18,406 research outputs found

    A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics

    Get PDF
    This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean's surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically-based methods use Navier-Stokes Equations (NSE) to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light's interaction with the ocean surface

    Computational analysis of single rising bubbles influenced by soluble surfactant

    Full text link
    This paper presents novel insights about the influence of soluble surfactants on bubble flows obtained by Direct Numerical Simulation (DNS). Surfactants are amphiphilic compounds which accumulate at fluid interfaces and significantly modify the respective interfacial properties, influencing also the overall dynamics of the flow. With the aid of DNS local quantities like the surfactant distribution on the bubble surface can be accessed for a better understanding of the physical phenomena occurring close to the interface. The core part of the physical model consists in the description of the surfactant transport in the bulk and on the deformable interface. The solution procedure is based on an Arbitrary Lagrangian-Eulerian (ALE) Interface-Tracking method. The existing methodology was enhanced to describe a wider range of physical phenomena. A subgrid-scale (SGS) model is employed in the cases where a fully resolved DNS for the species transport is not feasible due to high mesh resolution requirements and, therefore, high computational costs. After an exhaustive validation of the latest numerical developments, the DNS of single rising bubbles in contaminated solutions is compared to experimental results. The full velocity transients of the rising bubbles, especially the contaminated ones, are correctly reproduced by the DNS. The simulation results are then studied to gain a better understanding of the local bubble dynamics under the effect of soluble surfactant. One of the main insights is that the quasi-steady state of the rise velocity is reached without ad- and desorption being necessarily in local equilibrium

    Center for low-gravity fluid mechanics and transport phenomena

    Get PDF
    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed

    A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model

    Full text link
    We present a simple transformation of the formulation of the log-periodic power law formula of the Johansen-Ledoit-Sornette model of financial bubbles that reduces it to a function of only three nonlinear parameters. The transformation significantly decreases the complexity of the fitting procedure and improves its stability tremendously because the modified cost function is now characterized by good smooth properties with in general a single minimum in the case where the model is appropriate to the empirical data. We complement the approach with an additional subordination procedure that slaves two of the nonlinear parameters to what can be considered to be the most crucial nonlinear parameter, the critical time tct_c defined as the end of the bubble and the most probably time for a crash to occur. This further decreases the complexity of the search and provides an intuitive representation of the results of the calibration. With our proposed methodology, metaheuristic searches are not longer necessary and one can resort solely to rigorous controlled local search algorithms, leading to dramatic increase in efficiency. Empirical tests on the Shanghai Composite index (SSE) from January 2007 to March 2008 illustrate our findings
    • …
    corecore