. The occurrence of similar anomalies on more than one vehicle in a short time period is 
an indication of a possible environmental cause. 

The expert system provides the user direct access to the Spacecraft Anomaly Manager 
software (SAM) which has been developed by the National Geophysical Data Center. The SAM 
utility provides a full range of functions for managing, displaying and analyzing the data, including 
functions to test single anomalies or sets of anomalies for environmental relationships. Histograms 
of local time and seasonal Occurrence frequency provided by this utility can reveal distinct patterns 

461 



Page No. 1 SPACECRAFT ANOMALY REPORT 

SATELLITE DATE LT TYPE DIAG COMMENT 

METEOSAT-2 09/22/82 0522 PC ESD Two parameters 
@GGO 5 0 4 09/22/82 1422 ss ESD 12 GHz TWTA shutdown 
@GG0407 09/23/82 0429 SE SEU 
@GG0407 09/23/82 0519 SE SEU 
@GG0407 09/23/82 0611 SE SEU 
METEOSAT-2 09/23/82 0739 PC ESD Three parameters 
GOES-4 09/23/82 0106 PC ESD VISSR STEP SCAN ON 

Figure 5 

10 

8 

6 

4 

2 

0 ul 

SPACECRAFT ANOMALIES by LOCAL TIME for BIRD=@GG0407 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
Press [PI to Print or [Escl to Exit 

Figure 6 

for spacecraft which are susceptible to static charge buildup and ESD. Figure 6 shows one example 
of the graphical output available from SAM. The S A M  utility also provides a means of updating the 
Anomaly Database after the expert system consultation. 

As progress is made through the consultation a number of specific questions are asked. 
Fig. 7 shows the screen for selecting one or more types of problems associated with the anomaly 
under study. The system presently has four major frames for each of the four major environmental 
causes of anomalies, surface charging, bulk charging, single event upset and total radiation dose. 
The responses to this screen are used to instantiate the frames. 

Fig. 8 shows a typical question regarding the occurrence of a large solar x-ray flare. The 
option to answer "unknown" is always offered to the user. This may elicit another question on the 
same topic or cause the system to abandon that line of chaining. 

462 



Select a l l  of t h e  types  of problems t h a t  are a s s o c i a t e d  wi th  t h i s  anomaly. 

PHANTON-COMMAND 
LOGIC-UPSET 
ELECTRICAL 
MECHANICAL 
SENSOR 
SOFT WARE 
MEMORY 
THERMAL 
PART-FAILURE 
TELEMETRY-ERROR 
SYSTEM-FAILURE 
MISS ION-FAILURE 
OTHER 

1. U s e  arrow k e y s  o r  f irst  letter of i t e m  t o  p o s i t i o n  cu r so r .  
2 .  Select a l l  app l i cab le  responses .  
3 .  A f t e r  making s e l e c t i o n s ,  p r e s s  RETURN/ENTER t o  cont inue.  

Figure 7 

D i d  a very l a r g e  s o l a r  x-ray f l a r e  e .g .  a type X1 s o l a r  x-ray f l a r e  occur 
wi th in  a few hours p r i o r  t o  t h e  anomaly? 

YES 
NO 
UNKNOWN 

1. U s e  t h e  arrow k e y s  o r  f i r s t  l e t t e r  of i t e m  t o  p o s i t i o n  t h e  cu r so r .  
2 .  Press RETURN/ENTER t o  cont inue.  

Figure 8 

Figure 9 shows a highly technical question regarding the level for the accumulation of en- 
ergetic electrons in the vehicle. This requires access to satellite environmental data plus an analysis 
or expert opinion to relate the measurements from the satellite making the measurements to the one 
experiencing the anomaly. Help is always available by pressing function key F1. The help win- 
dow then appears as shown in Fig. 9. The help window contains a more detailed explanation of 
the question and a person or organization to contact for assistance. 

Single event upsets are caused by the deposition of energy in digital devices when a very 
energetic particle passes through the device. The probability of an anomaly thus depends on the 
hardness of the device as well as on the environment. Fig. 10 shows a list of devices that is dis- 
played for the user if the Single Event Upset frame is instantiated. A series of rules in this frame 
contains qualitative information on the hardness of each type of technology as determined by labo- 
ratory measurements of their upset cross sections. 

4 6 3  



S e l e c t  the  a p p r o p r i a t e  level f o r  t h e  accumulated f luence  of  e n e r g e t i c  
e l e c t r o n s  above 300 keV f o r  s e v e r a l  days p r i o r  t o  t h e  anomaly. 

VERY HIGH 

INTERMEDIATE 

1. Use t h e  arrow keys o r  f i r s t  let ter of  i t e m  t o  p o s i t i o n  t h e  c u r s o r .  
2 .  Press RETURN/ENTER t o  cont inue .  

Figure 9 

Help : 

The accumulated f luence  of  p e n e t r a t i n g  e l e c t r o n s  
i s  t h e  i n t e g r a l  of  t h e  e l e c t r o n  f l u x  above 300 
keV f o r  s e v e r a l  days b e f o r e  t h e  anomaly. It  i s  
measured i n  u n i t s  of [e lectrons/cm"2] .  For 
a s s i s t a n c e  i n  de te rmining  the  f luence  c o n t a c t  D.  
Gorney (213/336-6821) a t  t h e  Aerospace Corp. 

VERY-HIGH >10''12 H I G H  lO''11 - 10''l: 
INTERMEDIATE 10''10 - l O ' ' 1 1  LOW <1OA10 

* *  End - RETURN/ENTER t o  cont inue  

Select t h e  t e c h n o l o g y  which best describes t h e  sof tes t  devices i n  t h e  
c i r c u i t  e x p e r i e n c i n g  t h e  anomaly. 

ADV-CMOS 
ADV-HCMO S 
ADV-SCHOTTKY 
CMOS 

CMOS / S OS 
HCMOS 
LOC /MO s 
MOS 
NMOS 
NMOS/CMOS 
NMOS / EP I 
NMos/sos 

CMOS /E P I 

PMOS 

I I L  
TTL 
ALS/TTL 
ECL/TTL 
L/TTL 
LS/TTL 
S/TTL 
SCHOTTKY 
OTHER 

1. U s e  t h e  arrow k e y s  o r  f irst  l e t t e r  o f  i t e m  t o  p o s i t i o n  c u r s o r .  
2 .  Press RETUFWENTER to c o n t i n u e .  

Figure 10 

Finally Fig. 11 shows the conclusion screen. A confidence level is given for each possible 
cause. Note that a negative conclusion is listed whenever a specific cause can be ruled out. 

The user may then review the consultation with the option to modify one or more of his re- 
sponses to see how they affect the conclusion. Also, the user may choose to re-enter the Spacecraft 
Anomaly Manager utility to update the Anomaly Database based on the results of the consultation. 

464 

1 



Conclusions: 

The cause of the anomaly is as follows: SURFACE-CHARGING (90%) 
Not BULK CHARGING (72%) - 

** End - RETUFW/ENTER to continue 

Figure 11 

SUMMARY AND STATUS 

The Spacecraft Environmental Anomalies Expert System is currently undergoing develop- 
ment and testing at the Aerospace Corporation Space Sciences Laboratory. The system aids in the 
analysis of satellite anomalies which may be caused by interactions with the space environment. 
Currently, the system deals with anomalies caused by electrostatic discharges resulting from sur- 
face or bulk dielectric charging, single event upsets, and total radiation dose. A prototype system 
has been developed, including three databases and a knowledge base consisting of about one hun- 
dred rules. The expert system also contains software to access, display and modify the data. The 
completed system will consist of approximately 150 - 200 rules. We expect that the expert system 
will be available for implementation at operational sites sometime during 1989. Potential users of 
the system include space environment forecasters at the Air Force Global Weather Central, civilian 
and military satellite operators, and spacecraft contractors. 

ACKNOWLEDGEMENTS 

We benefitted greatly from technical discussions with Drs. Joe H. Allen, Gary Heckman 
and Dan Wilkinson at NOAA and with Drs. J. Fennell, A. Vampola, and W. A. Kolasinski at the 
Aerospace Corporation. The Spacecraft Anomaly Manager software used in our expert system is 
provided by the NOAA National Geophysical Data Center. This project was supported by the 
Aerospace Sponsored Research Program and by the US Air Force System Commands Space 
Division under Contract No. F04701-86-C-0087 through the Satellite Control Network Program 
Office. 

465 



N89-15608 

Using Hypermedia to Develop an Intelligent TutoriaVDiagnostic 
System for the Space Shuttle Main Engine Controller Lab 

Daniel O’Reilly 
Robert Williams 
Kevin Yarbrough 

Rocketdyne Division Rockwell Intl. 
2227 Drake Ave. Suite 45 
Huntsville Al. 35805 

Abstract 

This system is a tutorial/diagnostic system for training per- 
sonnel in the use of the Space Shuttle Main Engine Controller 
(SSMEC) Simulation Lab. It also provides a diagnostic capable of 
isolating lab failures at least to the major lab component. The 
system was implemented using Hypercard, which is an implementation 
of hypermedia running on Apple Macintosh computers. Hypercard 
proved to be a viable platform for the development and use of so- 
phisticated tutorial systems and moderately capable diagnostic 
systems. 

This tutorial/diagnostic system uses the basic Hypercard 
tools to provide the tutorial. The diagnostic part of the system 
uses a simple interpreter written in the Hypercard language 
(Hypertalk) to implement the backward chaining rule based logic 
commonly found in diagnostic systems using Prolog. 

Some of the advantages of Hypercard in developing this type 
of system include sophisticated graphics capablility, the ability 
to include digitized pictures, animation capability, sound and 
voice capability, and its ability as a hypermedia tool. The major 
disadvantage is the slow execution time for evaluation of rules 
(due to the interpretive processing of the language). Other disad- 
vantages include the limitation on the size of the cards, that 
color is not supported, that it does not support grey scale graph- 
ics, and its lack of selectable fonts for text fields. 

Introduction 

The lab for which the tutorial/diagnostic was developed 
provides an integrated test environment for verifying the software 
for the Space Shuttle Main Engine Controller (SSMEC). It includes 
real and simulated engine hardware components. The lab software 
controls the hardware through several computers to allow the test 
engineer to force off-nominal conditions and record the reactions 
of the SSMEC. The central theme followed in developing the lab was 
that all actions and results for the tests to be conducted should 
be contained in a single test procedure. Additionally, the entire 
process should be automated to the point that the user could 
conduct a series of tests by entering one command to the VAX. 
Finally, all actions taken by the user, the lab components, and 
the results must be logged such that one could exactly repeat a 

467 



test at a later date. Under these provisions many of the 
machinations of the lab remain invisible to the user. This 
tutorial and diagnostic was designed to help lab users to 
understand the lab and isolate problems in the lab. 

The Tutorial/Diagnostic 

The prototype tutorial/diagnostic system was initially 
implemented using Turbo Prolog on an IBM PC and later implemented 
using Hypercard on a Macintosh (Hypercard is Apple's implementa- 
tion of hypermedia). In ease of development, particularly in the 
tutorial portion, Hypercard proved to be easier and faster to use 
than Turbo Prolog. The Hypercard version includes extensive 
graphics, some animation, and some sound. 

The system addresses four major areas; the use of the 
tutorial/diagnostic, conducting tests in the lab, the hardware 
operation of the lab, and the diagnostic. The part illustrating 
lab operations has not yet been completed. Four buttons on the top 
card of the stack control entry into each of these areas. When the 
user selects one of the buttons, this top card is "pushed" so that 
is may later be "popped" in response to clicking a "return" 
button. Figure 1 illustrates the top level layout. 

The first area instructs the user in using the 
tutorial/diagnostic. It attempts to illustrate rules the user can 
use to recognize buttons, navigate through the system, and get 
more information on a subject. To implement this area the 
developers used only the most basic capabilities of Hypercard, 
namely, graphics, text, buttons, push and pop, and linking cards. 
This area has no links to the other three areas to prevent the 

468 



first time user from getting "lost" in the stack. 
of cards from the other areas are used to illustrate the system. 

Instead, copies 

The area providing the tutorial on lab components consists of 
a main path which includes a brief description of each of the 
major components. Each of the descriptions of major components 
provide two side paths; one to a more detailed operational 
description of the component, and the other to a detailed hardware 
description of the component. As in the first area, only the most 
basic Hypercard capabilities were used. Figure 2 illustrates the 
layout of this area. 

- - - Hardware - - 
General Description 0 p era t i onal 

Description Component 
Description 

- 

& - A 
i I I 

Opera ti onel U a r A . . . - r ^  

Descriptic 

I- 
- 

Hardware 
Description 

Opera ti onal 
Description - General 

Component 

I I 

Figure 2 
Lab Component Description Layout 

- I I I I  

Three basic Hypercard linking mechanisms were used to control 
navigation through the cards for these first three areas; direct 
linking of cards, go to next or previous card, and push and pop. 

Direct linking of cards displays another card in response to 
a user action such as clicking on a button. The developers used 
this mechanism to go to subsets of cards from a card with multiple 
options. For instance, the top card of the stack gives the user 
four options via buttons. Clicking one of these buttons causes 
Hypercard to go to the first card of the subset for that option. 
This mechanism was also used for "help" functions where the user 
clicks on a button to acquire more information about a component 
or a test. 

Go to next or previous card provides a mechanism for the user 
to move backward or forward to adjacent cards. This mechanism was 
used to allow the user to move freely among cards of a subset. 

Push and pop pushes a card to the stack or pops a card from 
the stack. The developers used this mechanism to allow the user to 

469 . 



I 

I 
return from a subset to the card at which he chose the subset. For 

the current card is pushed. The cards of the subset each have a 
button for "return". When this button is clicked, the card on top 
of the stack (in this case, the card from which the selection was 
made) is popped. Since push and pop are an implementation of the 
familiar stack operators, this mechanism may be used to llnestll 
this return capability. 

Through the use of these basic capabilities the developers 
built in an orderly navigation scheme through the cards for the 
tutorial parts of the system. One should note that these 
capabilities may also be used to add implicit logic to the system 
in that they can be used to implement trees. Figure 3 illustrate 
the basic linking methods. 

example, when the user clicks on the button to choose a subset, 

The diagnostic comprises the fourth part of the system. This 
part allows the user to isolate bad components in the lab by 
answering a series of questions as to the symptoms exhibited at 
various points in the lab. Initial attempts at implementing this 
part included using a straight tree structure and then a modified 
decision tree. Ultimately, the Hypertalk capability of Hypercard 
was used to implement a Prolog-like rule based logic typical of 
many diagnostic systems. 

In the first attempt, the straight tree structure quickly 
became too large to manage due to combinatorial expansion. In 
addition to becoming difficult to manage, it required the 
duplication of many of the symptom cards. Thus, for a system that 
involves any complex interrelationships or that is of any size, 
this method proves too cumbersome. 

The next iteration attempted to simplify the tree by 
"modularizing" some intermediate tests and calling them from nodes 

4 7 0  



in the tree. To implement this scheme the push and pop operators 
provided a mechanism to return to the node in the tree which 
called the intermediate test in order to continue the diagnostic. 
However, this scheme proved lacking in that useful intermediate 
tests were difficult to define due to the interrelationships of 
the lab components. 

The solution involved writing a script using Hypertalk to 
emulate the backward chaining rule based logic typically used in 
developing diagnostic systems with Prolog. This scheme proved to 
be relatively simple to design and use and has the added advantage 
of providing a shell that could be used for any diagnostic system. 

The diagnostic uses four basic types of cards. These include 
the beginning card, test cards, conclusion cards, and symptom 
cards. Scripts at the stack level record the results of symptoms 
and tests, evaluate tests, and provide the navigation among the 
cards. 

The beginning card serves as an introduction to the diagnos- 
tic. When the user selects "continue", the script for the 
"continue" button sends a messaqe to the handler that initializes 
variables for the diagnostic session and pushes 
onto the test stack. Figure 4 illustrates the 
beginning card. 

the first test 
layout of the 

Block diagram o f  Lab 

Name o f  Return  t o  Continue I f i r s t  t e s t  t o p  o f  stack diagnostic 

I 

Figure 4 
Layout of Beginning Card 

Test cards actually define tests and mav themselves be 
symptoms for other tests.- These cards contain a description of the 
test in the language processed by the evaluation script. This 
language basically allows the knowledge engineer to describe a 
test in terms of boolean functions. The knowledge engineer enters 
this description into background field 1 which covers the upper 
2/3 of the card. The outline of the test is basically an "if-then- 
else" statement where the conditions to be evaluated lie between 
the if and the then keywords. Parentheses may be used to control 

471 



e v a l u a t i o n .  S ince  tes ts  themselves e v a l u a t e  t o  t r u e  o r  fa lse ,  t h e y  
may be used  i n  t h e  d e s c r i p t i o n  of  o t h e r  tes ts .  However, a l l  tes ts  
must e v e n t u a l l y  reduce  t o  a set o f  symptoms. I f  t h e  u s e r  i n a d v e r t -  
e n t l y  g e n e r a t e s  an  e n d l e s s  loop  ( f o r  example: making t es t  A 
dependent  on t es t  B which i s  dependent on tes t  C which i s  
dependent  on t es t  A )  t h e  d i a g n o s t i c ,  a t  run  t i m e ,  w i l l  p o s t  an  
e r r o r  i n  t h e  message box. T e s t  cards a l low t h e  u s e r  the  o p t i o n s  t o  
c o n t i n u e  t h e  d i a g n o s t i c  o r  t o  r e t u r n  t o  t h e  beginning  card. If t h e  
u s e r  elects t o  c o n t i n u e  t h e  d i a g n o s t i c ,  t h e  s c r i p t  f o r  t h a t  b u t t o n  
sends  a message t o  push t h e  name of  t h e  tes t  c a r d  on the  t e s t  
s tack and t h e n  sends  a message t o  e v a l u a t e  t h e  t es t  a t  the  t o p  of  
t h e  t es t  s tack .  F i g u r e  5 i l l u s t r a t e s  t h e  l a y o u t  o f  a t es t  card. 

R e s t a r t  C o n t i n u e  
D i a g n o s t i c  D i a g n o s t i c  

F i g u r e  5 
Layout of  a T e s t  Card 

Symptom cards ask t h e  u s e r  t o  e n t e r  t h e  s t a t u s  o f  some tes t  
p o i n t  i n  t h e  lab.  The u s e r  selects a b u t t o n  labelled "good" o r  a 
b u t t o n  labelled "bad" t o  i n d i c a t e  s t a t u s  a t  t h a t  p o i n t .  C l i c k i n g  
t h e  b u t t o n  sends  a message t o  a h a n d l e r  a t  t h e  s tack level which 
r e c o r d s  t h e  symptom and i t s  s t a t u s .  I t  t h e n  r e q u e s t s  t h e  
e v a l u a t i o n  s c r i p t  t o  e v a l u a t e  t h e  t e s t .  I n  a d d i t i o n  t o  a c q u i r i n g  
r e s u l t s ,  the  symptom cards a l s o  a l low t h e  u s e r  t o  select, v i a  
b u t t o n s ,  more i n f o r m a t i o n  on t h e  lab  components and t h e  tes t  b e i n g  
performed.  F i g u r e  6 i l l u s t r a t e s  t h e  l a y o u t  of  a symptom card. 

Conclusion cards p rov ide  t h e  message i d e n t i f y i n g  t h e  bad 
component i f  one i s  found. Note t h a t  a card s t a t i n g  t h a t  no bad 
component cou ld  be i d e n t i f i e d  i s  a l s o  a conc lus ion  card. The 
knowledge e n g i n e e r  e n t e r s  these card names i n  t h e  " t r u e "  p a t h  of 
t h e  tes t  d e s c r i p t i o n  on a t es t  card. When t h e  t es t  proves  t r u e ,  
t h i s  card i s  d i s p l a y e d .  The conc lus ion  card a l lows  a u s e r  t h e  
c h o i c e  of  c o n t i n u i n g  t h e  search f o r  bad components o r  r e t u r n i n g  t o  
t h e  beg inn ing  card t o  begin  a new s e s s i o n .  F i g u r e  7 i l l u s t r a t e s  
t h e  l a y o u t  o f  a conc lus ion  card. 

472  



B l o c k  d i a g r a m  o f  Lab 

S y m p t o m  Good Bad  Restar t  I q u e s t i o n  a n s w e r  a n s w e r  diagnostic 

Figure 6 
Layout of a Symptom Card 

B l o c k  D i a g r a m  o f  Lab 

R e s t a r t  C o n t i n u e  C o n c l u s i o n  
\ D i a g n o s t i c  D i a g n o s t i c  

Figure 7 
Layout of a Conclusion Card 

The evaluation script evaluates the language on the test 
cards to determine the result and the action to take. This script 
consists of a simple parser to evaluate an "if-then-else" 
statement and provide branching to other cards as necessary or as 
dictated by the results of the "if" . The following is the BNF for 
the test language. 

. .= <test - card - statement> .. 'if' <conditional> I 'ifopt' 
<conditional> 

ccondit ional> 

<expression> 

. .. .= <expression> 'then' <action> 'else' 
<action> 

..- . .- <simple expression> I 
<parenthetical - expression> 

473 



< p a r e n t h e t i c a l  - e x p r e s s i o n >  ::= ' ( I  <expres s ion>  

<simple e x p r e s s i o n >  . .. .= < s t a t u s  card id>  < s t a t u s >  I 
- 

< s t a t u s  c a r 3  id>-<s ta tus> < o p e r a t o r >  
<e xpre  sSi on>- 

< s t a t u s  card id> - - ::= <test  card id> I <symptom card id>  - - - - 

< s t a t u s >  . .. .= 'good'  I 'bad' 

Coperat  o r >  . .. .= ' o r '  I ' a n d '  

< a c t i o n >  

<test  card - i d>  - 

. .- ..- <test  card id> I 
<conc lus ion  - card - id> I ' r e t u r n '  

. .- ..- t h e  name of  a test  card (there must 
be no i n t e r v e n i n g  b l a n k s )  

<symptom - card - id>  . .. .= t h e  name of  a symptom card ( t h e r e  
must be no i n t e r v e n i n g  b lanks)  

. .. .= t h e  name o f  a conc lus ion  card 
(there must be no i n t e r v e n i n g  b l a n k s )  

<conc lus ion  - card - i d >  

NOTE: w h i t e  space must s e p a r a t e  a l l  t okens  

T h e  language o f f e r s  two v e r s i o n s  o f  t h e  i f  s t a t e m e n t :  t h e  
' i f '  and t h e  ' i f o p t ' .  The p a r s e r  e v a l u a t e s  t h e  ' i f '  v e r s i o n  
comple te ly ,  regardless of  whether t h e  outcome can be t r u e  o r  
false.  The ' i f o p t '  v e r s i o n  ceases e v a l u a t i o n  as soon as t h e  
outcome can  be de termined .  For  example, i n  t h e  s t a t e m e n t  ' i f  A and 
B and C ' ,  i f  A i s  fa l se  t h e  e n t i r e  s t a t e m e n t  e v a l u a t e s  fa lse .  
The re fo re ,  under  t h e  ' i f o p t '  v e r s i o n ,  t h e  e v a l u a t i o n  would cease 
and t h e  'e lse '  p a t h  would be chosen. 

T h e  names o f  the cards must be used  i n  t h e  t e x t  d e s c r i b i n g  
the c o n d i t i o n a l  p a r t  o f  t h e  t e s t .  When t h e  e v a l u a t i o n  s c r i p t  
e n c o u n t e r s  an  i d e n t i f i e r  (card I D ) ,  it examines t h e  s t a t u s  l i s t  t o  
f i n d  o u t  i f  t h e  s t a t u s  of t h e  test o r  symptom has a l r e a d y  been 
de termined .  If so,  it c o n t i n u e s  the e v a l u a t i o n .  I f  n o t ,  it pushes  
t h e  name o f  t h e  card c o n t a i n i n g  t h e  c u r r e n t  tes t  and per forms a 
"go t o "  the card name f o r  which t h e  s t a t u s  i s  unknown. I f  t h a t  
happens t o  be a t e s t  card t h e n  t h a t  card i s  d i s p l a y e d  and when t h e  
u s e r  chooses  "cont inue"  t h a t  card name i s  pushed on t h e  tes t  s t a c k  
and a message i s  s e n t  t o  e v a l u a t e  t h e  t e s t  on t o p  o f  the  tes t  
s tack .  I f  t h e  c a r d  w i t h  the  unknown s t a t u s  i s  a symptom card, t h a t  
card i s  d i s p l a y e d  and t h e  u s e r  chooses  "good" o r  "bad" f o r  t h a t  
symptom. The s c r i p t  f o r  t h e  "good" o r  "bad" b u t t o n s  sends  a 
message t o  t h e  s t a t u s  message hand le r  t o  r e c o r d  s t a t u s  and t h e n  
sends  a message t o  e v a l u a t e  t h e  tes t  on t o p  of t h e  t es t  s tack .  The 
card names direct n a v i g a t i o n  through t h e  d i a g n o s t i c  and t h e  
e v a l u a t i o n  scr ipt  r e a l l y  makes no d i s t i n c t i o n  between tes t  cards 
and symptom cards. 

4 7 4  



Likewise, card names must be used for the "action" part of 
the test description. If the conditional part of a test 
description on a test card evaluates true the evaluation script 
performs a "go to" the name of the card following the "then" 
keyword. If the evaluation proves false the evaluation script 
performs a "go to" the card name following the "else" keyword. 
These cards may be test cards or conclusion cards. The "return" 
keyword presents an exception in that when it is encountered, the 
evaluation script sends a message to perform an evaluation of the 
test on top of the stack. 

In the following example, all names in the conditional part 
of the if statement are test card names and both names in the 
action part of the test point to another test card. In this 
example the evaluation would continue at the test called 
"NextTest" regardless of the outcome of the tests named in the 
conditional part. The user could prevent this if any of the tests 
in the conditional part found a bad component by electing to 
restart the diagnostic. 

if SSMECScaling good or 
DPM good or 
ADC good or 
Hardware good or 
GainDAC good or 
OffsetDAC good or 
HardwareSIASwitch then 
NextTest else 
Next Test 

In the following example, the conditional part of the test 
description names only symptoms. In this example, the evaluation 
would branch to the conclusion card "SSMECScalingBad" if the 
results of the test were true and would return to evaluate the 
previous test if the result was false. In this example all of the 
conditional part of the test consists of symptoms. Also, notice 
that since the "ifopt" keyword was used, not all symptoms would 
necessarily be evaluated. For example, if the symptom "OffsetVDT" 
proved good, the "else" path would be taken since the entire 
conditional must be false. However, since the status of "GainVDT" 
had already been evaluated, its status would be recorded and that 
symptom card would never show up again during this session. Note 
also that if the evaluation reached "GainDPM" and "GainDPM" was 
good, the evaluation would terminate and take the "then" path 
since that was all that was required at that point to make the 
entire statement true. 

ifopt GainVDT bad and 
OffsetVDT bad and 
LocalPotVDT bad and 
( GainDPM good or 
OffsetDPM good or 
LocalPotDPM good ) then 

475 



SSMECScalingBad else 
return 

The fact that card names are used to direct the evaluation 
allows the system to function as the basis for any diagnostic type 
application. The evaluation script really knows nothing of the 
target system, but merely evaluates the boolean expression on the 
test cards and uses the card names to direct its action. Thus, 
this system could provide a shell for the development of 
prototypes for other diagnostic systems. 

Conclusions 

Excluding the two false starts, the diagnostic part of this 
system required about 50% of the effort that was spent on the 
Turbo Prolog version. The majority of this gain was due the the 
ease of implementing the tutorial and graphics parts. In these 
areas, the development gains afforded by Hypercard could range 
from 50-90% over a similar system developed using Turbo Prolog, 
depending on the amount of graphics used. A l s o ,  Hypercard's abili- 
ty to include digitized photographs on the cards represents a 
significant advantage in developing tutorial systems. Another 
significant advantage of using Hypercard, at least for developing 
tutorial systems, is that the developer need not be a programmer 
to develop a successful system. 

There are, however, some shortcomings in Hypercard. The 
execution time for the evaluation of the rules in the Hypercard 
system is much slower than that in Turbo Prolog. This fact is 
masked somewhat by the difference in the speed of the graphics of 
the two systems. Other shortcomings include the limitation on the 
size of the cards, that color is not supported, that it does not 
support grey scale graphics, and its lack of selectable fonts for 
the text in fields. 

Overall, Hypercard provides a useful tool for developing 
sophisticated tutorial systems and moderately sophisticated 
diagnostic systems. Its ability to easily combine graphics, text, 
digitized photographs, animation, and sound, as well as its 
ability to function as a hypermedia tool makes it very powerful 
for developing tutorial systems. These capabilities also offset 
some of its limitations when developing diagnostic systems where 
these functions would prove useful. 

476 



N 8 9 - 1 5 6 0 9  

OBJECT-ORIENTED FAULT TFIEE EVALUATION PROGRAM FOR 
Q UANTITAT~VE ANALYSES 

F. A. Patterson-Hine and B. V. Koen 
NASA Ames Research Center 

MS 244-4 
Moffett Field, CA 94035 

The University of Texas at Austin 
Dept. of Mechanical Engineering 

ETC 5.1 34 
Austin, TX 78712 

Abstract 

Object-oriented programming can be combined with fault tree techniques 
to give a significantly improved environment for evaluating the safety and 
reliability of large complex systems foir space missions. Deep knowledge about 
system components and interactions, available from reliability studies and other 
sources, can be described using objects that make up a knowledge base. This 
knowledge base can be interrogated throughout the design process, during 
system testing, and during operation, and can be easily modified to reflect 
design changes in order to maintain a, consistent information source. 

An object-oriented environment for reliability assessment has been 
developed on a Texas Instruments (TI) Explorer LISP workstation. The 
program, which directly evaluates system fault trees, utilizes the object-oriented 
extension to LISP called Flavors that iis available on the Explorer. The object 
representation of a fault tree facilitate!; the storage and retrieval of information 
associated with each event in the tree, including tree structural information and 
intermediate results obtained during the tree reduction process. Reliability data 
associated with each basic event are stored in the fault tree objects. The object- 
oriented environment on the Explorer also includes a graphical tree editor 
which was modified to display and edit the fault trees. 

The evaluation of the fault tree is performed using a combination of 
standard fault tree reduction procedures. A bottom-up procedure is used for 
subtrees that do not contain repeated events, and a top-down, recursive 
procedure is used to evaluate subtrees that do contain repeated events. The 
tree is dynamically modularized according to the event which is being 
evaluated at the time. The locations (of repeated events are propagated up the 
tree and stored in each event object. This information is used to determine 
which evaluation procedure is required for each event, and intermediate results 
are stored as they are calculated. Unlike most conventional fault tree 
evaluation codes which calculate the probability of occurrence of the top event 
only, this program produces results for every event in the fault tree. The object- 
oriented approach to fault tree reduction greatly increases the efficiency of the 
evaluation algorithms. 

477 



Introduction 

Fault trees are a widely accepted method for modeling complex systems 
in reliability analyses. A fault tree is a graphical representation of the logical 
interrelationships among the components of a system [l]. The functional 
relationships are established in a top-down manner and are represented by 
logic gates such as AND- and OR-gates. A probability of occurrence is 
assigned to each base event denoting the failure probability of the components 
in the system. A fault tree can be evaluated quantitatively to determine the 
probability of occurrence of the top event in the tree. 

The most popular method for quantifying fault trees uses the minimal cut 
sets of the tree and the component failure information. Minimal cut sets are sets 
of basic events in which each component in the set must fail for the top event to 
occur [2]. Algorithms which find the minimal cut sets of a fault tree are better 
suited to conventional programming languages than are algorithms which 
directly evaluate the fault tree quantitatively. Quantification of minimal cut sets 
produces an approximate result in most practical applications, however, since 
larger trees require the use of truncation techniques to restrict the number of cut 
sets which are generated. 

Object-oriented programming languages enable algorithms which 
directly evaluate fault trees to be implemented easily and efficiently. These 
languages provide powerful features which are not available in conventional 
programming languages. The basic entity in object-oriented programming is 
the object, which is an abstract data type [3]. Objects are defined in terms of 
classes that combine the behavior and state of the objects. Classes describe 
one or more similar objects, and a particular object is called an instance of the 
class. All data and actions associated with an object are contained in the 
object's instance variables and methods. The instance variables represent a 
private memory for the object, and the procedures, or methods, associated with 
the object are the only legitimate operators for the data stored in the instance 
variables. Methods are invoked by sending a message to an object, which 
replaces conventional function calls. A unique feature called inheritance 
allows pieces of code to be shared by several objects. This eliminates 
unnecessary redundancy in programming and data storage. Instance variables 
can be accessed via the inheritance hierarchy, so changes that affect the state 
of all objects of a particular class can be made by updating the class definitions, 
thus changing at once the information inherited by multiple objects. Inheritance 
is not provided by any conventional language, and is quite useful in the fault 
tree a p pl icat io n . 

The performance of existing codes that evaluate fault trees are limited by 
the data structures that are available in conventional programming languages. 
Object-oriented programming provides the flexibility that is needed in defining 
structures to represent logic gates and basic event data, and the complex 
interrelationships which exist among them. One of the most serious problems 
with previous direct evaluation codes is the loss of information about the 

478 



system, both pre-defined structural relationships and intermediate results during 
tree simplification. The application of object-oriented concepts to fault tree 
analysis results in a clear and concise representation of the tree and provides a 
powerful mechanism for the storage, retrieval, and evaluation of system 
information. 

Fault Tree Object Definitions 

This application has been developed on a Texas Instruments Explorer 
LISP workstation using the object-oriented extension to LISP called Flavors [4]. 
Logic gates and basic events share many characteristics which can be 
described by a general flavor, called TREE. Instance variables that contain 
information common to both basic events, called nodes, and logic gates are 
defined in this flavor. All gates and basic events have both a name and at least 
one parent, so two instance variables, :name and :parent, hold this information. 
Since the top event of the fault tree does not have a parent, the value of its 
:parent variable is nil. A variable called :unavailability stores probability data for 
basic events. Results from the simplification of logic gates is stored in 
:unavailability for gates. Another variable, :dependent, indicates whether 
repeated events are located under a particular gate. Basic events are terminal 
leaves, making the value of the :dependent variable nil for all basic events. The 
TREE flavor is specialized into two other flavors, GATE and NODE, which 
contain information particular to logic gates and basic events, repectively. 

The GATE flavor includes instance variables that describe more 
specifically the state of logic gates. All gates are non-terminal leaves, and the 
names of their children are stored in a variable called :children. A second 
variable, :dependent-eval, indicates whether or not the gate must be evaluated 
using the top-down algorithm capable of handling repeated events. The NODE 
flavor inherits the :unavailability variable from the TREE flavor, but may change 
the value of :unavailability for all nodes by using a default specification. The 
:unavailability of each node can also, of course, be changed individually. 
Specific logic gate types, such as AND- and OR-gates, are described by flavors 
that are specializations of the GATE flavor. These flavors are necessary for 
defining methods that apply the specific reduction equations required by each 
type of gate. 

Several other instance variables are defined in these flavors to enable 
the fault tree to be displayed graphically. The GATE flavor stores a special 
traversal of all events below and including the particular gate in a variable 
called :display-trav to be used by the graphical tree editor. NODES, AND- 
GATES, and OR-GATES include a variable called :flavor-type that contains a 
description of the defining flavor that is displayed by the tree editor with other 
information about the events. The TREE flavor stores the name of each object 
in :name, which is also displayed. The TREE flavor has a component flavor, 
GWlN:BASIC-GRAPHICS-MIXIN, that furnishes all the information needed for 
the creation of the graphics objects that describe the fault tree. The tree editor 

479 



will be described in the next sections along with the tree reduction algorithms. 
Figure 1 contains the actual fault tree flavor definitions written in LISP. 

(DEFFLAVOR TREE 
((parent nil) 
(name nil) 
(dependent n i I)) 

(gwi n : basic-graphics-mixi n) 
:settable-instance-variables) 

(DEFFLAVOR GATE 
((children nil) 
(unavailability nil) 
(dependent-eval nil) 
(display-trav nil)) 

(tree) 
:setta ble- i n st ance-va ri ables) 

(DEFFLAVOR AND-GATE 
((f Iavor-type 'AN D-GATE)) 
(gate) 

:settable-instance-variables) 

(DEFFLAVOR OR-GATE 
((flavor-type 'OR-GATE)) 
(gate) 

:setta b le- i n st ance-va ri a bles) 

(DEFFLAVOR NODE 
(( f lavo r-type 'NODE) 

(tree) 
:se tta ble- i n st ance-va ri able s) 

(unavailability *defau It-unavailabi lity*)) 

Figure 1. Fault tree flavor definitions. 

Fault Tree Reduction Techniques 

The evaluation of the fault tree is performed using a combination of 
standard fault tree reduction procedures. A bottom-up procedure is used for 
subtrees that do not contain repeated events, and a top-down, recursive 
procedure is used to evaluate subtrees that do contain repeated events. The 
tree is dynamically modularized according to the event which is being 
evaluated at the time. The locations of repeated events are propagated up the 
tree and stored in each event object. This information is used to determine 

480 



which evaluation procedure is required for each event, and intermediate results 
are stored as they are calculated. These algorithms are described in detail in 
[5]. The object-oriented approach to fault tree reduction greatly increases the 
efficiency of the evaluation algorithms. 

Graphical Fault Tree Editor 

A general purpose graphical tree editor program that is available in 
Explorer System 3.0 was adapted to display the fault tree objects. The 
graphical display of the fault tree enables a visual check of the input tree 
structure. The user-interface, which includes menu-driven tree editing and pop- 
up displays of nodal data, allows the user to quickly and easily check the 
information stored in each fault tree object. Display of the tree after evaluation 
incorporates the results of tree reduction and modularization information. 
Probability values can also be edited with a series of menu-driven operations, 
and the modified tree can be re-evaluated. 

The tree editor displays each fault tree object as a rectangle, with the 
name of the object in the center of the rectangle. GATE objects are shaded, and 
NODE objects are transparent. The interconnections of the tree objects are 
shown as lines connecting each node to its parent(s) and children. Figure 2 is a 
reproduction of a tree editor display as it appears on the Explorer screen. 
Features such as zoom in, zoom out, move left, and move right for tree 
positioning are accessed from a menu at the top of the display. 

Object information other than the name of the object can be displayed by 
clicking on the specific object of interest. A pop-up window appears that 
contains the name of each instance variable associated with the object, and its 
value. Instance variables that are used by the tree editor only are not displayed. 
Figure 3 is a reproduction of the display after a GATE object is selected for the 
additional information. The pop-up window displays the GATE'S flavor type, 
parent(s), children, unavailability, dependent list, and its dependent-eval list. 
The information displayed for a NODE includes flavor type, parent(s), and 
unavailability. 

The probability value of any node in the fault tree can be changed in the 
graphical tree editor. By clicking on an object in a specified manner, a pop-up 
window appears that asks for a new probability value for that object. The value 
entered is then stored in the :unavailability variable for that object. In this way, 
errors in the object descriptions can be corrected before the tree is evaluated 
without having to exit the program and edit the data file. The tree may then be 
evaluated as usual. Modifications to tree objects are not reflected in the input 
file; however, they are documented in the output file each time the tree is 
evaluated. 

481 



MAIN MENU 
New Tree 

Edit 
Redraw 

Edit Parameters 
Exit 

I I I 
~.;.:.:QATE$''' ..... .... .... 11 NODE7 11 NODE10 I[ 

I I 

. . . .................................. ...... .......................... . ,... ....... .... . . , , , , , . . . . . . . . . . . . . . 
.... ......,. , . .. ... . . ..... 

I 

DISPLAY SCREEN OPTION! 
Move Up 

Move Down 
Move Left 

Move Right 
Zoom In 

Zoom Out 
Fill Window 
Recenter 

I NODE8 I NODE9 I 

Figure 2 Display of a simple fault tree on the Explorer. 

482  



MAIN MENU 
New Tree 

Edit 
Redraw 

Edit Parameters 
Exit 

LOGIC GATE DATA: 

logic gate type: 

unavailability: 
NIL 
parent(s): 

DISPLAY SCREEN OPTION: 
Move Up 

Move Down 
Move Left 

Move Right 
Zoom In 

Zoom Out 
Fill Window 

I 
I 

Bottom 

NODE8 I NODE9 I 

1 
L 
ODE9 

Figure 3 Display of GATE data. 

483 



An interesting use of this editing capability is the variation of probability 
values in order to determine the effects on the probability of occurrence of the 
top event. For example, a tree can be evaluated and displayed after evaluation. 
One or more probability values for any tree object, GATE or NODE, can be 
changed and the tree is then re-evaluated. When such changes are made, the 
results of the previous calculation are retained for branches that are not affected 
by the changes. Therefore, calculations are not repeated unnecessarily, and 
the re-evaluation is completed in as few calculations as possible. None of the 
most widely used fault tree codes have such editing capabilities. 

Conclusions 

Object-oriented fault tree techniques provide an improved and flexible 
environment for reliability analysis. System components are represented by 
objects which can be organized into a persistent knowledge base of reliability 
information, improving data consistency. The inheritance heirarchy inherent in 
the object-oriented environment allows data to be entered either by class for 
groups of similar components or individually for specific components. Fault 
trees can be displayed graphically, allowing tree structure to be checked 
visually. Reliability data for NODES can also be checked in the tree editor and 
updated immediately if desired. The tree reduction algorithms perform a direct 
evaluation of the fault tree and store a probability of occurrence for each event 
in the event's object. These algorithms are more efficient than previous 
algorithms implemented in conventional programming languages. The object- 
oriented environment also enables parameter variation studies to be performed 
on-line in conjunction with the tree editor. 

The flexibility of this environment and the improvements already 
apparent in the fault tree application suggest that object-oriented fault trees may 
be appropriate for improving fault detection and diagnosis in complex systems. 
This topic is currently being explored to provide fault management in the large 
knowledge-based systems required by space applications. 

Acknowledgements 

This research was performed while FAPH was a graduate student at the 
University of Texas at Austin and was sponsored by the NASA Graduate 
Student Researchers Program, ZONTA International, and NSF grant DMC- 
861 5432. 

4 8 4  



Ref e ren ces : 

1. 

2. 

3. 

4. 
5. 

Fussell, J. B., "A Formal Methodology for Fault Tree Construction," 
Nuclear Science and Engineeering, vol. 52, p. 421 -432, 1973. 
Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D. F., Fault Tree 

Stefik, M., and Bobrow, D. G., "Object-Oriented Programming: Themes 
and Variations," The A/ Magazine, vol. VI, no. 4, p. 40-62, Winter 1985. 
Explorer LisD Reference, Texas Instruments, Incorporated, 1987. 
Patterson-Hine, F. A., Ob iect-Oriented Proarammina Applied to the 
Evaluation of Reliabilitv Fault Trees, Ph.D. Dissertation, The University of 
Texas at Austin, May 1988. 

J-landboo k, NUREG-0492, 1981. 

485 



Considerations in Development of Expert Systems for 
Real-Time Space Applications 

S. Murugesan 
NASA Ames Research Center 

Mail Stop: 2 4 4 4  
Moffett Field, CA 94035 

ABSTRACT 

Over the years, demand on space systems has increased tremendously and this trend will 
continue for the near future. Enhanced capabilities of space systems, however, can only be met 
with increased complexity and sophistication of onboard and ground systems. Artificial intelligence 
and expert system techniques have great potential in space applications. 

Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis 
and repair, enhance performance and reduce reliance on ground support. However, real-time expert 
systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent 
requirements before they could be used for onboard space applications. Challenging and interesting 
new environments are faced while developing expert system space applications. 

This paper discusses the special characteristics, requirements and typical life cycle issues for 
onboard expert systems. Further, it also describes considerations in design, development, and 
implementation which are particulary important to real-time expert systems for space applications. 

1. INTRODUCTION 

Current and future generation space systems are called upon to perform complex and more 
sophisticated, and intelligent tasks. The complexity of these systems are increasing in three dimen- 
sions: (1) the number of functions to be monitored and controlled, and also the kinds and volume 
of data to be considered, (2) need for quick response and faster rate of processing, and (3) need for 
more intelligent behavior. 

There is a growing interest and pressing need for using knowledge-based problem solving tech- 
niques to cope with the increased demands on aerospace systems. Proper application of these tech- 
niques can provide better strategies for solving complex problems as discussed by Heer and Lum 
[ 141, and Weinweber [ 181: i) autonomous satellite and space station control, ii) electric, propulsion, 
life support and thermal subsystems fault diagnosis, in-orbit repair/reconfiguration, and servicing, 
iii) intelligent vision and robotic systems with ability to recognize objects and scenes, and to find 
their way in places, whose conditions are not known, and far from earth. 

Real-time expert systems are appropriate where there is an inherent need to enhance system 
autonomy without human assistance/intervention, where conventional techniques cannot make use 
of all relevant information providing intelligent or optimal solutions within a given time. Also, 
they could be used where humans work under severe psychological tensions, suffer from cognitive 
overload, fail to effectively monitor and evaluate all available information quickly, or make high-cost 
mistakes. Further, real-time expert systems are finding applications in domains such as routine 
operation and control, where qualified personnel who are able to evaluate complex situations and 
recommend actions are scare and not available all the time. A good discussion on the need for and 
desired features of expert system to assist human operators in monitoring and control of complex 
real-time process is given by Dvorak (81. 

487 



2. CHARACTERISTICS OF REAL-TIME SYSTEMS 

The term real-time is often easier to recognize than to define. Though we understand the 
meaning of the term within the context of our own work, there is no consensus on a general or 
global definition. Also, there is a lot of misconception about what is meant by real-time. Some 
think that a system is considered real-time if it processes data quickly [26]. Another common usage 
is that real-time means "perpetually fast". 

The feature that defines a real-time system is the system's ability to recognize an external event 
and to give a response by performing a service within a prescribed fixed time, which is dictated by 
application environment and criticality of the event. Response time - the time computer/expert 
system takes to recognize and respond to an external event -, is the most important factor in real- 
time applications. If events are not controlled within the allowed time, the process might go out 
of control and result in catastrophic effects. If given an arbitrary input or event, and an arbitrary 
state of the system, the system always produces a response by the time it is needed, then the 
system is said to be real-time [18]. The desired response time might vary from a few hundreds of 
microseconds to a few seconds, depending on application. Also, real-time expert systems have to 
perform their functions continually without ignoring on-going processes. Real-time systems are also 
known as interrupt driven and reactive systems. When an interrupt mechanism is used to signal 
a request for service/attention, the program/system becomes non-deterministic in that it is not 
possible to predict exactly what it will be doing a given number of clock cycles after initialization 
of the system. 

In expert systems commonly used for medical diagnosis, design, configuration, financial analy- 
&/advice, and other similar applications data is static and time to respond or give a decision is not 
critical. These off-line (sometimes called '8oft real-time') advisory systems operate in non-dynamic 
domains at static points in time (i.e. data base, knowledge base, decision rules, etc. are fixed 
during a decision process). They do not have to keep up with the rapidly changing events in the 
external world, or meet high standards of 'hard' real-time systems used for critical applications, 
such as very high reliability, availability and recovery after crashes. 

The real-time domains have the following special characteristics, posing a set of complex and 
challenging problems for design and development of real-time expert systems [18]. 

0 Dynamic data (non-monotonocity): Incoming sensor data, as well as facts that are 
deduced, do not remain static during the entire run of the program. They may decay in 
validity with time or they cease to be valid because external events have changed the state 
of the system. 

0 Guaranteed response time: The system must be able to respond by the time response 
is needed. Further more, one would like to achieve best response time within the deadline. 
Also, behavior of the expert system should be predictable that the response will fall within 
bounds or constraints. 

0 Asynchronous inputs/interrupts: Real-time systems must be capable of accepting asyn- 
chronous inputs and interrupts from external events. Also, they must be capable of inter- 
rupting an ongoing decision making process and resuming it after higher priority tasks are 
processed. It must have interfaces to gather data from a set of sensors or other (expert) 
systems. These requirements make testing and verification of expert systems more difficult. 

0 Temporal reasoning: Time is naturally an important variable in real-time domains. Typi- 
cally, a real-time system needs the ability to reason about past, present and future (expected 
or anticipated) events, as well as the sequence in which the events had occurred. Therefore, 
knowledge representation schemes should permit representation of temporal relationships. A 
facility should exist for maintaining, accessing and statistically evaluating historical data. 

4 8 8  



0 Integration with procedural components: Must be capable of integrating with con- 
ventional real-time software, which performs tasks such = data compression, signal or data 
processing, feature extraction and other application specific inputs/outputs. 

0 Focus of attention mechanism: When a significant event occurs, a real-time system should 
be able to reprioritize it goals and focus on important goals first. It could involve assigning 
context in which certain rules apply, modifying the set of sensors the system is currently 
looking at and changing the rate at which data is being analysed. 

0 Continuous operation: It must be capable of continuous operation over a long time - 
until stopped by an operator (through commands) or by other specific external events. 
Close attention, therefore, must be paid to garbage collection (efficient recycling of memory 
elements that are no longer needed) and archiving (maintenance) of sensor histories as far 
back as rules require them. Further, garbage collection must be done ’on the fly’, not at 
processor’s discretion. 

0 Explanation facility: It shows how the expert system reached a given conclusion and why 
the conclusion is justified. It gives a sequence of rules and facts that lead to a particular 
conclusion and describes its rationale for doing so. It is like an argument in favour of the con- 
clusion. It is very essential in operator-assisted critical real-time systems, since the operator 
can accept or over-rule the decision reached by the system, after looking at  the explanations 
by the system. Also, it can be used effectively for debugging and maintenance (extension) of 
knowledge base and to inspire confidence in systems performance and reasoning process [33]. 

In addition, constraints on realization of reliable and radiation-tolerant systems for space 
applications using microcomputers, and their processing speed and memory size limitations, is 
a critical bottleneck in applying knowledge-based techniques to real-time domains. Innovative 
methods have to be followed to overcome this bottleneck. The following characterstics are especially 
important to space applications. 

0 Robustness: It refers to gracefully degraded, reather than abrupt or fragile, behaviour of 
expert systems, while dealing with problems at the periphery of its domain (knowledge). 

0 Handling uncertainty or missing data: The system must be capable of handling reason- 
ably and safely the uncertain, incomplete, vague, and missing information. 

0 Reliability: Extremely high reliability of operation in the targeted application environment 
and high degree of correctness and consistency of decisions are very crucial. 

0 Fault tolerance: Tolerance to failures of hardware, software (knowledge base, inference 
engine, operating system, etc.) , and monitoring devices; fail-safe operations and graceful 
degradation 

0 Ease of verification, validation and testing: The system should be designed such that 
it is easily testable under various operational modes, and credible contingencies. Thorough 
verification and validation, and demonstration of proper functioning is very essential before 
actual use. 

489 



3. DESIGN AND DEVELOPMENT 

Development of expert systems should be considered as a system engineering activity encom- 
passing many tasks. It is a ”team work”. The division of expert system life cycle into various 
phases reduces the complexity of design by grouping and ordering main tasks of development [29]. 
It provides guidance on the order in which a project should carry out its major tasks. Many projects 
have come to grief, exceeded budget and schedule, and/or didn’t deliver what was required, because 
they pursued their various development and evolution phases in a wrong way. Division of life cycle 
also helps to enforce an accepted development methodology among various persons involved in dif- 
ferent phases and areas of development. Major phases in life cycles of expert systems development 
include: 

0 Problem identification/specification 

0 Acquisition of domain knowledge from experts, documents, previous case history, etc. 

0 Formulation of knowledge base, knowledge representation 

0 Choice (and/or development) of suitable inferencing/reasoning schemes and procedures 

0 Testing of expert system software (residing in development tools) under static (non-real-time) 
and real-time environments 
- Review human domain experts and specialists; revisions 

0 Integration of hardware deliverables and complied ’expert software’ 

0 Testing under simulated and real-life environments under various modes of operation 
- Reviews by human domain experts and specialists; revisions 

0 Verification and validation: It covers the entire life cycle, and not just testing before delivery 

0 Delivery of flight-worthy Expert System; maintenance, upgrading and evolution 

A typical life cycle of expert system is given in Figure 1. End product and outcome of each 
phase of development of expert system is summarized in Table 1. 

3.1 Problem identification and domain feasibility study 

Expert systems are useful for solving well-formulated problems, for which algorithmic solutions 
donot exists. These problems could be solved by using predetermined methods and heuristics that 
human experts have accumulated over years of learning and experience. An expert system consists 
of two basic elements [13]: a knowledge base, and an inference engine. A knowledge base consists 
of formalized facts and heuristic in a specific problem-solving domain. Inference engine uses this 
knowledge to solve problems. 

The study of suitability of a domain for expert system application is very important and it 
involves the following steps (401: 1) determine the nature of task, 2) determine if experts, who 
can solve the problem and are willing cooperative to share their expertise, exists and 3) determine 
whether their expertise can be modelled via an expert system. Domains suitable for expert system 
application tends to be deep and narrow. If the problems lend themselves to numeric or algorithmic 
solutions, it would be more effective to use those methods, rather than expert systems. However, if 
solution involves more of heuristics and human experts can solve the problem within a reasonable 
time and explain the solution process, expert systems could be considered. In essence one haa to 
see whether the problem is ”do-able” by one or more expert systems. 

4 9 0  



3.2 Requirements engineering 

Expert system system development should begin with a complete, consistent and unambigu- 
ous idea of the needs of the user or the requirements of the system, and they should be well 
documented. The main advantages of the requirements analysis and understanding are: It serves 
as common ground for agreement between the developer and user/coustomer and helps in avoiding 
misunderstanding between them. It helps in early detection of errors. A survey [l] indicates that 
about thirty percent of errors in a major software intensive projects are due to faulty requirement 
specifications. It also helps the programmers to check that all the requirements are met. Further, 
it helps in defining requirements and specifications of the various real-time interfaces. In addition, 
it helps in generating good test cases and judging the quality of test cases actually used. Require- 
ments of the system should be reviewed prior to the next phase of activity, by experts and project 
managers, system integrators, developers of other interfacing systems and must be agreed upon. 
The persons who are actually going to use the system during the operational phase should also be 
involved in this task.  

3.3 Knowledge acquisition 

The essence of an expert system is acquiring and encoding knowledge about a domain and 
then using it to solve problems in that domain. Knowledge elicitation has been cited as one of the 
bottlenecks in expert system development. Knowledge acquisition is the transfer of problem solving 
expertise from several sources, which include human experts, text books, literature, data bases, case 
histories and previous experiences. Of all these sources, the expertise of human specialists forms 
the main target of knowledge acquisition. Various techniques for acquiring knowledge from experts 
can be found in [7, 25, 271. 

3.4 Knowledge representation 

Knowledge representation refers to structuring of the acquired knowledge into computer rec- 
ognizable form. Several knowledge representation models [13, 331 such as rules, semantic networks, 
and frames are being used, and each model has both advantages and disadvantages depending 
upon characteristics of the domain knowledge. Also, there are schemes which use a mixture of 
these representation schemes, to gain maximum benefits. 

Various principles of software engineering [30, 31, 40) could be used in the design of expert 
system. They include: information hiding, separation of concerns, layering, and modularity. 
The principle of information hiding suggests that the group of rules hide internal details about 
the system. Also, while designing rules, it is better to separate different functionalities and use 
different rules to implement these functions. It is called the principle of separation  concern^. 

The principle of layering suggests that system should be considered as composition of layers. 
Any layer is aware of only the layer beneath it. The activation of rules at the higher level due 
to activation of rules at the lower level should be minimal. Such practice not only simplifies 
implementation, but also simplifies testing. 

3.5 Testing and validation 

” A system can best be designed if testing is interlaced with designing instead of being used after 
the design”. The purposes of testing and evaluation include: i) guaranting satisfactory performance 
of the system, ii) locating weaknesses in the system, so that further improvement can be done by 
making knowledge-base richer and problem solving strategies more powerful, iii) evaluating different 
functions, and iv) evaluating correctness of the results, response time, etc. Testing creates tangible 
degree of trust in system reliability. However, difficulties in defining the correct test strategy causes 
errors to go undetected. Functionality and design bugs not caught during development testing have 

491 



been found after prolonged time when the system is in actual use. 

There are two basic approaches to testing: Block boz and white boz methods. The block 
box approach is based on specifications and functional requirements analysis and input output 
characteristics [16]. The white box method is driven by the way the system (rules, inference 
strategies, etc.) are designed and implemented. The block box testing is performed by generating 
a test case (a set of test input) (111. Test case is generally prepared manually based on specification 
of the system and when available from real-life data. The white box testing focuses on correctness 
of implementation, without much regard to overall system functionality. A combination of both 
the black box and white box techniques would be most effective. 

By documenting test comprehensiveness goals in test plans one can lower the probability of 
missing tests (see IEEE Standard 829). Test comprehensiveness are defined in terms of four types of 
coverage: requirements, input domain, output range, and structure. Most probable errors in testing 
process are: 1) creating too few tests (they leave many bugs undetected in the delivered system), 
2) creating wrong tests (they detect ’wrong bugs’ rather than ’right bugs’ that are critical and 
cause serious trouble), and 3) creating too many tests (doing unnecessary and redundant checks. 
Redundant testing can be avoided if one finds the test coverage each test provides). The IEEE 
standard 1008 for software unit testing gives some guidelines for testing. 

Verification and validation (VaCV) of expert system is one of the very important and difficult 
task of development of expert systems. Verification refer to confirming that the system has been 
developed correctly according to accepted methodology and system requirements, while validation 
means ensuring that system correctly serves the purpose for which it is intended. A V&V process 
is expected to catch user input errors, incorrect rules and facts, redundant rules, incorrect behavior 
of inference engine, and incorrect output after having reached a correct conclusion. ’V&V is not 
just a one day concern just before testing or delivery of a system; it spans the entire life cycle of 
expert system’. Currently , there is a lot of interest and concern in this area, and more information 
can be found in [ 3, 5,6 9, 10, 21-24, 28 36, 371. 

4. MAINTENANCE OR SYSTEM EVOLUTION 

Many expert system applications are characterized by lack of consistent and complete knowl- 
edge at the representation level, especially at  the beginning of a project. Hence, it becomes necessary 
to modify existing knowledge base continually and maintain its consistency as new knowledge is 
imparted. Though this is a very important part of expert system development and operation [34], 
it is often gets least attention, Unlike in conventional software, rules and knowledge about the 
domain evolve with experience of their use, and hence, may have to be modified more often than 
algorithms. Belief support of rules might vary with feedback from earlier decisions. Further, valid- 
ity of some rules, which might be time-dependent, can change over time, necessitating modification. 
Also, modification becomes necessary to correct errors found during various phases of development 
and during actual operation in the targeted environment. 

Thus, as given by Ramamurthy [29], expert system maintenance could be perfective which 
encompasses changes asked by the user, adaptive which encompasses changes in environment, and 
corrective which corrects undiscovered errors and mistakes. In larger systems, about 65 percent of 
maintenance is perfective, 18 percent is adaptive, and 17 percent is corrective [ZO]. 

Mostly maintenance of expert system have to done by people not involved in the original 
development and hence they have to learn first about the system they are planing to maintain. 
This calls for better clarity, accuracy and completeness of different kinds of documents, besides 
skill and experience of people concerned. The more difficulty to understand the system, the more 
difficult it is to maintain, and hence, higher the maintainability risk. Many people prefer to call 
this phase as ” system evolution” or ” system enhancement” phase, rather than ’maintenance”. 

492  



Most expert systems, being large software projects, will suffer from what is known BS deadline 
efTect, limiting maintainability and reusability (29). Most projects have completion deadlines. In the 
debugging and testing phase, with deadlines near, top priority of developers is to fix errors/bugs. 
The worst part is that many difficult bugs tend to get detected near deadlines. This forces to resort 
to ”quick and dirty” fixing and hence systems loose their maintainability. Such practices have to 
be avoided. 

5. SUMMARY 

Though expert systems have found wide spread use in many applications, their use in critical 
real-time applications are very few. Development of real-time expert systems are much more difficult 
than the traditional consultative and advisory expert systems. Further, testing and validation of 
them still remains as a major problem. Expert systems cannot solve all types of problem. It is 
very important to understand the scope and limitations of current expert systems technology (both 
hardware and software) for critical aerospace applications, which pose many constraints. 

Knowledge elicitation is a very important activity and a lot of attention has to be paid to it, as 
the knowledge is the key to success of an expert system. Also, experts must be cooperative, invest 
time, and must help in testing the system. Good design, documentation, adherence to accepted 
development methodology, enforcement of discipline in program design and modifications, and 
thorough testing and validation are very important for successful operation of expert systems in 
space. 

Acknowledgements 

This work was done while the author held a National Research Council-NASA Ames Research 
Center Research fellowship. The author thanks Hamid Berenji and Terry Grant for their careful 
reviews and comments on draft of this article. He is also grateful to Dr. Henry Lum for his guidance 
and support. 

References 

1. Basili V.R, and Perricone, ” Software errors and complexity: An emprical investigation”, Comm. ACM, 

2. Berm G.M, ”Assessing software maintainability”, Communications of ACM, January 1984, pp 14-23 
3. Boehm B.W, ”Verifying and validating software requirements and design specifications, IEEE Software, 

4. B.W. Boehm, ”Spiral model of software development and enhancement,” Computer, May 1988 
5. Culbert C, et. al., “Approaches to verification of rulebased expert systems,” SOAR’87, NASA-CP- 

6. Culbert C, et. al., ”An expert system methodology which supports verification and validation,” IEEE 

7. Evanson S.E, “How to talk to to an expert,” AI Expert, Feb. 1988, pp 36-41 
8. Dvorak, “Expert systems for monitoring and control,” Proc. Artificial Intelligence and Advance Tech- 

9. Gaechnig J, et al., “Evaluation of expert systems: Issues and case studies,” in D.A. Waterman, et al. 

Jan. 1984 

Jan. 1984, pp 75-88 

2491, August 1987 

Conf. on AI Applications, 1987 

nology Conf., Long Beach, Calif. April 1987. 

(ed.) Building Expert Systems, Addison Wesley, 1983 
10. Geissman J, “Verification and validation of Expert systems,” AI Expert, Feb. 1988 
11. Goodenough J.B, and Gerhart, “Toward a theory of test data selection,” IEEE lkans. Software Engi- 

12. Green P. E., ”Resource limitation issues in real-time intelligent systems,” Proc. SPIE Conf. on Appli- 
neering, Vol. S E 1 ,  June 1975, 

cations of artificial Intelligence, Vol. 635, Orlando, F1, April 1986 

493 



13. Harmon P and King D, "Expert systems," John Wiley and Sons, New York, 1985 
14. Heer L and Lum H, "Raising the AIQ of the space station," Aerospace America, Vol. , Jan. 1987, pp 

15. Heny M.S.H, " Why evolutionary development," Future Generation Computing Systems, No.3, pp 103- 

16. Howden W.E, "The theory and practice of functional testing," IEEE Software Sep. 1985, pp 6 1 7  
17. Irland E.A, " Assuring quality and reliability of complex electronic systems: Hardware and Software", 

18. Laffey T.J, "Real-time knowledge-based systems", AI Magazine, Spring 1988, pp 27-45 
19. Leinweber, D "Expert systems in space," IEEE Expert, Vol. 2, No.1, pp 2636, 1987 
20. Lients B.P and Swanson E.B, " Software maintenance management", Reading, MA: Addision-Wesley, 

21. Miller E and Howden W.E, "Software testing and validation techniques," IEEE Computer Society 

22. Nguyen T, "Knowledge base verification," AI Magazine, Summer 1987 
23. Nguyen T.A, "Verifying of consistency of production systems," Proc. Third cod. on AI Applications, 

24. O'Keefe, et. al., "Validating expert system performance," IEEE EXPERT, Winter 1987 
25. Olson J.R and Ruter H.H, "Extracting expertise from experts: Methods of knowledge acquisition," 

Expert systems, Aug. 1987, pp 152-168 
26. O'Reiley, C.A, and Cromarty A S ,  "Fast is not real-time: Designing effective real-time AI systems," 

Proc. SPIE 548, 1985, pp 249-257 
27. Prerau D.S, "Knowledge acquisition in the development of large expert systems," AI Magaeine, Vol. 

8, Summer 1987, pp 43-51 
28. Ramamurthy C.V, et. al, "Application of a methodology for development and validation of reliable 

process control software," IEEE 'Jhans. Software Engineering, Vol. SE7,  No.7, Nov. 1981, pp 537-555 
29. Ramamurthy C.V, et.al., " Programing in large," IEEE trans. Software Engineering, Vol. SE12, No.7, 

July 1986, pp 769-783 
30. Ramamurthy C.V, et. al., "Software development support for AI programs," Computer, Jan. 1987, pp 

31. Reeker L.H, et.al., " Applying software engineering to knowledge engineering (and vice-versa), 27th 

32. Shirely R.S, "Some lessons learned using expert systems for process control," IEEE Control systems 

33. Special issue on knowledge representation, Computer 1983 
34. Soloway, E, et.al. "Assessing the maintainability of XCON: Coping with the problems of a very large 

rule-base," Proc. AAAI-1987, Seattle, WA, July 1987 
35. Sorrells, " Time-constrained inference strategy for real-time expert systems," IEEE Proc. WESTEX 

36. Stachowits R.A, et. al. "Building validation tools for knowledge-based systems," First annual workshop 

37. Suwa M, et al. "An approach to verifying completeness and consistency in a rule based expert system," 

38. Turner M, "Real-time experts", System International, Vol. 14, No.1, 1986 pp 55-57 
39. Wright, M, et.al., "An expert system for real-time control," IEEE Software, March 1986, pp 1624 
40. Zualkernan, et.al., "Expert systems and software engineering: Ready for marriage?," IEEE Expert, 

1617 

109, 1987 

Proc. IEEE, Vol. 76, No.1, Jan. 1988, pp 5-18 

1980 

Tutorial, 1981 

Feb.1987, pp4-8 

30 - 40 

Annual Technical ACM Symposium, Washington D.C., 1988 

Magazine, Dec. 1987, pp 11-15 

1985, pp i33e i34 i  

on Space Operations Automation and Robotics, SOAR'87, NASA CP-2491, 1987 

AI Magasine, Fall 1982, pp16-21 

Winter 1986, pp 25-31 

4 9 4  



r----- -1 
I I 
! I 

I 

I 
I 

I 
I 
I 
I 
I 
I 

1 

I 
I 
I 
I b I 

Q I 
1 
I 
I 
I 

495 



Table I: Outcome of each phase of life cycle of an expert system 

I Outcome 
Phase of life cycle 

Study of suitability of the domain 

Requirement Analysis/Engineering 

Requirements Review 

Whether the problem can be tackled 

Clear understanding of needs and 
requirements of targeted system, 
Interface specifications 
Documents: 
- Functional Requirements Specifications 
- Test requirements - A preliminary study 

Knowledge Acquisition Documented expertise (in natural language) 

Knowledge verification & Review 

Coding Knowledge & Desiging 
problem solving strategies (Inference Engine) 

Design Review 

Testing in development environment 
under off-line simulated conditions 

Testing under real-time simulated 
environments 

Validation & Review 

'Ikansport to target hardware 

Testing embedded system under 
simulated (static and dynamic) environments 

Testing under actual environment & 
Validat ion 

! Test and readiness Review 
I 

Certified expertise 

Knowledge-based system design 
Design document 

Removal of bugs/errors, inconsistencies 
Test report, record of modifications 

Checks and verifies time-dependent 
features - synchronization, response time, etc. 
Test report, record of modifications 

Certified Compiled knowledge 
~~ 

Embedded expert system 

Flight-worthy Expert System 

Final documents with relevant revisions 

Desired operations 
- Feedback for correction, further improvement 

Flight operation 
(Maintainance and reuse) 

- Review & authorization of modifications 
Document update 
Evolving expert system in use 

I 

496 



INDEX OF AUTHORS 

Abernethy, Ken 
Adamson, J .  M. 
Anderson, Audie 
Armstrong, William W. 
Asdj odi , Maryam 

Barry, John M. 
Bell, Benjamin 
Bharwani, S .  
Biegl, C. 
Blanchard, Mary 
Blevins, E. 
Blokland, W. 
Bond, W. E. 
Bosworth Jr., Edward L 
Brady, Mike 
Bridges, Susan 
Busse, Carl 

Casadaban, Cyprian 
Cellier, Francois 
Chang, Chin-Liang 
Chen, Chu Xin 
Collard, Philippe E. 
Colornbano, Silvano 
Combs, Jacqueline 
Cook, G. E. 

Das, A .  
Davis, Stephen 
Deugo, D. 
Dutta, Soumitra 

Eilbert, James L. 

Fennelly, A. J .  
Fernandez, K. 
Fiala, Harvey E. 
FOO, Norman Y. 
Ford, Donnie 
Freeman, Michael S .  
Friend, Robyn C. 

Gerstenfeld, Arthur 
Gettig, Gary A. 
Goforth, Andre 
Gorney, D. J. 
Graves, Sara J. 
Groundwater, B. 

451 
163 
125 

131 
289 

193 
349 
93 
243 
253 
93 
243 
29, 271 
57 
125 
323 
356 

183 
313 
191 
233 
411 
371 
191 
303 

69 
205 
43 1 
95 

349 

57 
303 
381 
261 
125 

391 
39, 59 

75 
47 
411 
457 
173 
67 

4 9 7  



Hacke, Keith 
Hays, Dan 
Heinsheimer, Thomas F. 
Hooper , James W. 
Hung, Chaw-Kwei 
Hydrick, Cecile L. 

Johannes, James D 
Jones, J. U. 

Kao, Simon M. 
Karsai, G. 
Kiss, P. A. 
Koen, B. V. 
Koons, H. C. 
Krishnamurthy, C .  

Laffey, Thomas J. 
Lee, Chung-Mong 
Lee, Sung Yong 
Lembeck, M. F. 
Loda', Antonio G. 
Loganantharaj , Raj L. 

MacDonald, James R. 
Marapane, Suresh 
Marshall, G. 
Matlin, Sam 
McKee , James W. 
Mohamed, Ahmed S. 
Morris, Keith 
Murugesan, S .  
Mutammara, A. 

Nogueira, C. A. M. 

Oliveira, C. A. 
Oliveira, P. P. B. 
Oppacher, F. 
O'Reilly, Daniel 

Padalkar, S. 
Patrick, Clint 
Patterson-Hine, F. A. 
Pong, Ting-Chuen 
Prince, Mary Ellen 
Pulaski, Kirt 

271 
107 
391 
131 
19 

173 

141, 323, 331 
97 

369 
115, 303 
59 

477 
457 
243 

369 
231 
107 
67 

221 
151 

141 
233 
163 
421 
85 

289 
245 

303 
1, 487 

441 

441 
441 
431 
467 

115 
125 
477 
231 
331 
183 

4 9 8  



Ranganath, Heggere 
Rao, Anand S .  . 

Read, Jackson Y. 
Rockowiak, Daniel 
Rodrigues, V. 
Rosenthal, Don 
Rozenblit, Jerzy W 
Ruokangus, Corinne 

Sabharwal, C. L. 
St. Clair, D. C. 
Sarsfield, L. 
Sary , Charisse 
Schmidt, James L. 
Schroer, Bernard J 
Shiva, S .  G. 
Siegel, Neil G. 
Simoni, P.  0. 
Slagle, James 
Springfield, J . 
Stachowitz, Rolf 
Sterling, Leon 
Stock, Todd 
Sticklen, Jon 
Sztipanovits, J. 

Tillotson, Brian 
Trivedi, Mohan M. 
Tseng, Fan T. 
Tyagi , Raj esh 

Vezina, James M. 

S .  

C. 

Walls, J. 
Wang, Caroline 
Weitzenkamp, Scott M. 
Williams, Robert 
Wogrin, Nancy 
Wolfsberger, John W. 
Wright, R .  Glenn 
Wu, Chuan-lin 

Yarbrough, Kevin 
Yeh, Show-Way 
Young, Laurence 

Zander, Carol S .  
Zeanah, Hugh 
Zeigler, Bernard P.  
Zhang, S .  X. 

221 
261 
369 
341 
44 1 
371 
313 
5 

271 
29, 271 
67 
193 
369 
153 
97 
391 
441 
231 
303 
191 
211 
191 
29 
115, 243, 303 

281 
233 
153, 207 
207 

211 

93 
125 
369 
467 
371 

8 5 ,  107, 153 
253 
19 

467 
19 
371 

401 
125 
313 
15 3 

4 9 9  



1 REPORT NO. 2. GOVERNMNT ACCESSION NO. 

NASA CP-3013 
0. T l T L E  AND SUBT lTLE 

Fourth Conference on Artificial Intelligence for 
Space Applications 

7. AUTHOR(S) Compiled ~y S .  L. 0 1  Dell, J. S.  ent ton, . 
and M. Vereen 

3. PERFORMlNG ORGANIZATION NAME AND ADDRESS 

George C. Marshall Space Flight Center 
Marshall Space Flight Center, Alabama 35812 -. 
i (3. TYPE OF REPOR-i & PERIOD COVERED 

2t SPONSORING AGENCY NAME AND ADDRESS 

3. RECIPIENT'S CATALOG NO. 

5. REPORT DATE 

October 1988 
6. PERFORMlNG ORGANIZATION CODE 

8.PERFORMING ORGANlZATlON REPORr 

10. WORK UNIT NO. 

M-599 
11. CONTRACT OR GRANT NO. 

Conference Publication National Aeronautics and Space Administration 
Washington, DC 20546 

SPONSORING AGENCY CODE 

20. SECURITY CLASSIF. (of thi* PW) 21. NO. OF PAGES 19. SECURlTY CLASSIF. (of thi. ?*Part) 

512 Unclassified Unclassified 

I 

SUPPLEMENTARY Conference Director : J . S . Denton, Information and 
Electronic Systems Lab., Marshall Space Flight Center. 
Co-sponsored by the University of Alabama in Huntsville. 

22. PRICE 

A2 2 

16. ABSTRACT 

Proceedings of a conference held in Huntsville, Alabama, on November 
15-16, 1988. The Fourth Conference on Artificial Intelligence for 
Space Applications brings together diverse technical and scientific work 
in order to help those who employ AI methods in space applications to 
identify common goals and to address issues of general interest in the 
AI community. Topics include the following: space applications of 
expert systems in fault diagnostics, in telemetry monitoring and data 
collection, in design and systems integration; and in planning and 
scheduling; knowledge representation, capture, verification, and 
management; robotics and vision; adaptive learning; and automatic 
programming. 

18. DlSTRlBUTlON STATEMENT 17. KEY WORDS 

Artificial Intelligence 
Computer Vision 
Design Data Capture 
Rob0 tics 
Space Station Automation 

Unclassified/Unlimited 
Subject Category: 61 


