6,261 research outputs found

    Acoustic Scene Classification by Implicitly Identifying Distinct Sound Events

    Full text link
    In this paper, we propose a new strategy for acoustic scene classification (ASC) , namely recognizing acoustic scenes through identifying distinct sound events. This differs from existing strategies, which focus on characterizing global acoustical distributions of audio or the temporal evolution of short-term audio features, without analysis down to the level of sound events. To identify distinct sound events for each scene, we formulate ASC in a multi-instance learning (MIL) framework, where each audio recording is mapped into a bag-of-instances representation. Here, instances can be seen as high-level representations for sound events inside a scene. We also propose a MIL neural networks model, which implicitly identifies distinct instances (i.e., sound events). Furthermore, we propose two specially designed modules that model the multi-temporal scale and multi-modal natures of the sound events respectively. The experiments were conducted on the official development set of the DCASE2018 Task1 Subtask B, and our best-performing model improves over the official baseline by 9.4% (68.3% vs 58.9%) in terms of classification accuracy. This study indicates that recognizing acoustic scenes by identifying distinct sound events is effective and paves the way for future studies that combine this strategy with previous ones.Comment: code URL typo, code is available at https://github.com/hackerekcah/distinct-events-asc.gi

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Robust Sound Event Classification using Deep Neural Networks

    Get PDF
    The automatic recognition of sound events by computers is an important aspect of emerging applications such as automated surveillance, machine hearing and auditory scene understanding. Recent advances in machine learning, as well as in computational models of the human auditory system, have contributed to advances in this increasingly popular research field. Robust sound event classification, the ability to recognise sounds under real-world noisy conditions, is an especially challenging task. Classification methods translated from the speech recognition domain, using features such as mel-frequency cepstral coefficients, have been shown to perform reasonably well for the sound event classification task, although spectrogram-based or auditory image analysis techniques reportedly achieve superior performance in noise. This paper outlines a sound event classification framework that compares auditory image front end features with spectrogram image-based front end features, using support vector machine and deep neural network classifiers. Performance is evaluated on a standard robust classification task in different levels of corrupting noise, and with several system enhancements, and shown to compare very well with current state-of-the-art classification techniques

    Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    Get PDF
    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments
    corecore