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Abstract—The automatic recognition of sound events by com-
puters is an important aspect of emerging applications such
as automated surveillance, machine hearing and auditory scene
understanding. Recent advances in machine learning, as well as
in computational models of the human auditory system, have
contributed to advances in this increasingly popular research
field. Robust sound event classification, the ability to recog-
nise sounds under real-world noisy conditions, is an especially
challenging task. Classification methods translated from the
speech recognition domain, using features such as mel-frequency
cepstral coefficients, have been shown to perform reasonably well
for the sound event classification task, although spectrogram-
based or auditory image analysis techniques reportedly achieve
superior performance in noise. This paper outlines a sound event
classification framework that compares auditory image front end
features with spectrogram image-based front end features, using
support vector machine and deep neural network classifiers.
Performance is evaluated on a standard robust classification task
in different levels of corrupting noise, and with several system
enhancements, and shown to compare very well with current
state-of-the-art classification techniques.

Index Terms—Machine hearing, auditory event detection

I. INTRODUCTION

R ICHARD F. Lyon, in an IEEE Signal Processing Mag-
azine article of September 2010 [1], outlined the broad

research field of machine hearing, in particular advocating a
bio-mimetic approach in which machines attempt to model
the human hearing apparatus. In fact, he and his group have
since published a significant amount of research using this
approach [2]–[5]. In general, the published systems perform
ear-like front-end auditory analysis, feature extraction, feature
size reduction, followed by application of machine learning
techniques. The stated application is for the search or query
of very large scale audio databases, and thus the efficient
representation of auditory features is of great importance in
their work. This has led to the use of high performance sparse
feature coding techniques allied to suitable machine learning
methods. One of the defining features of these methods is a
front-end ear-like audio analysis generating features extracted
from a stabilised auditory image (SAI) [6].

By contrast to the task of content-based audio retrieval, the
current paper is concerned with sound event classification.
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This is not a retrieval task, but rather one of classification,
detection or generalisation. The requirement is that a trained
system, when presented with an unknown sound, is capable of
correctly identifying the class of that sound. Furthermore, that
the techniques should be robust to interfering acoustic noise.

In fact, many researchers have worked on sound event
classification over the years, using a myriad of techniques and
features. These range from parametric signal processing-based
approaches [7]–[9] to automatic speech recognition (ASR)
inspired methods [10] which often make use of mel-frequency
cepstral coefficients (MFCCs) [11] and similar features. One
promising new approach uses time-frequency domain spec-
trogram image features (SIF), introduced by Jonathan Den-
nis et. al. [12]–[15]. As with Lyon et. al., Dennis et. al.
use biologically inspired front-end processing, novel feature
extraction techniques, allied with various back-end classifiers
and associated machine learning techniques. Unlike the former
approach, the systems introduced by Dennis et. al. are sound
event detectors or classifiers. They have been evaluated under
real-world conditions including severe levels of degrading
acoustic background noise.

In this paper, both SAI [6] and SIF will be evaluated for
standard robust sound event classification tasks. The former
could loosely be described as sound event classification in-
spired by the retrieval approaches of Lyon et. al. [3], which we
call the Google-SAI system. The latter SIF methods are closer
to the work of Dennis [15]. In each case, the front end analysis
and feature extraction operations are followed by back-end
machine learning methods. We will primarily compare the use
of support vector machines (SVM) and deep neural network
(DNN) classifiers.

To the best of the authors’ knowledge, this paper contributes
the first DNN classifier for the time-frequency features of
SAI and SIF for sound event detection and classification. It
is also the first to apply the Google-SAI feature extraction
techniques of Lyon et. al. [3] for sound event detection and
classification as opposed to retrieval – and this is evaluated
with both SVM and DNN back-end classifiers, using several
feature arrangements and scoring refinements. Results will
show that the novel method developed from this study, using
a DNN classifier with simple de-noising, compares very well
to other published techniques on standard classification tasks.

The remainder of this paper is organised as follows. Section
II discusses current sound event classification and sound
retrieval methods in more detail. Section III details the SAI,
SIF features and SVM, DNN classification frameworks which
are then evaluated in Section IV. Section V will analyse
performance results and explore the effect of changing many
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system parameters. Section VI will conclude the paper.

II. CURRENT METHODS

It may be convenient to divide sound event detection meth-
ods using two criteria relating to the features and classification
algorithms used. Broadly speaking, earlier research in this field
tended towards use of relatively simple audio features [16]
such as zero crossing rate, frame power, sub-band energy, pitch
and so on [8]. Often a very simple heuristic back-end was then
used to statically combine the features to reach a decision.
To improve on static decision-making, fuzzy classifiers were
later introduced. In fact, for a small number of classes, such
techniques can be efficient and perform reasonably well.
Therefore, most papers using such methods were restricted
to evaluating performance with less than 10 sound classes.

More recently, machine learning techniques have increas-
ingly been adopted to classify combined features in ways
beyond simple logical heuristics, enabling more sound classes
– typically up to 20 – as well as yielding higher performance
[17]. With the ability to learn non-obvious relationships be-
tween input features and output class, the adoption of machine
learning techniques also naturally encouraged the use of more
complex input features [18] including MFCCs [7] and per-
ceptual linear prediction (PLP) coefficients [17]. Classification
(and recall) techniques for such systems have, in recent years,
most commonly involved support vector machines (SVM)
[17], [19], Gaussian mixture models (GMMs) [20] or multi-
layer perceptrons (MLP) [21]. Research in machine hearing
is often driven by the success of techniques used for ASR,
hence a number of published techniques which make use of
MFCC features [11], hidden Markov model toolkit (HTK) and
associated back-end classifiers [15].

Meanwhile, another research thread was being built around
biologically-inspired models of the human auditory system.
Although PLPs, as well as MFCCs, involve non-linear process-
ing designed to model the frequency response of the human
ear, the new research was motivated to additionally account
for time-domain and strobed temporal integration effects, and
perhaps to better model the auditory signal as received by the
human brain. For example, Patterson et. al. [22] released the
auditory image model (AIM) in 1995, which was used as a
basis for the SAI of Walters [6] and for many of the Google-
SAI systems developed by Lyon et. al. [2]–[5]. AIM and SAI
use was encouraged with the Matlab source code being freely
available from the University of Cambridge [23], and a C++
language version of SAI available from Google [24].

While SVM classifiers have a long history in this, and
similar research domains, DNN systems [25], [26] are much
newer, but have achieved impressive performance for speech-
related classification tasks [27]–[29] as well as for acoustic
information retrieval [30]. A reasonable hypothesis is that
they will similarly perform well for non-speech sound event
detection and classification. This paper will thus explore the
hypothesis further.

A. SAI with PAMIR
A separate stabilised auditory image (SAI) sequence is

formed for each distinct sound recording, and is intended to

Fig. 1. Block diagram of PAMIR-based recall system using front-end SAI
analysis.

model the effect of the sound on the physiology of the ear.
Initially, a sound segment is analysed to form an AIM [22]
representation. The processing steps for this begin with pre-
cochear processing [31] which models many of the physiologi-
cal effects outlined in [32] relating to the outer and middle ear.
This is followed by basilar membrane modelling (i.e. cochlear
modelling [16]) and neural activity pattern processing, for
which several alternative models are available to translate hair
cell movement into nerve impulses. For the results presented
in this paper, a gammatone model is applied [33], followed by
half-wave rectification.

The next step to form an SAI is to perform strobed temporal
integration on the AIM output, adding another dimension
representing delay to the AIM data [6]. In effect, this is mod-
elling the emphasised response of repetitive audio triggers such
as fine-grained sound intervals – sounds that may otherwise
be inadequately represented by mean responses. The default
strobe-finding process performs across a 35 ms long search
space [23]. The resulting SAI is a sequence of two dimensional
frames. Each frame has dimensions of frequency and delay lag,
and is analogous to a short-time spectrogram. Although delay
lag, window size and resolution used for the analysis may be
configured, the system described in this paper results in SAI
frames of dimension 78×561, with one frame produced every
35 ms and each ‘pixel’ being represented by an 8-bit intensity.

One of the innovations made by Walters [6] was in discov-
ering that each SAI frame can be reasonably well represented
by its marginals, meaning a concatenated vector comprising
the mean-of-rows and mean-of-columns. We will later present,
in Section IV-B, experimental results from using Minkowsky
summation instead of a simple mean, as well as the effect
of concatenating variance information to the representative
vector. Additionally, we have investigated histogram equal-
isation, vector normalisation and subtractive de-noising of
this representative vector. The large dimensionality reduction
implicit in reducing each SAI frame to a vector of marginals is
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important when considering large scale audio retrieval, but is
less important to small and medium scale audio classification
applications. A second innovation from Walters is that further
dimensionality reduction is possible by replacing the whole
SAI by multi-resolution regions from the image [6]. This is
accomplished by dividing the SAI into a series of different
sized wide and short rectangles (which have narrow frequency
span but wide delay lag span) as well as tall narrow rectangles
(which are located around a narrow region of delay lag, but
have a wide frequency span). In practice, the various rectangles
are down-sampled to match the size of the smallest one before
each is represented by its marginals as mentioned above. The
location, number and size of rectangles is configurable. 49
rectangles of size 16×32 were used in [2], with results from
many other configuration reported in [6]. The authors of the
current paper have also investigated the effect of rectangle size,
number of rectangles and resolution, discussed in Sections
III-A and IV-B.

To further improve efficiency, the large-scale systems [4]
perform vector quantisation (VQ) [16] or matching pursuit
[34] on each rectangle, and represent the output as a sparse
code. In this paper, both VQ and non-VQ results will be
presented. Where VQ is used, performance tends to increase
with codebook size, saturating at a size of around 512. A size
of 256 was used in [4].

The final aspect of the Google-SAI systems is the machine
learning algorithm. All published systems appear to make use
of the passive aggressive model for image retrieval (PAMIR)
[35]. The stated motivation is the prior availability of PAMIR,
coupled with its demonstrated good performance at the desired
recall task (in fact, PAMIR had performed well for MFCC
features in [11], although tests by the authors of the current
paper – not reported here – on a large Freesound database
suggest that k-NN is able to outperform PAMIR when using
SAI features).

The basic structure discussed here will be expanded in
Section III to form an audio classification system which will
then be evaluated against similar methods. In this paper,
although we explore many permutations of the SAI front end,
the sharp difference to prior work is the use of SVM and, in
particular, DNN classifiers (as opposed to the shallow sparse
coding technique with PAMIR used in Google-SAI).

B. Dennis SIF with SVM

The SIF feature used by Dennis et. al. [14] begins with
either a linear or log scaled spectrogram which is then nor-
malised before being represented using a pseudo colourmap
(i.e. three-way thresholding is applied). The colourmap image
is then decomposed into orthogonal primary colour compo-
nents, each of which emphasise a particular intensity region
of the spectrogram image. The three primary images are then
divided into regions – in [12], 9×9 blocks are used, each
of which are represented in turn by their second and third
central moments. The feature vector is thus 9×9×3×2=486
dimensional, which is classified using one-against-one linear
SVM [12], [15]. The current paper adopts the same standard
classifier evaluation task as Dennis [15] (including background

noise conditions), thus allowing a direct comparison of per-
formance among many different methods. However the major
differences are that (i) we will implement an SIF feature
directly from a downsampled spectrogram, without division
into blocks or representation by central moments and (ii)
we will apply deep learning techniques to the classification
problem. One significant point is that the new SIF feature used
with DNN incorporate additional temporal context information
that appears to be advantageous for classification in noise.

C. Performance criteria

For machine hearing, a number of performance criteria
are possible depending upon the target application. For the
PAMIR-based systems [5], recall performance is computed
rather than classification per. se. Furthermore, the systems are
evaluated by ranking the output candidate tags and identifying
the proportion of top-k results achieved – where a correct tag
lying within the highest k scoring outputs is considered to be a
correct result. Performance curves may be plotted for a range
of k that is typically between 1 and 20 [11].

Having a classification target, the current paper will adopt
the evaluation method, experimental dataset, and scoring
methods of Dennis et. al. [14]. These will allow a direct
comparison between several techniques from different authors
which have been evaluated under the same conditions (this
will be presented in Section V-A). The use of a defined
dataset, from the Real Word Computing Partnership (RWCP)
[36] allows for reproducible comparisons. The dataset and
classification task is described fully in Section IV.

III. THE PROPOSED FRAMEWORK

In this paper, we will first investigate the use of Google-
style SAI features with a back-end SVM classifier, and use
this baseline to evaluate the effect of several modifications
to the feature extraction and representation process. Next, the
SVM classifier in the best performing system is replaced with
a DNN back-end. Finally, the DNN classification performance
is evaluated with a number of different feature representations
that are derived from an SIF. The performance evaluation will
be described in Section IV. First, the following subsections
will describe the basic building blocks used, namely the two
types of features (SAI and SIF) and two types of classifier
(SVM and DNN).

A. SAI features

The SAI features used in this work are derived as defined in
[4] using AIM-C [24], extracted over 35 ms windows to yield a
real-valued matrix for each analysis frame. By default, the non-
linear frequency resolution is 78 and the time lag resolution is
561. In [4], multiple rectangular regions were extracted from
each SAI according to a ‘start-small and then double’ heuristic
outlined in [6], starting with an initial window of size D =
16 by B = 32. In total R = 49 rectangular regions were
extracted and then downsampled to match the D ×B size of
the initial window, and the marginals of each region computed
as discussed in Section II-A to yield a representative feature
vector of size D +B, i.e. 16 + 32 = 48 per SAI frame.
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Fig. 2. Block diagram of audio event classification system using front-end
SAI and SIF analysis.

For the Google-SAI PAMIR-based recall systems [4], the
features from each rectangular region are vector quantized
using a separate codebook of size 256 for each feature. A
sparse representation is then constructed by concatenating
the 49 VQ output vectors, forming a super-vector of length
12, 544. In practice, this has a sparsity of 99.6%. Since there
are multiple analysis frames per sound file, and sound files
have different length, the sparse vectors from all analysis
frames within the sound file are then summed to yield a
slightly less-sparse representative feature vector.

A block diagram of the original PAMIR system was shown
in Fig. 1. When operated and evaluated as a classifier, the sys-
tem has three distinct phases of operation, which are namely
the extraction of features from all sounds which are partitioned
into training and testing datasets. Next, the former sounds
are used to train PAMIR. Finally, the remaining sounds are
used for evaluation. Cross-validation ensures that the particular
allocation of files into training and testing regions does not
impact results score. The standard training process is explained
in [6].

Using the same feature vectors with an SVM classifier, we
noted that performance was significantly better when using
real-valued marginals from all rectangular regions to represent
a single analysis window, instead of performing VQ and
presenting a sparse vector. Thus, the classifier was trained with
data from many analysis windows for each sound file, having a
feature vector dimension of R(B+D), with no pre-processing
of sound files. A block diagram of the SAI extraction and
feature vector formation can be seen in Fig. 2.

Neither the original PAMIR nor the proposed SVM classifier
feature vectors appear able to adequately represent long-
duration time-domain variations within a sound file (i.e. longer
than the 35 ms delay lag analysis). Thus a modification of the
SVM classifier feature vector will be proposed and evaluated
later. This is to cluster and concatenate consecutive features
into a longer vector which includes time-domain context,
T . Section IV-B3 will briefly explore this and demonstrate

a performance gain from the additional context. However
the resulting vector becomes very large, with dimension
T.R(B+D). Fortunately, further experimentation reveals that
the benefit of additional temporal information is greater than
the benefit gained by using multiple rectangular windows
to represent the SAI. Thus, a more efficient solution which
provides very good performance is to simply downsample the
entire SAI to size D ×B, represent this using marginals (i.e.
D+B) and then concatenate with neighbouring marginals to
incorporate context, giving a size of T (B+D) – which is even
more efficient than the original feature vector since T << R.

In experiments reported in Section V, the SVM classifier
will be evaluated for static input features (i.e. without context,
size R(B +D), as well as for features including the context
from T concatenated neighbouring frames (i.e. dimension
T (B + D)). Note that the spectrogram features described in
the next subsection will also be formed into lower dimension
feature vectors in a similar way.

The DNN classifier [37], when evaluated using SAI features,
simply replaces the SVM classifier, with the same input
features. This will be discussed further in section III-D.

The SAI features can be visualised in Fig. 3, showing
images for two different sounds, for two different background
noises, and two images of sound plus noise at 0dB SNR.

B. SIF features

The initial spectrogram comprises a stack of fast Fourier
transform (FFT) magnitude spectra. Given a length N sound
vector s, a spectral line f is obtained from highly overlapped
and windowed frames of length ws sample. For current frame
F , spectral line fF is thus obtained as follows:

sF (n) = s(F.δ + n).w(n) for n = 0 . . . (ws − 1) (1)

fF (k) = |
ws−1∑
n=0

sF (n)e
−j2πnk
ws | for k = 1 . . . (ws/2− 1)

(2)
where δ is the sample advance between analysis frames and

w(n) defines an N -point Hamming window. Down sampling
is performed to match the B bin frequency resolution of the
SAI-based method by averaging over B′ = bws/2Bc samples.
The resulting spectra are stacked to form an overlapped
spectrogram (S).

S(l,m) =
1

B′
.

B′.(l+1)∑
n=B′.l

fF−m(n) for l = 0 . . . B/δ (3)

In practice, the spectrogram S contains a history of up to
D consecutive spectral lines (i.e. m = 0 . . .D−1) which are
concatenated to populate a (B.D+1) dimension feature vector
V which is augmented by a scalar energy metric. Feature
vector v comprises elements v(i) = S(bi/Bc, i− B.bi/Bc))
for i = 0 . . . (B.D − 1) with the energy metric defined as,

v(B.D) =

D−1∑
l=0

B−1∑
m=0

S(l,m) (4)
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(a) Destroyer + Ring001 SAI

(b) Factory Floor 1+Drum004 SAI

Fig. 3. Example stabilised auditory images of, from left to right: the 0dB SNR combined signals, the noise-free named sound from the RWCP database, and
the corresponding slice of the named NOISEX-92 background noise. The same sounds are shown using the SIF representation in Fig. 4.

This scalar energy metric is designed to capture information
regarding frame energy, on the basis that very low energy
frames are likely to be less discriminative to sound classifica-
tion than higher energy frames. In fact, our tests reveal that the
use of just a single energy metric leads to between 10 and 20%
classification performance gain in noisy conditions. This value
is also investigated as a scaling for the DNN frame output
classification later. The feature vector v, with a dimensionality
of only (B.D+1) constitutes the DNN initial layer input, and
thus defines its input layer size.

A simple approach to de-noising (DN) is also investi-
gated to mitigate the noise added to the SIF test features
(training, by contrast, is always performed using noise-free
sounds). Each file in the test data set, corrupted by additive
noise, is represented by multiple overlapped analysis frames
of downsampled spectrogram information, with each frame
generating a length B spectral vector. To perform de-noising,
the minimum quantity in each of the B frequency bins is
computed across the entire sound file, with each minimum
value subsequently subtracted from every spectral vector prior
to forming the feature matrix. De-noising proceeds from S in
eqn. (3). The de-noised spectrogram Sdn is thus,

Sdn(l,m) = S(l,m)−min
l
(S(l,m)) (5)

for m = 0 . . . (B − 1). The initial B.D elements of the final
feature vector v, are then formed from Sdn, rather than S,
however the energy metric v(B.D) is computed from original
spectrogram data as usual, as in eqn. (4).

The SIF features (without energy) can be seen in Fig. 4, for
two sounds, two background noises and the combination of
each. The sounds, noises and combined vectors are identical
to those used to produce the SAI images in Fig. 3.

C. SVM classifier

Given a length V input feature vector v = [v1, v2, ..., vV ]
>,

with v ∈ RV and corresponding vector of K classes, y =

[y1, y2, ..., yK ]>, with y ∈ {1,−1}K , SVM with linear kernel,
solves the primal optimisation of the normal vector to the
hyperplane, w;

min
w,b,ξ

1

2
wTw + c

V∑
i=1

ξi (6)

where c > 0 is a regularisation constant and we use slack
variables ξ to define an acceptable tolerance;

yi(w
Tψ(vi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1 . . . V (7)

given that ψ(vi) maps vi into a higher dimensional space.
Since w typically has high dimensionality [38], we usually
solve the related problem,

min
α

1

2
αTQα+ eTα (8)

where e = [1, . . . V ]T is a vector of all ones, Q is a V × V
positive semi-definite matrix such that Qij ≡ yiyjK(vi,vj)
and K(vi,vj) ≡ ψ(vi)Tψ(vj) is the kernel function. Eqn. 8
is subject to yTα = 0, 0 ≤ αi ≤ c, i = 1 . . . V .

After solving eqn. (8), using the primal-dual relationship,
the optimal w satisfies, w =

∑V
i=1 yiαiψ(xi). and the

decision function is the sign of wTψ(vi) + b from eqn. 7
which can be computed simply using,

sgn

(
V∑
i=1

yiαiK(v1,v) + b

)
(9)

Using LIBSVM [38], several kernels K(vi,vj) were tested,
namely linear vTi vj , third order polynomial (γvTi vj)

3, radial
basis e−γ||vi−vj ||

2

and sigmoid, tanh(γvTi vj). All numerical
results in this paper are given for a linear kernel, since this
performed best for almost all experiments. The regularisation
constant c = 32 was found to be very insensitive over a
large range and we set γ = 0.03, which is close to the
default (i.e. 1/N or 0.02) but, as estimated by the LIBSVM
toolkit, resulted in slightly improved performance. In all cases,
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(a) Destroyer + Ring001 SIF

(b) Factory + Drum004 SIF

Fig. 4. Example spectrograms of, from left to right: the 0dB combined signals, the noise-free named sound from the RWCP database, and the corresponding
slice of the named NOISEX-92 background noise. The same sounds are shown using the SAI representation in Fig. 3.

system parameters were constant between classes (i.e. globally
fixed). Given that LIBSVM uses the one-against-one multi-
class method, K(K − 1)/2 binary models were required to
represent all classes. Since input scaling is important, the SVM
input feature vector was mapped to the required input range
MIN . . .MAX prior to training and testing,

v(i) =
(MAX −MIN).(u(i)−min(u))

{(max(u)−min(u))−MIN}
(10)

for i = 1 . . . V , where u(i) denotes the ith element of
unscaled input vector u. Likewise v(i) is the ith element of
scaled feature vector v. In this implementation, MIN = −1
and MAX = +1.

D. DNN classifier

An L-layer DNN classifier is constructed with the out-
put layer in a one-of-K configuration (i.e. K classes), and
the input layer fed with the feature vectors. The DNN is
constructed from individual pre-trained RBM pairs, each of
which comprise V visible and H hidden stochastic nodes,
v = [v1, v2, ..., vV ]

>, and h = [h1, h2, ..., hH ]>. Two different

RBM structures are used in this paper. Intermediate and final
layers are Bernoulli-Bernoulli, whereas the DNN input layer
is formed from a Gaussian-Bernoulli RBM. In the former,
nodes are assumed to be binary (i.e. vbb ∈ {0, 1}V and
hbb ∈ {0, 1}H ), and the energy function of the state Ebb(v,h)
is therefore:

Ebb(v,h) = −
V∑
i=1

H∑
j=1

vihjwji −
V∑
i=1

vib
v
i −

H∑
j=1

hjb
h
j (11)

wji represents the weight between the ith visible unit and
the jth hidden unit and bvi and bhj are respective real-valued
biases. Bernoulli-Bernoulli RBM model parameters are θbb =
{W,bh,bv}, with weight matrix W = {wij}V×H and biases
bh = [bh1 , b

h
2 , ..., b

h
H ]> and bv = [bv1, b

v
2, ..., b

v
V ]
>.

The Gaussian-Bernoulli RBM visible nodes are real (i.e.
vgb ∈ RV ), while the hidden nodes are binary (i.e. hgb ∈
{0, 1}H ). Thus, the energy function becomes:

Egb(v,h) = −
V∑
i=1

H∑
j=1

vi
σi
hjwji +

V∑
i=1

(vi − bvi )2

2σ2
i

−
H∑
j=1

hjb
h
j

(12)
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Every visible unit vi adds a parabolic offset to the energy
function, governed by σi. Gaussian-Bernoulli RBM model pa-
rameters thus contain an extra term, θgb = {W,bh,bv, σ2},
with variance parameter σ2

i pre-determined rather than learnt
from training data.

Given an energy function E(v,h) defined as in either
eqn. (11) or eqn. (12), the joint probability associated with
configuration (v,h) is defined as,

p(v,h; θ) =
1

Z
e{−E(v,h;θ)} (13)

where Z is a partition function, Z =
∑

v

∑
h e
{−E(v,h;θ)}.

1) Pre-training: Given a training set, RBM model param-
eters θ can be estimated by maximum likelihood learning
using the contrastive divergence (CD) algorithm [25]. This
runs through a limited number of steps in a Gibbs Markov
chain to update hidden nodes h given visible nodes v and
then update v given the previously updated h. The input layer
is trained first (i.e. the layer 1 vgb input is the feature vector
v from Section III-B). After training, the inferred states of
its hidden units h1 become the visible data for training the
next RBM visible units v2. The process repeats to produce
multiple trained layers of RBMs. Once complete, the RBMs
are stacked to produce the DNN, as shown in Fig. 5.

2) Fine-tuning: A size K softmax output labelling layer is
then added to the pre-trained stack of RBMs [37]. The function
of the layer is to convert a number of Bernoulli distributed
units in the final layer, hL, into a multinomial distribution
through the following softmax function,

p(k|hL; θL) =
φ(k, θL)∑K
p=1 φ(p, θL)

for k = 1 . . .K (14)

where θL represents the model parameters for the entire DNN,
φ(k, θL) = e{

∑H

i=1
wkihi+bk}, and p(k|h; θL) denotes the

probability of the input being classified into the k-th class.
Back propagation (BP) is then used to train the stacked net-

work, including the softmax class layer, based on minimising
the cross entropy error between the true class label, c and the
class predicted by the softmax layer. The cross-entropy cost
function, C, is easily computed as −

∑K
k=1 ck log p(k|h; θL).

Both the dimensions and number of hidden layers in the
DNN are explored in Section IV-B6 to obtain a trade-off be-
tween performance and size. During training, dropout (propor-
tion of weights fixed during training batches to prevent over-
training) was maintained at 0.1, and mini-batch training size
was set to 100, both being common default parameters. In all
cases, the DNNs were pre-trained and fine-tuned exclusively
with noise-free sound features, and used 1000 training epochs.
Note that the winning label from the DNN softmax output
layer will be post-processed to yield an overall classification
result (described later in Section V-C).

IV. EVALUATION AND DESIGN

This section begins by discussing and describing the per-
formance evaluation used in this paper, before outlining a
number of experiments that were conducted to explore various
parameters in the systems prior to final system design. Finally,
the structures, sizes and parameters of the evaluation systems
will be presented.

Fig. 5. Diagram showing detail of SIF formation and extraction of DNN
feature vector.

A. The evaluation task

The evaluation task used in this paper is identical to that
reported by Dennis et.al. in [14] and [15]. The advantage of
using a standard evaluation is that it is repeatable by others,
and eases the comparison of results with other published
techniques that make use of the same evaluation method.
In addition, the common availability of both the sound and
noise databases is a significant advantage. A total of 50
sound classes are chosen from the Real World Computing
Partnership (RWCP) Sound Scene Database in Real Acoustic
Environments [36] following the selection criteria in [14]. In
the RWCP database, every class contains 80 recordings, and
contains a single example sound per recording. The sounds
were captured with high SNR and have both lead-in and lead-
out silence sections. As in [14], the training data set comprises
50 randomly-selected files from each class. The remaining 30
files from each class are set aside for evaluation. Therefore,
a total of 2500 files are available for training and 1500 per
testing run. All evaluations apart from the multi-condition
tests use classifiers that are trained with exclusively clean
sounds, with no pre-processing or noise removal applied. In
all cases, evaluation is performed separately for both clean
sounds, as well as sounds corrupted by additive noise. The
noise-corrupted tests use four background noise environments
selected from the NOISEX-92 database (again, we confine the
selection to those used in [14], namely “Destroyer Control
Room”, “Speech Babble”, “Factory Floor 1” and “Jet Cockpit
1”). These environments were chosen by Dennis [15] as
realistic examples of non-stationary noise with predominantly
low-frequency components. During evaluation under noisy
conditions, noise is added to the test data set at levels of
20, 10 and 0 dB SNR. For each file in the test data set, one
of the four NOISEX-92 recordings is randomly selected, a
random starting point identified within the noise file, and then
sample-wise added, at the given SNR to the sound file. SNR
is calculated over the entire noise and sound file in each case.

The multi-condition evaluations train the system with a
variety of clean and noise-corrupted sounds, again exactly
following the evaluation method of Dennis [12]. “Speech
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Babble” is chosen for use in the evaluation, while training
data comprises a random selection of clean sounds and noise-
corrupted sounds using the remaining three noises at SNRs of
20dB and 10dB as well as clean sounds. The intention is that
this approach allows the trained systems to be less sensitive to
the effects of noise. Training using a larger selection of noise
types might be expected to further reduce noise sensitivity,
although this would in turn require a larger data and would
not comply with the standard evaluation methodology.

B. System Design
Both the feature extraction methods as well as the classifiers

are highly tunable, with a very large degree of freedom
in terms of system design and parameter choices. Many
experiments were therefore conducted to evaluate performance
related to parameter choice. While these are not exhaustive
searches of all parameters, the following subsections discuss
design choices and present experimental results relating to
system design which may be valuable to other researchers.
The final system designs used for evaluation will be given in
Section IV-C.

1) VQ: The Google-SAI system makes use of VQ to form
a sparse representation of the input data for the PAMIR
classifier, reporting results for a 256 entry codebook [4]. When
testing on standard tests using RWCP data (Section IV-A), we
found that performance scaled nearly linearly with codebook
sizes from 128 to 1024 (i.e. top-5 accuracy for power-of-
two codebook sizes between 32 and 1024 was 81%, 81%,
88%, 90%, 92%, 95%). However, in all tested cases, under
many evaluation conditions, the removal of the VQ and sparse
coding stages resulted in higher SVM classification accuracy.
This is understandable since the initial use of both VQ and
sparse coding in [2] was motivated for reasons of computa-
tional efficiency, rather than classification performance. Since
the current paper is primarily concerned with robust sound
event classification performance, neither VQ nor sparse coding
will be employed in the final evaluations.

2) Region selection: The Google-SAI system used R = 49
rectangular regions extracted from each SAI, with the regions
selected according to a ‘start-small and then double’ heuristic,
clipped to the SAI window extents, as outlined in [6]. As
mentioned in Section III-A the initial window had dimensions
of D = 16 and B = 32. We used the same heuristic
and sizes and evaluated system performance with differing
number of windows R = 1 . . . 147. In general, a slight
performance improvement over the baseline system was found
to be achievable by using R = 54 windows but with decreasing
gains as further windows were added. In addition, a slightly
smaller initial window size of D = 16 and B = 24 was
found to perform well. For example, noise-free classification
accuracy in a baseline SVM classifier with SAI input features
for R = 54 windows was 93.40%, whereas it only rose to
93.60% for R = 120 windows, at a significant additional
computational and memory cost (corresponding 0dB SNR
noise figures are 6.47% and 6.67%). Furthermore, the DNN
classifier, discussed below, performed better by representing
the entire auditory image by a single 16 × 24 sized down-
sampled window (with time domain context – see below).

3) Connected frames and context: Various techniques in
ASR exploit longer duration context in the front-end feature
vector (e.g. Shifted Delta Cepstrum [39]) to improve per-
formance. Similar approaches could reasonably be expected
to have greater importance for the current application since
it lacks an equivalent to the back-end language model used
in ASR. We therefore explored two different approaches to
incorporating temporal context of T windows. The first used
a method similar to the Google-SAI system by computing
the mean of input feature vectors (in our case, across T
windows, rather than over the entire variable-length file as
in the Google-SAI system). However there are now multiple
feature vectors representing each file. The second method was
to concatenate T features (i.e. feature dimension becomes
T (B + D)) to form a larger feature vector, and again there
are many feature vectors representing each file. Having been
trained on individual feature vectors, the SVM classifiers in
each case produce one classification output or ‘vote’ per
testing context, with a sound file being classified based upon
the output class which receives the most votes. Note that
another method of combining scaled classifier outputs will be
evaluated in Section V-C.

On the standard RWCP evaluation task for noise-free
sounds (Section IV-A), performance tended to improve with
increasing context length from 2. . .10. Classifying on context
shows modest gains of up to 1.2% with a context size of
8, decreasing thereafter, over static baseline performance of
89.53%. However the higher dimensionality feature vector of
the second method achieved greater improvements of 0.8%,
1.6%, 3.0%, 3.9%, 6.7%, 6.6%, 6.6%, 7.0%. 7.1% (as con-
text increased from 2. . .10). The implication was clear that
temporal information is under-represented in the static feature
vectors from individual frames, and thus a context size of
T = 10 was chosen for the SAI features. In Section V, results
will compare the use of context (T = 10, R = 1) with no
context (T = 1, R = 54) for an SVM classifier, as well as
explore the context system performance with a DNN classifier.

4) Alternative computation of marginals: Even a naı̈ve
summation of SAI region marginals works well in practice, as
demonstrated by the Google-SAI recall system [4]. However
this clearly ignores second order statistics; classifying 16 mid-
grey level samples would be equivalent to 8 black and 8 white
samples, which would in turn rate a striped SAI region as being
equivalent to one of unvarying greyness (refer to Fig. 3 to see
the ‘stripes’ visible in the SAI plots). However our experiments
revealed that increasing the SAI-derived feature vector size by
incorporating a variance statistic does not meaningfully influ-
ence the results in an R = 54 region SVM classifier evaluation.
However replacing the naı̈ve summation with a Minkowski
sum [40] (which gives preference to the ‘louder’ elements, for
vectors A and B, sum(A,B) = a+ b : a ∈ A, b ∈ B) traded
a very slight 0.8% reduction in noise-free SVM accuracy
against a similar improvement for noisy cases. Since the gain
was not significant, the evaluation results reported in Section
V maintain the use of naı̈ve marginal computation.

5) Effect of acoustic noise type: Although the standard
evaluation task (Section IV) uses noise from the NOISEX-
92 database, we also compared this against performance with
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TABLE I
COMPARISON OF PERFORMANCE WITH AWGN AND NOISEX-92 NOISE

System clean 20dB 10dB 0dB mean
AWGN 93.40% 47.40% 26.80% 12.13% 44.93%
NOISEX-92 93.40% 59.27% 26.87% 6.47% 46.50%

AWGN-corrupted sounds at the same SNR levels. The results,
reported in Table I, using an SVM baseline classifier, indicate
that, although the 10dB performance is similar, the NOISEX-
92 task is more ‘difficult’ overall than classification in AWGN.

6) DNN size and structure: The DNN classifier, described
in Section III-D, must support an input feature dimension
of T (B + D) = 10(24 + 16) = 400 for the SAI features
with context. For the SIF features, input feature dimension is
(B.D) + 1 = (30× 24)+ 1 = 721. In both cases, the number
of output layers, K = 50, determined by the number of sound
classes in the standard RWCP evaluation. The internal network
layer dimensions were initially set to follow Hinton et. al. [28]
for his DNN examples, before a step-wise search (minimum
resolution 10) of hidden layer widths of between 100 and 300
was performed (as well as experiments for 500, 1000, 2000
nodes), while constraining internal layers to be of equal size.
Given L = 2 layers, for the given evaluation on SIF features
on noise-free sounds, performance was found to increase
up to 210 hidden nodes (92.35% accuracy). Increasing the
number of hidden nodes to 250 slightly reduced performance
to 92.10%. Increasing further saw accuracies of 92.52% for
300 nodes, 92.77% for 500 nodes, 92.63% for 1000 nodes
and 92.70% for 2000 nodes (all at the cost of increased
computation time – the latter two investigations requiring
several days of GPU time). A brief investigation was also
made into the effects of depth. With inner layer size set to 210
nodes, five-layer performance (i.e. an additional hidden layer
of dimension 210) was 92.22% and six-layer performance
was 92.13%. The investigations thus showed only marginal
changes in performance as depth increased beyond two hidden
layers, and beyond 210 hidden nodes, and thus the baseline
SIF feature DNN classifier structure was set to 721–210–210–
50 An equivalent layer size investigation was performed for
the SAI features, revealing optimal performance with hidden
layers of 200 nodes. Thus the baseline SAI feature DNN
classifier structure was set to 400–200–200–50.

C. Final Structure

The final structure of the systems used for evaluation in the
following section are shown in Table II. The context refers to
the number of connected frames presented within a single fea-
ture vector, as described in Section IV-B3, whereas the Time
and Frequency resolutions shown are the final downsampled
sizes used to represent a single analysis frame, which has been
created using the given time domain window size.

V. RESULTS AND DISCUSSION

This section will first present the performance of other
reported systems, before evaluating the performance of the

TABLE II
FINAL SYSTEM PARAMETERS FOR EVALUATION

Classifier SVM DNN
Features SAI SAI SAI SIF
Context T (frames) 1 10 10 30
Freq. resolution B 24 24 24 24
Time resolution D 16 16 16 1
Window 35ms 35ms 35ms 128ms
Regions R 54 1 1 1
Feature dimension 2160 400 400 721
Hidden layers L N/A N/A 2 2
Hidden nodes H N/A N/A 200 210

proposed robust sound event classification systems for both
SVM and DNN classifiers, using several arrangements of SAI
and SIF features.

A. Comparison with other systems

A significant advantage of choosing a standard evaluation
task (Section IV-A), allows comparison against other sys-
tems [12]. Table III reveals the performance some of the
many systems evaluated by Dennis [15]. These include hidden
Markov models (HMM) with MFCC features, also the same
features used with an SVM classifier. Both exhibit good
performance in noise-free conditions, but degrade significantly
in noise. The latter classifier was also evaluated with an ETSI
Advanced Front End (ETSI-AFE) toolkit enhancement [41],
which uses noise removal techniques to significantly improve
performance in noisy conditions. The MPEG-7 method uses
a set of 57 features per frame, reduced to a dimensionality of
12 through principal component analysis (PCA) [42], and then
augmented with difference and acceleration features. These are
used in conjunction with a 5 state HMM having 6 Gaussian
mixtures. The Gabor method used a feature-finding single-
layer perceptron network to select the best 36 features [15].
This yielded the highest noise-free performance of all tested
systems.

Gammatone cepstral coefficients were extracted by 36 gam-
matone filters in the GTCC system, then reduced to 12
dimensions using PCA before being augmented in the same
way as the MPEG-7 method. The MP+MFCC system used
matching pursuit (MP) [43] to find the top five Gabor bases
from a decomposition of the signal window, yielding four
mean and variance features from the Gabor bases scale and
frequency parameters. These were concatenated with MFCC
features, before being augmented with deltas and accelerations
to form the final feature vector. Finally, Dennis developed a
SIF extraction method (‘Dennis SIF’) as described in Section
II-B which is shown in Table III to improve performance in
noise.

B. SVM and DNN performance with SAI features

The SAI features, computed as in Section III-A, are evalu-
ated with the SVM and DNN classifiers of Sections III-C and
III-D respectively. All parameters are as specified in Section
IV-C. Table IV reports the classification accuracy for various
degrees of corrupting noise. All systems perform well for
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TABLE III
CLASSIFICATION ACCURACY FOR SEVERAL STATE-OF-THE-ART SOUND

EVENT DETECTION METHODS (RESULTS COURTESY OF [15])

System clean 20dB 10dB 0dB mean
MFCC-HMM 99.4% 71.9% 42.3% 15.7% 57.4%
MFCC-SVM 98.5% 28.1% 7.0% 2.7% 34.1%
ETSI-AFE 99.1% 89.4% 71.7% 35.4% 73.9%
MPEG-7 97.9% 25.4% 8.5% 2.8% 33.6%
Gabor 99.8% 41.9% 10.8% 3.5% 39.0%
GTCC 99.5% 46.6% 13.4% 3.8% 40.8%
MP+MFCC 99.4% 78.4% 45.4% 10.5% 58.4%
Dennis SIF 91.1% 91.1% 90.7% 80.0% 88.5%

TABLE IV
CLASSIFICATION ACCURACY FOR SAI FEATURES USING SVM AND DNN

CLASSIFIERS

System clean 20dB 10dB 0dB mean
SAI, static, SVM 93.40% 59.27% 26.87% 06.47% 46.50%
SAI T = 10, SVM 94.33% 75.60% 41.73% 09.73% 55.35%
SAI T = 10, DNN 96.20% 77.40% 49.80% 19.13% 60.63%

classification of noise-free sounds but degrade sharply with
additive noise.

The incorporation of SAI context is shown to improve the
mean SVM classification score by 19%, with the greatest
performance improvement being for the 10dB noise condition.
However, exactly the same features classified using the DNN,
achieves an additional mean improvement of 10%, with by far
the greatest contribution occurring for the 0dB noise condition.
It appears that, while the DNN yields only moderate benefits
for noise-free sound classification, it works particularly well in
high levels of noise. Thus the results highlight the noise-robust
discriminative capabilities of the DNN.

C. DNN performance with SIF features

Since Dennis et. al. achieved good results with SIF-like
features [12], as reported in Section V-A, the DNN classifier
was next trained and evaluated with SIF input, extracted as
outlined in Section III-D. The DNN size is 721-210-210-
50 and incorporates a T = 10 input context, with all other
parameters as specified in Section IV-C.

Table V presents results from a number of systems. The
baseline is a straightforward DNN classifier with a δ = 16
sample step between spectrogram windows, and no denoising.
The overall classification from testing one sound file is the
maximum class score from the mean of all classification results
(since there are multiple classification contexts per file).

The baseline DNN achieves 98.07% noise-free accuracy,
but only 31.20% for the 0dB noise condition. Compared to
the results in Table III, the DNN performance is positioned
between Dennis’s SIF result [15] and the others in the table:
Noise-free accuracy is within 1.8% of the highest score, yet
the 0dB accuracy ranks third, and is relatively good compared
to all but the Dennis result.

Moving down Table V, voting (denoted as -v) classifies
a sound file based on votes from the individual context
winning class outputs. This improves low-noise performance,
but degrades the 0dB result. e-scaled (denoted as -e) weights
the votes from individual classification contexts by the context

TABLE V
CLASSIFICATION ACCURACY FOR OVERLAPPED SIF FEATURES USING

DNN CLASSIFIER ON 16-STEP OVERLAPPING FRAMES

System clean 20dB 10dB 0dB mean
baseline 98.07% 85.07% 67.53% 31.20% 70.47%
DNN-v 98.07% 87.27% 70.67% 28.07% 71.02%
DNN-e 95.87% 93.73% 86.40% 45.80% 80.45%
DNN-DN 96.73% 94.60% 90.27% 76.47% 89.52%
DNN-DN-v 98.87% 95.33% 92.40% 78.87% 91.37%
DNN-DN-e 96.00% 94.37% 93.53% 85.13% 92.26%

TABLE VI
CLASSIFICATION ACCURACY FOR DE-NOISED OVERLAPPED SIF FEATURES

USING DNN CLASSIFIER

System clean 20dB 10dB 0dB mean
DNN-δ25-v 98.13% 95.07% 89.00% 73.47% 88.92%
DNN-δ25-e 96.47% 93.60% 89.67% 78.87% 89.65%
DNN-δ16-v 98.87% 95.33% 92.40% 78.87% 91.37%
DNN-δ16-e 96.00% 94.37% 93.53% 85.13% 92.26%
DNN-δ8-v 98.67% 95.80% 92.60% 79.40% 91.62%
DNN-δ8-e 96.20% 95.80% 94.13% 85.47% 92.90%
DNN-δ4-v 98.20% 96.13% 90.73% 71.73% 89.20%
DNN-δ4-e 95.53% 95.07% 92.13% 82.67% 91.35%

energy v(B.D), in eqn. (4). The idea being that quieter (low-
energy) regions of the sound file are likely to contribute
less discriminative capability than higher energy regions, and
therefore receive a reduced voting weight. It can be seen that
this trades off around 2.5% noise-free performance to purchase
a significant improvement in noise-corrupted performance.

In Section V-A, it was noted that the addition of ETSE-AFE
de-noising technique to the MFCC-HMM system was able to
significantly improve performance in noise. Therefore a simple
de-noising technique was developed for the SIF features used
with the DNN classifier, as shown in eqn. (5). When this is
applied to the baseline system, the result (listed as DNN-DN in
Table V), is again a trade off with slightly reduced noise-free
accuracy but 0dB performance.

DNN-DN-v and DNN-DN-e combine both techniques dis-
cussed above (voting or e-scaling and simple de-noising).
Overall results are excellent, achieving mean accuracies of
91.37% and 92.26% respectively; better than any other re-
ported techniques evaluated on the same standard tests.

D. Exploring DNN performance and overlap

Table VI further explores the performance of the DNN
classifier with SIF input, with either straightforward voting
or e-scaling of the output classifications, while adjusting the
step size between analysis windows. Altering δ in eqn. (1) has
the effect of changing the time resolution of the SIF. From the
results listed, which show the best performance for each level
of noise in bold text, it can be seen firstly that δ = 16 performs
best for noise-free classification, whereas a smaller step size
is preferred for classification of noise-corrupted sounds.

This tendency is far easier visualised in Fig. 6 which plots
the main results discussed in this section in terms of error rate
(rather than accuracy) for different features and noise levels.

Three trends are distinguishable from the plot, which shows
generally improving results from left to right. Firstly, that
major performance improvements from left to right are in the
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Fig. 6. Results of various system configuration in clean and noisy conditions, in terms of error rate.

TABLE VII
PERFORMANCE OF MFCC FEATURES WITH HMM, SVM AND DNN (THE

HMM AND SVM RESULTS ARE COURTESY OF [15]).

Noise clean 20dB 10dB 0dB mean
MFCC-SVM 98.5% 28.1% 7.0% 2.7% 34.1%
MFCC-DNN 89.5% 48.8% 29.9% 11.2% 44.9%

higher noise cases, and predominantly contributed by the de-
noising process. Secondly that the gap between performance
curves at the left of the graph is almost linear, whereas at the
right hand side it is exponential, meaning that the effect of
noise in the 0dB case is becoming intractable given the tested
techniques. Thirdly, there is an interesting undulation in results
for the 8 most right hand systems. Grouping the 0 and 10dB
results together as ‘high noise’ cases, and the noise-free and
20dB results as ‘low noise’ cases, we can see that minima in
the former coincide with maxima in the latter. This clearly
illustrates that the voting systems favour low noise, whereas
energy scaled systems favour high noise conditions.

To further highlight the ability of the DNN compared to
SVM, Table VII reproduces the MFCC-SVM results of Table
III and compares them to the performance achieved by a DNN.
The input features were 12 MFCC coefficients including DC,
with delta and delta-delta and a context size of ±5, as in
the main results above. It is evident that DNN performance
in clean conditions was reduced compared to SVM, but imm-
proved significantly in the presence of background noise. Most
importantly, these MFCC results are bettered by all systems
using SAI and SIF features. We thus argue that using the
more representative input features of MFCC, the classification
power of DNN slightly exceeds that of SVM. However given
richer input features (being those derived from SAI and SIF
respectively), the discriminative abilities of the DNN appear
more able to extract meaningful classification relationships.

TABLE VIII
MULTI-CONDITION (MC) CLASSIFICATION ACCURACY COMPARED TO

MISMATCHED CLASSIFICATION PERFORMANCE (PRESENTED IN ITALICS)
FOR SEVERAL SYSTEMS.

Noise clean 20dB 10dB 0dB mean
SAI-DNN 96.20% 77.40% 49.80% 19.13% 60.63%
SAI-DNN-MC 63.67% 62.73% 57.87% 26.80% 52.77%
SIF-DNN-DN-v 98.87% 95.33% 92.40% 78.87% 91.37%
SIF-DNN-DN-e 96.00% 94.37% 93.53% 85.13% 92.26%
SIF-DNN-MC-v 96.90% 96.90% 93.20% 80.40% 91.85%
SIF-DNN-MC-e 94.70% 95.80% 92.10% 87.70% 92.58%
SIF-SVM-MC 91.13% 91.10% 90.71% 80.95% 88.55%

E. Multi-condition noise tests

Multi-condition (MC) results are presented in Table VIII,
where classification is evaluated for sounds corrupted with
NOISEX-92 “Speech Babble”, on systems trained with “De-
stroyer Control Room”, “Factory Floor 1” and “Jet Cockpit 1”
at two noise levels, and compared to the non-MC mismatched
results reported previously (shown in italics). For SAI features,
MC training significantly improves the robustness to noisy
conditions, but at the expense of a considerable reduction in
classification accuracy for low noise conditions. Both reported
systems have identical DNN structures and context size of
T = 10 and used only a voting approach since the feature
lacks energy informations.

SIF results are then reported for both e-scaled and voting
mechanisms. For the SIF features, MC training yields a
very slight performance improvement over the denoised SIF-
DNN systems, mainly under high noise conditions as would
be expected, and again at the expense of some low noise
performance. Clearly SIF outperforms SAI in all tests, and
at all noise levels, whether MC training is used or not.

Multi-condition testing was also used by Dennis et. al. [15]
to evaluate his SIF method with SVM classifier, as shown
at the bottom of Table VIII, achieving an average accuracy
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of 88.55%. It should also be noted that they proposed, in
[14], a more complex sub-band power distribution (SPD)
image feature with a kNN classifier and a powerful de-noising
strategy: Assuming a clean sample of the background noise
is available, their method computes a noise mask which is
then applied to the combined sound plus noise signal prior
to classification. Impressive results are achieved, averaging
95.95% accuracy. The technique would be a good choice
where noise is known or is able to be estimated accurately
prior to presentation of the noise-corrupted sound.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a DNN-based robust sound clas-
sification system, and evaluated performance using a standard
database and assessment task. Starting from the state-of-the-
art Google-SAI PAMIR recall method, the same features were
evaluated with an SVM classifier. Additional context informa-
tion was found to improve performance, thus this was incor-
porated along with adjustments to SAI window regions, and
evaluated with both SVM and DNN classifiers. Performance
under noise-free conditions was good, but degraded rapidly
with increasing levels of noise. Multi-condition training was
shown to be able to mitigate much of the performance loss
in high noise conditions, but at the expense of a considerable
reduction in classification accuracy of clean sounds.

Subsequently, a novel low-resolution overlapped spectro-
gram image feature was developed and evaluated with the
DNN classifier. Several variants of the system were then
proposed and evaluated, including a simple de-noising method
as well as post-processing of context-by-context classification
outputs across a single sound. Multi-condition training, where
the DNN is trained with noise-corrupted samples, was found to
improve classification performance for high noise conditions,
achieving an average accuracy of 92.58%. In general, the task
of classifying sounds in high levels of noise is found to be
extremely challenging. Results reported here and elsewhere
indicate a trade-off between performance in noise-free and
in high noise conditions. Systems performing best in clean
conditions are seldom able to cope with high levels of noise.
Conversely, the best-performing systems in high levels of noise
will often sacrifice some performance in clean conditions. This
highlights the importance of testing such systems in realistic,
noisy conditions or in developing adaptive systems. Finally,
it should be noted that there are a large number of tunable
parameters related to the front end feature-extraction process,
the DNN classifier, and the classification post-processor. Not
all parameters and combinations have been fully explored in
this paper.
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